WorldWideScience

Sample records for beams generating high-energy-density

  1. Superintense ion beam with high energy density

    Science.gov (United States)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  2. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  3. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  4. Highly Compressed Ion Beam for High Energy Density Science

    International Nuclear Information System (INIS)

    The Heavy Ion Fusion Virtual National Laboratory is developing the intense ion beams needed to drive matter to the High Energy Density regimes required for Inertial Fusion Energy and other applications. An interim goal is a facility for Warm Dense Matter studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach they are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target ''foils,'' which may in fact be foams with mean densities 1% to 10% of solid. This approach complements that being pursued at GSI Darmstadt, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrically target. They present the beam requirements for Warm Dense Matter experiments. The authors discuss neutralized drift compression and final focus experiments and modeling. They describe suitable accelerator architectures based on Drift-Tube Linac, RF, single-gap, Ionization-Front Accelerator, and Pulse-Line Ion Accelerator concepts. The last of these is being pursued experimentally. Finally, they discuss plans toward a user facility for target experiments

  5. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  6. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  7. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Λ-production seen in a recent experiment is easily understood. The Λ and Ks rapidity distributions are also reproduced by the model considered. (orig.)

  8. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  9. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  10. High energy density in matter produced by heavy ion beams. Annual report 1987

    International Nuclear Information System (INIS)

    Research activities presented in this annual report were carried out in 1987 in the framework of the government-funded program 'High Energy Density in Matter Produced by Heavy Ion Beams'. It addresses fundamental problems of the generation and investigation of hot dense matter. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense heavy ion beams. The new accelerator facility SIS/ESR now under construction at GSI will provide an excellent potential for research in this field. The construction work at the new validity is on schedule. The building construction is near completion and the SIS accelerator will have its first beam at the beginning of next year. First experiments at lower intensity will start in summer 1989 and the full program will run after the cooler and storage ring ESR has got operational. Accordingly, the planning and the preparation of the high energy density experiments at this unique facility was an essential part of the activities last year. In this funding period emphasis was given to the experimental activities at the existing accelerator. In addition to a number of accelerator-oriented and instrumental developments, an experiment on beam-plasma interaction had first exciting results, a significant increase of the stopping power for heavy ions in plasma was measured. Other important activities were the investigation of dielectronic recombination of highly charged ions, spectroscopic investigations aiming at the pumping of short wavelength lasers by heavy ion beams and a crossed beam experiment for the determination of Bi+ + Bi+ ionization cross sections. As in previous years theoretical work an space-charge dominated beam dynamics as well as on hydrodynamics of dense plasmas, radiation transport and beam plasma interaction was continued, thus providing a basis for the future experiments. (orig.)

  11. Basic Phenomena In High Energy-Density Beam Welding And Cutting

    Science.gov (United States)

    Arata, Yoshiaki

    1983-08-01

    Essential features in the dynamic behaviours of welding and cutting processes with high energy density beams are reviewed and clarified by the efficient usage of various cineradiographic diagnosises. Formation of a deep beam hole in the weld pool are described and the important effect of the front wall characters in the beam hole is demonstrated on the natures of deep penetration and defect formations such as spiking and porosity. The cutting process is also interpreted in the frame of the same physical viewpoint with the welding. A new and efficient suppression method of spiking, porosity and humping are examined and confirmed using Tandem Electron Beam developed by the author.

  12. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  13. US heavy ion beam research for high energy density physics applications and fusion

    International Nuclear Information System (INIS)

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers. (authors)

  14. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR+-ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (ne ≅ 4x1016 cm-3). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κp ≅ 7700 cm2/g resulted. (orig./HSI)

  15. Megagauss field generation for high-energy-density plasma science experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-10-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.

  16. Ion beam driven high energy density physics studies at FAIR at darmstadt: the HEDgeHOB collaboration

    International Nuclear Information System (INIS)

    High Energy Density (HED) physics spans over numerous areas of basic and applied physics, for example, astrophysics, planetary physics, geophysics, inertial fusion and many others. Due to this reason, it has been a subject of very active research over the past many decades. Static as well as dynamic methods have been applied to generate samples of HED matter in the laboratory. The most commonly used tool in the static techniques is the diamond anvil cell while the dynamic methods involve shock compression of matter. During the past fifteen years, great progress has been made on the development of bunched intense particle beams that have emerged as an additional new tool for studying HED physics. In this paper we present two experiment designs that have been worked out for HED physics studies at the Facility for Antiprotons and Ion Research (FAIR) at Darmstadt. This facility has entered into construction phase and will provide one of the largest and most powerful particle accelerators in the world. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  18. High energy density physics with intense ion and laser beams. Annual report 2003

    International Nuclear Information System (INIS)

    The following topics are dealt with: Laser plasma physics, plasma spectroscopy, beam interaction experiments, atomic and radiation physics, pulsed power applications, beam transport and accelerator research and development, properties of dense plasma, instabilities in beam-plasma interaction, beam transport in dense plasmas, short-pulse laser-matter interaction. (HSI)

  19. High energy density physics with intense ion and laser beams. Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Weyrich, K. (comp.)

    2004-07-01

    The following topics are dealt with: Laser plasma physics, plasma spectroscopy, beam interaction experiments, atomic and radiation physics, pulsed power applications, beam transport and accelerator research and development, properties of dense plasma, instabilities in beam-plasma interaction, beam transport in dense plasmas, short-pulse laser-matter interaction. (HSI)

  20. Prospects of Turbulence Studies in High-Energy Density Laser-Generated Plasma: Numerical Investigations in Two Dimensions

    OpenAIRE

    Handy, Timothy; Plewa, Tomasz; Drake, R. Paul; Zhiglo, Andrey

    2013-01-01

    We investigate the possibility of generating and studying turbulence in plasma by means of high-energy density laser-driven experiments. Our focus is to create supersonic, self-magnetized turbulence with characteristics that resemble those found in the interstellar medium (ISM). We consider a target made of a spherical core surrounded by a shell made of denser material. The shell is irradiated by a sequence of laser pulses sending inward-propagating shocks that convert the inner core into pla...

  1. High energy density in matter produced by heavy ion beams. Annual report 1993

    International Nuclear Information System (INIS)

    The experimental activities at GSI were concentrated on the progress in beam-plasma interaction experiments of heavy ion with ionized matter, plasma -lens forming devices, intense beam at high temperature experimental area, and charge exchange collisions of ions. The development to higher intensities and phase space densities during 1993 for the SIS and the ESR is recorded. The possibility of studying of funneling of two beams in a two-beam RFQ is studied. Specific results are presented with respect to inertial confinement fusion (ICF). The problem of ion stopping in plasma and pumping X-ray lasers with heavy ion beams are discussed. Various contributions deal with dense plasma effects, shocks and opacity. (HP)

  2. SHOCK IMPACT OF HIGH ENERGY/INTENSITY BEAMS WITH MATTER AND HIGH ENERGY DENSITY PHYSICS

    OpenAIRE

    Blanco Sancho, Juan; Schmidt, Rudiger

    2010-01-01

    The purpose of this study is to assess the damage caused to the equipment (beamdump, collimators etc) in case of an accident involving full impact of the LHC beam. First, the FLUKA code [1] is used to calculate the proton energy loss in solid carbon and this energy loss data is used as input to a two–dimensional hydrodynamic computer code, BIG2 [2] to study the thermodynamic and hydrodynamic response of the target. The BIG2 code is run for 5 μs and the density distribution at the end of this ...

  3. High Energy Density Physics Research Using Intense Heavy Ion Beam at FAIR: The HEDgeHOB Program

    Science.gov (United States)

    Tahir, N. A.; Shutov, A.; Piriz, A. R.; Deutsch, C.; Stöhlker, Th.

    2016-03-01

    International project, Facility for Antiprotons and Ion Research (FAIR), has entered in its construction phase at Darmstadt. It is expected that the new powerful heavy ion synchrotron, SIS100 will deliver a strongly bunched intense beam of energetic uranium ions that will provide the scientists with an efficient and novel tool to research High Energy Density (HED) Physics in the laboratory. Over the past 15 years, substantial theoretical work has been done to design numerous experiments that can be done at this facility in this field. This work has resulted in an extensive scientific proposal named HEDgeHOB, that includes experiment proposals addressing various aspects of HED matter, for example, planetary physics, equation of state, hydrodynamic instabilities and others. In this paper we present a summary of this work.

  4. Generation of intense X-radiation and high-energy-density matter by laser-accelerated electrons

    International Nuclear Information System (INIS)

    Aim of this thesis was to study the processes of the interaction between highly intense short-pulse laser and matter. The focus lied thereby on the generation of intense X-radiation and warm dense matter. The studies performed for this thesis comprehend thereby the influence of laser parameters like energy, pulse length, focus size, and intensity as well as the influence of the target geometry on the interaction and generation of high-energy-density matter. In this thesis for this two selected experiments are presented. First a silver foil was used as target, in order to study the generation of radiation at 21 keV. Both bremsstrahlung and characteristic X-radiation were used in order to characterize the interaction. For the second experiment freely standing titanium wires were used as target. Hereby the focus lied on the characterization of the heated matter.

  5. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    Science.gov (United States)

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; Schenkel, Thomas; Barnard, John; Friedman, Alex; Eder, David; Fisher, Aaron; Masters, Nathan

    2016-03-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as well as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.

  6. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.)

  7. Prospects of Turbulence Studies in High-Energy Density Laser-Generated Plasma: Numerical Investigations in Two Dimensions

    CERN Document Server

    Handy, Timothy; Drake, R Paul; Zhiglo, Andrey

    2013-01-01

    We investigate the possibility of generating and studying turbulence in plasma by means of high-energy density laser-driven experiments. Our focus is to create supersonic, self-magnetized turbulence with characteristics that resemble those found in the interstellar medium (ISM). We consider a target made of a spherical core surrounded by a shell made of denser material. The shell is irradiated by a sequence of laser pulses sending inward-propagating shocks that convert the inner core into plasma and create turbulence. In the context of the evolution of the ISM, the shocks play the role of supernova remnant shocks and the core represents the ionized interstellar medium. We consider the effects of both pre-existing and self-generating magnetic fields and study the evolution of the system by means of two-dimensional numerical simulations. We find that the evolution of the turbulent core is generally, subsonic with rms-Mach number $M_t\\approx 0.2$. We observe an isotropic, turbulent velocity field with an inertia...

  8. Prospects of turbulence studies in high-energy density laser-generated plasma: Numerical investigations in two dimensions

    Science.gov (United States)

    Handy, Timothy; Plewa, Tomasz; Drake, R. Paul; Zhiglo, Andrey

    2014-06-01

    We investigate the possibility of generating and studying turbulence in plasma by means of high-energy density laser-driven experiments. Our focus is to create supersonic, self-magnetized turbulence with characteristics that resemble those found in the interstellar medium (ISM). We consider a target made of a spherical core surrounded by a shell made of denser material. The shell is irradiated by a sequence of laser pulses sending inward-propagating shocks that convert the inner core into plasma and create turbulence. In the context of the evolution of the ISM, the shocks play the role of supernova remnant shocks and the core represents the ionized interstellar medium. We consider the effects of both pre-existing and self-generating magnetic fields and study the evolution of the system by means of two-dimensional numerical simulations. We find that the evolution of the turbulent core is generally, subsonic with rms-Mach number Mrms ≈ 0.2. We observe an isotropic, turbulent velocity field with an inertial range power spectra of P(k) ∝ k-2.3. We account for the effects of self-magnetization and find that the resulting magnetic field has characteristic strength ≈3 × 104 G. The corresponding plasma β is about 1 × 104-1 × 105, indicating that the magnetic field does not play an important role in the dynamical evolution of the system. The natural extension of this work is to study the system evolution in three-dimensions, with various laser drive configurations, and targets with shells and cores of different masses. The latter modification may help to increase the turbulent intensity and possibly create transonic turbulence. One of the key challenges is to obtain transonic turbulent conditions in a quasi-steady state environment.

  9. High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma

    Science.gov (United States)

    Wang, J. W.; Yu, W.; Yu, M. Y.; Xu, H.; Ju, J. J.; Luan, S. X.; Murakami, M.; Zepf, M.; Rykovanov, S.

    2016-02-01

    It is shown by particle-in-cell simulations that a narrow electron beam with high energy and charge density can be generated in a subcritical-density plasma by two consecutive laser pulses. Although the first laser pulse dissipates rapidly, the second pulse can propagate for a long distance in the thin wake channel created by the first pulse and can further accelerate the preaccelerated electrons therein. Given that the second pulse also self-focuses, the resulting electron beam has a narrow waist and high charge and energy densities. Such beams are useful for enhancing the target-back space-charge field in target normal sheath acceleration of ions and bremsstrahlung sources, among others.

  10. Generation of intense X-radiation and high-energy-density matter by laser-accelerated electrons; Erzeugung von intensiver Roentgenstrahlung und Materie hoher Energiedichte durch Laserbeschleunigte Elektronen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Andreas

    2015-07-01

    Aim of this thesis was to study the processes of the interaction between highly intense short-pulse laser and matter. The focus lied thereby on the generation of intense X-radiation and warm dense matter. The studies performed for this thesis comprehend thereby the influence of laser parameters like energy, pulse length, focus size, and intensity as well as the influence of the target geometry on the interaction and generation of high-energy-density matter. In this thesis for this two selected experiments are presented. First a silver foil was used as target, in order to study the generation of radiation at 21 keV. Both bremsstrahlung and characteristic X-radiation were used in order to characterize the interaction. For the second experiment freely standing titanium wires were used as target. Hereby the focus lied on the characterization of the heated matter.

  11. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  12. FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, A; Beach, R; Bibeau, C; Chanteloup, J; Ebbers, C; Emanuel, M; Freitas, B; Fulkerson, S; Kanz, K; Hinz, A; Marshall, C; Mills, S; Nakano, H; Orth, C; Rothenberg, J; Schaffers, K; Seppala, L; Skidmore, I; Smith, L; Sutton, S; Telford, S; Zapata, L

    2000-05-23

    The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.

  13. FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, A.; Beach, R.; Bibeau, C.; Chanteloup, J.-C.; Ebbers, C.; Emanuel, M.; Freitas, B.; Fulkerson, S.; Kanz, K.; Hinz, A.; Marshall, C.; Mills, S.; Nakano, H.; Orth, C.; Rothenberg, J.; Schaffers, K.; Seppala, L.; Skidmore, J.; Smith, L.; Sutton, S.; Telford, S.; Zapata, L.

    2000-05-25

    The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.

  14. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  15. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  16. High Energy Density Physics and Exotic Acceleration Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  17. Workshop on extremely high energy density plasmas and their diagnostics

    International Nuclear Information System (INIS)

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  18. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  19. Plasma photonic devices for high energy density science

    International Nuclear Information System (INIS)

    Ultra-intense laser technologies are now opening a variety of attractive fields of science and technology such as astrophysics, high density nuclear science including medical applications and laser fusion. These applications are attributed to the control of intense light and the efficient generation of enormous energy-density particles such as MeV electrons with current densities as large as trillion amperes per square centimeter, which now depend only on the laser technology including conventional opticts. The invention of new devices that can control such intense light and pulsed energetic beams will revolutionize their applications. Here I propose a new systematization of plasmas to develop novel devices for the high energy density science, which is ''High Energy Plasma Photonics''. According to this concept, presented are novel plasma photonic devices consisting of transient plasmas to control the intense light and particle beams. As an example of the device, a plasma fiber coupled with a plasma collimator has been demonstrated for high-density MeV electrons in a manner akin to a light control by an optical fibre, enhancing the energy density by more than one order of magnitude and the creation of Giga-bar pressures. Such plasma devices hold rich promise for a range of applications using enormous energy-density particles and which can trigger a tremendous growth in high energy-density charged particles optics. (author)

  20. Studies on the transport and on the focusing of intense, high-energetic heavy ion beams for the production of high energy density in matter

    International Nuclear Information System (INIS)

    A measurement place for the production of hot, dense plasmas by the bombardment of matter with intense, high-energetic ion beams, was constructed, erected and taken into operation at the Society for Heavy Ion Research (GSI) in Darmstadt. A focusing system consisting of five quadrupole and one dipole magnet was calculated at the II. Physical Institute of the JLU in Giessen and erected at the high-temperature (HT) measuring place. The ion-optical properties of this system were in the framework of this thesis studied and optimized. Especially connection between the operational mode of the heavy-ion synchrotron SIS, the beam transport to the HT measuring place, and the focusing properties were elaborated. by this it succeeded to produce the calculated circular focusing area with a radius of 145 μm. A new procedure for the determination of the entrance beam parameters and, based on this, an optimization of the adjustment of the beam guiding system was tested. For the study of the interaction of the ion beams with the hot, dense target plasma stopped ions are excellently suited. For the determination of the energy loss and the charge change of such ions a spectrometer was constructed and its component erected. On the base of beam tests at the Z6 measuring place for the spectrometer at the HT measurement place a high-current-pulsed quadrupole doublet was constructed and erected. For the separation of the single charge states two classical dipole magnets in the spectrometer are foreseen

  1. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  2. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  3. High-Energy-Density Capacitors

    Science.gov (United States)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the

  4. Table-top generation and spectroscopic study of ∼10 TPa high-energy density materials with C60+ hypervelocity (∼100 km/s) impact

    International Nuclear Information System (INIS)

    The use of nanoparticles as flyers to create shock pressures exceeding 10 TPa and to investigate the matters in planetary or stellar interiors has been pursued by the author for two decades. Previous studies led by the author at Brookhaven National Lab (BNL) in 1994 proved that such ultra-strong shocks can be generated with charged bio and water nanoparticles by accelerating them with an electrostatic accelerator and impacting them on solids at ∼ 100 km/s. The author in 2008 showed that the BNL nanoplasmas produced intense bursts of soft x-rays (hv ∼ 100 eV) from optical decay of excimer-like Metastable Innershell Molecular State, MIMS, formed by inner-shell electron excitation. The conversion efficiency from the nano-flyer kinetic energy to the radiation energy was unexpectedly high, ∼38%, which was attributed to high efficiency pressure ionization conversion of impact energy to MIMS excitation energy and MIMS collective optical decay in tens of fs via Dicke Superradiance. Now, this paper reports an experimental study performed with C60 as a nano-flyer that permitted reduction of the size and complexity of the apparatus by orders of magnitude compared with the BNL one. The present results confirm the BNL results unambiguously, demonstrate a pathway to scaling up of soft x-ray intensity, and open doors to a wide range of applications from lithography to inertial fusion.

  5. Frontiers for Discovery in High Energy Density Physics

    International Nuclear Information System (INIS)

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  6. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  7. High energy density fusing using the Compact Torus

    International Nuclear Information System (INIS)

    My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs

  8. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  9. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  10. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  11. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  12. Frontiers in pulse-power-based high energy density plasma physics and its applications

    International Nuclear Information System (INIS)

    The papers in this volume of report were presented at the Symposium on Frontiers in Pulse-power-based High Energy Density Physics' held by National Institute for Fusion Science. The topics include the present status of high energy density plasma researches, extreme ultraviolet sources, intense radiation sources, high power ion beams, and R and D of related pulse power technologies. The 13 of the presented papers are indexed individually. (J.P.N.)

  13. Collapsing Bubble in Metal for High Energy Density Physics Study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S F; Barnard, J J; Leung, P T; Yu, S S

    2011-04-13

    This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.

  14. New directions for short-wavelength laser fusion and high-energy-density physics

    International Nuclear Information System (INIS)

    New directions in inertial fusion research using short-wavelength, direct-drive targets have increased the prospects for demonstrating inertial fusion feasibility and have generated new interest and opportunities in high-energy-density research

  15. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-03-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag . The energy that must be assembled in the imploded state to ignite varies roughly as Pstag -2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed- power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like drive conditions and reach the energy bound for indirect drive ICF.

  16. Strongly Interacting Matter at Very High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.

    2011-06-05

    The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

  17. Studies of high energy density physics and laboratory astrophysics driven by intense lasers

    Science.gov (United States)

    Zhang, J.; Li, Y. T.; Chen, L. M.; Dong, Q. L.; Zhong, J. Y.; Wang, W. M.; Sheng, Z. M.; Zhao, G.

    2016-05-01

    Laser plasmas are capable of creating unique physical conditions with extreme high energy density, which are not only closely relevant to inertial fusion energy studies, but also to laboratory simulation of some astrophysical processes. In this paper, we highlight some recent progress made by our research teams. The first part is about directional hot electron beam generation and transport for fast ignition of inertial confinement fusion, as well as a new scheme of fast ignition by use of a strong external DC magnetic field. The second part concerns laboratory modeling of some astrophysical phenomena, including 1) studies of the topological structure of magnetic reconnection/annihilation that relates closely to geomagnetic substorms, loop-top X-ray source and mass ejection in solar flares, and 2) magnetic field generation and evolution in collisionless shock formation.

  18. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    descriptions (Ch. V), and a more detailed plans for experiments (Ch. VI), highlighting the uniqueness the HEDS endstation will play in providing mission-relevant HED data and in the development of the field. One of the more exciting aspects of NNSA-relevant experiments on LCLS is that, given the extraordinary investment and consequent advances in accurate atomic-scale simulations of matter (to a large extent via the Accelerated Scientific Computing program sponsored by NNSA), the facility will provide a platform that, for the first time, will permit experiments in the regimes of interest at the time and spatial scales of the simulations. In Chapter III, the report places the potential of LCLS with an HED science endstation in the context of science required by NNSA, as well as explicating the relationship of NNSA and HED science in general. Chapter IV discusses 4th-generation light sources, like LCLS, in the context of other laboratory technologies presently utilized by NNSA. The report concludes, noting that an HED endstation on LCLS can provide access to data in regimes that are relevant to NNSA needs but no mechanism exists for providing such data. The endstation will also serve to build a broad-based community in the 'X-Games' of physics. The science generated by the facility will be a collaboration of NNSA-based laboratory scientists and university-based researchers. The LCLS endstation fulfills the need for an intermediate-scale facility capable of delivering fundamental advances and mission-relevant research in high energy density science.

  19. High Energy Density Science at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    more detailed plans for experiments (Ch. VI), highlighting the uniqueness the HEDS endstation will play in providing mission-relevant HED data and in the development of the field. One of the more exciting aspects of NNSA-relevant experiments on LCLS is that, given the extraordinary investment and consequent advances in accurate atomic-scale simulations of matter (to a large extent via the Accelerated Scientific Computing program sponsored by NNSA), the facility will provide a platform that, for the first time, will permit experiments in the regimes of interest at the time and spatial scales of the simulations. In Chapter III, the report places the potential of LCLS with an HED science endstation in the context of science required by NNSA, as well as explicating the relationship of NNSA and HED science in general. Chapter IV discusses 4th-generation light sources, like LCLS, in the context of other laboratory technologies presently utilized by NNSA. The report concludes, noting that an HED endstation on LCLS can provide access to data in regimes that are relevant to NNSA needs but no mechanism exists for providing such data. The endstation will also serve to build a broad-based community in the 'X-Games' of physics. The science generated by the facility will be a collaboration of NNSA-based laboratory scientists and university-based researchers. The LCLS endstation fulfills the need for an intermediate-scale facility capable of delivering fundamental advances and mission-relevant research in high energy density science

  20. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  1. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  2. Hybrid system for rechargeable magnesium battery with high energy density

    OpenAIRE

    Zheng Chang; Yaqiong Yang; Xiaowei Wang; Minxia Li; Zhengwen Fu; Yuping Wu; Rudolf Holze

    2015-01-01

    One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent...

  3. Thermal transport measurements in high-energy-density matter

    Science.gov (United States)

    Ping, Yuan

    2015-11-01

    Thermal conductivity is one of the most fundamental physical properties of matter. It determines the heat transport rate and has an enormous impact on a variety of mechanical, electrical, chemical, and nuclear systems. Thermal conduction is important in high energy density (HED) matter such as laboratory fusion plasmas, planetary cores, compact stars, and other celestial objects. Examples are in the ablation and instability growth in inertial confinement fusion (ICF) capsules, in energy loss from ICF hot spot, and in the evolution of Earth's core-mantle boundary. Despite the importance of thermal conductivity in HED systems, experimental measurements under relevant conditions are scarce and challenging. We have developed a method of differential heating for thermal conductivity measurements. In this talk, experimental designs will be described for four different platforms: optical laser heating, proton heating, laser-generated x-ray heating and XFEL heating. Data from various facilities will be presented and comparison with models will be discussed. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  4. Frontiers in plasma science: a high energy density perspective

    Science.gov (United States)

    Remington, Bruce

    2015-11-01

    The potential for ground-breaking research in plasma physics in high energy density (HED) regimes is compelling. The combination of HED facilities around the world spanning microjoules to megajoules, with time scales ranging from femtoseconds to microseconds enables new regimes of plasma science to be experimentally probed. The ability to shock and ramp compress samples and simultaneously probe them allows dense, strongly coupled, Fermi degenerate plasmas relevant to planetary interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars are being probed. The physics and dynamics of magnetized plasmas relevant to astrophysics and inertial confinement fusion are also starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation. Turbulent, high magnetic Reynolds number flows are being experimentally generated to look for evidence of the turbulent magnetic dynamo effect. And new results from thermonuclear reactions in dense hot plasmas relevant to stellar interiors are starting to emerge. A selection of examples providing a compelling vision for frontier plasma science in the coming decade will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    International Nuclear Information System (INIS)

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb0.88La0.08)(Zr0.91Ti0.09)O3 was found to be an ideal candidate. La3+ doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm3 with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation

  6. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  7. Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility

    International Nuclear Information System (INIS)

    Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li+ ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the

  8. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    International Nuclear Information System (INIS)

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001

  9. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV0.62Mn1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  10. High energy-density physics: From nuclear testing to the superlasers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  11. High energy-density physics: From nuclear testing to the superlasers

    International Nuclear Information System (INIS)

    We describe the role for the next-generation ''superlasers'' in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program

  12. Computational methods in high-energy-density physics

    International Nuclear Information System (INIS)

    High-Energy-Density (HED) Physics involves experimental, theoretical and computational research in high pressure equation of state (EOS) of matter, opacity of materials in the plasma state, neutral and charged particle cross-section libraries, database for high explosives (HE), shock wave propagation, radiation and explosive driven hydrodynamics, particle transport theory, and modelling of complex experimental systems for inertial confinement fusion. These fields are intimately related to nuclear weapons research as well. Some of the typical computational methods used in HED physics are briefly covered in this talk. (author)

  13. Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan

    Institute of Scientific and Technical Information of China (English)

    QIU Ling; XIAO He-Ming; ZHU Wei-Hua; JU Xue-Hai; GONG Xue-Dong

    2006-01-01

    Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures,infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G** level of theory. The calculated results showthattherearefourconformationalisomers (a, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobsequationsbasedonthecalculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm-3, detonation velocities near 10 km·s-1, and detonation pressures over 45 Gpa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular designof HEDM.

  14. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  15. The National Ignition Facility and the Golden Age of High Energy Density Science

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) is a 192-beam Nd:glass laser facility being constructed at the Lawrence Livermore National Laboratory (LLNL) to conduct research in inertial confinement fusion (ICF) and high energy density (HED) science. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and highest-energy laser system. The NIF is poised to become the world's preeminent facility for conducting ICF and fusion energy research and for studying matter at extreme densities and temperatures

  16. High energy density capacitors for low cost applications

    Science.gov (United States)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  17. Particle accelerator physics and technology for high energy density physics research

    International Nuclear Information System (INIS)

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  18. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    This document presents the advantages of the use of nanosecond pulsed power for the generating of high energy and high power at a low cost and high efficiency. The Sandia National Laboratories Particle-beam Fusion program applies these pulse techniques to the Inertial Fusion Energy national goal. Pulsed power has also been used to generate intense, high-energy X-ray sources for application to X-ray laser and radiation effects science research. Results of experiments performed on the Saturn accelerator as well as a design concept for the proposed Jupiter facility are also presented. (TEC). 16 refs., 8 figs

  19. Theoretically predicted Fox-7 based new high energy density molecules

    Science.gov (United States)

    Ghanta, Susanta

    2016-08-01

    Computational investigation of CHNO based high energy density molecules (HEDM) are designed with FOX-7 (1, 1-dinitro 2, 2-diamino ethylene) skeleton. We report structures, stability and detonation properties of these new molecules. A systematic analysis is presented for the crystal density, activation energy for nitro to nitrite isomerisation and the C-NO2 bond dissociation energy of these molecules. The Atoms in molecules (AIM) calculations have been performed to interpret the intra-molecular weak H-bonding interactions and the stability of C-NO2 bonds. The structure optimization, frequency and bond dissociation energy calculations have been performed at B3LYP level of theory by using G03 quantum chemistry package. Some of the designed molecules are found to be more promising HEDM than FOX-7 molecule, and are proposed to be candidate for synthetic purpose.

  20. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  1. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  2. High energy density Z-pinch plasmas using flow stabilization

    International Nuclear Information System (INIS)

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  3. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  4. Upgrading of biorenewables to high energy density fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. " " Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  5. e-Science in high energy density science research

    International Nuclear Information System (INIS)

    We present three achievements related to e-Science in high energy density science research. We have developed a test module of new data base system for nation-wide users of the high power lasers at Osaka University with web technology, flexible control system and XML-database, which provide efficient, accurate and flexible R and D processing. We also constructed a EUV-GRID portal system for integrated computer simulations of laser produced plasma-extreme ultraviolet (LPP-EUV) light source development, which provides flexible framework for automatic sequencing of workflow for the integrated simulations. A dynamical domain decomposition method in molecular dynamic (MD) simulations is required to obtain a good adaptive load balancing for heterogeneous computing environments such as grid. We have developed a new algorithm of the dynamical domain decomposition. We successfully performed large scale MD-message passing interface (MPI) simulations on cluster computers connected through Super-SINET using the National Research Grid Initiative (NAREGI GRID) grid middleware and the new algorithm

  6. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

    International Nuclear Information System (INIS)

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density

  7. High Energy Density Studies at the OMEGA laser facility

    Science.gov (United States)

    Boehly, Thomas

    2015-06-01

    The primary emphasis of the scientific program at the Laboratory for Laser Energetics is laser-driven inertial confinement fusion. We report on high-energy-density (HED) experiments that use the OMEGA laser to produce multi-megabar shocks in materials of interest to the national fusion effort and the associated HED sciences. We present measurements of the behavior of shocked diamond, in both the single-crystal and ultranano-crystalline forms used as an ablator material in fusion capsules. Using the impedance-matching technique both the Hugoniot and release behaviors are measured with respect to multiple reference materials. The release of shocked diamond into liquid deuterium is also measured. We present the results of sound-speed measurements in shocked quartz which is also used as a reference for sound speed measurements in CH and fused silica. This is done using an unsteady wave analysis that tracks the propagation of small perturbations in shock pressure as they traverse the shocked material from `piston' to shock front. The arrival times of these perturbations, as compared to the same in a reference material, provides the sound speed in the shock material. We also present results of optical and x-ray probing of shock waves in foam targets and solid targets, as well as the release plumes of shock material after shock breakout. The import of these measurements to the fusion program and basic HED science will be discussed and plans for future work presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  8. High energy density capacitors using nano-structure multilayer technology

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  9. Dynamics of magnetic fields in high-energy-density plasmas for fusion and astrophysics

    Science.gov (United States)

    Gao, Lan; Ji, H.; Fox, W.; Hill, K.; Efthimion, P.; Nilson, P.; Igumenshchev, I.; Froula, D.; Betti, R.; Meyerhofer, D.; Fiksel, G.; Blackman, E.; Schneider, M.; Chen, H.; Smalyuk, V.; Li, H.; Casner, A.

    2015-11-01

    An overview of our recent experimental and theoretical work on the dynamics of magnetic fields in high-energy-density plasmas will be presented. This includes: (1) precision mapping of the self-generated magnetic fields in the coronal plasma and the Nernst effect on their evolution, (2) characterizing the strong magnetic field generated by a laser-driven capacitor-coil target using ultrafast proton radiography, and (3) creating MHD turbulence in Rayleigh-Taylor unstable plasmas. The experimental results are compared with resistive MHD simulations providing a stringent test for their predictions. Applications in relevance to ignition target designs in inertial confinement fusion, material strength studies in high-energy-density physics, and astrophysical systems such as plasma dynamos and magnetic reconnection will be discussed. Future experiments proposed on the National Ignition Facility will be described. This material is supported in part by the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, and the National Laser Users Facility under Grant No. DE-NA0002205.

