WorldWideScience

Sample records for beamlet optical switch

  1. Design and performance of the beamlet optical switch

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, M.A.; Woods, B.W.; DeYoreo, J.J. [and others

    1996-06-01

    High-energy lasers for Inertial Confinement Fusion (ICF) experiments are typically designed with large apertures (>30 cm) to keep the fluence below the damage threshold of the various optical components. Until recently, no optical switch technology could be scaled to the aperture size, aperture shape (square), and switching speed required for the next generation of ICF drivers. This step is critical: The Beamlet multipass amplifier cavity uses a full-aperture optical switch to trap the laser pulse within the cavity and to divert the pulse out of the cavity when it reaches the required energy. By rotating the polarization of the beam, a Pockels cell in the switch controls whether the beam is transmitted through, or reflected from, the polarizer. In this article the authors describe an optical switch technology that does scale to the required aperture size and shape for Beamlet and the porposed National Ignition Facility (NIF) laser, and can employ a thin crystal. This switch consists of a thin-film polarizer and a plasma-electrode Pockels cell (PEPC), the latter originally invented at Lawrence Livermore National Laboratory (LLNL) in the 1980s and under further development since 1991. After discussing the PEPC concept, they present the design and optical performance of a 32 x 32 cm{sup 2} prototype PEPC, including discussions of the crystals, the PEPC assembly, the vacuum and gas system, and the high-voltage pulsers. Then they describe the performance of the 37 x 37 cm{sup 2} PEPC construced specifically for the Beamlet laser. Finally, they discuss important technology issues that arose during PEPC development: cathode sputtering, cathode heating, nonuniformities in the switching profile, switch-pulse leakage current, and an estimate of the plasma density and temperature produced during PEPC operation.

  2. Large-aperture, high-damage-threshold optics for beamlet

    International Nuclear Information System (INIS)

    Beamlet serves as a test bed for the proposed NIF laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of our previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, we discuss the properties and characteristics of the large-aperture optics used on Beamlet

  3. Large-aperture, high-damage-threshold optics for beamlet

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J. [and others

    1996-06-01

    Beamlet serves as a test bed for the proposed National Ignition Facility (NIF) laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of the previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, the authors discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  4. Optical switches and switching methods

    Energy Technology Data Exchange (ETDEWEB)

    Doty, Michael

    2008-03-04

    A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.

  5. Introduction to Optical Burst Switching

    OpenAIRE

    KERNÁCS János; SZILÁGYI Szabolcs

    2010-01-01

    Optical Burst Switching (OBS) isconsidered a popular switching paradigm for therealization of all-optical networks due to the balance itoffers between the coarse-grained Optical CircuitSwitching (OSC) and fine-grained Optical PacketSwitching (OPS). Given that the data are switched allopticallyat the burst level, Optical Burst Switchingcombines the transparency of Optical CircuitSwitching with the benefits of statistical multiplexingin Optical Packet Switching.

  6. Optical packet switching

    Science.gov (United States)

    Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony

    2005-02-01

    We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.

  7. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... between the electrical switched layer and the WDM transport layer. Analytical models are implemented to determine the signal quality ghrough the switch blocks in terms of power penalty and to assess the traffic performance of different switch block architectures. Further, a computer simulation model...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...

  8. Laser damage performance of fused silica optical components measured on the beamlet laser at 35nm

    International Nuclear Information System (INIS)

    A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL (aperture: 34 cm x 34 cm). Three prototype NIF focus lenses were exposed to 351 nm pulses (1.5 ns or 3 ns) during four experimental campaigns, each consisting of 23 to 38 pulses at NIF relevant fluences. Each lens was sol-gel AR coated and all laser exposures were performed in a vacuum environment. Through inspections of the lens before, during and after the campaigns, pulse-to-pulse damage growth rates were measured for damage initiating both on the surfaces and at bulk inclusions. Radial growth rates measured for rear surface damage was typically 10x higher than that measured in the bulk or at the front surface. No significant correlation of growth rate to precursor type was indicated. For 5 J/cm ampersand sup2;, 3 ns pulses the typical radial growth rate was nominally 20 ampersand micro;m/pulse. Average growth rates measured on three lenses made by two manufacturers were in good agreement. While the growth rate clearly increased with fluence, the data obtained was insufficient to quantify the dependence. The growth rates reported here were 20x-50x higher than values predicted from off-line studies of bare surfaces in air

  9. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  10. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  11. 3(omega) damage threshold evaluation of final optics components using Beamlet mule and off-line testing

    International Nuclear Information System (INIS)

    A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm2, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm2 beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 microm/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0microm/pulse. The lens was also used in Beamlet for a subsequent 1053 microm/526 microm campaign. The 352 microm-initiated damage continued to grow during that campaign although at generally lower growth rate

  12. Optical Packet Switching Demostrator

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach; Berger, Michael Stübert

    2002-01-01

    In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set-up and the...

  13. Circuit switched optical networks

    DEFF Research Database (Denmark)

    Kloch, Allan

    2003-01-01

    Some of the most important components required for enabling optical networking are investigated through both experiments and modelling. These all-optical components are the wavelength converter, the regenerator and the space switch. When these devices become "off-the-shelf" products, optical cross......-connects can substitute the electrical nodes that today connect the installed optical fibres. This substitution will enable a massive increase in capacity since the bandwidth of the individual wavelength channels can be increased drastically when the electronic bit processing can be omitted. Furthermore, it is...... expected that the optical solution will offer an economical benefit for hight bit rate networks. This thesis begins with a discussion of the expected impact on communications systems from the rapidly growing IP traffic, which is expected to become the dominant source for traffic. IP traffic has some...

  14. Beamlet laser diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, S.C.; Behrendt, W.C.; Smith, I.

    1996-06-01

    Beamlet is instrumented extensively to monitor the performance of the overall laser system and many of its subsystems. Beam diagnostics, installed in key locations, are used to fully characterize the beam during its propagation through the multipass cavity and the laser`s output section. This article describes the diagnostics stations located on Beamlet and discusses the design, calibration, and performance of the Beamlet calorimeters. The authors used Nova`s diagnostics packages to develop the Beamlet design to determine beam energy, spatial profile, temporal profile, and other beam parameters. Technologic improvements within the last several years in controls, charge-coupled device (CCD) cameras, and fast oscilloscopes have allowed the authors to obtain more accurate measurements on the Beamlet laser system. They briefly cover some of these techniques, including a description of their LabVIEW based data acquisition system.

  15. A Demonstration of Automatically Switched Optical Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We build an automatically switched optical network (ASON) testbed with four optical cross-connect nodes. Many fundamental ASON features are demonstrated, which is implemented by control protocols based on generalized multi-protocol label switching (GMPLS) framework.

  16. Beamlet pulsed-power system

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.

    1996-06-01

    The 13-MJ Beamlet pulsed-power system provides power to the 512 flash lamps in the cavity and booster amplifiers. Since the flash lamps pump all of the apertures in the 2 x 2 amplifier array, the capacitor bank provides roughly four times the energy required to pump the single active beam line. During the 40 s prior to the shot, the capacitors are charged by constant-current power supplies. Ignitron switches transfer the capacitor energy to the flash lamps via coaxial cables. A preionization system triggers the flash lamps and delivers roughly 1 % of the capacitor energy 200 {mu}s prior to the main discharge. This is the first time flash-lamp preionization has been used in a large facility. Preionization improves the amplifier efficiency by roughly 5% and increases the lifetime of the flash lamps. LabVIEW control panels provide an operator interface with the modular controls and diagnostics. To improve the reliability of the system, high-energy-density, self-healing, metallized dielectric capacitors are used. High-frequency, voltage-regulated switching power supplies are integrated into each module on Beamlet, allowing greater independence among the modules and improved charge voltage accuracy, flexibility, and repeatability.

  17. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  18. Modeling beam propagation and frequency conversion for the beamlet laser

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, J.M.

    1996-06-01

    The development of the Beamlet laser has involved extensive and detailed modeling of laser performance and beam propagation to: (1) predict the performance limits of the laser, (2) select system configurations with higher performance, (3) analyze experiments and provide guidance for subsequent laser shots, and (4) design optical components and establish component manufacturing specifications. In contrast to modeling efforts of previous laser systems such as Nova, those for Beamlet include as much measured optical characterization data as possible. This article concentrates on modeling of beam propagation in the Beamlet laser system, including the frequency converter, and compares modeling predictions with experimental results for several Beamlet shots. It briefly describes the workstation-based propagation and frequency conversion codes used to accomplish modeling of the Beamlet.

  19. Electromagnetic optical switch for optical network communication

    International Nuclear Information System (INIS)

    The electromagnetic optical switch combines with Ni/Fe permalloy magnetic circuit design, high aspect ratio microstructure electroplating, bulk micromachining, excimer laser ablation and low temperature wafer bonding. The result shows it can output force 68 mN, deflection angle can reach 82 with 4820 A/m, frequency can reach 2 kHz, and bonding strength can be larger than 216 kg/cm2

  20. Design and performance of the beamlet amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.

    1996-06-01

    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  1. Threats in Optical Burst Switched Network

    Directory of Open Access Journals (Sweden)

    P. Siva Subramanian

    2011-05-01

    Full Text Available Optical network is a viable network for future communication, which transmits data at an average rate of 50Tb/s. Optical Burst Switching is a trusted mechanism used for Optical network. There is a good amount of research done in the area of security in Optical networks. In addition, the issues related to physical network security has been dealt with respect to Optical networks. Our proposed work is intend to find the possible security threats that may happen in Optical Burst Switched Networks and the counter measures are examined separately. The NS-2 simulator with modified OBS patch is used to verify and validate the proposed mechanism

  2. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    Energy Technology Data Exchange (ETDEWEB)

    Baltador, C., E-mail: carlo.baltador@igi.cnr.it; Veltri, P.; Agostinetti, P.; Chitarin, G.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete S.p.A), Corso Stati Uniti, 4, 35127 Padova (Italy)

    2016-02-15

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.

  3. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets.

    Science.gov (United States)

    Baltador, C; Veltri, P; Agostinetti, P; Chitarin, G; Serianni, G

    2016-02-01

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time. PMID:26932023

  4. Ultrafast all-optical switching in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-04-01

    All-optical switching has been demonstrated in bacteriorhodopsin based on excited-state nonlinear absorption. A probe laser beam at 640 nm corresponding to the O-state absorption maximum is switched due to a strong pulsed pump laser beam at 570 nm, that corresponds to the maximum ground state absorption. We have studied the effect of variation in pulse width and in small signal absorption coefficient on the switching characteristics. The switching time decreases as the pulse width of the pump beam decreases and the small signal absorption coefficient increases. The switching contrast depends mainly on the peak pumping intensity.

  5. Isolation of Integrated Optical Acousto-Optic Switch

    Institute of Scientific and Technical Information of China (English)

    XIAO Li-Feng; LIU Ying; WANG Wei-Peng; GENG Fan

    2006-01-01

    @@ Isolation of a new structured acousto-optic switch based on an integrated optical polarization-independent quasicollinear acousto-optic tunable filter is studied in detail. The factors that influence the isolation of the optical switch are analysed, the expressions of the isolation are educed, and the isolation of the device is measured in experiment. It is found that the isolation mainly depends on the TE/TM mode intensity ratio, the mode-splitter extinction rate, and the conversion efficiency.

  6. United assembly algorithm for optical burst switching

    Institute of Scientific and Technical Information of China (English)

    Jinhui Yu(于金辉); Yijun Yang(杨教军); Yuehua Chen(陈月华); Ge Fan(范戈)

    2003-01-01

    Optical burst switching (OBS) is a promising optical switching technology. The burst assembly algorithm controls burst assembly, which significantly impacts performance of OBS network. This paper provides a new assembly algorithm, united assembly algorithm, which has more practicability than conventional algorithms. In addition, some factors impacting selections of parameters of this algorithm are discussed and the performance of this algorithm is studied by computer simulation.

  7. Optical switching with a thermochromic film

    Science.gov (United States)

    Men, Liqiu; Chen, Qiying

    2007-02-01

    In this article, optical switching effect of a thermochromic thin film is reported. The transmittance of the film increased from 0.64 at 120°C to 0.96 at 200°C indicating strong temperature dependence for its optical properties. The temperature dependence of the optical properties was found to be reversible during the heating and cooling processes. The possibility to reduce the size of the laser beam with the nonlinear optical switching effect of the thermochromic film is discussed.

  8. Multiserver switch scheduling for high speed optical switches

    Science.gov (United States)

    Golla, Prasad; Blanton, John; Damm, Gerard

    2003-10-01

    A switch matrix implemented as an optical crossbar using semiconductor optical amplifiers is able to accommodate extreme concentrations of data traffic. Due to the need to reduce optical guard band overhead it is beneficial to switch fixed size bursts of data cells on a time slot basis. The high capacity of the optical matrix supports multiple optical ports per burst card, and the implementation of multiple queue servers per burst card helps make better use of the multiplicity of ports. Problems associated with arbitrating multiple ports and multiple servers per burst card have been resolved by extending the operation of existing iterative, single server scheduling algorithms. The multiserver arbitration time will be in proportion to the number of servers -- corresponding to the channels of DWDM link -- unless a reconciliation stage is used after each iteration when an arbiter per server is used. The reconciliation stage sets the problem of broken data dependencies between server arbitrations in this case. Further, to address the time limitations for computing the scheduling solution, parallel arbiter implementations have been developed and tested against single arbiter designs. Again, the broken dependencies between iterations of an arbitration are addressed through the use of a grant reconciliation stage. The use of multiple queue servers per burst card also resolves some of the data loss problems related to polarized traffic. Simulations of the multiple server and parallel arbiter implementations have demonstrated their efficiency compared to previous implementations. Compounded to this problem is maintaining high throughput of the switch matrix while observing data transit time limits. This involves balancing two contradictory requirements; switch or line card efficiency and data transit times. To improve efficiency it is desirable to transmit only full packets. However, to prevent loss of data due to timeout it will be necessary to transmit some incomplete

  9. Micro electro mechanical system optical switching

    Science.gov (United States)

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  10. 160-Gb/s Silicon All-Optical Packet Switch for Buffer-less Optical Burst Switching

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Pu, Minhao;

    2015-01-01

    We experimentally demonstrate a 160-Gb/s Ethernet packet switch using an 8.6-mm-long silicon nanowire for optical burst switching, based on cross phase modulation in silicon. One of the four packets at the bit rate of 160 Gb/s is switched by an optical control signal using a silicon based 1 × 1 all......-optical packet switch. Error free performance (BER <1E-9) is achieved for the switched packet. The use of optical burst switching protocols could eliminate the need for optical buffering in silicon packet switch based optical burst switching, which might be desirable for high-speed interconnects within a short...

  11. Optically coupled cavities for wavelength switching

    International Nuclear Information System (INIS)

    An optical bistable device which presents hysteresis behavior is proposed and experimentally demonstrated. The system finds applications in wavelength switching, pulse reshaping and optical bistability. It is based on two optically coupled cavities named master and slave. Each cavity includes a semiconductor optical amplifier (SOA), acting as the gain medium of the laser, and two pair of fiber Bragg gratings (FBG) which define the lasing wavelength (being different in each cavity). Finally, a variable optical coupler (VOC) is employed to couple both cavities. Experimental characterization of the system performance is made analyzing the effects of the coupling coefficient between the two cavities and the driving current in each SOA. The properties of the hysteretic bistable curve and switching can be controlled by adjusting these parameters and the loss in the cavities. By selecting the output wavelength (λ1 or λ2) with an external filter it is possible to choose either the invert or non-invert switched signal. Experiments were developed employing both optical discrete components and a photonic integrated circuit. They show that for 8 m-long cavities the maximum switching frequency is about 500 KHz, and for 4 m-long cavities a minimum rise-time about 21 ns was measured. The switching time can be reduced by shortening the cavity lengths and using photonic integrated circuits.

  12. Node design in optical packet switched networks

    DEFF Research Database (Denmark)

    Nord, Martin

    2006-01-01

    proposed parallel designs to overcome scalability constraints and to support migration scenarios. Furthermore, it has proposed and demonstrated optical input processing schemes for hybrids networks to simultaneously support OPS and Optical Circuit Switching. Quality of Service (QoS) differentiation enables......The thesis discusses motivation, realisation and performance of the Optical Packet Switching (OPS) network paradigm. The work includes proposals for designs and methods to efficiently use both the wavelength- and time domain for contention resolution in asynchronous operation. The project has also...

  13. Image edge detection based on beamlet transform

    Institute of Scientific and Technical Information of China (English)

    Li Jing; Huang Peikang; Wang Xiaohu; Pan Xudong

    2009-01-01

    Combining beamlet transform with steerable filters, a new edge detection method based on line gra-dient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators are also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.

  14. Alternative Controller for a Fiber-Optic Switch

    Science.gov (United States)

    Peters, Robert

    2007-01-01

    A simplified diagram of a relatively inexpensive controller for a DiCon VX (or equivalent) fiber-optic switch -- an electromechanically actuated switch for optically connecting one or two input optical fibers to any of a number of output optical fibers is shown. DiCon VX fiber-optic switches are used primarily in research and development in the telecommunication industry. This controller can control any such switch having up to 32 output channels.

  15. Integrated Fabry-Perot optical space switches

    Science.gov (United States)

    Menard, Michael

    As information technologies are adopted by more people to accomplish a greater variety of tasks, the need for optical telecommunication networks with higher capacity and flexibility grows. In addition to improving throughput by increasing transmission rates and the number of wavelength channels, novel network architectures using optical burst or packet based switching are investigated because they allow a more efficient use of transmission capacity and they enable the reorganisation of wavelength connections according to traffic demands. The implementation of such networks requires fast, broadband, transparent, and scalable optical space switches. Although research on optical space switches has been on going for decades, no solution that meets all of the above requirements has been reported yet. The work presented in this thesis introduces a novel optical space switch configuration based on tunable integrated Fabry-Perot filters working at oblique incidence and investigates their performance. A design method to implement this new switch concept is described and demonstrated with the fabrication and characterisation of optical prototypes. The prototypes are implemented in GaAs/AlGaAs planar waveguides and they are designed to be operated using the electro-optic effect. Deep etching is used to create the switch features and a comprehensive optimization of the waveguide structure is conducted to minimize radiation losses. To maximize the number of wavelength channels that can be controlled with a small refractive index modulation, the switches have a 200 GHz comb frequency response that transmits/reflects one out of every two channels on the ITU 100 GHz grid. Thus, shifting their frequency response by one channel spacing is sufficient to change the state of every channel. Furthermore, four Fabry-Perot cavities are coupled to obtain a flat and wide theoretical passband of more than 50 GHz. A Gaussian beam propagation analysis is performed to determine the minimum beam

  16. Node design in optical packet switched networks

    OpenAIRE

    Nord, Martin; Dittmann, Lars

    2006-01-01

    The thesis discusses motivation, realisation and performance of the Optical Packet Switching (OPS) network paradigm. The work includes proposals for designs and methods to efficiently use both the wavelength- and time domain for contention resolution in asynchronous operation. The project has also proposed parallel designs to overcome scalability constraints and to support migration scenarios. Furthermore, it has proposed and demonstrated optical input processing schemes for hybrids networks ...

  17. Photonic Packet Switching Based on Optical Label Processing

    Institute of Scientific and Technical Information of China (English)

    Naoya Wada; Hiroaki Harai; Fumito Kubota

    2003-01-01

    We express a photonic packet switch prototype based on optical label processing methods which dramatically increase the label processing capability. We experimentally demonstrate 40Gbit/s/port packet switching and optical buffering capabilities of the prototype.

  18. Design and Simulation of Routing-switching Protocol Based on Optical Switch Array

    Institute of Scientific and Technical Information of China (English)

    HE Wei; MAO You-ju; LIU Jiang

    2004-01-01

    An optical routing- switching technology based on optical switch array is proposed. The characteristics of the blocking and nonblocking networks are analyzed and compared, odd- even sorting network is used to realize optical routing- switching, relative routing- switching protocol is designed.Simulation test under load shows that it can reduce a blocking effectively and enhance an efficiency of switching. Further, it can transfer the processing and switching within parallel computer from electric domain to optical domain. It can make parallel computer coordinating computing and processing at much more higher speed, storing and transmitting even more efficiently.

  19. A low-power optical electron switch

    International Nuclear Information System (INIS)

    An electron beam is deflected when it passes over a silicon-nitride surface, if the surface is illuminated by a low-power continuous-wave diode laser. A deflection angle of up to 1.2 mrad is achieved for an electron beam of 29 µrad divergence. A mechanical beam-stop is used to demonstrate that the effect can act as an optical electron switch with a rise and fall time of 6 µs. Such a switch provides an alternative means to control electron beams, which may be useful in electron lithography and microscopy. (paper)

  20. Two Novel Structures of Optical Packet Switching Nodes

    Institute of Scientific and Technical Information of China (English)

    YIN Hongxi; XU Anshi; WU Deming

    2001-01-01

    All-optical packet switching networkis currently one of the research hotspots of all-opticalcommunication networks and optical packet switchingnodes are the key technique of optical packet switch-ing network. In this paper, two novel structures ofoptical packet switching nodes are put forward, and the switching capacity of the node and the packet con-tention resolution are analyzed. These two switchingarchitectures can realize wavelength routing switchingfunction and broadcast-and-select switching functionrespectively. They are simple but efficient for realizingoptical packet switching network.

  1. Survey and Comparison of Optical Switch Fabrication Techniques and Architectures

    CERN Document Server

    Yadav, Ravinder

    2010-01-01

    The main issue in the optical transmission is switching speed. The optical packet switching faces many significant challenges in processing and buffering. The generalized multilevel protocol switching seeks to eliminate the asynchronous transfer mode and synchronous optical network layer, hence the implementation of IP over WDM (wave length division multiplexing). Optical burst switching attempts to minimize the need for processing and buffering by aggregating flow of data packets in to burst. In this paper there is an extensive overview on current technologies and techniques concerning optical switching.

  2. Integrated photonic switches for nanosecond packet-switched optical wavelength conversion

    Science.gov (United States)

    Fidaner, Onur; Demir, Hilmi Volkan; Sabnis, Vijit A.; Zheng, Jun-Fei; Harris, James S., Jr.; Miller, David A. B.

    2006-01-01

    We present a multifunctional photonic switch that monolithically integrates an InGaAsP/InP quantum well electroabsorption modulator and an InGaAs photodiode as a part of an on-chip, InP optoelectronic circuit. The optical multifunctionality of the switch offers many configurations to allow for different optical network functions on a single chip. Here we experimentally demonstrate GHz-range optical wavelength-converting switching with only ~10 mW of absorbed input optical power, electronically controlled packet switching with a reconfiguration time of switching in <300 ps.

  3. Error rate degradation due to switch crosstalk in large modular switched optical networks

    DEFF Research Database (Denmark)

    Saxtoft, Christian; Chidgey, P.

    1993-01-01

    A theoretical model of an optical network incorporating wavelength selective elements, amplifiers, couplers and switches is presented. The model is used to evaluate a large modular switch optical network that provides the capability of adapting easily to changes in network traffic requirements. The...... network dimensions are shown to be limited by the optical crosstalk in the switch matrices and by the polarization dependent loss in the optical components...

  4. Gain-assisted optical switching in plasmonic nanocavities

    Institute of Scientific and Technical Information of China (English)

    Yun Shen; Guoping Yu; Jiwu Fu; Liner Zou

    2012-01-01

    A plasmonic cavity filled with active material is proposed to explain optical switching.Optical properties,including transmission,response time,and field distribution of on/off state,are numerically investigated.We demonstrate that such a gain-assisted plasmonic structure can achieve optical switching in the nanodomain and shorten the switching time to the subpicosecond level.Our results indicate the potential application of the proposed structure in optical communication and photonic integrated circuits.%A plasmonic cavity filled with active material is proposed to explain optical switching. Optical properties, including transmission, response time, and field distribution of on/off state, are numerically investigated. We demonstrate that such a gain-assisted plasmonic structure can achieve optical switching in the nan-odomain and shorten the switching time to the subpicosecond level. Our results indicate the potential application of the proposed structure in optical communication and photonic integrated circuits.

  5. Compact integrated optical devices for optical sensor and switching applications

    NARCIS (Netherlands)

    Kauppinen, Lasse Juhana

    2010-01-01

    This thesis describes the design, fabrication, and characterization of compact optical devices for sensing and switching applications. Our focus has been to realize the devices using CMOS-compatible fabrication processes. Particularly the silicon photonics fabrication platform, ePIXfab, has been use

  6. Optical switch based on nanocrystalline VOx thin film

    Science.gov (United States)

    Chen, Xiqu; Dai, Jun

    2009-11-01

    An optical switch is fabricated based on nanocrystalline vanadium oxide (VOx) thin film using micromachining technology. An "on" state with semiconducting phase to an "off" state with metallic phase is controlled by applying a DC power to Aurum electrodes of the optical switch. The optical switching performance for the fabricated device is investigated at optical communication wavelength of 1.55μm. The heater power requires to achieve switching action is about 15mW. The testing results show that the extinction ratio and switching response time are 14dB and 2ms, respectively.

  7. Cost functions in optical burst-switched networks

    OpenAIRE

    Klusek, Bartlomiej

    2006-01-01

    Optical Burst Switching (OBS) is a new paradigm for an all-optical Internet. It combines the best features of Optical Circuit Switching (OCS) and Optical Packet Switching (OPS) while avoidmg the mam problems associated with those networks .Namely, it offers good granularity, but its hardware requirements are lower than those of OPS. In a backbone network, low loss ratio is of particular importance. Also, to meet varying user requirements, it should support multiple classes of service. In ...

  8. Wavelength switching in an optical klystron

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, K.W.; Smith, T.I. [Stanford Univ., CA (United States)

    1995-12-31

    A symmetric optical klystron consists of two identical undulator sections separated a dispersive section. For a device of a given length, an optical klystron is capable of producing much more bunching, and therefore more gain, than a traditional undulator. Another consequence of introducing dispersion between two undulator sections is that the overall spontaneous radiation pattern results from the interference between the two undulator sections, and as such resembles a standard undulator radiation pattern modulated by a sinusoidal interference term. The presence of several wavelength peaks in the spontaneous lineshape implies an equal number of peaks in the gain spectrum. If the strength of the dispersion section is adjusted to provide nearly equal gain on the two largest of these peaks, then they will compete, and the FEL may switch wavelengths based on noise, cavity length, or other perturbations. We provide the first observations of this behavior, using the FIREFLY system at the Stanford Picosecond FEL Center. In FIREFLY, relative wavelength switching by more than 3%--more than twice the laser linewidth-has been observed by varying dispersion section strength, while at intermediate points stable switching has also been observed as a function of cavity length.

  9. Adaptive optics assisted reconfigurable liquid-driven optical switch

    Science.gov (United States)

    Fuh, Yiin-Kuen; Huang, Wei-Chi

    2013-07-01

    This study demonstrates a mechanical-based, liquid-driven optical switch integrated with adaptive optics and a reconfigurable black liquid (dye-doped liquid). The device aperture can be continuously tuned between 0.6 and 6.9 mm, precisely achieved by a syringe pump for volume control. Adaptive optics (AO) capability and possible enhancement of the lost power intensity of the ink-polluted glass plate have also been experimentally investigated. While measuring power intensity with/without AO indicates only a marginal difference of ˜1%, a significant difference of 3 s in the response characteristic of "switching on" time can be observed. An extremely high contrast ratio of ˜105 for a red-colored light is achieved.

  10. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.;

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  11. Nanofiber-based all-optical switches

    CERN Document Server

    Kien, Fam Le

    2016-01-01

    We study all-optical switches operating on a single four-level atom with the $N$-type transition configuration in a two-mode nanofiber cavity with a significant length (on the order of $20$ mm) and a moderate finesse (on the order of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the $D_2$ line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers ...

  12. Beam steering by computer generated hologram for optical switches

    Science.gov (United States)

    Yamaguchi, Keita; Suzuki, Kenya; Yamaguchi, Joji

    2016-02-01

    We describe a computer generated hologram (CGH) method for application to a multiple input and multiple output (MxN) optical switch based on a liquid crystal on silicon (LCOS). The conventional MxN optical switch needs multiple spatial light modulations. However, the CGH method realizes an MxN optical switch simply with a one-time spatial light modulation, resulting in fewer optical elements and better cost efficiency. Moreover, the intrinsic loss of the proposed MxN switch resulting from beam splitting can be reduced by routing multiple signals with a single knob control, which is called a multi-pole multi-throw switch. In this paper, we demonstrate a 5x5 wavelength selective switch (WSS) and a 2-degree ROADM that we realized using the above CGH method. The experimental results indicate that these switches work well with a crosstalk of < -14.9 dB.

  13. Monolithic InP-based fast optical switch module for optical networks of the future

    DEFF Research Database (Denmark)

    Xi, Chen; Regan, James; Durrant, Tim; Shu, Yi; Saridis, George; Simeonidou, Dimitra; Kamchevska, Valerija; Fagertun, Anna Manolova; Yu, Siyuan

    We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance.......We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance....

  14. Variable time-period optical switching: a novel OBS implementation

    Institute of Scientific and Technical Information of China (English)

    Jinsong Zhang(张劲松); Mingcui Cao(曹明翠); Fengguang Luo(罗风光); Tao Chen(陈涛)

    2003-01-01

    In this paper, we proposed a novel optical switching method based on optical burst switching (OBS), we call it variable time-period optical switching (VTPOS). It can both support circuit services and other immerged packet services. It has better usability of bandwidth, shorter offset and latency time than others of unidirectional transport signaling mechanisms for OBS. It supports deflection switching for improve blocking performance without the need of schedule buffer. It introduces a time pointer and phase indicator that made synchronous more precisely and requires less guard time, it also classifies the different services classes with a relative QoS model.

  15. Optical switching of functionalized carbon nanotube transistors

    Science.gov (United States)

    Borghetti, Julien; Derycke, Vincent; Chenevier, Pascale; Filoramo, Arianna; Goffman, Marcello; Bourgoin, Jean-Philippe; Lenfant, Stephane; Vuillaume, Dominique

    2006-03-01

    Carbon Nanotube (CNT) transistors can emit or detect photons at wavelengths defined by the CNT chirality. To extend their capabilities in optoelectronics, it is important to be able to tune this wavelength independently of the CNT structure. A way to achieve such a goal is to chemically functionalize the CNT. In the present study, we demonstrate that drastic photo-induced modifications of the electrical characteristics of self-assembled CNT transistors functionalized by photoactive polymers can be achieved. We show that the polymer film acts as a wavelength dependent 'optical gate', which is much more efficient than a conventional electrostatic gate and can induce changes in conductance exceeding four orders of magnitude. The switching mechanism involves the creation and separation of photo-excited charges in the polymer, the spatial distribution and relaxation rates of which are studied taking advantage of the very high charge sensitivity of the CNT transistor.

  16. Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach - Zehnder-type all-optical switch

    International Nuclear Information System (INIS)

    We investigate the effect of intraband carrier dynamics on a nonlinear phase shift induced in a semiconductor optical amplifier (SOA) in terms of its applicability to the Symmetric Mach - Zehnder (SMZ) all-optical switch. Nonlinear phase shifts in an SOA and a passive semiconductor waveguide are compared under control-pulse durations ranging from 3.2 to 0.4 ps. The results show that femtosecond switching with higher efficiency is still possible by using the SOA. We experimentally achieve femtosecond (670 fs), femtojoule (140 fJ) switching with the SOA-based SMZ all-optical switch. [copyright] 2001 American Institute of Physics

  17. Techniques for labeling of optical signals in bust switched networks

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Koonen, A. M. J.; Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva; Peucheret, Christophe; Olmos, J. J. Vegas; Khoe, G. D.

    2003-01-01

    We present a review of significant issues related to labeled optical burst switched (LOBS) networks and technologies enabling future optical internet networks. Labeled optical burst switching provides a quick and efficient forwarding mechanism of IP packets/bursts over wavelength division...... multiplexed (WDM) networks due to its single forwarding algorithm, thus yielding low latency, and it enables scaling to terabit rates. Moreover, LOBS is compatible with the general multiprotocol label switching (GMPLS) framework for a unified control plane. We present a review on techniques for labeling of...... optical signals for LOBS networks, including experimental results, we discuss as well issues for further research....

  18. New scheme of optical switch technology of time division

    Institute of Scientific and Technical Information of China (English)

    GAO Ze-hua; QI Yong-xing; JI Yue-feng; QIAN Zong-jue

    2006-01-01

    The optical time division switch scheme using optical scanning was proposed in this paper.Quick switching can be realized by the optical element and optical system based on the proposed scheme.The modulation velocity of the proposed scheme can be of the order of nanosecond,which is quick enough for the next generation of optical communication.This scheme will be a key technology in the optical network.The principle of the scheme is studied.The structure of the scheme is proposed and the performance is analyzed.

  19. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N2, NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author)

  20. Quality of service in optical packet switched networks

    CERN Document Server

    Rahbar, Akbar G

    2015-01-01

    This book is a comprehensive study on OPS networks, its architectures, and developed techniques for improving its quality of switching and managing quality of service.  The book includes: Introduction to OPS networks, OOFDM networks, GMPLS-enabled optical networks, QoS in OPS networks Hybrid contention avoidance/resolution schemes in both long-haul and metro optical networks Hybrid optical switching schemes

  1. Power consumption evaluation of circuit-switched versus packet-switched optical backbone networks

    OpenAIRE

    Van Heddeghem W.; Lannoo B.; Colle D.; Pickavet M.; Musumeci F.; Pattavina A.; Idzikowski F.

    2013-01-01

    While telecommunication networks have historically been dominated by a circuit-switched paradigm, the last decades have seen a clear trend towards packet-switched networks. In this paper we evaluate how both paradigms perform in optical backbone networks from a power consumption point of view, and whether the general agreement of circuit switching being more power-efficient holds. We consider artificially generated topologies of various sizes, mesh degrees and not yet previously explored in t...

  2. Research on wet etching at MEMS torsion mirror optical switch

    Science.gov (United States)

    Zhang, Yi; Wang, Jifeng; Luo, Yuan

    2002-10-01

    Etching is a very important technique at MEMS micromachining. There are two kinds of etching processing, the one is wet etching and the other is dry etching. In this paper, wet selective etching with KOH and tetramethyl ammonium hydroxide (TMAH) etchants is researched in order to make a torsion mirror optical switch. The experiments results show that TMAH with superphosphate is more suitable at MEMS torsion mirror optical switch micromachining than KOH, and it also has good compatibility with IC processing. Also our experiments results show some different with other reported research data. More work will be done to improve the yield rate of MEMS optical switch.

  3. MPLS over Segmented WDM Optical Packet Switching Networks

    Directory of Open Access Journals (Sweden)

    Hakim Mellah

    2006-01-01

    Full Text Available Wavelength Division Multiplexing (WDM is a promising solution for data transport in future all-optical wide area networks. Such networks consist of fibers joined by dynamically controllable cross-connects which provide purely optical transport between pairs of network access stations. Optical packet switching (OPS is optical switching with the finest granularity. Incoming packets are switched all-optically without being converted to electrical signal. There are two categories of OPS networks. Slotted (synchronous OPS networks, in which all the packets have the same size and unslotted (asynchronous OPS networks, where packets may or may not have the same size. In this study we propose to integrate MPLS over slotted OPS networks by aggregating optical packets into a labeled optical burst. The burst has a fixed number of packets (segments. The number of segments in each burst is encoded in the experimental field of the MPLS header.

  4. Optically triggered Q-switched photonic crystal laser

    OpenAIRE

    Maune, Brett; Witzens, Jeremy; Baehr-Jones, Thomas; Kolodrubetz, Michael; Atwater, Harry; Scherer, Axel; Hagen, Rainer; Qiu, Yueming

    2005-01-01

    An optically triggered liquid crystal infiltrated Q-switched photonic crystal laser is demonstrated. A photonic crystal laser cavity was designed and fabricated to support two orthogonally polarized high-Q cavity modes after liquid crystal infiltration. By controlling the liquid crystal orientation via a layer of photoaddressable polymer and a writing laser, the photonic crystal lasing mode can be reversibly switched between the two modes which also switches the laser’s emission polarization ...

  5. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  6. Optical packet switch architectures for ultrahigh-speed networks

    Science.gov (United States)

    O'Mahony, M. J.; Klonidis, Dimitris; Politi, Christina; Negabati, Reza; Simeonidou, Dimitra

    2005-11-01

    Optical packet switching is commonly considered as a possible technology for future telecommunication networks, due to its compatibility with bursty traffic, eg Internet protocol (IP), and efficient use of wavelength channels. Current transport networks are voice-optimised and connection oriented, however the amount of data traffic is rapidly increasing, resulting in a continuous increase of average traffic through major exchanges exceeding 30% per annum (in Europe). Thus optical packet switching is seen as a future technology that will support diverse traffic profiles and give more efficient bandwidth utilisation through its ability to provide multiplexing at the packet level. In recent years the significance of optical packet switching as an emerging technology has been identified and researched by a number of research groups. Earlier optical packet switching demonstrators presented switching of mainly ATM compatible synchronously transmitted packets at bit rates up to 2.5b/s with the optical header encoded either in series or in parallel to the payload using the sub-carrier modulation technique. More recent projects have demonstrated switching capabilities at 10Gb/s using more advanced approaches with special encoding schemes for header and header detection, together with sophisticated control mechanisms for contention resolution. The capability of switching optical packets at bit rates up to 160Gb/s has recently been demonstrated. This paper discusses the architectures currently proposed for high speed optical packet switching, including the key techniques of header processing and payload switching. The focus is on a high speed demonstrator [OPSnet] capable of operation at rates >100 Gb/s.

  7. Multifunctional disk device for optical switch and temperature sensor

    Institute of Scientific and Technical Information of China (English)

    卞振宇; 梁瑞生; 张郁靖; 易丽璇; 赖根; 赵瑞通

    2015-01-01

    A multifunctional surface plasmon polariton disk device coupled by two metal–insulator–metal (MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82%and 17.70 dB, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.

  8. An optical fan for light beams for high-precision optical measurements and optical switching

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  9. Beamlet pulse-generation and wavefront-control system

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, B.M.; Salmon, J.T.; Wilcox, R.W.

    1996-06-01

    The Beamlet pulse-generation system (or {open_quotes}front end{close_quotes}) refers to the laser hardware that generates the spatially and temporally shaped pulse that is injected into the main laser cavity. All large ICF lasers have pulse-generation systems that typically consist of a narrow-band oscillator, elector-optic modulators for temporal and bandwidth shaping, and one or more preamplifiers. Temporal shaping is used to provide the desired laser output pulse shape and also to compensate for gain saturation effects in the large-aperture amplifiers. Bandwidth is applied to fulfill specific target irradiation requirements and to avoid stimulated Brillouin scattering (SBS) in large-aperture laser components. Usually the sharp edge of the beam`s spatial intensity profile is apodized before injection in the main amplifier beam line. This prevents large-amplitude ripples on the intensity profile. Here the authors briefly review the front-end design and discuss improvements to the oscillator and modulator systems. Their main focus, however, is to describe Beamlet`s novel beam-shaping and wavefront-control systems that have recently been fully activated and tested.

