WorldWideScience

Sample records for beaming mission enabling

  1. Enabling the human mission

    Science.gov (United States)

    Bosley, John

    The duplication of earth conditions aboard a spacecraft or planetary surface habitat requires 60 lb/day/person of food, potable and hygiene water, and oxygen. A 1000-day mission to Mars would therefore require 30 tons of such supplies per crew member in the absence of a closed-cycle, or regenerative, life-support system. An account is given of the development status of regenerative life-support systems, as well as of the requisite radiation protection and EVA systems, the health-maintenance and medical care facilities, zero-gravity deconditioning measures, and planetary surface conditions protection.

  2. NASA Missions Enabled by Space Nuclear Systems

    Science.gov (United States)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  3. Enabling lunar and space missions by laser power transmission

    Science.gov (United States)

    Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-01-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  4. Enabling lunar and space missions by laser power transmission

    Science.gov (United States)

    De Young, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-09-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  5. Enabling Future Robotic Missions with Multicore Processors

    Science.gov (United States)

    Powell, Wesley A.; Johnson, Michael A.; Wilmot, Jonathan; Some, Raphael; Gostelow, Kim P.; Reeves, Glenn; Doyle, Richard J.

    2011-01-01

    Recent commercial developments in multicore processors (e.g. Tilera, Clearspeed, HyperX) have provided an option for high performance embedded computing that rivals the performance attainable with FPGA-based reconfigurable computing architectures. Furthermore, these processors offer more straightforward and streamlined application development by allowing the use of conventional programming languages and software tools in lieu of hardware design languages such as VHDL and Verilog. With these advantages, multicore processors can significantly enhance the capabilities of future robotic space missions. This paper will discuss these benefits, along with onboard processing applications where multicore processing can offer advantages over existing or competing approaches. This paper will also discuss the key artchitecural features of current commercial multicore processors. In comparison to the current art, the features and advancements necessary for spaceflight multicore processors will be identified. These include power reduction, radiation hardening, inherent fault tolerance, and support for common spacecraft bus interfaces. Lastly, this paper will explore how multicore processors might evolve with advances in electronics technology and how avionics architectures might evolve once multicore processors are inserted into NASA robotic spacecraft.

  6. Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V

    Science.gov (United States)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  7. Ames Coronagraph Experiment: Enabling Missions to Directly Image Exoplanets

    Science.gov (United States)

    Belikov, Ruslan

    2014-01-01

    Technology to find biomarkers and life on other worlds is rapidly maturing. If there is a habitable planet around the nearest star, we may be able to detect it this decade with a small satellite mission. In the 2030 decade, we will likely know if there is life in our Galactic neighborhood (1000 nearest stars). The Ames Coronagraph Experiment is developing coronagraphic technologies to enable such missions.

  8. Solid Freeform Fabrication: An Enabling Technology for Future Space Missions

    Science.gov (United States)

    Taminger, Karen M. B.; Hafley, Robert A.; Dicus, Dennis L.

    2002-01-01

    The emerging class of direct manufacturing processes known as Solid Freeform Fabrication (SFF) employs a focused energy beam and metal feedstock to build structural parts directly from computer aided design (CAD) data. Some variations on existing SFF techniques have potential for application in space for a variety of different missions. This paper will focus on three different applications ranging from near to far term to demonstrate the widespread potential of this technology for space-based applications. One application is the on-orbit construction of large space structures, on the order of tens of meters to a kilometer in size. Such structures are too large to launch intact even in a deployable design; their extreme size necessitates assembly or erection of such structures in space. A low-earth orbiting satellite with a SFF system employing a high-energy beam for high deposition rates could be employed to construct large space structures using feedstock launched from Earth. A second potential application is a small, multifunctional system that could be used by astronauts on long-duration human exploration missions to manufacture spare parts. Supportability of human exploration missions is essential, and a SFF system would provide flexibility in the ability to repair or fabricate any part that may be damaged or broken during the mission. The system envisioned would also have machining and welding capabilities to increase its utility on a mission where mass and volume are extremely limited. A third example of an SFF application in space is a miniaturized automated system for structural health monitoring and repair. If damage is detected using a low power beam scan, the beam power can be increased to perform repairs within the spacecraft or satellite structure without the requirement of human interaction or commands. Due to low gravity environment for all of these applications, wire feedstock is preferred to powder from a containment, handling, and safety

  9. Tunable beam steering enabled by graphene metamaterials.

    Science.gov (United States)

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  10. Potential large missions enabled by NASA's space launch system

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.

    2016-07-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  11. Asteroid retrieval missions enabled by invariant manifold dynamics

    Science.gov (United States)

    Sánchez, Joan Pau; García Yárnoz, Daniel

    2016-10-01

    Near Earth Asteroids are attractive targets for new space missions; firstly, because of their scientific importance, but also because of their impact threat and prospective resources. The asteroid retrieval mission concept has thus arisen as a synergistic approach to tackle these three facets of interest in one single mission. This paper reviews the methodology used by the authors (2013) in a previous search for objects that could be transported from accessible heliocentric orbits into the Earth's neighbourhood at affordable costs (or Easily Retrievable Objects, a.k.a. EROs). This methodology consisted of a heuristic pruning and an impulsive manoeuvre trajectory optimisation. Low thrust propulsion on the other hand clearly enables the transportation of much larger objects due to its higher specific impulse. Hence, in this paper, low thrust retrieval transfers are sought using impulsive trajectories as first guesses to solve the optimal control problem. GPOPS-II is used to transcribe the continuous-time optimal control problem to a nonlinear programming problem (NLP). The latter is solved by IPOPT, an open source software package for large-scale NLPs. Finally, a natural continuation procedure that increases the asteroid mass allows to find out the largest objects that could be retrieved from a given asteroid orbit. If this retrievable mass is larger than the actual mass of the asteroid, the asteroid retrieval mission for this particular object is said to be feasible. The paper concludes with an updated list of 17 EROs, as of April 2016, with their maximum retrievable masses by means of low thrust propulsion. This ranges from 2000 tons for the easiest object to be retrieved to 300 tons for the least accessible of them.