  10. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    OpenAIRE

    Moses, E. I.

    2001-01-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterr...

  11. Light Beam Generation

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method and a system for synthesizing a set of controllable light beams by provision of a system for synthesizing a set of light beams, comprising a spatially modulated light source for generation of electromagnetic radiation with a set of replicas of a predetermined...... symbol, s, positioned at respective desired positions (xs, ys) in an object plane o(x, y) intersecting, preferably perpendicular to, the direction of propagation of the electromagnetic radiation, and having spatial amplitudes a(x-xs, y-ys), spatial phases f(x-xs, y-ys)> and spatial polarisation vectors p(x...... transforming lens for Inverse Fourier transforming the spatially modulated radiation, whereby a set of light beams are formed propagating through the inverse Fourier plane (x', y') at desired positions (x's, y's), and a controller for controlling the position of a replica of the symbol, s, for movement...

  12. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  13. High-Energy Density science at the Linac Coherent Light Source

    Science.gov (United States)

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-03-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. In recent experiments we have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. This technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.

  14. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility

    Science.gov (United States)

    Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P.-Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; Mastrosimone, D.; Shoup, M. J.; Betti, R.

    2015-01-01

    An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

  15. Characterization of magnetic reconnection in the high-energy-density regime

    Science.gov (United States)

    Xu, Z.; Qiao, B.; Chang, H. X.; Yao, W. P.; Wu, S. Z.; Yan, X. Q.; Zhou, C. T.; Wang, X. G.; He, X. T.

    2016-03-01

    The dynamics of magnetic reconnection (MR) in the high-energy-density (HED) regime, where the plasma inflow is strongly driven and the thermal pressure is larger than the magnetic pressure (β >1 ), is reexamined theoretically and by particle-in-cell simulations. Interactions of two colliding laser-produced plasma bubbles with self-generated poloidal magnetic fields of, respectively, antiparallel and parallel field lines are considered. Through comparison, it is found that the quadrupole magnetic field, bipolar poloidal electric field, plasma heating, and even the out-of-plane electric field can appear in both cases due to the mere plasma bubble collision, which may not be individually recognized as evidences of MR in the HED regime separately. The Lorentz-invariant scalar quantity De≃γej .(E +ve×B ) {γe=[1-(ve/c) 2]-1/2 }in the electron dissipation region is proposed as the key sign of MR occurrence in this regime.

  16. Some progress on high energy density physics under the China-Japan CUP collaboration

    International Nuclear Information System (INIS)

    In the last 10 years we have witnessed rapidly increasing collaboration between China and Japan from economy to scientific research. From today's perspective, the China-Japan Core-University-Program (CUP) came timely when it was initiated 10 years ago. In the catalogues of I-5A (Study of Ultrahigh Density Plasma -- Inertial Confinement Fusion) and I-5B (Theory and simulation on Inertial Fusion Plasmas) of the program, there are totally 10 institutions from China, engaged in the research of high energy density physics and inertial fusion energy, have participated in the CUP collaboration. The program involves a large number of personal exchanges, quite a few joint experiments, more than 10 bi-lateral meetings and workshops. I find it is a very successful program from viewpoints of scientific achievements, cultural exchange, educating young generation of scientists. Based upon the CUP exchange program, we become real partners with our Japanese colleagues. Lots of young people (e.g. graduate students) have been involved in the program, which shall become the main force of future collaboration. Because of the CUP program, collaboration to work on the large facilities in both sides appears very fruitful. This may help to promote the share of using large facilities in the future. Thus CUP has paved a bright way for future long term collaboration. As a participant (and a key person in the last 5 years) of CUP, I have benefited greatly from this program both for my research and career development through close collaboration with Japanese colleagues. In this report, I will briefly introduce some Chinese programs and institutions working on high energy density physics (HEDP) and fundamental laser plasmas, including our Laboratory for Laser Plasmas newly established in Shanghai Jiao Tong University. Then I will highlight some recent research progress on fast ignition of fusion targets (theory and simulation) by some groups in China. (author)

  17. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    OpenAIRE

    Aditya Chauhan; Satyanarayan Patel; Rahul Vaish; Bowen, Chris R.

    2015-01-01

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a stro...

  18. Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility

    International Nuclear Information System (INIS)

    This paper presents numerical simulation results of heating and compression of matter using intense beams of energetic heavy ions. In this study we consider different beam parameters that include those which are currently available at the heavy ion synchrotron, SIS18 at the Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt and those which will be available in the near future as a result of the upgraded facility. In addition to this, we carried out detailed calculations considering parameters of high-intensity beam which will be generated at the GSI future Facility for Antiprotons and Ion Research (FAIR facility) that has been approved by the German Government. These simulations show that by using the above ion beam parameter range, it will be possible to carry out very useful studies on the thermophysical properties of high-energy density (HED) states in matter. This scheme would make it possible to investigate those regions of the phase diagram that are either very difficult to access or even are unaccessible using the traditional methods of shock waves. Moreover, employing a hollow ion beam which has an annular (ring shaped) focal spot, it would be possible to achieve a low entropy compression of a test material like hydrogen, which is enclosed in a cylindrical shell of a high-density material such as lead or gold. These experiments will enable one to study the interiors of Giant planets, Jupiter and Saturn as well as to investigate the problem of hydrogen metallization

  19. Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility

    Science.gov (United States)

    Tahir, N. A.; Adonin, A.; Deutsch, C.; Fortov, V. E.; Grandjouan, N.; Geil, B.; Grayaznov, V.; Hoffmann, D. H. H.; Kulish, M.; Lomonosov, I. V.; Mintsev, V.; Ni, P.; Nikolaev, D.; Piriz, A. R.; Shilkin, N.; Spiller, P.; Shutov, A.; Temporal, M.; Ternovoi, V.; Udrea, S.; Varentsov, D.

    2005-05-01

    This paper presents numerical simulation results of heating and compression of matter using intense beams of energetic heavy ions. In this study we consider different beam parameters that include those which are currently available at the heavy ion synchrotron, SIS18 at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt and those which will be available in the near future as a result of the upgraded facility. In addition to this, we carried out detailed calculations considering parameters of high-intensity beam which will be generated at the GSI future Facility for Antiprotons and Ion Research (FAIR facility) that has been approved by the German Government. These simulations show that by using the above ion beam parameter range, it will be possible to carry out very useful studies on the thermophysical properties of high-energy density (HED) states in matter. This scheme would make it possible to investigate those regions of the phase diagram that are either very difficult to access or even are unaccessible using the traditional methods of shock waves. Moreover, employing a hollow ion beam which has an annular (ring shaped) focal spot, it would be possible to achieve a low entropy compression of a test material like hydrogen, which is enclosed in a cylindrical shell of a high-density material such as lead or gold. These experiments will enable one to study the interiors of Giant planets, Jupiter and Saturn as well as to investigate the problem of hydrogen metallization.

  20. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren;

    2015-01-01

    mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently......The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...... crosslinked silicones. The system has many degrees of freedom since the ionic network is formed from two polymers (amine and carboxylic acid functional, respectively) of which the chain lengths can be varied, as well as the covalent silicone elastomer with many degrees of freedom arising from amongst many the...

  1. High Energy Density Li-ion Batteries Designed for Low Temperature Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NEI Corporation proposes to develop a mixed metal oxide nanocomposite cathode that is designed for delivering high energy density with good rate performance at low...

  2. High Energy Density Solid State Li-ion Battery with Enhanced Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  3. Advanced Cathode Material For High Energy Density Lithium-Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  4. Scaling astrophysical phenomena to high-energy-density laboratory experiments

    International Nuclear Information System (INIS)

    The spatial and temporal scales of astrophysical phenomena are typically 10-20 orders of magnitude greater than those of laboratory experiments intended to simulate them. Accordingly, the issue of similarity between the astrophysical phenomenon and its laboratory counterpart becomes quite important. Note also that in astrophysics, one is often dealing with highly dynamical systems, where orders of magnitude variation of the parameters of interest occurs over the duration of an event. In this regard, the similarity problem is more challenging than, say, the familiar problem of establishing a scaling law for the energy confinement time in a steady-state fusion device. We concentrate on astrophysical phenomena which can be reasonably well described by magnetohydrodynamic equations (like, e.g. propagation of the supernova (SN) shock through the progenitor star, and interaction of SN ejecta with an ambient plasma) and formulate a broad class of similarities that can be applied to them. We discuss issues of scalability in situations where the transition to turbulent flows occurs and present the corresponding constraints. We illustrate the general principles by describing several laboratory experiments carried out in a scaled fashion. Discussion of the possibility of scalable experiments directed towards studies of photo-evaporated molecular clouds (thought to be 'star nurseries') is presented. An emphasis on the potential role of random magnetic fields is made. A concept of an experiment to generate magnetized jets in Z-pinch devices is presented

  5. Report of the Interagency Task Force on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-08-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  6. Solidification and solid-state transformations of high energy density austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Much work has been undertaken in studying the solidification and solid-state transformations of austenitic stainless steel welds. Considerable confusion existed as to both the solidification mechanics and solid-state transformations which lead to a wide range of ferrite morphologies. It has been found that both the primary phase of solidification and the ferrite morphologies are controlled primarily by the Cr/Ni ratio. The application of analytical electron microscopy was very beneficial in leading to a clearer understanding of the microstructural evolution of the rather complex weld structures. In the investigations, the authors are studying the solidification behavior and solid-state transformations of high energy density welds (electron beam and laser) and comparing these to GTA welds. Fe-Ni-CR ternary alloys covering a range of Cr/Ni ratios typical of those of the AISI 300 series alloys are being investigated. Extensive analysis including electron microprobe, TEM, and STEM (scanning transmission electron microscopy) analytical microscopy were used to characterize GTA welds which solidified both as primary ferrite and primary austenite and exhibited, when welded, a wide range in ferrite morphologies. Solidification modeling of microsegregation of the welds was also conducted. The model incorporates three dimensional finite difference analysis, solute partitioning between the liquid and solid, and solid-state diffusion in the three components system. The results of the modeling were extremely valuable in leading to an understanding of the effect of solidification microsegregation on both the measured microsegregation and solid-state transformations

  7. Physical Transformation of Matter at High Energy Density and Multi-Phase Equation of State

    Science.gov (United States)

    Fortov, Vladimir

    2010-03-01

    The experimental investigation of equations of state, adiabatic compressibility and dc, ac electrical conductivity of hot dense matter shocked and quasiisentropically compressed by reverberating shock waves up to megabar pressure range are presented. HE-driven generators of intense shock waves were used for generation of dense strongly non-ideal plasma with intense interparticle interaction and Fermi-Boltzmann types of statistics. The thermodynamic measurements demonstrate density increase at megabar pressure just in the density range where the electrical measurements have shown five orders of magnitude electrical conductivity increase due to pressure ionization. These thermodynamic experimental data in combination with the electrical conductivity measurements were interpreted as the experimental evidence of a phase transition in strongly non-ideal plasma. The existence of this new phase transition is supported by the ab initio Quantum Monte-Carlo, Density Functional Theory, and Molecular Dynamic computer simulations. Pressure ``dielectrization'' in shock compressed Li, Na, Ca was also detected. The semi-empirical multi-phase equation of state of materials in a broad region of phase diagram is constructed. The results of 2 D and 3 D computer simulation of high energy density phenomena based on this semi-empirical EOS are presented.

  8. The impact of Hall physics on magnetized high energy density plasma jetsa)

    Science.gov (United States)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.

    2014-05-01

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (ne ˜ 1019 cm-3). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (˜1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10 T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches).

  9. The impact of Hall physics on magnetized high energy density plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A. [Cornell University, Ithaca, New York 14853 (United States)

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e} ∼ 10{sup 19} cm{sup −3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (∼1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10 T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  10. Development of 30 J/300 - 800 ps (100 GW) Nd: glass laser system for High Energy Density Physics (HEDP) studies

    International Nuclear Information System (INIS)

    High energy density physics (HEDP) studies are important for several applications such as Inertial Confinement Fusion (ICF), X-ray source generation, weapon physics and fundamental science studies. To scale up the experimental capabilities in HEDP studies, we have up-graded our existing laser system to achieve 30 J energy (focusable intensity ∼ 1 x1015 W/cm2). A new vacuum chamber with 42 diagnostics ports along with fifteen plasma diagnostics has been installed for laser plasma experiments. In this letter, the laser system and some of the recent experiments done on laser driven dynamic shock studies using this facility are briefly discussed. (author)

  11. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  12. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories. PMID:23426323

  13. High-Energy-Density Physics Fundamentals, Inertial Fusion, and Experimental Astrophysics

    CERN Document Server

    Drake, R. Paul; Horie, Yasuyuki

    2006-01-01

    The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This book introduces the reader to the fundamental tools and discoveries of high-energy-density physics. It surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-ene...

  14. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode.

    Science.gov (United States)

    Qu, Guoxing; Cheng, Jianli; Li, Xiaodong; Yuan, Demao; Chen, Peining; Chen, Xuli; Wang, Bin; Peng, Huisheng

    2016-05-01

    A hollow graphene/conducting polymer composite fiber is created with high mechanical and electronic properties and used to fabricate novel fiber-shaped supercapacitors that display high energy densities and long life stability. The fiber supercapacitors can be woven into flexible powering textiles that are particularly promising for portable and wearable electronic devices. PMID:27001216

  15. Pulsed-power-driven high energy density physics and inertial confinement fusion research

    International Nuclear Information System (INIS)

    The Z accelerator (R.B. Spielman, W.A. Stygar, J.F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709) at Sandia National Laboratories delivers ∼20 MA load currents to create high magnetic fields (>1000 T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10 MJ/cm3 and temperatures >1 keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2 MJ at powers >200 TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3 Mbar and accelerates flyer plates to >30 km/s for equation of state (EOS) experiments at pressures up to 10 Mbar in aluminum. Development of multidimensional radiation-magnetohydrodynamic codes, coupled with more accurate material models (e.g., quantum molecular dynamics calculations with density functional theory), has produced synergy between validating the simulations and guiding the experiments. Z is now routinely used to drive ICF capsule implosions (focusing on implosion symmetry and neutron production) and to perform HEDP experiments (including radiation-driven hydrodynamic jets, EOS, phase transitions, strength of materials, and detailed behavior of z-pinch wire-array initiation and implosion). This research is performed in collaboration with many other groups from around the world. A five year project to enhance the capability and precision of Z, to be completed in 2007, will result in x-ray energies of nearly 3 MJ at x-ray powers >300 TW

  16. The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    CERN Document Server

    Moses, E I

    2001-01-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

  17. Advanced Intermediate Temperature Sodium-Nickel Chloride Batteries with Ultra-High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Meinhardt, Kerry D.; Chang, Hee-Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl2 batteries operated at 280°C, was obtained for planar Na-NiCl2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl2 batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  18. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  19. Two-Dimensional Mesoporous Carbon Electrode for High Energy Density Electrochemical Supercapacitors.

    Science.gov (United States)

    Kalubarme, Ramchandra S; Park, Chan-Jin; Shirage, Parasharam M

    2015-02-01

    Mesoporous carbon (MPC) with highly textured, reproducible and uniform structure is prepared by silica-sol template assisted method, as new carbonaceous supercapacitor materials with high energy density. High resolution transmission electron microscopy studies revealed that the MPC consisted of textured structure of carbon on the sheets like domains and exhibited a specific surface area of 1412 m2 g-1. The symmetric supercapacitor of MPC exhibits an excellent cyclability over 5000 cycles and high energy density of 84.6 Wh kg-1, with a cell potential of 1.6 V and a large specific capacitance of 238 F g-1 in neutral electrolyte. The enhanced performance of the carbon material as a supercapacitor electrode is due to the synergetic effect possibly contributed from the fast ion transportation during fast charge/discharge and better utilization of carbon. PMID:26353641

  20. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    OpenAIRE

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-01-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding...

  1. The NIF: An international high energy density science and inertial fusion user facility

    OpenAIRE

    Moses E.I.; Storm E.

    2013-01-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an internatio...

  2. Shock waves in a Z-pinch and the formation of high energy density plasma

    International Nuclear Information System (INIS)

    A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

  3. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density

    OpenAIRE

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Vincent L. Sprenkle

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy d...

  4. Publications of Proceedings for the RF 2005 7th Workshop on High Energy Density and High Power RF

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, Jr, N C

    2006-01-01

    The University of California, Davis hosted the High Energy Density and High Power RF 7th Workshop on High Energy Density and High Power RF in Kalamata, Greece, 13-17 June, 2005. The Proceedings cost was supported by these funds from the U.S. Department of Energy. The Proceedings was published through the American Institute of Physics.

  5. From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power

    International Nuclear Information System (INIS)

    Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation, isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications

  6. Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.

    2008-04-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  7. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat N [University of California San Diego

    2013-08-14

    Recent advances in technology has made possible to create matter with extremely high energy density (energy densities and pressure exceeding 1011 J/m3 and 1 Mbar respectively). The field is new and complex. The basic question for high energy density physics (HEDP) is how does matter behave under extreme conditions of temperature, pressure, density and electromagnetic radiation? The conditions for studying HEDP are normally produced using high intensity short pulse laser, x-rays, particle beams and pulsed power z-pinches. Most of these installations occupy a large laboratory floor space and require a team consisting of a large number of scientists and engineers. This limits the number of experiments that can be performed to explore and understand the complex physics. A novel way of studying HEDP is with a compact x-pinch in university scale laboratory. The x-pinch is a configuration in which a pulsed current is passed through two or more wires placed between the electrodes making the shape of the letter ‘X’. Extreme conditions of magnetic field (> 200 MGauss for less than 1 ns), temperature (1 keV) and density (~ 1022 cm-3) are produced at the cross-point, where two wires make contact. Further, supersonic jets are produced on either side of the cross-point. The physics of the formation of the plasma at the cross-point is complex. It is not clear what role radiation plays in the formation of high energy density plasma (>> 1011 J/m3) at the cross-point. Nor it is understood how the supersonic jets are formed. Present numerical codes do not contain complex physics that can take into account some of these aspects. Indeed, a comprehensive experimental study could answer some of the questions, which are relevant to wide-ranging fields such as inertial confinement fusion, astrophysical plasmas, high intensity laser plasma interactions and radiation physics. The main aim of the proposal was to increase the fundamental understanding of high energy density physics and

  8. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    Science.gov (United States)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  9. Impact of olfactory and auditory priming on the attraction to foods with high energy density.

    Science.gov (United States)

    Chambaron, S; Chisin, Q; Chabanet, C; Issanchou, S; Brand, G

    2015-12-01

    \\]\\Recent research suggests that non-attentively perceived stimuli may significantly influence consumers' food choices. The main objective of the present study was to determine whether an olfactory prime (a sweet-fatty odour) and a semantic auditory prime (a nutritional prevention message), both presented incidentally, either alone or in combination can influence subsequent food choices. The experiment included 147 participants who were assigned to four different conditions: a control condition, a scented condition, an auditory condition or an auditory-scented condition. All participants remained in the waiting room during15 min while they performed a 'lure' task. For the scented condition, the participants were unobtrusively exposed to a 'pain au chocolat' odour. Those in the auditory condition were exposed to an audiotape including radio podcasts and a nutritional message. A third group of participants was exposed to both olfactory and auditory stimuli simultaneously. In the control condition, no stimulation was given. Following this waiting period, all participants moved into a non-odorised test room where they were asked to choose, from dishes served buffet-style, the starter, main course and dessert that they would actually eat for lunch. The results showed that the participants primed with the odour of 'pain au chocolat' tended to choose more desserts with high energy density (i.e., a waffle) than the participants in the control condition (p = 0.06). Unexpectedly, the participants primed with the nutritional auditory message chose to consume more desserts with high energy density than the participants in the control condition (p = 0.03). In the last condition (odour and nutritional message), they chose to consume more desserts with high energy density than the participants in the control condition (p = 0.01), and the data reveal an additive effect of the two primes. PMID:26119807

  10. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    International Nuclear Information System (INIS)

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations

  11. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sio, H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-09-15

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  12. 7th International High Energy Density and High Power RF Workshop

    CERN Document Server

    Nusinovich, Gregory S; RF 2005

    2006-01-01

    This is the seventh in a series of international workshops on high-power and high-energy density microwave devices for accelerator, plasma physics, and defense applications. The underlying theme is the research and development of techniques to increase microwave energy density and peak power in active and passive microwave devices and components spanning the range from 1 GHz up through the lower THz frequencies. The scope of this workshop includes accelerators for high energy physics, plasma heating and current drive in controlled thermonuclear fusion research, radar and directed energy/high power microwave (HPM) systems, THz sources and technologies, and advanced 2D/3D computational tool development.

  13. Efficient modeling of laser-plasma interactions in high energy density scenarios

    OpenAIRE

    Fiuza, F.; Marti, M; Fonseca, R. A.; Silva, L. O.; Tonge, J.; May, J; Mori, W. B.

    2011-01-01

    We describe how a new framework for coupling a full-PIC algorithm with a reduced PIC algorithm has been implemented into the code OSIRIS. We show that OSIRIS with this new hybrid-PIC algorithm can efficiently and accurately model high energy density scenarios such as ion acceleration in laser-solid interactions and fast ignition of fusion targets. We model for the first time the full density range of a fast ignition target in a fully self-consistent hybrid-PIC simulation, illustrating the pos...

  14. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    OpenAIRE

    Bin LI; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; LIU Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functio...

  15. The high-energy-density counterpropagating shear experiment and turbulent self-heating

    International Nuclear Information System (INIS)

    The counterpropagating shear experiment has previously demonstrated the ability to create regions of shock-driven shear, balanced symmetrically in pressure, and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling

  16. Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.

    2010-06-09

    These lectures concern the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas.

  17. Design and simulation of high-energy-density shear experiments on OMEGA and the NIF

    Science.gov (United States)

    Doss, F. W.; Devolder, B.; di Stefano, C.; Flippo, K. A.; Kline, J. L.; Kot, L.; Loomis, E. N.; Merritt, E. C.; Perry, T. S.; MacLaren, S. A.; Wang, P.; Zhou, Y. K.

    2015-11-01

    High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models' ability to function in the high-energy-density, inertial-fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of > 100 km/s, which initiate a strong shear instability across an initially solid density, 20 micron thick Al plate, variations of the experiment have been performed and are studied. These variations have included increasing the fluid density (by modifying the metal plate material from Al to Ti), imposing sinusoidal perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. In addition to examining the shear-induced mixing, the simulations reveal other physics, such as how the interaction of our indirect-drive halfraums with a mated shock tube's ablator impedes a stagnation-driven shock. This work is conducted by the US DOE by LANL under contract DE-AC52-06NA25396, and NIF facility operations by LLNL under contract DE-AC52-07NA27344.

  18. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  19. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008

  20. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, C

    2001-10-29

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  1. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    International Nuclear Information System (INIS)

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  2. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage.

    Science.gov (United States)

    Khanchaitit, Paisan; Han, Kuo; Gadinski, Matthew R; Li, Qi; Wang, Qing

    2013-01-01

    Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors. PMID:24276519

  3. Asymmetric battery having a semi-solid cathode and high energy density anode

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2016-09-06

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  4. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    Science.gov (United States)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  5. Measurements of Ion Stopping Around the Bragg Peak in High-Energy-Density Plasmas.

    Science.gov (United States)

    Frenje, J A; Grabowski, P E; Li, C K; Séguin, F H; Zylstra, A B; Gatu Johnson, M; Petrasso, R D; Glebov, V Yu; Sangster, T C

    2015-11-13

    For the first time, quantitative measurements of ion stopping at energies around the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T(e)) and electron number density (n(e)) in the range of 0.5-4.0 keV and 3×10(22) to 3×10(23) cm(-3) have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T(e) with n(e). The importance of including quantum diffraction is also demonstrated in the stopping-power modeling of high-energy-density plasmas. PMID:26613448

  6. Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C1s and N 1s spectra shift to lower binding energy due to the formation of C-Si and N-Si bonds. The Si-C-N bonds were observed in the deconvolved C1s and N 1s spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM).

  7. Nuclear science research with dynamic high energy density plasmas at NIF

    Science.gov (United States)

    Shaughnessy, D. A.; Gharibyan, N.; Moody, K. J.; Despotopulos, J. D.; Grant, P. M.; Yeamans, C. B.; Berzak Hopkins, L.; Cerjan, C. J.; Schneider, D. H. G.; Faye, S.

    2016-05-01

    Nuclear reaction measurements are performed at the National Ignition Facility in a high energy density plasma environment by adding target materials to the outside of the hohlraum thermo-mechanical package on an indirect-drive exploding pusher shot. Materials are activated with 14.1-MeV neutrons and the post-shot debris is collected via the Solid Radiochemistry diagnostic, which consists of metal discs fielded 50 cm from target chamber center. The discs are removed post-shot and analyzed via radiation counting and mass spectrometry. Results from a shot using Nd and Tm foils as targets are presented, which indicate enhanced collection of the debris in the line of sight of a given collector. The capsule performance was not diminished due to the extra material. This provides a platform for future measurements of nuclear reaction data through the use of experimental packages mounted external to the hohlraum.

  8. Titanium carbonitride films on cemented carbide cutting tool prepared by pulsed high energy density plasma

    Science.gov (United States)

    Feng, Wenran; Liu, Chizi; Chen, Guangliang; Zhang, Guling; Gu, Weichao; Niu, Erwu; Yang, Si-Ze

    2007-03-01

    Hard films prepared by pulsed high energy density plasma (PHEDP) are characterized by high film/substrate adhesive strength, and high wear resistance. Titanium carbonitride (TiCN) films were deposited onto YG11C (ISO G20) cemented carbide cutting tool substrates by PHEDP at room temperature. XRD, XPS, SEM, AES, etc. were adopted to analyze the phases (elements) composition, microstructure and the interface of the films, respectively. The results show that, the uniform dense films are composed of grains ranging from 70 to 90 nm. According to the AES result, there is a broad transition layer between the film and the substrate, due to the ion implantation effect of the PHEDP. The transition layer is favorable for the film/substrate adhesion.

  9. Three-dimensional modeling and analysis of a high energy density Kelvin-Helmholtz experiment

    International Nuclear Information System (INIS)

    A recent series of experiments on the OMEGA laser provided the first controlled demonstration of the Kelvin–Helmholtz (KH) instability in a high-energy-density physics context [E. C. Harding et al., Phys. Rev. Lett. 103, 045005, (2009); O. A. Hurricane et al., Phys. Plasmas 16, 056305, (2009)]. We present 3D simulations which resolve previously reported discrepancies between those experiments and the 2D simulation used to design them. Our new simulations reveal a three-dimensional mechanism behind the low density “bubble” structures which appeared in the experimental x-ray radiographs at late times but were completely absent in the 2D simulations. We also demonstrate that the three-dimensional expansion of the walls of the target is sufficient to explain the 20% overprediction by 2D simulation of the late-time growth of the KH rollups. The implications of these results for the design of future experiments are discussed.

  10. Infant-mortality testing of high-energy-density capacitors used on Nova

    International Nuclear Information System (INIS)

    Nova is a solid-state large laser for inertial-confinement fusion research. Its flashlamps are driven by a 60-MJ capacitor bank. Part of this bank is being built with high-energy-density capacitors, 52-μF, 22 kV, 12.5 kJ. A total of 2645 of these capacitors have been purchased from two manufacturers. Each capacitor was infant-mortality tested. The first test consisted of a high-potential test, bushing-to-case, since these capacitors have dual bushings. Then the capacitors were discharged 500 times with circuit conditions approximating the capacitors normal flashlamp load. Failure of either of these tests or if the capacitor was leaking was cause for rejection

  11. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    International Nuclear Information System (INIS)

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula

  12. Evaluation of Digestible lysine levels in diets with high energy density for finishing pigs

    Directory of Open Access Journals (Sweden)

    Janeth Colina R

    2015-05-01

    Full Text Available ABSTRACT Objective. To evaluate the effects of different levels of digestible lysine in diets with high energy density on productive performance and carcass characteristics of finishing pigs. Materials and Methods. Seventy crossbred barrows (initial body weight of 83.36 kg were used and allotted in a randomized block design with five treatments, seven replications and two pigs per experimental unit. Pigs were fed ad libitum with diets containing 3.5 kcal/kg of ME and five levels of digestible lysine (0.46, 0.52, 0.58, 0.64 and 0.70% during four weeks. Final live weight (FLW, daily feed intake (DFI, daily weight gain (DWG, feed conversion (FC, daily lysine intake (DLI, and the amount of lysine per body weight gain (DLI/DWG, were evaluated. At the end of the experiment, blood samples were taken from each pig to determine urea nitrogen concentration (UN in serum and slaughtered to evaluate quantitative and qualitative carcass characteristics. Results. The FLW increased linearly (p<0.05.There were no differences among treatments for DFI, DWG, FC, carcass characteristics and UN. The DLI and DLI/DWG varied significantly (p<0.001 and increased linearly (p<0.001 with each lysine level. Pigs that consumed the limiting diet in lysine (0.46% showed less DLI and DLI/DWG (p<0.001 than pigs fed the other diets. Conclusions. The amount of DLI/DWG increased with the evaluated levels of digestible lysine in diets with high energy density, without effects on productive performance and carcass characteristics of finishing pigs.

  13. Generating stable tractor beams with dielectric metasurfaces

    Science.gov (United States)

    Pfeiffer, Carl; Grbic, Anthony

    2015-03-01

    Propagation-invariant beams that pull objects towards a light source are commonly known as tractor beams. Here, an efficient, linearly polarized tractor beam with improved stability is introduced. The beam consists of a superposition of transverse-electric and transverse-magnetic polarized Bessel beams of orders m =+1 and m =-1 . It is shown that this beam can stably pull a wide range of dielectric microparticles arbitrarily long distances, independent of ambient conditions. Next, a straightforward method of generating these high-performance beams is proposed. A Si metasurface transforms an incident linearly polarized Gaussian beam into the desired tractor beam. Full-wave simulations demonstrate that it is possible for this simple geometry to pull a polystyrene sphere a distance equal to the nondiffracting range of the Bessel beam. The simplicity of the setup and the robust performance of the proposed tractor beam significantly enhance the ability to manipulate matter with light.

  14. OAM beams from incomplete computer generated holograms

    CERN Document Server

    Zambale, Niña Angelica F; Hermosa, Nathaniel

    2016-01-01

    In this letter we show that optical beams with orbital angular momentum (OAM) can be generated even with incomplete computer generated holograms (CGH). These holograms are made such that random portions of it do not contain any information. We observe that although the beams produced with these holograms are less intense, these beams maintain their shape and that their topological charges are not affected. Furthermore, we show that superposition of two or more beams can be created using separate incomplete CGHs interspersed together. Our result is significant especially since most method to generate beams with OAM for various applications rely on pixelated devices or optical elements with imperfections.

  15. Electron beam parallel X-ray generator

    Science.gov (United States)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  16. Beam-Generated Detector Backgrounds at CESR

    OpenAIRE

    Henderson, Stuart; Cinabro, David

    2000-01-01

    The CESR/CLEO Phase II interaction region is described. The operational experience with beam-generated detector backgrounds is reviewed. The status of our understanding of beam-generated detector backgrounds at CESR is described and comparisons of background measurements with simulation predictions are presented.

  17. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries

    Science.gov (United States)

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l-1 with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l-1) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l-1). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries.

  18. Towards an effective nonlinear Quantum Mechanics for High Energy-density (HED) Matter

    Science.gov (United States)

    Mahajan, Swadesh

    2015-11-01

    A relativistic quantum framework is presented for dealing with high energy density matter, in particular, an assembly of particles in the field of an electromagnetic (EM) wave of arbitrary magnitude. Two different approaches are presented: 1) A Statistical Mechanical model for the HED matter is developed - Principal steps involve solving the eigenvalue problem for a quantum relativistic particle in the presence of arbitrary strength EM field. The resulting energy eigenvalue (dependent on the magnitudes A, ω and k) defines the appropriate Boltzmann factor to construct expressions for physical variables for a weakly interacting system of these field-dressed particles. The fluid equations are the conservation laws, 2) Second, an equivalent nonlinear quantum mechanics is constructed to represent a hot fluid with and without internal degrees of freedom (like spin). Representative initial results are displayed and discussed: 1) fundamental changes in the particle energy momentum relationship 2) The EM wave induces anisotropy in the energy momentum tensor, 3) the EM wave splits the spin-degenerate states, 4) the propagation characteristics of the EM wave are modified by thermal and field effects causing differential self-induced transparency, 5) Particle trapping and ``pushing'' by the high amplitude EM wave. Attempts will be made to highlight testable predictions. Research supported by the U.S. Dept. of Energy Grant DE-FG02-04ER-54742.