  10. Steering of H- ion beamlet by aperture displacement

    International Nuclear Information System (INIS)

    Focussing of multibeamlets produced from a large accelerator grid is a key issue of ion beam application to the neutral beam injector (NBI) of fusion devices. Another issue is highlighted in a case of negative ion based NBI to compensate beamlet deflection inside the extractor, where magnetic field is applied for suppression of electron extraction. Steering of H- beamlet was carried out by displacing apertures in an electrostatic extractor/accelerator composed of four grids, where the beam energy was in the range of ∼50 keV. Out of a few combination of grid displacement, displacement of ESG (3rd grid) and/or GRG (4th grid) was found to be successful: 1) The beamlet steering angle of 50 mrad was obtained by displacing the apertures of 9 mm dia. up to 3 mm. It was confirmed that the steering angle was proportional fairly well to the displacement. The characteristic of the steering, i.e., the steering angle as a function of displacement, agrees well with the analysis based on the linear optics theory. 2) Neither significant divergence growth nor the beam interception were observed in the steered beams over a wide range of operation. The H- beams, of which divergent angle was 5 mrad, was obtained even under the beamlet steering. Thus the steering by displacement is suitable for the focusing of negative ion beam generated from multi-aperture grids. 3) It was found that the steering angle was independent of the magnetic field direction in the present extractor structure. This is an advantage of the steering technique for compensation of the beam deflection inside the extractor by magnetic field. (author)

  11. Fast integrated optical switching by the protein bacteriorhodopsin

    Science.gov (United States)

    Fábián, László; Wolff, Elmar K.; Oroszi, László; Ormos, Pál; Dér, András

    2010-07-01

    State-of-the-art photonic integration technology is ready to provide the passive elements of optical integrated circuits, based either on silicon, glass or plastic materials. The bottleneck is to find the proper nonlinear optical (NLO) materials in waveguide-based integrated optical circuits for light-controlled active functions. Recently, we proposed an approach where the active role is performed by the chromoprotein bacteriorhodopsin as an NLO material, that can be combined with appropriate integrated optical devices. Here we present data supporting the possibility of switching based on a fast photoreaction of bacteriorhodopsin. The results are expected to have important implications for photonic switching technology.

  12. 160 Gb/s all-optical packet switching field experiment

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; Herrera, J.; Raz, O.;

    2007-01-01

    We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits.......We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits....

  13. Titanium Oxide Intelligent "Optical Switch" Surface

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Bio-mimic\tsuper-hydrophobic\tand super-hydrophilic switches were highly concerned because of their extensive application perspectives in gene transfers,non-loss liquid transportation,micro fluid,gene chips,and slow released drug.

  14. Investigation of performance issues affecting optical circuit and packet switched WDM networks

    OpenAIRE

    Smyth, Frank

    2009-01-01

    Optical switching represents the next step in the evolution of optical networks. This thesis describes work that was carried out to examine performance issues which can occur in two distinct varieties of optical switching networks. Slow optical switching in which lightpaths are requested, provisioned and torn down when no longer required is known as optical circuit switching (OCS). Services enabled by OCS include wavelength routing, dynamic bandwidth allocation and protection switching...

  15. Advanced Optical Burst Switched Network Concepts

    Science.gov (United States)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  16. Development of 1 × 4 MEMS-based optical switch

    OpenAIRE

    Wang, Z. F.; Cao, W; Shan, X. C.; Xu, J. F.; Lim, S. P.; Noell, Wilfried; de Rooij, Nicolaas F.

    2010-01-01

    In this paper, a novel 1×4 optical switch has been developed based on the DRIE vertical mirror technology. Three microactuated vertical silicon mirrors and five tapered/lensed fibers were employed to perform the 1×4 switch function. The comb actuators drive the mirrors linearly into the optical path due to the electrostatic force. The tilted mirror with an angle of 22.5° made the layout of the mirrors and optic fibers more compact. Finite element method (FEM) modeling on the linear comb actua...

  17. Optical computation based on nonlinear total reflectional optical switch at the interface

    Indian Academy of Sciences (India)

    Jianqi Zhang; Huan Xu

    2009-03-01

    A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.

  18. Acousto-Optics Tunable Filter Based on a Hollow Optical Fiber for Broadband Polarization Switch Application

    Institute of Scientific and Technical Information of China (English)

    Jaewon; Lee; Jaewang; Yu; Sangsoo; Choi; Kyunghwan; Oh; Dong; Il; Yum; Byoung; Yoon; Kim

    2003-01-01

    A novel acousto-optic tunable filter (AOTF) using a hollow optical fiber (HOF) is proposed. Its broadband rejection over 100nm was observed and high polarization dependence as a polarization switch is discussed.

  19. Analysis of optical route in a micro high-speed magneto-optic switch

    Science.gov (United States)

    Weng, Zihua; Yang, Guoguang; Huang, Yuanqing; Chen, Zhimin; Zhu, Yun; Wu, Jinming; Lin, Shufen; Mo, Weiping

    2005-02-01

    A novel micro high-speed 2x2 magneto-optic switch and its optical route, which is used in high-speed all-optical communication network, is designed and analyzed in this paper. The study of micro high-speed magneto-optic switch mainly involves the optical route and high-speed control technique design. The optical route design covers optical route design of polarization in optical switch, the performance analysis and material selection of magneto-optic crystal and magnetic path design in Faraday rotator. The research of high-speed control technique involves the study of nanosecond pulse generator, high-speed magnetic field and its control technique etc. High-speed current transients from nanosecond pulse generator are used to switch the magnetization of the magneto-optic crystal, which propagates a 1550nm optical beam. The optical route design schemes and electronic circuits of high-speed control technique are both simulated on computer and test by the experiments respectively. The experiment results state that the nanosecond pulse generator can output the pulse with rising edge time 3~35ns, voltage amplitude 10~90V and pulse width 10~100ns. Under the control of CPU singlechip, the optical beam can be stably switched and the switching time is less than 1μs currently.

  20. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach–Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  1. Flexible Optical-Comb-Based Multi-Wavelength Conversion for Optical Switching and Multicast

    OpenAIRE

    Vilar Mateo, Ruth; Ramos Pascual, Francisco; Marques, C.; Nogueira, Regina Isabel; Teixeira, A; Llorente Sáez, Roberto; RAMOS, FRAN JOSE

    2011-01-01

    Experimental results on multi-wavelength conversion based on optical comb generation for optical switching and multicast applications are presented. All the newly generated channels showed good performance with clear and open eye diagrams. FP7-ICT- 2009-4-249142 FP7-ICT-2007-1- 216863 Vilar Mateo, R.; Ramos Pascual, F.; Marques, C.; Nogueira, RI.; Teixeira, A.; Llorente Sáez, R.; Ramos, FJ. (2011). Flexible Optical-Comb-Based Multi-Wavelength Conversion for Optical Switch...

  2. Actively Q-switched erbium-doped fiber ring laser with a nanosecond ceramic optical switch

    International Nuclear Information System (INIS)

    An actively Q-switched erbium-doped fiber laser with a fiber-pigtailed nanosecond ceramic optical switch is experimentally investigated in this paper. Firstly, the ceramic optical switch was systematically characterized. Then, it was used to actively Q-switch an all-fiber erbium-doped fiber ring laser. Stable Q-switching laser pulses with a repetition rate from 2 kHz–40 kHz were achieved. The minimum pulse width was measured to be ∼25 ns at 2 kHz when pumped at 150 mW, and the corresponding maximum peak power was ∼2.9 W. Multi-peak pulses were observed at low repetition rates and the reasons for these were analyzed. This study shows that a nanosecond ceramic switch can be used as a good Q switch due to its low insertion loss, high on/off ratio, ultrafast response, and low electrical power consumption. (paper)

  3. All-Optical Switches in Optical Time-Division Multiplexing Technology: Theory,Experience and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Optical time division multiplexing (OTDM) is one of thepromisinig ways for the future high-speed optical fiber communication networks. All-optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time-division demultiplexing, packet switching, all-optical regenerating and so on. This thesis mainly studies various all-optical switch technologies and their utilization in the fields of all-optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.(1) A novel all-optical ultrafast demultiplexing scheme using the soliton self-trapping effect in birefringent fiber is proposed.(2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.(3) The performance analysis and the configuration optimization of the all-optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all-optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach-Zehnder Interferometer configuration.(4) The 8×2\\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.(5) The NOLM switch is used to realize the all-optical 3R regeneration of 2\\^5 Gb/s Return-to-Zero signal.(6) The feasibility and limitation of the all-optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all-optical packet dropping node suitable in the networks with ring or bus configuration and an all-optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all-optical packet switching through combining the all-optical switches and the reasonable logic decisions.

  4. All-Optical Switching Based on Azo Polymer Material

    Institute of Scientific and Technical Information of China (English)

    DENG Yan; LUO Yan-Hua; WANG Pei; LU Yong-Hua; MING Hai; ZhANG Qi-Jing

    2007-01-01

    Conventional all-optical switches based on azo polymer films and the all-optical switches based on the attenuated total reflection (ATR) geometry are investigated. A conventional switch system, including a pump beam of 532nm and a probe beam of 650nm, is based on the photoinduced birefringence effect of azo polymer. An ATR switch in a prism-multilayer configuration is achieved by changing the reflectance of the probe beam with an external pump beam. The ATR method provides the substantial improvement of the speed and the efficiency of the modulation over the conventional method. Although the azo polymer response still remains relatively slow,an enhanced nonlinear refractive index of the azo polymer film can effectively increase the modulation.

  5. Time-resolved linewidth measurements of a wavelength switched SG-DBR laser for optical packet switched networks

    OpenAIRE

    Mishra, A. K.; Ellis, A.D.; Barry, Liam P.; Farrell, Tom

    2008-01-01

    We report time-resolved linewidth measurements of different sizes of optical packets under wavelength-switching for the first time and show that laser linewidth is significantly broadened during switching transition requiring ~3 mus to attain its minimum value.

  6. All-optical switching in metamaterial with high structural symmetry

    OpenAIRE

    Tuz, Vladimir R.; Prosvirnin, Sergey L.

    2011-01-01

    We argue the possibility of realization of a polarization insensitive all-optical switching in a planar metamaterial composed of a 4-fold periodic array of two concentric metal rings placed on a substrate of nonlinear material. It is demonstrated that a switching may be achieved between essentially different values of transmission near the resonant frequency of the high-quality-factor Fano-shape trapped-mode excitation.

  7. Optical networking by DLP-based switched blazed grating

    Science.gov (United States)

    Lin, Hoang Yan; Chung, Shuang-Chao

    2005-02-01

    All-optical modules are devices which process and transport optical signals without transforming to electronic signals. They get more attention as the optical communication network becomes more and more complicated. Among them, OADM (optical add drop module) is one of the most important devices in the optical DWDM (dense wavelength division multiplex) network. It plays the role of a node in network to upload/download signals or to route signals for optical performance monitoring. Applied broadly in projection display systems, DLP (Digital Light Processing) from Texas Instruments turns out to be a versatile device for optical signal processing. The working principle of DLP is based on so called switched-blazed-grating. Part of its micro-mirror array can be formed as a dynamic blazed grating with a period of 14 μm by tilting the micro-mirrors at an angle of +/-12 degrees. It is expected to function as either a switch or an attenuator by directing total or part of the incident light between the 2nd and -2nd diffraction orders. In this paper, we investigate the optical characteristics of a switched-blazed-grating, its application as a re-configurable OADM, and the performance of such a device. Ray tracing and optical analysis of the OADM are made by using package software ASAP from Breault Research Organization. In conclusion, as a mature and reliable MEMS device, DLP-based switched-blazed-grating provides a very versatile platform for digital optical signal processing and can be used as a dynamic optical-networking device with good performance.

  8. Thermochromic materials research for optical switching

    International Nuclear Information System (INIS)

    Reactive-ion-beam-sputtering (RIBS) is used to deposit doped vanadium dioxide (V/sub 1-x/M/sub x/O/sub 2/), where M is a dopant that lowers the transition temperature (T/sub t/) from that of stoichiometric VO/sub 2/. The objective is to synthesize a material that will passively switch between a heat-transmitting-and a heat-reflecting-state at specific design temperatures in the human comfort range. The films are deposited at elevated temperature (>700K) onto glass and sapphire substrates for spectrophotometric evaluation above and below T/sub t/. Then by analyzing the deposited films via EDAX, correlations between film composition and passive solar switching performance are made. Also concepts for synthesizing suitable crystallites of such materials are described. These crystallites could act as switchable pigments for throchromic solar paint

  9. Beamlet characteristics in the accelerator with multislot grounded grid

    International Nuclear Information System (INIS)

    Characteristics of multibeamlets are investigated by means of beamlet monitoring technique. The beamlets are extracted from an accelerator with multislot grounded grid and the profiles are observed as infrared images of temperature distributions on a cold isostatic pressed graphite plate exposed by H-beamlets. The optimal horizontal and vertical divergence angles of single beamlet are estimated at 4.1 and 6.1 mrad, respectively.

  10. MEMS micromirrors for optical switching in multichannel spectrophotometers

    Science.gov (United States)

    Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.

    2004-04-01

    This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.

  11. Optical Packet Routing Performance of an Optical Packet Switch With an Optical Digital/Analog-Conversion-Type Header Processor (Wavelength Label Switch)

    Institute of Scientific and Technical Information of China (English)

    Hiroyuki; Uenohara; Takeshi; Seki; Kohroh; Kobayashi

    2003-01-01

    We demonstrate the routing operation of optical packets by an optical packet switch consisting of an optical digital-to-analog conversion-type header processor, a wavelength converter using an electrically-tunable laser, and an arrayed-waveguide grating router. A packet transfer by two-bit optical header was achieved for the first time.

  12. Optical Packet Routing Performance of an Optical Packet Switch Digital/ Analog-Conversion-Type With an Optical Header Processor (Wavelength Label Switch)

    Institute of Scientific and Technical Information of China (English)

    Hiroyuki Uenohara; Takeshi Seki; Kohroh Kobayashi

    2003-01-01

    We demonstrate the routing operation of optical packets by an optical packet switch consisting of an optical digital-to-analog conversion-type header processor, a wavelength converter using an electrically-tunable laser, and an arrayed-waveguide grating router. A packet transfer by two -bit optical header was achieved for the first time.

  13. Dimensioning of Optical Codes in OCDM/WDM Optical Packet Switches

    Directory of Open Access Journals (Sweden)

    Vincenzo Eramo

    2012-05-01

    Full Text Available In this paper we investigate the performance of an Optical Code Division Multiplexing/Wavelength Division Multiplexing (WDM/OCDM Optical Packet Switch when impairment due to both Multiple Access Interference and Beat noise are taken into account. Analytical models are introduced to dimension the switch resources, in particular the number of optical codes carried on each wavelength. The Packet Loss Probability due to output packet contentions is evaluated as a function of the main switch and traffic parameters when Gold coherent optical codes are adopted. The Packet Loss Probability of the OCDM/WDM switch can reach 10*exp(-9 when M=16 wavelengths, Gold code of length L=511 and only 24 wavelength converters are used in the switch.

  14. Bistable optical electrical/microwave switching using optically coupled monolithically integrated GaAlAs translasers

    OpenAIRE

    Lau, K Y; Yariv, A.

    1984-01-01

    A novel switching device consisting of optically coupled laser and field-effect transistor monolithically integrated on a semi-insulating substrate is demonstrated. The physical origin of the bistable behavior is illustrated. The input and output to this device can take the form of optical and/or electrical signals. Applications of this device in optical, electrical, microwave switching, and pulse-position/pulse frequency demodulation are illustrated.

  15. High-contrast, all-optical switching in bacteriorhodopsin films

    Science.gov (United States)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2005-09-01

    We report experiments with nonlinear-absorption-based, high-contrast, all-optical switching in photochromic bacteriorhodopsin (BR) films. The switching action is accomplished by control of the transmission of a weak probe beam through a BR sample with the help of strong pump beam illumination at 532 nm wavelength. We found that the switching properties of BR films depend on several experimentally controllable parameters such as probe wavelength, pump beam intensity, and excitation rate. A comparative study of the switching behavior and other parameters of practical use was carried out at three probe wavelengths (543, 594, and 633 nm) and various beam powers and pump excitation rates. The results are presented for commercially available wild-type and D96N variant BR films.

  16. Thermochromic Materials Research for Optical Switching

    Science.gov (United States)

    Lee, J. C.; Jorgenson, G. V.; Lin, R. J.

    1987-02-01

    Reactive-ion-beam-sputtering (RIBS) is used to deposit doped vanadium dioxide (V1-xMxO2), where M is a dopant that lowers the transition temperature (Tt) from that of stoichiometric V02. The objective is to synthesize a material that will passively switch between a heat-transmitting-and a heat-reflecting-state at specific design temperatures in the human comfort range. The films are deposited at elevated temperature (>700K) onto glass and sapphire substrates for spectrophotometric evaluation above and below Tt. Then by analyzing the deposited films via EDAX, correlations between film composition and passive solar switching performance are made. Also concepts for synthesizing suitable crystallites of such materials are described. These crystallites could act as switchable pigments for throchromic solar paint. The overall long range goals of this research are to develop these materials for: (1) thin film application to building glazings and (2) pigments for opaque wall coatings. The glazings will transmit and the walls will absorb solar energy when the V1-xMxO2 temperature (T) is low (TTt, both glazings and walls will reflect the solar infrared.

  17. Q-switched Nd:YAG optical vortex lasers.

    Science.gov (United States)

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-01

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed. PMID:24514499

  18. 100GHz Integrated All-Optical Switch Enabled by ALD

    CERN Document Server

    Moille, Gregory; Morgenroth, Laurence; Lehoucq, Gaëlle; Neuilly, François; Hu, Bowen; Decoster, Didier; de Rossi, Alfredo

    2015-01-01

    The carrier lifetime of a photonic crystal all-optical switch is optimized by controlling the surface of GaAs by Atomic Layer Deposition. We demonstrate an all optical modulation capability up to 100GHz at Telecom wavelengths, with a contrast as high as 7dB. Wavelength conversion has also been demonstrated at a repetition rate of 2.5GHz with average pump power of about 0.5mW

  19. Analysis of Burst Assembly Modeling for Optical Burst Switched Network

    Directory of Open Access Journals (Sweden)

    Bhumika Patel

    2013-11-01

    Full Text Available In this paper, we have study the current state of the technology, the Optical burst Switched (OBS network is the most practical in all-optical architecture. Here we define how Burst Assembly will carried out and also here in the network architecture each node is consist of Core router and Edge router. Moreover we define challenges faced at practical implementation of OBS and proposed its unique solution at the node as Delay model.

  20. Optical Switching for Dynamic Distribution of Wireless-Over-Fiber Signals in Active Optical Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Rodes, Guillermo; Tafur Monroy, Idelfonso

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; we also provide a channel distribution scheme and a generic topology for such an optical switch. The experiment consists of a...... results show a negligible power penalty on each channel for both the best and the worst case in terms of inter-channel crosstalk. The presented system is highly scalable both in terms of port count and throughput, a desirable feature in highly branched access networks, and is modulation- and frequency...... four wavelength-division-multiplexed channel system operating on a WiMax frequency band and employing an orthogonal-frequency-division-multiplexing modulation at 625 Mbits/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a 1 × 16 active optical switch. The...

  1. Simulation of Optical Packet—Switched Metropolitan Area Network

    Institute of Scientific and Technical Information of China (English)

    朱炳春; 贾潞华; 等

    2002-01-01

    This paper introduces architectures of two types optical packet-switched metropolitan area networks and their media access control protocols.We have designed ralated network simulation systems.With these simulation systems,the characteristics and performanceof the two MANs can be achieved.

  2. All-optical active switching in individual semiconductor nanowires

    Science.gov (United States)

    Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.; Agarwal, Ritesh

    2012-10-01

    The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

  3. Optical Switching and Bit Rates of 40 Gbit/s and above

    DEFF Research Database (Denmark)

    Ackaert, A.; Demester, P.; O'Mahony, M.;

    2003-01-01

    Optical switching in WDM networks introduces additional aspects to the choice of single channel bit rates compared to WDM transmission systems. The mutual impact of optical switching and bit rates of 40 Gbps and above is discussed....

  4. Recent results of the National Ignition Facility Beamlet demonstration project

    International Nuclear Information System (INIS)

    The activation of a full scale single beam prototype of amultipass amplifier cavity based fusion class laser has been completed. A 35 x 35 cm2 beam is amplified during four passes through an 11 slab long amplifier in cavity, and is switched out using a full aperture Pockels cell and polarizer. Further amplification is achieved in a five slab long booster amplifier, before being frequency tripled by a Type I/Type II frequency converter. We present initial performance results of this laser system, called Beamlet. At 1 ω, energies up to 17.3 kJ have been generated in a 10 ns pulse, and frequency tripled beams up to 8.3 kJ in a 3 ns pulse

  5. Novel implementations of optical switch control module and 3D-CSP for 10 Gbps active optical access system

    Science.gov (United States)

    Wakayama, Koji; Okuno, Michitaka; Matsuoka, Yasunobu; Hosomi, Kazuhiko; Sagawa, Misuzu; Sugawara, Toshiki

    2009-11-01

    We propose an optical switch control procedure for high-performance and cost-effective 10 Gbps Active Optical Access System (AOAS) in which optical switches are used instead of optical splitters in PON (Passive Optical Network). We demonstrate the implemented optical switch control module on Optical Switching Unit (OSW) with logic circuits works effectively. We also propose a compact optical 3D-CSP (Chip Scale Package) to achieve the high performance of AOAS without losing cost advantage of PON. We demonstrate the implemented 3D-CSP works effectively.

  6. An optically controlled semiconductor closing and opening switch

    International Nuclear Information System (INIS)

    A concept and preliminary experiment for an optically controlled bulk semiconductor switch are discussed. A direct semiconductor is doped with a material which generates deep acceptor levels and is counterdoped with donors in shallow levels. An increase in the conductivity - closing of the switch- is obtained through photoionization of electrons from the occupied deep traps into the conduction band. A reduction of the conductivity -opening of the switch- is accomplished through photoionization of holes in the valence band from the deep centers and subsequent direct recombination of electron hole pairs. The features of this type of laser-controlled switch are its high control efficiency, because lasers are only used to drive the switch into and out of the conductive state, not to sustain the conductivity, and the fast opening determined by direct photoluminescence processes. The turn-on and turn-off transients of a GaAs switch, doped with Cu, have been modeled using a set of rate equations. Photoconductance measurements with CdS:Cu have proven the feasibility of this concept

  7. Scheduling Issues in ECOFRAME Optical Packet Switched Ring

    Directory of Open Access Journals (Sweden)

    P. Gravey

    2011-06-01

    Full Text Available In the metropolitan area, traditional SONET/SDH circuit switched rings are likely to be replaced with optical packet/burst switching technologies. In this paper we consider a slotted WDM optical packet ring operating without resource reservation mechanisms. In such rings, optical packets in transit have priority over traffic to be inserted by the node. Packets to be inserted are thus queued according to their destination, in order to avoid headof-line blocking. We focus on scheduling policies and compare several MaxWeight scheduling policies, including Oldest Packet First (OPF which emulates FIFO queueing while avoiding head-of-line blocking. We show that there is a trade-off between implementation complexity and fairness, and identify the Largest Virtual Waiting Time First (LVWTF scheduling policy as presenting both a low complexity and a good fairness performance.

  8. Integrated optical switching based on the protein bacteriorhodopsin.

    Science.gov (United States)

    Dér, András; Valkai, Sándor; Fábián, László; Ormos, Pál; Ramsden, Jeremy J; Wolff, Elmar K

    2007-01-01

    According to our earlier pioneering study, a dry film containing native bacteriorhodopsin (bR) shows unique nonlinear optical properties (refractive index change, controllable by light of different colors, greater than 2 x 10(-3)) that are in many respects superior to those of the materials presently applied in integrated optics. Here, we report on the first integrated optical application based on a miniature Mach-Zehnder interferometer (see Figs. 1 and 2) demonstrating a real switching effect by bR (efficiency higher than 90%) due to the M-state. Our results also imply that the refractive index change of the K-state (9 x 10(-4)) is high enough for fast switching. PMID:17132043

  9. Wireless electro-optic switching network for optical fiber sensor array using MEMS-IDT devices

    Science.gov (United States)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1999-09-01

    Optical fiber arrays have been proposed for signal paths in various civilian and military controls as a means of offering advanced sensing functions not available in electronic systems. To implement optic fiber sensors on various control systems, a proper electro-optic architecture (EOA) with a bar- coded electro-optical switch needs to be studied. In this paper, a design of such EO switch is proposed which can be operated remotely. Lithium Niobate is chosen as the EO material. The MEMS-IDT device is designed with Lithium Niobate as a substrate with IDT and a set of floating reflectors. The reflectors can be programmable and thus a bar-coded switch can be fabricated. The electrostatic field between the reflectors and the Lithium Niobate serves as the fast acting switch in this application.

  10. Optimizing POF/PCF based optical switch for indoor LAN

    International Nuclear Information System (INIS)

    For indoor local area network (LAN) the Polymer optical fiber (POF) is mostly appropriate, because of its large core diameter and flexible material. A 1×2 optical switch for indoor LAN using POF and a shape memory alloy (SMA) coil actuator with magnetic latches was successfully fabricated and tested. To achieve switching by the movement of a POF, large displacement is necessary because the core diameter is large (e.g., 0.486mm). A SMA coil actuator is used for large displacement and a magnetic latching system is used for fixing the position of the shifted POF. The insertion loss is 0.40 to 0.50dB and crosstalk is more than 50dB without index-matching oil. Switching speed is less than 1s at a driving current of 80mA. A cycling test was performed 1.4 million times. Polymer clad fiber optical (PCF) switch also fabricated and tasted

  11. Casimir switch: steering optical transparency with vacuum forces

    CERN Document Server

    Liu, X -f; Jing, H

    2016-01-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  12. Casimir switch: steering optical transparency with vacuum forces

    Science.gov (United States)

    Liu, Xi-Fang; Li, Yong; Jing, H.

    2016-06-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  13. Thermochromic Materials Research For Optical Switching Films

    Science.gov (United States)

    Jorgenson, G. V.; Lee, J. C.

    1985-12-01

    A dual-ion-beam-sputtering (DIBS) deposition system is used to deposit doped vanadium dioxide (V1-xMx02), where M is a dopant that decreases the transition temperature (Tt) from that of stoichiometric V02. The objective is to synthesize a material that will passively switch between a heat- transmitting-and a heat-reflecting-state at specific design temperatures. The technique is reactive ion beam sputtering of vanadium and a dopant (separate beams) in a well controlled atmosphere of Ar with a partial pressure of O2. The films are deposited at elevated temperature (>700K) onto glass and sapphire substrates for spectrophotometric evaluation above and below Tt. The longer range goals of this research are to develop the material for: (1) thin film application to building glazings and (2) pigments for opaque wall coatings. The glazings will transmit and the walls will absorb solar energy when the V1-xMxO2 temperature (T) is low (TTt, both glazings and walls will reflect the solar infrared.

  14. Ultrafast polarization optical switch constructed from one-dimensional photonic crystal and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; LI Qing; GAO DingShan

    2009-01-01

    All-optical switch with the ultrafast optical switching rate is a key device in the next generation optical network. In this article, we propose a polarization switch with ps switching time, which is constructed from one-dimensional resonant photonic crystal (1D RPC). The model of switch operating at 1.5 μm is established based on the optical stark effect (OSE). We calculate the performance indices of the switch and the influences of errors of periods and refractive index on the performance characteristics.

  15. Ultra-stable optical amplifier technologies for dynamic optical switching networks

    Science.gov (United States)

    Shiraiwa, M.; Tsang, K. S.; Man, R.; Puttnam, B. J.; Awaji, Y.; Wada, N.

    2015-01-01

    High-capacity fiber-optic communications are promising technologies to satisfy people's continuously growing demands for bandwidth hungry data services. Multi-wavelength optical circuit switching (OCS) technology is already widely deployed, however, with the limited number of transceivers equipped at each optical node and other constraints, the number of lightpaths which can be established and employed simultaneously in an optical network is restricted. This reduces the utilization efficiency of wavelength resources. Comparing to OCS, dynamic optical switching systems such as optical packet switching (OPS) offer higher efficiency in terms of wavelength resource utilization and have the potential to share more of the wavelength resources on fiber-links between larger numbers of users simultaneously. In such networks, bursty input signals or changes in traffic density may cause optical power surges that can damage optical components or impose gain transients on the signals that impair signal quality. A common approach for reducing gain transients is to employ electrical automatic gain control (AGC) or optical gain-clamping by optical feedback (OFB). AGC may be limited by the speed of the feedback circuit and result in additional transients. Meanwhile OFB can clamp the gain of power varying optical signals without transient but can introduce amplitude fluctuations caused by relaxation oscillations in the lasing cavity for large input power fluctuations. We propose and demonstrate a novel scheme for suppressing the power transients and the relaxation oscillations. This scheme can be utilized in optical amplifiers even if the optical feedback is employed.

  16. Identification of current attacks and their counter measures in Optical Burst Switched (OBS) network

    OpenAIRE

    Siddharth Singh Chouhan; Prof. Sanjay Sharma

    2012-01-01

    As day by day application grows internet requires large amount of bandwidth. Optical Burst Switching (OBS) is the next generation optical Internet with IP over WDM as the core architecture. It can achieve a balance between Optical Circuit Switching (OCS) and Optical Packet Switching (OPS). Optical network supports huge bandwidth and transmits data at an average rate of 50Tb/s. But we need to exploit the fiber’s huge bandwidth through WDM which is the current favorite multiplexing technology i...

  17. Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ An electro-optical switch based on a plasmonic T-shaped waveguide structure with a double-teeth-shaped waveguide filled with 4-dimet4ylamino-N-methyl-4stilbazolium tosylate is proposed and numerically investigated.TheFinite-difference time domain simulation results reveal that the structure can operate as a circuit switch by controlling the external voltages V1 and/or V2.The proposed structure can also operate as a variable optical attenuator, which can continuously attenuate the power of a light beam from 6dB to 30dB by an external electrical field.The structure is of small size of a few hundred nanometers.Our results may open a possibility to construct nanoscale high-density photonic integration circuits.

  18. Reactive and proactive routing in labelled optical burst switching networks

    OpenAIRE

    Klinkowski, Miroslaw; Careglio, Davide; Solé Pareta, Josep

    2009-01-01

    Optical burst switching architectures without buffering capabilities are sensitive to burst congestion. The existence of a few highly congested links may seriously aggravate the network throughput. Proper network routing may help in congestion reduction. The authors focus on adaptive routing strategies to be applied in labelled OBS networks, that is, with explicit routing paths. In particular, two isolated alternative routing algorithms that aim at network performance improvement because o...

  19. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    OpenAIRE

    Balamurugan, A. M.; A. Sivasubramanian

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The...

  20. Electro-optical switching by liquid-crystal controlled metasurfaces.

    Science.gov (United States)

    Decker, Manuel; Kremers, Christian; Minovich, Alexander; Staude, Isabelle; Miroshnichenko, Andrey E; Chigrin, Dmitry; Neshev, Dragomir N; Jagadish, Chennupati; Kivshar, Yuri S

    2013-04-01

    We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-crystal reorientation. PMID:23571978

  1. Electro-optical switching by liquid-crystal controlled metasurfaces

    OpenAIRE

    Decker, Manuel; Kremers, Christian; Minovich, Alexander; Staude, Isabelle; Miroshnichenko, Andrey E.; Chigrin, Dmitry; Neshev, Dragomir N.; Jagadish, Chennupati; Kivshar, Yuri S.

    2013-01-01

    We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-cry...

  2. Silicon Modulators, Switches and Sub-systems for Optical Interconnect

    Science.gov (United States)

    Li, Qi

    Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.

  3. Electro-optical switching by liquid-crystal controlled metasurfaces

    CERN Document Server

    Decker, Manuel; Minovich, Alexander; Staude, Isabelle; Miroshnichenko, Andrey E; Chigrin, Dmitry; Neshev, Dragomir N; Jagadish, Chennupati; Kivshar, Yuri S

    2013-01-01

    We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-crystal reorientation.

  4. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  5. All-optical switchings of 3-hydroxyflavone in different solvents

    International Nuclear Information System (INIS)

    3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, ethanol and dimethyl sulfoxide) have been investigated by using the third-harmonic generation (355nm) of a mode-locked Nd:YAG laser as a pump beam and a continuous-wave (cw) He-Ne laser (632.8 nm) as a probe beam. The nonlinear refractive indices of 3-HF in the three different solvents are determined by using the Z-scan technique under an ultraviolet (UV) pump beam at a wavelength of 355 nm. It has been found that the optical switching and beam deflection effects result from the change in refractive index of 3-HF under the irradiation of the pump beam. On the basis of the analyses of absorption spectra and fluorescence spectra, we conclude that the change in refractive index of 3-HF is due to not the thermal effect but the ESIPT effect of 3-HF under the pump beam. As the ESIPT is exceedingly fast, 3-HF might be an excellent candidate for high-speed optical switching

  6. Traffic analysis and signal processing in optical packet switched networks

    DEFF Research Database (Denmark)

    Fjelde, Tina

    2002-01-01

    /s optical packet switched network exploiting the best of optics and electronics, is used as a thread throughout the thesis. An overview of the DAVID network architecture is given, focussing on the MAN and WAN architecture as well as the MPLS-based network hierarchy. Subsequently, the traffic performance...... into an MI. Moreover, logic XOR is demonstrated in an MZI at 10 and 20 Gbit/s with good results. Using an MI, the excellent performance of a novel scheme for MPLS label swapping exploiting logic XOR is demonstrated at 10 Gbit/s with a negligible 0.4 dB penalty. Finally, three novel schemes are described...

  7. Magneto-optical switching devices based on Si resonators

    Science.gov (United States)

    Noda, Kazuki; Okada, Kazuya; Amemiya, Yoshiteru; Yokoyama, Shin

    2016-04-01

    The magneto-optical switching devices based on Si ring and Si photonic crystal resonators have been fabricated using a Bi3Fe5O12 (BIG) film deposited by the metal organic decomposition (MOD) method. The quality of the obtained BIG film was evaluated by X-ray diffraction and the magneto-optical Kerr effect and relatively good results were obtained. The light modulations of both devices were ≦20% at a wavelength of ˜1.5 µm. The operation mechanisms of both devices are explained by the Cotton-Mouton effect where the magnetic field direction is perpendicular to the light propagation direction.

  8. Atom-loss-induced quantum optical bi-stability switch

    Institute of Scientific and Technical Information of China (English)

    Wu Bao-Jun; Cui Fu-Cheng

    2012-01-01

    We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the condensate,taking atom loss as a necessary part of the model to analyze the evolution of the system,while using trial and errormethod to find out steady states of the system as a reference,numerical simulation demonstrates that with a constant pump,atom loss will trigger a quantum optical bi-stability switch,which predicts a new interesting phenomenon for experiments to verify.

  9. A Comparative Survey on Optical Burst Switched Network Simulators

    Directory of Open Access Journals (Sweden)

    Terrance Frederick Fernandez

    2014-04-01

    Full Text Available Optical Burst Switching (OBS is the future of optical internet which provides a promising architecture to efficiently utilize WDM and to fulfill today’s Internet traffic demands. Since this area is yet to mature there is a darn need to study its various protocols. Network simulator is an important tool for researchers and academicians to simulate and model the actual network at a reduced cost compared to the real test-bed experimentation. In this paper various OBS simulators are comparatively surveyed, while highlighting their merits and demerits.

  10. Scalable In-Band Optical Notch-Filter Labeling for Ultrahigh Bit Rate Optical Packet Switching

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    We propose a scalable in-band optical notch-filter labeling scheme for optical packet switching of high-bit-rate data packets. A detailed characterization of the notch-filter labeling scheme and its effect on the quality of the data packet is carried out in simulation and verified by experimental...

  11. Novel coherent optical OFDM-based transponder for optical slot switched networks

    DEFF Research Database (Denmark)

    Mestre, Miquel A.; Estaran, Jose M.; Jenneve, Philippe; Mardoyan, Haik; Tafur Monroy, Idelfonso; Zibar, Darko; Bigo, Sebastien

    2016-01-01

    We report a novel coherent optical OFDM transponder approach capable of recovering microsecond-scale data-burst while adapting to tight filtering constraints present in optical slot switched intradatacenter networks. Filtering effects in such large node-count environments are reviewed. The CO...

  12. Separation and insertion of optical bit-serial label in optical packet switching

    Institute of Scientific and Technical Information of China (English)

    Yun Ling; Kun Qiu; Mian Zheng

    2006-01-01

    @@ The bipolar phase-shift-keying (BPSK) optical orthogonal codes (OOCs) are inserted into the optical packet format of bit-serial label. The ultra-fast separation of the label and payload is performed through the auto-correlation pulses indicating the time position at which the optical switch changes the state.The insertion of the new label can also be realized by detecting the auto-correlation pulse at the line rate. Especially, the scheme can be adapted to the asynchronous separation and insertion and realize the variable-length packet switching. The results of simulation verify the feasibility of the scheme.

  13. Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks

    Science.gov (United States)

    Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi

    2016-03-01

    Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.

  14. Preparation, optical properties and 1 × 2 polymeric thermo-optic switch of polyurethane-urea

    International Nuclear Information System (INIS)

    A polyurethane-urea (PUU) containing azo chromophore, polyether polyol (NJ-220) and isophorone diisocyanate (IPDI) was prepared. The structure, thermal property and mechanical properties of obtained PUU were characterized and measured by the UV–visible spectroscopy, Fourier transform infrared, Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The refractive index (n) of PUU was determined at different temperature and wavelength (532 nm, 650 nm and 850 nm) using attenuated total reflection (ATR) technique, and the thermo-optic coefficients (dn/dT) were −5.3643 × 10−4 °C−1, −5.2500 × 10−4 °C−1 and −4.6071 × 10−4 °C−1, respectively. Using the Charge Coupled Device (CCD) digital imaging devices, transmission loss of PUU was measured and the value was 0.659 dB cm−1. A 1 × 2 polymeric thermo-optic switch based on the thermo-optic effect of PUU film was proposed. With branching angle of 0.143° and the finite difference beam propagation method (FD-BPM), the polymeric thermo-optic switch was simulated. The result showed that the power consumption of the thermo-optic switch could be only 0.72 mW, and the response time of the switch was about 3.0 ms. The obtained PUU has a significant improvement in reducing the power consumption and response time compared with those of the normal polymeric thermo-optic switches. -- Highlights: ► Preparation and structural characterization of a novel azo polyurethane-urea (PUU). ► The mechanical performance and thermal property of PUU film. ► The thermo-optic property, transmission loss and dispersion property of PUU. ► Proposed a new 1 × 2 polymeric thermo-optic switch.

  15. A novel all-optical label processing based on multiple optical orthogonal codes sequences for optical packet switching networks

    Science.gov (United States)

    Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun

    2008-05-01

    This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.

  16. Theoretical study of optical switching in multiple core nonlinear microstructured optical fibers

    Czech Academy of Sciences Publication Activity Database

    Koška, Pavel; Kaňka, Jiří

    Bellingham: SPIE, 2012. ISBN 978-0-8194-9481-8. [18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics. Ostravice (CZ), 03.09.2012-07.09.2012] R&D Projects: GA MŠk(CZ) LD11030 Institutional support: RVO:67985882 Keywords : Optical switching * microstructured fiber * multiple core coupling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Amalgamation of interacting light beamlets in Kerr-type media

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Rasmussen, Kim; Berge, L;

    1997-01-01

    between N-c/4 and N-c, they fuse into a single central lobe that may self-focus until collapse, depending on their initial separation distance. The critical distance below which a central lobe forms and collapses is estimated analytically. (iii) When their incident powers both exceed N,, initially......The interaction of optical filaments in bulk self-focusing media is investigated theoretically and numerically. The nature of this interaction is shown to vary with the incident individual powers and relative phases of the beamlets. By means of virial arguments supported by numerical results it is...... found that three distinct evolution regimes characterize two in-phase interacting filaments: (i) When each filament has a power below N-c/4, where N-c is the critical self-focusing threshold for a single wave, both filaments disperse along their propagation axis. (ii) When their respective powers lie...

  18. A novel optical burst switching architecture for high speed networks

    Institute of Scientific and Technical Information of China (English)

    Amit Kumar Garg; R. S. Kaler

    2008-01-01

    A novel optical burst switching (OBS) high speed network architecture has been proposed. To verify its feasibility and evaluate its performance, just-enough-time (JET) signaling has been considered as a high performance protocol. In the proposed architecture, to avoid burst losses, firstly, a short-priorconfirrnation-packet (SPCP) is sent over the control channel that simulates the events that the actual packet will experience. Once SPCP detects a drop at any of the intermediate nodes, the actual packet is not sent but the process repeats. In order to increase network utilization, cost effectiveness and to overcome some limitations of conventional OBS, inherent codes (e.g., orthogonal optical codes (OOC)),which are codified only in intensity, has been used. Through simulations, it shows that a decrease in burst loss probability, cost effectiveness and a gain in processing time are obtained when optical label processing is used as compared with electronic processing.