  12. Ares V an Enabling Capability for Future Space Astrophysics Missions

    Science.gov (United States)

    Stahl, H. Philip

    2007-01-01

    The potential capability offered by an Ares V launch vehicle completely changes the paradigm for future space astrophysics missions. This presentation examines some details of this capability and its impact on potential missions. A specific case study is presented: implementing a 6 to 8 meter class monolithic UV/Visible telescope at an L2 orbit. Additionally discussed is how to extend the mission life of such a telescope to 30 years or longer.

  13. Beam shaping as an enabler for new applications

    Science.gov (United States)

    Guertler, Yvonne; Kahmann, Max; Havrilla, David

    2017-02-01

    For many years, laser beam shaping has enabled users to achieve optimized process results as well as manage challenging applications. The latest advancements in industrial lasers and processing optics have taken this a step further as users are able to adapt the beam shape to meet specific application requirements in a very flexible way. TRUMPF has developed a wide range of experience in creating beam profiles at the work piece for optimized material processing. This technology is based on the physical model of wave optics and can be used with ultra short pulse lasers as well as multi-kW cw lasers. Basically, the beam shape can be adapted in all three dimensions in space, which allows maximum flexibility. Besides adaption of intensity profile, even multi-spot geometries can be produced. This approach is very cost efficient, because a standard laser source and (in the case of cw lasers) a standard fiber can be used without any special modifications. Based on this innovative beam shaping technology, TRUMPF has developed new and optimized processes. Two of the most recent application developments using these techniques are cutting glass and synthetic sapphire with ultra-short pulse lasers and enhanced brazing of hot dip zinc coated steel for automotive applications. Both developments lead to more efficient and flexible production processes, enabled by laser technology and open the door to new opportunities. They also indicate the potential of beam shaping techniques since they can be applied to both single-mode laser sources (TOP Cleave) and multi-mode laser sources (brazing).

  14. Advanced Coatings Enabling High Performance Instruments for Astrophysics Missions

    Science.gov (United States)

    Nikzad, Shouleh

    We propose a three-year effort to develop techniques for far-ultraviolet (FUV) and ultraviolet coatings both as reflective optics coatings and as out-of-band-rejection (solar-blind) filters that will have a dramatic effect on the throughput and efficiency of instruments. This is an ideal time to address this problem. On the one hand, exciting new science questions posed in UV and optical realm place exacting demands on instrument capabilities far beyond HST-COS, FUSE, and GALEX with large focal plane arrays and high efficiency requirements. And on the other hand, the development of techniques and process such as atomic layer deposition with its atomically precise capability and nano-engineered materials approach enables us to address the challenging materials issues in the UV where interaction of photons and matter happen in the first few nanometers of the material surface. Aluminum substrates with protective overlayers (typically XFy, where X = Li, Mg, or Ca) have been the workhorse of reflective coatings for ultraviolet and visible instruments; however, they have demonstrated severe limitations. The formation of oxide at the Al-XFy interface and thick protective layers both affect the overall optical performance, leading to diminished reflection at shorter wavelengths. To address these long-standing shortcomings of coatings, we will use our newly developed processes and equipment to produce high-quality single- and multi-layer films of a variety of dielectrics and metals deposited with nano-scale control. JPL s new ALD system affords high uniformity, low oxygen background, good plasma processes, and precise temperature control, which are vital to achieving the large scale, uniform, and ultrathin films that are free of oxygen at interfaces. For example, ALD-grown aluminum can be protected using our newly developed chemistry for ALD magnesium fluoride. Our work will verify that the ALD technique reliably prevents the oxidation of aluminum, and will subsequently be

  15. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Feldman, Jay D.

    2013-01-01

    NASAs Office of the Chief Technologist (OCT) Game Changing Division recently funded an effort to advance a Woven TPS (WTPS) concept. WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes g(reater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.

  16. A distributed architecture for enabling autonomous underwater intervention missions

    OpenAIRE

    Palomeras N.; Garcia J.C.; Prats M.; Fernandez J.J.; Sanz P.J.; Ridao P.

    2010-01-01

    This work introduces the main aspects related with a new architecture defined for an ongoing research project named RAUVI (i.e. Reconfigurable AUV for Intervention Missions). Two initially independent architectures for the underwater vehicle and the robotic arm have been combined into a new schema that allows for reactive and deliberative behaviours on both subsystems. Reactive actions are performed through a low-level control layer in communication with the robot hardwar...

  17. Key Gaps for Enabling Plant Growth in Future Missions

    Science.gov (United States)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space

  18. Enabling interferometry technologies for the GAIA astrometric mission

    Science.gov (United States)

    Bisi, M.; Bonino, L.; Cecconi, Massimo; Cesare, Stefano; Bertinetto, Fabrizio; Mana, Giovanni; Carollo, D.; Gai, Mario; Lattanzi, Mario G.; Canuto, Enrico; Donati, F.

    1999-08-01

    Within a Technology Research Program funded by the European Space Agency, a team led by Alenia Aerospazio has investigated and started the development of some technologies which are considered fundamental for the achievement of the scientific objectives of the future astrometric mission GAIA. The activities have been focused on the design of a two-aperture optical interferometer and of a system for the active stabilization of its configuration within few picometers. A laboratory prototype of the active stabilization system has been implemented and tested. The results achieved in the laboratory tests proved that the very challenging requirements imposed by the GAIA astrometric goal of 10 micro-arcsec accuracy can be fulfilled.

  19. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2013-02-01

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would be that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.