  19. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  20. Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments

    Science.gov (United States)

    Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.

    2015-11-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.

  1. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  2. High Energy Density Asymmetric Supercapacitors From Mesoporous NiCo2S4 Nanosheets

    International Nuclear Information System (INIS)

    High-purity NiCo2S4 mesoporous nanosheets prepared through utilizing CS2 as novel sulfur source were fabricated as advanced electrode for electrochemical supercapacitors. Well-defined X-ray diffraction pattern, high specific surface areas and suitable pore size distribution (2∼6 nm) were observed for the as-obtained NiCo2S4 sample, demonstrating remarkable electrochemical performances resulting from the porous feature of NiCo2S4 nanosheets that increase the amount of electroactive sites and facilitate the electrolyte penetration. The as-assembled asymmetric supercapacitor (ASC) exhibits a high energy density of 25.5 Wh kg−1 at a power density of 334 W kg−1 and still remains an impressive energy density of 10.8 Wh kg−1 at a high power density of 8 kW kg−1. The outstanding performance of this ASC device will undoubtedly make the mesoporous NiCo2S4 nanosheets attractive for high-performance electrode materials

  3. Metal azides under pressure: An emerging class of high energy density materials

    Indian Academy of Sciences (India)

    G Vaitheeswaran; K Ramesh Babu

    2012-11-01

    Metal azides are well-known for their explosive properties such as detonation or deflagration. As chemically pure sources of nitrogen, alkali metal azides under high pressure have the ability to form polymeric nitrogen, an ultimate green high energy density material with energy density three times greater than that of known high energetic materials. With this motive, in this present work, we try to address the high-pressure behaviour of LiN3 and KN3 by means of density functional calculations. All the calculations are performed with the inclusion of van derWaals interactions at semi empirical level, as these materials are typical molecular solids. We found that both LiN3 and KN3 are structurally stable up to the studied pressure range of 60 GPa and 16 GPa, respectively. At ambient conditions both the materials are insulators with a gap of 3.48 eV (LiN3) and 4.08 eV (KN3) and as pressure increases the band gap decreases and show semiconducting nature at high pressures.We also found that the compressibility of both the crystals is anisotropic which is in good agreement with experiment. Our theoretical study proved that the materials under study may have the ability to form polymeric nitrogen because of the decrease in interazide ion distance and possible overlapping of N atomic orbitals.

  4. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  5. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors

    KAUST Repository

    Chen, Wei

    2013-01-01

    A remarkable energy density of 84 W h kg(cell) -1 and a power density of 182 kW kg(cell) -1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge. © 2013 The Royal Society of Chemistry.

  6. The National Ignition Facility - applications for inertial fusion energy and high-energy-density science

    International Nuclear Information System (INIS)

    Research in inertial fusion sciences and applications worldwide is making dramatic progress. The National Ignition Facility (NIF) in the US and the Laser MegaJoule (LMJ) in France are being built to achieve fusion ignition in the laboratory. Experiments that have been done on current Inertial Confinement Fusion (ICF) facilities in the US and around the world have demonstrated that the drive characteristics required for ignition are now well understood and a new plan for inertial fusion energy development has been put together by the community. Besides examining the conditions necessary for fusion ignition, targets were designed without fusion capsules. Equilibrium temperatures of hundreds of electron volts and megabar pressures were used to study astrophysical processes and measure equations of states at these extreme conditions. Recent studies of laser-matter interactions with femtosecond lasers have revealed some startling new phenomena due to the ability to achieve irradiances >1020 W cm-2. This paper will review recent results in fusion and high energy density science achieved by high intensity lasers at LLNL and will look ahead to what may achieved on NIF. (author)

  7. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg−1, higher than that of conventional tubular sodium–nickel chloride batteries (280 °C), is obtained for planar sodium–nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium–nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  8. Graphene/heparin template-controlled polyaniline nanofibers composite for high energy density supercapacitor electrode

    International Nuclear Information System (INIS)

    Graphene/PANI nanofibers composites are prepared for the first time using a novel in situ polymerization method based on the chemical oxidative polymerization of aniline using heparin as a soft template. The even dispersion of individual graphene sheet within the polymer nanofibers matrix enhances the kinetics for both charge transfer and ion transport throughout the electrode. This novel G25PNF75 composite (weight ratio of GO:PANI = 25:75) shows a high specific capacitance of 890.79 F g−1; and an excellent energy density of 123.81 Wh kg−1 at a constant discharge current of 0.5 mA. The composite exhibits excellent cycle life with 88.78% specific capacitance retention after 1000 charge-discharge cycles. The excellent performance of the composite is due to the synergistic combination of graphene which provides good electrical conductivity and mechanical stability, and PANI nanofiber which provides good redox activity that consequently contributed such high energy density. (paper)

  9. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    Science.gov (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  10. 2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors.

    Science.gov (United States)

    Kan, Kan; Wang, Lei; Yu, Peng; Jiang, Baojiang; Shi, Keying; Fu, Honggang

    2016-05-21

    Two-dimensional (2D) quasi-ordered nitrogen-enriched porous carbon (QNPC) nanohybrids, with the characteristics of an ultrathin graphite nanosheet framework and thick quasi-ordered nitrogen-doped carbon cladding with a porous texture, have been synthesized via an in situ polymerization assembly method. In the synthesis, the expandable graphite (EG) is enlarged by an intermittent microwave method, and then aniline monomers are intercalated into the interlayers of the expanded EG with the assistance of a vacuum. Subsequently, the intercalated aniline monomers could assemble on the interlayer surface of the expanded EG, accompanied by the in situ polymerization from aniline monomers to polyaniline. Meanwhile, the expanded EG could be exfoliated to graphite nanosheets. By subsequent pyrolysis and activation processes, the QNPC nanohybrids could be prepared. As supercapacitor electrodes, a typical QNPC12-700 sample derived from the precursor containing an EG content of 12%, with a high level of nitrogen doping of 5.22 at%, offers a high specific capacitance of 305.7 F g(-1) (1 A g(-1)), excellent rate-capability and long-term stability. Notably, an extremely high energy density of 95.7 Wh kg(-1) at a power density of 449.7 W kg(-1) in an ionic liquid electrolyte can be achieved. The unique structural features and moderate heteroatom doping of the QNPC nanohybrids combines electrochemical double layer and faradaic capacitance contributions, which make these nanohybrids ideal candidates as electrode materials for high-performance energy storage devices. PMID:27122446

  11. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    Science.gov (United States)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  12. Thulium heat source for high-endurance and high-energy density power systems

    Science.gov (United States)

    Walter, C. E.; Kammeraad, J. E.; Vankonynenburg, R.; Vansant, J. H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5 to 50 kW(sub th) coupled with a power conversion efficiency of approximately 30 percent, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered.

  13. Development of optics for x-ray phase-contrast imaging of high energy density plasmas

    International Nuclear Information System (INIS)

    Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ∼100 keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.

  14. Development of a Big Area BackLighter for high energy density experiments

    Science.gov (United States)

    Flippo, K. A.; Kline, J. L.; Doss, F. W.; Loomis, E. N.; Emerich, M.; Devolder, B.; Murphy, T. J.; Fournier, K. B.; Kalantar, D. H.; Regan, S. P.; Barrios, M. A.; Merritt, E. C.; Perry, T. S.; Tregillis, I. L.; Welser-Sherrill, L.; Fincke, J. R.

    2014-09-01

    A very large area (7.5 mm2) laser-driven x-ray backlighter, termed the Big Area BackLighter (BABL) has been developed for the National Ignition Facility (NIF) to support high energy density experiments. The BABL provides an alternative to Pinhole-Apertured point-projection Backlighting (PABL) for a large field of view. This bypasses the challenges for PABL in the equatorial plane of the NIF target chamber where space is limited because of the unconverted laser light that threatens the diagnostic aperture, the backlighter foil, and the pinhole substrate. A transmission experiment using 132 kJ of NIF laser energy at a maximum intensity of 8.52 × 1014 W/cm2 illuminating the BABL demonstrated good conversion efficiency of >3.5% into K-shell emission producing ˜4.6 kJ of high energy x rays, while yielding high contrast images with a highly uniform background that agree well with 2D simulated spectra and spatial profiles.

  15. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kWth coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  16. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    Science.gov (United States)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  17. Cluster beam sources. Part 1. Methods of cluster beams generation

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-10-01

    Full Text Available The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  18. Cluster beam sources. Part 1. Methods of cluster beams generation

    OpenAIRE

    A.Ju. Karpenko; V.A. Baturin

    2012-01-01

    The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  19. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  20. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    Science.gov (United States)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  1. 2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors

    Science.gov (United States)

    Kan, Kan; Wang, Lei; Yu, Peng; Jiang, Baojiang; Shi, Keying; Fu, Honggang

    2016-05-01

    Two-dimensional (2D) quasi-ordered nitrogen-enriched porous carbon (QNPC) nanohybrids, with the characteristics of an ultrathin graphite nanosheet framework and thick quasi-ordered nitrogen-doped carbon cladding with a porous texture, have been synthesized via an in situ polymerization assembly method. In the synthesis, the expandable graphite (EG) is enlarged by an intermittent microwave method, and then aniline monomers are intercalated into the interlayers of the expanded EG with the assistance of a vacuum. Subsequently, the intercalated aniline monomers could assemble on the interlayer surface of the expanded EG, accompanied by the in situ polymerization from aniline monomers to polyaniline. Meanwhile, the expanded EG could be exfoliated to graphite nanosheets. By subsequent pyrolysis and activation processes, the QNPC nanohybrids could be prepared. As supercapacitor electrodes, a typical QNPC12-700 sample derived from the precursor containing an EG content of 12%, with a high level of nitrogen doping of 5.22 at%, offers a high specific capacitance of 305.7 F g-1 (1 A g-1), excellent rate-capability and long-term stability. Notably, an extremely high energy density of 95.7 Wh kg-1 at a power density of 449.7 W kg-1 in an ionic liquid electrolyte can be achieved. The unique structural features and moderate heteroatom doping of the QNPC nanohybrids combines electrochemical double layer and faradaic capacitance contributions, which make these nanohybrids ideal candidates as electrode materials for high-performance energy storage devices.Two-dimensional (2D) quasi-ordered nitrogen-enriched porous carbon (QNPC) nanohybrids, with the characteristics of an ultrathin graphite nanosheet framework and thick quasi-ordered nitrogen-doped carbon cladding with a porous texture, have been synthesized via an in situ polymerization assembly method. In the synthesis, the expandable graphite (EG) is enlarged by an intermittent microwave method, and then aniline monomers are

  2. High-Energy-Density, Low-Temperature Li/CFx Primary Cells

    Science.gov (United States)

    Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid

    2007-01-01

    High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.

  3. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  4. Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid

    Institute of Scientific and Technical Information of China (English)

    XU XiaoJuan; ZHU WeiHua; GONG XueDong; XIAO HeMing

    2008-01-01

    A series of adamantyl nitrates have been theoretically studied from gas to solid to search for new po-tential high energy density compounds (HEDCs). The heats of formation (HOFs) for the 26 title com-pounds were calculated by designing isodesmic reactions at the B3LYP/6-31G* level. It was found that the HOFs of the 26 isomers with the same number of -ONO2 groups (n) are not correlated well with the corresponding substituted positions. According to the obtained heats of detonation (Q), detonation velocities (D), and detonation pressures (P) using the Kamlet-Jacobs equations, it was found that when n=7~8, the adamantyl nitrates meet the criterion as an HEDC. The calculations on bond dissociation energies of O-N (EO-N) showed that the adamantyl nitrates with gemi -ONO2always have the worst stability among the isomers, and all the adamantyl nitrates with gemi -ONO2 have similar stability. Due to the complexity of their structures, values of Eo-, do not decrease with the increase of the substituent number n obviously, and the stability of adamantyl nitrates is not determined by only one structural parameter. Considering the stability requirement, only 1,2,4,6,8,9,10-adamantyl heptanitrate is recom-mended as a feasible HEDC. Molecular packing searching for 1,2,4,6,8,9,10-adamantyl heptanitrate among 7 most possible space groups (P21/c, P-1, P212121, P21, Pbca, C2/c, and Pna21) using Compass and Dreiding force fields showed that this compound tends to crystallize in P21/c. Ab initio periodic calculations on the electronic structure of the predicted packing showed that the O-NO2 bond is the trigger bond during thermolysis, which agrees with the result derived from the study of dissociation energies of O-N bonds.

  5. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  6. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    Science.gov (United States)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  7. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density.

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-01-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm(-3)), highly conductive (39 S cm(-1)), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm(-3) at 2 mV s(-1) in a three-electrode cell and 300 F cm(-3) at 175.7 mA cm(-3) (568 mF cm(-2) at 0.5 mA cm(-2)) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm(-3) with a maximum power density of 1600 mW cm(-3), outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices. PMID:27248510

  8. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm‑3), highly conductive (39 S cm‑1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm‑3 at 2 mV s‑1 in a three-electrode cell and 300 F cm‑3 at 175.7 mA cm‑3 (568 mF cm‑2 at 0.5 mA cm‑2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm‑3 with a maximum power density of 1600 mW cm‑3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  9. Sr-doped Lanthanum Nickelate Nanofibers for High Energy Density Supercapacitors

    International Nuclear Information System (INIS)

    Highlights: • The electrode made by LNF-0.7 possessed excellent performance (719 F g−1) at Na2SO4 electrolyte • LNF-0.7//LNF-0.7 symmetric supercapacitor device were firstly prepared • The maximum energy density of 81.4 Wh·kg−1 are achieved at a power density of 500W·kg−1 • This symmetric supercapacitor also shows an excellent cycling life - Abstract: The series LaxSr1−xNiO3−δ (0.3≤x≤1) nanofibers (LNF-x) samples are prepared by using electrospun method. We investigate the structure and the electrochemical properties of LNF-x in detail. As a result, LNF-x nanofibers present a perovskite structure, and the LNF-0.7 sample with high specific surface area display remarkable performance as an electrode material for supercapacitors. The maximum specific capacitance value of 719 F·g−1 at a current density of 2 A·g−1, which retains 505 F·g−1 at a high current density of 20 A·g−1, is obtained for LNF-0.7 electrode in 1 M Na2SO4 aqueous electrolyte. Moreover, the LNF-0.7//LNF-0.7 symmetric supercapacitor device using 1 M Na2SO4 aqueous solution is successfully demonstrated. The capacitor device can operate at a cell voltage as high as 2 V, and it exhibits an energy density of 30.5 Wh·kg−1 at a high power density of 10 kW·kg−1 and a high energy density of 81.4 Wh·kg−1 at a low power density of 500 W·kg−1. More importantly, this symmetric supercapacitor also shows an excellent cycling performance with 90% specific capacitance retention after 2000 charging and discharging cycles. Those results offer a suitable design of electrode materials for high-performance supercapacitors

  10. Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A series of adamantyl nitrates have been theoretically studied from gas to solid to search for new po-tential high energy density compounds (HEDCs). The heats of formation (HOFs) for the 26 title com-pounds were calculated by designing isodesmic reactions at the B3LYP/6-31G level. It was found that the HOFs of the 26 isomers with the same number of —ONO2 groups (n) are not correlated well with the corresponding substituted positions. According to the obtained heats of detonation (Q),detonation velocities (D),and detonation pressures (P) using the Kamlet-Jacobs equations,it was found that when n=7~8,the adamantyl nitrates meet the criterion as an HEDC. The calculations on bond dissociation energies of O—N (EO—N) showed that the adamantyl nitrates with gemi —ONO2 always have the worst stability among the isomers,and all the adamantyl nitrates with gemi —ONO2 have similar stability. Due to the complexity of their structures,values of EO—N do not decrease with the increase of the substituent number n obviously,and the stability of adamantyl nitrates is not determined by only one structural parameter. Considering the stability requirement,only 1,2,4,6,8,9,10-adamantyl heptanitrate is recom-mended as a feasible HEDC. Molecular packing searching for 1,2,4,6,8,9,10-adamantyl heptanitrate among 7 most possible space groups (P21/c,P-1,P212121,P21,Pbca,C2/c,and Pna21) using Compass and Dreiding force fields showed that this compound tends to crystallize in P21/c. Ab initio periodic calculations on the electronic structure of the predicted packing showed that the O—NO2 bond is the trigger bond during thermolysis,which agrees with the result derived from the study of dissociation energies of O—N bonds.

  11. Observation of a Kelvin-Helmholtz Instability in a High-Energy-Density Plasma on the Omega Laser

    Energy Technology Data Exchange (ETDEWEB)

    Harding, E C; Hansen, J F; Hurricane, O A; Drake, R P; Robey, H F; Kuranz, C C; Remington, B A; Bono, M J; Grosskopf, M J; Gillespie, R S

    2009-02-12

    A laser initiated experiment is described in which an unstable plasma shear layer is produced by driving a blast wave along a plastic surface with sinusoidal perturbations. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vortices characteristic of the Kelvin-Helmholtz (KH) instability. The experiment used x ray radiography to capture the first well-resolved images of KH vortices in a high-energy-density plasma, and possibly the first images of transonic shocks generated by large-scale structures in a shear layer. The physical processes governing the evolution of a stratified fluid flow with a large velocity gradient (i.e., a shear flow) are of fundamental interest to a wide range of research areas including combustion, inertial confinement fusion (ICF), stellar supernovae, and geophysical fluid dynamics. Traditional experiments have used inclined tanks of fluid to initiate a flow, generally at low Reynolds numbers, or wind tunnels that combine two parallel gas flows at the end of a thin wedge, known as a splitter plate. The splitter plate experiments have explored flows with maximum shear velocities on the order of 10{sup 3} m/s and Reynolds numbers up to 10{sup 6}. Here we report the creation of a novel type of shear flow, achieved by confining a laser driven blast wave in a millimeter-sized shock tube, which produced shear velocities on the order of 10{sup 4} m/s and Reynolds numbers of 10{sup 6} in a plasma. This system enabled the first apparent observation of transonic shocklets, which are small, localized shocks believed to develop in response to a local supersonic flow occurring over a growing perturbation. These shocklets have been predicted previously in simulations, but have never to our knowledge been observed. These experiments are also the first to observe the growth of perturbations by the Kelvin-Helmholtz (KH) instability under high-energy-density (HED) conditions. In all

  12. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas

    International Nuclear Information System (INIS)

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Ω) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity--a way of reaching higher gains than is possible with conventional ICF.

  13. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  14. Radiation from Ag high energy density Z-pinch plasmas and applications to lasing

    Energy Technology Data Exchange (ETDEWEB)

    Weller, M. E., E-mail: mweller@unr.edu; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Stafford, A.; Keim, S. F.; Shlyaptseva, V. V.; Osborne, G. C.; Petkov, E. E. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Apruzese, J. P.; Giuliani, J. L. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Chuvatin, A. S. [Ecole Polytechnique, 91128 Palaiseau (France)

    2014-03-15

    Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (>1.8 keV) observed on the Zebra generator so far and upwards of 30 kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.5–5.0 Å. With this, L-shell Ag as well as cold L{sub α} and L{sub β} Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (>0.8 keV). Along with PCD signals, other signals, such as filtered XRD (>0.2 keV) and Si-diodes (SiD) (>9 keV), are analyzed covering a broad range of energies from a few eV to greater than 53 keV. The observation and analysis of cold L{sub α} and L{sub β} lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6 cm{sup −1} for various 3p → 3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.

  15. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    International Nuclear Information System (INIS)

    Highlights: •The energetic ions and electron beams are used to synthesize TiCx/SiC/a-C:H films. •As-deposited crystalline and hard nanocomposite TiCx/SiC/a-C:H films are synthesized. •Very high average deposition rates of 68 nm/shot are achieved using dense plasma focus. •The maximum hardness of 22 GPa is achieved at the surface of the film. -- Abstract: Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings

  16. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Directory of Open Access Journals (Sweden)

    Smolen D

    2013-02-01

    Full Text Available Dariusz Smolen1, Tadeusz Chudoba1, Iwona Malka1, Aleksandra Kedzierska1, Witold Lojkowski1, Wojciech Swieszkowski2, Krzysztof Jan Kurzydlowski2, Malgorzata Kolodziejczyk-Mierzynska3, Malgorzata Lewandowska-Szumiel31Polish Academy of Science, Institute of High Pressure Physics, Warsaw, Poland; 2Faculty of Materials Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, PolandAbstract: A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM. The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm3 in the tris(hydroxymethylaminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material

  17. Tailoring the dipole properties in dielectric polymers to realize high energy density with high breakdown strength and low dielectric loss

    International Nuclear Information System (INIS)

    High energy density polymer materials are desirable for a broad range of modern power electronic systems. Here, we report the development of a new class of polymer dielectrics based on polyurea and polythiourea, which possess high thermal stability. By increasing the dipole density, the dielectric constant of meta-phenylene polyurea and methylene polythiourea can be increased to 5.7, compared with aromatic polyurea and aromatic polythiourea, which have a dielectric constant in the range of 4.1–4.3. The random dipoles with high dipolar moment and amorphous structure of these polyurea and polythiourea based polymers provide strong scattering to the charge carriers, resulting in low losses even at high electric fields. Consequently, this new class of polymers exhibit a linear dielectric response to the highest field measured (>700 MV/m) with a high breakdown strength, achieving high energy density (>13 J/cm3) with high efficiency (>90%)

  18. Microwave bessel beams generation using guided modes

    KAUST Repository

    Salem, Mohamed

    2011-06-01

    A novel method is devised for Bessel beams generation in the microwave regime. The beam is decomposed in terms of a number of guided transverse electric modes of a metallic waveguide. Modal expansion coefficients are computed from the modal power orthogonality relation. Excitation is achieved by means of a number of inserted coaxial loop antennas, whose currents are calculated from the excitation coefficients of the guided modes. The efficiency of the method is evaluated and its feasibility is discussed. Obtained results can be utilized to practically realize microwave Bessel beam launchers. © 2006 IEEE.

  19. Digital generation of partially coherent vortex beams.

    Science.gov (United States)

    Perez-Garcia, Benjamin; Yepiz, Adad; Hernandez-Aranda, Raul I; Forbes, Andrew; Swartzlander, Grover A

    2016-08-01

    We present an experimental technique to generate partially coherent vortex beams with an arbitrary azimuthal index using only a spatial light modulator. Our approach is based on digitally simulating the intrinsic randomness of broadband light passing through a spiral phase plate. We illustrate the versatility of the technique by generating partially coherent beams with different coherence lengths and orbital angular momentum content, without any moving optical device. Consequently, we study its cross-correlation function in a wavefront folding interferometer. The comparison with theoretical predictions yields excellent agreement. PMID:27472596

  20. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  1. Holographic generation of highly twisted electron beams

    CERN Document Server

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic momen...

  2. Catenary nanostructures as compact Bessel beam generators

    Science.gov (United States)

    Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Jin, Jinjin; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2016-02-01

    Non-diffracting Bessel beams, including zero-order and high-order Bessel Beams which carry orbital angular momentum (OAM), enable a variety of important applications in optical micromanipulation, sub-diffraction imaging, high speed photonics/quantum communication, etc. The commonly used ways to create Bessel beams, including an axicon or a digital hologram written to a spatial light modulator (SLM), have great challenges to operate at the nanoscale. Here we theoretically design and experimentally demonstrate one kind of planar Bessel beam generators based on metasurfaces with analytical structures perforated in ultra-thin metallic screens. Continuous phase modulation between 0 to 2π is realized with a single element. In addition, due to the dispersionless phase shift stemming from spin-orbit interaction, the proposed device can work in a wide wavelength range. The results may find applications in future optical communication, nanofabrication and super-resolution imaging, etc.

  3. Catenary nanostructures as compact Bessel beam generators.

    Science.gov (United States)

    Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Jin, Jinjin; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2016-01-01

    Non-diffracting Bessel beams, including zero-order and high-order Bessel Beams which carry orbital angular momentum (OAM), enable a variety of important applications in optical micromanipulation, sub-diffraction imaging, high speed photonics/quantum communication, etc. The commonly used ways to create Bessel beams, including an axicon or a digital hologram written to a spatial light modulator (SLM), have great challenges to operate at the nanoscale. Here we theoretically design and experimentally demonstrate one kind of planar Bessel beam generators based on metasurfaces with analytical structures perforated in ultra-thin metallic screens. Continuous phase modulation between 0 to 2π is realized with a single element. In addition, due to the dispersionless phase shift stemming from spin-orbit interaction, the proposed device can work in a wide wavelength range. The results may find applications in future optical communication, nanofabrication and super-resolution imaging, etc. PMID:26843142

  4. Structured Beam Generation with a Single Metasurface

    OpenAIRE

    Yue, Fuyong; Wen, Dandan; Xin, Jingtao; Gerardot, Brian; Li, Jensen; Chen, Xianzhong

    2016-01-01

    Despite a plethora of applications ranging from quantum memories to high-resolution lithography, the current technologies to generate vector vortex beams (VVBs) suffer from less efficient energy use, poor resolution, low damage threshold, bulky size and complicated experimental setup, preventing further practical applications. We propose and experimentally demonstrate an approach to generate VVBs with a single metasurface by locally tailoring phase and transverse polarization distribution. Th...

  5. Proton Acceleration and High-Energy Density Physics from Laser Foil Interactions

    CERN Document Server

    Norreys, Peter A; Dangor, A E; Krushelnick, Karl; Tatarakis, M; Wei, M; Zepf, Matthew

    2005-01-01

    Intense laser plasma interactions have long been shown to be a source of very energetic ions - from the first experiments in the 1970's. However, there has been a recent revival of interest in the production of protons and ions from the such plasmas - primarily from the observation of collimated beams of protons and heavier ions which were observed at the rear thin foil targets irradiated by ultra-high intensity laser pulses (such that I > 1018 W/cm2). These ion beams have unique properties which may make them suitable for a variety of applications such as for probing high density plasmas, for fast ignition in inertial confinement fusion, as an ion source for subsequent acceleration stages in a particle accelerator or potentially for medical applications. Recent experimental results will be reviewed and the potential for such future applications will be highlighted.

  6. Generation of a hollow laser beam by a multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Hongyu Ma; Huadong Cheng; Wenzhuo Zhang; Liang Liu; Yuzhu Wang

    2007-01-01

    A simple method to generate a hollow laser beam by multimode fiber is reported. A dark hollow laser beam is generated from a multimode fiber and the dependence of the output beam profile on the incident angle of laser beam is analyzed. The results show that this hollow laser beam can be used to trap and guide cold atoms.

  7. Korea-China Joint R and D on High Energy Density Sciences using High Power Laser

    International Nuclear Information System (INIS)

    As to the high energy pico-second Peta Watt laser technology for fast ignition, the design of front-end and pre/main amplifier were pursued and the OPCPA technology to increase the aspect ratio by reducing the pre-pulse were developed. Furthermore, the tiled-grating technology to replace a large grating were obtained. As to the fast electron generation and propagation, a solid target was used to generate MeV class electron with TW femto-second laser and a gas cluster was also used to generate MeV class electron with PW femto-second laser at SIOM

  8. Generation and study of relativistic electron beam

    International Nuclear Information System (INIS)

    Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)

  9. Generation of perfect vectorial vortex beams.

    Science.gov (United States)

    Li, Peng; Zhang, Yi; Liu, Sheng; Ma, Chaojie; Han, Lei; Cheng, Huachao; Zhao, Jianlin

    2016-05-15

    We propose the concept of perfect vectorial vortex beams (VVBs), which not merely have intensity profile independent of the polarization order and the topological charge of spiral phase, but also have stable intensity profile and state of polarization (SoP) upon propagation. Utilizing a Sagnac interferometer, we approximately generate perfect VVBs with locally linear and elliptical polarizations, and demonstrate that such beams can keep their intensity profile and SoP at a certain propagation distance. These proposed VVBs can be expanded to encode information and quantum cryptography, as well as to enrich the conversion of spin and orbital angular momenta. PMID:27176963

  10. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  11. An Overview of the Los Alamos Inertial Confinement Fusion and High-Energy-Density Physics Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division

    2016-07-15

    The Los Alamos Inertial Confinement Fusion and Science Programs engage in a vigorous array of experiments, theory, and modeling. We use the three major High Energy Density facilities, NIF, Omega, and Z to perform experiments. These include opacity, radiation transport, hydrodynamics, ignition science, and burn experiments to aid the ICF and Science campaigns in reaching their stewardship goals. The ICF program operates two nuclear diagnostics at NIF, the neutron imaging system and the gamma reaction history instruments. Both systems are being expanded with significant capability enhancements.

  12. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials.

    Science.gov (United States)

    Yin, Ping; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-01-19

    Nitrogen-rich heterocycles represent a unique class of energetic frameworks featuring high heats of formation and high nitrogen content, which have generated considerable research interest in the field of high energy density materials (HEDMs). Although traditional C-functionalization methodology of aromatic hydrocarbons has been fully established, studies on N-functionalization strategies of nitrogen-containing heterocycles still have great potential to be exploited by virtue of forming diverse N-X bonds (X = C, N, O, B, halogen, etc.), which are capable of regulating energy performance and the stability of the resulting energetic compounds. In this sense, versatile N-functionalization of N-heterocyclic frameworks offers a flexible strategy to meet the requirements of developing new-generation HEDMs. In this Account, the role of strategic N-functionalization in designing new energetic frameworks, including the formation of N-C, N-N, N-O, N-B and N-halogen bonds, is emphasized. In the family of N-functionalized HEDMs, energetic derivatives, by virtue of forming N-C bonds, are the most widely used type due to the good nucleophilic capacity of most heterocyclic backbones. Although introduction of carbon tends to decrease energetic performance, significant improvement in material sensitivity makes this strategy attractive for safety concerns. More importantly, most "explosophores" can be readily introduced into the N-C linkage, thus providing a promising route to various HEDMs. Formation of additional N-N bonds typically gives rise to higher heats of formation, implying the potential enhancement in detonation performance. In many cases, the increased hydrogen bonding interactions within N-N functionalized heterocycles also improve thermal stability accordingly. Introduction of a single N,N'-azo bridge into several azole moieties leads to an extended nitrogen chain, demonstrating a new strategy for designing high-nitrogen compounds. The strategy of N-O functionalization

  13. Tomographic reconstruction of high energy density plasmas with picosecond temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K L

    2005-09-20

    Three-dimensional reconstruction of the electron density in a plasma can be obtained by passing multiple beams at different field angles simultaneously through a plasma and performing a tomographic reconstruction of the measured field-dependent phase profiles. In this letter, a relatively simple experimental setup is proposed and simulations are carried out to verify the technique. The plasma distribution is modeled as a discreet number of phase screens and a Zernike polynomial representation of the phase screens is used to reconstruct the plasma profile. Using a subpicosecond laser, the complete three-dimensional electron density of the plasma can be obtained with a time resolution limited only by the transit time of the probe through the plasma.

  14. High energy density and extreme field physics in the transparent-overdense regime

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn Manuel [Los Alamos National Laboratory; Yin, Kin [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Bowers, Kevin J [Los Alamos National Laboratory; Gautier, C [Los Alamos National Laboratory; Huang, C [Los Alamos National Laboratory; Jung, D [Los Alamos National Laboratory; Letzring, S [Los Alamos National Laboratory; Palaniyappan, S [Los Alamos National Laboratory; Shah, R [Los Alamos National Laboratory; Wu, H [Los Alamos National Laboratory; Fernandez, J. C. [Los Alamos National Laboratory; Dromey, B [QUEENS UNIV BELFAST; Henig, A [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Horlein, R [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Kefer, D. [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Tajima, T [LUDWIG-MAXIMILIN-UNIV MUNCHEN; Yan, X [QUEENS UNIV BELFAST; Habs, D [LUDWIG-MAXIMILIAN-UNIV MUNCHEN

    2011-01-31

    Conclusions of this report are: (1) high harmonics generated on solid surfaces are a very versatile source of intense coherent XUV radiation; (2) high harmonics can be used to probe and monitor the interaction of intense femtosecond laser pulses with nm-scale foil targets; (3) direct measurement of target density during relativistic interaction; (4) high harmonics generated with PW-scale short-pulse lasers could serve as unique backlighting sources for a wide range experiments; and (5) Trident can be a test bed to develop such experiments and the required instrumentation.