  19. Diarylethene-modified nucleotides for switching optical properties in DNA

    Directory of Open Access Journals (Sweden)

    Sebastian Barrois

    2012-06-01

    Full Text Available Diarylethenes were attached to the 5-position of 2’-deoxyuridine in order to yield three different photochromic nucleosides. All nucleosides were characterized with respect to their absorption and photochromic properties. Based on these results, the most promising photochromic DNA base modification was incorporated into representative oligonucleotides by using automated phosphoramidite chemistry. The switching of optical properties in DNA can be achieved selectively at 310 nm (forward and 450 nm (backward; both wavelengths are outside the normal nucleic acid absorption range. Moreover, this nucleoside was proven to be photochemically stable and allows switching back and forth several times. These results open the way for the use of diarylethenes as photochromic compounds in DNA-based architectures.

  20. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed optical device is a fiber-based multi-channel switch to quickly switch a fiber-coupled laser among many possible output channels to create a...

  1. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  2. Identification of current attacks and their counter measures in Optical Burst Switched (OBS network

    Directory of Open Access Journals (Sweden)

    Siddharth Singh Chouhan

    2012-03-01

    Full Text Available As day by day application grows internet requires large amount of bandwidth. Optical Burst Switching (OBS is the next generation optical Internet with IP over WDM as the core architecture. It can achieve a balance between Optical Circuit Switching (OCS and Optical Packet Switching (OPS. Optical network supports huge bandwidth and transmits data at an average rate of 50Tb/s. But we need to exploit the fiber’s huge bandwidth through WDM which is the current favorite multiplexing technology in Optical communication networks. OBS is a trusted mechanism used for optical switching. Optical burst switching has been positioned as a viable means of implementing optical communication efficiently. This review paper identifies potential threats to security in OBS networks. Solutions in each category are examined, and research directions are presented.

  3. Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches.

    Science.gov (United States)

    Yang, Lin; Xia, Yuhao; Zhang, Fanfan; Chen, Qiaoshan; Ding, Jianfeng; Zhou, Ping; Zhang, Lei

    2015-04-01

    We demonstrate a reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches. For all optical links in its 9 routing states, the optical signal-to-noise ratios are larger than 15 dB in the wavelength range from 1525 to 1565 nm. Each optical link of the optical router can manipulate 50 wavelength-division-multiplexing channels with the data rate of 32 Gbps for each channel in the same wavelength range. Its average energy efficiency is about 16.3 fJ/bit, and its response time is about 19 μs. PMID:25831343

  4. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu; Li, Mo, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-09-07

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  5. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    International Nuclear Information System (INIS)

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities

  6. 160 Gbit/s optical packet switching using a silicon chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael;

    2012-01-01

    We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet.......We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet....

  7. Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    The performance of all-optical switches is a compromise between the achievable bandwidth of the switched signal and the energy requirement of the switching operation. In this work we consider a system consisting of a photonic crystal cavity coupled to two input and two output waveguides. As a...... dynamics of the switching operation, and the results show optimum parameter ranges that may serve as design guidelines in device fabrication. © 2011 Optical Society of America....

  8. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators

    CERN Document Server

    Pelc, Jason S; Vo, Sonny; Santori, Charles; Fattal, David A; Beausoleil, Raymond G

    2014-01-01

    We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

  9. Ultrafast defect dynamics: A new approach to all optical broadband switching employing amorphous selenium thin films

    Directory of Open Access Journals (Sweden)

    Rituraj Sharma

    2015-07-01

    Full Text Available Optical switches offer higher switching speeds than electronics, however, in most cases utilizing the interband transitions of the active medium for switching. As a result, the signal suffers heavy losses. In this article, we demonstrate a simple and yet efficient ultrafast broadband all-optical switching on ps timescale in the sub-bandgap region of the a-Se thin film, where the intrinsic absorption is very weak. The optical switching is attributed to short-lived transient defects that form localized states in the bandgap and possess a large electron-phonon coupling. We model these processes through first principles simulation that are in agreement with the experiments.

  10. A single-stage optical load-balanced switch for data centers.

    Science.gov (United States)

    Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying

    2012-10-22

    Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers. PMID:23187266

  11. NEW BURST ASSEMBLY AND SCHEDULING TECHNIQUE FOR OPTICAL BURST SWITCHING NETWORKS

    OpenAIRE

    V.KAVITHA; Palanisamy, V.

    2013-01-01

    The Optical Burst Switching is a new switching technology that efficiently utilizes the bandwidth in the optical layer. The key areas to be concentrated in Optical Burst Switching (OBS) networks are the burst assembly and burst scheduling i.e., assignment of wavelengths to the incoming bursts. This study presents a New Burst Assembly and Scheduling (NBAS) technique in a simultaneous multipath transmission for burst loss recovery in OBS networks. A Redundant Burst Segmentation (RBS) is used fo...

  12. A Novel Mechanism for Contention Resolution in Parallel Optical Burst Switching (POBS) Networks

    OpenAIRE

    Mohammed Joudah Zaiter; Salman Yussof; Abid Abdelouhahab; Cheng Lai Cheah; Adnan brahem Salih

    2014-01-01

    Parallel Optical Burst Switching (POBS) is a variant of Optical Burst Switching (OBS) which is proposed as a new optical switching strategy for Ultra-Dense Wavelength Division Multiplexing (U-DWDM) to support the enormous bandwidth demand of the next generation Internet. As opposed to OBS, POBS transmits bursts in two dimensions: the wavelength dimension and the time dimension. POBS network uses an one-way resource reservation mechanism to set up the resources for each data burst transmission...

  13. Optically controlled multiple switching operations of DNA biopolymer devices

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fruk, Ljiljana [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hung, Yu-Chueh, E-mail: ychung@ee.nthu.edu.tw [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  14. Optically controlled multiple switching operations of DNA biopolymer devices

    International Nuclear Information System (INIS)

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices

  15. Optically controlled multiple switching operations of DNA biopolymer devices

    Science.gov (United States)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-01

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  16. Software reconfigurable highly flexible gain switched optical frequency comb source.

    Science.gov (United States)

    Pascual, M Deseada Gutierrez; Zhou, Rui; Smyth, Frank; Anandarajah, Prince M; Barry, Liam P

    2015-09-01

    The authors present the performance and noise properties of a software reconfigurable, FSR and wavelength tunable gain switched optical frequency comb source. This source, based on the external injection of a temperature tuned Fabry-Pérot laser diode, offers quasi-continuous wavelength tunability over the C-band (30nm) and FSR tunability ranging from 6 to 14GHz. The results achieved demonstrate the excellent spectral quality of the comb tones (RIN ~-130dB/Hz and low phase noise of 300kHz) and its outstanding stability (with fluctuations of the individual comb tones of less than 0.5dB in power and 5pm in wavelength, characterized over 24hours) highlighting its suitability for employment in next generation flexible optical transmission networks. PMID:26368425

  17. Integrated Optical Switching Matrices Constructed from Digital Optical Switches Based on Polymeric Rib Waveguides

    OpenAIRE

    Hauffe, Ralf

    2002-01-01

    Die Arbeit beschäftigt sich mit dem Design und der Realisierung von photonischen Schaltmatrizen für "Optical Cross Connects", die in optisch transparenten Telekommunikationsnetzen benötigt werden, um eine dynamische Umkonfiguration der Netze bei gleichzeitiger Erhaltung von Bitraten-, Wellenlängen- und Protokoll-Transparenz zu ermöglichen. Insbesondere wurden 4x4 Schaltmatrizen basierend auf polymeren Wellenleiterstrukturen untersucht und deren Nebensprechen minimiert. Das Hauptergebnis diese...

  18. Principle and verification of novel optical virtual private networks over multiprotocol label switching/optical packet switching networks

    Science.gov (United States)

    Zhang, Chongfu; Wang, Zhengsuan; Jin, Wei; Qiu, Kun

    2012-11-01

    A novel realization method of the optical virtual private networks (OVPN) over multiprotocol label switching/optical packet switching (MPLS/OPS) networks is proposed. In this scheme, the introduction of MPLS control plane makes OVPN over OPS networks more reliable and easier; OVPN makes use of the concept of high reconfiguration of light-paths offered by MPLS, to set up secure tunnels of high bandwidth across intelligent OPS networks. Through resource management, the signal mechanism, connection control, and the architecture of the creation and maintenance of OVPN are efficiently realized. We also present an OVPN architecture with two traffic priorities, which is used to analyze the capacity, throughput, delay time of the proposed networks, and the packet loss rate performance of the OVPN over MPLS/OPS networks based on full mesh topology. The results validate the applicability of such reliable connectivity to high quality services in the OVPN over MPLS/OPS networks. Along with the results, the feasibility of the approach as the basis for the next generation networks is demonstrated and discussed.

  19. Remote fiber optic switch powered by light for robust interrogation of fiber Bragg grating sensor networks

    International Nuclear Information System (INIS)

    In this work, a remote fiber optic switch powered by light is demonstrated experimentally. This fiber optic switch is powered by a photovoltaic power converter illuminated by a Raman laser. The switch can operate at distances up to 100 km. This switch is used to develop a remote resilient fiber Bragg grating (FBG) multiplexing network interrogated by a commercial FBG interrogator. In the proposed set-up the switch selects the branch of the FBG network located 50 km away from the interrogation unit in order to enable a two-way interrogation path for each sensor to prevent connection failures or fiber breakages. (paper)

  20. All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-03-01

    We experimentally and theoretically investigated the optical switching characteristics of bacteriorhodopsin (bR) at l=633 nm using the pump-probe method. A diode-pumped second harmonic YAG laser (l=532 nm which is located around the maximum initial Br state absorption) was used as a pumping beam and a cw He-Ne laser (l=633 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we have demonstrated an all-optical device functioning as 11 kinds of variable binary all-optical logic gates.

  1. A resilience-based comparative study between optical burst switching and optical circuit switching technologies

    OpenAIRE

    Hernández, José Alberto; Aracil, Javier; López Álvarez, Victor; Fernández Palacios, Juan; González de Dios, Óscar

    2006-01-01

    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. A. Hernández, J. Aracil, V. López, J. F. Palacios, and O. G. de Dios, "A resilience-based comparative study between optical...

  2. SOI-Based 16×16 Thermo-Optic Waveguide Switch Matrix

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan-Yuan; LI Yan-Ping; SUN Fei; YANG Di; CHEN Shao-Wu; YU Jin-Zhong

    2006-01-01

    @@ A 16 × 16 thermo-optic waveguide switch matrix has been designed and fabricated on silicon-on-insulator wafer.For reducing device length, blocking switch matrix configuration is chosen. The building block of the matrix is a 2 × 2 switch cell with a Mach-Zehnder interferometer configuration, where a multi-mode interferometer serves as splitter/combiners. Spot size converters and isolating grooves are integrated on the same chip to reduce loss and power consumption. Average power consumption of the switch cell is 220mW. The switching time of a switch cell is less than 3 μs.

  3. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.;

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  4. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II effort will develop a 1 x 10 prototype non-mechanical fiber optic switch for use with high power lasers. The proposed optical device is a...

  5. MEMS Torsion-Mirror Actuators for Optical Switching or Attenuating Applications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Novel MEMS torsion-mirror actuators with monolithically integrated fiber self-holding structures are fabricated, and investigated experimentally and theoretically. Their electromechanical and optical characteristics are acceptable for optical switching or attenuating applications.

  6. A Novel Model of Resolving Contention in Optical Burst Switched Networks

    Institute of Scientific and Technical Information of China (English)

    Huang Anpeng(黄安鹏); Xie Linzhen; Li Jingcong; Li Zhengbin; Xu Anshi

    2004-01-01

    A Novel segmentation and feedback model (SFM) applied to resolve collision has been proposed. The SFM is featured with Burst Segmentation and Prioritized Feedback (BSPF) that are used to provide quality of service (QoS) and realize high throughput and faster switching in the optical burst switched networks. Simulation and performance analyses show that the SFM effectively avoid collision in optical burst switching (OBS). Long delay time of deflection routing and immature technology of wavelength converter and optical buffer are not employed in the SFM. The SFM not only realizes quick switching but also allows preemption for higher priority bursts.

  7. Performance analysis of optical multicast in a new switching structure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The emergence of new services demands multicast function in optical network.Because of the high cost and complex architecture of multicast capable (MC) node, splitter-sharing switch structure is introduced in which the light splitters are shared by all input signals.To accommodate to this situation, by extending resource ReSerVation protocol-traffic engineering (RSVP-TE) and open shortest path first-traffic engineering (OSPF-TE), a new optical multicast mechanism is provided and the signaling flow and its finite state machine model are given.At the same time, a multicast routing algorithm in splitter-sharing optical network and a changing link weight policy to balance network traffic are proposed.Simulations in NSFNET show no matter with or without wavelength converters, when the number of splitters is 25% of that demanded by traditional MC nodes, the multicast performance has been close to the ideal circumstance.Wavelength converters and changing link weight help much in improving the traffic performance when the number of splitters is adequate.

  8. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip.

    Science.gov (United States)

    Chen, Qiaoshan; Zhang, Fanfan; Ji, Ruiqiang; Zhang, Lei; Yang, Lin

    2014-05-19

    We propose a universal method for constructing N-port non-blocking optical router for photonic networks-on-chip, in which all microring (MR) optical switches or Mach-Zehnder (M-Z) optical switches behave as 2 × 2 optical switches. The optical router constructed by the proposed method has minimum optical switches, in which the number of the optical switches is reduced about 50% compared to the reported optical routers based on MR optical switches and more than 30% compared to the reported optical routers based on M-Z optical switches, and therefore is more compact in footprint and more power-efficient. We also present a strict mathematical proof of the non-blocking routing of the proposed N-port optical router. PMID:24921378

  9. Solving functional reliability issue for an optical electrostatic switch

    CERN Document Server

    Camon, H; Rapahoz, N; Trzmiel, M; Pisella, C; Martínez, C; Gilbert, K; Valette, S

    2008-01-01

    In this paper, we report the advantage of using AC actuating signal for driving MEMS actuators instead of DC voltages. The study is based upon micro mirror devices used in digital mode for optical switching operation. When the pull-in effect is used, charge injection occurs when the micro mirror is maintained in the deflected position. To avoid this effect, a geometrical solution is to realize grounded landing electrodes which are electro-statically separated from the control electrodes. Another solution is the use of AC signal which eliminates charge injection particularly if a bipolar signal is used. Long term experiments have demonstrated the reliability of such a signal command to avoid injection of electric charges.

  10. A Modular, IGBT Driven, Ignitron Switched, Optically Controlled Power Supply

    Science.gov (United States)

    Carroll, Evan; von der Linden, Jens; You, Setthivoine

    2013-10-01

    An experiment to investigate the dynamics of canonical flux tubes at the University of Washington uses two high energy pulsed power supplies to generate and sustain the plasma discharge. A modular 240 μF , 12 kV DC capacitor based power supply, discharged by ignitron, has been developed specifically for this application. Design considerations include minimizing inductance, rapid switching, fast rise times, and electrically isolated control. An optically coupled front panel and fast IGBT ignitron drive circuit, sequenced manually or by software, control the charge and discharge of the power supply. A complete, sequenced charge/discharge has been successfully tested with a dummy load, producing a peak current of 100 kA and a rise time of 25 μs . This work was sponsored in part by the US DOE Grant DE-SC0010340.

  11. Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals

    NARCIS (Netherlands)

    Euser, Tijmen G.; Wei, Hong; Kalkman, Jeroen; Jun, Yoonho; Polman, Albert; Norris, David J.; Vos, Willem L.

    2007-01-01

    We present ultrafast optical switching experiments on three-dimensional photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order Bragg diffraction where the photonic

  12. Compact Hybrid Subsystem of 16 Channel Optical Demultiplexer, 2x2 Switches, Optical Power Monitors and Control Circuit

    Institute of Scientific and Technical Information of China (English)

    Kenichiro; Takahashi; Toshihiko; Kishimoto; Shintaro; Mouri; Youichi; Hata; Hideaki; Yusa; Mitsuaki; Tamura; Kazuhito; Saito; Hisao; Maki

    2003-01-01

    A compact hybrid subsystem of 16channel optical demultiplexer, 2x2 switches, optical power monitors and control circuit board is developed. The subsystem is able to add or drop arbitrary optical channels and monitor the optical power level by software commands. The size of the subsystem is 170x200x30(mm).

  13. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    Science.gov (United States)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  14. Laser Trimming for Adjustment of Grating Offset in Phase-Shifted Fiber Grating Coupler for All-Optical Switching Application

    Institute of Scientific and Technical Information of China (English)

    Hirohisa; Yokota; Yutaka; Sasaki

    2003-01-01

    We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.

  15. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching

    Science.gov (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-01

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  16. Beamlet interaction in multi-aperture negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Yukio; Hanada, Masaya; Kawai, Kenichi; Kitagawa, Tadashi; Miyamoto, Kenji; Okumura, Yoshikazu; Watanabe, Kazuhiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-02-01

    Beamlet interaction, which may deteriorate beam convergence, was studied in a high-current negative ion beam composed of multiple beamlets. Experimental results demonstrated that a deflection angle of beamlets at the edge of a beam was larger than that at the center of a beam, because of space charge effect. The deflection angle was independent of the beam energy ranging from 86 keV to 178 keV at the same perveance. Effect of electrons accompanying negative ions was confirmed to be negligible. It was shown that repulsive force due to space charge effect was inversely proportional to the square of distance. The maximum deflection angle of a large negative ion source for the JT-60 Negative ion-NBI system was estimated to be about 6.6 mrad based on the obtained results. Shaping of a grid was proposed to compensate the beamlet interaction. Beam orbit simulations indicated the effectiveness of the shaping. (author)

  17. Beamlet interaction in multi-aperture negative ion source

    International Nuclear Information System (INIS)

    Beamlet interaction, which may deteriorate beam convergence, was studied in a high-current negative ion beam composed of multiple beamlets. Experimental results demonstrated that a deflection angle of beamlets at the edge of a beam was larger than that at the center of a beam, because of space charge effect. The deflection angle was independent of the beam energy ranging from 86 keV to 178 keV at the same perveance. Effect of electrons accompanying negative ions was confirmed to be negligible. It was shown that repulsive force due to space charge effect was inversely proportional to the square of distance. The maximum deflection angle of a large negative ion source for the JT-60 Negative ion-NBI system was estimated to be about 6.6 mrad based on the obtained results. Shaping of a grid was proposed to compensate the beamlet interaction. Beam orbit simulations indicated the effectiveness of the shaping. (author)

  18. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.;

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate an...

  19. Effect of beamlet step-size on IMRT plan quality

    International Nuclear Information System (INIS)

    We have studied the degree to which beamlet step-size impacts the quality of intensity modulated radiation therapy (IMRT) treatment plans. Treatment planning for IMRT begins with the application of a grid that divides each beam's-eye-view of the target into a number of smaller beamlets (pencil beams) of radiation. The total dose is computed as a weighted sum of the dose delivered by the individual beamlets. The width of each beamlet is set to match the width of the corresponding leaf of the multileaf collimator (MLC). The length of each beamlet (beamlet step-size) is parallel to the direction of leaf travel. The beamlet step-size represents the minimum stepping distance of the leaves of the MLC and is typically predetermined by the treatment planning system. This selection imposes an artificial constraint because the leaves of the MLC and the jaws can both move continuously. Removing the constraint can potentially improve the IMRT plan quality. In this study, the optimized results were achieved using an aperture-based inverse planning technique called direct aperture optimization (DAO). We have tested the relationship between pencil beam step-size and plan quality using the American College of Radiology's IMRT test case. For this case, a series of IMRT treatment plans were produced using beamlet step-sizes of 1, 2, 5, and 10 mm. Continuous improvements were seen with each reduction in beamlet step size. The maximum dose to the planning target volume (PTV) was reduced from 134.7% to 121.5% and the mean dose to the organ at risk (OAR) was reduced from 38.5% to 28.2% as the beamlet step-size was reduced from 10 to 1 mm. The smaller pencil beam sizes also led to steeper dose gradients at the junction between the target and the critical structure with gradients of 6.0, 7.6, 8.7, and 9.1 dose%/mm achieved for beamlet step sizes of 10, 5, 2, and 1 mm, respectively

  20. Voltage-controllable wavelength-selective optical switching based on multiply cascaded long-period fiber gratings

    Science.gov (United States)

    Han, Young-Geun; Choi, Sun-Min; Kim, Sang Hyuck; Lee, Sang Bae

    2003-11-01

    A novel wavelength-selective optical switching device based on multiply cascaded long-period fiber gratings is proposed and experimentally demonstrated. The on and off states of each channel in the optical switching device can be effectively switched by voltage-controllable coil heaters. The device has advantages of multichannel operation, multiwavelength selectivity, and bandwidth controllability. It can be useful for applications in multiwavelength operational signal gating, optical switching devices, routers, and multiplexers in optical communication systems.

  1. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    Science.gov (United States)

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed. PMID:19412257

  2. Optical Switching for Dynamic Distribution of Wireless-over-Fiber Signals

    DEFF Research Database (Denmark)

    Rodes Lopez, Guillermo Arturo; Vegas Olmos, Juan José; Karinou, Fotini;

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; the rest of the network was designed according to the channel distribution over the optical spectra required by the optical...... switch. An experimental validation was also conducted. The experiment consists of a four wavelength division multiplexed (WDM) channel system operating on a WiMax frequency band, and employing an orthogonal frequency-division multiplexing (OFDM) modulation at 625 Mbit/s per channel, transmission of the...... data over 20 km of optical fiber, and active switching in a one-by-sixteen active optical switch. The results show a negligible power penalty on each channel, for both the best and the worst case in terms of inter-channel crosstalk....

  3. All-Optical Switching in Bacteriorhodopsin Based on Excited-State Absorption

    Science.gov (United States)

    Roy, Sukhdev

    2008-03-01

    Switching light with light is of tremendous importance for both fundamental and applied science. The advent of nano-bio-photonics has led to the design, synthesis and characterization of novel biomolecules that exhibit an efficient nonlinear optical response, which can be utilized for designing all-optical biomolecular switches. Bacteriorhodopsin (bR) protein found in the purple membrane of Halobacterium halobium has been the focus of intense research due to its unique properties that can also be tailored by physical, chemical and genetic engineering techniques to suit desired applications. The talk would focus on our recent results on all-optical switching in bR and its mutants, based on excited-state absorption, using the pump-probe technique. We would discuss the all-optical control of various features of the switching characteristics such as switching contrast, switching time, switching pump intensity, switched probe profile and phase, and relative phase-shift. Optimized conditions for all-optical switching that include optimized values of the small-signal absorption coefficient (for cw case), the pump pulse width and concentration for maximum switching contrast (for pulsed case), would be presented. We would discuss the desired optimal spectral and kinetic properties for device applications. We would also discuss the application of all-optical switching to design low power all-optical computing devices, such as, spatial light modulators, logic gates and multiplexers and compare their performance with other natural photoreceptors such as pharaonis phoborhodopsin, proteorhodopsin, photoactive yellow protein and the blue light plant photoreceptor phototropin.

  4. Wavelength assignment in optical burst switching networks using neuro-dynamic programming

    OpenAIRE

    Keçeli, Feyza

    2003-01-01

    Cataloged from PDF version of article. All-optical networks are the most promising architecture for building large-size, hugebandwidth transport networks that are required for carrying the exponentially increasing Internet traffic. Among the existing switching paradigms in the literature, the optical burst switching is intended to leverage the attractive properties of optical communications, and at the same time, take into account its limitations. One of the major problems in o...

  5. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback

    OpenAIRE

    Osborne, Simon; Heinricht, Patrycja; Brandonisio, Nicola; Amann, Andreas; O'Brien, Stephen

    2012-01-01

    The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numeric...

  6. Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings

    OpenAIRE

    Kotakonda, Pavani; Naydenova, Izabela; Jallapuram, Raghavendra; Martin, Suzanne; Toal, Vincent

    2009-01-01

    Polymer-dispersed liquid crystal (PDLC) is a material promising for application in optical communications, diffractive optics and optical data storage. Diffraction gratings were optically recorded in a novel PDLC material developed at the Centre for Industrial and Engineering Optics. Details of the fabrication and preliminary results of electro-optical switching of the holographic PDLC (HPDLC) diffraction gratings are presented. The redistribution of LCs was observed by using phase contrast m...

  7. Novel low-kVp beamlet system for choroidal melanoma

    International Nuclear Information System (INIS)

    Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in source-based radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or 'BLOKX' system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures. Monte Carlo N-Particle (MCNP) transport code version 5.0(14) was used to simulate photon interaction with normal and tumor tissues within modeled right eye phantoms. Five modeled dome-shaped tumors with a diameter and apical height of 8 mm and 6 mm, respectively, were simulated distinct positions with respect to the macula iteratively. A single fixed 9 × 9 mm2 beamlet, and a comparison COMS protocol plaque containing eight I-125 seeds (apparent activity of 8 mCi) placed on the scleral surface of the eye adjacent to the tumor, were utilized to determine dosimetric parameters at tumor and adjacent tissues. After MCNP simulation, comparison of dose distribution at each of the 5 tumor positions for each modality (BLOKX vs. eye-plaque) was performed. Tumor-base doses ranged from 87.1–102.8 Gy for the BLOKX procedure, and from 335.3–338.6 Gy for the eye-plaque procedure. A reduction of dose of at least 69% to tumor base was noted when using the BLOKX. The BLOKX technique showed a significant reduction of dose, 89.8%, to the macula compared to the episcleral plaque. A minimum 71.0 % decrease in dose to the optic nerve occurred when the BLOKX was used. The BLOKX technique allows more favorable dose distribution in comparison to standard COMS brachytherapy, as simulated using a Monte Carlo iterative mathematical modeling. Future series to determine clinical utility of such an approach are warranted

  8. Controlled optical bistability switching in a diode-pumped Tm,Ho:LLF laser

    International Nuclear Information System (INIS)

    We report on the experimental demonstration of stable all-optical switching between two steady state values of optical bistability from a laser diode end-pumped quasi-three-level Tm,Ho:LLF laser in the 2 μm spectral region. The width of the hysteresis cycle and jump power values can be efficiently controlled by changing the length of the cavity, which is very important to adjust and optimize the optical switching process. The all-optical bistable switching effect is realized by only adding short positive and negative trigger pulses to the pump light. This is, to our knowledge, the first observation of all-optical bistable switching in a rare earth doped solid state laser. (letter)

  9. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film

    Institute of Scientific and Technical Information of China (English)

    WEI Lai; TENG Xue-Lei; Lu Ming; ZHAO You-Yuan; MA De-Wang; DING Jian-Dong

    2007-01-01

    Photoinduced birefringence with large optical nonlinearity in a bacteriorhodopsin/polymer composite film is observed.A high refractive index change of 8.5×10-5 photoinduced by 476nm pumping beam is reached at the low intensity of 6.5mW/cm2.Based on it,a broadband all-optical photonic switch is realized with an optical controlling switch system.Because of controlling beam's selectivity in switching,the transporting beams of different wavelengths with different intensities and shapes can be modulated by adjusting the wavelength and intensity of the controlling beam.

  10. New Remote Gas Sensor Using Rapid Electro-Optical Path Switching

    Science.gov (United States)

    Sachse, G. W.; Lebel, P. J.; Wallio, H. A.; Vay, S. A.; Wang, L. G.

    1994-01-01

    Innovative gas filter correlation radiometer (GFCR) features nonmechanical switching of internal optical paths. Incoming radiation switched electro-optically, by means of polarization, between two optical paths, one of which contains correlation gas cell while other does not. Advantages include switching speed, 2 to 3 orders of magnitude faster than mechanical techniques, and high reliability. Applications include regional studies of atmospheric chemistry from either manned or unmanned aircraft as well as satellite studies of global distributions, sources and sink mechanisms for key species involved in chemistry of troposphere. Commercial applications: ability to survey many miles of natural gas pipelines rapidly from aircraft, pinpointing gas leaks by measuring methane at 2.3 micrometers.

  11. Small field/beamlet dosimetry in radiotherapy

    International Nuclear Information System (INIS)

    Small radiation fields generally called beamlets less than 40 mm are used in many clinical situations in high technology radiotherapy techniques like 1) Stereotactic radiosurgery (SRS), Gamma Knife, X-Knife (micromultileaf) and Cyber Knife, 2) Intensity Modulated Radio Therapy (IMRT) with dynamic MLC and step and shoot fields where large beam may consist of small segments with different dose levels (e.g., IMRT). There are many grey areas reported in dosimetric measurements and modeling of small fields especially in the non-equilibrium region of shallow millimeter depths in the skin, below immobilization shell, in the rebuild-up/interface zone of mucosal in head and neck tumors and in the regions of high dose gradients and electronic disequilibrium. Type, size and positional accuracy of detector, linac source size and type of MLC have an impact on dosimetry of small fields. The present study is on the central axis percentage depth dose (CADD), profile measurements, output factors of 6MV in the first few millimeters from the surface down to 45 mm depth for small fields from 5 mm x 5 mm to 50 mm x 50 mm measured by various ion chambers and EBT Film with 100 mm x 100 mm as reference field. The results will be related to clinical situations encountered in IMRT

  12. Crosstalk Improvement of Polymer in Glass Thermo-Optical Multimode Interference Switch

    Directory of Open Access Journals (Sweden)

    N.M. Kassim

    2012-06-01

    Full Text Available A new structural design of combined variable optical attenuator (VOA and optical switch has been proposed in this paper. The design is based on the multimode interference (MMI architecture and it has been demonstrated for crosstalk improvement of optical switch. The device operates by manipulating thermo-optic (TO effect that naturally existed in all optical waveguide material. By applying a polymer on glass material platform, the optimized VOA with optical attenuation of 21.52 dB has been achieved with applied power of 36.4 mW. The simulation result shows that the VOA helps to achieve significant improvements of optical switch performance particularly in crosstalk reduction up to 89.66%

  13. Extended Class of Pruned Crossbar Switches for Optical Networks

    Directory of Open Access Journals (Sweden)

    Hitoshi Obara

    2013-01-01

    Full Text Available Reducing crosspoints of conventional pruned crossbar switches (PXBSs with N23 crosspoints, where N is the switch size, was investigated from an architectural point of view. PXBSs have been created by removing parts of 2x2 switching elements (or simply cells from crossbar switches (XBSs, while preserving both the switches’ planar structure and wide-sense nonblocking property. In this paper, we consider an extended class of PXBSs that has either a 3D structure or rearrangeably nonblocking capability. Two new families of extended PXBSs are described. The first is wide-sense nonblocking; it has a 3D structure of N(N1 cells. Its form is similar to those of ILLIAC(N, N1 torus networks and is isomorphic to a degree-four chordal ring. Its switch control complexity becomes O(1 like conventional XBSs. The second has nearly 3N2/4 cells in a planar structure; it is rearrangeably nonblocking and its switch control complexity is O(N. Its maximum number of rearrangements remains three, regardless of N for N5. It decreases to two, if a pair of input and output ports is left unused. We point out that the second switch provides a missing link between crossbar switches of N2 cells and triangular switches of N(N1/2 cells and yields different rearrangeably nonblocking switches, with the number of rearrangements ranging from three to N2.

  14. Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses

    Science.gov (United States)

    El Hadri, M. S.; Pirro, P.; Lambert, C.-H.; Petit-Watelot, S.; Quessab, Y.; Hehn, M.; Montaigne, F.; Malinowski, G.; Mangin, S.

    2016-08-01

    Using a time-dependent electrical investigation of the all-optical switching in ferrimagnetic and ferromagnetic Hall crosses via the anomalous Hall effect, intriguing insights into the rich physics underlying the all-optical switching are provided. We demonstrate that two different all-optical magnetization switching mechanisms can be distinguished; a "single pulse" switching for ferrimagnetic GdFeCo alloys, and a "two regimes" switching process for both ferrimagnetic TbCo alloys and ferromagnetic Pt/Co multilayers. We show that the latter takes place at two different time scales, and consists of a steplike helicity-independent multiple-domain formation within the first 1 ms followed by a helicity-dependent remagnetization on several tens of milliseconds.

  15. Investigation of patterning effects in ultrafast SOA-based optical switches

    DEFF Research Database (Denmark)

    Xu, Jing; Zhang, Xinliang; Mørk, Jesper

    2010-01-01

    Ultrafast optical switching employing semiconductor optical amplifier (SOA) based optical switches has been demonstrated at bitrates up to 640 Gbit/s. However, patterning effects caused by relatively slow recovery processes in semiconductor structures remain as an important deteriorating factor...... that limits the ultimate speed at which SOA-based switches can be operated. In this paper, we investigate the patterning effects of SOA-based switches using a systematic approach. A simple condition for the lower bound limit of the bit pattern length that should be adopted in the performance...... evaluations of the switches is derived. It is shown that the minimum bit pattern length scales linearly with the bitrate and the recovery time of the SOA. To overcome the excessive computation time needed for numerical analysis at long pseudorandom binary sequence (PRBS) lengths, an effective method, i...

  16. Software-Controlled Next Generation Optical Circuit Switching for HPC and Cloud Computing Datacenters

    OpenAIRE

    Muhammad Imran; Martin Collier; Pascal Landais; Kostas Katrinis

    2015-01-01

    In this paper, we consider the performance of optical circuit switching (OCS) systems designed for data center networks by using network-level simulation. Recent proposals have used OCS in data center networks but the relatively slow switching times of OCS-MEMS switches (10–100 ms) and the latencies of control planes in these approaches have limited their use to the largest data center networks with workloads that last several seconds. Herein, we extend the applicability and generality of the...

  17. Simplified overflow analysis of an optical burst switch with fibre delay lines

    OpenAIRE

    McArdle, Conor; Tafani, Daniele; Liam P. Barry; Holohan, Anthony; Curran, Thomas

    2009-01-01

    We develop an approximate analytic model of an Optical Burst Switch with share-per-node fibre delay lines and tuneable wavelength converters by employing Equivalent Random Theory, an approach from circuit-switching analysis. Our model is formulated in terms of virtual traffic flows within the switch from which we derive expressions for burst blocking probability, fibre delay line occupancy and mean delay, which we then resolve numerically. Emphasis is on simplicity of the model to achieve goo...

  18. Optically-Switched Resonant Tunneling Diodes for Space-Based Optical Communication Applications

    Science.gov (United States)

    Moise, T. S.; Kao, Y. -C.; Jovanovic, D.; Sotirelis, P.

    1995-01-01

    We are developing a new type of digital photo-receiver that has the potential to perform high speed optical-to-electronic conversion with a factor of 10 reduction in component count and power dissipation. In this paper, we describe the room-temperature photo-induced switching of this InP-based device which consists of an InGaAs/AlAs resonant tunneling diode integrated with an InGaAs absorber layer. When illuminated at an irradiance of greater than 5 Wcm(exp -2) using 1.3 micromillimeter radiation, the resonant tunneling diode switches from a high-conductance to a low-conductance electrical state and exhibits a voltage swing of up to 800 mV.

  19. A new network architecture for future optical networks : coarse optical circuit switching by default, rerouting over circuits for adaptation

    OpenAIRE

    Chou, Jerry

    2009-01-01

    As Internet traffic continues to grow unabated at an exponential rate, it is unclear whether or not the existing packet routing network architecture based on electronic routers will continue to scale at the necessary pace. On the other hand, optical fiber and switching elements have demonstrated an abundance of capacity that appears to be unmatched by electronic routers. In particular, the simplicity of circuit switching makes it well-suited for optical implementations. Therefore, given the r...

  20. Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch:an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    XIA Cai-Juan; LIU De-Sheng; ZHANG Ying-Tang

    2011-01-01

    The electronic transport properties of a. Naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's Function formalism combined with first-principles density functional theory. The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation. Theoretical results show that the current through the open form is significantly larger than that through the closed form, which is different from other optical switches based on ring-opening reactions of the molecular bridge. The maximum on-off ratio (about 90) can be obtained at 1.4 V. The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap. Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.%@@ ronic transport properties of a naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's function formalism combined with first-principles density functional theory.The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation.Theoretical results show that the current through the open form is significantly larger than that through the closed form,which is different from other optical switches based on ring-opening reactions of the molecular bridge.The maximum on-off ratio(about 90)can be obtained at 1.4 V.The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap.Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.

  1. Patterning Effects in Ultrafast All-Optical Photonic Crystal Nanocavity Switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    All-optical switches are expected to play a key role in increasing the bandwidth of future communication networks by replacing slower electronic components for certain signal processing tasks. Previous work has demonstrated the possibility of switching a single pulse [1,2]. However, a more realis...

  2. All-Optical Switching Using Fabry-Perot Laser Diodes (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P.; K.; A.; Wai; L.; Y.; Chan; H.; Y.; Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  3. All-optical switching and all-optical logic gates based on bacteriorhodopsin

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-06-01

    We demonstrate an all-optical switching using a bacteriorhodopsin (bR) film. The transmission of the bR film is investigated using the pump-probe method. A diode-pumped second harmonic YAG laser (λ = 532nm which is around the maximum initial B state absorption) was used as a pumping beam and a cw He-Ne laser (λ = 632 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we design an all-optical operating device functioning as 11 kinds of variable binary all-optical logic gates. The incident 532nm beam acts as an input to the logic gate and the transmission of the 632nm bears the output of the gate.

  4. Optical generation and wireless transmission of 60 GHz OOK signals using gain switched laser

    OpenAIRE

    Shams, Haymen; Anandarajah, Prince M.; Perry, Philip; Liam P. Barry

    2010-01-01

    We present a novel, simple and cost effective system for optical millimeter-wave generation and transmission of 3 Gbps data based on gain switching. System performance has been investigated, including wireless transmission and power budget analysis.

  5. Wavelength switched hybrid TDMA/WDM (TWDM) PON: a flexible next-generation optical access solution

    OpenAIRE

    Dixit, Abhishek; Lannoo, Bart; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2012-01-01

    In this paper, we propose the system concepts of a next-generation wavelength switched hybrid time division multiple access and wavelength division multiplexing (TWDM) passive optical network (PON) architecture. In this architecture, wavelength selective switches (WSSs) are used at the remote node to improve flexibility, data security and power budget compared to other TWDM-PON variants. We map the proposed architecture to the requirements of next-generation optical access networks in a 2020 ...

  6. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    OpenAIRE

    Abubakar Muhammad Umaru; Muhammad Shafie Abd Latiff; Yahaya Coulibaly

    2014-01-01

    The optical burst switching (OBS) paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT) burst assembly algorithm via simulation. Simulation results sh...

  7. Evaluation of Burst Loss Rate of an Optical Burst Switching (OBS) Network with Wavelength Conversion Capability

    OpenAIRE

    Reza, Md. Shamim; Hossain, Md. Maruf; Majumder, Satya Prasad

    2010-01-01

    This paper presents a new analytical model for calculating burst loss rate (BLR) in a slotted optical burst switched network. The analytical result leads to a framework which provides guidelines for optical burst switched networks. Wavelength converter is used for burst contention resolution. The effect of several design parameters such as burst arrival probability, wavelength conversion capability, number of slots per burst and number of wavelengths is incorporated on the above performance m...

  8. Architecture on Demand Design for High-Capacity Optical SDM/TDM/FDM Switching

    OpenAIRE

    Bianco, Andrea; Giaccone, Paolo; Garrich Alabarce, Miquel

    2015-01-01

    Reconfigurable optical add/drop multiplexers (ROADMs) are key elements in operators' backbone networks. The breakthrough node concept of architecture on demand (AoD) permits us to design optical nodes with higher flexibility with respect to ROADMs. In this work, we present a five-step algorithm for designing AoD instances according to some given traffic requests, which are able to support subwavelength time switching up to wavelength/superchannel/fiber switching. We evaluate AoD performancein...

  9. Performance Analysis of Delay in Optical Packet Switching Using Various Traffic Patterns

    OpenAIRE

    A Kavitha; V.Rajamni; P. Anandhakumar

    2010-01-01

    Quality of Service parameters are improved for development of optical packet switching technology. Delay is an important parameter in optical packet switching networks and it affects the performance of the network. In this paper, a mathematical model is presented to evaluate the delay rate. Delay rates are analyzed for fixed packet length and variable length packet for various traffic patterns viz. Non-uniform, Poisson and ON-OFF traffic models for various service classes using Reservation Bi...