  20. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  1. LUVOIR and HabEx mission concepts enabled by NASA's Space Launch System

    Science.gov (United States)

    Stahl, H. Philip; MSFC Advanced Concept Office

    2016-01-01

    NASA Marshall Space Flight Center has developed candidate concepts for the 'decadal' LUVOIR and HabEx missions. ATLAST-12 is a 12.7 meter diameter on-axis telescope designed to meet the science objectives of the AURA Cosmic Earth to Living Earth report. HabEx-4 is a 4.0 meter diameter off-axis telescope designed to both search for habitable planets and perform general astrophysics observations. These mission concepts take advantage of the payload mass and volume capacity enabled by NASA Space Launch System to make the design architectures as simple as possible. Simplicity is important because complexity is a significant contributor to mission risk and cost. This poster summarizes the two mission concepts.

  2. The development of enabling technologies for producing active interrogation beams

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Thomas J. T.; Morgado, Richard E.; Wang, Tai-Sen F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Vodolaga, B.; Terekhin, V. [All-Russia Scientific Research Institute of Technical Physics, Snezhinsk (Russian Federation); Onischenko, L. M.; Vorozhtsov, S. B.; Samsonov, E. V.; Vorozhtsov, A. S.; Alenitsky, Yu. G.; Perpelkin, E. E.; Glazov, A. A.; Novikov, D. L. [Joint Institute of Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Parkhomchuk, V.; Reva, V.; Vostrikov, V. [Budker Institute of Nuclear Physics (BINP), Av. Lavrent' ev, 630090 Novosibirsk (Russian Federation); Mashinin, V. A.; Fedotov, S. N.; Minayev, S. A. [Research Firm IFI, Moscow (Russian Federation)

    2010-10-15

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current ({approx}1 mA) and high-quality (emittance {approx}15 {pi}mm mrad; energy spread {approx}0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  3. Sensor enabled closed-loop bending control of soft beams

    Science.gov (United States)

    Case, Jennifer C.; White, Edward L.; Kramer, Rebecca K.

    2016-04-01

    Control of soft-bodied systems is challenging, as the absence of rigidity typically implies distributed deformations and infinite degrees-of-freedom. In this paper, we demonstrate closed-loop control of three elastomer beams that vary in bending stiffness. The most stiff beam is comprised of a single prismatic structure made from a single elastomer. In the next beam, increased flexibility is introduced via an indentation in the elastomer, forming a joint. The most flexible beam uses a softer elastomer in the joint section, along with an indentation. An antagonistic pair of actuators bend the joint while a pair of liquid-metal-embedded strain sensors provide angle feedback to a control loop. We were able to achieve control of the system with a proportional-integral-derivative control algorithm. The procedure we demonstrate in this work is not dependent on actuator and sensor choice and could be applied to to other hardware systems, as well as more complex multi-joint robotic structures in the future.

  4. Enabling Future Low-Cost Small Spacecraft Mission Concepts Using Small Radioisotope Power Systems

    Science.gov (United States)

    Lee, Young H.; Bairstow, Brian; Amini, Rashied; Zakrajsek, June; Oleson, Steven R.; Cataldo, Robert L.

    2014-01-01

    For more than five decades, Radioisotope Power Systems (RPS) have played a critical role in the exploration of space, enabling missions of scientific discovery to destinations across the solar system by providing electrical power to explore remote and challenging environments - some of the hardest to reach, darkest, and coldest locations in the solar system. In particular, RPS has met the demand of many long-duration mission concepts for continuous power to conduct science investigations independent of change in sunlight or variations in surface conditions like shadows, thick clouds, or dust.

  5. Buckling of Elastomeric Beams Enables Actuation of Soft Machines

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Mosadegh, Bobak [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Wyss Institute for Biologically Inspired Engineering Harvard University, 60 Oxford Street Cambridge MA 02138 USA; Ainla, Alar [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Lee, Benjamin [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Khashai, Fatemeh [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Suo, Zhigang [School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Bertoldi, Katia [School of Engineering and Applied Sciences Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA; Whitesides, George M. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge MA 02138 USA; Wyss Institute for Biologically Inspired Engineering Harvard University, 60 Oxford Street Cambridge MA 02138 USA; Kavli Institute for Bionano Science & Technology Harvard University, 29 Oxford Street Cambridge MA 02138 USA

    2015-09-21

    Soft, pneumatic actuators that buckle when interior pressure is less than exterior provide a new mechanism of actuation. Upon application of negative pneumatic pressure, elastic beam elements in these actuators undergo reversible, cooperative collapse, and generate a rotational motion. These actuators are inexpensive to fabricate, lightweight, easy to control, and safe to operate. They can be used in devices that manipulate objects, locomote, or interact cooperatively with humans.

  6. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion

  7. System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa

    Science.gov (United States)

    Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter

    2004-11-01

    The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.

  8. Science Enabling ASICs and FEEs for the JUICE and JEO Missions

    Science.gov (United States)

    Paschalidis, Nicholas; Sittler, Ed; Cooper, John; Christian, Eric; Moore, Tom

    2011-01-01

    A family of science enabling radiation hard Application Specific Integrated Circuits (ASICs), Front End Electronics (FEEs) and Event Processing Systems, with flight heritage on many NASA missions, is presented. These technologies play an important role in the miniaturization of instruments -and spacecraft systems- at the same time increasing performance and reducing power. The technologies target time of flight, position sensing, and energy measurements as well as standard housekeeping and telemetry functions for particle and fields instruments, but find applications in other instrument categories too. More specifically the technologies include: the TOF chip, 1D and 2D Delay Lines with MCP detectors, for high precision fast and low power time of flight and position sensing; the Energy chip for multichannel SSD readout with time over threshold and standard voltage read out for TDC and ADC digitization; Fast multi channel read out chip with commandable thresholds; the TRIO chip for multiplexed ADC and housekeeping etc. It should be mentioned that the ASICs include basic trigger capabilities to enable random event processing in a heavy background of penetrators and UV foreground. Typical instruments include time of flight versus energy and look angle particle analyzers such as: plasma composition, energetic particle, neutral atom imaging as well as fast plasma and deltaE/E ion/electron telescopes. Flight missions include: Cassini/LEMMS, IMAGE/HENA, MESSENGER/EPPS/MLA/X-ray/MLA, STEREO, PLUTO-NH/PEPSSI/LORI, IBEX-Lo, JUNO/JEDI, RBSP/RBSPICE, MMS/HPCA/EPD, SO/SIS. Given the proven capability on heavy radiation missions such as JUNO, MMS and RBSB, as well diverse long duration missions such as MESSENGER, PLUTO and Cassini, it is expected that these technologies will play an important role in the particle and fields (at least) instruments on the upcoming JUICE and JEO missions.