  15. Optical vortex beam generator at nanoscale level.

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  16. Second-harmonic generation with Bessel beams

    Science.gov (United States)

    Shatrovoy, Oleg

    We present the results of a numerical simulation tool for modeling the second-harmonic generation (SHG) interaction experienced by a diffracting beam. This code is used to study the simultaneous frequency and spatial profile conversion of a truncated Bessel beam that closely resembles a higher-order mode (HOM) of an optical fiber. SHG with Bessel beams has been investigated in the past and was determined have limited value because it is less efficient than SHG with a Gaussian beam in the undepleted pump regime. This thesis considers, for the first time to the best of our knowledge, whether most of the power from a Bessel-like beam could be converted into a second-harmonic beam (full depletion), as is the case with a Gaussian beam. We study this problem because using HOMs for fiber lasers and amplifiers allows reduced optical intensities, which mitigates nonlinearities, and is one possible way to increase the available output powers of fiber laser systems. The chief disadvantage of using HOM fiber amplifiers is the spatial profile of the output, but this can be transformed as part of the SHG interaction, most notably to a quasi-Gaussian profile when the phase mismatch meets the noncollinear criteria. We predict, based on numerical simulation, that noncollinear SHG (NC-SHG) can simultaneously perform highly efficient (90%) wavelength conversion from 1064 nm to 532 nm, as well as concurrent mode transformation from a truncated Bessel beam to a Gaussian-like beam (94% overlap with a Gaussian) at modest input powers (250 W, peak power or continuous-wave operation). These simulated results reveal two attractive features -- the feasibility of efficiently converting HOMs of fibers into Gaussian-like beams, and the ability to simultaneously perform frequency conversion. Combining the high powers that are possible with HOM fiber amplifiers with access to non-traditional wavelengths may offer significant advantages over the state of the art for many important applications

  17. Structured Beam Generation with a Single Metasurface

    CERN Document Server

    Yue, Fuyong; Xin, Jingtao; Gerardot, Brian; Li, Jensen; Chen, Xianzhong

    2016-01-01

    Despite a plethora of applications ranging from quantum memories to high-resolution lithography, the current technologies to generate vector vortex beams (VVBs) suffer from less efficient energy use, poor resolution, low damage threshold, bulky size and complicated experimental setup, preventing further practical applications. We propose and experimentally demonstrate an approach to generate VVBs with a single metasurface by locally tailoring phase and transverse polarization distribution. This method features the spin-orbit coupling and the superposition of the converted part with an additional phase pickup and the residual part without a phase change. By maintaining the equal components for the converted part and the residual part, the cylindrically polarized vortex beams carrying orbital angular momentum are experimentally demonstrated based on a single metasurface at subwavelength scale. The proposed approach provides unprecedented freedom in engineering the properties of optical waves with the high-effic...

  18. Integrated multi vector vortex beam generator

    CERN Document Server

    Schulz, Sebastian A; Karimi, Ebrahim; Boyd, Robert W

    2013-01-01

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.

  19. Experimental generation of amplitude squeezed vector beams

    CERN Document Server

    Chille, Vanessa; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph

    2016-01-01

    We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$\\pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.

  20. High energy density plasma physics using high intensity lasers: past and future

    International Nuclear Information System (INIS)

    Inertial Confinement Fusion (ICF) research in the US is in a dynamic upswing based on the construction of the National Ignition Facility (NIF). The US Congress has appropriated more than two-thirds of the funds necessary to build NIF. The NIF laser building shell is complete, the concrete structure for the target area is rising above ground level, and contracts for producing the laser hardware are rapidly going into place. The entire facility will be complete by the end of 2003 with eight beams becoming operational at the end of 2001 to begin experiments. All external reviews have recommended that the DOE encourage international collaborations on NIF and the DOE has directed the Project Team to design the facility so that is possible. The DOE has begun expanding several bilateral agreements on fusion energy to include inertial fusion energy (IFE). The DOE has also proposed to the International Energy Agency that its fusion energy activities include IFE. This paper will describe how NIF and the ICF Program intend to implement these changes and outlines some of the proposed experiments

  1. Observation and analysis of emergent coherent structures in a high-energy-density shock-driven planar mixing layer experiment

    Science.gov (United States)

    Doss, F. W.; Flippo, K. A.; Merritt, E. C.

    2016-08-01

    Coherent emergent structures have been observed in a high-energy-density supersonic mixing layer experiment. A millimeter-scale shock tube uses lasers to drive Mbar shocks into the tube volume. The shocks are driven into initially solid foam (60 mg /cm3 ) hemicylinders separated by an Al or Ti metal tracer strip; the components are vaporized by the drive. Before the experiment disassembles, the shocks cross at the tube center, creating a very fast (Δ U > 200 km/s) shear-unstable zone. After several nanoseconds, an expanding mixing layer is measured, and after 10+ ns we observe the appearance of streamwise-periodic, spanwise-aligned rollers associated with the primary Kelvin-Helmholtz instability of mixing layers. We additionally image roller pairing and spanwise-periodic streamwise-aligned filaments associated with secondary instabilities. New closures are derived to connect length scales of these structures to estimates of fluctuating velocity data otherwise unobtainable in the high-energy-density environment. This analysis indicates shear-induced specific turbulent energies 103-104 times higher than the nearest conventional experiments. Because of difficulties in continuously driving systems under these conditions and the harshness of the experimental environment limiting the usable diagnostics, clear evidence of these developing structures has never before been observed in this regime.

  2. Development of x-ray radiography for high energy density physics

    Energy Technology Data Exchange (ETDEWEB)

    Morace, A. [University Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); ILE, Osaka University, 2-6 Yamadaoka, Suita City, Osaka (Japan); Fedeli, L.; Batani, D.; Hulin, S.; Margarit, A.; Nicolai, P.; Vaisseau, X.; Volpe, L.; Santos, J. J. [University Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Baton, S.; Nakatsutsumi, M. [LULI, UMR 7605 CNRS-CEA-Ecole Polytechnique, Palaiseau (France); Beg, F. N.; Jarrott, L. C. [Center for Energy Research, University of California, 9500 Gilman Drive, La Jolla, California 92093 (United States); Nakai, M. [ILE, Osaka University, 2-6 Yamadaoka, Suita City, Osaka (Japan); Piovella, N. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milan (Italy); Wei, M. S. [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States)

    2014-10-15

    We describe an experiment performed at the LULI laser facility using an advanced radiographic technique that allowed obtaining 2D, spatially resolved images of a shocked buried-code-target. The technique is suitable for applications on Fast Ignition as well as Warm Dense Matter research. In our experiment, it allowed to show cone survival up to Mbar pressures and to measure the shock front velocity and the fluid velocity associated to the laser-generated shock. This allowed obtaining one point on the shock polar of porous carbon.

  3. Development of x-ray radiography for high energy density physics

    Science.gov (United States)

    Morace, A.; Fedeli, L.; Batani, D.; Baton, S.; Beg, F. N.; Hulin, S.; Jarrott, L. C.; Margarit, A.; Nakai, M.; Nakatsutsumi, M.; Nicolai, P.; Piovella, N.; Wei, M. S.; Vaisseau, X.; Volpe, L.; Santos, J. J.

    2014-10-01

    We describe an experiment performed at the LULI laser facility using an advanced radiographic technique that allowed obtaining 2D, spatially resolved images of a shocked buried-code-target. The technique is suitable for applications on Fast Ignition as well as Warm Dense Matter research. In our experiment, it allowed to show cone survival up to Mbar pressures and to measure the shock front velocity and the fluid velocity associated to the laser-generated shock. This allowed obtaining one point on the shock polar of porous carbon.

  4. Development of high energy density fuels from mild gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Marvin

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  5. Development of high energy density fuels from mild gasification of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  6. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm3-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access

  7. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440

  8. The National Ignition Facility: Ushering in a new age for high energy density science

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008); https://lasers.llnl.gov/], completed in March 2009, is the highest energy laser ever constructed. The high temperatures and densities achievable at NIF will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as access to new regimes in a variety of experiments relevant to x-ray astronomy, laser-plasma interactions, hydrodynamic instabilities, nuclear astrophysics, and planetary science. The experiments will impact research on black holes and other accreting objects, the understanding of stellar evolution and explosions, nuclear reactions in dense plasmas relevant to stellar nucleosynthesis, properties of warm dense matter in planetary interiors, molecular cloud dynamics and star formation, and fusion energy generation.

  9. Beyond the local density approximation : improving density functional theory for high energy density physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis

    2006-11-01

    A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.

  10. Integrated modelling framework for short pulse high energy density physics experiments

    Science.gov (United States)

    Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.

    2016-03-01

    Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.

  11. Design of high energy density thermoelectric energy conversion unit by using FGM compliant pads

    CERN Document Server

    Kambe, M

    1999-01-01

    In order to provide increasingly large amounts of electrical power to space and terrestrial systems with a sufficiently high level of reliability at a reasonable cost, thermoelectric (TE) energy conversion system by using $9 functionally graded material (FGM) compliant pads has been focused. To achieve high thermal energy density in TE power conversion systems, conductively coupling the TE units to the hot and cold heat exchangers is the most effective $9 configuration. This is accomplished by two sets of FGM compliant pads. This design strategy provides (1) a high flux, direct conduction path to heat source and heat sink, (2) the structural flexibility to protect the cell from high $9 stress due to thermal expansion, (3) an extended durability by a simple FGM structure, and (4) manufacturing cost reduction by spark plasma sintering. High thermal energy density of ten times as much as conventional radioisotope $9 thermoelectric generator is expected. Manufacturing of Cu/Al/sub 2/O/sub 3//Cu symmetrical FGM co...

  12. New approaches for high energy density lithium-sulfur battery cathodes.

    Science.gov (United States)

    Evers, Scott; Nazar, Linda F

    2013-05-21

    The goal of replacing combustion engines or reducing their use presents a daunting problem for society. Current lithium-ion technologies provide a stepping stone for this dramatic but inevitable change. However, the theoretical gravimetric capacity (∼300 mA h g(-1)) is too low to overcome the problems of limited range in electric vehicles, and their cost is too high to sustain the commercial viability of electrified transportation. Sulfur is the one of the most promising next generation cathode materials. Since the 1960s, researchers have studied sulfur as a cathode, but only recently have great strides been made in preparing viable composites that can be used commercially. Sulfur batteries implement inexpensive, earth-abundant elements at the cathode while offering up to a five-fold increase in energy density compared with present Li-ion batteries. Over the past few years, researchers have come closer to solving the challenges associated with the sulfur cathode. Using carbon or conducting polymers, researchers have wired up sulfur, an excellent insulator, successfully. These conductive hosts also function to encapsulate the active sulfur mass upon reduction/oxidation when highly soluble lithium polysulfides are formed. These soluble discharge products remain a crux of the Li-S cell and need to be contained in order to increase cycle life and capacity retention. The use of mesoporous carbons and tailored designs featuring porous carbon hollow spheres have led to highly stable discharge capacities greater than 900 mA h g(-1) over 100 cycles. In an attempt to fully limit polysulfide dissolution, methods that rely on coating carbon/sulfur composites with polymers have led to surprisingly stable capacities (∼90% of initial capacity retained). Additives will also play an important role in sulfur electrode design. For example, small fractions (> 3 wt%) of porous silica or titania effectively act as polysulfide reservoirs, decreasing their concentration in the

  13. Proton beam generation of oblique whistler waves

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1988-01-01

    It is known that ion beams are capable of generating whistler waves that propagate parallel to the mean magnetic field. Such waves may have been observed both upstream of the earth's bow shock and in the vicinity of comets. Previous analyses are extended to include propagation oblique to the mean magnetic field. The instability is generated by the perpendicular component of free energy in the ions, which can arise either via a temperature anisotropy or via a gyrating distribution. In the former case, the generation of whistler waves is confined to a fairly narrow cone of propagation directions centered about parallel propagation; in the latter case, the maximum growth of the instability can occur at fairly large obliquities (theta equal to about 50 deg).

  14. Investigation of the 2p3/2-3d5/2 line emission of Au53+ -- Au69+ for diagnosing high energy density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G V; Hansen, S B; Trabert, E; Beiersdorfer, P; Widmann, K; Chen, H; Chung, H K; Clementson, J T; Gu, M F; Thorn, D B

    2008-01-29

    Measurements of the L-shell emission of highly charged gold ions were made under controlled laboratory conditions using the SuperEBIT electron beam ion trap, allowing detailed spectral observations of lines from ironlike Au{sup 53+} through neonlike Au{sup 69+}. Using atomic data from the Flexible Atomic Code, we have identified strong 3d{sub 5/2} {yields} 2p{sub 3/2} emission features that can be used to diagnose the charge state distribution in high energy density plasmas, such as those found in the laser entrance hole of hot hohlraum radiation sources. We provide collisional-radiative calculations of the average ion charge as a function of temperature and density, which can be used to relate charge state distributions inferred from 3d{sub 5/2} {yields} 2p{sub 3/2} emission features to plasma conditions, and investigate the effects of plasma density on calculated L-shell Au emission spectra.

  15. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  16. Theoretical studies on a series of 1,2,4-triazoles derivatives as potential high energy density compounds

    Indian Academy of Sciences (India)

    Zhang Rui-Zhou; Li Xiao-Hong; Zhang Xian-Zhou

    2012-09-01

    Density functional theory calculations at B3LYP/6-31G∗∗ and B3P86/6-31G∗∗ levels were performed to predict the densities (), detonation velocities (D), pressures (P) and the thermal stabilities for a series of 1,2,4-triazole derivatives for looking high energy density compounds (HEDCs). The heats of formation (HOFs) are also calculated via designed isodesmic reactions. The calculations on the bond dissociation energies (BDEs) indicate that the position of the subsitutent group has great effect on the BDE and the BDEs of the initial scission step are between 31 and 65 kcal/mol. In addition, the condensed phase heats of formation are also calculated for the title compounds. These results would provide basic information for further studies of HEDCs.

  17. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    Science.gov (United States)

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-10-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg-1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors.

  18. Understanding the implications of the data from recent high-energy-density Kelvin-Helmholtz shear layer experiments

    International Nuclear Information System (INIS)

    The first successful high energy density Kelvin-Helmholtz (KH) shear layer experiments (O.A. Hurricane, et al., Phys. Plasmas, 16, 056305, 2009; E.C. Harding, et al., Phys. Rev. Lett., 103, 045005, 2009) demonstrated the ability to design and field a target that produces an array of large diagnosable KH vortices in a controlled fashion. Data from these experiments vividly showed the complete evolution of large distinct eddies, from formation to apparent turbulent break-up. Unexpectedly, low-density bubbles/cavities comparable to the vortex size (∼ 300 - 400 (micro)m) appeared to grow up in the free-stream flow above the unstable material interface. In this paper, the basic principles of the experiment will be discussed, the data reviewed, and the progress on understanding the origin of the above bubble structures through theory and simulation will be reported on.

  19. Understanding the implications of the data from recent high-energy-density Kelvin-Helmholtz shear layer experiments

    International Nuclear Information System (INIS)

    The first successful high energy density Kelvin-Helmholtz (KH) shear layer experiments (O.A. Hurricane, et al., Phys. Plasmas, 16, 056305, 2009; E.C. Harding, et al., Phys. Rev. Lett., 103, 045005, 2009) demonstrated the ability to design and field a target that produces an array of large diagnosable KH vortices in a controlled fashion. Data from these experiments vividly showed the complete evolution of large distinct eddies, from formation to apparent turbulent break-up. Unexpectedly, low-density bubbles/cavities comparable to the vortex size (∼ 300 - 400 μm) appeared to grow up in the free-stream flow above the unstable material interface. In this paper, the basic principles of the experiment will be discussed, the data reviewed, and the progress on understanding the origin of the above bubble structures through theory and simulation will be reported on. (IFSA 1.10.096)

  20. Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte

    Science.gov (United States)

    Barzegar, Farshad; Bello, Abdulhakeem; Momodu, Damilola; Madito, Moshawe Jack; Dangbegnon, Julien; Manyala, Ncholu

    2016-03-01

    In this work, we present the synthesis of low cost carbon nanosheets derived from expanded graphite dispersed in Polyvinylpyrrolidone, subsequently activated in KOH and finally carbonized in Ar/H2 atmosphere. Interconnected sheet-like structure with low concentration of oxygen (9.0 at.%) and a specific surface area of 457 m2 g-1 was obtained. The electrochemical characterization of the carbon material as supercapacitor electrode in a 2-electrode configuration shows high specific capacitance of 337 F g-1 at a current density of 0.5 A g-1 as well as high energy density of 37.9 Wh kg-1 at a power density of 450 W kg-1. This electrical double layer capacitor electrode also exhibits excellent stability after floating test for 120 h in 6 M KOH aqueous electrolyte. These results suggest that this activated expanded graphite (AEG) material has great potential for high performance electrode in energy storage applications.

  1. Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications

    International Nuclear Information System (INIS)

    New high energy-density thermal storage materials are proposed which use miscibility gap binary alloy systems to operate through the latent heat of fusion of one component dispersed in a thermodynamically stable matrix. Using trial systems Al–Sn and Fe–Cu, we demonstrate the development of the required inverse microstructure (low melting point phase embedded in high melting point matrix) and excellent thermal storage potential. Several other candidate systems are discussed. It is argued that such systems offer enhancement over conventional phase change thermal storage by using high thermal conductivity microstructures (50–400 W/m K); minimum volume of storage systems due to high energy density latent heat of fusion materials (0.2–2.2 MJ/L); and technical utility through adaptability to a great variety of end uses. Low (<300 °C), mid (300–400 °C) and high (600–1400 °C) temperature options exist for applications ranging from space heating and process drying to concentrated solar thermal energy conversion and waste heat recovery. -- Highlights: ► Alloys of immiscible metals are proposed as thermal storage systems. ► High latent heat of fusion per unit volume and tunable temperature are advantageous. ► Thermal storage systems with capacities of 0.2–2.2 MJ/L are identified. ► Heat delivery is via a rigid non-reactive high thermal conductivity matrix. ► The required inverse microstructures were developed for Sn–Al and Cu–Fe systems

  2. Objective specific beam generation for image guided robotic radiosurgery

    International Nuclear Information System (INIS)

    Robotic radiosurgery enables precise dose delivery throughout the body. Planning for robotic radiosurgery comprises of finding a suitable set of beams and beam weights. The problem can be addressed by generating a large set of candidate beams, and selection of beams with nonzero weight by mathematical programming. We propose to use different randomized beam generation methods depending on the type of lesion and the clinical objective. Results for three patient cases indicate that this can improve the plan quality. (orig.)

  3. Optical generation of non-diffracting beams via photorefractive holography

    CERN Document Server

    Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel

    2015-01-01

    This work presents, for the first time the optical generation of non-diffracting beams via photorefractive holography. Optical generation of non-diffracting beams using conventional optics components is difficult and, in some instances, unfeasible, as it is wave fields given by superposition of non-diffracting beams. It is known that computer generated holograms and spatial light modulators (SLMs) successfully generate such beams. With photorefractive holography technique, the hologram of a non-diffracting beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The experimental realization of a non-diffracting beam was made in a photorefractive holography setup using a photorefractive Bi12SiO20 (BSO) crystal as the holographic recording medium, where the non-diffracting beams, the Bessel beam arrays and superposition of co-propagating Bessel beams (Frozen Waves) were obtained experimentally. The experimental results are in agreement with the theoretically pr...

  4. High energy density matter generation using a focused soft-X-ray laser for volumetric heating of thin foils

    Czech Academy of Sciences Publication Activity Database

    Rus, Bedřich; Mocek, Tomáš; Kozlová, Michaela; Polan, Jiří; Homer, Pavel; Fajardo, M.; Foord, M.E.; Chung, H.; Moon, S.J.; Lee, R. W.

    2011-01-01

    Roč. 7, č. 1 (2011), s. 11-16. ISSN 1574-1818 R&D Projects: GA ČR GA202/05/2316 Grant ostatní: AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory X-ray lasers * volumetric heating * aluminum transmission * polyimide transmission * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.595, year: 2011 http://www.sciencedirect.com/science/article/pii/S1574181810000406

  5. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  6. Layer by layer assembly of ultrathin V₂O₅ anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes.

    Science.gov (United States)

    Shakir, Imran; Ali, Zahid; Bae, Jihyun; Park, Jongjin; Kang, Dae Joon

    2014-04-21

    Among transition metal oxides, vanadium oxides have received relatively modest attention for supercapacitor applications. Yet, this material is abundant, relatively inexpensive and offer several oxidation states which can provide a broad range of redox reactions suitable for supercapacitor operation. Electrochemical supercapacitors based on nanostructured vanadium oxide (V₂O₅) suffer from relatively low energy densities as they have low surface area and poor electrical conductivities. To overcome these problems, we developed a layer by layer assembly (LBL) technique in which a graphene layer was alternatively inserted between MWCNT films coated with ultrathin (3 nm) V₂O₅. The insertion of a conductive spacer of graphene between the MWCNT films coated with V₂O₅ not only prevents agglomeration between the MWCNT films but also substantially enhances the specific capacitance by 67%, to as high as ∼2590 F g(-1). Furthermore, the LBL assembled multilayer supercapacitor electrodes exhibited an excellent cycling performance of >97%, capacitance retention over 5000 cycles and a high energy density of 96 W h kg(-1) at a power density of 800 W kg(-1). Our approach clearly offers an exciting opportunity for enhancing the device performance of metal oxide-based electrochemical supercapacitors suitable for next-generation flexible energy storage devices by employing a facile LBL assembly technique. PMID:24604248

  7. Zirconia doped barium titanate induced electroactive β polymorph in PVDF-HFP: high energy density and dielectric properties

    International Nuclear Information System (INIS)

    Zirconium-doped barium titanate (BZT-08, Ba(Ti0.92 Zr0.08)O3) particles were synthesized and PVDF-HFP-based composites were prepared by melt mixing to design materials with tunable dielectric and ferroelectric properties. Composites of PVDF-HFP and barium titanate (BT) particles were also prepared to realize the exceptional properties associated with the BZT-08-like stabilization of two ferroelectric phases, i.e. tetragonal and orthorhombic at room temperature. To facilitate the uniform dispersion and interfacial adhesion with the matrix, the particles were modified with (3-aminopropyl) triethoxysilane. The dependence of the dielectric and ferroelectric properties of the as-prepared composites were systematically investigated in this study with respect to a wide range of frequencies. The composites with BZT-08 exhibited the significantly high dielectric permittivity of ca. 26 (at 100 Hz) and a high energy density (2.7 J cm−3 measured on 100 μm thick film) at room temperature with respect to the control PVDF-HFP and PVDF-HFP/BT composites. Interestingly, the BZT-08 particles facilitated the electroactive β polymorph in the PVDF-HFP and enhanced polarization in the composites, leading to improved ferroelectric properties in the composites. (paper)

  8. Laser-driven high-energy-density deuterium and tritium ions for neutron production in a double-cone configuration

    Science.gov (United States)

    Hu, Li-Xiang; Yu, Tong-Pu; Shao, Fu-Qiu; Zhu, Qing-Jun; Yin, Yan; Ma, Yan-Yun

    2015-12-01

    By using two-dimensional particle-in-cell simulations, we investigate laser-driven ion acceleration and compression from a thin DT foil in a double-cone configuration. By using two counterpropagating laser pulses, it is shown that a double-cone structure can effectively guide, focus, and strengthen the incident laser pulses, resulting in the enhanced acceleration and compression of D+ and T+. Due to the ion Coulomb repulsion and the effective screening from the external laser electric fields, the transverse diffusion of ions is significantly suppressed. Finally, the peak energy density of the compressed ions exceeds 2.73 × 1016 J/m3, which is about five orders of magnitude higher than the threshold for high energy density physics, 1011 J/m3. Under this condition, DT fusion reactions are initiated and the neutron production rate per volume is estimated to be as high as 7.473 × 1035/m3 s according to Monte Carlo simulations. It is much higher than that of the traditional large neutron sources, which may facilitate many potential applications.

  9. Laser-driven high-energy-density deuterium and tritium ions for neutron production in a double-cone configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Li-Xiang; Yu, Tong-Pu, E-mail: tongpu@nudt.edu.cn; Shao, Fu-Qiu; Yin, Yan; Ma, Yan-Yun [College of Science, National University of Defense Technology, Changsha 410073 (China); Zhu, Qing-Jun [College of Science, National University of Defense Technology, Changsha 410073 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-15

    By using two-dimensional particle-in-cell simulations, we investigate laser-driven ion acceleration and compression from a thin DT foil in a double-cone configuration. By using two counterpropagating laser pulses, it is shown that a double-cone structure can effectively guide, focus, and strengthen the incident laser pulses, resulting in the enhanced acceleration and compression of D{sup +} and T{sup +}. Due to the ion Coulomb repulsion and the effective screening from the external laser electric fields, the transverse diffusion of ions is significantly suppressed. Finally, the peak energy density of the compressed ions exceeds 2.73 × 10{sup 16 }J/m{sup 3}, which is about five orders of magnitude higher than the threshold for high energy density physics, 10{sup 11 }J/m{sup 3}. Under this condition, DT fusion reactions are initiated and the neutron production rate per volume is estimated to be as high as 7.473 × 10{sup 35}/m{sup 3} s according to Monte Carlo simulations. It is much higher than that of the traditional large neutron sources, which may facilitate many potential applications.

  10. Laser-driven high-energy-density deuterium and tritium ions for neutron production in a double-cone configuration

    International Nuclear Information System (INIS)

    By using two-dimensional particle-in-cell simulations, we investigate laser-driven ion acceleration and compression from a thin DT foil in a double-cone configuration. By using two counterpropagating laser pulses, it is shown that a double-cone structure can effectively guide, focus, and strengthen the incident laser pulses, resulting in the enhanced acceleration and compression of D+ and T+. Due to the ion Coulomb repulsion and the effective screening from the external laser electric fields, the transverse diffusion of ions is significantly suppressed. Finally, the peak energy density of the compressed ions exceeds 2.73 × 1016 J/m3, which is about five orders of magnitude higher than the threshold for high energy density physics, 1011 J/m3. Under this condition, DT fusion reactions are initiated and the neutron production rate per volume is estimated to be as high as 7.473 × 1035/m3 s according to Monte Carlo simulations. It is much higher than that of the traditional large neutron sources, which may facilitate many potential applications

  11. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  12. Talbot-Lau based Moiré deflectometry with non-coherent sources as potential High Energy Density plasma diagnostic

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2013-10-01

    X-ray phase-contrast radiography could better characterize highly localized density gradients expected in High Energy Density (HED) plasma experiments than conventional attenuation radiography. In particular, the Talbot-Lau (TL) grating interferometer, which works with extended and polychromatic x-ray sources, is a potentially attractive HED diagnostic due to its high sensitivity. For HED characterization the TL setup and imaging techniques must be changed from the recently studied medical system. The object magnification must be increased greatly in order to resolve μm scale gradients while the Talbot magnification must be increased in order to keep the gratings away from the plasma. Additionally, techniques for retrieving the density profile from a single plasma image must be developed. We thus study the performance of high magnification TL interferometers, in conjunction with Moiré fringe deflectometry for single image phase retrieval. The results show a very good interferometer contrast (≤30%) at high magnification. The Moiré technique enables measuring both sharp and mild density gradients with good accuracy and spatial resolution. Both the laboratory and simulation studies indicate that the TL based Moiré deflectometry is more sensitive than the propagation phase-contrast method when utilizing an extended x-ray source (˜80 μm). In HED experiments this would allow for less demanding X-ray backlighters than those used at present.

  13. Talbot-Lau based Moiré deflectometry with non-coherent sources as potential High Energy Density plasma diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2013-10-28

    X-ray phase-contrast radiography could better characterize highly localized density gradients expected in High Energy Density (HED) plasma experiments than conventional attenuation radiography. In particular, the Talbot-Lau (TL) grating interferometer, which works with extended and polychromatic x-ray sources, is a potentially attractive HED diagnostic due to its high sensitivity. For HED characterization the TL setup and imaging techniques must be changed from the recently studied medical system. The object magnification must be increased greatly in order to resolve μm scale gradients while the Talbot magnification must be increased in order to keep the gratings away from the plasma. Additionally, techniques for retrieving the density profile from a single plasma image must be developed. We thus study the performance of high magnification TL interferometers, in conjunction with Moiré fringe deflectometry for single image phase retrieval. The results show a very good interferometer contrast (≤30%) at high magnification. The Moiré technique enables measuring both sharp and mild density gradients with good accuracy and spatial resolution. Both the laboratory and simulation studies indicate that the TL based Moiré deflectometry is more sensitive than the propagation phase-contrast method when utilizing an extended x-ray source (∼80 μm). In HED experiments this would allow for less demanding X-ray backlighters than those used at present.

  14. Hard and wear-resistant titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Hard and wear-resistant titanium nitride coatings were deposited by pulsed high energy density plasma technique on cemented carbide cutting tools at ambient temperature. The coating thickness was measured by an optical profiler and surface Auger microprobe. The elemental and phase compositions and distribution of the coatings were determined by Auger microprobe, x-photon electron spectroscope, and X-ray diffractometer. The microstructures of the coatings were observed by scanning electron microscope and the roughness of the sample surface was measured by an optical profiler. The mechanical properties of the coatings were determined by nanoindentation and nanoscratch tests. The tribological properties were evaluated by the cutting performances of the coated tools applied in turning hardened CrWMn steel under industrial conditions. The structural and mechanical properties of the coatings were found to depend strongly on deposition conditions. Under optimized deposition conditions, the adhesive strength of TiN film to the substrate was satisfactory with the highest critical load up to more than 90 mN. The TiN films possess very high values of nanohardness and Young's modulus, which are near to 27 GPa and 450 GPa, respectively. The wear resistance and edge life of the cemented carbide tools were improved dramatically because of the deposition of titanium nitride coatings

  15. Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow

    International Nuclear Information System (INIS)

    In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ∼50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description

  16. Test Results of an Experimental Coil with Bi-2212 Rutherford Cable for High Energy-density HTS-SMES

    Energy Technology Data Exchange (ETDEWEB)

    Ohsemochi, K; Koyanagi, K; Kurusu, T; Tosaka, T; Tasaki, K; Ono, M; Ishii, Y; Shimada, K; Nomura, S; Kidoguchi, K; Onoda, H; Hirano, N; Nagaya, S

    2006-06-01

    Since FY 2004, a four-year Japanese national project has been ongoing to develop an HTS-SMES as a sub-program of the Development of Superconducting Power Network Control Technology. The purpose of this project is to confirm the performance of a high energy density SMES coil with Bi-2212 cables. This coil system is composed of an NbTi outer coil and a Bi-2212 inner coil, consisting of 16 double pancakes. A Bi2212 cable of 140 m length is used for the double-pancake windings, and reinforcing materials are co-wound with the cable. A winding inner diameter of 360 mm was set according to the bending tolerance of the cable. The magnet is to be cooled at 4.2 K by liquid helium in order to obtain high overall current density. In the first year of this project, a conceptual design and various experiments for HTS magnet were carried out. This paper describes the test results of the HTS experimental coil that was developed to evaluate the electrical and thermal characteristics of an HTS. It is important to minimize deterioration and damage to the cable, because such defects cause fatal impact to the coil. Consequentially, high accuracy measurement of V-I characteristics up to10{sup -8} V/cm range was performed in this experiment.

  17. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects.

    Science.gov (United States)

    Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar

    2016-04-13

    Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field. PMID:27040315

  18. A multi-dimensional Vlasov-Fokker-Planck code for arbitrarily anisotropic high-energy-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tzoufras, M.; Tableman, A.; Tsung, F. S.; Mori, W. B. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Bell, A. R. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom and Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-05-15

    To study the kinetic physics of High-Energy-Density Laboratory Plasmas, we have developed the parallel relativistic 2D3P Vlasov-Fokker-Planck code Oshun. The numerical scheme uses a Cartesian mesh in configuration-space and incorporates a spherical harmonic expansion of the electron distribution function in momentum-space. The expansion is truncated such that the necessary angular resolution of the distribution function is retained for a given problem. Finite collisionality causes rapid decay of the high-order harmonics, thereby providing a natural truncation mechanism for the expansion. The code has both fully explicit and implicit field-solvers and employs a linearized Fokker-Planck collision operator. Oshun has been benchmarked against well-known problems, in the highly kinetic limit to model collisionless relativistic instabilities, and in the hydrodynamic limit to recover transport coefficients. The performance of the code, its applicability, and its limitations are discussed in the context of simple problems with relevance to inertial fusion energy.