  10. 40 Gbit/s NRZ Packet-Length Insensitive Header Extraction for Optical Label Switching Networks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Kehayas, E; Avramopoulos, H.;

    2006-01-01

    A simple method for 40 Gbit/s NRZ header extraction based on envelope detection for optical label switching networks is presented. The scheme is insensitive to packet length and spacing and can be single-chip integrated cost-effectively......A simple method for 40 Gbit/s NRZ header extraction based on envelope detection for optical label switching networks is presented. The scheme is insensitive to packet length and spacing and can be single-chip integrated cost-effectively...

  11. Single-photon all-optical switching using coupled microring resonators

    Indian Academy of Sciences (India)

    Wenge Yang; Amitabh Joshi; Min Xiao

    2007-08-01

    We study the nonlinear phase response of a microring resonator coupled to a bus waveguide and the use of this nonlinear phase shift to store information in the microring resonator and enhance the switching characteristics of a Mach–Zehnder interferometer (MZI). By introducing coupling between adjacent microring resonators, the switching characteristics of the MZI can be exponentially enhanced as a function of the number of microring resonators, when compared to the linear enhancement for uncoupled resonators. With only a few moderate-finesse microring resonators, the switching power can be reduced to attowatt level, allowing for photonic switching devices that operate at single-photon level in ordinary optical waveguides.

  12. Fabrication of Thermo-Optic Switch in Silicon-on-Insulator

    Institute of Scientific and Technical Information of China (English)

    王章涛; 夏金松; 樊中朝; 陈少武; 余金中

    2003-01-01

    Silicon-on-insulator technology has been used to fabricate 2 × 2 thermo-optic switches. The switch shows crosstalk of-23.4 dB and extinction ratio of 18.1 dB in the bar-state. The switching speed is less than 30 μs and the power consumption is about 420mW. The measured excess loss is 1.8 dB. These merits make the switch more attractive for applications in wavelength division multiplexing.

  13. Design, installation, commissioning and operation of a beamlet monitor in the negative ion beam test stand at NIFS

    Science.gov (United States)

    Antoni, V.; Agostinetti, P.; Brombin, M.; Cervaro, V.; Delogu, R.; De Muri, M.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Ikeda, K.; Kisaki, M.; Molon, F.; Muraro, A.; Nakano, H.; Pasqualotto, R.; Serianni, G.; Takeiri, Y.; Tollin, M.; Tsumori, K.; Veltri, P.

    2015-04-01

    In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with the aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.

  14. Design, installation, commissioning and operation of a beamlet monitor in the negative ion beam test stand at NIFS

    International Nuclear Information System (INIS)

    In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with the aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters

  15. Optical Switching of a Quantum Cascade Laser in Continuous Wave Operation

    International Nuclear Information System (INIS)

    We demonstrate an optical switching in a middle infrared continuous-wave quantum cascade laser operated in single mode by illuminating its front facet with a near infrared laser. A decrease in the laser net gain is observed in the amplified spontaneous emission spectrum. This is attributed to an increase of the carrier concentration caused by the near infrared excitation. The net gain reduction allows the quantum cascade laser to be completely switched off from single mode lasing. This optical switching can be used to convert near infrared signals into middle infrared signals for free space communication. (cross-disciplinary physics and related areas of science and technology)

  16. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    CERN Document Server

    Colman, Pierre; Yu, Yi; Mørk, Jesper

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse. The measurements are in good agreement with a theoretical model that allows us to ascribe the observation to oscillations of the free carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.

  17. All-Optical Programmable Disaggregated Data Centre Network realized by FPGA-based Switch and Interface Card

    OpenAIRE

    Yan, Yan; Saridis, George; Shu, Yi; R. Rofoee, Bijan; Yan, Shuang Yi; Arslan, Murat; Richardson, David; Poole, Simon; Zervas, Georgios; Simeonidou, Dimitra; Bradley, Tom; Wheeler, Natalie V.; Wong, Nicholas H.L.; Poletti, Francesco; Petrovich, Marco N.

    2016-01-01

    This paper reports a FPGA-based Switch and Interface Card (SIC) and its application scenario in an all-optical, programmable disaggregated Data Centre Network (DCN). Our novel SIC is designed and implemented to replace traditional optical Network Interface Cards (NICs), plugged into the server directly, supporting Optical Packet Switching (OPS)/ Optical Circuit Switching (OCS) or Time Division Multiplexing (TDM)/ Wavelength Division Multiplexing (WDM) traffic on demand. Placing the SIC in eac...

  18. Experimental study of electro-optical Q-switched pulsed Nd:YAG laser

    Science.gov (United States)

    A, Maleki; M Kavosh, Tehrani; H, Saghafifar; M, H. Moghtader Dindarlu

    2016-03-01

    We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.

  19. DLP switched blaze grating: the heart of optical signal processing

    Science.gov (United States)

    Duncan, Walter M.; Lee, Benjamin L.; Rancuret, Paul; Sawyers, Bryce D.; Endsley, Lynn; Powell, Donald

    2003-01-01

    We have developed an approach for processing communication signals in the optical domain using a DLP digital mirror array driven by a Digital Signal Processor (DSP). In optical communication systems, modulation rates of 10 GB/s and above are common, hence, direct processing of Dense Wavelength Division Multiplexed (DWDM) optical signals without undergoing Optical to Electrical conversion has become a key requirement for cost effective deployment of dynamic optical networks. This work will discuss primarily applications of Optical Signal Processing (OSP) to coherent DWDM signals. Optical Signal Processing has also found applications in spectroscopy, microscopy, sensing, optical correlation, and testing.

  20. Ultra-Fast All-Optical Self-Aware Protection Switching Based on a Bistable Laser Diode

    DEFF Research Database (Denmark)

    An, Yi; Vukovic, Dragana; Lorences Riesgo, Abel;

    2014-01-01

    We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps.......We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps....

  1. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback

    International Nuclear Information System (INIS)

    The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numerical simulations based on a simple rate equation model. We also demonstrate experimentally that time-delayed optical feedback can induce wavelength bistability for short external cavity lengths. Numerical simulations indicate that this two-colour optical feedback system can provide fast optical memory functionality based on injected optical pulses without the need for an external holding beam. (paper)

  2. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback

    CERN Document Server

    Osborne, Simon; Brandonisio, Nicola; Amann, Andreas; O'Brien, Stephen

    2012-01-01

    The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numerical simulations based on a simple rate equation model. We also demonstrate experimentally that time-delayed optical feedback can induce wavelength bistability for short external cavity lengths. Numerical simulations indicate that this two-colour optical feedback system can provide fast optical memory functionality based on injected optical pulses without the need for an external holding beam.

  3. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Herianto, E-mail: mail@heriantolim.com; Stavrias, Nikolas; Johnson, Brett C.; McCallum, Jeffrey C. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Marvel, Robert E.; Haglund, Richard F. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States)

    2014-03-07

    Vanadium dioxide (VO{sub 2}) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator–to–metal transition, the phase transition in VO{sub 2} can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO{sub 2} with erbium ions (Er{sup 3+}) and observe their combined properties. The first excited-state luminescence of Er{sup 3+} lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er{sup 3+} into VO{sub 2} could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO{sub 2} thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO{sub 2} by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ∼800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO{sub 2} thin films. We conclude that Er-implanted VO{sub 2} can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO{sub 2}.

  4. Software-Controlled Next Generation Optical Circuit Switching for HPC and Cloud Computing Datacenters

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2015-11-01

    Full Text Available In this paper, we consider the performance of optical circuit switching (OCS systems designed for data center networks by using network-level simulation. Recent proposals have used OCS in data center networks but the relatively slow switching times of OCS-MEMS switches (10–100 ms and the latencies of control planes in these approaches have limited their use to the largest data center networks with workloads that last several seconds. Herein, we extend the applicability and generality of these studies by considering dynamically changing short-lived circuits in software-controlled OCS switches, using the faster switching technologies that are now available. The modelled switch architecture features fast optical switches in a single hop topology with a centralized, software-defined optical control plane. We model different workloads with various traffic aggregation parameters to investigate the performance of such designs across usage patterns. Our results show that, with suitable choices for the OCS system parameters, delay performance comparable to that of electrical data center networks can be obtained.

  5. 4x4 optoelectronic switch matrix integrating an MSM array with polyimide optical waveguides

    Science.gov (United States)

    Gouin, Francois L.; Robitaille, Lucie; Callender, Claire L.; Noad, Julian P.; Almeida, Carlos

    1997-12-01

    Optical fibers offer the wide bandwidth, low losses and low interference required in broadband network applications. Currently, routing the signals to their destination is done by converting the incoming optical signals to an electrical form, carrying out the switching function using electronic circuitry then reconverting to light for the next transmission stage. Recently, we have reported a 3 by 3 optoelectronic switch which combines the functions of conversion and switching. This matrix monolithically integrates metal-semiconductor-metal (MSM) detectors with amplifiers. Very good isolation and crosstalk characterize this switch matrix, but the packaging requires the alignment of nine fibers, the square of the number of inputs, to the various detector crosspoints. In this presentation, we report the fabrication and evaluation of 4 by 4 optoelectronic switching matrices integrating MSM detectors with polyimide waveguides which perform the optical signal distribution on the wafer. These waveguides were fabricated on top of the semiconductor using a photolithographic process. The detector electrodes were formed using a transparent ITO film to maximize the responsivity. The incoming light is distributed using the 'tap' approach, which is more compact than the Y-branching configuration. Two 2 by 4 monolithic arrays were assembled on an alumina circuit using microwave hybrid circuit technology. The bandwidth of the assembled switch exceeds 1 GHz and with improved circuit design, should approach the 5 - 10 GHz bandwidth of the individual MSMs. A similar switch is based on a 4 by 4 monolithic array. The isolation is typically better than 35 dB. These characteristics are compared to the performance of the 3 by 3 OEIC switch and another 4 by 4 switch array assembled using four GaAs MESFET SP4T switches.

  6. Optical Waveguide Switches Employing Total-Internal-Reflection (TIR) Effect (Invited Paper)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, our recent research work on the total-internal-reflection optical switch is presented. The thermo-optic effect of polymeric materials and the photon-induced carrier effect of GaAlAs/GaAs are used in our devices.

  7. Multi-Impairment WDM Optical Performance Monitoring for Burst Switched Networks

    OpenAIRE

    Baker-Meflah, L.; Thomsen, B.C.; Mitchell, J. E.; Bayvel, P.

    2010-01-01

    We present an analytical investigation of a performance monitoring scheme capable of simultaneously monitoring Chromatic Dispersion, Polarization Mode Dispersion and Optical Signal to Noise Ratio at 40 Gbit/s on timescales that are appropriate to optical burst switched networks. This analysis supports previously published experimental results which showed that this technique is scalable to WDM network monitoring.

  8. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers.

    Science.gov (United States)

    Lu, Liangjun; Zhao, Shuoyi; Zhou, Linjie; Li, Dong; Li, Zuxiang; Wang, Minjuan; Li, Xinwan; Chen, Jianping

    2016-05-01

    We experimentally demonstrate a 16 × 16 non-blocking optical switch fabric with a footprint of 10.7 × 4.4 mm2. The switch fabric is composed of 56 2 × 2 silicon Mach-Zehnder interferometers (MZIs), with each integrated with a pair of TiN resistive micro-heaters and a p-i-n diode. The average on-chip insertion loss at 1560 nm wavelength is ~6.7 dB and ~14 dB for the "all-cross" and "all-bar" states, respectively, with a loss variation of ± 1 dB over all routing paths. The measured rise/fall time of the switch upon electrical tuning is 3.2/2.5 ns. The switching functionality is verified by transmission of 20 Gb/s on-off keying (OOK) and 50 Gb/s quadrature phase-shift keying (QPSK) optical signals. PMID:27137545

  9. Hybrid electro-optic plasmonic modulators based on directional coupler switches

    Science.gov (United States)

    Zografopoulos, Dimitrios C.; Swillam, Mohamed A.; Shahada, Lamees A.; Beccherelli, Romeo

    2016-04-01

    By breaking the diffraction limit, plasmonics enable the miniaturization of integrated optical signal processing units in a platform compatible with traditional CMOS technology. In such architectures, modulators and switches are essential elements for fast and low-power optical signal processing. This work presents the design of a CMOS-compatible hybrid plasmonic modulator based on directional couplers enhanced with a layer of electro-optic polymer. The modulator shows very broad operating window with low crosstalk values and very small footprint with respect to similar couplers and switches of the silicon photonics platform.

  10. Dynamics of all-optically switched micropillar resonances

    CERN Document Server

    Thyrrestrup, Henri; Ctistis, Georgios; Claudon, Julien; Vos, Willem L

    2014-01-01

    Here we do frequency and time resolved switching of a single GaAs/AlGa micropillar cavity with a pillar diameter of 6 mu using a ultrafast pump-probe setup. The switching is achieved by two-photon excitation of free carriers by an femtosecond pump pulse. We observe a simultaneously frequency shift of the first two transverse micropillar modes and obtain high resolution frequency traces of the two resonances in time. A difference in the the maximum switching magnitude of 12% point is caused by spatial inhomogeneous excitation of carriers in the pillar. The relaxation dynamic of the two resonances show a strongly non-exponential decay. We interpret the non-exponential dynamics in term of a second order decay model for the spontaneous recombination of electron and hole for the free carriers and a slow free carrier trapping time of ~300 ps.

  11. NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems

    CERN Document Server

    Bányai, L

    1989-01-01

    This book contains all the papers presented at the NATO workshop on "Optical Switching in Low Dimensional Systems" held in Marbella, Spain from October 6th to 8th, 1988. Optical switching is a basic function for optical data processing, which is of technological interest because of its potential parallelism and its potential speed. Semiconductors which exhibit resonance enhanced optical nonlinearities in the frequency range close to the band edge are the most intensively studied materials for optical bistability and fast gate operation. Modern crystal growth techniques, particularly molecular beam epitaxy, allow the manufacture of semiconductor microstructures such as quantum wells, quantum wires and quantum dots in which the electrons are only free to move in two, one or zero dimensions, of the optically excited electron-hole pairs in these low respectively. The spatial confinement dimensional structures gives rise to an enhancement of the excitonic nonlinearities. Furthermore, the variations of the microstr...

  12. Optimized design and fabrication of nanosecond response electro optic switch based on ultraviolet-curable polymers

    Institute of Scientific and Technical Information of China (English)

    赵旭亮; 岳远斌; 刘通; 孙健; 王希斌; 孙小强; 陈长鸣; 张大明

    2015-01-01

    A nanosecond response waveguide electro-optic (EO) switch based on ultraviolet (UV) sensitive polymers of Norland optical adhesive (NOA73) and Dispersed Red 1 (DR1) doped SU-8 (DR1/SU-8) is designed and fabricated. The absorption properties, refractive indexes, and surface morphologies of NOA73 film are characterized. The single-mode transmission condition is computed by the effective index method, and the percentage of optical field distributed in EO layer is optimized to be 93.78%. By means of spin-coating, thermal evaporation, photolithography, and inductively coupled plasma etching, a Mach–Zehnder inverted-rib waveguide EO switch with micro-strip line electrode is fabricated on a silicon substrate. Scanning electron microscope characterization proves the physic-chemical compatibility between NOA73 cladding and DR1/SU-8 core material. The optical transmission loss of the fabricated switch is measured to be 2.5 dB/cm. The rise time and fall time of switching are 3.199 ns and 2.559 ns, respectively. These results indicate that the inverted-rib wave-guide based on UV-curable polymers can effectively reduce the optical transmission loss and improve the time response performance of an EO switch.

  13. Development of optical switching readout X-ray detector for high-speed imaging

    International Nuclear Information System (INIS)

    In this study, we demonstrated the feasibility of an X-ray detector with a dual amorphous-selenium (a-Se) layer using an optical switching readout for high-speed X-ray imaging. The X-ray detector consists of a negative voltage bias electrode; a thick a-Se layer for the photoelectric conversion of X-ray photons; an As2Se3 layer employed as an electron-trapping layer for accumulating latent images; a thin a-Se layer for optical readout; alternate opaque and transparent electrodes; and an optical light source for the optical switching readout. The line light of the optical light source, which has a peak wavelength of 470 nm, is operated line by line using electrical scanning for high-speed X-ray imaging. The developed X-ray detector has a pixel pitch of 200 μm with 512 channels. -- Highlights: •The feasibility of X-ray detector for high-speed imaging was demonstrated. •An a-Se was used for optical switching layer for signal charge readout. •As2Se3 layer was employed as electron-trapping layer for accumulating latent images. •The surface light source of blue lights was fabricated for optical switching readout. •The 2D array of readout light can be emitted linearly and scanned electrically line by line

  14. Development of optical switching readout X-ray detector for high-speed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryun Kyung, E-mail: rkkim@keri.re.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan-si (Korea, Republic of); Jeon, Sung Chae [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan-si (Korea, Republic of); Kim, Jung-Seok [Advanced Research Group, DRTECH Corporation, Seongnam-si (Korea, Republic of); Lee, Ho-Jun [School of Electrical Engineering, Pusan National University, Busan (Korea, Republic of); Heo, Duchang; Cha, Bo Kyung; Seo, Chang-Woo [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan-si (Korea, Republic of); Moon, B.J.; Yoon, J.K. [Advanced Research Group, DRTECH Corporation, Seongnam-si (Korea, Republic of)

    2013-12-11

    In this study, we demonstrated the feasibility of an X-ray detector with a dual amorphous-selenium (a-Se) layer using an optical switching readout for high-speed X-ray imaging. The X-ray detector consists of a negative voltage bias electrode; a thick a-Se layer for the photoelectric conversion of X-ray photons; an As{sub 2}Se{sub 3} layer employed as an electron-trapping layer for accumulating latent images; a thin a-Se layer for optical readout; alternate opaque and transparent electrodes; and an optical light source for the optical switching readout. The line light of the optical light source, which has a peak wavelength of 470 nm, is operated line by line using electrical scanning for high-speed X-ray imaging. The developed X-ray detector has a pixel pitch of 200 μm with 512 channels. -- Highlights: •The feasibility of X-ray detector for high-speed imaging was demonstrated. •An a-Se was used for optical switching layer for signal charge readout. •As{sub 2}Se{sub 3} layer was employed as electron-trapping layer for accumulating latent images. •The surface light source of blue lights was fabricated for optical switching readout. •The 2D array of readout light can be emitted linearly and scanned electrically line by line.

  15. Comments on: Optical computation based on nonlinear total reflectional optical switch at the interface

    Indian Academy of Sciences (India)

    Y A Zaghloul

    2015-12-01

    As we read the paper by Jianqi Zhang and Huan Xu, Pramana – J. Phys. 72, 547 (2009), two issues became clear, that warranted writing this comment. First, the switch, which is the main building block of the devices, and which is used to route the signal, does not work as explained in Section 4.1. Accordingly, the optical router does not work as explained, either. In addition, the half adder does not work as explained and a completely different Truth Table is obtained. The full adder is left to the reader as an exercise. Secondly, the previously published work, which is closely related to the work reported, was not referenced or discussed. In the following paragraphs we discuss each issue in some detail to give the authors the opportunity to better explain their work and clear such issues.

  16. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup

    2004-01-01

    found to limit the performance. Two implementations of differential-mode switches, the Mach Zehnder interferometer (MZI) and the delayed-interferometer signal converter (DISC), are compared at bitrates up to 160 Gb/s, and fundamental differences in terms of noise filtering are demonstrated. The DISC...... coupler is verified, also at 10 Gb/s. 3R regeneration (2R + re-timing), based on a cross-gain modulation wavelength converter and a MZI, is demonstrated at 40 Gb/s in a recirculating loop experiment over 4000 km. Moreover, an optical subsystem for NRZ clock recovery, based on self-phase modulation and...... experimentally with MZIs, at 20 Gb/s and 10 Gb/s, respectively, whereas combinations of Boolean functions in MZIs are used to demonstrate a 3-input XOR gate, a data segment bit comparator, and a compact parity checking scheme, all at 10 Gb/s....

  17. Applications of superstructure fibre Bragg gratings for optical code division multiple access and packet switched networks

    OpenAIRE

    Teh, P.C.

    2003-01-01

    This thesis describes the research on the implementation of all-optical code generation and recognition based on superstructure fibre Bragg grating (SSFBG) for use in Optical Code Division Multiple Access (OCDMA) systems and also in high-speed all-optical packet switched networks.These results highlight the precision and flexibility of the continuous grating writing process and show that the SSFBG technology represents a promising technology not just for OCDMA but an extended range of other p...

  18. Protein-based integrated optical switching and modulation

    Science.gov (United States)

    Ormos, Pál; Fábián, László; Oroszi, László; Wolff, Elmar K.; Ramsden, Jeremy J.; Dér, András

    2002-05-01

    The static and dynamic response of optical waveguides coated with a thin protein film of bacteriorhodopsin was investigated. The size and kinetics of the light-induced refractive index changes of the adlayer were determined under different conditions of illumination. The results demonstrate the applicability of this protein as an active, programmable nonlinear optical material in all-optical integrated circuits.

  19. Experimental Demonstration of Optical Switching of Tbit/s Data Packets for High Capacity Short-Range Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Hu, Hao; Galili, Michael; Oxenløwe, Leif Katsuo

    2015-01-01

    Record-high 1.28-Tbit/s optical data packets are experimentally switched in the optical domain using a LiNbO3 switch. An in-band notch-filter labeling scheme scalable to 65,536 labels is employed and a 3-km transmission distance is demonstrated.......Record-high 1.28-Tbit/s optical data packets are experimentally switched in the optical domain using a LiNbO3 switch. An in-band notch-filter labeling scheme scalable to 65,536 labels is employed and a 3-km transmission distance is demonstrated....

  20. An optical and theoretical investigation of the ultrafast dynamics of a bisthienylethene-based photochromic switch

    OpenAIRE

    Hania, P. R.; Telesca, R.; Lucas, L.N.; Pugzlys, A.; Esch, J.H. van; Feringa, B.L.; Snijders, J. G.; Duppen, K

    2002-01-01

    The switching behavior of 1,2-bis(5-phenyl-2-methylthien-3-yl)cyclopentene is studied by means of polarization selective nonlinear optical spectroscopy and time-dependent density functional theory. The combined information from the observed population and orientational dynamics together with the results of theoretical calculations show that on a subpicosecond time scale rapid mixing and relaxation of electronic states occur, before switching takes place. Such preswitching dynamics was not stu...

  1. Performance Evaluation and Improvement of Next-generation Optical Switching Architecture

    OpenAIRE

    Yang, Shuna

    2015-01-01

    The advance in wavelength-division multiplexing (WDM) technology, which propagates closer to the network edge, enables the proliferation of applications with very high bandwidth and stringent performance requirements. However, today’s core networks, which mainly employ electronics for bulk processing and switching, eventually will become strained in both capacity and flexibility. The introduction of optical technologies in switching functions is a major evolution of core networ...

  2. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rajratan, E-mail: basu@usna.edu [Department of Physics, Soft-matter and Nanomaterials Laboratory, The United States Naval Academy, Annapolis, Maryland 21402 (United States)

    2014-09-15

    A small quantity of graphene flakes was doped in a ferroelectric liquid crystal (FLC), and the field-induced ferroelectric electro-optic switching was found to be significantly faster in the FLC + graphene hybrid than that of the pure FLC. Further studies revealed that the suspended graphene flakes enhanced the FLC's spontaneous polarization by improving smectic-C ordering resulting from the π–π electron stacking, and reduced rotation viscosity by trapping some of the free ions of the FLC media. These effects coherently impacted the FLC-switching phenomenon, enabling the FLC molecules to switch faster on reversing an external electric field.

  3. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal

    International Nuclear Information System (INIS)

    A small quantity of graphene flakes was doped in a ferroelectric liquid crystal (FLC), and the field-induced ferroelectric electro-optic switching was found to be significantly faster in the FLC + graphene hybrid than that of the pure FLC. Further studies revealed that the suspended graphene flakes enhanced the FLC's spontaneous polarization by improving smectic-C ordering resulting from the π–π electron stacking, and reduced rotation viscosity by trapping some of the free ions of the FLC media. These effects coherently impacted the FLC-switching phenomenon, enabling the FLC molecules to switch faster on reversing an external electric field.

  4. Broadband optically controlled switching effect in a microfluid-filled photonic bandgap fiber

    Science.gov (United States)

    Guo, Junqi; Liu, Yan-ge; Wang, Zhi; Luo, Mingming; Huang, Wei; Han, Tingting; Liu, Xiaoqi

    2016-05-01

    Broadband optically controlled switching in a microfluid-filled photonic bandgap fiber (MF-PBGF) was observed and investigated. The MF-PBGF was formed by infusing a temperature-sensitive high-index fluid into all of the cladding holes of a microstructured optical fiber (MOF). The fiber was then side pumped with a 532 nm continuous wave laser. An extinction ratio of greater than 20 dB at most of the bandgap wavelengths (more than 200 nm) was obtained with a switching power of ∼147 mW. Theoretical and experimental investigations revealed that the effect originated from changes in the temperature gradient induced by heat absorption of the fiber coating with laser illumination. These investigations offer a new and simple approach to achieve wideband and flexible all-optical fiber switching devices without using any photosensitive materials.

  5. A Simple Performance Analysis of a Core Node in an Optical Burst Switched Network

    CERN Document Server

    Morsy, Mohamed H S; Shalaby, Hossam M H

    2008-01-01

    A simple mathematical model that considers the performance of an intermediate node having wavelength conversion capability in an OBS network is presented in this paper. The model assumes that the node has variable wavelength conversion capability which means that the node may have no, partial or full conversion capability. Two performance measures are derived from the model; namely, the steady state throughput and the average burst loss probability assuming Poisson traffic arrivals. In addition, a simulation work is performed in order to validate the results of our proposed model. Optimum values for the wavelength conversion capability in the node, which lead to minimum burst loss probability, are reached for different traffic conditions. Keywords: Optical Burst Switching (OBS), Optical Circuit Switching (OCS), Optical Packet Switching (OPS), Just-In-Time (JIT), Just-Enough-Time (JET).

  6. On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme

    Science.gov (United States)

    Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier

    2014-02-01

    We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.

  7. Sub-picosecond optical switching with a negative index metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Dani, Keshav M [Los Alamos National Laboratory; Upadhya, Prashant C [Los Alamos National Laboratory; Zahyum, Ku [CHTM-UNM

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  8. Polarization switching and optical bistability in the diode-pumped Tm,Ho:LLF laser

    International Nuclear Information System (INIS)

    We first report on the polarization switching and optical bistability in the Tm,Ho:LLF laser. In the free-running operation, the switching of the π-polarization at 2069 nm and σ-polarization at 2066 nm are experimentally observed. By adjusting the tilting angle of an intracavity etalon, the orthogonally polarized dual-wavelength single-longitudinal-mode laser is obtained at 2054 and 2066 nm, and the π-polarized and σ-polarized single wavelength single-longitudinal-mode laser is obtained at 2057 and 2063 nm, which all show evident optical bistability. (letter)

  9. Ultrafast low-energy all-optical switching using a photonic-crystal asymmetric Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Hu, Hao; Oxenløwe, Leif Katsuo;

    2015-01-01

    We experimentally demonstrate 20 Gbit/s all-optical switching with low-energy consumption using a simple and ultra-compact InP photonic-crystal structure by employing a well-engineered Fano resonance in combination with broken mirror symmetry.......We experimentally demonstrate 20 Gbit/s all-optical switching with low-energy consumption using a simple and ultra-compact InP photonic-crystal structure by employing a well-engineered Fano resonance in combination with broken mirror symmetry....

  10. Architectures of electro-optical packet switched networks

    DEFF Research Database (Denmark)

    Berger, Michael Stubert

    2004-01-01

    from optics and electronics. An overview of the DAVID network architecture is given, focusing on the MAN and WAN architecture as well as the MPLS based network hierarchy. A statistical model of the optical slot generation process is presented and utilised to evaluate delay vs. efficiency. Furthermore...

  11. Advanced photonic integrated technologies for optical routing and switching

    Science.gov (United States)

    Masanovic, Milan L.; Burmeister, Emily; Dummer, Matthew M.; Koch, Brian; Nicholes, Steven C.; Jevremovic, Biljana; Nguyen, Kim; Lal, Vikrant; Bowers, John E.; Coldren, Larry A.; Blumenthal, Daniel J.

    2009-02-01

    In this paper, we report on the latest advances in implementation of the photonic integrated circuits (PICs) required for optical routing. These components include high-speed, high-performance integrated tunable wavelength converters and packet forwarding chips, integrated optical buffers, and integrated mode-locked lasers.

  12. A Theoretical Model of All-optical Switching Induced by a Soliton Pulse in Nano-waveguide Ring Resonator

    International Nuclear Information System (INIS)

    We propose a theoretical model of 1×2 all-optical switching in a silicon nano-waveguide ring resonator induced by a soliton pulse. All-optical switches made by silicon fiber or silicon waveguide have attracted much attention, because the low-absorption wavelength windows of silicon material just match optical fiber communication. However, to achieve all-optical switching in silicon is challenging owing to its relatively weak nonlinear optical properties and require high switching power, which is much higher than the signal power. Such high power is inappropriate for effective on-chip integration. To overcome this limitation, we have used a highly confined nano-waveguide ring resonator structure with soliton pulse input to enhance the nonlinearity and this leads to enhance the effect of refractive index change on the transmission response. The refractive index is changed by controlling the free-carrier concentration through two-photon absorption (TPA) effect. The result indicates that a refractive index change as small as 6.4×10−3 can reduce the switching power to 2.38 ×10−6 W. The nano-waveguide ring resonator all-optical switching described here is achieved by using the concept of strong light confinement, and the switching power is approximately three orders of magnitude lower than the available silicon optical switches. Such controllable switch is desired for achieving high performance in nanometer-size planar structures.

  13. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  14. A novel self-routing address scheme for all-optical packet-switched networks with arbitrary topologies

    OpenAIRE

    Yuan, XC; Li, VOK; Li, CY.; Wai, PKA

    2003-01-01

    Pure all-optical packet-switched networks in which both header processing and packet routing are carried out in the optical domain overcome the bandwidth bottlenecks of optoelectronic conversions and therefore are expected to meet the needs of next generation high speed networks. Due to the limited capabilities of available optical logic devices, realizations of pure all-optical packet-switched networks in the near future will likely employ routing schemes that minimize the complexity of rout...

  15. Transparent ceramic photo-optical semiconductor high power switches

    Science.gov (United States)

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  16. Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses

    Science.gov (United States)

    El Hadri, M. S.; Pirro, P.; Lambert, C.-H.; Bergeard, N.; Petit-Watelot, S.; Hehn, M.; Malinowski, G.; Montaigne, F.; Quessab, Y.; Medapalli, R.; Fullerton, E. E.; Mangin, S.

    2016-02-01

    We present an experimental study of all-optical helicity-dependent switching (AO-HDS) of ferromagnetic Pt/Co/Pt heterostructures with perpendicular magnetic anisotropy. The sample is patterned into a Hall cross and the AO-HDS is measured via the anomalous Hall effect. This all-electrical probing of the magnetization during AO-HDS enables a statistical quantification of the switching ratio for different laser parameters, such as the threshold power to achieve AO-HDS and the exposure time needed to reach complete switching at a given laser power. We find that the AO-HDS is a cumulative process, a certain number of optical pulses is needed to obtain a full and reproducible helicity-dependent switching. The deterministic switching of the ferromagnetic Pt/Co/Pt Hall cross provides a full "opto-spintronic device," where the remanent magnetization can be all-optically and reproducibly written and erased without the need of an external magnetic field.

  17. Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks

    DEFF Research Database (Denmark)

    Overby, H.; Stol, N.; Nord, Martin

    2006-01-01

    suitable for a future all-optical network. Hence, new schemes are needed to support QoS differentiation in optical packet-switched (OPS) networks. In this article we first present an overview of existing QoS differentiation mechanisms suitable for asynchronous bufferless OPS. We then compare the......Existing quality of service differentiation schemes for today's IP over point-to-point optical WDM networks take advantage of electronic RAM to implement traffic management algorithms in order to isolate the service classes. Since practical optical RAM is not available, these techniques are not...

  18. Optical zero-differential pressure switch and its evaluation in a multiple pressure measuring system

    Science.gov (United States)

    Powell, J. A.

    1977-01-01

    The design of a clamped-diaphragm pressure switch is described in which diaphragm motion is detected by a simple fiber-optic displacement sensor. The switch was evaluated in a pressure measurement system where it detected the zero crossing of the differential pressure between a static test pressure and a tank pressure that was periodically ramped from near zero to fullscale gage pressure. With a ramping frequency of 1 hertz and a full-scale tank pressure of 69 N/sq cm gage (100 psig), the switch delay was as long as 2 milliseconds. Pressure measurement accuracies were 0.25 to 0.75 percent of full scale. Factors affecting switch performance are also discussed.

  19. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  20. Characterization of an 2x2 SCB Optical Switch Integrated with VOA

    Directory of Open Access Journals (Sweden)

    Hen-Wei Huang

    2012-06-01

    Full Text Available This work presents the modeling, simulation and characterization of an innovative micromachined 2x2 optical switch monolithically integrated with variable optical attenuators. The device uses bi-stable mechanisms for optical switching, and can be easily realized by a standard micromachining process. The split-cross-bar design (SCB is employed as the optical path configuration. A one-dimensional (1-D heat transfer model is developed for estimating temperature elevation. An analytical solution is also proposed for the thermo-elastic bending and buckling problem of thermal V-beam and curved beam (pre-shaped buckled beam actuators. The resulting governing equations with external y-directed force and thermal strain force are solved analytically. Results of the analytical solutions and the finite element (FEM calculations are compared, with prediction accuracy within 10% of the nonlinear FEM solution, which agrees well with the experimental data.

  1. Contentionless transmission in buffer-less slotted optical packet switched networks

    Science.gov (United States)

    Asghari, Masoud; Ghaffarpour Rahbar, Akbar

    2016-07-01

    Contention of optical packets in optical packet switched (OPS) networks is a major problem, and it is even more critical in buffer-less OPS networks. In this paper, an innovative contention avoidance technique is proposed which uses combination of special traffic shaping at ingress switches and special time slot reservation technique through the path of traffic flows in core network. This novel protocol is called contentionless transmission OPS (CLTOPS) suitable for buffer-less slotted OPS networks. Performance evaluations show that the CLTOPS can outperform the original slotted-OPS architecture in terms of packet loss rate (PLR) performance, with or without using wavelength conversion. It is shown that there is a trade-off between the amount of improvement in PLR and additional delay applied to the users' packets at the ingress switches buffers. However, appropriate parameters can be selected to make the additional delay tolerable for users' applications.

  2. Reconfigurable optofluidic switch for generation of optical pulse width modulation based on tunable reflective interface.

    Science.gov (United States)

    Mansuori, M; Zareei, G H; Hashemi, H

    2015-10-01

    We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation. PMID:26479666

  3. Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures.

    Science.gov (United States)

    Shcherbakov, Maxim R; Vabishchevich, Polina P; Shorokhov, Alexander S; Chong, Katie E; Choi, Duk-Yong; Staude, Isabelle; Miroshnichenko, Andrey E; Neshev, Dragomir N; Fedyanin, Andrey A; Kivshar, Yuri S

    2015-10-14

    We demonstrate experimentally ultrafast all-optical switching in subwavelength nonlinear dielectric nanostructures exhibiting localized magnetic Mie resonances. We employ amorphous silicon nanodisks to achieve strong self-modulation of femtosecond pulses with a depth of 60% at picojoule-per-disk pump energies. In the pump-probe measurements, we reveal that switching in the nanodisks can be governed by pulse-limited 65 fs-long two-photon absorption being enhanced by a factor of 80 with respect to the unstructured silicon film. We also show that undesirable free-carrier effects can be suppressed by a proper spectral positioning of the magnetic resonance, making such a structure the fastest all-optical switch operating at the nanoscale. PMID:26393983

  4. Minimizing the Switch and Link Conflicts in an Optical Multi-stage Interconnection Network

    CERN Document Server

    Bhardwaj, Ved Prakash; Tyagi, Vipin

    2012-01-01

    Multistage Interconnection Networks (MINs) are very popular in switching and communication applications. A MIN connects N inputs to N outputs and is referred as an N \\times N MIN; having size N. Optical Multistage Interconnection Network (OMIN) represents an important class of Interconnection networks. Crosstalk is the basic problem of OMIN. Switch Conflict and Link Conflict are the two main reason of crosstalk. In this paper, we are considering both problems. A number of techniques like Optical window, Improved Window, Heuristic, Genetic, and Zero have been proposed earlier in this research domain. In this paper, we have proposed two algorithms called Address Selection Algorithm and Route Selection Algorithm (RSA). RSA is based on Improved Window Method. We have applied the proposed algorithms on existing Omega network, having shuffle-exchange connection pattern. The main functionality of ASA and RSA is to minimize the number of switch and link conflicts in the network and to provide conflict free routes.

  5. Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder

    Science.gov (United States)

    Baer, James

    2012-01-01

    A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.

  6. AN EFFECTIVE MODEL TO EVALUATE BLOCKING PROBABILITY OF TIME-SLOTTED OPTICAL BURST SWITCHED NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Yang Zongkai; Ou Liang; Tan Xiansi

    2006-01-01

    Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) technology. This paper presents a framework to evaluate blocking performance of time-slotted OBS networks with multi-fiber wavelength channels. The proposed model is efficient for not only single class traffic such as individual circuit switch traffics or best-effort traffics but also mixed multi-class traffics.The effectiveness of the proposed model is validated by simulation results. The study shows that blocking performance of multi-fiber TS-OBS network is acceptable for future Internet services.

  7. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router.

    Science.gov (United States)

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios

    2008-11-01

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router. PMID:21832723

  8. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router

    International Nuclear Information System (INIS)

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router.

  9. Optically-switched microwave filter with the use of photovaractors in self-bias mode

    OpenAIRE

    Szczepaniak, Zenon R.; Galwas, Bogdan A.; Malyshev, Sergei A.

    2001-01-01

    A new type of semiconductor optoelectronic device, which is called as photovaractor, was used in a self-bias mode of operation to obtain an optically-variable impedance. This approach allowed designing an optically-switched microwave band-pass filter. The use of the photovaractor in the microwave structure was investigated. The measurements of the photovaractor, the idea of the self-bias mode, and the simulations of the filter have been presented.

  10. Hybrid Wavelength Routed and Optical Packet Switched Ring Networks for the Metropolitan Area Network

    OpenAIRE

    Nord, Martin

    2005-01-01

    Increased data traffic in the metropolitan area network calls for new network architectures. This paper evaluates optical ring architectures based on optical packet switching, wavelength routing, and hybrid combinations of the two concepts. The evaluation includes overall throughput and fairness aspects in both uniform and unbalanced traffic scenarios, for both Poisson and bursty input traffic. Simulations show a trade-off between performance and complexity. Whilst the static wavelength route...

  11. Polarization Switching in Long-Wavelength VCSELs Subject to Orthogonal Optical Injection

    OpenAIRE

    Torre, Marita; Hurtado, Antonio; Quirce, Ana; Valle, Angel; Pesquera, Luis; Adams, Michael J.

    2011-01-01

    Polarization switching (PS) appearing in longwavelength vertical-cavity surface-emitting lasers (VCSELs) subject to orthogonal optical injection is investigated theoretically and experimentally. We have studied the injected optical power required for PS as a function of the frequency detuning between the injected light and the orthogonal linear polarization of the VCSEL. For a wide range of bias currents applied to the device, the injected power required for the occurrenc...

  12. Optimal Degree of Optical Circuit Switching in IP-over-WDM Networks

    OpenAIRE

    Menne, Ulrich; Raack, Christian; Wessaly, Roland; Kharitonov, Daniel

    2012-01-01

    In this paper, we study the influence of technology, traffic properties and price trends on optimized design of a reference IP-over-WDM network with rich underlying fiber topology. In each network node, we investigate the optimal degree of traffic switching in an optical (lambda) domain versus an electrical (packet) domain, also known as measure of node transparency. This measure is studied in connection to changes in traffic volume, demand affinity, optical circuit speeds and equipment cost....