  9. Exploration mission enhancements possible with power beaming. [Space Applications Power Beaming

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.; Coomes, E.P. (Pacific Northwest Lab., Richland, WA (USA)); Segna, D.R. (USDOE Richland Operations Office, WA (USA))

    1990-10-01

    A key factor in the exploration and development of the space frontier is the availability of energy where and when it is needed. Currently all space satellites and platforms include self-contained power systems that supply the energy necessary to accomplish mission objectives. An alternative approach is to couple advanced high power system with energy beam transmitters and energy receivers to form an infrastructure of a space power utility where a central power system provides power to multiple users. Major space activities, such as low Earth orbit space commercialization and the colonization of the Moon or Mars, would benefit significantly from a central power generation and transmission system. This paper describes the power-beaming concept and system components as applied to space power generation and distribution in support of the Space Exploration Initiative. Beam-power scenarios are discussed including commonality of systems and hardware with cargo transport vehicles, power beaming from orbit to stationary and mobile users on the Lunar and Mars surfaces, and other surface applications. 6 refs.

  10. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media

    Science.gov (United States)

    Fahrbach, Florian O.; Rohrbach, Alexander

    2012-01-01

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  11. Robotic planetary science missions enabled with small NTR engine/stage technologies

    Science.gov (United States)

    Borowski, Stanley K.

    1995-10-01

    The high specific impulse (Isp) and engine thrust-to-weight ratio of liquid hydrogen (LH2)-cooled nuclear thermal rocket (NTR) engines makes them ideal for upper stage applications to difficult robotic planetary science missions. A small 15 thousand pound force (klbf) NTR engine using a uranium-zirconium-niobium 'ternary carbide' fuel (Isp approximately 960 seconds at approximately 3025K) developed in the Commonwealth of Independent States (CIS) is examined and its use on an expendable injection stage is shown to provide major increases in payload delivered to the outer planets (Saturn, Uranus, Neptune and Pluto). Using a single 'Titan IV-class' launch vehicle, with a lift capability to low Earth orbit (LEO) of approximately 20 metric tons (t), an expendable NTR upper stage can inject two Pluto 'Fast Flyby' spacecraft (PFF/SC) plus support equipment-combined mass of approximately 508 kg--on high energy, '6.5-9.2 year' direct trajectory missions to Pluto. A conventional chemical propulsion mission would use a liquid oxygen (LOX)/LH2 'Centaur' upper stage and two solid rocket 'kick motors' to inject a single PFF/SC on the same Titan IV launch vehicle. For follow on Pluto missions, the NTR injection stage would utilize a Jupiter 'gravity assist' (JGA) maneuver to launch a LOX/liquid methane (CH4) capture stage (Isp approximately 375 seconds) and a Pluto 'orbiter' spacecraft weighing between approximately 167-312 kg. With chemical propulsion, a Pluto orbiter mission is not a viable option because c inadequate delivered mass. Using a 'standardized' NTR injection stage and the same single Titan IV launch scenario, 'direct flight' (no gravity assist) orbiter missions to Saturn, Uranus and Neptune are also enabled with transit times of 2.3, 6.6, and 12.6 years, respectively. Injected mass includes a storable, nitrogen tetroxide/monomethyl hydrazine (N2O4/MMH) capture stage (Isp approximately 330 seconds) and orbiter payloads 340 to 820% larger than that achievable using a

  12. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    Science.gov (United States)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  13. Recommendations for Enabling Manual Component Level Electronic Repair for Future Space Missions

    Science.gov (United States)

    Struk, Peter M.; Easton, John W.; Funk, Gregory P.; Latta, Gary S.; Ganster, Andrew W.; Estes, Brett E.

    2011-01-01

    Long duration missions to the Moon and Mars pose a number of challenges to mission designers, controllers, and the crews. Among these challenges are planning for corrective maintenance actions which often require a repair. Current repair strategies on the International Space Station (ISS) rely primarily on the use of Orbital Replacement Units (ORUs), where a faulty unit is replaced with a spare, and the faulty unit typically returns to Earth for analysis and possible repair. The strategy of replace to repair has posed challenges even for the ISS program. Repairing faulty hardware at lower levels such as the component level can help maintain system availability in situations where no spares exist and potentially reduce logistic resupply mass.This report provides recommendations to help enable manual replacement of electronics at the component-level for future manned space missions. The recommendations include hardware, tools, containment options, and crew training. The recommendations are based on the work of the Component Level Electronics Assembly Repair (CLEAR) task of the Exploration Technology Development Program from 2006 to 2009. The recommendations are derived based on the experience of two experiments conducted by the CLEAR team aboard the International Space Station as well as a group of experienced Miniature/Microminiature (2M) electronics repair technicians and instructors from the U.S. Navy 2M Project Office. The emphasis of the recommendations is the physical repair. Fault diagnostics and post-repair functional test are discussed in other CLEAR reports.

  14. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions.