  19. Simulation of Electron-Beam Generating Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    OUYANG Liang; LI Hong; LI Benben; ZHOU Junqing; YAN Hong; SU Tie; WANG Huihui; LIUWandong

    2007-01-01

    As electron-beam generating plasma is widely applied,the software tool EGS4(Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air.The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure,and the electron-beam of 200 keV could generate a plasma with a density 1011 cm-3 in air of latm.In addition,the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.

  20. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  1. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  2. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  3. Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent

    Science.gov (United States)

    Zhi, Jian; Yang, Chongyin; Lin, Tianquan; Cui, Houlei; Wang, Zhou; Zhang, Hui; Huang, Fuqiang

    2016-02-01

    Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the negative electrode. In this unique design, NiO nanosheets are used as pseudocapacitive materials and TiO2-x:N nanoparticles serve as the conductive agent. Owing to the excellent electrical conductivity of TiO2-x:N and well defined ``particle on sheet'' planar structure of NiO/TiO2-x:N composites, the 2D morphology of the decorated NiO nanosheets is completely retained, which efficiently reinforces the pseudocapacitive activity and flexibility of the whole all solid state device. The maximum specific capacitance of fabricated the NiO/TiO2-x:N//mesoporous graphene supercapacitor can reach 133 F g-1, which is 2 and 4 times larger than the values of the NiO based ASSSC employing graphene and carbon black as the conductive agent, respectively. In addition, the optimized ASSSC displays intriguing performances with an energy density of 47 W h kg-1 in a voltage region of 0-1.6 V, which is, to the best of our knowledge, the highest value for flexible ASSSC devices. The impressive results presented here may pave the way for promising applications of black titania in high energy density flexible storage systems.Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the

  4. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  5. Generation of the Stigmatic Beam with Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    高春清; 魏光辉; Horst WEBER

    2001-01-01

    The stigmatic beam with orbital angular momentum is generated by transforming the Hermite-Gaussian beamof a diode-pumped Nd:YAG laser through a rotated cylindrical optical system. Behind the transformation optics,the output beam has an intensity distribution of ring shape and a twist phase. The beam transformation istheoretically calculated and the result has been confirmed in the experiments.

  6. Efficient Generation of Truncated Bessel Beams using Cylindrical Waveguides

    Science.gov (United States)

    Ilchenko, Vladimir S.; Mohageg, Makan; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2007-01-01

    In this paper we address efficient conversion between a Gaussian beam (a truncated plane wave) and a truncated Bessel beam of agiven order, using cylindrical optical waveguides and whispering gallery mode resonators. Utilizing a generator based on waveguides combined with whispering gallery mode resonators, we have realized Bessel beams of the order of 200 with a conversion efficiency exceeding 10 %.

  7. Generation and application of bessel beams in electron microscopy.

    Science.gov (United States)

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. PMID:27203186

  8. Layer by layer assembly of ultrathin V2O5 anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes

    Science.gov (United States)

    Shakir, Imran; Ali, Zahid; Bae, Jihyun; Park, Jongjin; Kang, Dae Joon

    2014-03-01

    Among transition metal oxides, vanadium oxides have received relatively modest attention for supercapacitor applications. Yet, this material is abundant, relatively inexpensive and offer several oxidation states which can provide a broad range of redox reactions suitable for supercapacitor operation. Electrochemical supercapacitors based on nanostructured vanadium oxide (V2O5) suffer from relatively low energy densities as they have low surface area and poor electrical conductivities. To overcome these problems, we developed a layer by layer assembly (LBL) technique in which a graphene layer was alternatively inserted between MWCNT films coated with ultrathin (3 nm) V2O5. The insertion of a conductive spacer of graphene between the MWCNT films coated with V2O5 not only prevents agglomeration between the MWCNT films but also substantially enhances the specific capacitance by 67%, to as high as ~2590 F g-1. Furthermore, the LBL assembled multilayer supercapacitor electrodes exhibited an excellent cycling performance of >97%, capacitance retention over 5000 cycles and a high energy density of 96 W h kg-1 at a power density of 800 W kg-1. Our approach clearly offers an exciting opportunity for enhancing the device performance of metal oxide-based electrochemical supercapacitors suitable for next-generation flexible energy storage devices by employing a facile LBL assembly technique.Among transition metal oxides, vanadium oxides have received relatively modest attention for supercapacitor applications. Yet, this material is abundant, relatively inexpensive and offer several oxidation states which can provide a broad range of redox reactions suitable for supercapacitor operation. Electrochemical supercapacitors based on nanostructured vanadium oxide (V2O5) suffer from relatively low energy densities as they have low surface area and poor electrical conductivities. To overcome these problems, we developed a layer by layer assembly (LBL) technique in which a graphene layer

  9. Necklace Beam Generation in Nonlinear Colloidal Engineered Media

    CERN Document Server

    Silahli, Salih Z; Litchinitser, Natalia M

    2015-01-01

    Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, and rogue waves. However, practical realization of these phenomena in the majority of available nonlinear media still relies on high-intensity optical beams. Here, we analytically and numerically show the possibility of necklace beam generation originating from low-intensity spatial modulational instability of vortex beams in engineered soft-matter nonlinear media.

  10. Particle beam. Cancer treatment in next generation

    International Nuclear Information System (INIS)

    This feature article summarizes the present and future aspects of particle therapy of cancers in Japan. It contains the Interview article for carbon particle therapy by HIMAC (Heavy Ion Medical Accelerator in Chiba); Facilities for the therapy-present and future for diffusion; History of the carbon beam treatment in NIRS (National Institute of Radiological Sciences, Chiba); Plans for a facility unit for proton beam therapy of cancer in Fukui Pref. for the regional diffusion; a Center of Excellence program in Gunma University for forefront cancer therapy; and Technology of equipments supporting the particle beam therapy in manufacturers of Sumitomo Heavy Industries, Ltd., Toshiba Japan, Hitachi, and Mitsubishi Electric Corp. There are 6 facilities in total for the particle beam therapy of cancer in Japan. Although the diffusion of radiation therapy in Japan is as low as less than 30% in the whole cancer treatments, the particle beam therapy, an advanced form of radiotherapy, is on the top of the world. (T.I.)

  11. A reflex electron beam discharge as a plasma source for electron beam generation

    International Nuclear Information System (INIS)

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 μs pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed

  12. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  13. Second-Harmonic Generation of Bessel Beams in Lossy Media

    Institute of Scientific and Technical Information of China (English)

    丁德胜; 许坚毅; 王耀俊

    2002-01-01

    We present a further analysis for the second-harmonic generation of Bessel beams in lossy media. The emphasis is put on the effect of absorption to the radial pattern of the second-harmonic beam. It is shown that within the absorption length of the second harmonic, the Bessel second-harmonic beam approaches limited diffraction in the radial direction and behaves as in the case of lossless media.

  14. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  15. Second- and third-harmonic generation with vector Gaussian beams

    Science.gov (United States)

    Carrasco, Silvia; Saleh, Bahaa E. A.; Teich, Malvin C.; Fourkas, John T.

    2006-10-01

    We consider second-harmonic generation (SHG) and third-harmonic generation (THG) in a nonlinear optical crystal illuminated by a vector Gaussian beam, i.e., a Gaussian beam in which the axial component of the excitation field is considered. This component exhibits twice the Gouy phase shift of the transverse component and vanishes at points on the beam axis. Harmonic generation stemming from this component exhibits a unique dependence on geometrical factors associated with the location and focusing of the beam relative to the location of the crystal. Using the first Born approximation (undepleted fundamental beam), we derive analytical formulas for the quantities that characterize these geometrical factors for a nonlinear optical crystal described by an arbitrary nonlinear susceptibility tensor, for both SHG and THG and for all polarization components. We also determine the efficiencies of these processes as functions of the geometry of the experimental arrangement for phase-matched crystals as well as for crystals of infinite length.

  16. JSPS-CAS Core University Program seminar. Proceedings of Japan-China joint seminar on laser plasma and high energy density physics

    International Nuclear Information System (INIS)

    The JSPS-CAS Core University program seminar on “Laser Plasma and High Energy Density Physics” was held in Xuhui Campus of Shanghai Jiao Tong University on October 14-16, 2010. 10 Japanese invited talks were presented while the total of 18 invited talks were given. This seminar was combined with 2nd China National Symposium on High Energy Density Physics, and another 27 oral talks and 26 posters were presented for this symposium. Totally over 90 participants including many young graduate students also attended the seminar. This workshop planned as a final in this ten years' collaboration between China and Japan. The workshop was originally planned to promote communications with young Chinese scientists and graduate students and Japanese scientists as well as Chinese scientists. Many cutting edge physics were presented from both countries and the collaboration through the JSPS-CAS Core University program was summarized by Prof. K. A. Tanaka and Prof. S. Zhu. (author)

  17. Electron beam generation in the fore-vacuum pressure range

    CERN Document Server

    Burachevskij, Y A; Kuzemchenko, M N; Mytnikov, A V; Oks, E M

    2001-01-01

    One presents the results of investigations to generate electron beams within 0.01-0.1 Torr gas pressure range. To generate a beam one used a plasma source based on a hollow cathode discharge in combination with a plane accelerating gap. Peculiar features of electron emission and acceleration within the mentioned pressure range are associated with high probability of gas ionization in an accelerating gap and with generation of ion flow meeting electron beam. It results in reduction of discharge combustion intensification, as well as, in plasma concentration range. The developed design of an electron source enables to generate cylindrical beams with up to 1 A current and with up to 10 keV energy

  18. Two-color beam generation based on wakefield excitation

    Science.gov (United States)

    Bettoni, S.; Prat, E.; Reiche, S.

    2016-05-01

    Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  19. Improved beam spot measurements in the 2nd generation proton beam writing system

    International Nuclear Information System (INIS)

    Nanosized ion beams (especially proton and helium) play a pivotal role in the field of ion beam lithography and ion beam analysis. Proton beam writing has shown lithographic details down to the 20 nm level, limited by the proton beam spot size. Introducing a smaller spot size will allow smaller lithographic features. Smaller probe sizes, will also drastically improve the spatial resolution for ion beam analysis techniques. Among many other requirements, having an ideal resolution standard, used for beam focusing and a reliable focusing method, is an important pre-requisite for sub-10 nm beam spot focusing. In this paper we present the fabrication processes of a free-standing resolution standard with reduced side-wall projection and high side-wall verticality. The resulting grid is orthogonal (90.0° ± 0.1), has smooth edges with better than 6 nm side-wall projection. The new resolution standard has been used in focusing a 2 MeV H2+ beam in the 2nd generation PBW system at Center for Ion Beam Applications, NUS. The beam size has been characterized using on- and off-axis scanning transmission ion microscopy (STIM) and ion induced secondary electron detection, carried out with a newly installed micro channel plate electron detector. The latter has been shown to be a realistic alternative to STIM measurements, as the drawback of PIN diode detector damage is alleviated. With these improvements we show reproducible beam focusing down to 14 nm

  20. Geometric Metasurface Fork Gratings for Vortex Beam Generation and Manipulation

    CERN Document Server

    Chen, Shumei; Li, Guixin; Zhang, Shuang; Cheah, Kok Wai

    2016-01-01

    In recent years, optical vortex beams possessing orbital angular momentum have caught much attention due to their potential for high capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provides infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate requires complicated 3D fabrication, the emerging field of metasurfaces has provided a planar and facile solution for generating vortex beams of arbitrary orbit angular momentum. Here we realize a novel type of geometric metasurface fork grating that seamlessly combine the functionality of a metasurface phase plate for vortex beam generation, and that of a linear phase gradient metasurface for controlling the wave propagation direction. The metasurface fork grating is therefore capable of simultaneously controlling both the...

  1. Generation and transport of laser accelerated ion beams

    International Nuclear Information System (INIS)

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  2. Study on nanosecond pulsed electron beam generation

    Science.gov (United States)

    Ponomarev, D.; Kholodnaya, G.; Remnev, G.; Kaikanov, M.; Sazonov, R.

    2014-11-01

    The paper presents the findings of an investigation on volt-ampere characteristics of the diode with explosive emission cathodes of different constructions (blade metal-dielectric (MD-cathode) and solid graphite cathodes) under the change of the anode-cathode gap in wide ranges. The investigations were carried out using the TEA-500 pulsed electron accelerator. The total current of the electron beam was measured using the Faraday cup (FC). A 0.5-mm foiled glass fiber laminate was used as an emitting edge of the cathode in the experimental study with the explosive emission blade MD-cathode. Based on the obtained results, the conclusion was made that the graphite cathode has the most effective efficiency factor.

  3. Study on nanosecond pulsed electron beam generation

    International Nuclear Information System (INIS)

    The paper presents the findings of an investigation on volt-ampere characteristics of the diode with explosive emission cathodes of different constructions (blade metal-dielectric (MD-cathode) and solid graphite cathodes) under the change of the anode-cathode gap in wide ranges. The investigations were carried out using the TEA-500 pulsed electron accelerator. The total current of the electron beam was measured using the Faraday cup (FC). A 0.5-mm foiled glass fiber laminate was used as an emitting edge of the cathode in the experimental study with the explosive emission blade MD-cathode. Based on the obtained results, the conclusion was made that the graphite cathode has the most effective efficiency factor

  4. Generation of monoenergetic ion beams with a laser accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  5. Generation of monoenergetic ion beams with a laser accelerator

    International Nuclear Information System (INIS)

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  6. Microstrip Antenna Generates Circularly Polarized Beam

    Science.gov (United States)

    Huang, J.

    1986-01-01

    Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.

  7. Ion beam generation and propagation for plasma processing applications

    International Nuclear Information System (INIS)

    Intense ion beams are being employed at Los Alamos to deposit thin films. Extraction geometry magnetically-insulated ion diodes (MID) are used to generate ion beams with currents up to 35 kA at 450 kV in a one-half microsecond long pulse. Multidimensional electromagnetic particle-in-cell (PIC) simulations have been performed to model the generation, extraction, and focusing of proton beams in realistic geometries. A ballistically focused MID has been studied to achieve the high deposition rates needed to form ablation plumes that preserve stoichiometric ratios. A high density waist with a diameter less than 8 cm is calculated near the geometrical focus. Extraction efficiency, beam divergence downstream of the aperture, and neutralization issues have been studied with the simulations

  8. Necklace beam generation in nonlinear colloidal engineered media.

    Science.gov (United States)

    Silahli, Salih Z; Walasik, Wiktor; Litchinitser, Natalia M

    2015-12-15

    Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, rogue waves, and ring (or necklace) beam formation. To date, a majority of studies of these phenomena have focused on light-matter interactions in self-focusing Kerr media existing in nature. However, a large and tunable nonlinear response of a colloidal suspension can be tailored at will by judiciously engineering the optical polarizability. Here, we analytically and numerically show the possibility of necklace beam generation originating from spatial modulational instability of vortex beams in engineered soft-matter nonlinear media with different types of exponential nonlinearity. PMID:26670494

  9. Geometric Metasurface Fork Gratings for Vortex Beam Generation and Manipulation

    OpenAIRE

    Chen, Shumei; Cai, Yuan; Li, Guixin; Shuang ZHANG; Cheah, Kok Wai

    2016-01-01

    In recent years, optical vortex beams possessing orbital angular momentum have caught much attention due to their potential for high capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provides infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate re...

  10. Electron Beam Collimation for the Next Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  11. Bunch beam production and microwave generation in reditrons

    International Nuclear Information System (INIS)

    The authors have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. The authors have further incorporated an inverse diode with a line impedance of 50 ohms in the reditron and showed that 28% of the kinetic energy of the modulated electron beam was converted into transverse electromagnetic waves with peak power of 1 GW

  12. Bunch beam production and microwave generation in reditrons

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, T.J.T.; Davis, H.A.; Fulton, R.D.; Sherwood, E.G.

    1989-01-01

    We have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. We had further incorporated an inverse diode in the reditron and showed that the kinetic energy of the modulated electron beam was efficiently converted into transverse electromagnetic waves. Our simulations showed an efficiency of 26% and the time averaged microwave power was about 6 GW. 7 refs., 8 figs.

  13. Bunch Beam Production And Microwave Generation In Reditrons

    Science.gov (United States)

    Kwan, Thomas J. T.; Davis, Harold A.; Fulton, Robert D.; Sherwood, Eugene G.

    1989-07-01

    We have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. We had further incorporated an inverse diode with a line impedance of 50 ohms in the reditron and showed that 28% of the kinetic energy of the modulated electron beam was converted into transverse electromagnetic waves with peak power of 1 GW.

  14. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I; Wuest, C R

    2002-10-16

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system and a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF will provide 192 energetic laser beams that will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for very high power and extreme electromagnetic field research and applications. We discuss here the technology challenges and solutions that have made NIF possible, along with enhancements to NIF's design that could lead to near-exawatt power levels.

  15. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I

    2002-01-11

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory is a $2.25B stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system. NIF is being built by the National Nuclear Security Agency and when completed will be the world's largest laser system, providing a national center to study inertial confinement fusion and the physics of extreme energy densities and pressures. In NIF up to 192 energetic laser beams will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for high power applications. We discuss here the technology challenges and solutions that have made NIF possible along with enhancements to NIF's design that could lead to exawatt power levels.

  16. Preparation of silicon@silicon oxide core-shell nanowires from a silica precursor toward a high energy density Li-ion battery anode.

    Science.gov (United States)

    Zhang, Chuanjian; Gu, Lin; Kaskhedikar, Nitin; Cui, Guanglei; Maier, Joachim

    2013-12-11

    Bulk-quantity silicon@silicon oxide nanowires have been successfully synthesized via a facile high-temperature approach using environment-friendly silica mixed with titanium powders. It is confirmed that the obtained nanowires process a crystalline core and amorphous oxide sheath. The obtained nanowires grow along the [111] direction which catalyzed by spherical silicon@siilcon oxide nanoparticles. The unique one-dimensional structure and thin oxide sheath result in the favorable electrochemical performances, which may be beneficial to the high energy density silicon anode for lithium ion batteries. PMID:24229329

  17. The sputter generation of negative ion beams

    International Nuclear Information System (INIS)

    A brief review is given of recent progress toward a quantitative understanding of negative ion formation by sputtering from surfaces covered with fractional layers of highly electropositive adsorbates. Practical models developed for estimating changes in work functions Δφ by electropositive adsorbates are described. The secondary negative ion generation process is examined through the use of composite energy/velocity dependent analytical models. These models are used to illustrate the effect of work function on the energy distributions of negative ions sputter ejected from a polycrystalline molybdenum surface covered with fractional layers of cesium. Predictions are also made of the functional dependence of the probability for negative ion formation on cesium coverage. The models predict energy distributions which are in basic disagreement with experimental observations, implying their inappropriateness for describing the sputter negative ion generation process. We have also developed a model for calculating sputter ratios based on the use of simple scaling procedures to bring Sigmund theory into close agreement with experimental observation accounting for the threshold effect. Scaling factors for projectile energies E > 1000 eV are found to be independent of energy while those for projectile energies Eth < E < 1000 eV were found to be energy dependent. In this study, the model and scaling techniques utilized to bring Sigmund theory into agreement with experiment are discussed in detail and several examples provided which illustrate the versatility, accuracy and utility of the model. In the present report, we describe the model and apply it to the case of sputtering a selected number of metals with energetic cesium ions. In particular, we present sputter ratio information for a number of Cs-projectile/metal-target combinations; the targets are bombarded at normal incidence to the surface

  18. Conditional eddies, or clumps, in ion-beam-generated turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pecseli, H. L.; Trulsen, J.

    1985-01-01

    Low-frequency electrostatic fluctuations are investigated experimentally in an unmagnetized plasma. The turbulence is generated by ion-ion-beam instabilities. Real-time signals are recorded and investigated statistically on a conditional basis. The formation and propagation of structures with a r......Low-frequency electrostatic fluctuations are investigated experimentally in an unmagnetized plasma. The turbulence is generated by ion-ion-beam instabilities. Real-time signals are recorded and investigated statistically on a conditional basis. The formation and propagation of structures...

  19. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 {+-} 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  20. Study of extreme states of matter at high energy densities and high strain rates with powerful lasers

    CERN Document Server

    Krasyuk, Igor K; Semenov, Andrey Yu; Khishchenko, Konstantin V; Fortov, Vladimir E

    2016-01-01

    In the paper, a review of most important results of experimental studies of thermonuclear plasma in conical targets, generation of shock waves and spallation phenomena in different materials, which were carried out at laser facilities of the A M Prokhorov General Physics Institute RAS since 1977, is presented.

  1. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    Science.gov (United States)

    Kantsyrev, V. L.; Chuvatin, A. S.; Safronova, A. S.; Rudakov, L. I.; Esaulov, A. A.; Velikovich, A. L.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.

    2014-03-01

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  2. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Chuvatin, A. S. [Laboratorie de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Rudakov, L. I. [Icarus Research Inc., Bethesda, Maryland 20824 (United States); Velikovich, A. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  3. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    International Nuclear Information System (INIS)

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed

  4. Modelling the spatial shape of nondiffracting beams: Experimental generation of Frozen Waves via computer generated holograms

    CERN Document Server

    Vieira, Tárcio A; Gesualdi, Marcos R R

    2013-01-01

    In this paper we implement experimentally the spatial shape modelling of nondiffracting optical beams via computer generated holograms. The results reported here are the experimental confirmation of the so called Frozen Wave method, developed few years ago. Optical beams of this type can possess potential applications in optical tweezers, medicine, atom guiding, remote sensing, etc..

  5. Propagation model for vector beams generated by metasurfaces.

    Science.gov (United States)

    Shu, Weixing; Liu, Yachao; Ke, Yougang; Ling, Xiaohui; Liu, Zhenxing; Huang, Bin; Luo, Hailu; Yin, Xiaobo

    2016-09-01

    A propagation model of vector beams generated by metasurfaces based on vector diffraction theory is established theoretically and verified experimentally. Considering the Pancharatnam-Berry phase introduced by the metasurface, analytical forms of vector beams for arbitrary incident polarization and topological charge of metasurfaces are found in the Fresnel and Fraunhofer diffraction regions, respectively. The complex amplitude of the resultant vector beam can be described in terms of a confluent hypergeometric function, with an intensity profile that manifests concentric rings in the Fresnel region and a single ring in the Fraunhofer one. Fraunhofer diffraction provides a method to create vector beams with simultaneously high purity and modal power. Further experiments verify the theoretical results. PMID:27607720

  6. Development of compact quantum beam generation system and the application

    International Nuclear Information System (INIS)

    After the approval of the project as the 'High-Tech Research Center Project' conducted by MEXT at Waseda University, the laser driven photo-cathode RF-Gun (RF-Gun) has been developed very extensively. The system was developed to obtain the stable and high quality (i.e. very low emittance) electron beam in conjunction with the system stabilization such as RF power source and laser system for the electron emission. The high quality electron beams have been applied for the development of novel beam diagnostic system. At the same time, the beams (electron and laser) are applied for the inverse Compton scattering experiment for the generation of soft-X-ray with quasi-monochromatic energy and short time structure, and for the pump probe experiment (the pico-second pulse radiolysis) as the very compact system. (author)

  7. dc plasma generator development for neutral-beam injectors

    International Nuclear Information System (INIS)

    Rectangular plasma generators are being developed with the capability of producing hydrogen ion beams of 60 to 100 A. Using single and double electron feed configurations of the duoPIGatron type, these generators have been operated at arc levels of 1200 A for pulse lengths of > 30 s. The plasma density and uniformity are sufficient for extracting approx. 60-A hydrogen ions using a 13 x 43 cm accelerator and approx. 100 A with an 18 x 48 cm accelerator

  8. Population inversions in ablation plasmas generated by intense electron beams

    Science.gov (United States)

    Gilgenbach, R. M.; Kammash, T.; Brake, M. L.

    1988-11-01

    Experiments during the past three years have concerned the generation and spectroscopic study of electron beam-driven carbon plasmas in order to explore the production of optical and ultraviolet radiation from nonequilibrium populations. The output of MELBA (Michigan Electron Long Beam Accelerator), has been connected to an electron beam diode consisting of an aluminum (or brass) cathode stalk and a carbon anode. Magnetic field coils have been designed, procured, and utilized to focus the electron beam. A side viewing port permitted spectroscopic diagnostics to view across the surface of the anode. Spectroscopic diagnosis has been performed using a 1 m spectrograph capable of operation from the vacuum ultraviolet through the visible. This spectrograph is coupled to a 1024 channel optical multichannel analyzer. Spectra taken during the initial 400 ns period of the e-beam pulse showed a low effective charge plasma with primarily molecular components (C2, CH) as well as atomic hydrogen and singly ionized carbon (CII). When the generator pulse was crowbarred after the first 400 ns, the spectra revealed a continuation of the low charge state plasma.

  9. Fast fall-time ion beam in neutron generators

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  10. Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures.

    Science.gov (United States)

    Li, Qi; Liu, Feihua; Yang, Tiannan; Gadinski, Matthew R; Zhang, Guangzu; Chen, Long-Qing; Wang, Qing

    2016-09-01

    The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge-discharge efficiency at elevated temperatures. At 150 °C and 200 MV m(-1), an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge-discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present. PMID:27551101

  11. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  12. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  13. Generation of high brightness ion beam from insulated anode PED

    International Nuclear Information System (INIS)

    Generation and focusing of a high density ion beam with high brightness from a organic center part of anode of a PED was reported previously. Mass, charge and energy distribution of this beam were analyzed. Three kind of anode were tried. Many highly ionized medium mass ions (up to C4+, O6+) accelarated to several times of voltage difference between anode and cathode were observed. In the case of all insulator anode the current carried by the medium mass ions is about half of that carried by protons. (author)

  14. Higher harmonics generation in relativistic electron beam with virtual cathode

    International Nuclear Information System (INIS)

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources

  15. A method for generating double-ring-shaped vector beams

    Science.gov (United States)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  16. Higher harmonics generation in relativistic electron beam with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  17. Higher harmonics generation in relativistic electron beam with virtual cathode

    Science.gov (United States)

    Kurkin, S. A.; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E.

    2014-09-01

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  18. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  19. Simple, high-voltage, square pulse generator for ion beam deflection in a neutron generator

    International Nuclear Information System (INIS)

    A fast rise time, low repetition rate, high-voltage, square pulse generator with double-diffused-metal-oxide-semiconductor (DMOS) switching is described. It has been developed for ion beam deflection at an electrostatic deflector in a beam guide system of a neutron generator. The features of the generator are: 1.7 kV amplitude, variable frequency from 2 to 50 Hz, variable width from 0.5 to 5 μs, and 125 ns delay. Output pulses are free of overshoot and backswing with rise and fall times of approximately 45 ns and 5 μs width

  20. Gamma-ray generation using laser-accelerated electron beam

    Science.gov (United States)

    Park, Seong Hee; Lee, Ho-Hyung; Lee, Kitae; Cha, Yong-Ho; Lee, Ji-Young; Kim, Kyung-Nam; Jeong, Young Uk

    2011-06-01

    A compact gamma-ray source using laser-accelerated electron beam is being under development at KAERI for nuclear applications, such as, radiography, nuclear activation, photonuclear reaction, and so on. One of two different schemes, Bremsstrahlung radiation and Compton backscattering, may be selected depending on the required specification of photons and/or the energy of electron beams. Compton backscattered gamma-ray source is tunable and quasimonochromatic and requires electron beams with its energy of higher than 100 MeV to produced MeV photons. Bremsstrahlung radiation can generate high energy photons with 20 - 30 MeV electron beams, but its spectrum is continuous. As we know, laser accelerators are good for compact size due to localized shielding at the expense of low average flux, while linear RF accelerators are good for high average flux. We present the design issues for a compact gamma-ray source at KAERI, via either Bremsstrahlung radiation or Compton backscattering, using laser accelerated electron beams for the potential nuclear applications.

  1. Production of intense light ion beams from a superpower generator

    International Nuclear Information System (INIS)

    The operation of a pinch-reflex diode as an intense pulsed ion-beam source has been scaled up to the multiterawatt PITHON generator. Ion beams with currents of 1 MA at 1.8 MeV have been extracted in a 130 kJ, 100-ns (FWHM) pulse. The corresponding ion production efficiency is 60%. Power losses were observed in interfacing the coaxial diode to the biconic vacuum feed of the generator. By using smaller area diodes, the average current density at the anode source has been increased to 20 kA/cm2. Proton and deuteron beams were studied in both planar and spherical diode geometries. The focusing of ion beams is predominately by self-magnetic fields for planar diodes and predominately by electrode shaping for spherical diodes. Current densities of at least 150 kA/cm2 were achieved with spherical diodes. The spatial evolution of the anode and cathode plasmas was studied by laser interferometric holography. As the peak of the power pulse is approached, plasmas were observed to expand from the electrodes in fairly uniform profiles with steep density gradients and to accelerate across the vacuum gap. After peak power, anode plasma fluctuations and a high velocity (30 cm/μs) axial plume develop; the latter expands radially coincident with collapse of the power pulse

  2. Rapid Generation of Light Beams Carrying Orbital Angular Momentum

    CERN Document Server

    Mirhosseini, Mohammad; Chen, Changchen; Rodenburg, Brandon; Malik, Mehul; Boyd, Robert W

    2013-01-01

    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding.

  3. Beam Conditioning and Harmonic Generation in Free Electron Lasers

    International Nuclear Information System (INIS)

    The next generation of large-scale free-electron lasers (FELs) such as Euro-XFEL and LCLS are to be devices which produce coherent X-rays using Self-Amplified Spontaneous Emission (SASE). The performance of these devices is limited by the spread in longitudinal velocities of the beam. In the case where this spread arises primarily from large transverse oscillation amplitudes, beam conditioning can significantly enhance FEL performance. Future X-ray sources may also exploit harmonic generation starting from laser-seeded modulation. Preliminary analysis of such devices is discussed, based on a novel trial-function/variational-principle approach, which shows good agreement with more lengthy numerical simulations

  4. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  5. Oxides having high energy densities

    Science.gov (United States)

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  6. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  7. States of high energy density

    International Nuclear Information System (INIS)

    The transverse energy, E/sub tau/ spectra for O16 and S32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations

  8. Educating the next generation in the science and technology of plasmas, beams and accelerators

    Science.gov (United States)

    Barletta, Wiliam

    2007-11-01

    Accelerators are essential tools for discovery in fundamental physics, biology, and chemistry. Particle beam based instruments in medicine, industry and national security constitute a multi-billion dollar per year industry. More than 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web. Yet only a handful of universities offer any formal training in accelerator science. Several reasons can be cited: 1) The science and technology of non-neutral plasmas cuts across traditional academic disciplines. 2) Electrical engineering departments have evolved toward micro- and nano-technology and computing science. 3) Nuclear physics departments have atrophied. 4) With few exceptions, interest at individual universities is not extensive enough to support a strong faculty line. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed an educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Governed and supported by a consortium of nine DOE laboratories and two NSF university laboratories, USPAS offers a responsive and balanced curriculum of science, engineering, and hands-on courses. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  9. Rapid Generation of Light Beams Carrying Orbital Angular Momentum

    OpenAIRE

    Mirhosseini, Mohammad; Magana-Loaiza, Omar S.; Chen, Changchen; Rodenburg, Brandon; Malik, Mehul; Boyd, Robert W

    2013-01-01

    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by spatial light modu...

  10. Scanning beam switch experiment for intense rf power generation

    Science.gov (United States)

    Humphries, Stanley, Jr.; Babcock, Steven R.; Wilson, J. M.; Adler, Richard J.

    1991-04-01

    1407_57The SBS_1 experiment at Sandia National Laboratories is designed to demonstrate the feasibility of the Scanning Beam Switch for high-power rf generation. The primary application is to pulsed rf linacs and high-frequency induction accelerators. It is expected that the apparatus will generate rf output power exceeding 100 MW at 50 MHz over a 5 microsecond(s) pulse. The device can operate as an oscillator or high gain amplifier. To achieve the capability for long-macropulse and high-duty-cycle operation, SBS_1 uses a large dispenser cathode and vacuum triode input driver.

  11. Radially polarized annular beam generated through a second-harmonic-generation process.

    Science.gov (United States)

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius. PMID:19838261

  12. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  13. Ion Beam Analysis applied to laser-generated plasmas

    International Nuclear Information System (INIS)

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed

  14. Ion Beam Analysis applied to laser-generated plasmas

    Science.gov (United States)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  15. Accelerating airy beams generated by ultrafast laser induced space-variant nanostructures in glass

    OpenAIRE

    Gecevičius, M.; M. Beresna; Kazansky, P. G.