  13. Performance and cost analysis of all-optical switching: OBS and OCS

    OpenAIRE

    Ekularn Dhavarudha; Chalie Charoenlarpnopparut; Suwan Runggeratigul

    2011-01-01

    This paper presents a study of performance and cost analysis of optical circuit switching (OCS) and optical burstswitching (OBS) by proposing the clear images of their node architectures and cost formulations. Then, we apply servicelevel agreement (SLA) of the high quality of service application in the terms of network blocking probability and averagenetwork delay to demonstrate OCS and OBS performances, their investment costs, and network dimensioning methodology.Applying SLA to our studies ...

  14. Submicrosecond rearrangeable nonblocking silicon-on-insulator thermo-optic 4x4 switch matrix.

    Science.gov (United States)

    Li, Yuntao; Yu, Jinzhong; Chen, Shaowu; Li, Yanping; Chen, Yuanyuan

    2007-03-15

    A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4x4 switch matrix is designed and fabricated. A spot-size converter is integrated to reduce the insertion loss, and a new driving circuit is designed to improve the response speed. The insertion loss is less than 10 dB, and the response time is 950 ns. PMID:17308574

  15. Feasibility of Optical Packet Switched WDM Networks without Packet Synchronisation Under Bursty Traffic Conditions

    DEFF Research Database (Denmark)

    Fjelde, Tina; Hansen, Peter Bukhave; Kloch, Allan; Wolfson, David; Stubkjær, Kristian Elmholdt

    We show that complex packet synchronisation may be avoided in optical packetswitched networks. Detailed traffic analysis demonstrates that packet lossratios of 1e-10 are feasible under bursty traffic conditions for a highcapacity network consisting of asynchronously operated add-drop switch...

  16. Design and Fabrication of Micromechanical Optical Switches Based on the Low Applied Voltage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A micromechanical optical switch driven by electrostatic was fabricated with (100) silicon and tilted 2.5° (111) silicon. The pull-in voltage is 13.2V, the insertion loss is less than 1.4dB, the crosstalk is less than -50 dB.

  17. On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities

    Directory of Open Access Journals (Sweden)

    Masaya Notomi

    2008-01-01

    Full Text Available We review our recent studies on all-optical switching and memory operations based on thermo-optic and carrier-plasma nonlinearities both induced by two-photon absorption in silicon photonic crystal nanocavities. Owing to high-Q and small volume of these photonic crystal cavities, we have demonstrated that the switching power can be largely reduced. In addition, we demonstrate that the switching time is also reduced in nanocavity devices because of their short diffusion time. These features are important for all-optical nonlinear processing in silicon photonics technologies, since silicon is not an efficient optical nonlinear material. We discuss the effect of the carrier diffusion process in our devices, and demonstrate improvement in terms of the response speed by employing ion-implantation process. Finally, we show that coupled bistable devices lead to all-optical logic, such as flip-flop operation. These results indicate that a nanocavity-based photonic crystal platform on a silicon chip may be a promising candidate for future on-chip all-optical information processing in a largely integrated fashion.

  18. Electrostatic steering and beamlet aiming in large neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, P., E-mail: pierluigi.veltri@igi.cnr.it; Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4 - 35127 Padova (Italy); Cavenago, M. [INFN-LNL, viale dell' Università n. 2, 35020 Legnaro (Italy)

    2015-04-08

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ∼ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  19. Electrostatic steering and beamlet aiming in large neutral beam injectors

    International Nuclear Information System (INIS)

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ∼ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed

  20. System description and initial performance results for beamlet

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, B.M.; Murray, J.R.; Campbell, J.H. [and others

    1996-06-01

    The Department of Energy has proposed to design and construct a National Ignition Facility (NIF) for Inertial Confinement Fusion (ICF) research. This facility will contain a frequency-tripled, Nd:Glass laser system capable of irradiating fusion targets at an energy and power of 1.8 MJ and 500 TW. The laser output pulse contains most of the energy, where the low-intensity leading foot is 15-20 ns long and the final high-intensity pulse is 3-4 ns long. The laser will have 192 independent {open_quotes}beamlets,{close_quotes} each having a final square clear aperture of 40 x 40 cm{sup 2} and an output beam area slightly smaller than the clear aperture. A Conceptual Design Report (CDR), prepared in May 1994, discusses the laser and facility design in detail. The authors have constructed and are now testing a scientific prototype of a single beamlet of the proposed NIF laser. The purpose of these tests is to show that the novel features proposed for the NIF laser design will perform as projected and that the laser is ready for final engineering design. The final dimensions and component arrangements for NIF will differ somewhat from the scientific prototype, but the differences are sufficiently small that tests on the prototype can be used to demonstrate performance essentially equivalent to a NIF beamlet.

  1. Inertial Confinement Fusion quarterly report, October--December 1994. Volume 5, No. 1

    International Nuclear Information System (INIS)

    The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included in this issue include: system description and initial performance results for beamlet, design and performance of the beamlet amplifiers and optical switch, beamlet pulse-generation and wavefront-control system, large-aperture, high- damage-threshold optics for beamlet, beamlet pulsed power system, beamlet laser diagnostics, and beam propagation and frequency conversion modeling for the beamlet laser

  2. Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach

    2006-01-01

    either because the timer reaches a specific timeout value, or because the optical packet is completely filled with segments. Only two distinct values of the timeout value are used. Which of the two timeout values to use, is selected by 3 different control thresholds. The first threshold level applies to...... the inter arrival rate at the individual VOQs. The remaining thresholds applies to the optical slot level inter arrival rate at the input and output line cards. If any measurements are beyond a given threshold, the higher timeout value is used. The proposed method can be used to make a trade...

  3. Thermo-optic switches using sol-gel processed hybrid materials

    Science.gov (United States)

    Kribich, Kada R.; Barry, Henry; Copperwhite, Robert; Kolodziejczyk, Boleslaw; O'Dwyer, Kieran; Sabattie, Jean-Marc; MacCraith, Brian D.

    2004-08-01

    There is a clear need for low cost, high performance and large-scale production of photonic chips. Network development requires more interconnecting components. A flexible and low-cost process using good quality material is necessary. The sol-gel process is a chemical method to fabricate glasses at ambient pressure and moderate temperature. The resulting material properties can be tuned depending on the precursors used. Hybrid materials, mixing organic and inorganic parts, offer the advantages of polymer-like materials and glasses. We have developed sol-gel-processed integrated optical circuits using hybrid materials. We report on the development of active devices based on the thermo-optic effect. Thermo-optic coefficients as high as -2.10-4/°K have been measured in our materials. This enables the design of compact devices with low power consumption. Our goal is to utilise the thermo-optic effect in the development of integrated optical switches. The kHz response time of such switches makes them unsuitable for modulation applications, but they can be used for network protection, reconfiguration purposes in routing and multiplexing applications such as Code Division Multiplexing. New designs, based on multimode interference couplers (MMIC), have also been created. In this work we first describe the synthesis of the hybrid materials as well as the fabrication processes. Using the measured properties of the materials developed, we can simulate the optical and thermal properties of the target devices. The simulation results have been exploited to model and optimise a range of switch designs, including MMI-based 1xN switches. Finally, we report on the full characterisation of the different structures and devices created in terms of fabrication quality and optical and thermal response.

  4. Electro-optical resonant switching in two-dimensional side-coupled waveguide-cavity photonic crystal systems

    International Nuclear Information System (INIS)

    Photonic crystals have many potential applications because of their ability to control lightwave propagation. We have investigated the electro-optical resonant switching in two-dimensional photonic crystal structures. The optical microcavity side coupled with a waveguide composed of a dielectric cylinder in air is studied by solving Maxwell's equations using the plane wave expansion method and finite-difference time-domain method. The switching mechanism is a change in the conductance of the microcavity and hence modulating the resonant mode and eventually resonant switching is achieved. Such a mechanism of switching should open up a new application for designing components in photonic integrated circuits. -- Highlights: → We report the electro-optical resonant switching in 2-D photonic crystal structures. → The defect modes are made by reducing the radius of a single rod in the microcavity. → The switching mechanism is a change in the conductance of the microcavity.

  5. Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches

    International Nuclear Information System (INIS)

    The emission of millions of fluorescence photons from a chromophore is controlled by the absorption of a few tens of photons in a photochromic molecule. The parameters that determine the efficiency of this process are investigated, providing insights for the development of an all-optical gate

  6. Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches

    Energy Technology Data Exchange (ETDEWEB)

    Pärs, Martti; Köhler, Jürgen, E-mail: juergen.koehler@uni-bayreuth.de [Experimental Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Gräf, Katja; Bauer, Peter; Thelakkat, Mukundan [Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth (Germany)

    2013-11-25

    The emission of millions of fluorescence photons from a chromophore is controlled by the absorption of a few tens of photons in a photochromic molecule. The parameters that determine the efficiency of this process are investigated, providing insights for the development of an all-optical gate.

  7. Design, fabrication and application of photonic components for all-optical networking and switching

    Science.gov (United States)

    Fan, Jenyu

    1999-11-01

    All-optical networks have the advantage of utilizing the transparency and of the full bandwidth of optical fibers. Since the transmitted signal remains in the optical domain from the source to the destination and electronic conversions occur only at the end points, it can transmit a heterogeneous mix of very different traffic at nearly any kind of bit rate. Wavelength-division-multiplexing (WDM) technique offers a very effective way of utilizing the fiber bandwidth directly in the wavelength domain. To improve the network efficiency, different kinds of photonic switches have been reported. This dissertation is focused on the development of integrated active/passive devices based on semiconductor optical amplifiers (SOAs). It is aimed at a full research program of design, fabrication, and performance characteristic. Their application and functionality in all-optical photonic switch have been demonstrated successfully. The novel WDM data-block switch based on integrated 1 x 2, SOAs, Y-junction photonic component (for 1550 nm) is first demonstrated. This new type of switching component can direct a full block of parallel data to a desired location with a single photonic switch. Using this component with differing length of fiber, high accuracy and stable delay lines can be made. It can be achieved 100 ps delay, the highest accuracy as our knowledge. Cascaded these delay lines, an optical synchronizer is realized and can also be applied to phase array radar as a fast reconfigurable electrically controlled delay line. The accuracy is dependent on the number of cascaded stages. Novel components such as mode-spot transformers and integrated wavelength converters are also fabricated. The mode expansion laser has been demonstrated as a mode-spot transformer. This type of component can facilitate the chip-fiber coupling operation and reduce the fiber-to- fiber insertion loss of an integrated device. The integrated wavelength converter is very useful in all- optical networks

  8. Performance of the Beamlet laser - a scientific prototype for the NIF

    International Nuclear Information System (INIS)

    This report reviews the performance of the Beamlet laser which is a full-scale prototype driver of the National Ignition Facility (NIF) designed to achieved ignition and thermonuclear fusion burn. This Beamlet uses reflectors and spatial filter in an cavity arrangement to achieve multipass amplification. The present performance of the Beamlet prototype cavity exceeds its goals and has demonstrated key features critical to the proposed NIF driver. -Abstract only- (TEC)

  9. Optical switching properties and durability of a Mg-Fe alloy based thin film hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc K.; Haas, Gunther; Portz, Andre; Laufer, Andreas; Polity, Angelika; Meyer, Bruno K. [I. Physikalisches Institut, Giessen (Germany)

    2011-07-01

    Mg-Fe alloy based hydrogen gas sensors were produced by a RF sputtering process. By exposure to a hydrogen containing gas mixture the Mg-metal alloy switches from the metal phase into a hydride phase, thereby the optical reflection shows a change. A Pd top layer acts as hydrogen catalyst. The degradation of the hydrogenation speed (sensor reaction) and the switching durability are well known problems of such Mg-metal based switching mirrors. Furthermore, there is a delay of sensor reaction after some weeks of storage (in air). In order to solve these problems, we added a Ti buffer layer between MgFe and Pd layer. The buffer layer inserted sensor system featured an improvement of sensor reaction and switching durability. A polytetrafluoroethylene (PTFE) covering coat was added and reduced the sensor degeneration after the storage. Furthermore, there was an additional improvement of switching durability. Samples of PTFE/Pd/Ti/MgFe achieved over 1000 switching cycles (with 4 % hydrogen in air) without a significant performance reduction.

  10. Impact of the MAI and beat noise on the performance of OCDM/WDM Optical Packet Switches using Gold codes.

    Science.gov (United States)

    Eramo, V

    2010-08-16

    Recent advances in optical devices greatly enhance the feasibility of Optical Code Division Multiplexing/Wavelength Division Multiplexing (OCDM/WDM) Optical Packet Switch. In this paper, the performance of an OCDM/WDM switch is investigated when impairment due to both Multiple Access Interference and Beat noise are taken into account. Analytical models are proposed to dimension the switch resources as the number of optical codes carried on each wavelength and the number of needed optical converters. The Packet Loss Probability due to output packet contentions is evaluated as a function of the main switch and traffic parameters when Gold coherent optical codes are adopted. When the available bandwidth is fixed for the WDM/OCDM signal, due to a statistical multiplexing effect, we show that the use of more length codes and fewer wavelengths lead to lower packet loss probability, especially for low offered traffic. PMID:20721176

  11. Modelling a nonlinear optical switching in a standard photonic crystal fiber infiltrated with carbon disulfide

    Science.gov (United States)

    Munera, Natalia; Acuna Herrera, Rodrigo

    2016-06-01

    In this letter, a numerical analysis is developed for the propagation of ultrafast optical pulses through a standard photonic crystal fiber (PCF) consisting of two infiltrated holes using carbon disulfide (CS2). This material is a good choice since it has highly nonlinear properties, what makes it a good candidate for optical switching and broadband source at low power compared to traditional nonlinear fiber coupler. Based on supermodes theory, a set of generalized nonlinear equations is presented in order to study the propagation characteristics. It is shown in this letter that it is possible to get optical switching behavior at low power and how the dispersion, as well as, the two infiltrated holes separation influence this effect. Finally, we see that supercontinuum generation can be induced equally in both infiltrated holes despite no initial excitation at one hole.

  12. Design and implementation of ROADM based on fiber Bragg grating and optical switch

    Science.gov (United States)

    Zheng, Liming; Zeng, Simin; Wang, Faqiang

    2007-11-01

    With the development of optical communication technology, all-optical network is promising in next generation networks. Characterized by good transparency, wavelength routing, compatibility and scalability, all-optical network has become the most promising candidate for future high-capacity network. And reconfigurable optical add/drop multiplexer (ROADM) has been regarded as one of the key equipments of the intelligent WDM optical communication network. In this paper, we compare several design methods of ROADM, and introduce the design and implementation of ROADM based on fiber Bragg grating (FBG) and optical switch (OSW). We also propose the new idea of FBGs OSW composed OSW and FBG collimator, which is the integration package of FBGs and collimator. Benefited from the filter characteristics of FBGs and the selectivity of OSW, the performance of ROADM can be optimized. In addition, the ROADM has been tested and analyzed.

  13. Photon-switches in quantum-optical networks

    International Nuclear Information System (INIS)

    Full text: We investigate quantum-optical networks for several input Fock states of photons and determine the total state appearing in the output ports. The most simple network is a single-loop Mach-Zehnder interferometer with two beam splitters and a phase shifter providing two inputs and two outputs. Moreover, we consider a double-loop interferometer with 3 inputs and 3 outputs. For product Fock states of several input modes the Hong-Ou-Mandel effect plays an important role. The entangled output states and the mean photon numbers are determined as a function of various phase shifters. Using computerized simulation different network structures are analyzed. These investigations can be helpful for optical quantum computing. (author)

  14. Hybrid Wavelength Routed and Optical Packet Switched Ring Networks for the Metropolitan Area Network

    DEFF Research Database (Denmark)

    Nord, Martin

    Increased data traffic in the metropolitan area network calls for new network architectures. This paper evaluates optical ring architectures based on optical packet switching, wavelength routing, and hybrid combinations of the two concepts. The evaluation includes overall throughput and fairness...... aspects in both uniform and unbalanced traffic scenarios, for both Poisson and bursty input traffic. Simulations show a trade-off between performance and complexity. Whilst the static wavelength routed optical network is a good solutions for uniform traffic, the proposed hybrid architectures are more...

  15. Burst switched optical networks supporting legacy and future service types

    DEFF Research Database (Denmark)

    Franzl, Gerald; Hayat, Faisal; Holynski, Tomasz;

    2011-01-01

    Focusing on the principles and the paradigm of OBS an overview addressing expectable performance and application issues is presented. Proposals on OBS were published over a decade and the presented techniques spread into many directions. The paper comprises discussions of several challenges that ...... found capable to overcome shortcomings of recent proposals. In conclusion, an OBS that offers different connection types may support most client demands within a sole optical network layer....

  16. Electro-optical switch based on continuous metasurface embedded in Si substrate

    Directory of Open Access Journals (Sweden)

    Yali Sun

    2015-11-01

    Full Text Available Switchable metasurfaces with fast responses and high efficiency are highly desirable in various applications. In this paper, we propose and analyze a novel electro-optical switch based on continuous metasurface embedded in Si substrate. The simulative results indicate that the embedded and continuous metasurface structure is able to increase the interaction volume between the metal antennas and the surrounding substrate, hence enhances the tuning effect when changing the refractive index of Si by an injection current, resulting in fully switching between anomalous and normal reflections, and achieving a high extinction ratio even under a smaller refractive index variation.

  17. Electro-optic switching in phase-discontinuity complementary metasurface twisted nematic cell.

    Science.gov (United States)

    Lee, Y U; Kim, J; Woo, J H; Bang, L H; Choi, E Y; Kim, E S; Wu, J W

    2014-08-25

    Electro-optic switching of refraction is experimentally demonstrated in a phase-discontinuity complementary metasurface twisted nematic cell. The phase-discontinuity complementary metasurface is fabricated by focused-ion-beam milling, and a twisted nematic cell is constructed with complementary V-shape slot antenna metasurface. By application of an external voltage, switching is achieved between ordinary refraction and extraordinary refraction satisfying the generalized Snell's law. It has a strong implication for applications in spatial light modulation and wavelength division multiplexer/demultiplexer in a near-IR spectral range. PMID:25321285

  18. Ultrafast Pulse Processing and Shaping based on Long-Period Fiber Gratings for Optical Coding and Switching Applications

    Czech Academy of Sciences Publication Activity Database

    Azana, J.; Slavík, Radan; Park, Y.

    New York: IEEE, 2008, s. 26-27. ISBN 978-1-4244-4228-7. [16th International Conference on Photonics in Switching. Sapporo (JP), 04.08.2008-07.08.2008] R&D Projects: GA ČR(CZ) GA102/07/0999 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filters * all-optical switching Subject RIV: BH - Optics, Masers, Lasers

  19. Reduction of nonlinear patterning effects in SOA-based All-optical Switches using Optical filtering

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Skaguchi, J.;

    2005-01-01

    We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches.......We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches....

  20. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael; Oxenløwe, Leif Katsuo

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  1. All-optical switches, unidirectional flow, and logic gates with discrete solitons in waveguide arrays.

    Science.gov (United States)

    Al Khawaja, U; Al-Marzoug, S M; Bahlouli, H

    2016-05-16

    We propose a mechanism by which a number of useful all-optical operations, such as switches, diodes, and logic gates, can be performed with a single device. An effective potential well is obtained by modulating the coupling between the waveguides through their separations. Depending on the power of a control soliton injected through the potential well, an incoming soliton will either completely transmit or reflect forming a controllable switch. We show that two such switches can work as AND, OR, NAND, and NOR logic gates. Furthermore, the same device may also function as a perfect soliton diode with adjustable polarity. We discuss the feasibility of realising such devices with current experimental setups. PMID:27409929

  2. Contention avoidance using dual-fuzzy assembly threshold algorithm in optical burst switching networks

    Institute of Scientific and Technical Information of China (English)

    YANG Jiu-ru; WANG Gang; JIA Shi-lou

    2009-01-01

    To avoid burst contention efficiently, on the basis of feedback-based source flow-rate control (SFC) strategy, a novel fuzzy-control-based assembly algorithm, called dual-fuzzy assembly threshold (DFAT), is proposed in an optical burst switching network.In our algorithm, according to the variations of burst assembly period and the interarrival of burst control packet, the traffic states of edge-switching nodes and core-switching nodes are first obtained.Then, the assembly threshold of bursts is set dynamically in order to operate the source traffic management from the information of traffic states.The performance of DFAT algorithm on burst loss prob-ability is evaluated, and simulation results show that, compared with conventional assembly algorithms, the pro-posed scheme can constrain the birth of burst contention efficiently, when being a heavy load state of network.

  3. Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures.

    Science.gov (United States)

    Le Guyader, L; Savoini, M; El Moussaoui, S; Buzzi, M; Tsukamoto, A; Itoh, A; Kirilyuk, A; Rasing, T; Kimel, A V; Nolting, F

    2015-01-01

    Ultrafast magnetization reversal driven by femtosecond laser pulses has been shown to be a promising way to write information. Seeking to improve the recording density has raised intriguing fundamental questions about the feasibility of combining ultrafast temporal resolution with sub-wavelength spatial resolution for magnetic recording. Here we report on the experimental demonstration of nanoscale sub-100 ps all-optical magnetization switching, providing a path to sub-wavelength magnetic recording. Using computational methods, we reveal the feasibility of nanoscale magnetic switching even for an unfocused laser pulse. This effect is achieved by structuring the sample such that the laser pulse, via both refraction and interference, focuses onto a localized region of the structure, the position of which can be controlled by the structural design. Time-resolved photo-emission electron microscopy studies reveal that nanoscale magnetic switching employing such focusing can be pushed to the sub-100 ps regime. PMID:25581133

  4. High-contrast fluorescence imaging in fixed and living cells using optimized optical switches.

    Directory of Open Access Journals (Sweden)

    Liangxing Wu

    Full Text Available We present the design, synthesis and characterization of new functionalized fluorescent optical switches for rapid, all-visible light-mediated manipulation of fluorescence signals from labelled structures within living cells, and as probes for high-contrast optical lock-in detection (OLID imaging microscopy. A triazole-substituted BIPS (TzBIPS is identified from a rational synthetic design strategy that undergoes robust, rapid and reversible, visible light-driven transitions between a colorless spiro- (SP and a far-red absorbing merocyanine (MC state within living cells. The excited MC-state of TzBIPS may also decay to the MC-ground state emitting near infra-red fluorescence, which is used as a sensitive and quantitative read-out of the state of the optical switch in living cells. The SP to MC transition for a membrane-targeted TzBIPS probe (C₁₂-TzBIPS is triggered at 405 nm at an energy level compatible with studies in living cells, while the action spectrum of the reverse transition (MC to SP has a maximum at 650 nm. The SP to MC transition is complete within the 790 ns pixel dwell time of the confocal microscope, while a single cycle of optical switching between the SP and MC states in a region of interest is complete within 8 ms (125 Hz within living cells, the fastest rate attained for any optical switch probe in a biological sample. This property can be exploited for real-time correction of background signals in living cells. A reactive form of TzBIPS is linked to secondary antibodies and used, in conjunction with an enhanced scope-based analysis of the modulated MC-fluorescence in immuno-stained cells, for high-contrast immunofluorescence microscopic analysis of the actin cytoskeleton.

  5. Investigation of code reconfigurable fibre Bragg gratings for Optical Code Division Multiple Access (OCDMA) and Optical Packet Switching (OPS) Networks

    OpenAIRE

    Tian, Chun

    2009-01-01

    This thesis documents my work in the telecommunication system laboratory at the Optoelectronics Research Centre, towards the implementation of code reconfigurable OCDMA and all-optical packet switching nodes based on fibre Bragg grating (FBG) technology. My research work involves characterizing the performance of various gratings, specifically high reflectivity, short chip duration, long code sequences, multiple phase level and tunable superstructured fiber Bragg gratings (SSFBGs), by using t...

  6. Electro-optical channel drop switching in a photonic crystal waveguide-cavity side-coupling system

    Science.gov (United States)

    Chang, Kao-Der; Liu, Cheng-Yang

    2014-04-01

    The electro-optical channel drop switching in a photonic crystal waveguide-cavity side-coupling system is reported. The line waveguide is formed by removing a single row of dielectric cylinders. The twin optical microcavities side coupled between linear waveguides is studied by solving Maxwell's equations. We determine the general characteristics of the coupling element required to achieve channel drop tunneling. By modulating the conductance of the twin microcavities, the electrical tunability of the resonant modes is observed in the transmission spectrum. The spectral characteristics suggest a potential application for this switching device as an efficient multichannel optical switch in the photonic integrated circuits.

  7. Transient microwave bandwidth measurements of illuminated silicon switches for optical pulse-shape control of laser-fusion drivers

    International Nuclear Information System (INIS)

    The microwave transmission properties of a high-purity (≥40 kΩ·cm) single-crystal-silicon, photoconductive (PC) switch were measured while the switch was optically activated. The switch was 2.3 mm wide (the width of the microstrip electrode), 2 mm long, and 0.5 mm thick with a 0.5-mm photoconductive gap and was mounted in a 50-Ω microstrip transmission line. The switch was irradiated uniformly with a 150-ns FWHM pulse from a ND:YAG laser (wavelength = 1.064 microm). The insertion loss of the optically activated PC switch was a nearly constant -0.7 dB across the measurement system bandwidth (9 GHz). Under these illumination conditions, the switch exhibited negligible bandwidth limitations. The microstrip structure by itself had an insertion loss that increased from -0.4 dB at 1 GHz to -1.4 dB at 9 GHz

  8. Packaged and connectorized optical interconnect circuits for optoelectronic cross-connect switching

    Science.gov (United States)

    Popelek, Jan; Ai, Jun; Li, Yao

    1999-10-01

    Cross-connect switching is a common switching architecture for telecom and datacom applications. Large bandwidth O-E interface devices have recently been made commercially available. Small scale fast electronic switches and large scale optical interconnect circuits can be effectively used for handling large bandwidth O-E cross-connect switching. In this paper, we show two packaged and connectorized optical interconnect circuits. The first one is a 100 X 100 channel guided-wave circuit fully compatible, through MT array connectors, to O-E interface devices, such as Motorola OPTOBUSTM or Simens PAROLITM chips. The second one is a more scalable architecture which is a hybrid of free- space and fiber circuits. For demonstration purpose, a 256 X 256 channel hybrid circuit is shown. Key parameters, such as insertion loss, cross-talk, and bit-error-rate of these interconnect circuits are presented. Transmission and routing of video data are performed to demonstrate interconnect quality of various data links. Scalability of these demonstrated circuits to larger sizes are speculated.

  9. Contention Resolution in Optical Burst Switched Networks using Spectral- Amplitude-Coding Optical Code Division Multiple Access

    CERN Document Server

    Sowailem, Mohamed Y S; Shalaby, Hossam M H

    2008-01-01

    We propose the implementation of spectral-amplitude-coding optical code division multiple access (SC-OCDMA) as a contention resolution technique in optical burst switched (OBS) networks. The new system architecture is presented in details where an all-optical methodology for cancelling multiple access interference is proposed. Performance evaluation of the proposed OBS/SC-OCDMA system is introduced where two performance measures are derived, namely, the steady-state throughput and the burst loss probability, in two cases: the presence and absence of code conversion capability. In addition, the performance of the proposed system is compared to that of the corresponding system that uses WDM instead of OCDMA. Our results reveal that a considerable performance improvement is achieved by using SCOCDMA instead of WDM in the optical layer below OBS in the MAC layer.

  10. All-optical switching in silicon-on-insulator photonic wire nano-cavities.

    Science.gov (United States)

    Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M

    2010-01-18

    We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated. PMID:20173973

  11. Single-crystalline Bi2S3 nanowire network film and its optical switches

    International Nuclear Information System (INIS)

    A single-crystalline bismuth sulfide (Bi2S3) nanowire network film at a centimeter scale is fabricated by the facile hydrothermal method. The Bi2S3 film is easily tape-transferred onto a soft plastic substrate, and is further used to fabricate optical switches by screen-printing an Ag electrode array on its top. Our studies demonstrate that the Bi2S3 nanowire network has a pronounced increase in conductance upon exposure to visible light, and possesses a very fast response time of about 2 ms. This work provides a simple and economic method to fabricate a high performance optical switch array and could offer great potential for a low cost, mass-manufacturing process

  12. Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids.

    Science.gov (United States)

    De Sio, Luciano; Vasdekis, Andreas E; Cuennet, Julien G; De Luca, Antonio; Pane, Alfredo; Psaltis, Demetri

    2011-11-01

    We report an optical switch based on a diffraction grating by combining PDMS microstructures with a photo-responsive Nematic Liquid Crystal (NLC). The grating was realized via replica molding and was subsequently coated with a thin SiO layer. SiO induced a full planar alignment of the liquid crystal. The induced parallel alignment of the LC reduces the response time of the structure by approximately an order of magnitude compared to the same structures without SiO. We explored the effect of the pump intensity on the transmission properties and time response of the switch and identified a strong dependence on the probe polarization, due to the full planar alignment in this structure. The aforementioned inclusion of the SiO layer enables enhanced performance of optical devices based on the fusion of nematogens with soft and flexible substrates. PMID:22109231

  13. Investigation on TCP/IP Congestion Control in Optical Burst Switched (OBS Network

    Directory of Open Access Journals (Sweden)

    Ms. Payal Daryani

    2012-03-01

    Full Text Available Transport Control Protocol (TCP is the dominant protocol in modern communication networks, in which the issues of reliability, flow, and congestion control must be handled efficiently. In this review paper an analytical switching is used to exploit the huge bandwidth of optical fibers for future high speed internet backbone. It carries multiple packets, in their turn. Different aggregation schemes have been considered and evaluated.TCP performance greatly depends on the TCP congestion window behavior that is related to loss events occurring in the optical burst switched network, there is a special term called traffic shaping by which we control over the network according to the network load .that means we increase or decrease the send rate according to the network demand.

  14. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    CERN Document Server

    Tetsumoto, Tomohiro

    2014-01-01

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 6.0x10^4 and an effective mode volume Vmode of 0.66{\\lambda}^3 when the gap between two cavities is 34 nm. We found that this Q/V_mode value is five times higher than can be obtained with a single nanocavity design. The mechanical Q (Q_m) is determined by thermo-elastic damping and is 2.0x10^6 in a vacuum at room temperature. The opto-mechanical coupling rate g_OM is as high as 100 GHz/nm, which allows us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.

  15. Optical switch based on the electrically controlled liquid crystal interface.

    Science.gov (United States)

    Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A

    2015-06-01

    The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically. PMID:26192675

  16. Z-Beamlet: a multikilojoule, terawatt-class laser system

    International Nuclear Information System (INIS)

    A large-aperture (30-cm) kilojoule-class Nd:glass laser system known as Z-Beamlet has been constructed to perform x-ray radiography of high-energy-density science experiments conducted on the Z facility at Sandia National Laboratories, Albuquerque, New Mexico. The laser, operating with typical pulse durations from 0.3 to 1.5 ns, employs a sequence of successively larger multipass amplifiers to achieve up to 3-kJ energy at 1054 nm. Large-aperture frequency conversion and long-distance beam transport can provide on-target energies of up to 1.5 kJ at 527 nm

  17. All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals

    Science.gov (United States)

    Lucchetta, D. E.; Vita, F.; Simoni, F.

    2010-12-01

    We report the realization and the characterization of an all-optical switching device based on a transmission grating recorded in a polymeric substrate infiltrated with a methyl red-doped liquid crystal. The properties of this highly nonlinear mixture are exploited to modulate the diffraction of the grating by a pump beam when a static electric field is applied. The behavior of the device is in agreement with the existing model for methyl red-doped liquid crystals.

  18. Burst Assembly Schemes and Performance Evaluation in Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    TANG Jian-jun; JI Yue-feng

    2004-01-01

    Several proposed assemble algorithms for Optical Burst Switching (OBS) network is described, and the feature relative merits is discussed and analyzed in this paper. The authors propose an assembly mechanism FAT where time threshold is fluctuating randomly to reduce continuous blocking rate. With network simulation, the basic performance of these assembly schemes is compared and analyzed. The results show that burst loss ratio and assembly delay of the proposed FAT mechanism is better than that of exist assemble mechanism.

  19. Light propagation mechanism switching in a liquid crystal infiltrated microstructured polymer optical fibre

    Science.gov (United States)

    Rutkowska, K. A.; Milenko, K.; Chojnowska, O.; Dąbrowski, R.; Woliński, T. R.

    2015-12-01

    In this work studies on propagation properties of a microstructured polymer optical fibre infiltrated with a nematic liquid crystal are presented. Specifically, the influence of an infiltration method on the LC molecular alignment inside fibre air-channels and, thus, on light guidance is discussed. Switching between propagation mechanisms, namely the transition from modified total internal reflection (mTIR) to the photonic bandgap effect obtained by varying external temperature is also demonstrated.

  20. Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains

    International Nuclear Information System (INIS)

    We study nonlinear wave phenomena in coupled ring resonator optical waveguides in the tight coupling regime. A discrete model for the system dynamics is put forward and its steady-state nonlinear Bloch modes are derived. The switching behaviour of the transmission system is addressed numerically and the results are explained in the light of this analytical result. We also present a numerical study on the spontaneous generation of Bragg solitons from a continuous-wave input. (paper)

  1. Optical switching of 2-(2'-hydroxyphenyl) benzoxazole in different solvents

    Science.gov (United States)

    Zhang, G.; Wang, H.; Yu, Y.; Xiong, F.; Tang, G.; Chen, W.

    All-optical switching and beam deflection of 2-(2'-hydroxyphenyl) benzoxazole (HBO) in three species of solvent (cyclohexane, ethanol and dimethyl sulfoxide) have been investigated by using third-harmonic generation (355 nm) of a mode-locked Nd:YAG laser as a pump beam and a continuous-wave He-Ne laser (632.8 nm) as a probe beam. The nonlinear refractive indices of HBO in different solvents are determined by using the Z-scan technique. The optical switching and beam-deflection effects are due to the change of the refractive index of HBO under the pump beam. Through the study of the absorption spectra and the fluorescence spectra of HBO in different solvents, we conclude that the principal reason for the change of the refractive index of HBO is not the thermal effect because of absorption of the pump beam, but the excited-state intramolecular proton-transfer (ESIPT) effect of HBO under the pump beam. As the ESIPT process is very fast, HBO might be an excellent material for high-speed optical switching.

  2. Optical properties and switching of a Rose Bengal derivative: A spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Akerlind, C., E-mail: christina.akerlind@foi.s [Department of Information Systems, Swedish Defence Research Agency, SE 581 11 Linkoeping (Sweden); Department of Physics, Chemistry and Biology, Linkoeping University, SE 581 83 Linkoeping (Sweden); Arwin, H. [Department of Physics, Chemistry and Biology, Linkoeping University, SE 581 83 Linkoeping (Sweden); Jakobsson, F.L.E. [Department of Science and Technology, Linkoeping University, SE 601 74 Norrkoeping (Sweden); Kariis, H. [Department of Information Systems, Swedish Defence Research Agency, SE 581 11 Linkoeping (Sweden); Jaerrendahl, K. [Department of Physics, Chemistry and Biology, Linkoeping University, SE 581 83 Linkoeping (Sweden)

    2011-03-31

    Optical properties in terms of the complex-valued dielectric function were determined for spin-coated films of a Rose Bengal derivative using variable angle of incidence spectroscopic ellipsometry in the visible and infrared wavelength regions. In addition, the thickness and roughness of the films were determined and related to the solution concentration of Rose Bengal. Switching between two different oxidation states of the Rose Bengal derivative was investigated. The two states were chemically induced by exposure to vapors of hydrochloric acid and ammonia, respectively. A substantial and reversible change of the optical properties of the films was observed.

  3. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    Science.gov (United States)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  4. Cost-based burst dropping strategy in optical burst switching networks

    OpenAIRE

    Klusek, Bartlomiej; Murphy, John; Barry, Liam P.

    2005-01-01

    Optical burst switching (OBS) is a new paradigm for future all-optical networks. Intentional burst dropping is one of techniques used to achieve desired quality of service. In this paper we note that some bursts are more likely to cause contention. We propose a cost function that can be used to predict the likelihood that a given burst will interfere with other traffic, then we explain how, by using this information a new burst dropping strategy can be designed. We compare our method with a r...

  5. Polarization independent, integrated optical, acoustically tunable wavelength filters/switches with tapered acoustical directional coupler

    Science.gov (United States)

    Herrmann, H.; Schaefer, K.; Sohler, W.

    1994-11-01

    Enhanced sidelobe suppression of the filter characteristics of tunable acousto-optical mode converters in LiNbO3 has been achieved using for the first time tapered acoustical directional couplers. A sidelobe suppression of more than 15.5 dB could be demonstrated in a single stage device. By combining the mode converter with two integrated optical polarization splitters a polarization independent filter/wavelength selective switch has been fabricated with less than 3 dB intrinsic insertion loss, a polarization dependence of less than 1 dB, and a sidelobe suppression exceeding 14 dB.

  6. Design of a novel passive flexure-based mechanism for microelectromechanical system optical switch assembly.

    Science.gov (United States)

    Zhang, Jianbin; Sun, Xiantao; Chen, Weihai; Chen, Wenjie; Jiang, Lusha

    2014-12-01

    In microelectromechanical system (MEMS) optical switch assembly, the collision always exists between the optical fiber and the edges of the U-groove due to the positioning errors between them. It will cause the irreparable damage since the optical fiber and the silicon-made U-groove are usually very fragile. Typical solution is first to detect the positioning errors by the machine vision or high-resolution sensors and then to actively eliminate them with the aid of the motion of precision mechanisms. However, this method will increase the cost and complexity of the system. In this paper, we present a passive compensation method to accommodate the positioning errors. First, we study the insertion process of the optical fiber into the U-groove to analyze all possible positioning errors as well as the conditions of successful insertion. Then, a novel passive flexure-based mechanism based on the remote center of compliance concept is designed to satisfy the required insertion condition. The pseudo-rigid-body-model method is utilized to calculate the stiffness of the mechanism along the different directions, which is verified by finite element analysis (FEA). Finally, a prototype of the passive flexure-based mechanism is fabricated for performance tests. Both FEA and experimental results indicate that the designed mechanism can be used to the MEMS optical switch assembly. PMID:25554332

  7. Electro-optic 1x2 switch based on proton-exchanged channel waveguides in LiNbO3

    Science.gov (United States)

    Kostritskii, S. M.; Korkishko, Yu. N.; Fedorov, V. A.

    2015-05-01

    Integrated-optic 1×2 switch utilizing electro-optically controllable Y-fed directional coupler has been fabricated in LiNbO3 substrates with proton exchange technology. Such an integrated-optic switch has the newly designed Y-branching power divider allowing for high switching contrast at the both optical output ports and low driving voltage. To obtain an acceptable value of the interaction-length-to-coupling-length ratio, the novel trimming procedure is proposed. A rather high switching contrast ≥ 23 dB (power extinction ratio) at any output port and 2.5 dB insertion losses were obtained for a device with the 9 mm electrodes length.

  8. Network-element view information model for an optical burst core switch

    Science.gov (United States)

    Kan, Chao; Balt, Halt; Michel, Stephane R.; Verchere, Dominique G.

    2001-10-01

    To natively support the bursty IP datagrams over all-optical Wavelength Division Multiplexing (WDM) networks, the Optical Burst Switching (OBS) WDM network has been proposed as a suitable architecture for future optical Internet backbone networks. However, managing the OBS network will be complicated due to the scale of the networks and the correlation between different technology layers. This paper presents an information model for the OBS core node, from the network-element view, to describe the management information flows between the optical burst layer and the traditional WDM transport layer, and how to model them using various Managed Objects (MOs). We also provide the structure of Management Information Base (MIB) used in SNMP management interface for managing the parameters identified at different layers.