    Science.gov (United States)

    Dong, Yu-Hui; Liu, He-Shan; Luo, Zi-Ren; Li, Yu-Qiong; Jin, Gang

    2014-07-01

    In space laser interferometer gravitational wave (G.W.) detection missions, the stability of the laser beam pointing direction has to be kept at 10 nrad/√Hz. Otherwise, the beam pointing jitter noise will dominate the noise budget and make the detection of G.W. impossible. Disturbed by the residue non-conservative forces, the fluctuation of the laser beam pointing direction could be a few μrad/√Hz at frequencies from 0.1 mHz to 10 Hz. Therefore, the laser beam pointing control system is an essential requirement for those space G.W. detection missions. An on-ground test of such beam pointing control system is performed, where the Differential Wave-front Sensing technique is used to sense the beams pointing jitter. An active controlled steering mirror is employed to adjust the beam pointing direction to compensate the jitter. The experimental result shows that the pointing control system can be used for very large dynamic range up to 5 μrad. At the interested frequencies of space G.W. detection missions, between 1 mHz and 1 Hz, beam pointing stability of 6 nrad/√Hz is achieved.

  15. Ares V and Future Very Large Launch Vehicles to Enable Major Astronomical Missions

    Science.gov (United States)

    Thronson, Harley; Langhoff, Stephanie; Stahl, H. Philip; Lester, Daniel

    2008-01-01

    The current NASA architecture planned to return humans to the lunar surface includes the Ares V heavy lift launch vehicle designed primarily to carry the Altair lunar lander and to be available before about 2020. However. the capabilities of this system (and its variants) are such that adapting the vehicle to launch very large optical systems could achieve major scientific goals that are not otherwise possible. For example, an 8-m monolith UV/visual/IR telescope appears able to be launched to the Sun-Earth L2 location by an Ares V with a 10-m fairing. Even larger apertures that are deployed or assembled in space seem possible, which may take advantage of other elements of NASA's future human spaceflight architecture. Alternatively. multiple elements of a spatial array or two or three astronomical observatories might he launched simultaneously. That is, Ares V appears to offer the astronomy communities an opportunity to put into orbit extremely capable observatories, in addition to being a key element of NASA's current architecture for human spaceflight. For the past year, a number of scientists and engineers have been eva1uating concepts for astronomical observatories that take advantage of future large launch vehicles, including the science goals of such missions and design modifications to the vehicle to enable the observatories. In parallel, members of the Solar System science communities have likewise been considering what major science goals can be achieved if new, extremely capable launch systems become available.

  16. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    Science.gov (United States)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  17. Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs

    Science.gov (United States)

    Trujillo, Anna C.; Puig-Navarro, Javier; Mehdi, S. Bilal; Mcquarry, A. Kyle

    2016-01-01

    The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial activities. This research is developing methods beyond classical control-stick pilot inputs, to allow operators to manage complex missions without in-depth vehicle expertise. These missions may entail several heterogeneous UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time or space to predefined locations. This paper describes the functionality and preliminary usability measures of an interface that allows an operator to define a mission using speech inputs. With a defined and simple vocabulary, operators can input the vast majority of mission parameters using simple, intuitive voice commands. Although the operator interface is simple, it is based upon autonomous algorithms that allow the mission to proceed with minimal input from the operator. This paper also describes these underlying algorithms that allow an operator to manage several UAVs.

  18. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  19. GEMMP - A Google Maps Enabled Mobile Mission Planning Tool for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Steven Seeley

    2012-05-01

    Full Text Available Many applications for mobile robotics involve operations in remote, outdoor environments. In these environments, it can be difficult to plan missions dynamically due to the lack of portability of existing mission planning software. Mobile platforms allow access to the Web from nearly anywhere while other features, like touch interfaces, simplify user interaction, and GPS integration allows developers and users to take advantage to location-based services. In this paper, we describe a prototype AUV mission planner developed on the Android platform, created to aid and enhance the capability of an existing AUV mission planner, VectorMap, developed and maintained by OceanServer Technology, by taking advantage of the capabilities of existing mobile computing technology.

  20. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1998-01-09

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed. An analysis of the programmatic, management and technical activities necessary to declare Readiness to Proceed with execution of the mission demonstrates that the system, people, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2002. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed, transfer piping routes were mapped on it, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. Personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled.

  1. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  2. BREAKING STOVEPIPES: BRIDGING GAPS IN AIR FORCE INDUSTRIAL CONTROL SYSTEMS MANAGEMENT TO ENABLE MULTI-DOMAIN MISSION ASSURANCE

    Science.gov (United States)

    2016-02-16

    work group should prioritize revising both sets of doctrine to enable the force to view cyberspace for what it is, a digital battlefield that comes...sputter, and lights flicker and fail. An in-bound F-35, returning from its first strike mission for a quick-turn, has to divert as the runway is not ready...a downward mandated patch closes a port that connects the server to an HVAC system rendering it inoperable. 5 Figure 1. Interrelationship

  3. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1998-01-05

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. The review showed that since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farm structure and configurations and work scope and costs has been established itself as part of the culture within TWRS. An analysis of the programmatic, management and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, people and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2OO2. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed. Transfer piping routes were mapped out, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. TWRS personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled.

  4. Enabling Mobility in Heterogeneous Wireless Sensor Networks Cooperating with UAVs for Mission-Critical Management

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Hoesel, van L.F.W.; Havinga, P.J.M.; Wu, Jian

    2008-01-01

    Wireless sensor networks have the promise of revolutionizing the capture, processing, and communication of mission-critical data for the use of first operational forces. Their low cost, low power, and size make it feasible to embed them into environment monitoring tags in critical care regions, firs

  5. Enabling Mobility in Heterogeneous Wireless Sensor Networks Cooperating with UAVs for Mission-Critical Management

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Hoesel, van L.F.W.; Wu, Jian; Havinga, P.J.M.

    2008-01-01

    Wireless sensor networks (WSNs) have the promise of revolutionizing the capture, processing, and communication of mission critical data for the use of first operational forces. Their low-cost, low-power, and size make it feasible to embed them into environment-monitoring tags in critical care region

  6. Mission Analysis For the Ion Beam Deflection of Fictitious Asteroid 2015PDC

    CERN Document Server

    Bombardelli, Claudio; Cano, Juan Luis

    2015-01-01

    A realistic mission scenario for the deflection of fictitious asteroid 2015PDC is investigated that makes use of the ion beam shepherd concept as primary deflection technique. The article deals with the design of a low thrust rendezvous trajectory to the asteroid, the estimation of the propagated covariance ellipsoid and the outcome of a slow-push deflection starting from three worst case scenarios (impacts in New Delhi, Dhaka and Teheran). Displacing the impact point towards very low populated areas, as opposed to full deflection, is found to be the simplest and most effective mitigation approach. Mission design, technical and political aspects are discussed.