    2012-01-01

    We demonstrate new technique to generate accelerating Airy beam with femtosecond laser imprinted space variant birefringence produced by self-assembled nanostructures in fused silica. The technique enables dual Airy beam generation.

  16. Development of rf plasma generators for neutral beams

    International Nuclear Information System (INIS)

    The development of low frequency (1-2 MHz) rf plasma generators for high power neutral beam applications is summarized. Immersed couplers from one to three turns were used. Acceptable plasma profiles, less than or equal to 15% max/min, were obtained in a variety of field-free magnetic bucket and magnetic filter-bucket sources, with 10 x 10 cm or 10 x 40 cm extraction areas. Hydrogen beam properties were measured with a 7 x 10 cm accelerator operated at 80 kV. Atomic fraction and power efficiency were at least as high as with arc plasmas in similar chambers. The potential advantages of an rf plasma source are: ease of operation; reliability; and extended service lifetime

  17. Theoretical studies on the crystal structure, thermodynamic properties, detonation performance and thermal stability of cage-tetranitrotetraazabicyclooctane as a novel high energy density compound.

    Science.gov (United States)

    Zhao, Guo-zheng; Lu, Ming

    2013-01-01

    The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.1(2,8).0(1,11).0(2,6).0(4,13).0(6,11)]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N-NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna2(1) space group, with cell parameters a=12.840 Å, b=9.129 Å, c=14.346 Å, Z=6 and ρ=2.292 g·cm(-3). Both the detonation velocity of 9.96 km·s(-1) and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement. PMID:22790340

  18. High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes.

    Science.gov (United States)

    Ghosh, Debasis; Lim, Joonwon; Narayan, Rekha; Kim, Sang Ouk

    2016-08-31

    Modern flexible consumer electronics require efficient energy storage devices with flexible free-standing electrodes. We report a simple and cost-effective route to a graphene-based composite aerogel encapsulating metal oxide nanoparticles for high energy density, free-standing, binder-free flexible pseudocapacitive electrodes. Hydrothermally synthesized Co3O4 nanoparticles are successfully housed inside the microporous graphene aerogel network during the room temperature interfacial gelation at the Zn surface. The resultant three-dimensional (3D) rGO-Co3O4 composite aerogel shows mesoporous quasiparallel layer stack morphology with a high loading of Co3O4, which offers numerous channels for ion transport and a 3D interconnected network for high electrical conductivity. All solid state asymmetric pseudocapacitors employing the composite aerogel electrodes have demonstrated high areal energy density of 35.92 μWh/cm(2) and power density of 17.79 mW/cm(2) accompanied by excellent cycle life. PMID:27494271

  19. Beam-generated upper hybrid noise in Jupiter's outer magnetosphere

    International Nuclear Information System (INIS)

    Upper hybrid waves in Jupiter's outer magnetosphere are the subject of this paper which proposes a new theoretical model for their generation. Energetic electrons are assumed to be accelerated in the high-latitude auroral zone and stream away from the planet to the outer magnetosphere. The electrons travel along magnetic field lines located at the edges of the plasma sheet through a region which has the properties of a plasma sheet boundary layer similar to the terrestrial entity. The kinematic evolution of the electron beam results in a highly collimated field-aligned distribution which excites quasi-perpendicular upper hybrid waves through a so-called beam-anisotropic heat flux instability. The instability is dominated by anomalous cyclotron harmonic resonances in a parameter regime where the gyroradius of the beam electrons is comparable to the wavelength of the wave. Propagation of the upper hybrid waves across the magnetic field into a plasma density gradient produces a spectrum of z mode waves which then undergo a linear mode conversion to ordinary mode electromagnetic radiation. The model successfully accounts for the observations of upper hybrid noise, Z mode emissions, and continuum radiation in the Jovian magnetosphere in a self-consistent coherent manner

  20. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    International Nuclear Information System (INIS)

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics

  1. Laser-driven generation of ultra-intense proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J.; Jablonski, S.; Kubkowska, M.; Parys, P.; Rosinski, M.; Wolowski, J. [EURATOM, Inst Plasma Phys and Laser Microfus, PL-00908 Warsaw (Poland); Antici, P.; Fuchs, J.; Mancic, A. [UPMC, LULI, Ecole Polytech, CNRS, CEA, F-91128 Palaiseau (France); Szydlowski, A. [Andrzej Soltan Inst Nucl Studies, Otwock (Poland)

    2010-07-01

    The results of experimental and numerical studies of high-intensity proton beam generation driven by a short laser pulse of relativistic intensity are reported. In the experiment, a 350 fs laser pulse of 1.06 or 0.53 m wavelength and intensity up to 2*10{sup 19} Wcm{sup -2} irradiated a thin (0.6-2{mu}m) plastic (PS) or Au/PS (plastic covered by 0.2{mu}m Au front layer) target along the target normal. The effect of laser intensity, the target structure and the laser wavelength on the proton beam parameters and laser-protons energy conversion efficiency were examined. Both the measurements and one-dimensional particle-in-cell simulations showed that MeV proton beams of intensity 10{sup 18}Wcm{sup -2} and current density 10{sup 12}Acm{sup -2} at the source can be produced when the laser intensity-wavelength squared product I{sub L{lambda}}{sup 2} is 10{sup 19}Wcm{sup -2}m{sup 2} and the laser-target interaction conditions approach the skin-layer ponderomotive acceleration (SLPA) requirements. The simulations also proved that at I{sub L{lambda}}{sup 2} {>=} 5*10{sup 19}Wcm{sup -2}m{sup 2} and {lambda} {<=} 0.53{mu}m, SLPA clearly prevails over other acceleration mechanisms and it can produce multi-MeV proton beams of extremely high intensities above 10{sup 20}Wcm{sup -2}. (authors)

  2. Electron beam therapy with coil-generated magnetic fields

    International Nuclear Information System (INIS)

    This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail

  3. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    International Nuclear Information System (INIS)

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri [Phys. Plasmas 18, 052903 (2011)], Schmitz and Tsiklauri [Phys. Plasmas 20, 062903 (2013)], and Pechhacker and Tsiklauri [Phys. Plasmas 19, 112903 (2012)], in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are shown to be generated by the normal Doppler-shifted relativistic resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves, while a small but sufficient fraction is going into L- and R-electromagnetic modes

  4. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C. P.; Liu, Hong

    2015-08-01

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by

  5. Choice of parameters for tesla transformer of pulsed power beam generator type

    International Nuclear Information System (INIS)

    The accelerating voltage pulse generators of relativistic electron beams and high-power ion beam accelerators are subdivided into two main types: Marx generators and Tesla transformer type generators.In presented paper the attempt to create the methodology of the engineering substantiation of parameters and designing the Tesla transformer type generator for pulsed power accelerators is undertaken

  6. Choice of parameters for tesla transformer of pulsed power beam generator type

    CERN Document Server

    Kolchanova, V A; Petrov, A V

    2001-01-01

    The accelerating voltage pulse generators of relativistic electron beams and high-power ion beam accelerators are subdivided into two main types: Marx generators and Tesla transformer type generators.In presented paper the attempt to create the methodology of the engineering substantiation of parameters and designing the Tesla transformer type generator for pulsed power accelerators is undertaken.

  7. The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li-S Batteries.

    Science.gov (United States)

    Fan, Chao-Ying; Yuan, Hai-Yan; Li, Huan-Huan; Wang, Hai-Feng; Li, Wen-Liang; Sun, Hai-Zhu; Wu, Xing-Long; Zhang, Jing-Ping

    2016-06-29

    In this work, the lightweight and scalable organic macromolecule graphitic carbon nitride (g-C3N4) with enriched polysulfide adsorption sites of pyridinic-N was introduced to achieve the effective functionalization of separator at the molecular level. This simple method overcomes the difficulty of low doping content as well as the existence of an uncontrolled form of nitrogen heteroatom in the final product. Besides the conventional pyridinic-N-Li bond formed in the vacancies of g-C3N4, the C-S bond was interestingly observed between g-C3N4 and Li2S, which endowed g-C3N4 with an inherent adsorption capacity for polysulfides. In addition, the microsized g-C3N4 provided the coating layer with good mechanical strength to guarantee its restriction function for polysulfides during long cycling. As a result, an excellent reversible capacity of 840 mA h g(-1) was retained at 0.5 C after 400 cycles for a pure sulfur electrode, much better than that of the cell with an innocent carbon-coated separator. Even at a current density of 1 C, the cell still delivered a stable capacity of 732.7 mA h g(-1) after 500 cycles. Moreover, when further increasing the sulfur loading to 5 mg cm(-2), an excellent specific capacity of 1134.7 mA h g(-1) was acquired with the stable cycle stability, ensuring a high areal capacity of 5.11 mA h cm(-2). Besides the intrinsic adsorption ability for polysulfides, g-C3N4 is nontoxic and mass produced. Therefore, a scalable separator decorated with g-C3N4 and a commercial sulfur cathode promises high energy density for the practical application of Li-S batteries. PMID:27285289

  8. Flexible generation of optical beams with quasicrystalline structures via astigmatism induced by a tilted lens

    Science.gov (United States)

    Tung, J. C.; Liang, H. C.; Tsou, C. H.; Su, K. W.; Chen, Y. F.

    2012-12-01

    We theoretically show that a family of optical beams with vortex-lattice structures can be reliably generated by tilting the focal lens to introduce the relative phases between the interfering beams. We also experimentally generate the quasicrystal beams to confirm the theoretical analysis. With the analytical wave functions and experimental patterns, a variety of vortex-lattice structures are manifested.

  9. Low-energy High-current Electron Beam Generation in Plasma System and Beam-Plasma Interaction

    International Nuclear Information System (INIS)

    The review of results of experimental investigations and computer simulations of low-energy high-current electron beam generation in a low-impedance system and dynamics of beam-plasma system are given. The system includes a long plasma-filled diode, an auxiliary thermionic cathode and an explosive emission cathode. The auxiliary cathode is used to generate the a low-current, low-voltage electron beam to form long plasma anode by means of a residual gas ionisation in an external longitudinal magnetic field. The high-current low-energy electron beam is generated from the explosive emission cathode embedded in preliminary prepared plasma. Peculiarities of the system are due to: 1) the generation of electron beams with currents exceeding Alfven's limit; 2) the charge density of the beam close to the plasma density. These peculiarities complicate beam-plasma interaction significantly due to sharp non-uniform distribution of the beam current density, dominant transverse motion of the beam electrons and redistribution of ion-plasma density under the influence of fields. Computer simulation was performed using electromagnetic PIC code KARAT for different geometry's of the system

  10. Development of radio frequency induction plasma generators for neutral beams

    International Nuclear Information System (INIS)

    The techniques, operational aspects, and experimental results of a radio frequency induction plasma generator, with an internal rf power coupler, intended for intense neutral beam applications are described. One of the development sources suitable for 10 x 10-cm2 extraction optics was operated to a deuterium ion current density of 250 mA/cm2, uniform to 5%, over a circular extraction area 15 cm in diameter with a coupled rf power of 20 kW. Temporal fluctuation levels in the extracted ion current were measured to be typically 1% of the dc level. A second developmental source suitable for 10 x 40-cm2 grid sets was operated to 200 mA/cm2, uniform to +- 8% over a 10 x 40 cm2 area, with 40-kW coupled rf power

  11. Beam steering by computer generated hologram for optical switches

    Science.gov (United States)

    Yamaguchi, Keita; Suzuki, Kenya; Yamaguchi, Joji

    2016-02-01

    We describe a computer generated hologram (CGH) method for application to a multiple input and multiple output (MxN) optical switch based on a liquid crystal on silicon (LCOS). The conventional MxN optical switch needs multiple spatial light modulations. However, the CGH method realizes an MxN optical switch simply with a one-time spatial light modulation, resulting in fewer optical elements and better cost efficiency. Moreover, the intrinsic loss of the proposed MxN switch resulting from beam splitting can be reduced by routing multiple signals with a single knob control, which is called a multi-pole multi-throw switch. In this paper, we demonstrate a 5x5 wavelength selective switch (WSS) and a 2-degree ROADM that we realized using the above CGH method. The experimental results indicate that these switches work well with a crosstalk of < -14.9 dB.

  12. Focusing of short-pulse high-intensity laser-accelerated proton beams

    Science.gov (United States)

    Bartal, Teresa; Foord, Mark E.; Bellei, Claudio; Key, Michael H.; Flippo, Kirk A.; Gaillard, Sandrine A.; Offermann, Dustin T.; Patel, Pravesh K.; Jarrott, Leonard C.; Higginson, Drew P.; Roth, Markus; Otten, Anke; Kraus, Dominik; Stephens, Richard B.; McLean, Harry S.; Giraldez, Emilio M.; Wei, Mingsheng S.; Gautier, Donald C.; Beg, Farhat N.

    2012-02-01

    Recent progress in generating high-energy (>50MeV) protons from intense laser-matter interactions (1018-1021Wcm-2 refs , , , , , , ) has opened up new areas of research, with applications in radiography, oncology, astrophysics, medical imaging, high-energy-density physics, and ion-proton beam fast ignition. With the discovery of proton focusing with curved surfaces, rapid advances in these areas will be driven by improved focusing technologies. Here we report on the first investigation of the generation and focusing of a proton beam using a cone-shaped target. We clearly show that the focusing is strongly affected by the electric fields in the beam in both open and enclosed (cone) geometries, bending the trajectories near the axis. Also in the cone geometry, a sheath electric field effectively `channels' the proton beam through the cone tip, substantially improving the beam focusing properties. These results agree well with particle simulations and provide the physics basis for many future applications.

  13. Generation of optical vector beams using a two-mode fiber.

    Science.gov (United States)

    Viswanathan, Nirmal K; Inavalli, V V G

    2009-04-15

    We present the generation of optical vector beams using a two-mode fiber (TMF)-based beam converter. The TMF converts the input Gaussian (TEM(00)) beam into linearly polarized Hermite-Gaussian (HG(10), HG(01)) beams, a radially polarized Laguerre-Gaussian (LG(1)(0)) beam with single helical charge or coherent linear combinations of the different vector modes guided in the fiber, depending on the input beam polarization, the fiber length, and the launch condition. Polarization and two-beam interference analyses of the output beam characterize the electric field orientations of the output beam and the presence of transverse and longitudinal optical vortex in the generated HG and LG beams. PMID:19370113

  14. Efficient generation of isolated attosecond pulses with high beam-quality by two-color Bessel-Gauss beams

    CERN Document Server

    Wang, Zhe; Zhang, Qingbin; Wang, Shaoyi; Lu, Peixiang

    2011-01-01

    The generation of isolated attosecond pulses with high efficiency and high beam quality is essential for attosec- ond spectroscopy. We numerically investigate the supercontinuum generation in a neutral rare-gas medium driven by a two-color Bessel-Gauss beam. The results show that an efficient smooth supercontinuum in the plateau is obtained after propagation, and the spatial profile of the generated attosecond pulse is Gaussian-like with the divergence angle of 0.1 degree in the far field. This bright source with high beam quality is beneficial for detecting and controlling the microscopic processes on attosecond time scale.

  15. Proton Beam Fast Ignition Fusion: Nonlinear Generation of Bθ-Fields by Knock-on Electrons

    Science.gov (United States)

    Stefan, V. Alexander

    2011-10-01

    The knock-on electrons, generated by the fast proton beam in interaction with the free and bound electrons in a precompressed DT fusion pellet, outrun the proton beam, generating the Bθ-fields ahead of the beam, which may lead to the defocusing of the beam, if Bθ Tabak et al, Phys. Plasmas 1 (5), 1626 (1994); H. L. Buchanan, F. W. Chambers, E. P. Lee, S. S. Yu, R. J. Briggs, and M. N. Rosenbluth, LLNL, UCRL Report 82586, 1979.

  16. Generation of Electron Bessel Beams with Nondiffractive Spreading by a Nanofabricated Annular Slit

    Science.gov (United States)

    Saitoh, Koh; Hirakawa, Kazuma; Nambu, Hiroki; Tanaka, Nobuo; Uchida, Masaya

    2016-04-01

    The shaping of a wavefront of free electrons has been experimentally realized very recently. We report the generation of an electron Bessel beam using a nanofabricated annular slit. We directly observe that electron Bessel beams propagate while maintaining a narrow beam width over a long propagation distance. In addition, we experimentally verify the self-healing property of these electron beams, which can reconstruct their shape after passing an obstacle. The experimental results are compared with simulation results of the propagation including a hexagonal slit. The present technique of electron Bessel beam generation can be used to develop a novel electron-beam-shaping, an atomic manipulation technique, and a new electron microscopy.

  17. Construction of double discharge pulsed electron beam generator and its applications

    International Nuclear Information System (INIS)

    Generation of fast pulsed electron beam by superposing DC and pulsed hollow cathode discharge is studied. The electrical characteristics and measurements of the electron beam generator are done dc glow discharge and for the pulsed one. The electron beam current, its density and magnetic field effect, pinch effect, have been studied. The dependence of the electron beam parameters with respect to pressure and magnetic field have been studied. The pulsing effect of the beam is reviewed. By using the generator, micron holes drilling and carbon deposition was done at the laboratory. As a target source for carbon deposition methane gas is used and for Hydrogen-free carbon deposition was graphite

  18. Molecular dynamics simulation of water heated by short pulse and high-energy density laser%高能量短脉冲激光作用水分子的动力学模拟

    Institute of Scientific and Technical Information of China (English)

    廖志强; 龙芋宏; 江威; 童友群; 冯唐高

    2015-01-01

    基于高能量短脉冲激光作用水分子实验的复杂性,需用采取一种比较准确且较为方便的方法来预测实验结果是必要的.本文采用分子动力学方法( Molecular Dynamics )对高能量密度短脉冲激光加载下的超临界水分子进行热力学分析及结构研究.结果表明,随着能量快速加入加载区域,水分子系统的温度迅速提高.同时,由于分子迅速向四周扩散,在加载区域产生空泡.其中,只有25.5%的能量用以提高水分子系统的动能(温度),其余的能量都用于增大水分子系统的势能(水分子间距).伴随着温度的提高,水分子热运动加快,有序程度逐渐减弱,O—H间距增加,水分子间的氢键作用减弱,分子极性降低.分子动力学模拟方法研究短脉冲高能量激光对水分子的作用,对水下激光微加工研究有一定指导意义.%Due to the complexity of the experiments for water heated by short pulse and high energy density la -ser , an accurate and simple method is needed to predict the result .Molecular Dynamics is applied to the thermo-dynamic analysis and structure research of water heated by short pulse and high energy density laser .As a result , the temperature of water system increases rapidly with energy added in .Meanwhile , bubbles generate due to the quick diffusion of water .Only 25.5 percent of the energy is used to increase the kinetic energy of water , the rest improves the potential energy .With the increasing of temperature , the thermal motion of water increases , the or-der degree of water reduces continue continuously , the distance of bonding O—H increases, the hydrogen-bond of water weakens and the molecular polarity reduces .

  19. The generation of arbitrary vector beams using a division of a wavefront-based setup

    Science.gov (United States)

    Kalita, Ranjan; Gaffar, Md; Boruah, Bosanta R.

    2016-07-01

    In this paper, we introduce an arbitrary vector-beam-forming scheme using a simple arrangement involving only one liquid crystal spatial light modulator. An arbitrary vector beam can be obtained by overlapping two orthogonally polarized beams. In most of the existing vector-beam-forming schemes the two orthogonally polarized beams are essentially copies of a single incident wavefront. However, in the proposed scheme the two orthogonally polarized beams correspond to two separated parts of a single incident wavefront. Taking a cue from the two-beam interference phenomenon, the present scheme can be referred to as a division of a wavefront-based scheme. The proposed setup offers certain important advantages and is more suitable for the generation of higher average-power vector beams. We demonstrate the working of the vector-beam-forming scheme by generating various vector beams such as radially polarized, azimuthally polarized, and Bessel–Gauss beams and also a boat-shaped beam in the focal volume of a low-numerical-aperture focusing lens. The boat-shaped beam comprises a dark center surrounded by intense light from all but one direction. The beam is realized at the focus of an azimuthally polarized beam in the presence of a moderate amount of coma in the beam. The experimental results obtained using the proposed setup are verified by comparing them with the theoretical results.

  20. Robust Collimation Control of Laser-Generated Ion Beam

    OpenAIRE

    Kawata, S; Takano, M.; Kamiyama, D.; T. Nagashima; Barada, D.; Gu, Y. J.; Li, X; Yu, Q; Kong, Q.; Wang, P. X.

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters a...

  1. Spatial properties of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due;

    2013-01-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses, and...... reduces the beam waist, and that the beam spot shape changes from Lorentzian to Gaussian. Finally, we observe a forward-propagating Gaussian THz beam by spatially filtering away the conical off-axis radiation with a 1 cm aperture....... show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show that this...

  2. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range.

    Science.gov (United States)

    Wei, Xuli; Liu, Changming; Niu, Liting; Zhang, Zhongqi; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2015-12-20

    We present the generation of arbitrary order Bessel beams at 0.3 THz through the implementation of suitably designed axicons based on 3D printing technology. The helical axicons, which possess thickness gradients in both radial and azimuthal directions, can convert the incident Gaussian beam into a high-order Bessel beam with spiral phase structure. The evolution of the generated Bessel beams are characterized experimentally with a three-dimensional field scanner. Moreover, the topological charges carried by the high-order Bessel beams are determined by the fork-like interferograms. This 3D-printing-based Bessel beam generation technique is useful not only for THz imaging systems with zero-order Bessel beams but also for future orbital-angular-momentum-based THz free-space communication with higher-order Bessel beams. PMID:26837031

  3. Light ion beams generation in dense plasma focus

    International Nuclear Information System (INIS)

    The high energy deuterons and protons in a Mather type plasma focus device were measured by nuclear activation techniques. The radioactivity induced in graphite, aluminum and copper targets provided the deuteron intensity, energy spectra and angular dependence. High energy protons were measured by cellulose nitrate particle track detectors. The plasma focus device was operated at 30 kV for a stored energy of 18 kJ at 1.5 Torr D2 (low pressure mode), and 5 Torr D2 (high pressure mode). The yield ratio of N-13 and Al-28 showed the mean deuteron energy of 1.55 MeV under low pressure mode and of 1.44 MeV under high pressure mode. The deuteron energy spectra were measured by the stacks of 10 aluminum foils, and consisted of two components as well as the proton energy spectra measured by CN film technique. The angular spread of deuteron beam was within 30 degree under low pressure mode. Under high pressure mode, the distribution showed multi-structure, and two peaks were observed at the angle smaller than 20 degree and at 60 degree. The protons with energy more than 770 keV were directed in the angle of 10 degree. The high energy electron beam was also observed. A three-channel ruby laser holographic interferometry was used to see the spatial and temporal location of the generation of high energy ions. The ion temperature in plasma focus was estimated from D + He3 mixture gas experiment. (Kato, T.)

  4. Electron Production and Collective Field Generation in Intense Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5

  5. Photorefractive and computational holography in the experimental generation of Airy beams

    Science.gov (United States)

    Suarez, Rafael A. B.; Vieira, Tarcio A.; Yepes, Indira S. V.; Gesualdi, Marcos R. R.

    2016-05-01

    In this paper, we present the experimental generation of Airy beams via computational and photorefractive holography. Experimental generation of Airy beams using conventional optical components presents several difficulties and a practically infeasible. Thus, the optical generation of Airy beams has been made from the optical reconstruction of a computer generated hologram implemented by a spatial light modulator. In the photorefractive holography technique, being used for the first time to our knowledge, the hologram of an Airy beam is constructed (recorded) and reconstructed (read) optically in a nonlinear photorefractive medium. The Airy beam experimental realization was made by a setup of computational and photorefractive holography using a photorefractive Bi12 TiO20 crystal as holographic recording medium. Airy beams and Airy beam arrays were obtained experimentally in accordance with the predicted theory; with excellent prospects for applications in optical trapping and optical communications systems.

  6. Photorefractive and computational holography in the experimental generation of Airy beams

    CERN Document Server

    Suarez, Rafael A B; Yepes, Indira S V; Gesualdi, Marcos R R

    2015-01-01

    In this paper, we present the experimental generation of Airy beams via computational and photorefractive holography. Experimental generation of Airy beams using conventional optical components presents several difficulties and are practically infeasible. Thus, the optical generation of Airy beams has been made from the optical reconstruction of a computer generated hologram implemented in a spatial light modulators. In the photorefractive holography technique, being used for the first time to our knowledge, the hologram of an Airy beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The Airy beam experimental realization was made by a setup of computational and photorefractive holography using a photorefractive Bi_{12}TiO_{20} crystal as holographic recording medium. Airy beams and Airy beam arrays were obtained experimentally as in accordance with the predicted theory; and present excellent prospects for applications in optical trapping and optical comm...

  7. Helico-conical beams for generating optical twisters

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Daria, Vincent Ricardo Mancao

    2010-01-01

    We describe a diffracting beam with orbital angular momentum (DAM) but with a helical profile in both phase and amplitude of the beam. This is different from Laguerre-Gaussian (LG) beams where only the phase component has a helical profile. The beam we describe here is initially characterized with...... an apodized helical phase front at the outskirts and linearly scaled towards no phase singularity at the centre of the beam. At the focal volume, we show that our beam fonms an intensity distribution that can be accurately described as an "optical twister" as it propagates along the optical axis....... Unlike LG beams, an optical twister can have minimal changes in radius but with a scalable DAM. Furthenmore, we characterize the DAM in tenms of its capacity to introduce spiral motion on particles trapped along its orbit. We also show that our "optical twister" maintains a high concentration of photons...

  8. Method of beam steering with FWM in ICF. Compensation and generation of a PC beam for a foam target

    International Nuclear Information System (INIS)

    In beam steering with a phase conjugate (PC) mirror in inertial fusion energy (ICF), the path of the PC beam has to be compensated since the target moves several hundred micrometers during beam propagation. In this paper we show that compensation can be achieved by adjusting the angle between two pump beams in four-wave mixing (FWM) used as a PC mirror. The compensation angle depends on the target position along the optical axis, focal point of the final optics, and angle adjusted with FWM. For the parameter values of GEKKO XII and an accuracy of laser irradiation of ±10 µm, the compensation angle is 4.5 mrad and the margin of error for target injection is ±0.3 mm. We also show that a PC beam can be generated from the beam scattered by a foam target rotating at ∼ 43 m/s is confirmed. (author)

  9. Generation of non-classical optical fields by a beam splitter with second-order nonlinearity

    CERN Document Server

    Prakash, Hari

    2016-01-01

    We propose quantum-mechanical model of a beam splitter with second-order nonlinearity and show that non-classical features such as squeezing and sub-Poissonian photon statistics of optical fields can be generated in output fundamental and second harmonic modes when we mix coherent light beams via such a nonlinear beam splitter.

  10. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    International Nuclear Information System (INIS)

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams

  11. Research on hydrogen ion nano-beam generation

    International Nuclear Information System (INIS)

    Our objective is to develop high-resolution nano-meter-size hydrogen beams using duo-plasmatron type ion sources and the static focusing lens system. After modification and optimization of the ion source and focusing electrode configurations, the beam divergence angle of the order of 10-3 rad is achieved in hydrogen beams. In addition, optimizations were made in the beam size measurement system. We realized the measurement accuracies less than 10 nano-meter in position and the pico-ampere order in the beam current. The beam parameters are obtained as a function of the extraction voltage and compared with the calculated values. The result of beam width measurement shows 0.16 μm at the acceleration voltage of 46 kV. This size of beam is useful for detailed nondestructive study on the inside structure of the materials such as semiconductor devices. The μm light ion beam is to be useful to investigate trace elements in cell metabolism. (Y. Tanaka)

  12. Polar POLICRYPS Diffractive Structures Generate Cylindrical Vector Beams

    CERN Document Server

    Alj, Domenico; Volpe, Giovanni; Caputo, Roberto; Umeton, Cesare

    2015-01-01

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such device that permits one to convert a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  13. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    Energy Technology Data Exchange (ETDEWEB)

    Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare [Department of Physics and CNR-NANOTEC University of Calabria, I-87036 Rende (CS) (Italy); Paladugu, Sathyanarayana [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); Volpe, Giovanni [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey)

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  14. Diode with magnetic insulation and Br field as a generator of power microsecond ion beam

    International Nuclear Information System (INIS)

    Results of investigations into the generation of microsecond duration high-power ion beam in a plane magnetoisolated diode with an external isolating field with radial distribution are presented. The investigations are conducted using a microsecond generator operating in the regime of generating positive high-voltage ≤600 kV amplitude pulses. Ring-type cross section ion beam consisting mainly of H+ and C+ ions is studied. The energy range occupied by the major part of the ions generated makes up 300-500 keV. The complete energy store of the beam extracted from the diode makes up 10 kJ, the generation efficiency is 60%

  15. Generation of Vortex Beams with Strong Longitudinally Polarized Magnetic Field by Using a Metasurface

    OpenAIRE

    Veysi, Mehdi; Guclu, Caner; Capolino, Filippo

    2014-01-01

    A novel method of generation and synthesis of azimuthally E-polarized vortex beams is presented. Along the axis of propagation such beams have a strong longitudinally polarized magnetic field where ideally there is no electric field. We show how these beams can be constructed through the interference of Laguerre-Gaussian beams carrying orbital angular momentum. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analyt...

  16. Proposals for the generation of angular momentum from non-uniformly polarized beams

    Science.gov (United States)

    Alonso, Mara; Piquero, Gemma; Serna, Julio

    2012-04-01

    Several optical arrangements using non-uniformly polarized fields are proposed for generating beams with spin and/or orbital angular momentum. By choosing adequately the input beam polarization and the characteristics of the different proposed set-ups we can control the overall angular momentum of the output beam at will. The orbital angular momentum is analyzed with the beam moments theory and the spin term is evaluated using the averaged s3 Stokes parameter.

  17. Generation and application of the twisted beam with orbital angular momentum

    Institute of Scientific and Technical Information of China (English)

    Mingwei Gao; Chunqing Gao; Zhifeng Lin

    2007-01-01

    The twisted Laguerre-Gaussian beam was generated by transforming of Hermite-Gaussian beams through an optical system consisting of three rotated cylindrical lenses. The intensity distribution and phase structure of the twisted hollow beam were theoretically analyzed by using Collins diffraction integral. By utilizing the method of mode decomposition, the theory of transformation was analyzed. In the experiment,micro particles were trapped and rotated by this twisted beam.

  18. A novel laser beam generator in place at SGll

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Researchers with the State Key Laboratory of High Field Laser Physics, the CAS Shanghai Institute of Optics and Fine Mechanics, have been successful in developing a multifunctional and high-energy laser beam system (also known as the ninth laser beam) at the Shenguang-II Laser Facility (SGII).

  19. Experimental generation of Mathieu-Gauss beams with a phase-only spatial light modulator.

    Science.gov (United States)

    Hernández-Hernández, R J; Terborg, R A; Ricardez-Vargas, I; Volke-Sepúlveda, K

    2010-12-20

    We present a novel method for the efficient generation of even, odd, and helical Mathieu-Gauss beams of arbitrary order and ellipticity by means of a phase-only spatial light modulator (SLM). Our method consists of displaying the phase of the desired beam in the SLM; the reconstructed field is obtained on-axis following a spatial filtering process with an annular aperture. The propagation invariance and topological properties of the generated beams are investigated numerically and experimentally. PMID:21173824

  20. Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections

    OpenAIRE

    Rodrigo, José A.; Alieva, Tatiana; Cámara, Alejando; Martínez Matos, Ó.; Cheben, Pavell; Calvo, María L.

    2011-01-01

    In this work, we propose a robust and versatile approach for the characterization of the complex field amplitude of holographically generated coherent-scalar paraxial beams. For this purpose we apply an iterative algorithm that allows recovering the phase of the generated beam from the measurement of its Wigner distribution projections. Its performance is analyzed for beams of different symmetry: Laguerre-Gaussian, Hermite- Gaussian and spiral ones, which are obtained experimentally by a comp...

  1. The Utrecht 850 kV cascade generator I. Beam deflection and energy control

    NARCIS (Netherlands)

    Braams, C.M.; Smith, P.B.