  9. Wavelength interdependence assessment of all-optical switching in zinc borate glasses

    Science.gov (United States)

    Abdel-Baki, Manal; Abdel-Wahab, Fathy; El-Diasty, Fouad

    2012-08-01

    Lithium tungsten borate photonic glass is prepared by the conventional melt-quench technique. Due to semiconductor-like behavior of zinc oxide, the glass is doped by ZnO to adapt its optical nonlinearity. Fresnel-based spectrophotometric measurements and Lorentz dispersion theory are applied to study (in a very wide range of photon energy from 0.5 to 6.2 eV) the dispersion of second-order refractive index, two-photon absorption coefficient, and third-order optical susceptibility of the glass. The figure of merit (FOM) needed for optical switching applications is estimated. We reveal the importance of determining the dispersion of the optical nonlinear parameters to find out the appropriate operating wavelength for optimum FOM of the glass.

  10. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco;

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  11. High-performance and power-efficient 2${\\times}$2 optical switch on Silicon-on-Insulator

    CERN Document Server

    Han, Zheng; Checoury, Xavier; Bourderionnet, Jérôme; Boucaud, Philippe; De Rossi, Alfredo; Combrié, Sylvain

    2015-01-01

    A compact (15{\\mu}m${\\times}${\\mu}m) and highly-optimized 2${\\times}$2 optical switch is demonstrated on a CMOS-compatible photonic crystal technology. On-chip insertion loss are below 1dB, static and dynamic contrast are 40dB and >20dB respectively. Owing to efficient thermo-optic design, the power consumption is below 3 mW while the switching time is 1 {\\mu}s.

  12. Stimulated-emission wavelength switching in optically pumped InGaAs/AlGaInAs laser heterostructures

    International Nuclear Information System (INIS)

    We report stimulated near-IR emission in optically pumped InGaAs/AlGaInAs heterostructures and stimulated- emission wavelength switching from 1.9 to 1.5 and then to 1.2 μm with increasing optical pump intensity. The wavelength switching behaviour of the heterostructures depends on their geometry (band-gap profile) and the competition between stimulated emissions at different frequencies in different parts of the system. (control of laser radiation parameters)

  13. Synchronous initiation of optical detonators by Q-switched solid laser sources

    Science.gov (United States)

    Goujon, J.; Musset, O.; Marchand, A.; Bigot, C.

    2008-10-01

    The initiation of pyrotechnic substances by a laser light has been studied for more than 30 years. But until recently the use of this technology for defence applications encountered three main technical problems: the volume and the mass of lasers, the linear loss of optical fibres and their possible damage caused by the transport of strong laser power. Recent technical progress performed in the field of electrical and optical devices are now very promising for future opto-pyrotechnic functional chains. The objective of this paper is to present a demonstrator developed in order to initiate in a synchronous way four optical detonators and to measure the dispersion of their functioning times. It includes four compact Q-switched Nd:Cr:GSGG solid laser sources, pumped by flash lamp (energy ~110mJ, FWHM ~8.5 ns), two ultra-fast electro-optical selectors (based on RTP crystals) used to steer the laser beam and six optical fibre lines to transmit the laser pulses to the optical detonators. The set-up integrates also complex control and safety systems, as well as cameras allowing an optimal alignment of optical fibres. Experiments led us to initiate in a synchronous way four detonators with a mean scattering of 50 ns. The perspectives in this domain of initiation concern mainly the miniaturization and the hardening to the environments of electrical and optical components.

  14. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    Science.gov (United States)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  15. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  16. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  17. Ultrasmall all-optical plasmonic switch and its application to superresolution imaging

    Science.gov (United States)

    Wu, Hsueh-Yu; Huang, Yen-Ta; Shen, Po-Ting; Lee, Hsuan; Oketani, Ryosuke; Yonemaru, Yasuo; Yamanaka, Masahito; Shoji, Satoru; Lin, Kung-Hsuan; Chang, Chih-Wei; Kawata, Satoshi; Fujita, Katsumasa; Chu, Shi-Wei

    2016-04-01

    Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 μm3, can be optically switched off with less than 100 μW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10‑9 m2/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation.

  18. Probing the electrical switching of a memristive optical antenna by STEM EELS

    Science.gov (United States)

    Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.

    2016-01-01

    The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ∼10−6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope. PMID:27412052

  19. Probing the electrical switching of a memristive optical antenna by STEM EELS

    Science.gov (United States)

    Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.

    2016-07-01

    The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ~10-6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope.

  20. Ultrasmall all-optical plasmonic switch and its application to superresolution imaging

    Science.gov (United States)

    Wu, Hsueh-Yu; Huang, Yen-Ta; Shen, Po-Ting; Lee, Hsuan; Oketani, Ryosuke; Yonemaru, Yasuo; Yamanaka, Masahito; Shoji, Satoru; Lin, Kung-Hsuan; Chang, Chih-Wei; Kawata, Satoshi; Fujita, Katsumasa; Chu, Shi-Wei

    2016-01-01

    Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 μm3, can be optically switched off with less than 100 μW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10−9 m2/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation. PMID:27063920

  1. Miniaturized fiber optical switches with nonmoving polymeric mirrors for tele- and data-communication networks fabricated using the LIGA technology

    Science.gov (United States)

    Neumeier, Michel; Ehrfeld, Wolfgang; Jaeger, Jutta; Picard, Antoni; Schulze, Jens

    1998-03-01

    Fiber optical switches for telecom and datacom purposes become more and more important with the growth of fiber- based networks. This paper proposes a new principle for manipulating optical light paths through switchable, but non-moving polymeric mirrors in free-space optical interconnects. To achieve this a polymeric body and a thin liquid film are moved within a cavity. By moving the body up and down perpendicular to the light path the cavity wall can be switched from total reflective to transmissive state while the liquid film remains between body and wall due to capillary forces. The body can be moved with integrated electro-magnetic actuators and so the whole concept allows the realization of very compact switching elements. The coupling of single mode optical fibers requires a lateral and angular alignment precision in the micron and millirad range for both direct coupling and expanded beam coupling concepts. To meet these requirements, the LIGA technology provides a promising approach with respect to the high precision and also low-cost fabrication by mass replication processes. The combination of LIGA technology with other precision machining technologies allows the fabrication of miniaturized systems with both micro-optic and micromechanic components which fulfill the required tolerances for optical coupling. First demonstrators of 1 X 2 and 2 X 2 switches with bistable electro-magnetic actuators have been fabricated to show the feasibility of the proposed principle. The measured insertion loss is less than 2 dB at 1300 nm with -40 dB crosstalk. The switching time was measured 100 ms. The capabilities of the proposed non-moving mirror principle can be applied to 1 X 2 repair switches for the access area as well as to FDDI-switching-nodes up to compact N X M cross-connect switches for reconfiguration purposes or parallel interconnects to optical backplanes for the office area.

  2. Optical spin switching in a Mn doped QD under influence of a magnetic field

    International Nuclear Information System (INIS)

    The combination of semiconducting and ferromagnetic materials has interesting possible applications in the field of spintronics. In a CdTe quantum dot doped with a single Mn atom the exciton line in photoluminescence spectra splits into six lines clearly demonstrating the strong exchange interaction between the exciton and the Mn spin. As we have shown recently the Mn spin state can be controlled in an indirect optical way by a sequence of laser pulses, which create, destroy or manipulate excitons in the system. Thus the Mn spin can be driven from a given initial value into all the other spin states. By adding a magnetic field in Faraday configuration the efficiency of this process can be strongly enhanced and the total switching time can be reduced from 100 ps to about 40 ps, when dark and bright excitons are brought to resonance. The timescales for the switching process are of the order of the lifetime of the bright exciton. Therefore we consider a model which includes radiative decay in terms of a decay time. In this contribution we discuss the influence of the finite lifetime of the exciton as well as the influence of magnetic fields on the optical switching process.

  3. Coherent all-optical switching by resonant quantum-dot distributions in photonic band-gap waveguides

    International Nuclear Information System (INIS)

    We study the detailed propagative characteristics of optical pulses in photonic band-gap (PBG) waveguides, coupled near resonantly to inhomogeneously broadened distributions of quantum dots. The line centers of the quantum-dot (QD) distributions are placed near a sharp discontinuity in the local electromagnetic density of states. Using finite-difference time-domain (FDTD) simulations of optical pulse dynamics and independent QD susceptibilities associated with resonance fluorescence, we demonstrate subpicosecond switching from pulse absorption to pulse amplification using steady-state optical holding and gate fields with power levels on the order of 1 milliwatt. In the case of collective response of QDs within the periodic dielectric microstructure, the gate power level is reduced to 200 microwatt for room temperature operation. In principle, this enables 200 Gbits per second optical information processing at wavelengths near 1.5 microns in various wavelength channels. The allowed pulse bandwidth in a given waveguide channel exceeds 0.5 THz allowing switching of subpicosecond laser pulses without pulse distortion. The switching contrast from absorption to gain is governed by the QD oscillator strength and dipole dephasing time scale. We consider dephasing time scales ranging from nanoseconds (low-temperature operation) to one picosecond (room-temperature operation). This all-optical transistor action is based on simple Markovian models of single-dot and collective-dot inversion and switching by coherent resonant pumping near the photon density of states discontinuity. The structured electromagnetic vacuum is provided by two-mode waveguide architectures in which one waveguide mode has a cutoff that occurs, with very large Purcell factor, near the QDs resonance, while the other waveguide mode exhibits nearly linear dispersion for fast optical propagation and modulation. Unlike optical switching based on Kerr nonlinearities in an optical cavity resonator, switching

  4. A compact plasmonic MOS-based 2x2 electro-optic switch

    CERN Document Server

    Ye, Chenran; Soref, Richard A; Sorger, Volker J

    2015-01-01

    We report on a three-waveguide electro-optic switch for compact photonic integrated circuits and data routing applications. The device features a plasmonic metal-oxide-semiconductor (MOS) mode for enhanced light-matter-interactions. The switching mechanism originates from a capacitor-like design where the refractive index of the active medium, Indium-Tin-Oxide, is altered via shifting the plasma frequency due to carrier accumulation inside the waveguide-based MOS structure. This light manipulation mechanism controls the transmission direction of transverse magnetic polarized light into either a CROSS or BAR waveguide port. The extinction ratio of 18 dB (7) dB for the CROSS (BAR) state, respectively, is achieved via a gating voltage bias. The ultrafast broadband fJ/bit device allows for seamless integration with Siliconon- Insulator platforms to for low-cost manufacturing.

  5. A compact plasmonic MOS-based 2×2 electro-optic switch

    Science.gov (United States)

    Ye, Chenran; Liu, Ke; Soref, Richard A.; Sorger, Volker J.

    2015-01-01

    We report on a three-waveguide electro-optic switch for compact photonic integrated circuits and data routing applications. The device features a plasmonic metal-oxide-semiconductor (MOS) mode for enhanced light-matter-interactions. The switching mechanism originates from a capacitor-like design where the refractive index of the active medium, indium-tin-oxide, is altered via shifting the plasma frequency due to carrier accumulation inside the waveguide-based MOS structure. This light manipulation mechanism controls the transmission direction of transverse magnetic polarized light into either a CROSS or BAR waveguide port. The extinction ratio of 18 (7) dB for the CROSS (BAR) state, respectively, is achieved via a gating voltage bias. The ultrafast broadband fJ/bit device allows for seamless integration with silicon-on-insulator platforms for low-cost manufacturing.

  6. All-Optical Nanometric Switch based on the Directional Scattering of Semiconductor Nanoparticles

    CERN Document Server

    Garcia-Camara, Braulio; Cuadrado, Alexander; Urruchi, Virginia; Sanchez-Pena, Jose Manuel; Serna, Rosalia; Vergaz, Ricardo

    2015-01-01

    A structure based on a dimer of silicon nanoparticles, presenting directional scattering in the visible range, was studied as a new design of an all-optical switch. The combination of spherical nanoparticles satisfying, at the same incident wavelength, the zero-backward and the minimum-forward scattering conditions, can produce either a maximum or a minimum of the scattered field in the area between the nanoparticles. The modulation of the incident wavelength can be used as switching parameter, due to the sensitivity of these conditions to it. An optimization of the dimer setup, both in the distance between the nanoparticles and the incident wavelength, was numerically performed to obtain a maximum contrast. Also, near-field and far-field distributions of the electric field have been considered.

  7. First application of quantum annealing to IMRT beamlet intensity optimization

    International Nuclear Information System (INIS)

    Optimization methods are critical to radiation therapy. A new technology, quantum annealing (QA), employs novel hardware and software techniques to address various discrete optimization problems in many fields. We report on the first application of quantum annealing to the process of beamlet intensity optimization for IMRT.We apply recently-developed hardware which natively exploits quantum mechanical effects for improved optimization. The new algorithm, called QA, is most similar to simulated annealing, but relies on natural processes to directly minimize a system’s free energy. A simple quantum system is slowly evolved into a classical system representing the objective function. If the evolution is sufficiently slow, there are probabilistic guarantees that a global minimum will be located.To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitations. The beamlet dose matrices were computed using CERR and an objective function was defined based on typical clinical constraints, including dose-volume objectives, which result in a complex non-convex search space. The objective function was discretized and the QA method was compared to two standard optimization methods, simulated annealing and Tabu search, run on a conventional computing cluster.Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the simulated annealing (SA) method. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods.In this first application of hardware-enabled QA to IMRT optimization, its performance is comparable to Tabu search, but less effective than the SA in terms of final objective function values. However, its speed was 3–4 times faster than the other two methods

  8. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    Science.gov (United States)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  9. A Novel Mechanism for Contention Resolution in Parallel Optical Burst Switching (POBS Networks

    Directory of Open Access Journals (Sweden)

    Mohammed Joudah Zaiter

    2014-05-01

    Full Text Available Parallel Optical Burst Switching (POBS is a variant of Optical Burst Switching (OBS which is proposed as a new optical switching strategy for Ultra-Dense Wavelength Division Multiplexing (U-DWDM to support the enormous bandwidth demand of the next generation Internet. As opposed to OBS, POBS transmits bursts in two dimensions: the wavelength dimension and the time dimension. POBS network uses an one-way resource reservation mechanism to set up the resources for each data burst transmission. The use of this mechanism may cause bursts to contend for the same resources at the same time at core (intermediate nodes of the network. Therefore, the performance of POBS networks depends on the contention resolution policies to reach acceptable levels for bandwidth usage. These policies may increase both the cost and complexities of the core nodes in POBS networks. Most literatures on OBS networks apply contention resolution at the core nodes based on reactive strategies that are activated after contention takes place in core nodes. This study proposes the use of a proactive contention resolution technique at ingress nodes of POBS network as well as reactive contention resolution technique at core nodes for reducing the probability of burst drop in the network in order to increase the performance of the network. The simulation results show that the use of POBS network with the proposed Reactive Odd/Even Node ID Wavelength Assignment Technique (POBS-ROENIDWAT shows a better performance in terms of reduced data loss rate and increased throughput compared to the performances of both POBS network with Sequential Wavelength Assignment Technique (POBS-SWAT and OBS network with Burst Segmentation (OBS-BS.

  10. Channel crosstalk in ultra-dense WDM PON using time-switched phase diversity optical homodyne reception

    OpenAIRE

    Fàbrega Sánchez, Josep Maria; Prat Gomà, Josep Joan

    2007-01-01

    Experimental study of channel crosstalk effects in time-switched phase diversity optical homodyne reception is presented, precisely focused towards ultra-dense wavelength division multiplexed (WDM) passive optical networks (PON). This receiver achieves ultra-low channel spacing and feasible implementation.

  11. Testing a new multipass laser architecture on beamlet

    Energy Technology Data Exchange (ETDEWEB)

    Vann, C.S.; Laniesse, F.; Patton, H.G. [and others

    1996-06-01

    The authors completed proof-of-principle tests on Beamlet for a new multipass laser architecture that is the baseline design for the French Megajoule laser and a backup concept for the U.S. National Ignition Facility (NIF) laser. These proposed laser facilities for Inertial Confinement Fusion (ICF) research are described in their respective Conceptual Design Reports. The lasers are designed to deliver 1.8 MJ and 500 TW of 0.35-{mu}m light onto a fusion target using 240 independent beams for the Megajoule laser and 192 beams for the NIF laser. Both lasers use flash-lamp pumped glass amplifiers and have approximately 38-cm square output beams. However, there are significant differences in their architecture. This article describes those differences, and their significance.

  12. Field-effect active plasmonics for ultracompact electro-optic switching

    OpenAIRE

    Müstecaplıoğlu, Özgür E.; Çetin, Arif E.; Yanık, Ahmet A.; Mertiri, Alket; Erramilli, Shyamsunder; Altuğ, Hatice

    2012-01-01

    Field-effect active plasmonics for ultracompact electro-optic switching Arif E. Çetin, Ahmet A. Yanik, Alket Mertiri, Shyamsunder Erramilli, Özgür E. Müstecaplolu, and Hatice Altug Citation: Applied Physics Letters 101, 121113 (2012); doi: 10.1063/1.4754139 View online: http://dx.doi.org/10.1063/1.4754139 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/101/12?ver=pdfcov Published by the AIP Publishing Articles you may be interested in A proposal f...

  13. A microcontroller-based compensated optical proximity detector employing the switching-mode synchronous detection technique

    International Nuclear Information System (INIS)

    This paper describes the development of a microcontroller-based optical proximity detector that can provide a low-cost yet powerful obstacle-sensing mechanism for mobile robots. The system is developed with the switching-mode synchronous detection technique to provide satisfactory performance over a wide range of operating conditions and is developed with the facility of externally setting a threshold, for reliable operation. The system is dynamically compensated against ambient illumination variations. Experimental studies demonstrate how the minimum distance of activation can be varied with different choices of thresholds. (paper)

  14. Use of wavefront encoding in optical interconnects and fiber switches for cross talk mitigation.

    Science.gov (United States)

    Robertson, Brian; Zhang, Zichen; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, R S; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-02-10

    A technique of cross talk mitigation developed for liquid crystal on silicon spatial light modulator based optical interconnects and fiber switches is demonstrated. By purposefully introducing an appropriate aberration into the system, it is possible to reduce the worst-case cross talk by over 10 dB compared to conventional Fourier-transform-based designs. Tests at a wavelength of 674 nm validate this approach, and show that there is no noticeable reduction in diffraction efficiency. A 27% spot increase in beam diameter is observed, which is predicted to reduce at longer datacom and telecom wavelengths. PMID:22330301

  15. Binary tree-based fault location algorithm for optical burst switching network

    Institute of Scientific and Technical Information of China (English)

    WANG Ru-yan; LIU Dan; PENG Huan-jia; LV Ke-wei

    2009-01-01

    This paper proposes an effective method of fault location based on a binary tree for optical burst switching (OBS) network. To minimize the monitoring cost, we divide the network into several monitor domains by introducing monitoring-cycle algorithms. In order to generate an exclusive code, we modify the monitoring cycle algorithm when two nodes have the same code. Through the binary tree algorithm, a pre-computation of faults in the OBS network can be achieved. When a fault happens, we can locate it immediately and accurately. Examples have proved that the algorithm has general applicability.

  16. An Acurate Model for Optical Burst Switching Core Node Equiped with Wavelength Converter Pol

    Directory of Open Access Journals (Sweden)

    Abd El–Naser A. Mohammed

    2013-10-01

    Full Text Available This paper pays a great atention to resolving the contention problem in Optical Burst Switching (OBS networks using wavelength converters. Not only the trafic load that leads to burst colision, but also other factors are incorporated. In order to calculate the blocking acurately, a time-slot analytical method is presented. Numerical results for the steady state throughput and the average burst los probabilty are presented under diferent rafic scenarios. Due to the high cost of the wavelength converters, optimum values for the wavelength conversion capabilty in the node are reached which provide minimum burst los probabilty

  17. Impact of Bimodal Traffic on Latency in Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Yuhua Chen

    2008-01-01

    Full Text Available This paper analyzes the impact of bimodal traffic composition on latency in optical burst switching networks. In particular, it studies the performance degradation to short-length packets caused by longer packets, both of which are part of a heterogeneous traffic model. The paper defines a customer satisfaction index for each of the classes of traffic, and a composite satisfaction index. The impact of higher overall utilization of the network as well as that of the ratio of the traffic mix on each of the customer satisfaction indices is specifically addressed.

  18. Fabrication and demonstration of 1 × 8 silicon–silica multi-chip switch based on optical phased array

    Science.gov (United States)

    Katayose, Satomi; Hashizume, Yasuaki; Itoh, Mikitaka

    2016-08-01

    We experimentally demonstrated a 1 × 8 silicon–silica hybrid thermo-optic switch based on an optical phased array using a multi-chip integration technique. The switch consists of a silicon chip with optical phase shifters and two silica-based planar lightwave circuit (PLC) chips composed of optical couplers and fiber connections. We adopted a rib waveguide as the silicon waveguide to reduce the coupling loss and increase the alignment tolerance for coupling between silicon and silica waveguides. As a result, we achieved a fast switching response of 81 µs, a high extinction ratio of over 18 dB and a low insertion loss of 4.9–8.1 dB including a silicon–silica coupling loss of 0.5 ± 0.3 dB at a wavelength of 1.55 µm.

  19. Operators Manual and Technical Reference for the Z-Beamlet Phase Modulation Failsafe System: Version 1.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell J.

    2014-09-01

    The need for pulse energies exceeding 4 kJ and pulse lengths [?] 2 ns in Sandia's Z-Beamlet laser (ZBL) requires that the single-frequency spectrum of its fiber-laser master oscillator be converted to a phase modulated spectrum with a modulation in dex [?] 5. Because accidental injection of single-frequency light into ZBL could result i n damage to optical materials from transverse stimulated Brillouin scattering, the presence of phase modulated (PM) light must be monitored by a reliable failsafe system that can stop a las er shot within of a few 10's of ns following a failure of the PM system. This requirement is met by combining optical heterodyne detection with high-speed electronics to indicate the pres ence or absence of phase modulated light. The transition time for the failsafe signal resultin g from a sudden failure using this technique is approximately 35 ns. This is sufficiently short to safely stop a single-frequency laser pulse from leaving ZBL's regenerative amplifier with a n approximately 35 ns margin of safety. This manual and technical reference contains detai led instructions for daily use of the PM failsafe system and provides enough additional informat ion for its maintenance and repair.

  20. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    Directory of Open Access Journals (Sweden)

    Hussain Ali Badran

    2014-01-01

    Full Text Available In this work thermal lens spectrometry (TLS is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino-5-methylphenyl] telluride platinum(II, doped polyacrylamide gel using transistor-transistor logic (TTL modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  1. Optimized Design of Survivable MPLS over Optical Transport Networks. Optical Switching and Networking

    CERN Document Server

    Bigos, Wojtek; Cousin, Bernard; Foll, Morgane Le; Nakajima, Hisao

    2006-01-01

    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the traffic granularity on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. For the multilayer survivability we demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the i...

  2. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.; Bityutskaya, L. A., E-mail: me144@phys.vsu.ru [Voronezh State University (Russian Federation)

    2015-12-15

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  3. High Speed 2 × 2 Optical Switch in Silicon-on-Insulator Based on Plasma Dispersion Effect

    Institute of Scientific and Technical Information of China (English)

    SUN Fei; YU Jin-Zhong; CHEN Shao-Wu

    2005-01-01

    @@ Based on free carrier plasma dispersion effect, a 2 × 2 optical switch is fabricated in a silicon-on-insulator substrate by inductively coupled-plasma technology and ion implantation. The device has a Mach-Zehnder interferometer structure, in which two directional couplers serve as the power splitter and combiner. The switch presents an insertion loss of 3.04 dB and a response time of 496ns.

  4. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    Science.gov (United States)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  5. Optical switching properties of Pd-Ni thin-film top-capped switchable mirrors

    Science.gov (United States)

    Zhang, Xiao-Li; Bao, Shan-Hu; Xin, Yun-Chuan; Cao, Xun; Jin, Ping

    2015-09-01

    Switchable mirrors based on magnesium-nickel alloy thin films capped with catalytic Pd-Ni alloy thin films were prepared by a DC magnetron sputtering method. Their composition, structure and surface morphology were studied by XPS, XRD and AFM. Herein, the optical switching properties and durability of the switchable mirrors were investigated by varying the Ni content in the Pd-Ni alloys. Comparing pure Pd catalyst with Pd-Ni top-capped switchable mirrors, the latter show better hydrogenation and dehydrogenation kinetics, and the speed of hydrogen desorption is obviously improved with increasing Ni content in the Pd-Ni alloy. The Pd-Ni capped switchable mirrors also have better optical switching durability. The catalytic Pd layer with the addition of Ni does not influence the transmittance (hydride state) and reflectance (metallic state) of the switchable mirrors. In addition, replacing Pd with Pd-Ni alloy decreases the cost of the switchable mirrors: employing nickel in the alloy Pd89.2Ni10.8 can save about 11% use of Pd. Therefore, the Pd-Ni alloy can provide a cheaper catalytic thin film, and it is expected to have applications in energy-saving windows, hydrogen sensors and hydrogen storage materials.

  6. Preemptive and non-preemptive scheduling of optical switches with configuration delay

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhizhong; CHENG Fang; LUO Jiangtao; MAO Qijian; WANG Jun; QIU Shaofeng

    2006-01-01

    Utilizing optical technologies for the design of packet switches and routers offers several advantages in terms of scalability, high bandwidth, power consumption, and cost. However, the configuration delays of optical crossbars are much longer than that of the electronic counterpart, which makes the conventional slot-by-slot scheduling methods no longer the feasible solution. Therefore, some tradeoff must be found between the empty time slots and configuration overhead. This paper classifies such scheduling problems into preemptive and non-preemptive scenarios, each has its own advantages and disadvantages. Although non-preemptive scheduling is inherently not good at achieving the above-mentioned tradeoff, it is shown, however, that the proposed maximum weight matching (MWM) based greedy algorithm is guaranteed to achieve an approximation 2 for arbitrary configuration delay, and with a relatively low time complexity O(N2). For preemptive scheduling, a novel 2-approximation heuristic is presented. Each time in finding a switch configuration, the 2-approximation heuristic guarantees the covering cost of the remaining traffic matrix to have 2-approximation. Simulation results demonstrate that 2-approximation heuristic (1) performs close to the optimal scheduling, and (2) outperforms ADJUST and DOUBLE in terms of traffic transmission delay and time complexity.

  7. High Current Density Beamlets from an RF Argon Source for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    In a new approach to develop high current beams for heavy ion fusion, beam current at about 0.5 ampere per channel can be obtained by merging an array of high current density beamlets of 5 mA each. We have done computer simulations to study the transport of high current density beamlets and the emittance growth due to this merging process. In our RF multicusp source experiment, we have produced a cluster of 61 beamlets using minimum gas flow. The current density from a 0.25 cm diameter aperture reached 100 mA/cm2. The normalized emittance of 0.02 π-mm-mrad corresponds to an equivalent ion temperature of 2.4 eV. These results showed that the RF argon plasma source is suitable for producing high current density beamlets that can be merged to form a high current high brightness beam for HIF application

  8. A 2×2 SOI mach-zehnder thermo-optical switch based on strongly guided paired multimode interference couplers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A silicon-on-insulator 2×2 Mach-Zehnder thermo-optical switch is developed based on strongly guided paired multimode interference couplers. The multimode-interference couplers were etched deeply for improving coupler characteristics such as self-imaging quality, uniformity and fabrication tolerance. The proposed switch achieves good performances, including a low insertion loss of -11 .OdB, a fiber-waveguide coupling loss of -4.3dB and a fast response speed measured to be 3.5 and 8.8 μs for raise and fall switching time, respectively.

  9. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    Science.gov (United States)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  10. A method for modeling laterally asymmetric proton beamlets resulting from collimation

    Energy Technology Data Exchange (ETDEWEB)

    Gelover, Edgar; Wang, Dongxu; Flynn, Ryan T.; Hyer, Daniel E. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Hill, Patrick M. [Department of Human Oncology, University of Wisconsin, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Gao, Mingcheng; Laub, Steve; Pankuch, Mark [Division of Medical Physics, CDH Proton Center, 4455 Weaver Parkway, Warrenville, Illinois 60555 (United States)

    2015-03-15

    Purpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other. Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement. The simulated beamlets were modeled analytically using integral depth dose curves along with an asymmetric Gaussian function to represent fluence in the beam’s eye view (BEV). The BEV parameters consisted of Gaussian standard deviations (sigmas) along each primary axis (σ{sub x1},σ{sub x2},σ{sub y1},σ{sub y2}) together with the spatial location of the maximum dose (μ{sub x},μ{sub y}). Percent depth dose variation with trimmer position was accounted for with a depth-dependent correction function. Beamlet growth with depth was accounted for by combining the in-air divergence with Hong’s fit of the Highland approximation along each axis in the BEV. Results: The beamlet model showed excellent agreement with the Monte Carlo simulation data used as a benchmark. The overall passing rate for a 3D gamma test with 3%/3 mm passing criteria was 96.1% between the analytical model and Monte Carlo data in an example treatment plan. Conclusions: The analytical model is capable of accurately representing individual asymmetric beamlets resulting from use of the DCS. This method enables integration of the DCS into a treatment planning system to perform dose computation in patient datasets. The method could be generalized for use with any SS collimation system in which blades, leaves, or trimmers are used to laterally sharpen beamlets.

  11. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm−2. (paper)

  12. Nonlinear optical switching behavior in the solid state: A theoretical investigation on anils

    KAUST Repository

    Ségerie, Audrey

    2011-09-13

    The linear (π(1)) and second-order nonlinear (π(2)) optical properties of two anil crystals, [N-(4-hydroxy)-salicylidene-amino-4-(methylbenzoate) and N-(3,5-di-tert- butylsalicylidene)-4-aminopyridine, denoted 4A and 4P, respectively], as well as the optical contrasts upon switching between their enol (E) and keto (K) forms, have been investigated by combining the molecular responses calculated using quantum chemistry methods and an electrostatic interaction scheme to account for the local field effects. It is found that intermolecular interactions impact differently the K/E optical contrasts in the two systems, which illustrates the importance of the supramolecular organization on the macroscopic responses. In 4A, the surrounding effects on the (hyper)polarizabilities are similar in the enol and keto forms, leading to optical contrasts very close to those of the isolated molecule. In contrast, an enhancement of the second-order susceptibility is observed in the keto form of 4P, leading to a large π(2)(K)/π(2)(E) contrast. Moreover, the π(2)(4A)/π(2)(4P) ratio for the most stable enol forms is obtained to be in good agreement with previous experimental investigations, which supports the reliability of the computational procedure. © 2011 American Chemical Society.

  13. Fabrication of 2×2 Thermo-Optic Switches with Organic-Inorganic Hybrid Materials Prepared by Sol-Gel Technique

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    2×2 Mach-Zehnder interferometric thermo-optic switch was fabricated with organic/inorganic hybrid materials by sol-gel technique and direct UV patterning. The switching time of device was measured to be 4.2 ms and switching power 9.3 mW.

  14. Alternatives for the introduction of optical packet switching networks in this internet world

    Science.gov (United States)

    Chiaroni, Dominique

    2001-09-01

    With the emergence of new services mixing data, voice and video, the expected increase of the traffic volume together with the modification of its profile creates a need for a high throughput multimedia network. In addition, quality-of- service (QoS) management is currently widely debated at the convergence between ATM and IP communities. In the meantime, WDM is widely deployed, giving access to large transport capacities together with a new dimension for routing purposes. This paper present alternatives for a multi- service optical network infrastructure in this Internet world, where WDM is used not only to increase the throughput but also to differentiate the traffic, to alleviate contention issues and to provide cost-effective solutions. On the same optical infrastructure under a self-sufficient management yet, would coexist different logical sub-networks where different routing techniques are used according to QoS and client protocol requirements. The main objective is to save on the transport cost by optimizing through packet switching techniques the resource utilization according traffic characteristics, while providing enough flexibility to adapt the resources to the evolution of the demand, and maintaining a high transmission quality, as provided by SONET today. This work, capitalizes on InP-based fast optical switching technologies demonstrated within the European ACTS KEIPS project. In this paper, the network concepts, packet format considerations, preferred routing techniques and system architecture will be reported and illustrated through physical and logical analysis. Finally, t < o introduction scenario will be presented: one for the backbone and one for the metro.

  15. Experimental validation of efficient methods for the prediction of patterning effects in SOA-based optical switches

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Xue, Weiqi;

    2010-01-01

    We experimentally investigate and verify simple and efficient methods for characterizing the patterning effects (PE) of SOA-based optical switches. The onset of PE saturation is well predicted by the theory. an experimental method to capture the maximum PE is developed.......We experimentally investigate and verify simple and efficient methods for characterizing the patterning effects (PE) of SOA-based optical switches. The onset of PE saturation is well predicted by the theory. an experimental method to capture the maximum PE is developed....

  16. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    Science.gov (United States)

    Chun, Young Tea; Neeves, Matthew; Smithwick, Quinn; Placido, Frank; Chu, Daping

    2014-11-01

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiOx thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm2, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  17. All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates

    Science.gov (United States)

    Singh, Chandra Pal; Roy, Sukhdev

    2003-03-01

    All-optical switching has been theoretically analyzed in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption of the M state. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial B state absorption. The switching characteristics have been numerically simulated using the rate equation approach considering all the six intermediate states (B, K, L, M, N and O) in the bR photocycle. The switching characteristics are shown to be sensitive to various parameters such as the pump pulse width, pump intensity, life time of the M state, thickness of the film and absorption cross-section of the B-state at probe wavelength ( σBp). It has been shown that the probe laser beam can be completely switched off (100% modulation) by the pump laser beam at relatively low pump powers, for σBp=0. The switching characteristics have also been used to theoretically design all-optical NOT, OR, AND and the universal NOR and NAND logic gates with two pulsed pump laser beams using the six state model.

  18. Fast optical switching using cyanine dye-doped nematic liquid crystal

    International Nuclear Information System (INIS)

    A cyanine dye, 1,1',3,3,3',3'-hexamethyl-4,4',5,5'-dibenzo-2,2'-indotricarbocyanine perchlorate (NK-2014) was doped in 4-cyano-4'-n-pentylbiphenyl (5CB), and the mixture was sandwiched between two pieces of rubbed glass plates. The third-order nonlinear optical responses of oriented NK-2014-doped 5CB were measured by the resonant femtosecond degenerate four-wave mixing (DFWM) technique at 820 nm. The time resolution of the system was ca. 0.3 ps (FWHM). The electronic component of third-order nonlinear optical susceptibility of one of the present samples was 1.3x10-8 esu (NK-2014 concentration: 1.0 wt%). The slow DFWM response of NK-2014-doped 5CB was accelerated with increasing laser power due to amplified spontaneous emission (ASE). On the other hand, we did not observe a similar phenomenon for NK-2014-doped polyethylene glycol (PEG-400). Oriented NK-2014 molecules in nematic liquid crystal must have very high ASE efficiency. Hence the population grating disappears in ca. 3 ps. NK-2014-doped 5CB can be used as a material for very fast all-optical switching

  19. Vanadium-Al2O3 nanostructured thin films prepared by pulsed laser deposition: Optical switching

    International Nuclear Information System (INIS)

    The formation and optical response of VO x nanoparticles embedded in amorphous aluminium oxide (Al2O3) thin films by pulsed laser deposition is studied. The thin films have been grown by alternate laser ablation of V and Al2O3 targets, which has resulted in a multilayer structure with embedded nanoparticles. The V content has been varied by changing the number of pulses on the V target. It is found that VO x nanoparticles with dimensions around 5 nm have been formed. The structural analysis shows that the vanadium nanoparticles are oxidized, although probably there is not a unique oxide phase for each sample. The films show a different optical response depending on their vanadium content. Optical switching as a function of temperature has been observed for the two films with the highest vanadium content, at transition temperatures of about -20 deg. C and 315 deg. C thus suggesting the presence of nanoparticles with compositions V4O7 and V2O5, respectively

  20. Electro-optic switching based on a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides

    Science.gov (United States)

    Qi, Zhe; Zhu, Zhi Hong; Xu, Wei; Zhang, Jian Fa; Cai Guo, Chu; Liu, Ken; Yuan, Xiao Dong; Qiao Qin, Shi

    2016-09-01

    We numerically demonstrate that electro-optic switching in the mid-infrared range can be realized using a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides (DLGPWs). The numerical results are in good agreement with the results of physical analysis. The switching mechanism is based on dynamic modification of the resonant wavelengths of the ring resonator, achieved by varying the Fermi energy of a graphene sheet. The results reveal that a switching ratio of ∼24 dB can be achieved with only a 0.01 eV change in the Fermi energy. Such electrically controlled switching operation may find use in actively tunable integrated photonic circuits.

  1. High-speed electro-optic switch using buried electrode structure in polymer Mach-Zehnder waveguide

    Science.gov (United States)

    Sun, Jingwen; Sun, Jian; Yi, Yunji; Qv, Lucheng; Sun, Shiqi; Wang, Fei; Wang, Xibin; Zhang, Daming

    2016-02-01

    A low-cost and high-speed electro-optic (EO) switch using the guest-host EO material Disperse Red 1/Polymethyl Methacrylate (DR1/PMMA) was designed and fabricated. The DR1/PMMA material presented a low processing cost, an excellent photostability and a large EO coefficient of 13.1 pm/V. To improve the performance of the switch, the in-plane buried electrode structure was introduced in the polymer Mach-Zehnder waveguide to improve the poling and modulating efficiency. The characteristic parameters of the waveguide and the electrodes were carefully designed and the fabrication process was strictly controlled. Under 1550 nm, the insertion loss of the device was 12.7 dB. The measured switching rise time and fall time of the switch were 50.00 ns and 54.29 ns, respectively.

  2. UNITED STABILIZING SCHEME FOR EDGE DELAY IN OPTICAL BURST SWITCHED NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel scheme, namely united stabilizing scheme for edge delay, is introduced in optical burst switched networks. In the scheme, the limits of burst length and assembly time are both set according to certain qualifications. For executing the scheme, the conception for unit input bit rate is introduced to improve universality, and the assembly algorithm with a buffer safety space under the self-similar traffic model at each ingress edge router is proposed. Then, the components of burst and packet delay are concluded, and the equations that limits of burst length and assembly time should satisfy to stabilize the burst edge delay under different buffer offered loads are educed. The simulation results show that united stabilizing scheme stabilizes both burst and packet edge delay to a great extent when buffer offered load changes from 0.1 to 1, and the edge delay of burst and packet are near the limit values under larger offered load, respectively.

  3. An Optic/Proton Dual-Controlled Fluorescence Switch based on Novel Photochromic Bithienylethene Derivatives

    Institute of Scientific and Technical Information of China (English)

    张佳琦; 靳家玉; 张隽佶; 邹雷

    2012-01-01

    A simple method for the synthesis of new bithienylethenes bearing a functional group on the cyclopentene moi- ety is developed. Three new photochromic compounds (4a, 4b, 4c) have been successfully synthesized through this simple method, and exhibit good photochromic properties with alternate irradiation of ultraviolet and visible light. Furthermore, the fluorescence of compound 4a, which bears a quinoline unit on the cyclopentene, can be modulated via optic and proton dual inputs. Upon excitation by 320 nm light, 4a emits a strong fluorescence at 404 nm. After irradiation with 254 nm light, the emission intensity is reduced due to the fluorescence resonance energy transfers (FRET) from quinoline unit to bithienylethene unit. Moreover, on addition of H~, the fluorescence is quenched completely due to the protonation of the quinoline. In addition, both the FRET and protonation process are reversi- ble, which indicates a potential application in molecular switches and logic gates.

  4. An Intelligent Segmented Burst Assembly Mechanism in Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    XIE Yi-Yuan; ZHANG Jian-Guo

    2008-01-01

    We focus on the burst assembly mechanism and propose a new intelligent method in which the burst is assembled from several internet protocol (IP) packets in which the number of IP packets is changed according to the traffic load and the burst is segmented into several parts, called the ISOBS mechanism. The average burst assembly time of the ISOBS mechanism decreases as compared with the fixed-assembly-time and fixed-assembly-time-and-length mechanisms. The loss ratio decreases 50% as compared with the general optical burst switching (OBS) mechanism. The last segment can carry high quality of service (QOS) information. We can achieve that the loss ratio of the last segment is almost zero when the traffic load is less than 0.05. When the traffic load is 0.9, the loss ratio of the last segment is 0.0041. The ISOBS can support to transmit different QOS data.