  7. Stellar Imager (SI): Enhancements to the Mission Enabled by the Constellation Architecture (Ares I/Ares V)

    Science.gov (United States)

    Carpenter, Kenneth G.; Lyon, Richard G.; Karovska, Margarita; Mozurkwich, D.; Schrijver, Carolus

    2009-01-01

    Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-aresec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for astrophysics with its combination of high angular resolution, dynamic imaging , and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin & Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. SI is a "Landmark-Discovery Mission" in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan and is targeted for launch in the mid-2020's. It is a NASA Vision Mission and has been recommended for further study in a 2008 NRC report on missions potentially enabled/enhanced by an Ares V launch. In this paper, we discuss the science goals and required capabilities of SI, the baseline architecture of the mission assuming launch on one or more Delta rockets, and then the potential significant enhancements to the SI science and mission architecture that would be made possible by a launch in the larger volume Ares V payload fairing, and by servicing options under consideration in the Constellation program.

  8. Adapt Design: A Methodology for Enabling Modular Design for Mission Specific SUAS

    Science.gov (United States)

    2016-08-24

    the application of this approach are presented via the design of several SUAS. The capability of the design paradigm is assessed through a...is succinctly explained via an analogy to Lego® depicted in Figure 2. Lego® bricks contain a number of modular parts that can be constructed into...stakeholders drives a need for providing users with a small set of inputs that can fully capture the mission, without requiring detailed knowledge of

  9. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.

  10. A CubeSat Mission for Mapping Spot Beams of Geostationary Communications Satellites

    Science.gov (United States)

    2015-03-26

    spot beam mapping CubeSats. The Dynamic Ionosphere CubeSat Experiment ( DICE ) mission, Launched in 2011 was tasked with “mapping geomagnetic storm...ADCS components, computing hardware, power hardware, wire harnessing, and any structural or thermal mitigation components. Future work with position...drawnow % force draw so that there is something to maximize on the next line... set(jFrame,’Maximized’,true) % maximize it via the javahandle

  11. Nuclear Polar VALOR: An ASRG-Enabled Venus Balloon Mission Concept

    Science.gov (United States)

    Balint, T. S.; Baines, K. H.

    2008-12-01

    In situ exploration of Venus is expected to answer high priority science questions about the planet's origin, evolution, chemistry, and dynamics as identified in the NRC Decadal Survey and in the VEXAG White Paper. Furthermore, exploration of the polar regions of Venus is key to understanding its climate and global circulation, as well as providing insight into the circulation, chemistry, and climatological processes on Earth. In this paper we discuss our proposed Nuclear Polar VALOR mission, which would target one of the polar regions of Venus, while building on design heritage from the Discovery class VALOR concept, proposed in 2004 and 2006. Riding the strong zonal winds at 55 km altitude and drifting poleward from mid-latitude this balloon-borne aerial science station (aerostat) would circumnavigate the planet multiple times over its one- month operation, extensively investigating polar dynamics, meteorology, and chemistry. Rising and descending over 1 km altitude in planetary waves - similar to the two VEGA balloons in 1985 - onboard instrumentation would accurately and constantly sample and measure other meteorological and chemical parameters, such as atmospheric temperature and pressure, cloud particle sizes and their local column abundances, the vertical wind component, and the chemical composition of cloud-forming trace gases. As well, when viewed with terrestrial radio telescopes on the Earth-facing side of Venus, both zonal and meridional winds would be measured to high accuracy (better than 10 cm/sec averaged over an hour). Due to three factors: the lack of sunlight near the poles; severe limitations on the floating mass-fraction available for a power source; and the science requirements for intensive and continuous measurements of the balloon's environment and movement, a long-duration polar balloon mission would require a long-lived internal power source in a relatively lightweight package. For our concept we assumed an Advanced Stirling Radioisotope

  12. The Europa Jupiter System Mission: Synergistic Science Enabled by JEO and JGO

    Science.gov (United States)

    Senske, D. A.; Pappalardo, R. T.; Prockter, L. M.; Lebreton, J.; Greeley, R.; Bunce, E. J.; Dougherty, M. K.; Grasset, O.; Titov, D.

    2010-12-01

    The Europa Jupiter System Mission (EJSM), a joint mission under study by NASA and ESA, has the overarching theme: The emergence of habitable worlds around gas giants. This mission would consist of two major flight elements, the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). The science which could be achieved by EJSM centers around three goals: (1) Explore Europa to investigate its habitability (JEO-focus); (2) Characterize Ganymede as a planetary object including its potential habitability (JGO-focus) and (3) Explore the Jupiter system as an archetype for gas giants (JEO + JGO). The last goal would be addressed primarily during the tour phase of the mission, lasting upwards of 2.5-years, whereby each spacecraft would perform multiple, Galilean satellite fly-bys and make measurements of Jupiter and the Jupiter system. The EJSM Jupiter baseline tour would provide abundant opportunities to perform coordinated Jupiter system science, including fields and particles/magnetometer observations; Jupiter atmosphere monitoring; Io monitoring; spacecraft-to-spacecraft radio occultations of various targets; Galilean satellite flybys; and distant observations of the Galilean moons, small moons, and rings. In realm of understanding the Jovian environment, fields and particles/magnetometer measurements could be carried out nearly continuously, providing unique multipoint measurements of the time-dependent three-dimensional structure of the magnetosphere. In terms of understanding the structure and dynamics of the Jupiter atmosphere, it would be possible to perform coordinated, long-duration (20+ hours), observations over regular periods to monitor weather and understand the behavior of individual storm systems. In a similar manner, regular monitoring of volcanic activity at Io would make it possible to assess the variability in levels of volcanic activity, characterize plume structure, and aid in determining heat flow and transport. Unique