    1960-01-01

    The beam deflection magnet and energy control system of the Utrecht cascade generator are described. The uniform-field magnet has entrance and exit slits located outside the magnetic held. Since the cascade generator produces a vertical beam, the most convenient choice for the angle of deflection wa

  2. Beam dynamics in a linear accelerator for generations of short electron beams and femtosecond hard X-ray pulses

    International Nuclear Information System (INIS)

    We investigate a linear accelerator system capable of generating short electron beams and femtosecond hard X-ray pulses. We show a detailed for a two-stage bunch compressor to generate the short electron beams in the linear accelerator. The bunch compressor system consists of two chicanes with a short system length that can compress an electron bunch of 0.6 nC and beam energy of 162 MeV, from 3 to 0.5 ps rms. One important design issue in the bunch compressor is to make as small growths of the emittance and energy spread as possible. The normalized horizontal emittance of 3 mm mrad is increased by approximately 10% due to coherent synchrotron radiation in the designed bunch compressor. Lattice distortions due to machine errors associate with quadrupole magnets, bending magnets and beam position monitors in the linear accelerator were investigated. It is shown that the lattice distortions due to the machine errors can be easily compensated by performing both orbit correction and dispersion correction in the linear accelerator. We have performed tolerance studies due to the various jitter sources in the linear accelerator to examine their sensitivities on the beam quality. From these results, it is shown that the linear accelerator system provides sufficient tolerances to maintain stable electron beams. We also investigated the generation of femtosecond hard X-ray pulses that may be provided by the interactions at 90deg of the short electron beams in the linear accelerator with a laser system. It is shown that 3.4x106 photons within 10% bandwidth at 0.04 A wavelength in about 350 fs rms pulse may be provided using the linear accelerator system. We presented studies on beam dynamics in the linear accelerator system that may provide the short beams and intense X-ray pulses. (author)

  3. Multiple weak shock waves induced by heavy ion beams in solid matter

    OpenAIRE

    Constantin, Carmen

    2002-01-01

    High energy density in matter is of fundamental interest for various fields of science, including plasma physics, astrophysics, geophysics and applications such as possible future energy sources based on inertial confinement fusion. Intense, relativistic heavy ion beams are ideally suited to produce high energy density in matter. The heavy ion synchrotron SIS-18 at the Gesellschaft fuer Schwerionenforschung (GSI) can supply intense ion beam bunches, of about 5 109 particles for U92+, delivere...

  4. Fault detection and protection system for neutral beam generators on the Neutral Beam Engineering Test Facility (NBETF)

    International Nuclear Information System (INIS)

    Neutral beam sources, their power supplies and instrumentation can be damaged from high voltage sparkdown or from overheating due to excessive currents. The Neutral Beam Engineering Test Facility (NBETF) in Berkeley has protective electronic hardware that senses a condition outside a safe operating range and generates a response to terminate such a fault condition. A description of this system is presented in this paper. 8 references, 2 figures, 2 tables

  5. Generation of spatial Bessel beams using holographic metasurface.

    Science.gov (United States)

    Cai, Ben Geng; Li, Yun Bo; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun

    2015-03-23

    We propose to use backward radiations of leaky waves supported by a holographic metasurface to produce spatial Bessel beams in the microwave frequency regime. The holographic metasurface consists of a grounded dielectric slab and a series of metal patches. By changing the size of metal patches, the surface-impedance distribution of the holographic metasurface can be modulated, and hence the radiation properties of the leaky waves can be designed to realize Bessel beams. Both numerical simulations and experiments verify the features of spatial Bessel beams, which may be useful in imaging applications or wireless power transmissions with the dynamic focal-depth controls. PMID:25837097

  6. Measurements of Terahertz Generation in a Metallic, Corrugated Beam Pipe

    CERN Document Server

    Bane, K L F; Fedurin, M; Kusche, K; Swinson, C; Xiang, D

    2016-01-01

    A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 um. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation.

  7. Laser beam propagation generation and propagation of customized light

    CERN Document Server

    Forbes, Andrew

    2014-01-01

    ""The text is easy to read and is accompanied by beautiful illustrations. It is an excellent book for anyone working in laser beam propagation and an asset for any library.""-Optics & Photonics News, July 2014

  8. Transport line for beam generated by ITEP Bernas ion source

    International Nuclear Information System (INIS)

    A joint research and development program is underway to investigate beam transport systems for intense steady-state ion sources for ion implanters. Two energy extremes of MeV and hundreds of eV are investigated using a modified Bernas ion source with an indirectly heated cathode. Results are presented for simulations of electrostatic systems performed to investigate the transportation of ion beams over a wide mass range: boron to decaborane

  9. Return Current Electron Beams and Their Generation of "Raman" Scattering

    Science.gov (United States)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  10. Generation of intense pulsed electron beams by the pseudospark discharge

    International Nuclear Information System (INIS)

    A low-pressure gas discharge is presented as a source of intense pulsed electron beams. The so-called pseudospark discharge emits a short-duration pinched electron beam during the breakdown phase. At voltages of typically 20 kV, approximately 10 to 20 percent of the total discharge current appears as the electron beam current of typically 20 ns induration. According to the breakdown voltage in the beam, a power density of the order of 109 W/cm2 is reached. Thus, this electron beam turns out to be a good tool for material processing, comparable to pulsed high-power lasers. Besides the drilling of holes into metals and insulators, an interesting application is the production of high-temperature superconducting thin YBa2Cu3O7-x films. The electron beam is used to evaporate material from a stoichiometric 1-2-3 target. Experimental results concerning the propagation behavior in neutral gas, the electron energy distribution, and the interaction with matter are reported

  11. Energetic electron beam and proton beam generations with the APRI ultrahigh-intensity Ti:sapphire laser system

    International Nuclear Information System (INIS)

    A 100-TW class ultrashort, ultrahigh-intensity Ti:sapphire laser system is operating and the upgrade to 300-TW is underway in APRI. With this layer system, series of experiments on high field physics, such as high harmonics generation, electron acceleration, proton generation, and x-ray generation, have been performed through domestic or international collaboration. In the electron acceleration experiment, we have observed highly directional electron beams and, in some shots, quasi-monoenergetic electron beams were generated. In the proton generation experiment, we observed protons with the maximum energy of ∼2.4 MeV emitted from a 5-μm thick copper tape target which was irradiated by laser pulses with peak intensity of ∼1.4x1018 W/cm2. The energy conversion efficiency from laser to proton was >1.4%. (author)

  12. Direct patterning of vortex generators on a fiber tip using a focused ion beam.

    Science.gov (United States)

    Vayalamkuzhi, Pramitha; Bhattacharya, Shanti; Eigenthaler, Ulrike; Keskinbora, Kahraman; Samlan, C T; Hirscher, Michael; Spatz, Joachim P; Viswanathan, Nirmal K

    2016-05-15

    The realization of spiral phase optical elements on the cleaved end of an optical fiber by focused ion beam milling is presented. A focused Ga+ ion beam with an acceleration voltage of 30 keV is used to etch continuous spiral phase plates and fork gratings directly on the tip of the fiber. The phase characteristics of the output beam generated by the fabricated structures measured via an interference experiment confirmed the presence of phase singularity in the output beam. The devices are expected to be promising candidates for all-fiber beam shaping and optical trapping applications. PMID:27176945

  13. Low-energy run of Fermilab Electron Cooler's beam generation system

    Energy Technology Data Exchange (ETDEWEB)

    Prost, Lionel; Shemyakin, Alexander; /Fermilab; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  14. The generation of high-power charge particle micro beams and its interaction with condensed matter

    International Nuclear Information System (INIS)

    As has been observed experimentally, the action of a picosecond laser beam on an Al-target in air gives rise to the generation and acceleration of high-power micro electron and ion beams. An original theoretical model for describing the generation and particle acceleration of such micro beams as a result of the micro channeling effect is presented. It was found that extreme states of matter, with compression in the Gbar pressure range, can be produced by such micro beams. (author). 3 figs., 12 refs

  15. Generation of cylindrical vector beams of high orders using uniaxial crystals

    International Nuclear Information System (INIS)

    The generation of cylindrical vector beams in birefringent crystals is studied analytically and experimentally in paraxial and non-paraxial regimes. At sharp focusing (in the non-paraxial case), two foci corresponding ordinary and extraordinary beams are formed along the crystal’s axis. There is the radially polarized distribution in one focus and the azimuthally polarized distribution in the other focus when the incident beam has the vortex phase of the first order and circular polarization of the opposite direction. The results are extended to the generation of higher-order radially and azimuthally polarized laser beams. The physical experiments with an Iceland spar crystal have been conducted. (paper)

  16. Towards intense attosecond pulses: using two beams for high order harmonic generation from solid targets

    Science.gov (United States)

    Tarasevitch, A. P.; Kohn, R.; von der Linde, D.

    2009-07-01

    The advantages of using two beam high order harmonic generation (HOHG) from solids are discussed. The two-pulse technique allows additional control of the parameters essential for the attosecond pulse generation. We show that spectral filtering is not necessary for the generation of attosecond pulses. The simple oscillating mirror model is in qualitative agreement with the computer simulations. We present the results of first experiments using two beams for HOHG.

  17. A study of the influence of a wake-field generated by an electron beam passing through a linac beam exit window on measurement of the beam. 2

    International Nuclear Information System (INIS)

    The influence of a wake-field on measurements of a beam waveform and a method for suppressing that influence were studied. Beam entrance-holes of various dimensions were inserted in front of a pickup loop, whose function was to suppress the field generated by the beam passing through the entrance-hole end. The suppression was observed in experiments with a single-bunch electron beam at ISIR of Osaka University Linac. Numerical analysis with a beam cavity interaction code (BCI code) was also performed in order to corroborate the suppression in experiments. The main pulse caused by the electron bunch and the oscillating signal following the main pulse due to the residual wake-field was observed. The power-ratio of the former to the latter were compared with the calculation. There was fair agreement in several different hole geometries. (author)

  18. Characterization of X-ray generator beam profiles.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  19. Collimated fast electron beam generation in critical density plasma

    OpenAIRE

    Iwawaki, T.; Habara, H; Baton, S.; Morita, K.; Fuchs, J; Chen, S.; Nakatsutsumi, M.; Rousseaux, C; Filippi, F; Nazarov, W.; Tanaka, K.A.

    2014-01-01

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 1014 W/cm2, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 1014 W/cm2, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magn...

  20. GENERATION AND CONTROL OF HIGH PRECISION BEAMS AT LEPTON ACCELERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Yu-Chiu Chao

    2007-06-25

    Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV.

  1. FEL options for power beaming

    International Nuclear Information System (INIS)

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ''slot'' in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is PL = 200kW. The wavelength is chosen to be λ 0.84 microm, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes

  2. A simple method for generating unidirectional surface plasmon polariton beams with arbitrary profiles.

    Science.gov (United States)

    You, Oubo; Bai, Benfeng; Wu, Xiaoyu; Zhu, Zhendong; Wang, Qixia

    2015-12-01

    The efficient steering of surface plasmon polariton (SPP) fields is a vital issue in various plasmonic applications, such as plasmonic circuitry. We present a straightforward and efficient method for generating unidirectionally propagating SPP beams with arbitrary amplitude and phase profiles by manipulating Δ-shaped nanoantennas. As an example, a second-order Hermite-Gauss SPP beam is generated with this method. The near-field distribution of the generated SPP beam is experimentally characterized to validate the effectiveness of the method. PMID:26625032

  3. Effects of astigmatic aberration in holographic generation of Laguerre-Gaussian beam

    Science.gov (United States)

    Wada, Atsushi; Miyamoto, Yoko; Ohtani, Takumi; Nishihara, Noboru; Takeda, Mitsuo

    2001-05-01

    The Laguerre-Gaussian (LG) beam is an optical beam with a phase singularity that propagates along its axis. We have previously reported the fabrication of blazed transmission phase holograms to generate beams with phase singularities. A common problem encountered in the generation of a phase singularity with high charge is that the singularity tends to split into m individual charge 1 singularities, where m is the charge of the original singularity. We have found through numerical simulation that astigmatic aberration can cause a higher-charge phase singularity to split. We have also found that strong astigmatic aberrations make the resulting beam close to a Hermite-Gaussian beam rather than an LG beam. Experimental investigation of these phenomena agree with the numerical simulation.

  4. Generating a Bessel-Gaussian beam for the application in optical engineering.

    Science.gov (United States)

    Chu, Xiuxiang; Sun, Quan; Wang, Jing; Lü, Pin; Xie, Wenke; Xu, Xiaojun

    2015-01-01

    Bessel beam is the important member of the family of non-diffracting beams and has many novel properties which can be used in many areas. However, the source of Bessel beam generated by the existing methods can be used only in a short distance due to its low power. In this paper, based on the coherent combining technology, we have proposed a method which can be used to generate a high-power Bessel beam. Even more, we give an innovative idea to form vortex phase by using discontinuous piston phase. To confirm the validity of this method, the intensity evolution of the combined beam and the Bessel-Gaussian beam at different propagation distance have been studied and compared. Meanwhile, the experimental realization has been discussed from the existing experimental result related to the coherent combining technology. PMID:26690264

  5. Graphic processing unit accelerated real-time partially coherent beam generator

    Science.gov (United States)

    Ni, Xiaolong; Liu, Zhi; Chen, Chunyi; Jiang, Huilin; Fang, Hanhan; Song, Lujun; Zhang, Su

    2016-07-01

    A method of using liquid-crystals (LCs) to generate a partially coherent beam in real-time is described. An expression for generating a partially coherent beam is given and calculated using a graphic processing unit (GPU), i.e., the GeForce GTX 680. A liquid-crystal on silicon (LCOS) with 256 × 256 pixels is used as the partially coherent beam generator (PCBG). An optimizing method with partition convolution is used to improve the generating speed of our LC PCBG. The total time needed to generate a random phase map with a coherence width range from 0.015 mm to 1.5 mm is less than 2.4 ms for calculation and readout with the GPU; adding the time needed for the CPU to read and send to LCOS with the response time of the LC PCBG, the real-time partially coherent beam (PCB) generation frequency of our LC PCBG is up to 312 Hz. To our knowledge, it is the first real-time partially coherent beam generator. A series of experiments based on double pinhole interference are performed. The result shows that to generate a laser beam with a coherence width of 0.9 mm and 1.5 mm, with a mean error of approximately 1%, the RMS values needed 0.021306 and 0.020883 and the PV values required 0.073576 and 0.072998, respectively.

  6. Energy spread of ion beams generated in multicusp ion sources

    International Nuclear Information System (INIS)

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 μm patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations

  7. RF generation in the DARHT Axis-II beam dump

    International Nuclear Information System (INIS)

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the ∼2-(micro)s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  8. Dynamic photorefractive self-amplified angular-multiplex 2-D optical beam-array generation

    Science.gov (United States)

    Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang

    1993-01-01

    A real-time 2-D angular-multiplex beam-array holographic storage and reconstruction technique using electrically-addressed spatial light modulators(E-SLM's) and photorefractive crystals is described. Using a liquid crystal television (LCTV) spatial light modulator (SLM) for beam steering and lithium niobate photorefractive crystal for holographic recording, experimental results of generating large and complicated arrays of laser beams with high diffraction efficiency and good uniformity are presented.

  9. Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams

    OpenAIRE

    Porras, Miguel A,; Ruiz-Jimenez, Carlos; Losada, Juan Carlos

    2015-01-01

    In light filamentation induced by axicon-generated, powerful Bessel beams, the spatial propagation dynamics in the nonlinear medium determines the geometry of the filament channel and hence its potential applications. We show that the observed steady and unsteady Bessel beam propagation regimes can be understood in a unified way from the existence of an attractor and its stability properties. The attractor is identified as the nonlinear unbalanced Bessel beam (NL-UBB) whose inward H\\"ankel be...

  10. Generation of a family of Pearcey beams based on Fresnel diffraction catastrophes

    International Nuclear Information System (INIS)

    Based on the theory of differential geometry and Fresnel diffraction catastrophes, we theoretically prove that the cusped caustic of Pearcey beams are the evolute of a parabola and thus identify the key factor determining the optical structure of Pearcey beams. We numerically simulate and experimentally generate a family of Pearcey beams with various optical topological structures using different parabolas. We then investigate their optical structures and propagation properties. (paper)

  11. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital-angular-momemtum

    CERN Document Server

    Chaitanya, N Apurv; Banerji, J; Samanta, G K

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  12. An all-fiber Raman laser for cylindrical vector beam generation

    Science.gov (United States)

    Jocher, Christoph; Jauregui, Cesar; Becker, Martin; Rothhardt, Manfred; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We demonstrate a compact Raman all-fiber oscillator for cylindrical vector beam generation. The laser is based on a strongly guiding passive fiber with two fiber Bragg gratings inscribed in it, which separates the different transverse modes in wavelength. Additionally, the impact of core ellipticity in strongly guiding fibers for the generation of cylindrical vector beams is theoretically analyzed. In this work, the elliptical core is compensated by introducing stress. Thereby, an azimuthally polarized beam with an output power of 480 mW and a radially polarized beam with an output power of 400 mW are generated, limited only by the onset of nonlinear effects inside the Raman fiber oscillator. Switching between these two cylindrical vector beams is possible by rotating the polarization of the pump. The presented concept is well suited for all-fiber microscopic applications.

  13. An all-fiber Raman laser for cylindrical vector beam generation

    International Nuclear Information System (INIS)

    We demonstrate a compact Raman all-fiber oscillator for cylindrical vector beam generation. The laser is based on a strongly guiding passive fiber with two fiber Bragg gratings inscribed in it, which separates the different transverse modes in wavelength. Additionally, the impact of core ellipticity in strongly guiding fibers for the generation of cylindrical vector beams is theoretically analyzed. In this work, the elliptical core is compensated by introducing stress. Thereby, an azimuthally polarized beam with an output power of 480 mW and a radially polarized beam with an output power of 400 mW are generated, limited only by the onset of nonlinear effects inside the Raman fiber oscillator. Switching between these two cylindrical vector beams is possible by rotating the polarization of the pump. The presented concept is well suited for all-fiber microscopic applications. (letter)

  14. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum.

    Science.gov (United States)

    Chaitanya, N Apurv; Jabir, M V; Banerji, J; Samanta, G K

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625

  15. High quality beams of MV/cm THz pulses generated from DSTMS

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2015-01-01

    A beam characterization of a THz beam generated from the organic crystal DSTMS is presented. The simple, collinear phase-matching geometry for this crystal results in an M2 factor below 1.5, resulting in a focused field strength of more than 4 MV/cm....

  16. Modeling the spatial shape of nondiffracting beams: Experimental generation of Frozen Waves via holographic method

    Science.gov (United States)

    Vieira, Tárcio A.; Zamboni-Rached, Michel; Gesualdi, Marcos R. R.

    2014-03-01

    In this paper we experimentally implement the spatial shape modeling of nondiffracting optical beams via computer generated holograms reconstructed optically by spatial light modulators. The results reported here are an experimental confirmation of the so-called Frozen Wave method, developed a few years ago. Optical beams of this type have potential applications in optical tweezers, medicine, atom guiding, remote sensing, etc.

  17. Vector treatment of second-harmonic generation produced by tightly focused vignetted Gaussian beams

    Science.gov (United States)

    Asatryan, Ara A.; Sheppard, Colin J. R.; de Sterke, C. Martijn

    2004-12-01

    We present a fast and accurate method to calculate the vector-field distribution of a focused Gaussian beam. This method is applied to calculate the second harmonic that is generated by such a beam from a sample in the undepleted pump approximation. These calculations can be used to model second-harmonic imaging in an optical microscope with a wide aperture.

  18. Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles

    DEFF Research Database (Denmark)

    García Ortíz, César Eduardo; Coello, Victor; Han, Zhanghua;

    2013-01-01

    We demonstrate experimentally generation of diffraction-free plasmonic beams with zeroth- and first-order Bessel intensity profiles using axicon-like structures fabricated on gold film surfaces and designed to operate at a wavelength of 700nm. The central beam features a very low divergence (∼8π...

  19. Electrode materials for lithium secondary batteries with high energy densities%高能量密度锂二次电池电极材料研究进展

    Institute of Scientific and Technical Information of China (English)

    辛森; 郭玉国; 万立骏

    2011-01-01

    锂离子电池是目前广泛应用的高能量密度小型二次电池,但随着其应用领域突飞猛进的发展,迫切需要进一步提高其能量密度.本文介绍了近年来高能量密度锂离子电池正、负极材料及新型高能量密度锂二次电池体系方面的研究进展;结合本实验室的研究工作,着重介绍了高容量正、负极材料的选择、微纳结构设计、表面包覆和合成策略;讨论了锂硫电池、锂空气电池等高比能金属锂二次电池的未来发展方向.%Lithium-ion battery is a widely-used secondary battery with high energy density. However, with a fast development in its field of application, an urgent requirement is raised in the further improving its energy density. This article summarizes the recent research progressions in the cathode and anode materials of lithium-ion batteries with high energy densities as well as some novel lithium secondary batteries based on lithium metal, highlights the selections of cathode and anode materials with high capacities, the designs of micro-nano structures of them, and the strategies toward surface coating and synthesis of these materials with some recent works made in this field by our group. This review also gives a discussion on the future development directions of several lithium metal secondary batteries with high energy densities such as lithium-sulfur battery and lithium-air battery.

  20. Preparation of the high power laser system PETAL for experimental studies of inertial confinement fusion and high energy density states of matter

    Science.gov (United States)

    d'Humières, E.; Caron, J.; Perego, C.; Raffestin, D.; Dubois, J.-L.; Baggio, J.; Compant La Fontaine, A.; Hulin, S.; Ducret, J.-E.; Lubrano, F.; Gommé, J. C.; Gazave, J.; Ribolzi, J.; Feugeas, J.-L.; Nicolai, P.; Lefebvre, E.; Tikhonchuk, V. T.; Batani, D.

    2016-03-01

    The paper describes the preparation of the short-pulse high-energy laser PETAL that will be coupled to the French megajoule laser (LMJ) of CEA. The LMJ/PETAL facility will be opened to academic access for the international research community. In parallel diagnostics are being developed within the PETAL project and many physical problems are being addressed ranging from the study of the problems of radiation generation and activation issues to the problem of generation of large amplitude electromagnetic pulses.

  1. Study of Dark-Hollow Beams Generated with Different Multimode Fibres

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cheng-Liang; LU Xuan-Hui; CHEN He

    2008-01-01

    A dark-hollow beam (DHB) is generated by a coupfing of a single fundamental mode He-Ne laser beam with a misalignment multimode fibre (MMF) in a special way.Effects of the misalignment angle,diameter and length of the MMF are studied.The generated DHBs can be used for guiding and trapping of atoms,manipulating particles,or as optical tweezers.

  2. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    CERN Document Server

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  3. Generation of slow-positron beams and their applications to surface studies

    International Nuclear Information System (INIS)

    Positron has various unique properties, e.g., positive charge, annihilation with electrons, emission of annihilation gamma ray, positronium formation, etc. These unique properties provides us with new information on surface and subsurface regions. In recent years, generation techniques of intense slow-positron beams have been developed and those beams have been applied to various surface studies. In this article, we briefly introduce slow-positron generation techniques and measurement techniques for surface studies. (author)

  4. Generation of slow muon beam by laser resonant ionization of muonium atoms

    International Nuclear Information System (INIS)

    We report first results of re-acceleration of thermal muons, which were generated by laser resonant ionization of muonium atoms. The re-accelerated beam (slow muon beam) has better energy resolution and space distribution compared to initial surface muon beam, and its use will extend the scope of muon spin relaxation technique from bulk material to thin film, multi-layers, surfaces and extremely small samples. The yield of slow muons obtained during the first beam time was 0.03 muons/s

  5. Generation of High Efficiency Longitudinally Polarized Beam using High NA Lens Axicon and Dedicated Phase Filter

    International Nuclear Information System (INIS)

    We propose to use pure phase filter in combination with high NA lens axicon to achieve high efficient longitudinally polarized beam with a subwavelength spot size and large depth of focus using hyper geometric Gaussian beam. Using this system, the spot size is reduced to 0.392 λ and the depth of focus is increased to 7 λ. The efficiency of such system is found to be 87%. This high efficient longitudinally polarized beam generated by hyper geometric Gaussian beam is useful for most of the near-field optics applications.

  6. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  7. Multifunctional diffractive optical elements for the generation of higher order Bessel-like-beams

    Science.gov (United States)

    Vijayakumar, A.; Bhattacharya, Shanti

    2015-01-01

    Higher Order Bessel Beams (HOBBs) have many useful applications in optical trapping experiments. The generation of HOBBs is achieved by illuminating an axicon by a Laguerre-Gaussian beam generated by a spiral phase plate. It can also be generated by a Holographic Optical Element (HOE) containing the functions of the Spiral Phase Plate (SPP) and an axicon. However the HOBB's large focal depth reduces the intensity at each plane. In this paper, we propose a multifunctional Diffractive Optical Element (DOE) containing the functions of a SPP, axicon and a Fresnel Zone Lens (FZL) to generate higher efficiency higher order Bessel-like-beams with a reduced focal depth. The functions of a SPP and a FZL were combined by shifting the location of zones of FZL in a spiral fashion. The resulting element is combined with an axicon by modulo-2π phase addition technique. The final composite element contains the functions of SPP, FZL and axicon. The elements were designed with different topological charges and fabricated using electron beam direct writing. The elements were tested and the generation of a higher order Bessel-like-beams is confirmed. Besides, the elements also generated high quality donut beams at two planes equidistant from the focal plane of the FZL.

  8. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California, 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  9. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    International Nuclear Information System (INIS)

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb Heα x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated

  10. X-ray generation experiment in STF accelerator on quantum beam technology program

    International Nuclear Information System (INIS)

    To obtain high brightness quasi-monochromatic X-ray via Inverse Compton Scattering, highly intensified laser beam is designed and implemented in a new beam line of KEK Superconducting RF Test Facility (STF) accelerator, under the program of 'Quantum Beam Technology Program'. The STF accelerator is a superconducting Linac using ILC technology, operated with a 5 Hz repetition, 1 ms electron bunch train, and 40 MeV beam energy. The intensified laser beam was generated by a 4-mirror optical cavity with beam-synchronized burst-amplified laser input. The high brightness X-ray is generated by the collision between incoming electron beam and stored laser beam in the 4-mirror cavity. The 4-mirror optical cavity technology has been selected for their stable laser storage with long mirror distance, where electron beam is coming in and out for head-on collision between them. On this report, STF accelerator construction including collision laser system, and also collision results are described. (author)

  11. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    Science.gov (United States)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang; Peng, Ru-Wen; Wang, Mu

    2016-06-01

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000-1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  12. Summary report of working group 5: Beam and radiation generation, monitoring, and control

    CERN Document Server

    Church, Mike; 10.1063/1.3520295

    2012-01-01

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  13. Beam characterization of a lab bench cold cathode ultra-soft X-ray generator

    OpenAIRE

    Ounoughi, Nabil; Mavon, Christophe; Belafrites, Abdelfettah; Groetz, Jean-Emmanuel; Fromm, Michel

    2013-01-01

    The aim of this work is to characterize the Ultra Soft X-ray (USX, 1.5 keV, Al Kα) photon beam of a customized lab bench cold cathode generator. Within this generator, the electron beam is slowed down in a thin aluminium foil (16 μm) supported by an easily exchangeable anode. It is shown that the thickness of the foil and the anode configuration determine the spatial distribution and the fluence rate of the photon beam, whereas accelerating voltage determines both fluence rate and energy spec...

  14. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    CERN Document Server

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  15. Beam steerable IR-UWB antenna array with FCC-compliant impulse generators

    OpenAIRE

    Schleicher, Bernd; Leib, Mario; Menzel, Wolfgang; Schumacher, Hermann

    2010-01-01

    A novel method for beam steering with an active ultra-wideband antenna array is presented for impulse-radio ultra-wideband. The antenna array consists of four planar Vivaldi antennas in a collinear arrangement with an impulse generator circuit mounted chip-on-board on each antenna element. The beam steering is done by shifting the phase of the control signals triggering the impulse generators. In the array arrangement a measured beam width of 16° is achieved for an antenna spacing of 4 cm com...

  16. Efficient yellow beam generation by intracavity sum frequency mixing in DPSS Nd:YVO4 laser

    Indian Academy of Sciences (India)

    A J Singh; P K Gupta; S K Sharma; P K Mukhopadhyay; K S Bindra; S M Oak

    2014-02-01

    We present our studies on dual wavelength operation using a single Nd:YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum frequency generation in the cavity at an appropriate location for efficient and stable yellow output power. More than 550 mW of stable CW yellow-orange beam at 593.5 nm with beam quality parameter (2) ∼ 4.3 was obtained. The total pump to yellow beam conversion efficiency was estimated to be 3.83%.

  17. Summary report of working group 5: Beam and radiation generation, monitoring, and control

    International Nuclear Information System (INIS)

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  18. Summary Report of Working Group 5: Beam and Radiation Generation, Monitoring, and Control

    International Nuclear Information System (INIS)

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  19. A low cost high resolution pattern generator for electron-beam lithography

    International Nuclear Information System (INIS)

    A simple, very low cost pattern generator for electron-beam lithography is presented. When it is applied to a scanning electron microscope, the system allows a high precision positioning of the beam for lithography of very small structures. Patterns are generated by a suitable software implemented on a personal computer, by using very simple functions, allowing an easy development of new writing strategies for a great adaptability to different user necessities. Hardware solutions, as optocouplers and battery supply, have been implemented for reduction of noise and disturbs on the voltages controlling the positioning of the beam

  20. Soliton pair generation in the interactions of Airy and nonlinear accelerating beams

    CERN Document Server

    Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Lu, Keqing; Li, Yuanyuan; Zhang, Yanpeng

    2013-01-01

    We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound states, after shedding some radiation initially. In the out-of-phase case, they repel each other and after an initial interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton pairs generated from those beams do not.

  1. Self-confinement of a fast pulsed electron beam generated in a double discharge

    International Nuclear Information System (INIS)

    The construction of a double discharge pulsed electron beam generator and the study of the characteristics of the beam are presented in this paper. The electron beam generator consists of a fast filamentary discharge in superposition with an ordinary glow discharge in low-pressure gases. The filling gas is argon or helium at approximately 0.1 Torr pressure. The duration of the electron beam is shorter than 50 ns and the peak current intensity is of the order of amperes. The electron density is evaluated by making use of Stark broadening of the Hβ line and compared with the full computer simulation method. The pinch effect of the filamentary discharge is evaluated and its size compared with the diameter of the beam

  2. Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum

    Science.gov (United States)

    Knyazev, B. A.; Choporova, Yu. Yu.; Mitkov, M. S.; Pavelyev, V. S.; Volodkin, B. O.

    2015-10-01

    Bessel vortex beams with topological charges of l =±1 and l =±2 were produced in the terahertz spectral range from a free electron laser Gaussian beam (λ =141 μ m ) transformed using silicon binary diffractive optical elements. The spatial characteristics of the beams were obtained using a microbolometer array. A radius to path length ratio of 1 ∶100 was achieved for nondiffractive beams with the average power of 30 W. Surface plasmon polaritons (SPPs) on gold-zinc-sulphide-air interfaces were generated due to diffraction of vortex beams on a sample edge. A new effect, a dependence of the efficiency of SPP generation on the direction of the azimuthal component of incident-radiation Poynting vector, was revealed.

  3. Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams

    Science.gov (United States)

    Porras, Miguel A.; Ruiz-Jiménez, Carlos; Losada, Juan Carlos

    2015-12-01

    In light filamentation induced by axicon-generated, powerful Bessel beams, the spatial propagation dynamics in the nonlinear medium determines the geometry of the filament channel and hence its potential applications. We show that the observed steady and unsteady Bessel beam propagation regimes can be understood in a unified way from the existence of an attractor and its stability properties. The attractor is identified as the nonlinear unbalanced Bessel beam (NLUBB) whose inward Hänkel beam amplitude equals the amplitude of the linear Bessel beam that the axicon would generate in linear propagation. A simple analytical formula that determines the NLUBB attractor is given. Steady or unsteady propagation depends on whether the attracting NLUBB has a small, exponentially growing, unstable mode. In the case of unsteady propagation, periodic, quasiperiodic, or chaotic dynamics after the axicon reproduces similar dynamics after the development of the small unstable mode into the large perturbation regime.