  5. A wide wavelength range optical switch using a flexible photonic crystal waveguide and silicon rods

    International Nuclear Information System (INIS)

    We theoretically and experimentally demonstrated that the transmittance of a two-dimensional photonic crystal waveguide (PCW) can be controlled in the 90 nm wavelength range by changing the difference in height between the PCW and silicon column rods that have the same central axis and height as the PCW air holes. Simulations conducted with a three-dimensional finite difference time domain method showed that the transmittance change of a PCW with four air holes in the light propagating direction was −8.5 dB when the height difference was only half the thickness of the slab. We fabricated an optical switch on a single chip by using a single-mask three-step process that consists of electron beam lithography, inductive coupled plasma reactive ion etching and release with hydrofluoric acid vapor. We measured −4.4 dB attenuations at wavelengths ranging from 1470 to 1500 nm.

  6. A Novel Framework for IP DiffServ over Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    Ke-Ping Long; Yun Li; Rodney S.Tucker; Chong-Gang Wang

    2004-01-01

    This paper presents a novel framework for IP Differentiated Services (DiffServ) over optical burst switching (OBS), namely, DS-OBS. The network architecture, functional model of edge nodes and core nodes, the control packet format, a novel burst assembly scheme at ingress nodes and scheduling algorithm of core nodes are presented. The basic idea is to apply DiffServ capable burst assembly at ingress nodes and perform different per hop behavior (PHB) electronic treatments for control packets of different QoS class services at core nodes. Simulation results show that the proposed schemes can provide the best differentiated service for expedited forwarding (EF), assured forwarding (AF) and best effort (BE) services in terms of end-to-end deay, throughput and IP packet loss probability.

  7. An Intelligent Segmented Burst Assembly Mechanism in Optical Burst Switching Networks

    International Nuclear Information System (INIS)

    We focus on the burst assembly mechanism and propose a new intelligent method in which the burst is assembled from several internet protocol (IP) packets in which the number of IP packets is changed according to the traffic load and the burst is segmented into several parts, called the ISOBS mechanism. The average burst assembly time of the ISOBS mechanism decreases as compared with the fixed-assembly-time and fixed-assembly-time-and-length mechanisms. The loss ratio decreases 50% as compared with the general optical burst switching (OBS) mechanism. The last segment can carry high quality of service (QOS) information. We can achieve that the loss ratio of the last segment is almost zero when the traffic load is less than 0.05. When the traffic load is 0.9, the loss ratio of the last segment is 0.0041. The ISOBS can support to transmit different QOS data. (fundamental areas of phenomenology (including applications))

  8. An Arrangement of Channels and Transceivers in Optical Packet Switching Networks

    Institute of Scientific and Technical Information of China (English)

    Ming Hu

    2008-01-01

    Based on a media access and control (MAC) protocol, an arrangement of channels and transceivers in optical packet switching dense wavelength division multiplexing (DWDM) networks is proposed in this paper. In order to reduce the cost of nodes, fixed transmitters and receivers are used instead of tunable transmitters and receivers. Two fixed transmitters and many fixed receivers are used in each node in the scheme. The average waiting delay of this scheme is analyzed through mathematics and computer simulation. The result shows that the property of the scheme is almost the same as using tunable transmitter and receiver. Furthermore, if the tuning time of tunable transmitters is taken into account, the performance of the tunable transmitter scheme is poor than this scheme at the average waiting delay and throughput of the network.

  9. Non-equilibrium polaritonics - non-linear effects and optical switching

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Regine [Institut fuer Theoretische Festkoerperphysik, Karlsruher Institut fuer Technologie (KIT), Wolfgang - Gaede - Strasse 1, 76131, Karlsruhe (Germany)

    2013-02-15

    In this article a microscopic electronic non-equilibrium effect, highly nonlinear polaritonics, is proposed to mediate an ultrafast all-optical switching. The electronic band structure within gold (Au) nano grains shall be modified by external laser light, namely the Franz-Keldysh effect, and the modified electronic density of states within the Au grains are coupled to a single mode photonic waveguide. Using this microscopic polaritonic coupling without ever including any macroscopic influences due to the geometric arrangement a strong transmission reduction originating from the established quantum interference is derived. The lifetime of the coupled states is heavily dependent on the Fano resonance type binding and the amplitude of the applied electric field. Besides the Fano signatures the microscopic coupling photon-electron-photon leads to a gaped electronic density of states within the Au nano-grains. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem

    2013-04-01

    FAST TCP is important for promoting data-intensive applications since it can cleverly react to both packet loss and delay for detecting network congestion. This paper provides a continuous time model and extensive stability analysis of FAST TCP congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets from a single round is dropped. Second, it shows that FAST TCP is vulnerable to burst delay and fails to detect network congestion due to the little variation of round-trip time, thus unstable. Finally it shows that introducing extra delays by implementing burst retransmission stabilizes FAST TCP over OBS. The paper proves that FAST TCP is not stable over barebone OBS. However, it is locally, exponentially, and asymptotically stable over OBS with burst retransmission.

  11. Optical fibres sensor based in the intensity switch of a linear laser with two Bragg gratings

    International Nuclear Information System (INIS)

    In this work we propose a new configuration for an optical fiber temperature sensor, based on a linear type Er-doped fiber laser. The laser cavity consists of an Er-doped fiber and two identical Bragg gratings at the fiber ends (working as reflectors). Temperature changes are detected by measuring, through one of the gratings, the intensity variations at the system's output. When the temperature of one of the Bragg gratings is modified, a wavelength shift of its spectral reflectivity is observed. Hence, the laser emission intensity of the system is modified. We present experimental results of the intensity switch observed when the temperature difference between the gratings detunes their spectral reflectance. Making use of this effect it is possible to develop limit comparators to bound the temperature range for the object under supervision. This limiting work can be performed with a high sensitivity using a very simple interrogation procedure. (Author)

  12. Modeling and Characterization of Modified Optical Burst Switching (OBS Ring Network Using Proxy Node

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Dutta

    2012-01-01

    Full Text Available This paper presents an analytical model of an optical burst switching  ring network capable of handling WDM traffic intelligently. The network protocol and efficient architecture increases the data transport capability of a congested network. Here we propose an architecture to ease the traffic congestion in a ring network. The backbone of the proposed model is the use of a proxy node which is connected to a particular number of nodes, depending upon the traffic, then diverting their traffic and thereby increasing throughput. A probabilistic model for the proposed network architecture is developed employing packet queuing control to estimate the average waiting time of packets in the buffer and the average number of packets in the buffer for different incoming traffic arrival rate.

  13. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches

    CERN Document Server

    Bruck, Roman

    2013-01-01

    The performance of plasmonic nanoantenna structures on top of SOI wire waveguides as coherent perfect absorbers for modulators and all-optical switches is explored. The absorption, scattering, reflection and transmission spectra of gold and aluminum nanoantenna-loaded waveguides were calculated by means of 3D finite-difference time-domain simulations for single waves propagating along the waveguide, as well as for standing wave scenarios composed from two counterpropagating waves. The investigated configurations showed losses of roughly 1% and extinction ratios greater than 25 dB for modulator and switching applications, as well as plasmon effects such as strong field enhancement and localization in the nanoantenna region. The proposed plasmonic coherent perfect absorbers can be utilized for ultracompact all-optical switches in coherent networks as well as modulators and can find applications in sensing or in increasing nonlinear effects.

  14. Numerical investigation into the injection-locking phenomena of gain switched lasers for optical frequency comb generation

    International Nuclear Information System (INIS)

    We present detailed numerical simulations of the laser dynamics that describe optical frequency comb formation by injection-locking a gain-switched laser. The typical rate equations for semiconductor lasers including stochastic carrier recombination and spontaneous emission suffice to show the injection-locking behavior of gain switched lasers, and we show how the optical frequency comb evolves starting from the free-running state, right through the final injection-locked state. Unlike the locking of continuous wave lasers, we show that the locking range for gain switched lasers is considerably greater because injection locking can be achieved by injecting at frequencies close to one of the comb lines. The quality of the comb lines is formally assessed by calculating the frequency modulation (FM)-noise spectral density and we show that under injection-locking conditions the FM-noise spectral density of the comb lines tend to that of the maser laser

  15. A QoS-Guanranteed Scheduling Algorithm with High Throughput for Edge Nodes of Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A scheduling algorithm for the edge nodes of optical burst switching (OBS) networks is proposed to guarantee the delay requirement of services with different CoS (Class of Service) and provide lower burst loss ratio at the same time. The performance of edge nodes based on the proposed algorithm is presented.

  16. A QoS-Guanranteed Scheduling Algorithm with High Throughput for Edge Nodes of Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    Guiling Wu; Jianping Chen; Xinwang Li; Junfeng Chen

    2003-01-01

    A scheduling algorithm for the edge nodes of optical burst switching (OBS) networks is proposed to guarantee the delay re quirement of services with different CoS (Class of Service) and provide lower burst loss ratio at the same time. The performance of edge nodes based on the proposed algorithm is presented.

  17. The Swiss Education and Research Network - SWITCH - Upgrades Optical Network to Transport 10 Gbps Using Sorrento Networks DWDM Platform

    CERN Document Server

    2003-01-01

    "Sorrento Networks, a supplier of optical transport networking equipment for carriers and enterprises worldwide, today announced that SWITCH successfully completed 10 Gbps BER tests on the 220 km Zurich to Manno and 360 km Zurich to Geneva links in September and November 2003, using Sorrento's GigaMux DWDM system" (1/2 page).

  18. Enhanced just-in-time plus protocol for optical burst switching networks

    Science.gov (United States)

    Rodrigues, Joel J. P. C.; Gregório, José M. B.; Vasilakos, Athanasios V.

    2010-07-01

    We propose a new one-way resource reservation protocol for optical burst switching (OBS) networks, called Enhanced Just-in-Time Plus (E-JIT+). The protocol is described in detail, and its formal specification is presented, following an extended finite state machine approach. The performance evaluation of E-JIT+ is analyzed in comparison with other proposed OBS protocols (JIT+ and E-JIT) for the following network topologies: rings; degree-two, degree-three, and degree-four chordal rings; mesh-torus; NSFNET; ARPANET; FCCN-NET; and the European Optical Network. We evaluate and compare the performance of the different protocols in terms of burst loss probability, taking into account the most important OBS network parameters. It was shown that E-JIT+ performs better than available one-way resource reservation protocols for all the evaluated network topologies. Moreover, the scalability of E-JIT+ was observed, and when the network traffic increases, the burst loss probability also increases, leading to a worse network performance.

  19. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    International Nuclear Information System (INIS)

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc. (low temperature plasma)

  20. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    Science.gov (United States)

    Zhang, Pengfei; Zhang, Guogang; Dong, Jinlong; Liu, Wanying; Geng, Yingsan

    2014-07-01

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc.

  1. Frequency-swept coherently detected spectral amplitude code for flexible implicit optical label switching

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Cao; Fushen Chen; Zhigao Yang

    2011-01-01

    A new optical label switching system with coherently detected implicit spectral amplitude code(SAC)labels is proposed in this letter.The implicit SAC labels are recognized using a frequency-swept local light source oscillator.Intensity modulation payloads of 625 Mb/s and 1.25 Gb/s are considered.Label and pavload bit error rate(BER) performances are assessed and compared by simulations.The results reveal that,at a BER value of 10-9,-32.4dBm label received power can be obtained.In addition,8.3-dB optical signal-to-noise ratio(OSNR) is obtained when carrying a payload of 625 Mb/s.The label BER value hardly reaches 10-9 if the payload bit rate is at 1.25 Gb/s; however,a high payload bit rate only has little influence on received payload quality at a BER value of 10-9.Finally,a payload of 1.25 Gb/s could obtain-28.2 dBm received power and 9.5-dB OSNR.

  2. Sensitive optical switch based on Bi2S3 single nanowire and nanowire film

    International Nuclear Information System (INIS)

    Highlights: • A single Bi2S3 nanowire photoelectric device is fabricated. • Focused ion beam is used to deposit Ga induced Pt on the contacts between the nanowire and Au electrode. • The photoelectric properties of the devices are studied. • Single Bi2S3 nanowire devices show better performances compared with Bi2S3 thin film device. - Abstract: Long and high quality Bi2S3 nanowires (NWs) were obtained by a modified composite molten salt method. A single nanowire photoelectric device was fabricated by bridging a single Bi2S3 NW across two Au electrodes, and focused ion beam (FIB) was used to deposit Pt on the two contacts between the nanowire and the Au electrode for forming Ohmic contacts. For comparison another single nanowire device was made without using FIB. Photoelectric properties of the two devices were systematically investigated under simulation sunlight illumination at room temperature in the open air. Both single nanowire devices exhibit high sensitive photoelectric responses that are fully reversible and periodic. The device with the deposition of Pt shows a better stability than that of the device without deposition of Pt. In addition, both single nanowire devices exhibit better performance compared with the thin film device made of Bi2S3 NWs. The results imply that single Bi2S3 NW device is a promising candidate for fabricating optical detectors or optical switches

  3. Performance and cost analysis of all-optical switching: OBS and OCS

    Directory of Open Access Journals (Sweden)

    Ekularn Dhavarudha

    2011-08-01

    Full Text Available This paper presents a study of performance and cost analysis of optical circuit switching (OCS and optical burstswitching (OBS by proposing the clear images of their node architectures and cost formulations. Then, we apply servicelevel agreement (SLA of the high quality of service application in the terms of network blocking probability and averagenetwork delay to demonstrate OCS and OBS performances, their investment costs, and network dimensioning methodology.Applying SLA to our studies can illustrate the impact of contention resolution and blocking resolution schemes to theperformances and costs of OBS and OCS, accordingly. The simulations illustrate that OBS applying WC gives the bestperformance among all architectures deploying the same offered bandwidth. The investigations also show that WC is a majortechnique contributing high performance gain to both OCS and OBS. Especially for OBS, WC is an important scheme allowingOBS high data grooming property as its performance gain contributing to OBS is much higher than those of OCS. For thecost analysis, OCS is the most economic among all architectures. BA provides the most cost effectiveness among all OBScontention resolution schemes. Lastly, FDL is the least cost effective scheme as it gives little performance enhancement butadds more cost to the network.

  4. Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching

    Science.gov (United States)

    Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James

    2005-01-01

    Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and

  5. Intensity modulated radiosurgery for the spine: Dosimetric impact of beamlet size variation in the leaf travel direction

    International Nuclear Information System (INIS)

    Background and purpose: To investigate the dosimetric impact of beamlet size in the leaf travel direction for the spinal treatment using intensity-modulated radiosurgery (IMRS). Materials and methods: The IMRS plans of ten patients (11 lesions - 6 thoracic, 2 cervical, 3 lumbar) were re-planned using four different beamlet sizes (1, 2, 5, and 10 mm) - in the leaf travel direction, while keeping the Y-dimension by multi-leaf collimator (MLC) width fixed, and compared to the reference plan with beamlet size of 3 mm. To evaluate the beamlet size effect, target volumes (coverage, conformity, and size effect), organ at risks (OARS) (doses to the spinal cord, lung and kidneys), and integral dose, and monitor units (MUs) were calculated. Results: Target coverage and dose conformity for planning target volume (PTV) were not correlated with beamlet size. Maximum (p = 0.000) and mean (p = 0.000) spinal cord doses decreased by 4.0% and 3.4% from 23.4% and 28.6% as beamlet size decreased from 10 to 1 mm. The integral doses, MUs and doses to other organs increased at smaller beamlet sizes. MUs for a beamlet size of 10 mm decreased by 31.4%, as compared with that at the reference beamlet size. Conclusions: Despite no dosimetric benefits with respect to target volume and an MU increase, a definite dose reduction was observed at the spinal cord for smaller beamlet sizes. Treatment with IMRS planning for the spine will benefit from the use of a beamlet size between 2 and 4 mm.

  6. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  7. Evaluation of the potential of optical switching materials for overheating protection of thermal solar collectors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huot, G.; Roecker, Ch.; Schueler, A.

    2008-01-15

    Providing renewable energy for domestic hot water production and space heating, thermal solar collectors are more and more widespread, and users' expectations with respect to performance and service lifetime are rising continuously. The durability of solar collector materials is a critical point as the collector lifetime should be at least 25 years. Overheating and the resulting stagnation of the collector is a common problem with solar thermal systems. During stagnation high temperatures lead to water evaporation, glycol degradation, and stresses in the collector with increasing pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. Additionally, the occurring elevated temperatures lead to degradation of the materials that compose collectors: seals, insulation materials, and also the selective coating which is the most important part of the collector. A promising way to achieve active cooling of collectors without any mechanical device for pressure release or collector emptying is to produce a selective coating which is able to switch its optical properties at a critical temperature Tc. An optical switch allows changing the selective coating efficiency; the goal is to obtain a coating with a poor selectivity above Tc (decreasing of absorptance, increasing of emittance). Obtaining self-cooling collectors will allow increasing collector surfaces on facades and roofs in order to get high efficiency and hot water production during winter without inconvenient overheating during summer. Optical switching of materials can be obtained by many ways. Inorganic and organic thermochromic compounds, and organic thermotropic coatings are the main types of switching coatings that have been studied at EPFL-LESO-PB. Aging studies of organic thermochromic paints fabricated at EPFL suggest that the durability of organic compounds might not be sufficient for glazed metallic collectors. First samples of inorganic coatings

  8. Enhancement of modulation depth of an all-optical switch using an azo dye-ethyl red film

    International Nuclear Information System (INIS)

    The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45° with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays. (classical areas of phenomenology)

  9. Investigation of patterning effect in ultrafast SOA-based optical switches

    DEFF Research Database (Denmark)

    Xu, Jing; Zhang, Xinliang; Mørk, Jesper

    2009-01-01

    A lower bound of PRBS length is derived considering patterning effects in ultrafast SOA-based switches. An effective method for simulating patterning effects is proposed, validated and applied to characterize the switches in large parameter regions.......A lower bound of PRBS length is derived considering patterning effects in ultrafast SOA-based switches. An effective method for simulating patterning effects is proposed, validated and applied to characterize the switches in large parameter regions....

  10. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xingyu, E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu [Omega Optics, Inc., Austin, Texas 78757 (United States); Chen, Ray T., E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Omega Optics, Inc., Austin, Texas 78757 (United States)

    2015-11-30

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  11. In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching

    Science.gov (United States)

    Liu, Weimin; Wang, Liang; Fang, Chong

    2014-03-01

    All-optical switching has myriad applications in optoelectronics, optical communications, and quantum information technology. To achieve ultrafast optical switching in a compact yet versatile setup, we demonstrate distinct sets of two-dimensional (2D) broadband up-converted multicolor arrays (BUMAs) in a thin type-I β-barium-borate crystal with two noncollinear near-IR femtosecond pulses at various phase-matching conditions. The unique interaction mechanism is revealed as quadratic spatial solitons (QSSs)-coupled cascaded four-wave mixing (CFWM), corroborated by numerical calculations of the governing phase-matching conditions. Broad and continuous spectral-spatial tunability of the 2D BUMAs are achieved by varying the time delay between the two incident pulses that undergo CFWM interaction, rooted in the chirped nature of the weak white light and the QSSs generation of the intense fundamental beam. The control of 2D BUMAs is accomplished via seeding a weak second-harmonic pulse in situ to suppress the 2D arrays with polarization dependence on the femtosecond timescale that matches the control pulse duration of ˜35 fs. A potential application is proposed on femtosecond all-optical switching in an integrated wavelength-time division multiplexing device.

  12. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  13. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    CERN Document Server

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T

    2016-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 um-long coupled L0-type photonic crystalmicrocavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystalmicrocavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystalmicrocavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 us, and a fall time of 18.5 us. The measured on-chip loss on the transmission band is as l...

  14. Research Progress on Multimode Interference Switches

    Institute of Scientific and Technical Information of China (English)

    GAO Qing; SHENG Zhi-rui; JIANG Xiao-qing; WANG Ming-hua

    2005-01-01

    Optical switches are key components for constructing optical communication networks, so it is necessary to design optical switches and optical switch arrays with high performance and low cost. As one type of optical switches, the multimode interference(MMI) switches have received considerable attention due to their unique merits. The structures and operation principles of various types of MMI switches are introduced,and the recent progresses of MMI switches are also discussed.

  15. Performance analysis of optical burst switching node with limited wavelength conversion capabilities

    Institute of Scientific and Technical Information of China (English)

    XU Yi; SHI Kai-yuan; FAN Ge

    2009-01-01

    The systematical and scalable frameworks were provided for estimating the blocking probabilities under asynchronous traffic in optical burst switching (OBS) nodes with limited wavelength conversion capability (LWCC). The relevant system architectures of limited range and limited number of wavelength converters (WCs) deployed by a share-per-fiber (SPF) mode were developed, and the novel theoretical analysis of node blocking probability was derived by combining the calculation of discouraged arrival rate in a birth-death process and two-dimensional Markov chain model of SPF. The simulation results on single node performance verify the accuracy and effectiveness of the analysis models. Under most scenarios, it is difficult to distinguish the plots generated by the analysis and simulation. As the conversion degree increases, the accuracy of the analysis model worsens slightly. However, the utmost error on burst loss probability is far less than one order of magnitude and hence, still allows for an accurate estimate. Some results are of actual significance to the construction of next-generation commercial OBS backbones.

  16. A NOVEL HYBRID SCHEME FOR CONTENTION MINIMIZATION IN OPTICAL BURST SWITCHED NETWORK

    Directory of Open Access Journals (Sweden)

    Dilip H. Patel

    2015-12-01

    Full Text Available In Optical Burst Switched (OBS Networks, data is transported in a bufferless network and hence there is fair amount of possibility of contention among the data bursts. This occurs when multiple bursts contend for the same link. The existing reactive contention resolution schemes attempt to address issue of contention without making any efforts to minimize the occurrences of contention in the network. Also, the existing proactive contention minimization schemes fail to provide improvement in contention loss at a very high load. Therefore, we are presenting new scheme for reducing the occurrence of contention in OBS network and it is known as Dynamic Hybrid Cluster and Deflection Feedback (DHCF scheme. In proposed DHCF scheme entire OBS network is partitioned into many small clusters. In each cluster, one node acts as cluster head for gathering the information of resources in the network. The contention is minimized using clustering approach and it can be further improved with the help of deflection feedback mechanism. A performance metrics is considered to evaluate merits of the proposed DHCF scheme and its effects on overall network performance. Also, the comparison of the performance of the DHCF scheme with limited hybrid deflection and retransmission (LHDR scheme and dynamic hybrid retransmission in deflection routing (DHRD scheme is made. The simulation results show that the proposed scheme gives improvement in Burst Loss Probability (BLP in the range of 31% to 38% and delay improvement in the range of 64% to 74% on vBSN network. The vBSN is network topology.

  17. A novel implementation of TCP Vegas for optical burst switched networks

    KAUST Repository

    Shihada, Basem

    2010-07-01

    TCP performance over bufferless Optical Burst Switched (OBS) networks could be significantly degraded due to the misinterpretation of network congestion status (referred to as false congestion detection). It has been reported that burst retransmission in the OBS domain can improve the TCP throughput by hiding burst loss events from the upper TCP layer, which can effectively reduce the congestion window fluctuation at the expense of introducing additional delay. However, the additional delay may cause performance degradation for delay-based TCP implementations that are sensitive to packet round trip time in estimating the network congestion status. In this paper, a novel implementation of TCP Vegas that adopts a threshold-based mechanism is proposed for identifying the network congestion status in OBS networks. Analytical models are developed to evaluate the throughput of conventional TCP Vegas and threshold-based Vegas over OBS networks with burst retransmission. Simulation is conducted to validate the analytical model and to compare threshold-based Vegas with a number of legacy TCP implementations, such as TCP Sack and TCP Reno. The analytical model can be used to obtain a proper threshold value that results in an optimal steady state TCP throughput.

  18. An Enhanced Mathematical Model for Performance Evaluation of Optical Burst Switched Networks

    CERN Document Server

    Morsy, Mohamed H S; Shalaby, Hossam M H

    2008-01-01

    An enhanced mathematical model is introduced to study and evaluate the performance of a core node in an optical burst switched network. In the proposed model, the exact Poisson traffic arrivals to the OBS node is approximated by assuming that the maximum allowed number of arrivals to the OBS node, in a given time slot, is two (instead of infinity). A detailed state diagram is outlined to illustrate the problem, and then a mathematical model based on the equilibrium point analysis (EPA) technique is presented. The steady-state system throughput is derived from the model which is built in the absence of wavelength conversion capability. Our proposed model is aided by a simulation work which studies the performance of an OBS core node under the assumption of Poisson traffic arrivals (the exact case) and calculates the steady-state system throughput. The results obtained from the proposed mathematical model are consistent with that of simulation when assuming Poisson traffic arrivals and this consistency holds fo...

  19. Processing of Diamond for Integrated Optic Devices Using Q-Switched Nd:YAG Laser at Different Wavelengths

    Science.gov (United States)

    Sudheer, S. K.; Pillai, V. P. Mahadevan; Nayar, V. U.

    In the present investigation, a Q-switched Nd:YAG laser is used to study the various aspects of diamond processing for fabricating integrated optic and UV optoelectronic devices. Diamond is a better choice of substrate compared to silicon and gallium arsenide for the fabrication of waveguides to perform operations such as modulation, switching, multiplexing, and filtering, particularly in the ultraviolet spectrum. The experimental setup of the present investigation consists of two Q-Switched Nd:YAG lasers capable of operating at wavelengths of 1064 nm and 532 nm. The diamond cutting is performed using these two wavelengths by making the "V"-shaped groove with various opening angle. The variation of material loss of diamond during cutting is noted for the two wavelengths. The cut surface morphology and elemental and structural analysis of graphite formed during processing in both cases are compared using scanning electron microscopy (SEM) and laser Raman spectroscopy. Both the Q-Switched Nd:YAG laser systems (at 1064 nm and 532 nm) show very good performance in terms of peak-to-peak output stability, minimal spot diameter, smaller divergence angle, higher peak power in Q-switched mode, and good fundamental TEM00 mode quality for processing natural diamond stones. Less material loss and minimal micro cracks are achieved with wavelength 532 nm whereas a better diamond cut surface is achieved with processing at 1064 nm with minimum roughness.

  20. Design and Modelling of a Silicon Optical MEMS Switch Controlled by Magnetic Field Generated by a Plain Coil

    Science.gov (United States)

    Golebiowski, J.; Milcarz, Sz

    2014-04-01

    Optical switches can be made as a silicon cantilever with a magnetic layer. Such a structure is placed in a magnetic field of a planar coil. There is a torque deflecting the silicon beam with NiFe layer depending on a flux density of the magnetic field. The study shows an analysis of ferromagnetic layer parameters, beam's dimensions on optical switch characteristics. Different constructions of the beams were simulated for a range of values of magnetic field strength from 100 to 1000 A/m. An influence of the actuators parameters on characteristics was analysed. The loss of stiffness of the beam caused by specific constructions effected in displacements reaching 85 nm. Comsol Multiphysics 4.3b was used for the simulations.

  1. Design and modelling of a silicon optical MEMS switch controlled by magnetic field generated by a plain coil

    International Nuclear Information System (INIS)

    Optical switches can be made as a silicon cantilever with a magnetic layer. Such a structure is placed in a magnetic field of a planar coil. There is a torque deflecting the silicon beam with NiFe layer depending on a flux density of the magnetic field. The study shows an analysis of ferromagnetic layer parameters, beam's dimensions on optical switch characteristics. Different constructions of the beams were simulated for a range of values of magnetic field strength from 100 to 1000 A/m. An influence of the actuators parameters on characteristics was analysed. The loss of stiffness of the beam caused by specific constructions effected in displacements reaching 85 nm. Comsol Multiphysics 4.3b was used for the simulations.

  2. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  3. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    International Nuclear Information System (INIS)

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiOx thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm2, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively

  4. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Neeves, Matthew; Placido, Frank [Thin Film Centre, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smithwick, Quinn [Disney Research, 521 Circle Seven Drive, Glendale, Los Angeles, California 91201 (United States)

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  5. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    International Nuclear Information System (INIS)

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems

  6. Design and fabrication of sub-μs silicon-on-insulator thermo-optic 4×4 switch matrix

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4×4 switch matrix with spot size converters (SSCs) and a new driving circuit are designed and fabricated. The introduction of a spot size converter (SSC) has decreased the insertion loss to less than 10dB and the new driving circuit has improved the response speed to less than 1μs.

  7. Bidirectionally tunable all-optical switch based on multiple nano-structured resonators using backward quasi-phase-matching

    Institute of Scientific and Technical Information of China (English)

    Jun Xie; Yuping Chen; Wenjie Lu; Xianfeng Chen

    2011-01-01

    @@ Based on the second-order nonlinearity, we present a bidirectional tunable all-optical switch at C-band by introducing backward quasi-phase-matching technique in Mg-doped periodically poled lithium niobate (MgO:PPLN) waveguide with a nano-8tructure called multiple resonators.Two injecting forward lights and one backward propagating light interact with difference frequency generations.The transmission of forward signal and backward idler light can be modulated simultaneously with the variation of control light power based on the basic "phase shift" structure of a single resonator.In this scheme, all the results come from our simulation, The speed of tlus bidirectional optical switch can reach to femtosecond if a femtosecond laser is used as the control light.%Based on the second-order nonlinearity, we present a bidirectional tunable all-optical switch at C-band by introducing backward quasi-phase-matching technique in Mg-doped periodically poled lithium niobate (MgO:PPLN) waveguide with a nano-structure called multiple resonators.Two injecting forward lights and one backward propagating light interact with difference frequency generations.The transmission of forward signal and backward idler light can be modulated simultaneously with the variation of control light power based on the basic "phase shift" structure of a single resonator.In this scheme, all the results come from our simulation.The speed of this bidirectional optical switch can reach to femtosecond if a femtosecond laser is used as the control light.

  8. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  9. Theoretical and experimental study of fundamental differences in the noise suppression of high-speed SOA-based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Suzuki, R.;

    2005-01-01

    We identify a fundamental difference between the ASE noise filtering properties of different all-optical SOA-based switch configurations, and divide the switches into two classes. An in-band ASE suppression ratio quantifying the difference is derived theoretically and the impact of the ASE...

  10. Femtosecond multi-level phase switching in chalcogenide thin films for all-optical data and image processing

    OpenAIRE

    Wang, Q; Maddock, J; B. Mills; Craig, C; MacDonald, K. F.; Hewak, D.W.; Zheludev, N.I.

    2014-01-01

    We report on the non-volatile switching of amorphous chalcogenide glass thin films to the crystalline phase through a through a number of reproducible, discrete, optically distinguishable intermediate states, and on the re-amorphization of these films using femtosecond laser pulses. Potential applications lie in high-base (>binary) all-optical signal modulation, high-density data storage, image processing and non-Von Neuman computing. Chalcogenide phase-change media such as Ge2Sb2Te5 (GST) ar...

  11. Mach-Zehnder Interferometers with Asymmetric Modulation Arms in Applications of High Speed Silicon-on-Insulator Based Optical Switches

    Institute of Scientific and Technical Information of China (English)

    SUN Fei; YU Jin-Zhong

    2006-01-01

    @@ Modulation arms with different widths are introduced to Mach-Zehnder interferometers (MZIs) to obtain improved performance. Theoretical analysis and numerical simulation have shown that when the widths of the two arms are properly designed to achieve an inherent mπ/2 (m is an odd integer) optical phase difference between the arms, the asymmetric MZI presents higher modulation speed. Furthermore, the carrier-absorption induced divergence of insertion losses in silicon-on-insulator (SOI) based MZI optical switches can be obviously improved.

  12. Blue organic light-emitting diode as the electro-optical conversion device for high-speed switching applications

    International Nuclear Information System (INIS)

    Luminance of about 40 mW cm-2 with an emission peak at about 435 nm and the optical pulses of 100 MHz have been obtained from a blue organic light-emitting diode (OLED) based on the N,N'-di(naphtalen-1-yl)-N,N'- diphenylbenzidine emissive layer with the active area of 0.01 mm2. The performance of modulation speed was improved significantly by applying the positive offset voltage in the range of lower voltages. We demonstrate that the OLEDs can be applied to the electro-optical conversion device for high-speed switching applications. (author)

  13. All-optical signal processing using InP photonic-crystal nanocavity switches

    DEFF Research Database (Denmark)

    Yu, Yi; Vukovic, Dragana; Heuck, Mikkel;

    2014-01-01

    In this paper, we present recent progress in experimental characterization of InP photonic-crystal nanocavity switches. Pump-probe measurements on an InP PhC H0 cavity show large-contrast ultrafast switching at low pulse energy. At large pulse energies, a large resonance shift passing across the ...

  14. Optical switching in bistable active cavity containing nonlinear absorber on bacteriorhodopsin

    Science.gov (United States)

    Bazhenov, Vladimir Y.; Taranenko, Victor B.; Vasnetsov, Mikhail V.

    1993-04-01

    The transverse nonlinear dynamics of switchings in an active system (laser with nonlinear saturable absorber on bacteriorhodopsin in a self-imaging cavity) is studied both experimentally and theoretically. The soliton-like light field structure formation and continuously cycled self-switching process are investigated.

  15. A highly nonlinear holey fiber and its application in a regenerative optical switch

    OpenAIRE

    Petropoulos, P.; Monro, T.M.; Belardi, W.; Furusawa, K.; Lee, J.H.; Richardson, D J

    2001-01-01

    We report the fabrication of a highly nonlinear, polarization-maintaining, silica holey fiber with an effective area of ~2.5?m2 at 1550nm. Nonlinear switching is demonstrated in a 3.3m long regenerative switch based on SPM with appropriate band pass filtering.

  16. Experimental Demonstration of Multidimensional Switching Nodes for All-Optical Data Centre Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Medhin, Ashenafi Kiros; Da Ros, Francesco; Ye, Feihong; Asif, Rameez; Fagertun, Anna Manolova; Ruepp, Sarah Renée; Berger, Michael Stübert; Dittmann, Lars; Morioka, Toshio; Oxenløwe, Leif Katsuo; Galili, Michael

    t We experimentally demonstrate network nodes that enable SDM/WDM/TDM switching. 1 Tbit/s/core error-free performance is achieved for connections with different granularities being switched between three network nodes interconnected with 7-core multicore fibres....

  17. All-optical signal processing using InP photonic-crystal nanocavity switches

    DEFF Research Database (Denmark)

    Yu, Yi; Vukovic, Dragana; Heuck, Mikkel; Peucheret, Christophe; Oxenløwe, Leif Katsuo; Yvind, Kresten; Mørk, Jesper

    2014-01-01

    In this paper, we present recent progress in experimental characterization of InP photonic-crystal nanocavity switches. Pump-probe measurements on an InP PhC H0 cavity show large-contrast ultrafast switching at low pulse energy. At large pulse energies, a large resonance shift passing across the...

  18. The use of beam propagation modeling of Beamlet and Nova to ensure a ''safe'' National Ignition Facility laser system design

    International Nuclear Information System (INIS)

    An exhaustive set of Beamlet and Nova laser system simulations were performed over a wide range of power levels in order to gain understanding about the statistical trends in Nova and Beamlet's experimental data sets, and to provide critical validation of propagation tools and design ''rules'' applied to the 192-arm National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). The experiments considered for modeling were at 220-ps FWHM duration with unpumped booster slabs on Beamlet, and 100-ps FWHM with pumped 31.5-cm and 46-cm disk amplifiers on Nova. Simulations indicated that on Beamlet, the AB (the intensity pendent phase shift parameter characterizing the tendency towards beam filamentation) for the booster amplifier stage without pumping, would be nearly identical to the AB expected on NIF at the peak of a typical 20-ns long shaped pulse intended for ICF target irradiation. Therefore, with energies less than I kJ in short-pulses, we examined on Beamlet the comparable AB-driven filamentation conditions predicted for long ICF pulseshapes in the 18 kJ regime on the NIF, while avoiding fluence dependent surface damage. Various spatial filter pinhole configurations were examined on Nova and Beamlet. Open transport spatial filter pinholes were used in some experiments to allow the direct measurement of the onset of beam filamentation. Schlieren images on Beamlet of the far field irradiance measuring the scattered light fraction outside of 33-microradians were also obtained and compared to modeled results

  19. All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers.

    Science.gov (United States)

    Klenner, Alexander; Keller, Ursula

    2015-04-01

    Passively modelocked diode-pumped solid-state lasers (DPSSLs) with pulse repetition rates in the gigahertz regime suffer from an increased tendency for Q-switching instabilities. Low saturation fluence intracavity saturable absorbers - such as the semiconductor saturable absorber mirrors (SESAMs) - can solve this problem up to a certain average output power limited by the onset of SESAM damage. Here we present a passive stabilization mechanism, an all-optical Q-switching limiter, to reduce the impact of Q-switching instabilities and increase the potential output power of SESAM modelocked lasers in the gigahertz regime. With a proper cavity design a Kerr lens induced negative saturable absorber clamps the maximum fluence on the SESAM and therefore limits the onset of Q-switching instabilities. No critical cavity alignment is required because this Q-switching limiter acts well within the cavity stability regime. Using a proper cavity design, a high-power diode-pumped Yb:CALGO solid-state laser generated sub-100 fs pulses with an average output power of 4.1 W at a pulse repetition rate of 5 GHz. With a pulse duration of 96 fs we can achieve a peak power as high as 7.5 kW directly from the SESAM modelocked laser oscillator without any further external pulse amplification and/or pulse compression. We present a quantitative analysis of this Kerr lens induced Q-switching limiter and its impact on modelocked operation. Our work provides a route to compact high-power multi-gigahertz frequency combs based on SESAM modelocked diode-pumped solid-state lasers without any additional external amplification or pulse compression. PMID:25968691

  20. Coherent 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an Optimal Supercomputer Optical Switch Fabric

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko; Roudas, Ioannis; Tafur Monroy, Idelfonso

    2013-01-01

    We demonstrate, for the first time, the feasibility of using 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an optimized cell switching supercomputer optical interconnect architecture based on semiconductor optical amplifiers as ON/OFF gates.......We demonstrate, for the first time, the feasibility of using 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an optimized cell switching supercomputer optical interconnect architecture based on semiconductor optical amplifiers as ON/OFF gates....

  1. OPTIMIZATION OF WDM OPTICAL PACKET SWITCHES WITH SPARSE WAVELENGTH CONVERTERS AND NON-DEGENERATE FIBER DELAY-LINES

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhizhong; Cheng Fang; Zhao Huandong; Zeng Qingji

    2005-01-01

    This paper investigates the untraditional approach of contention resolution in Wavelength Division Multiplexing (WDM) Optical Packet Switching (OPS). The most striking characteristics of the developed switch architecture are: (1) Contention resolution is achieved by a combined sharing of Fiber Delay-Lines (FDLs) and Tunable Optical Wavelength Converters (TOWCs); (2) FDLs are arranged in non-degenerate form, i.e., non-uniform distribution of the delay lines; (3) TOWCs just can perform wavelength conversion in partial continuous wavelength channels, i.e., sparse wavelength conversion. The concrete configurations of FDLs and TOWCs are described and analyzed under non-bursty and bursty traffic scenarios. Simulation results demonstrate that for a prefixed packet loss probability constraint, e.g., 10-6, the developed architecture provides a different point of view in OPS design. That is, combined sharing of FDLs and TOWCs can, effectively, obtain a good tradeoff between the switch size and the cost, and TOWCs which are achieved in sparse form can also decrease the implementing complexity.

  2. All-Optical Routing of Single Photons by a One-Atom Switch Controlled by a Single Photon

    CERN Document Server

    Shomroni, Itay; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-01-01

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. Here we realize the most basic unit of such a photonic circuit: a single-photon activated switch, capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single 87Rb atom coupled to a fiber-coupled, chip-based microresonator, and is completely all-optical, requiring no other fields beside the in-fiber single-photon pulses. Nonclassical statistics of the control pulse confirm that a single reflected photon toggles the switch from high reflection (65%) to high transmission (90%), with average of ~1.5 control photons per switching event (~3 including linear losses). The fact that the control and target photons are both in-fiber and practically identical makes this scheme compatible with scalable architectures for quantum information processing.