  13. OpenSatKit Enables Quick Startup for CubeSat Missions

    Science.gov (United States)

    McComas, David; Melton, Ryan

    2017-01-01

    The software required to develop, integrate, and operate a spacecraft is substantial regardless of whether its a large or small satellite. Even getting started can be a monumental task. To solve this problem, NASAs Core Flight System (cFS), NASA's 42 spacecraft dynamics simulator, and Ball Aerospaces COSMOS ground system have been integrated together into a kit called OpenSatKit that provides a complete and open source software solution for starting a new satellite mission. Users can have a working system with flight software, dynamics simulation, and a ground command and control system up and running within hours.Every satellite mission requires three primary categories of software to function. The first is Flight Software (FSW) which provides the onboard control of the satellites and its payload(s). NASA's cFS provides a great platform for developing this software. Second, while developing a satellite on earth, it is necessary to simulate the satellites orbit, attitude, and actuators, to ensure that the systems that control these aspects will work correctly in the real environment. NASAs 42 simulator provides these functionalities. Finally, the ground has to be able to communicate with the satellite, monitor its performance and health, and display its data. Additionally, test scripts have to be written to verify the system on the ground. Ball Aerospace's COSMOS command and control system provides this functionality. Once the OpenSatKit is up and running, the next step is to customize the platform and get it running on the end target. Starting from a fully working system makes porting the cFS from Linux to a users platform much easier. An example Raspberry Pi target is included in the kit so users can gain experience working with a low cost hardware target. All users can benefit from OpenSatKit but the greatest impact and benefits will be to SmallSat missions with constrained budgets and small software teams. This paper describes OpenSatKits system design, the

  14. Autonomous charging to enable long-endurance missions for small aerial robots

    Science.gov (United States)

    Mulgaonkar, Yash; Kumar, Vijay

    2014-06-01

    The past decade has seen an increased interest towards research involving Autonomous Micro Aerial Vehicles (MAVs). The predominant reason for this is their agility and ability to perform tasks too difficult or dangerous for their human counterparts and to navigate into places where ground robots cannot reach. Among MAVs, rotary wing aircraft such as quadrotors have the ability to operate in confined spaces, hover at a given point in space and perch1 or land on a flat surface. This makes the quadrotor a very attractive aerial platform giving rise to a myriad of research opportunities. The potential of these aerial platforms is severely limited by the constraints on the flight time due to limited battery capacity. This in turn arises from limits on the payload of these rotorcraft. By automating the battery recharging process, creating autonomous MAVs that can recharge their on-board batteries without any human intervention and by employing a team of such agents, the overall mission time can be greatly increased. This paper describes the development, testing, and implementation of a system of autonomous charging stations for a team of Micro Aerial Vehicles. This system was used to perform fully autonomous long-term multi-agent aerial surveillance experiments with persistent station keeping. The scalability of the algorithm used in the experiments described in this paper was also tested by simulating a persistence surveillance scenario for 10 MAVs and charging stations. Finally, this system was successfully implemented to perform a 9½ hour multi-agent persistent flight test. Preliminary implementation of this charging system in experiments involving construction of cubic structures with quadrotors showed a three-fold increase in effective mission time.

  15. A paradigm shift to enable more cost-effective space science telescope missions in the upcoming decades

    Science.gov (United States)

    Matthews, Gary; Havey, Keith, Jr.; Egerman, Robert

    2010-07-01

    Modern astronomy currently is dealing with an exciting but challenging dichotomy. On one hand, there has been and will continue to be countless advances in scientific discovery, but on the other the astronomical community is faced with what unfortunately is considered by many to be an insurmountable budgetary impasse for the foreseeable future. The National Academy of Sciences' Astro2010: Decadal Survey has been faced with the difficult challenge of prioritizing sciences and missions for the upcoming decade while still allowing room for new, yet to be discovered opportunities to receive funding. To this end, we propose the consideration of a paradigm shift to the astronomical community that may enable more cost efficient space-based telescope missions to be funded and still provide a high science return per dollar invested. The proposed paradigm shift has several aspects that make it worthy of consideration: 1) Telescopes would leverage existing Commercial Remote Sensing Satellite (CRSS) Architectures such as the 1.1m NextView systems developed by ITT, GeoEye-1, and WorldView-2, or the 0.7m IKONOS system (or perhaps other proprietary systems); 2) By using large EELV class fairings, multiple telescopes with different science missions could be flown on a single spacecraft bus sharing common features such as communications and telemetry (current Earth Science missions in early development phases are considering this approach); 3) Multiple smaller observatories (with multiple spacecraft) could be flown in a single launch vehicle for instances where the different science payloads had incompatible requirements; and 4) by leveraging CRSS architectures, vendors could supply telescopes at a fixed price. Here we discuss the implications and risks that the proposed paradigm shift would carry.

  16. Echo-enabled harmonics up to the 75th order from precisely tailored electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Hemsing, E.; Dunning, M.; Garcia, B.; Hast, C.; Raubenheimer, T.; Stupakov, G.; /SLAC; Xiang, D.; /Shanghai Jiaotong U.

    2016-06-28

    The production of coherent radiation at ever shorter wavelengths has been a long-standing challenge since the invention of lasers1, 2 and the subsequent demonstration of frequency doubling3. Modern X-ray free-electron lasers (FELs) use relativistic electrons to produce intense X-ray pulses on few-femtosecond timescales4, 5, 6. However, the shot noise that seeds the amplification produces pulses with a noisy spectrum and limited temporal coherence. To produce stable transform-limited pulses, a seeding scheme called echo-enabled harmonic generation (EEHG) has been proposed7, 8, which harnesses the highly nonlinear phase mixing of the celebrated echo phenomenon9 to generate coherent harmonic density modulations in the electron beam with conventional lasers. Here, we report on a demonstration of EEHG up to the 75th harmonic, where 32 nm light is produced from a 2,400 nm laser. We also demonstrate that individual harmonic amplitudes are controlled by simple adjustment of the phase mixing. Results show the potential of laser-based manipulations to achieve precise control over the coherent spectrum in future X-ray FELs for new science10, 11.