  4. Self-confinement of a fast pulsed electron beam generated in a double discharge

    Energy Technology Data Exchange (ETDEWEB)

    Goktas, H [Ankara Nuclear Research and Training Center, 06501, Besevler, Ankara (Turkey); Udrea, M [National Institute for Laser, Plasma and Radiation Physics, 76900 Bucharest (Romania); Oke, Gulay [Physics Department, Middle East Technical University, 06531 Ankara (Turkey); Alacakir, A [Ankara Nuclear Research and Training Center, 06501, Besevler, Ankara (Turkey); Demir, A [Physics Department, University of Kocaeli, 41200 Kocaeli (Turkey); Loureiro, J [Centro de Fisica dos Plasmas, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)

    2005-08-21

    The construction of a double discharge pulsed electron beam generator and the study of the characteristics of the beam are presented in this paper. The electron beam generator consists of a fast filamentary discharge in superposition with an ordinary glow discharge in low-pressure gases. The filling gas is argon or helium at approximately 0.1 Torr pressure. The duration of the electron beam is shorter than 50 ns and the peak current intensity is of the order of amperes. The electron density is evaluated by making use of Stark broadening of the H{sub {beta}} line and compared with the full computer simulation method. The pinch effect of the filamentary discharge is evaluated and its size compared with the diameter of the beam.

  5. Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam

    Energy Technology Data Exchange (ETDEWEB)

    He, W.; Zhang, L.; Bowes, D.; Yin, H.; Ronald, K.; Phelps, A. D. R.; Cross, A. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom)

    2015-09-28

    This paper presents for the generation of a small size high current density pseudospark (PS) electron beam for a high frequency (0.2 THz) Backward Wave Oscillator (BWO) through a Doppler up-shift of the plasma frequency. An electron beam ∼1 mm diameter carrying a current of up to 10 A and current density of 10{sup 8} A m{sup −2}, with a sweeping voltage of 42 to 25 kV and pulse duration of 25 ns, was generated from the PS discharge. This beam propagated through the rippled-wall slow wave structure of a BWO beam-wave interaction region in a plasma environment without the need for a guiding magnetic field. Plasma wave assisted beam-wave interaction resulted in broadband output over a frequency range of 186–202 GHz with a maximum power of 20 W.

  6. Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum.

    Science.gov (United States)

    Knyazev, B A; Choporova, Yu Yu; Mitkov, M S; Pavelyev, V S; Volodkin, B O

    2015-10-16

    Bessel vortex beams with topological charges of l=±1 and l=±2 were produced in the terahertz spectral range from a free electron laser Gaussian beam (λ=141  μm) transformed using silicon binary diffractive optical elements. The spatial characteristics of the beams were obtained using a microbolometer array. A radius to path length ratio of 1:100 was achieved for nondiffractive beams with the average power of 30 W. Surface plasmon polaritons (SPPs) on gold-zinc-sulphide-air interfaces were generated due to diffraction of vortex beams on a sample edge. A new effect, a dependence of the efficiency of SPP generation on the direction of the azimuthal component of incident-radiation Poynting vector, was revealed. PMID:26550877

  7. Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams

    CERN Document Server

    Porras, Miguel A; Losada, Juan Carlos

    2015-01-01

    In light filamentation induced by axicon-generated, powerful Bessel beams, the spatial propagation dynamics in the nonlinear medium determines the geometry of the filament channel and hence its potential applications. We show that the observed steady and unsteady Bessel beam propagation regimes can be understood in a unified way from the existence of an attractor and its stability properties. The attractor is identified as the nonlinear unbalanced Bessel beam (NL-UBB) whose inward H\\"ankel beam amplitude equals the amplitude of the linear Bessel beam that the axicon would generate in linear propagation. A simple analytical formula that determines de NL-UBB attractor is given. Steady or unsteady propagation depends on whether the attracting NL-UBB has a small, exponentially growing, unstable mode. In case of unsteady propagation, periodic, quasi-periodic or chaotic dynamics after the axicon reproduces similar dynamics after the development of the small unstable mode into the large perturbation regime.

  8. Electron beam generated whistler emissions in a laboratory plasma

    International Nuclear Information System (INIS)

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory

  9. Electron beam generated whistler emissions in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Van Compernolle, B., E-mail: bvcomper@physics.ucla.edu; Pribyl, P.; Gekelman, W. [Department of Physics, University of California, Los Angeles (United States); An, X.; Bortnik, J.; Thorne, R. M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (United States)

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  10. Generation of Vortex Beams with Strong Longitudinally Polarized Magnetic Field by Using a Metasurface

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2014-01-01

    A novel method of generation and synthesis of azimuthally E-polarized vortex beams is presented. Along the axis of propagation such beams have a strong longitudinally polarized magnetic field where ideally there is no electric field. We show how these beams can be constructed through the interference of Laguerre-Gaussian beams carrying orbital angular momentum. As an example, we present a metasurface made of double-split ring slot pairs and report a good agreement between simulated and analytical results. Both a high magnetic-to-electric-field contrast ratio and a magnetic field enhancement are achieved. We also investigate the metasurface physical constraints to convert a linearly polarized beam into an azimuthally E- polarized beam and characterize the performance of magnetic field enhancement and electric field suppression of a realistic metasurface. These findings are potentially useful for novel optical spectroscopy related to magnetic dipolar transitions and for optical manipulation of particles with sp...

  11. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    Energy Technology Data Exchange (ETDEWEB)

    Schall, Michael (University of New Mexico, Albuquerque, NM); Cooper, Gary Wayne (University of New Mexico, Albuquerque, NM); Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  12. Collimated fast electron beam generation in critical density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iwawaki, T., E-mail: iwawaki-t@eie.eng.osaka-u.ac.jp; Habara, H.; Morita, K.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Baton, S.; Fuchs, J.; Chen, S. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); Nakatsutsumi, M. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); European X-Ray Free-Electron Laser Facility (XFEL) GmbH (Germany); Rousseaux, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Filippi, F. [La SAPIENZA, University of Rome, Dip. SBAI, 00161 Rome (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland (United Kingdom)

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  13. Collimated fast electron beam generation in critical density plasma

    International Nuclear Information System (INIS)

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 1014 W/cm2, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 1014 W/cm2, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion

  14. Generation of a spin-polarized electron beam by multipole magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Grillo, Vincenzo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Institute of Optics, University of Rochester, Rochester, NY 14627 (United States); Santamato, Enrico [Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, 80126 Napoli (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Napoli (Italy)

    2014-03-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin–magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. - Highlights: • Theory of generating spin-polarized electron beams. • Interacting electron vortex beams with space-variant magnetic fields. • Bohr–Pauli impossibility of generating spin-polarized free electrons.

  15. Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements

    Science.gov (United States)

    Vijayakumar, Anand; Bhattacharya, Shanti

    2015-11-01

    Binary composite diffractive optical elements with the functions of a spiral phase plate (SPP), an axicon, and a Fresnel zone lens (FZL) were designed with different topological charges. The element was designed in two steps. In the first step, the function of an SPP was combined with that of an axicon by spiraling the periods of the axicon with respect to the phase of the SPP followed by a modulo-2π phase addition with the phase of an FZL in the second step. The higher-order Bessel beams generated by the binary phase spiral axicon are superposed at the FZL's focal plane. Although location of the focal plane is wavelength dependent, the radius of the flower-like beams generated by the element was found to be independent of wavelength. The element was fabricated using electron-beam direct writing. The evaluation results matched well with the simulation results, generating flower-like beams at the focal plane of the FZL.

  16. Generation of Orbital Angular Momentum Carrying Beams in Semiconductor Microcavities

    International Nuclear Information System (INIS)

    Full text: It is notable that all techniques for the creation of beams with orbital angular momentum, to the best of our knowledge, require an optically inhomogeneous and/or anisotropic material or strong focusing. In this work, we demonstrate that the spin-to-orbital angular momentum (SOAM) conversion can also be achieved in a planar semiconductor microcavity. Despite being an isotropic system, microcavities exhibit a polarization splitting between transverse electric - transverse magnetic (TE-TM) modes, which induces the appearance of an L = +2 orbital angular momentum in one of the circular polarizations, under excitation in the cross-circular polarization [1]. The vertical entities resulting from this conversion process can be regarded as the optical equivalent of a pair of half-quantum vortices. We provide a theoretical model which rigorously derives the principle of the SOAM conversion and quantitatively reproduces the experimental observations. (author)

  17. Neutron production and ion beam generation in plasma focus devices

    International Nuclear Information System (INIS)

    Concerning the physical processes leading to neutron emission, a clearer situation has been achieved compared to the state at the start of this work. The general discussion will realize that the whole experimental data cannot be described consistently by the predictions of either the beam-target model or the quasi-thermonuclear fusion model, although many questions about the neutron production properties have been solved. In particular the neutron fluence anisotropy is found to be a property basically related to the existence of fast ions escaping axially out of the pinch region. The requirements to explain broad radial neutron energy spectra, long emission times, and energetic but not spatial emission anisotropies suggest a kind of particle trapping in the main source region. (orig./HT)

  18. Fabrication of Multi-Harmonic Buncher for Pulsed Proton Beam Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-05-15

    Fast neutrons with a broad spectrum can be generated by irradiating the proton beams on target materials. To measure the neutron energy by time of flight (TOF) method, the short pulse width of the proton beam is preferred because the neutron energy uncertainty is proportional to the pulse width. In addition, the pulse repetition rate should be low enough to extend the lower limit of the available neutron energy. Pulsed proton beam generation system is designed based on an electrostatic deflector and slit system as shown in Fig. 1. In a simple deflector with slit system, most of the proton beam is blocked by slit, especially when the beam pulse width is short. The ideal field pattern inside the buncher cavity is saw-tooth wave. To make the field pattern similar to the saw-tooth waveform, we adopted a multi-harmonic buncher (MHB). The design for the multi-harmonic buncher including 3D electromagnetic calculation has been performed. Based on the design, a multi-harmonic buncher cavity was fabricated. It consists of two resonators, two drift tubes and a vacuum chamber. The resonator is a quarter-wave coaxial resonator type. The drift tube is connected to the resonator by using a coaxial vacuum feedthrough. Design summary and detailed fabrication method of the multi-harmonic buncher is presented in this paper. A multi-harmonic buncher for a proton beam chopper system to generate a short pulse neutron beam was designed, fabricated and assembled.

  19. Interference pattern generation and simulation in the single beam of a white light continuum

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We demonstrate the interference phenomenon in the White Light Continuum(WLC) generated by a single femtosecond laser beam. Different kinds of spatial interference patterns of the WLC generation under various conditions were investigated. The spatial patterns were attributed to interference between the filaments in the WLC generated by the fundamental laser beam yielding the diffraction effect from spatial confinement. Simulations of different patterns were performed. By comparing the results of simulation with those of experiments,the distances of several micrometers between the neighboring filaments can be derived,which agree with the literature values from direct measurements.

  20. Generation of Equal-Energy Orbital Angular Momentum Beams via Photopatterned Liquid Crystals

    Science.gov (United States)

    Chen, Peng; Ge, Shi-Jun; Ma, Ling-Ling; Hu, Wei; Chigrinov, Vladimir; Lu, Yan-Qing

    2016-04-01

    Orbital angular momentum (OAM) has been extensively studied to date and has become topical in the last few years due to its potential for increasing bandwidth in optical communications. The so-called Dammann vortex grating (DVG) can generate a series of equal-energy OAM beams and satisfactorily realize OAM parallel detection, an important challenge in this field. However, previously reported DVGs suffer from polarization sensitivity, low efficiency, or the lack of tunability and mode variety. Here, a design of liquid-crystal DVGs is proposed and demonstrated for the generation of various equal-energy OAM beams. The DVGs, featured by alternative orthogonally planar-aligned regions, are carried out via photopatterning technology. Beam arrays composed of arbitrary OAM modes, as well as two-dimensional ones, are generated in good quality and high efficiency. The liquid-crystal DVGs exhibit merits of excellent polarization independency, electrical switchability, and tunability. This supplies a promising approach towards OAM generation, manipulation, and detection.

  1. Generation of arbitrary radially polarized array beams by modulating the correlation structure

    CERN Document Server

    Zhu, Shijun; Li, Zhenhua

    2016-01-01

    We demonstrate a convenient approach for simultaneously manipulating the amplitude and polarization of light beams by means of the modulation of the correlation structure. As an illustration, we constructed a periodic correlation structure that can generate an arbitrary radially polarized array (RPA) beam of a radial or rectangular symmetry array in the focal plane from a radially polarized (RP) beam. The physical realizability conditions for such source and the far-field beam condition are derived. It is illustrated that the beamlet shape and the state of polarization (SOP) can be effectively controlled by the initial correlation structure and the coherence width. Furthermore, by designing the source correlation structure, a tunable OK-shaped RPA beam and an optical cage are demonstrated, which can find widespread applications in non-destructive manipulation of particles and living biological cells. The arbitrariness in the design of correlation structure prompted us to find more convenient approaches for co...

  2. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  3. Anomalous electron heating and energy balance in an ion beam generated plasma

    International Nuclear Information System (INIS)

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H2 gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy

  4. Propagation characteristics of Bessel beams generated by continuous, incoherent light sources.

    Science.gov (United States)

    Altıngöz, Ceren; Yalızay, Berna; Akturk, Selcuk

    2015-08-01

    We investigate the propagation behavior of Bessel beams generated by incoherent, continuous light sources. We perform experiments with narrowband and broadband light emitting diodes, and, for comparison, with a laser diode. We observe that the formation of Bessel beams is affected minimally by temporal coherence, while spatial coherence determines the longitudinal evolution of the beam profile. With spatially incoherent beams, the fringe contrast is comparable to the coherent case at the beginning of the Bessel zone, while it completely fades away by propagation, turning into a cylindrical light pipe. Our results show that beam shaping methods can be extended to cases of limited spatial coherence, paving the way for potential new uses and applications of such sources. PMID:26367302

  5. Collimated Blue and Infrared Beams Generated by Two-Photon Excitation in Rubidium Vapor

    Science.gov (United States)

    Gearba, Alina; Sell, Jerry; Olesen, Robert; Knize, Randy

    2016-05-01

    Utilizing nonlinear optical processes in Rb vapor we describe the generation of optical fields at 420 nm, 1.32 μm, and 1.37 μm. Input laser beams at 780 nm and 776 nm enter a heated Rb vapor cell collinear and circularly polarized. Rubidium atoms are excited to the 5D5 / 2 state, with blue light generated by four-wave mixing through the 6P3 / 2 --> 5S1 / 2 states, while infrared beams at 1.37 μm and 1.32 μm are generated by cascading decays through the 6S1 / 2 --> 5P3 / 2 and 6S1 / 2 --> 5P1 / 2 states, respectively. While the blue beam emission from four-wave mixing has been studied in detail, the mechanisms responsible for generating the infrared beams are still under investigation. We will present our results for the conditions which give rise to infrared beam generation by two-photon excitation in rubidium vapor.

  6. Generation and propagation dynamics of obstructed and unobstructed rotating orbital angular momentum-carrying Helicon beams

    International Nuclear Information System (INIS)

    We report on the dynamics of propagation of rotating OAM-carrying beams past partial and total obstructions. We demonstrate a simple experimental technique for generating rotating Helicon beams and for investigating the propagation of the obstructed field. In this technique we create digital holograms, imprinted on a spatial light modulator, that simultaneously vary the amplitude and phase of the light to create a digital equivalent of multiple ring slit apertures. Our method allows for the controlled generation of Helicon beams of any order, and any radial wavevector, thus controlling the rotation rate of the beams. We further study the reconstruction properties for total on-axis obstructions as compared to partial off-axis obstructions and show that the results obtained are in good agreement with theoretical predictions. (paper)

  7. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Lei; Liu, Weiwei; Wang, Meng; Zhong, Mincheng; Wang, Ziqiang; Li, Yinmei, E-mail: liyinmei@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Ren, Yuxuan [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201210 (China)

    2014-11-14

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves the way for optical microscopy, trapping, and communication.

  8. Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma

    International Nuclear Information System (INIS)

    This paper presents a theoretical model for terahertz (THz) radiation generation by two cross-focused Gaussian laser beams in a collisionless magnetoplasma. The plasma is redistributed due to the ponderomotive nonlinearity which leads to the cross focusing of the laser beams. The focusing of the copropagating laser beams increases with increasing the externally applied static magnetic field which is perpendicular to the wave propagation direction. The nonlinear current at THz frequency arises on account of nonlinear ponderomotive force as a result of beating of the two lasers. The generated THz radiation amplitude increases significantly with increasing magnetic field. The cross focusing of two laser beams enhances the THz yield. Optimization of laser-plasma parameters gives the radiated normalized THz power of the order of 10 kW

  9. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    International Nuclear Information System (INIS)

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves the way for optical microscopy, trapping, and communication

  10. Generation and application of the soft X-ray laser beam based on capillary discharge

    Science.gov (United States)

    Frolov, Oleksandr; Kolacek, Karel; Straus, Jaroslav; Schmidt, Jiri; Prukner, Vaclav; Shukurov, Andrey

    2014-05-01

    In this work we report on the generation and characterization of a focused soft X-ray laser beam with intensity and energy density that exceed the threshold for the ablation of PMMA. We demonstrate a feasibility of direct ablation of holes using a focused soft X-ray laser beam. Ablated craters in PMMA/gold-covered-PMMA samples were obtained by focusing the soft X-ray Ar8+ laser pulses generated by a 46.9 nm tabletop capillary-discharge-pumped driver with a spherical Si/Sc multilayer mirror. It was found that the focused beam is capable by one shot to ablate PMMA, even if the focus is significantly influenced by astigmatism. Analysis of the laser beam footprints by atomic force microscope shows that ablated holes have periodic surface structure (similarly as Laser-Induced Periodic Surface Structure) with period ~2,8 μm and with peak-to-peak depth ~5-10 nm.

  11. Characterization of excitation beam on second-harmonic generation in fibrillous type I collagen

    OpenAIRE

    Chang, Ying; Deng, Xiaoyuan

    2010-01-01

    Following our established theoretical model to deal with the second-harmonic generation (SHG) excited by a linearly polarized focused beam in type I collagen, in this paper, we further quantitatively characterize the differences between SHG emissions in type I collagen excited by collimated and focused beams. The effects of the linear polarization angle (α) and the fibril polarity characterized by the hyperpolarizability ratio ρ on SHG emission has been compared under collimated and focused b...

  12. Generation of J0 Bessel Beams with controlled spatial coherence features

    OpenAIRE

    Carbajal-Dominguez, Adrian; Bernal, Jorge; Martin-Ruiz, Alberto; Niconoff, Gabriel Martínez

    2010-01-01

    An alternative method to generate J0 Bessel beams with controlled spatial partial coherence properties is introduced. Far field diffraction from a discrete number of source points on an annular region is calculated. The average for different diffracted fields produced at several rotation angles is numerically calculated and experimentally detected. Theoretical and experimental results show that for this particular case, J0 Bessel beam is a limit when the number of points tends towards infinit...

  13. Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum

    OpenAIRE

    Brasselet, Etienne; Malinauskas, Mangirdas; Žukauskas, Albertas; Juodkazis, Saulius

    2010-01-01

    International audience Direct femtosecond laser photopolymerization is used to fabricate high resolution microscopic spiral phase plates. The total phase change all around their center is prepared to be a integer multiple of 2(pi) for the operating wavelength in the visible domain. The optical performances of the spiral plates are measured and we propose a simple single beam interferometric technique to characterize the phase singularity of the generated vortex beams. The experimental resu...

  14. Investigation of the influence of extra noises in seed beams on continuous-variable entanglement generation

    Institute of Scientific and Technical Information of China (English)

    Shang Ya-Na; Yan Zhi-Hui; Jia Xiao-Jun; Su Xiao-Long; Xie Chang-De

    2011-01-01

    The influence of the extra classical noises in seed beams on the entanglement between the signal and the idler modes of the output fields generated by a non-degenerate optical parametric amplifier operating at deamplification is investigated theoretically and experimentally. With the increase of the extra classical noises in the seed beams, the correlation degree of the output entangled optical fields, which is scaled by the quantum noise limit, decreases rapidly. The experimental results are in good agreement with the theoretical calculations.

  15. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  16. Numerical simulation of the ion beam generated in the diode with anode plasma column

    International Nuclear Information System (INIS)

    The ion beam generation in a high current diode with anode plasma slab was studied. The ions were extracted from the anode plasma by the strong electric field of a deep potential well (virtual cathode), arising after the propagation of relativistic electrons through the anode plasma slab. The movement of this potential well with the front part of the ion beam leads to collective ion acceleration up to the 10 MeV energy range. (author). 7 figs., 5 refs

  17. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  18. Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses

    Science.gov (United States)

    Constant, E.; Dubrouil, A.; Hort, O.; Petit, S.; Descamps, D.; Mével, E.

    2012-04-01

    We generate high-order harmonics with a spatially shaped TW laser beam. We present and analyse in detail a new approach for shaping an intense laser field to a flat-top intensity profile near focus. We show that this approach is well adapted for high harmonic generation with high-energy fundamental pulses and highlight the possibilities for generating high-energy attosecond pulses.

  19. Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses

    International Nuclear Information System (INIS)

    We generate high-order harmonics with a spatially shaped TW laser beam. We present and analyse in detail a new approach for shaping an intense laser field to a flat-top intensity profile near focus. We show that this approach is well adapted for high harmonic generation with high-energy fundamental pulses and highlight the possibilities for generating high-energy attosecond pulses. (paper)

  20. 32 nm imprint masks using variable shape beam pattern generators

    Science.gov (United States)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  1. Low energy proton beams from laser-generated plasma

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Giuffrida, L.; Margarone, Daniele; Caridi, F.; Di Bartolo, F.

    2011-01-01

    Roč. 653, č. 1 (2011), s. 140-144. ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA MŠk(CZ) 7E09092; GA MŠk ED1.1.00/02.0061 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser -generated plasma * proton acceleration * hydrogenated targets * proton yield * doped polymers Subject RIV: BH - Optics, Masers, Laser s Impact factor: 1.207, year: 2011

  2. Generation of oxygen, carbon and metallic ion beams by a compact microwave source

    International Nuclear Information System (INIS)

    A small microwave ion source fabricated from a quartz tube and enclosed externally by a cavity has been operated with different geometries and for various gases in a cw mode. This source has been used to generate oxygen ion beams with energy as low as 5.5 eV. Beam energy spread has been measured to be less than 1 eV. By installing different metal plates on the front extraction electrode, metallic ion beams such as (Be, Cu, Al, etc.) can be produced

  3. Far field of beams generated by quasi-homogeneous sources passing through polarization gratings

    Science.gov (United States)

    Piquero, G.; Borghi, R.; Mondello, A.; Santarsiero, M.

    2001-08-01

    We analyze the polarization features of the beam, generated by a class of partially polarized quasi-homogeneous sources, which propagates through a polarization grating. Analytical expressions in the far zone for the beam coherence polarization matrix, the degree of polarization and the Stokes parameters are given. In particular, it is shown that, under some hypotheses, it is possible to completely and uniformly depolarize the beam in the far field. The influence of source parameters, such as the state of polarization, intensity and degree of coherence, on the degree of polarization and the Stokes parameters is also investigated.

  4. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    International Nuclear Information System (INIS)

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development

  5. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    Science.gov (United States)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  6. Generation of radially polarized beam with a segmented spiral varying retarder.

    Science.gov (United States)

    Lai, W J; Lim, B C; Phua, P B; Tiaw, K S; Teo, H H; Hong, M H

    2008-09-29

    We convert a linearly polarized Gaussian beam into a radially polarized doughnut beam with an eight-segment spirally varying retarder (SVR) at wavelength of 808 nm. The SVR is designed based on the linear birefringence of alpha-barium borate (alpha-BBO) crystal and fabricated using a dry etching process. Radially polarized light of high purity (> 96% at far-field distribution) was generated experimentally using the segmented SVR positioned between two quarter waveplates with orthogonal slow axes. The emergent polarization can be switched between radially and azimuthally polarized cylindrical vector beams with a pair of half-wave plates. PMID:18825207

  7. Low emittance pion beams generation from bright photons and relativistic protons

    CERN Document Server

    Serafini, L; Petrillo, V

    2015-01-01

    Present availability of high brilliance photon beams as those produced by X-ray Free Electron Lasers in combination with intense TeV proton beams typical of the Large Hadron Collider makes it possible to conceive the generation of pion beams via photo-production in a highly relativistic Lorentz boosted frame: the main advantage is the low emittance attainable and a TeV-class energy for the generated pions, that may be an interesting option for the production of low emittance muon and neutrino beams. We will describe the kinematics of the two classes of dominant events, i.e. the pion photo-production and the electron/positron pair production, neglecting other small cross-section possible events like Compton and muon pair production. Based on the phase space distributions of the pion and muon beams we will analyze the pion beam brightness achievable in three examples, based on advanced high efficiency high repetition rate FELs coupled to LHC or Future Circular Collider (FCC) proton beams, together with the stud...

  8. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    International Nuclear Information System (INIS)

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems

  9. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  10. The generation of high-quality, intense ion beams by ultra-intense lasers

    CERN Document Server

    Roth, M; Audebert, Patrick; Blazevic, A; Brambrink, E; Cowan, T E; Fuchs, J; Gauthier, J C; Geissel, M; Hegelich, M; Karsch, S; Meyer-Ter-Vehn, J; Ruhl, H; Schlegel, T; Stephens, R B

    2002-01-01

    Intense beams of protons and heavy ions have been observed in ultra-intense laser-solid interaction experiments. Thereby, a considerable fraction of the laser energy is transferred to collimated beams of energetic ions (e.g. up to 50 MeV protons; 100 MeV fluorine), which makes these beams highly interesting for various applications. Experimental results indicate a very short-pulse duration and an excellent beam quality, leading to beam intensities in the TW range. To characterize the beam quality and its dependence on laser parameters and target conditions we performed experiments using the 100 TW laser system at Laboratoire pour l'Utilisation des Lasers Intenses at the Ecole Polytechnique, France, with focused intensities exceeding 10 sup 1 sup 9 W cm sup - sup 2. We found a strong dependence on the target rear surface conditions allowing to tailor the ion beam by an appropriate target design. We also succeeded in the generation of heavy ion beams by suppressing the proton amount at the target surface. We wi...

  11. Effect of transverse magnetic field on generation of electron beam in gas diode

    International Nuclear Information System (INIS)

    One studied experimentally the effect of the transverse magnetic field (0.08 and 0.016 T) on the generation of an electron beam within a gas diode. At U=25 kV gas diode voltage and helium low pressure (45 Torr) the transverse magnetic field is shown to affect the beam current amplitude outside the foil and on its foil cross section distribution. Under the increased pressure values and at generation of an ultra short-time avalanche electron beam (UAEB) in helium, nitrogen and in air the transverse magnetic field is shown to affect negligibly the UAEB amplitude and duration outside the foil. At the generator voltage equal to hundreds of kilovolts a portion of the escaping electrons was found to arrive to the gas diode lateral walls including those from the discharge plasma in the vicinity of a cathode

  12. Optical photography of the magnetically confined anode plasma source for repetitive intense ion beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Crawford, M.T.; Maenchen, J.E. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    Time resolved photographs of the visible light from the Magnetically Confined Anode Plasma (MAP) source for Ion Beam Surface Treatment (IBEST) are presented. The MAP source utilizes a fast (2 {micro}s rise time) magnetic field to create a plasma in a radially injected disc shaped gas puff and subsequently inject this plasma into the accelerating gap of a 10-cm-radius high power pulsed extraction ion diode. The 600 kV, 10 kA, 100 ns duration pulse for the beam is generated by a marx generator, cable feed, and linear induction voltage adder. The application of this technology is the generation of repetitively pulsed ion beams for government and industrial treatment of metal and polymer surfaces.

  13. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ∼5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eUm, where Um is the maximum gap voltage, is relatively small.

  14. Active terahertz beam steering by photo-generated graded index gratings in thin semiconductor films.

    Science.gov (United States)

    Steinbusch, T P; Tyagi, H K; Schaafsma, M C; Georgiou, G; Gómez Rivas, J

    2014-11-01

    We demonstrate active beam steering of terahertz radiation using a photo-excited thin layer of gallium arsenide. A constant gradient of phase discontinuity along the interface is introduced by an spatially inhomogeneous density of free charge carriers that are photo-generated in the GaAs with an optical pump. The optical pump has been spatially modulated to form the shape of a planar blazed grating. The phase gradient leads to an asymmetry between the +1 and -1 transmission diffracted orders of more than a factor two. Optimization of the grating structure can lead to an asymmetry of more than one order of magnitude. Similar to metasurfaces made of plasmonic antennas, the photo-generated grating is a planar structure that can achieve large beam steering efficiency. Moreover, the photo-generation of such structures provides a platform for active THz beam steering. PMID:25401807

  15. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2015-05-25

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  16. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  17. Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections.

    Science.gov (United States)

    Rodrigo, José A; Alieva, Tatiana; Cámara, Alejandro; Martínez-Matos, O; Cheben, Pavel; Calvo, María L

    2011-03-28

    In this work, we propose a robust and versatile approach for the characterization of the complex field amplitude of holographically generated coherent-scalar paraxial beams. For this purpose we apply an iterative algorithm that allows recovering the phase of the generated beam from the measurement of its Wigner distribution projections. Its performance is analyzed for beams of different symmetry: Laguerre-Gaussian, Hermite-Gaussian and spiral ones, which are obtained experimentally by a computer generated hologram (CGH) implemented on a programmable spatial light modulator (SLM). Using the same method we also study the quality of their holographic recording on a highly efficient photopolymerizable glass. The proposed approach is useful for the creation of adaptive CGH that takes into account the peculiarities of the SLM, as well as for the quality control of the holographic data storage. PMID:21451630

  18. Soliton generation by internal tidal beams impinging on a pycnocline: laboratory experiments

    CERN Document Server

    Mercier, Matthieu J; Gostiaux, Louis; Gerkema, Theo; Magalhães, Jorge M; Da Silva, José C B; Dauxois, Thierry

    2015-01-01

    In this paper, we present the first laboratory experiments that show the generation of internal solitary waves by the impingement of a quasi-two-dimensional internal wave beam on a pycnocline. These experiments were inspired by observations of internal solitary waves in the deep ocean from synthetic aperture radar (SAR) imagery, where this so-called mechanism of 'local generation' was argued to be at work, here in the form of internal tidal beams hitting the thermocline. Nonlinear processes involved here are found to be of two kinds. First, we observe the generation of a mean flow and higher harmonics at the location where the principal beam reflects from the surface and pycnocline; their characteristics are examined using particle image velocimetry (PIV) measurements. Second, we observe internal solitary waves that appear in the pycnocline, detected with ultrasonic probes; they are further characterized by a bulge in the frequency spectrum, distinct from the higher harmonics. Finally, the relevance of our re...

  19. Generation of tubular beams of negative hydrogen ions by a surface plasma source

    International Nuclear Information System (INIS)

    The results of experiments on obtaining a tubular beam of hydrogen negative ions from a surface plasma source with emission ring slit of 100 mm diameter are described in the study. Conditions of burning of a high current ring discharge generating effectively hydrogen negative ions with current density up to 2.1 A/cm2 are investigated. The possibility of generation of intensive tubular beams of hydrogen negative ions by surface plasma sources is shown, the 2.4 A ion beam is obtained. The results of preliminary experiments on accelerating tubular beam up to 135 keV are described. Azymuthally uniform current density distribution of intensive tubular beams generated by discharges with a close electron drift in a surface plasma source with emission ring slit, absence of high-frequency oscillations in optimal conditions of sources operation as well as the possibility of the most complete use of generated by the discharge negative ions flow show the prospects of development of these sources for fast atom injectors

  20. Beam characterization of a lab bench cold cathode ultra-soft X-ray generator

    Science.gov (United States)

    Ounoughi, N.; Mavon, C.; Belafrites, A.; Groetz, J.-E.; Fromm, M.

    2013-06-01

    The aim of this work is to characterize the Ultra Soft X-ray (USX, 1.5 keV, Al Kα) photon beam of a customized lab bench cold cathode generator. Within this generator, the electron beam is slowed down in a thin aluminium foil (16 μm) supported by an easily exchangeable anode. It is shown that the thickness of the foil and the anode configuration determine the spatial distribution and the fluence rate of the photon beam, whereas accelerating voltage determines both fluence rate and energy spectrum feature. It is shown also that under specific operation parameters (i.e. accelerating voltage), a Gaussian energy distribution of the beam can be generated which is centred on the energy of the Al Kα line (1.5 keV). Dosimetric films of GAFCHROMIC® HD-810 were used to estimate the photon fluence rate distribution of the beam. Its variation, when the generator acts as a monoenergetic source, was characterized with the two different configurations of the anode assembly. Finally, it is verified that the anode assembly consisting in a flat washer, on which the aluminium foil is set, acts as a simple point-source.