  3. Design considerations for multi-core optical fibers in nonlinear switching and mode-locking applications

    CERN Document Server

    Nazemosadat, Elham

    2014-01-01

    We explore the practical challenges which should be addressed when designing a multi-core fiber coupler for nonlinear switching or mode-locking applications. The inevitable geometric imperfections formed in these fiber couplers during the fabrication process affect the performance characteristics of the nonlinear switching device. Fabrication uncertainties are tolerable as long as the changes they impose on the propagation constant of the modes are smaller than the linear coupling between the cores. It is possible to reduce the effect of the propagation constant variations by bringing the cores closer to each other, hence, increasing the coupling. However, higher coupling translates into a higher switching power which may not be desirable in some practical situations. Therefore, fabrication errors limit the minimum achievable switching power in nonlinear couplers.

  4. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    Science.gov (United States)

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors. PMID:21197062

  5. 20-kHz watt-level green laser with LGS crystal electro-optic Q-switch

    Institute of Scientific and Technical Information of China (English)

    Hao Tang; Xiaolei Zhu; Junqing Meng; Huaguo Zang

    2009-01-01

    A diode-end-pumped electro-optic(EO)Q-switched green laser operating at the repetition rate of 20 kHz is reported.A block of La3Ga5SiO14(LGS)single crystal is used as a Q-switch and the type I phasematching LiB3O5(LBO)is used as the nonlinear crystal in the second harmonic generation.The 2.3-W average power of 532-nm green laser is obtained at the repetition rate of 20 kHz with the pulse width as short as 10 ns.When the output power is about 1.5 W,the measured power fluctuation is less than 1.4% (root-mean-square,RMS)with the beam quality factor of M2 < 2 in both orthogonal directions.

  6. Magneto-optical investigation of relaxation of spatial distribution of HTSC-strip magnetic field after switching on transport current

    International Nuclear Information System (INIS)

    For the first time the efficiency of using the magneto-optical technique has been demonstrated for the investigation of the spatial-time relaxation of the magnetic field of YBa2Cu3O7 strip after switching on the transport current. It has been shown that the evolution of the magnetic flux distribution is well described in the framework of the modified Bean model with the time-depending critical current within 50 ms after current switching on the critical current magnitude decreases by ∼ 15%. In such manner the importance of the thermo-induced motion of magnetic flux is proved for the investigated mode. The evaluated value of the energy of magnetic vortices pinning U0 ≅ 20 kT

  7. Laser-induced Bessel beams can realize fast all-optical switching in gold nanosol prepared by pulsed laser ablation

    International Nuclear Information System (INIS)

    We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.

  8. Effective photoconductivity of exfoliated black phosphorus for optoelectronic switching under 1.55 μm optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Penillard, A., E-mail: anne.penillard@espci.fr; Tripon-Canseliet, C.; Maksimovic, I.; Géron, E. [Laboratoire de Physique et d' Etude des Matériaux, Ecole Supérieure de Physique et de Chimie Industrielle de la ville de Paris, UMR8213, 10 rue Vauquelin 75231 Paris Cedex 05 (France); Rosticher, M. [Laboratoire Pierre Aigrain, Département de Physique de l' Ecole Normale Supérieure, 24 rue Lhomond 75231 Paris Cedex 05 (France); Liu, Z. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2016-01-14

    We present a microwave photoconductive switch based on exfoliated black phosphorus and strongly responding to a 1.55 μm optical excitation. According to its number of atomic layers, exfoliated black phosphorus presents unique properties for optoelectronic applications, like a tunable direct bandgap from 0.3 eV to 2 eV, strong mobilities, and strong conductivities. The switch shows a maximum ON/OFF ratio of 17 dB at 1 GHz, and 2.2 dB at 20 GHz under 1.55-μm laser excitation at 50 mW, never achieved with bidimensional materials.

  9. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Basurto, M. A.; Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. 62209 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Mor. 62580 (Mexico); Jiménez Sandoval, S. [Laboratorio de Investigación en Materiales, Centro de Investigación y estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Qro. 76001 (Mexico)

    2015-10-07

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  10. Porous silicon-VO2 based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Science.gov (United States)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Campos, J.; Basurto, M. A.; Jiménez Sandoval, S.; Agarwal, V.

    2015-10-01

    Morphological properties of thermochromic VO2—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO2 as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO2(M) to a high-temperature tetragonal rutile VO2(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO2 film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  11. Porous silicon-VO2 based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    International Nuclear Information System (INIS)

    Morphological properties of thermochromic VO2—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO2 as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO2(M) to a high-temperature tetragonal rutile VO2(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO2 film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology

  12. Design considerations for multi-core optical fibers in nonlinear switching and mode-locking applications

    OpenAIRE

    Nazemosadat, Elham; Mafi, Arash

    2014-01-01

    We explore the practical challenges which should be addressed when designing a multi-core fiber coupler for nonlinear switching or mode-locking applications. The inevitable geometric imperfections formed in these fiber couplers during the fabrication process affect the performance characteristics of the nonlinear switching device. Fabrication uncertainties are tolerable as long as the changes they impose on the propagation constant of the modes are smaller than the linear coupling between the...

  13. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material.

    Science.gov (United States)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W W; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors. PMID:27213955

  14. Free-space 1×2 wavelength-selective switches for wavelength-division multiplexing optical networks

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Jingqiu Liang; Degui Sun; Wei Li; Zhongzhu Liang

    2009-01-01

    A free-space 1×2 wavelength-selective switch (WSS) based on thin-film filter technology is proposed. The 1×2 WSS is fabricated with an electromagnetic actuator, a reflecton prism, a narrow-band thin-film filter, and three fiber collimators. The working principle and the configuration of WSS are illuminated. The experimental results indicate a fiber-to-fiber insertion loss ranging from 1.109 to 1.249 dB with 2-V voltage input, which satisfies the application of optical fiber communication.

  15. Optical-induced electrical current in diamond switched by femtosecond–attosecond laser pulses by ab initio simulations

    International Nuclear Information System (INIS)

    The electric current has been switched in diamond by a dual-laser field with an attosecond pulse train and a femtosecond laser, respectively serving to excite and drive electrons. The optical-induced current is simulated by the developed method based on the time-dependent density functional theory. The electric current is induced within several attoseconds with the diamond’s conductivity increased by 16∼23 orders of magnitude. Our work opens the way to extending electronic signal processing from the present gigahertz domain into the exahertz domain. (paper)

  16. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system.

    Science.gov (United States)

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-01

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557

  17. Including 10-Gigabit-capable Passive Optical Network under End-to-End Generalized Multi-Protocol Label Switching Provisioned Quality of Service

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Gavler, Anders; Wessing, Henrik;

    2012-01-01

    discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers.......End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part of the...... network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches are...

  18. Including 10-Gigabit-capable Passive Optical Network under End-to-End Generalized Multi-Protocol Label Switching Provisioned Quality of Service

    Science.gov (United States)

    Brewka, Lukasz; Gavler, Anders; Wessing, Henrik; Dittmann, Lars

    2012-04-01

    End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part of the network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches are discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers.

  19. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system

    Science.gov (United States)

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-01

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557

  20. Recent performance results of the National Ignition Facility Beamlet demonstration project

    International Nuclear Information System (INIS)

    The laser driver for the National Ignition Facility will be a departure from previous inertial confinement fusion laser architecture of a master oscillator single pass power amplifier (MOPA) design. The laser will use multi-segment Nd:Glass amplifiers in a multipass cavity arrangement, which can be assembled into compact and cost effective arrays to deliver the required multi- megajoule energy to target. A single beam physics prototype, the Beamlet, has been in operation for over two years and has demonstrated the feasibility of this architecture. We present a short review of Beamlet's performance and limitations based on beam quality both at its fundamental and frequency converted wavelengths of 1.053 and 0.351 μm

  1. Influence Of The Switching field On The Magnetization Process Thin Film Magneto optic

    International Nuclear Information System (INIS)

    The investigation of influence of switching field on the magnetic reversal process of bilayer Fe Tb/FeTbCo has been done. Thin film has been produced by sputtering method using mosaic target placed as cathode. The experiment shows that the interface wall between two layers is created due to the shifting of the switching field from the coercive force of the single layer. At the temperature of 26oC, the special magnetization process accurst because the two layers have the same value of switching field : For the range of the magnetic field -3.8 kg oC oC. This mean that the compensation point lies in this temperature range

  2. Multifunctional two-dimensional photonic crystal optical component based on magneto-optical resonator: nonreciprocal two-way divider-switch, nonreciprocal 120 deg bending-switch, and three-way divider

    Science.gov (United States)

    Dmitriev, Victor; Portela, Gianni

    2014-11-01

    We suggest and analyze a compact nonreciprocal optical four-port based on a magneto-optical resonator in two-dimensional photonic crystal, which can fulfill many functions. This component can be used in three regimes: first, with magnetization by a direct current (DC) magnetic field +H0, second, with magnetization by the DC magnetic field -H0, and finally, with magnetization by the DC magnetic field +H1. In the first regime, the four-port ensures equal division of the input signal between two output ones simultaneously providing protection of the generator in the input port from harmful reflected signals in the output ports; this can also be used as a switch by reversing +H0 to -H0. In the second regime, the same four-port fulfills 120-deg bending and it provides protection of the generator in the input port from reflected signals; it can also be used as a switch by reversing -H0 to +H0. In the third regime, with DC magnetic field +H1, the device can be used as a three-way divider with equal division to the output ports. We analyze the scattering matrix of this component and discuss the physical mechanisms of its functioning. In addition, computational simulations were performed and their results confirm our theoretical predictions.

  3. Injection of a Phase Modulated Source into the Z-Beamlet Laser for Increased Energy Extraction.

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, Patrick K.; Armstrong, Darrell J.; Schwarz, Jens; Smith, Ian C; Shores, Jonathon; Speas, Christopher; Porter, John L.

    2014-11-01

    The Z-Beamlet laser has been operating at Sandia National Laboratories since 2001 to provide a source of laser-generated x-rays for radiography of events on the Z-Accelerator. Changes in desired operational scope have necessitated the increase in pulse duration and energy available from the laser system. This is enabled via the addition of a phase modulated seed laser as an alternative front-end. The practical aspects of deployment are discussed here.

  4. Negative refractive index electron `optics', pseudospintronics and chiral tunneling in graphene pn junction -- beating the Landauer switching limit?

    Science.gov (United States)

    Sajjad, Redwan; Pan, Chenyun; Naeemi, Azad; Ghosh, Avik

    2013-03-01

    We use atomistic quantum kinetic calculations to demonstrate how graphene PN junctions can switch with high ON currents, low OFF currents, steep gate transfer characteristics and unipolar rectification. The physics of such unconventional switching relies on (a) field-engineering with patterned gates to create a transmission gap, by sequential filtering of all propagating modes, and (b) using tilted junctions to suppress Klein tunneling under appropriate gate biasing, making that transmission gap gate tunable. The doping ratio of the junction dictates the energy range over which the tilt angle exceeds the critical angle for transmission, generating thereby a gate tunable transmission gap that enables switching at voltages less than the Landauer-Shannon thermal limit. The underlying physics involves a combination of `electron optics' driven by Snell's law, negative index metamaterial with a PN junction, and pseudospin driven chiral tunneling, for which we also present experimental verification. [Sajjad et al, APL 99, 123101 (2011); Sajjad et al, PRB 86, 155412 (2012)]. Authors acknowledge financial grant from NRI-INDEX

  5. Experimental Demonstration of Multidimensional Switching Nodes for All-Optical Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Medhin, Ashenafi Kiros; Da Ros, Francesco;

    2016-01-01

    This paper reports on a novel ring-based data center architecture composed of multidimensional switching nodes. The nodes are interconnected with multicore fibers and can provide switching in three different physical, hierarchically overlaid dimensions (space, wavelength, and time). The proposed...... increasing the transmission capacity to 1 Tbit/s/core equivalent to 7 Tbit/s total throughput in a single seven-core multicore fiber. The error-free performance (BER < 10−9 ) for all the connections confirms that the proposed architecture can meet the existing demands in data centers and accommodate the...

  6. Propagation of a laser pulse and electro-optic switch in a GaAs/AlGaAs quadruple-coupled quantum dot molecule nanostructure

    Science.gov (United States)

    Shiri, Jalil

    2016-05-01

    Based on a GaAs/AlGaAs quadruple-coupled quantum dot heterostructure, an optical switch for controlling superluminal and subluminal light propagation is suggested. The transient and steady state behaviour of the absorption and dispersion of a probe pulse laser field through a quadruple quantum dot molecule are studied. We show that the group velocity of a light pulse can be controlled from superluminal to subluminal, or vice versa, by controlling the tunnelling rates between the quantum dots. The required switching time is calculated and we find it to be about 8 ps. We also investigated a method for the all-optical switching of probe field absorption from a large amount to nearly zero just by applying an incoherent pumping field. We estimated the required switching time for this case to be between 3 and 14 ps.

  7. Structure/surface and optical property modifications of MgO powder by Q-switched laser pulses in water

    Science.gov (United States)

    Chen, Pei-Ju; Wu, Chao-Hsien; Shen, Pouyan; Chen, Shuei-Yuan

    2014-08-01

    MgO powders subjected to Q-switched laser pulses in water were characterized by X-ray/electron diffraction and optical spectroscopy to have a significant optical property change with accompanied transformation into the phase assemblages of periclase, brucite and liquid-crystalline lamella. The periclase nanoparticles tended to have {111} habit planes parallel to the basal layers of lamella and brucite flakes more or less rolled as fibers, ribbons or tubes. A significant internal compressive stress was built up for periclase and brucite but not the more flexible lamellar phase. The colloidal suspension containing the densified periclase nanoparticles within the rolled brucite/lamellae flakes showed UV-visible absorption corresponding to a minimum band gap of ca. 5 eV.

  8. Demonstration of Optically Controlled re-Routing in a Photonic Crystal Three-Port Switch

    DEFF Research Database (Denmark)

    Combrié, S.; Heuck, Mikkel; Xavier, S.;

    2012-01-01

    We present an experimental demonstration of optically controlled re-routing of a signal in a photonic crystal cavity-waveguide structure with 3 ports. This represents a key functionality of integrated all-optical signal processing circuits.......We present an experimental demonstration of optically controlled re-routing of a signal in a photonic crystal cavity-waveguide structure with 3 ports. This represents a key functionality of integrated all-optical signal processing circuits....

  9. Formation of optical vortices using coherent laser beam arrays

    OpenAIRE

    Wang, Li-Gang; Wang, Li-Qin; Zhu, Shi-Yao

    2008-01-01

    We present a novel proposal to generate an optical vortex beam by using the coherent-superposition of multi-beams in a radial symmetrical configuration. In terms of the generalized Huygens-Fresnel diffraction integral, we have derived the general propagation expression for the coherent radial laser arrays. Based on the derived formulae, we have analyzed the effects of the beamlet number, the separation distance of the beamlets and the topological charge on the intensity and phase distribution...

  10. SOLITONS AND OPTICAL FIBERS: Self-Q-switched ytterbium-doped cladding-pumped fibre laser

    Science.gov (United States)

    Grukh, Dmitrii A.; Kurkov, Andrei S.; Razdobreev, I. M.; Fotiadi, A. A.

    2002-11-01

    A self-Q-switched ytterbium-doped double-clad fibre laser is described. A samarium-doped fibre is used as a filter for protecting a pump source. A fibre coupler is employed to obtain a nonlinear feedback. The mechanism of pulse formation in the laser is considered, and the dependence of its output pulse on the coupler parameters is studied.

  11. A compact graphene Q-switched erbium-doped fiber laser using optical circulator and tunable fiber Bragg grating

    International Nuclear Information System (INIS)

    We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 μs and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the strain-induced TFBG. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. VO2(B conversion to VO2(A and VO2(M and their oxidation resistance and optical switching properties

    Directory of Open Access Journals (Sweden)

    Zhang Yifu

    2016-03-01

    Full Text Available Vanadium dioxide VO2 has been paid in recent years increasing attention because of its various applications, however, its oxidation resistance properties in air atmosphere have rarely been reported. Herein, VO2(B nanobelts were transformed into VO2(A and VO2(M nanobelts by hydrothermal route and calcination treatment, respectively. Then, we comparatively studied the oxidation resistance properties of VO2(B, VO2(A and VO2(M nanobelts in air atmosphere by thermo-gravimetric analysis and differential thermal analysis (TGA/DTA. It was found that the nanobelts had good thermal stability and oxidation resistance below 341 °C, 408 °C and 465 °C in air, respectively, indicating that they were stable in air at room temperature. The fierce oxidation of the nanobelts occurred at 426, 507 and 645 °C, respectively. The results showed that the VO2(M nanobelts had the best thermal stability and oxidation resistance among the others. Furthermore, the phase transition temperatures and optical switching properties of VO2(A and VO2(M were studied by differential scanning calorimetry (DSC and variable temperature infrared spectra. It was found that the VO2(A and VO2(M nanobelts had outstanding thermochromic character and optical switching properties.

  13. Novel Folding Large-Scale Optical Switch Matrix with Total Internal Reflection Mirrors on Silicon-on-Insulator by Anisotropy Chemical Etching

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Wei; YU Jin-Zhong; CHEN Shao-Wu

    2005-01-01

    A compact optical switch matrix was designed, in which light circuits were folded by total internal reflective (TIR) mirrors. Two key elements, 2 × 2 switch and TIR mirror, have been fabricated on silicon-on-insulator wafer by anisotropy chemical etching. The 2 × 2 switch showed very low power consumption of 140mW and avery high speed of 8 ± 1 μs. An improved design for the TIR mirror was developed, and the fabricated mirror with smooth and vertical reflective facet showed low excess loss of 0.7 ± 0.3 dB at 1.55μm.

  14. Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO 4

    Science.gov (United States)

    Zhu, Haiyong; Zhang, Ge; Huang, Chenghui; Wang, Hongyan; Wei, Yong; Lin, Yanfeng; Huang, Lingxiong; Qiu, Gang; Huang, Yidong

    2009-02-01

    An eye-safe, high peak power optical parameter oscillator (OPO) intracavity pumped by electro-optic Q-switched Nd:YAG laser is presented. This OPO is based on a 20 mm length KTiOAsO4 crystal with non-critical phase matching (θ = 90°, ϕ = 0 °) cut. An aperture ∅3 mm acted as limiting diaphragm to get good beam quality of pumping laser. The output energy of 25 mJ at the signal wavelength 1.53 μm was obtained with repetition rate of 1 Hz. The highest peak power intensity was up to 88 MW/cm2 with pulse width of 4 ns. Without diaphragm, the maximum output energy of 90 mJ was achieved with area of light spot (∅6 mm) four times larger, but the peak power intensity was lower.

  15. Polarization diversity circuit for a silicon optical switch using silica waveguides integrated with photonic crystal thin film waveplates

    Science.gov (United States)

    Sugiyama, Koki; Chiba, Takafumi; Kawashima, Takayuki; Kawakami, Shojiro; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2016-03-01

    We propose a compact polarization diversity optical circuit using silica waveguides and photonic crystal waveplates. By setting these circuits at the front and rear of the silicon optical devices, the polarization dependence of the silicon devices can be suppressed. Photonic crystals can be produced artificially using nanolithography, so that the retardation and orientation of the photonic crystal waveplate can be locally varied on a single chip. This enables to dramatically reduce the size of the polarization diversity circuit, which consists of a 1x2 multimode interference (MMI) coupler, two arm waveguides with quarter-waveplates (QWPs), a 2x2 MMI coupler, and output waveguides with half-waveplates (HWPs). The input light, including the transverse electric (TE) and transverse magnetic (TM) modes, is split by the 1x2 MMI coupler. The optical axes of the two QWPs, spaced 125 μm apart, are set to be orthogonal to each other, so that the phases of the TE modes in the two arm waveguides differ by 90 degrees, and those of the TM modes differ by -90 degrees. The TE mode and the TM mode are separated at the outputs of the 2x2 MMI coupler, and the polarization of the light at one of the outputs is aligned to that at the other output by the HWP. In this paper, we designed a 4x8 polarization diversity circuit for a 4x4 silicon optical switch.

  16. Optical switching properties of VOx thin films deposited on Si3N4 substrates using ion beam sputtering

    Science.gov (United States)

    Lu, Jianing; Hu, Ming; Liang, Jiran; Chen, Tao; Tan, Lei

    2009-07-01

    Vanadium dioxide (VO2) thin films, for their property of metal-insulator transition (MIT), have drawn many researchers' attention on optical devices study. Nowadays it is complicated to fabricate single-phase VO2) thin films. Ion beam sputtering is adopted to deposit VOx thin films (main component is VO2) ) on Si3N4, while sputtering power, substrate temperature and partial oxygen pressure of VOx are adjusted. Then annealing technology is utilized to improve the parameter property of VOx thin films. The thin films are tested by AFM, XPS, XRD, Fourier transform infrared spectrometry, tunable semiconductor laser and optical power meter. Both temperature-driven phasetransition and photoexcitation phasetransition of VOx thin films are applied. The samples are heated from 20°C to 80°C, discovering that the phasetransition temperature is about 59°C and the value of resistance before the phasetransition is two orders of magnitude over the value of resistance after the phasetransition. At the wavelength of 1550 nm, the transmission is from 32% to 1%. Besides, the extinction ratio of the thin films sample is obtained. The optical properties show that the VOx thin films have an apparent switching effect in the optical communication fields.

  17. Bistable optical response of a nanoparticle heterodimer : Mechanism, phase diagram, and switching time

    NARCIS (Netherlands)

    Nugroho, Bintoro S.; Iskandar, Alexander A.; Malyshev, Victor A.; Knoester, Jasper

    2013-01-01

    We conduct a theoretical study of the bistable optical response of a nanoparticle heterodimer comprised of a closely spaced semiconductor quantum dot and a metal nanoparticle. The bistable nature of the response results from the interplay between the quantum dot's optical nonlinearity and its self-a

  18. Optical label switching in telecommunication using semiconductor lasers, amplifiers and electro-absorption modulators

    DEFF Research Database (Denmark)

    Chi, Nan; Christiansen, Lotte Jin; Jeppesen, Palle;

    2004-01-01

    We demonstrate all-optical label encoding and updating for an orthogonally labeled signal in combined IM/FSK modulation format utilizing semiconductor lasers, semiconductor optical amplifiers and electro-absorption modulators. Complete functionality of a network node including two-hop transmission...

  19. Optically controlled low-power on-off mode resonant tunneling oscillator with a heterojunction phototransistor switch.

    Science.gov (United States)

    Lee, Kiwon; Park, Jaehong; Lee, Jooseok; Yang, Kyounghoon

    2015-03-15

    We report an optically controlled low-power on-off mode oscillator based on a resonant tunneling diode (RTD) that is monolithically integrated with a heterojunction phototransistor (HPT) optical switch. In order to achieve a low-power operation at a wavelength of 1.55 μm an InP-based quantum-effect tunneling diode is used for microwave signal generation based on a unique negative differential conductance (NDC) characteristic of the RTD at a low applied voltage. In addition, the high-gain HPT is used for converting incident optical data to an electrical data signal. The fabricated on-off mode oscillator shows a low-power consumption of 5 mW and a high-data-rate of 1  Gb/s at an oscillation frequency of 4.7 GHz. A good energy efficiency of 5  pJ/bit has been obtained due to the low DC power consumption along with high-data-rate performance of the RTD-based optoelectronic integration scheme. PMID:25768172

  20. Comparison of Small-Scale Actively and Passively Q-Switched Eye-Safe Intracavity Optical Parametric Oscillators at 1.57 μm

    International Nuclear Information System (INIS)

    The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57 μm driven by a small-scale diode-pumped Nd:YVO4 laser are thoroughly presented. It is found that the performances of the two types of IOPOs are complementary. The actively Q-switched IOPO features a shorter pulse duration, a higher peak power, and a superior power and pulse stability. However, in terms of compactness, operation threshold and conversion efficiency, passively Q-switched IOPOs are more attractive. It is further indicated that the passively Q-switched IOPO at 1.57μm is a promising and cost-effective eye-safe laser source, especially at the low and moderate output levels. In addition, instructional improvement measures for the two types of IOPOs are also summarized. (fundamental areas of phenomenology(including applications))

  1. Reduction of pattern effects in SOA-based all-optical switches by using cross-gain modulated holding signal

    DEFF Research Database (Denmark)

    Bischoff, Svend; Mørk, Jesper

    2002-01-01

    The effective carrier lifetime of SOAs is typically shortened by an intense Continuous Wave (CW) holding signal. However, the SOA gain is reduced by the holding signal resulting in smaller gain and refractive index changes induced by the data signal. Accordingly, an optimum exists for the CW and...... data signal power. Here, we demonstrate that the modulation bandwidth (amplitude jitter) is significantly improved (reduced) by replacing the CW holding beam with a signal, which is low-pass filtered and inverted with respect to the data signal. Such a holding beam can be generated by XGM WC in an SOA......, and reduces the fluctuations of the total energy injected into the interferometer within a bit-slot. Thus, we demonstrate a technique for reducing pattern effects in SOAs by employing a partially inverted holding beam. The method should be useful for increasing the data rates of all-optical switches....

  2. Comparison of laser performance of electro-optic Q-switched Nd:YAG ceramic/single crystal laser

    Institute of Scientific and Technical Information of China (English)

    Jianghua Ji; Xiaolei Zhu; Chunyu Wang; Yongwei Feng; Qihong Lou

    2006-01-01

    @@ An electro-optic Q-switched Nd:YAG ceramic laser operating at kHz repetition rate was demonstrated.Thermal induced lens' focus of ceramic rod was measured and compensated by plano-convex cavity structure. Depolarization loss at different output powers was measured in Nd:YAG single crystal and ceramic lasers. High-energy high-beam-quality laser pulse output was obtained in both laser structures. Pulse energy of about 20 mJ and pulse width of less than 12 ns were achieved, and the average power reached 20 W. The divergence of output laser beam was less than 1.2 mrad, and the beam propagation factor M2was about 1.4.

  3. A Selective C and L-Band Amplified Spontaneous Emission Source Using a 1 × 2 Optical Switch

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Cai; MING Hai; CAI Zhi-Ping; XU Hui-Ying; YE Chen-Chun

    2005-01-01

    @@ We report on a band selective amplified spontaneous emission (ASE) source of an erbium-doped fibre (EDF),which can operate in either the C- or L-band region.The band selective ASE source is realized using a pump conversion technique by a 1 × 2 optical switch, which makes the ASE source design convert between a backward and a forward pumped configuration alternately.A heavily doped erbium fibre and a 1480nm laser ()ode are adopted for this design synchronously to enhance the power of L-band ASE.A power of 16.2mW for C-band ASE and 11.8mW for L-band ASE are obtained with a total pump power of 100 mW.

  4. Magnetic layer thickness dependence of all-optical magnetization switching in GdFeCo thin films

    Science.gov (United States)

    Yoshikawa, Hiroki; El Moussaoui, Souliman; Terashita, Shinnosuke; Ueda, Ryohei; Tsukamoto, Arata

    2016-07-01

    To clarify the relationship between all-optical magnetization switching (AOS) and nonlocal and nonadiabatic energy dissipation process, we focus on the contribution from energy dissipation in the depth direction. Differently designed structure dependence of created magnetic domain is observed from the reversal phenomenon, AOS, or multidomains by thermomagnetic nucleation (TMN) in GdFeCo multilayer thin films. TMN depends on the shared absorbed energy throughout the continuous metallic volume. On the other hand, AOS critically depends on nonadiabatic energy dissipation process with the electron system in sub-picoseconds. Furthermore, the laser fluence dependence of AOS-created domain sizes indicates that the value of irradiated laser fluence threshold per magnetic domain volume is almost constant. However, a lower laser irradiation fluence below 1–2 mW has a larger value and thickness dependence. From these results, we suggest that AOS depends on energy dissipation from the incident surface in the depth direction for a few picoseconds.

  5. Hydrogen-induced electrical and optical switching in Pd capped Pr nanoparticle layers

    Indian Academy of Sciences (India)

    Shubhra Kala; B R Mehta

    2008-06-01

    In this study, modification in the properties of hydrogen-induced switchable mirror based on Pr nanoparticle layers is reported. The reversible changes in hydrogen-induced electrical and optical properties of Pd capped Pr nanoparticle layers have been studied as a function of hydrogenation time and compared with the conventional device based on Pd capped Pr thin films. Faster electrical and optical response, higher optical contrast and presence of single absorption edge corresponding to Pr trihydride state in hydrogen loaded state have been observed in the case of nanoparticle layers. The improvement in the electrical and optical properties have been explained in terms of blue shift in the absorption edge due to quantum confinement effect, larger number of interparticle boundaries, presence of defects, loose adhesion to the substrate and enhanced surface to volume atom ratio at nanodimension.

  6. Effect of bulky substituents on thiopyrylium polymethine aggregation in the solid state: A theoretical evaluation of the implications for all-optical switching applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-11-25

    Polymethine dyes in dilute solutions display many of the optical properties required for all-optical switching applications. However, in thin films, aggregation and polymethine-counterion interactions can substantially modify their properties and limit their utility. Here, we examine the impact of a series of bulky substituents on the solid-state molecular packing of thiopyrylium polymethines by using a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations. Importantly, it is found that the positions of the substituents near the center and/or ends of the dye determine the extent to which aggregation is reduced; in particular, substituents near the polymethine center primarily modify the type of aggregation that is observed, while substituents near the polymethine ends reduce aggregation and aid in maintaining solution-like properties in the solid state. Our theoretical study elucidates relationships between molecular structure and bulk optical properties and provides design guidelines for all-optical switching materials.

  7. Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time

    OpenAIRE

    Nugroho, Bintoro S.; Iskandar, Alexander A.; Malyshev, Victor A.; Knoester, Jasper

    2013-01-01

    We conduct a theoretical study of the bistable optical response of a nanoparticle heterodimer comprised of a closely spaced semiconductor quantum dot and a metal nanoparticle. The bistable nature of the response results from the interplay between the quantum dot's optical nonlinearity and its self-action (feedback) originating from the presence of the metal nanoparticle. The feedback is governed by a complex valued coupling parameter G = G(R) + iG(I). We calculate the bistability phase diagra...

  8. Bistable optical response of nanoparticle heterodimer: Mechanism, phase diagram, and switching time

    OpenAIRE

    Nugroho, B. S.; Iskandar, A.A.; Malyshev, V. A.; Knoester, J.

    2012-01-01

    We conduct a theoretical study of the bistable optical response of a nanoparticle heterodimer comprised of a closely spaced semiconductor quantum dot and metal nanoparticle. The bistable nature of the response results from the interplay between the quantum dot's optical nonlinearity and its self-action (feedback) originating from the presence of the metal nanoparticle. We show that the feedback is governed by a complex valued coupling parameter $G$. Both the real and imaginary parts of $G$ ($...

  9. SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization

    International Nuclear Information System (INIS)

    Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objective function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes

  10. SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Nazareth, D [Roswell Park Cancer Institute, Buffalo, NY (United States); Spaans, J [Hawarden, IA (United States)

    2014-06-15

    Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objective function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.

  11. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers.

    Science.gov (United States)

    Chen, Sitao; Shi, Yaocheng; He, Sailing; Dai, Daoxin

    2016-02-15

    A low-loss and broadband silicon thermo-optic switch is proposed and demonstrated experimentally by using a Mach-Zehnder Interferometer with 2×2 3 dB power splitters based on bent directional couplers (DCs). The bent DCs are introduced here to replace the traditional 2×2 3 dB power splitters based on multimode interferometers or straight DCs, so that one achieves a coupling ratio of ∼50%∶ 50%, as well as low excess loss over a broadband. The demonstrated Mach-Zehnder switch (MZS) has a ∼140  nm bandwidth for an excess loss of 20  dB. The present MZS also shows excellent reproducibility and good fabrication tolerance, which makes it promising for realizing N×N optical switches. PMID:26872201

  12. Numerical investigation of high-contrast ultrafast all-optical switching in low-refractive-index polymeric photonic crystal nanobeam microcavities

    Science.gov (United States)

    Meng, Zi-Ming; Zhong, Xiao-Lan; Wang, Chen; Li, Zhi-Yuan

    2012-06-01

    With the development of micro- or nano-fabrication technologies, great interest has been aroused in exploiting photonic crystal nanobeam structures. In this article the design of high-quality-factor (Q) polymeric photonic crystal nanobeam microcavities suitable for realizing ultrafast all-optical switching is presented based on the three-dimensional finite-difference time-domain method. Adopting the pump-probe technique, the ultrafast dynamic response of the all-optical switching in a nanobeam microcavity with a quality factor of 1000 and modal volume of 1.22 (λ/n)3 is numerically studied and a switching time as fast as 3.6 picoseconds is obtained. Our results indicate the great promise of applying photonic crystal nanobeam microcavities to construct integrated ultrafast tunable photonic devices or circuits incorporating polymer materials with large Kerr nonlinearity and ultrafast response speed.

  13. Efficient high-pulse-energy eye-safe laser generated by an intracavity Nd:YLF/KTP optical parametric oscillator: role of thermally induced polarization switching

    International Nuclear Information System (INIS)

    A high-pulse-energy eye-safe laser at 1552 nm is effectually generated by an intracavity Nd:YLF/KTP optical parametric oscillator (OPO) with the help of the thermally induced polarization switching. The polarization characteristics of the c-cut Nd:YLF laser at 1053 nm in the continuous-wave (CW) and Q-switched operation are comprehensively investigated. We experimentally verify the thermally induced birefringence can lead to a polarization switching between the mutually orthogonal components of the fundamental pulses. Consequently, an efficient intracavity nonlinear frequency conversion can be achieved in an optically isotropic laser crystal without any additional polarization control. With this finding, the pulse energy and peak power of the compact Nd:YLF/KTP eye-safe laser under an incident pump power of 12.7 W and a pulse repetition rate of 5 kHz are up to 306 μJ and 4 kW, respectively

  14. Design and performance of the Beamlet laser third harmonic frequency converter

    International Nuclear Information System (INIS)

    The Beamlet laser is a full-scale, single-aperture scientific prototype of the frequency-tripled Nd:glass laser for the proposed National Ignition Facility. At aperture sizes of 30 cm x 30 cm and 34 cm x 34 cm using potassium dihydrogen phosphate crystals of 32 cm x 32 cm and 37 cm x 37 cm, respectively, the authors have obtained up to 8.3 kJ of third harmonic energy at 70%--80% whole beam conversion efficiency

  15. On the data rate extension of semiconductor optical amplifier-based ultrafast nonlinear interferometer in dual rail switching mode using a cascaded optical delay interferometer

    Science.gov (United States)

    Zoiros, K. E.; Demertzis, C.

    2011-10-01

    The feasibility of increasing by a factor of two the data speed of the semiconductor optical amplifier (SOA)-based ultrafast nonlinear interferometer in dual rail switching mode by means of a cascaded optical delay interferometer (ODI) is explored and shown through numerical simulation. From the theoretical analysis it has been found that such extension cannot be done without employing this passive element for any selection of the critical parameters but the SOA carrier lifetime, for which the requirements are yet very demanding. If, however, the time delay introduced by the ODI is adjusted to almost 1/3rd of the bit period, then the result of Boolean XOR operation can be improved for a specified range of parameter values, which can be further selected to be more relaxed than is possible when the ODI is not being used. The use of the ODI allows both error-free and pattern-free performance at the output of the interferometric structure configured as ultrafast XOR gate. In this manner the scheme can offer a practical alternative solution for extending the operating rate of this logical module and enabling its exploitation as a basic building unit in more sophisticated all-optical circuits and subsystems.

  16. Simulation of Optical Packet-Switched Metropolitan Area Network%光包交换城域网的系统仿真

    Institute of Scientific and Technical Information of China (English)

    朱炳春; 贾潞华; 王春华; 黄肇明; 阎晓光

    2002-01-01

    This paper introduces architectures of two types optical packet-switched metropolitan area networks and their media accesscontrol protocols. We have designed related network simulation systems. With these simulation systems, the characteristics and per-formance of the two MANs can be achieved.

  17. On intra-node impairments and engineering rules for an optical label switching router supporting an FSK/IM labeling scheme

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Tafur Monroy, Idelfonso; Koonen, A.M.J.

    This paper presents a study on intranode impairments and engineering rules for a label switching router supporting intensity modulated (IM) optical payload data signals labeled by using frequency-shift key (FSK) modulation. Engineering rules and design guidelines are presented regarding the choice...

  18. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator

    Institute of Scientific and Technical Information of China (English)

    YU Yong-Ji; CHEN Xin-Yu; WANG Chao; WU Chun-Ting; LIU Rui; JIN Guang-Yong

    2012-01-01

    A diode-end-pumped electro-optic (EO) Q-switched adhesive-free bond composite Nd:YVO4 laser operating at a repetition rate of 200 kHz is reported. A pair of RbTiOPOi (RTP) crystals are used as a high repetition EO Q-switch. At the repetition rate of 200kHz, the maximum average output power of 11.8 W at wavelength 1064 nm and full width at half maximum of pulses of 16.65 ns are achieved at an incident pump power of 27 W, corresponding to an optical conversion efficiency of 43.7% and a slope efficiency of 44.6%, respectively. To the best of our knowledge, this is the highest repetition rate reported on the EO Q-switched laser by using RTP crystals.%A diode-end-pumped electro-optic (EO) Q-switched adhesive-free bond composite Nd:YVO4 laser operating at a repetition rate of 200 kHz is reported.A pair of RbTiOPO4 (RTP) crystals are used as a high repetition EO Q-switch.At the repetition rate of 200kHz,the maximum average output power of 11.8 W at wavelength 1064 nm and full width at half maximum of pulses of 16.65ns are achieved at an incident pump power of 27 W,corresponding to an optical conversion efficiency of 43.7% and a slope efficiency of 44.6%,respectively.To the best of our knowledge,this is the highest repetition rate reported on the EO Q-switched laser by using RTP crystals.

  19. Different Plastic Materials Based Acousto-optic Modulators (AOMs Design Considerations for Fast Switching Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-09-01

    Full Text Available An acousto-optic modulator (AOM allows to diffract a laser beam going through a crystal from the incidence angle (order 0 to another angle (order 1. The diffracted beam intensity depends on the radio frequency (RF power applied to the device while the output angle depends on the material but is also proportional to the laser wavelength and to the RF drive frequency. When only intensity modulation is required, the driver frequency is fixed (thus the output beam angle and the intensity is controlled, in analog or digital mode, by controlling the applied RF power. Long term stability and reliability are required from the driving electronics. This paper has presented the best candidate selected polymeric acousto-optic materials based AOM for upgrading speed response and transmission performance characteristics. These materials are common materials for acousto-optic devices such as polymethyl-methacrylate (PMMA, polycarbonate (PC, polystyrene (PS, and polysulfone (PSF. As well as we have deeply investigated the important transmission characteristics of acousto optic modulators such as transmission performance efficiency, transmission bit rate, diffraction angle and efficiency, transient speed response, signal transmission quality, bit error rate (BER and modulation bandwidth under wide range of the affecting parameters for different selected acousto optic materials to be the major of interest.

  20. All-optical switching in granular ferromagnets caused by magnetic circular dichroism.

    Science.gov (United States)

    Ellis, Matthew O A; Fullerton, Eric E; Chantrell, Roy W

    2016-01-01

    Magnetic recording using circularly polarised femto-second laser pulses is an emerging technology that would allow write speeds much faster than existing field driven methods. However, the mechanism that drives the magnetisation switching in ferromagnets is unclear. Recent theories suggest that the interaction of the light with the magnetised media induces an opto-magnetic field within the media, known as the inverse Faraday effect. Here we show that an alternative mechanism, driven by thermal excitation over the anisotropy energy barrier and a difference in the energy absorption depending on polarisation, can create a net magnetisation over a series of laser pulses in an ensemble of single domain grains. Only a small difference in the absorption is required to reach magnetisation levels observed experimentally and the model does not preclude the role of the inverse Faraday effect but removes the necessity that the opto-magnetic field is 10 s of Tesla in strength. PMID:27466066