  17. Echo-enabled harmonics up to the 75th order from precisely tailored electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Hemsing, E.; Dunning, M.; Garcia, B.; Hast, C.; Raubenheimer, T.; Stupakov, G.; Xiang, D.

    2016-06-06

    The production of coherent radiation at ever shorter wavelengths has been a long-standing challenge since the invention of lasers1, 2 and the subsequent demonstration of frequency doubling3. Modern X-ray free-electron lasers (FELs) use relativistic electrons to produce intense X-ray pulses on few-femtosecond timescales4, 5, 6. However, the shot noise that seeds the amplification produces pulses with a noisy spectrum and limited temporal coherence. To produce stable transform-limited pulses, a seeding scheme called echo-enabled harmonic generation (EEHG) has been proposed7, 8, which harnesses the highly nonlinear phase mixing of the celebrated echo phenomenon9 to generate coherent harmonic density modulations in the electron beam with conventional lasers. Here, we report on a demonstration of EEHG up to the 75th harmonic, where 32 nm light is produced from a 2,400 nm laser. We also demonstrate that individual harmonic amplitudes are controlled by simple adjustment of the phase mixing. Results show the potential of laser-based manipulations to achieve precise control over the coherent spectrum in future X-ray FELs for new science10, 11.

  18. Visible quality aluminum and nickel superpolish polishing technology enabling new missions

    Science.gov (United States)

    Carrigan, Keith G.

    2011-06-01

    It is now well understood that with US Department of Defense (DoD) budgets shrinking and the Services and Agencies demanding new systems which can be fielded more quickly, cost and schedule are being emphasized more and more. At the same time, the US has ever growing needs for advanced capabilities to support evolving Intelligence, Surveillance and Reconnaissance objectives. In response to this market demand for ever more cost-effective, faster to market, single-channel, athermal optical systems, we have developed new metal polishing technologies which allow for short-lead, low-cost metal substrates to replace more costly, longer-lead material options. In parallel, the commercial marketplace is being driven continually to release better, faster and cheaper electronics. Growth according to Moore's law, enabled by advancements in photolithography, has produced denser memory, higher resolution displays and faster processors. While the quality of these products continues to increase, their price is falling. This seeming paradox is driven by industry advancements in manufacturing technology. The next steps on this curve can be realized via polishing technology which allows low-cost metal substrates to replace costly Silicon based optics for use in ultra-short wavelength systems.

  19. Pre-Mission Input Requirements to Enable Successful Sample Collection by A Remote Field/EVA Team

    Science.gov (United States)

    Cohen, B. A.; Lim, D. S. S.; Young, K. E.; Brunner, A.; Elphic, R. E.; Horne, A.; Kerrigan, M. C.; Osinski, G. R.; Skok, J. R.; Squyres, S. W.; Saint-Jacques, D.; Heldmann, J. L.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team, part of the Solar System Exploration Virtual Institute (SSERVI), is a field-based research program aimed at generating strategic knowledge in preparation for human and robotic exploration of the Moon, near-Earth asteroids, Phobos and Deimos, and beyond. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused and, moreover, is sampling-focused with the explicit intent to return the best samples for geochronology studies in the laboratory. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. We examined the in situ sample characterization and real-time decision-making process of the astronauts, with a guiding hypothesis that pre-mission training that included detailed background information on the analytical fate of a sample would better enable future astronauts to select samples that would best meet science requirements. We conducted three tests of this hypothesis over several days in the field. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This was not meant to be a blind, controlled test of crew efficacy, but rather an effort to explicitly recognize the relevant variables that enter into sampling protocol and to be able to develop recommendations for crew and backroom training in future endeavors.

  20. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    Science.gov (United States)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  1. Enabling data science in the Gaia mission archive: The present-day mass function and age distribution

    Science.gov (United States)

    Tapiador, D.; Berihuete, A.; Sarro, L. M.; Julbe, F.; Huedo, E.

    2017-04-01

    Recent advances in large scale computing architectures enable new opportunities to extract value out of the vast amounts of data being currently generated. However, their successful adoption is not straightforward in areas like science, as there are still some barriers that need to be overcome. Those comprise (i) the existence of legacy code that needs to be ported, (ii) the lack of high-level and use case specific frameworks that facilitate a smoother transition, or (iii) the scarcity of profiles with the balanced skill sets between the technological and scientific domains. The European Space Agency's Gaia mission will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), providing unprecedented position, parallax and proper motion measurements for about one billion stars. The successful exploitation of this data archive will depend on the ability to offer the proper infrastructure upon which scientists will be able to do exploration and modelling with this huge data set. In this paper, we present and contextualize these challenges by building two probabilistic models using Hierarchical Bayesian Modelling. These models represent a key challenge in astronomy and are of paramount importance for the Gaia mission itself. Moreover, we approach the implementation by leveraging a generic distributed processing engine through an existing software package for Markov chain Monte Carlo sampling. The two computationally intensive models are then validated with simulated data in different scenarios under specific restrictions, and their performance is assessed to prove their scalability. We argue that this approach will not only serve for the models in hand but also for exemplifying how to address similar problems in science, which may need to both scale to bigger data sets and reuse existing software as much as possible. This will lead to shorter time to science in massive data archives.

  2. Massively parallel E-beam inspection: enabling next-generation patterned defect inspection for wafer and mask manufacturing

    Science.gov (United States)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-03-01

    SEMATECH aims to identify and enable disruptive technologies to meet the ever-increasing demands of semiconductor high volume manufacturing (HVM). As such, a program was initiated in 2012 focused on high-speed e-beam defect inspection as a complement, and eventual successor, to bright field optical patterned defect inspection [1]. The primary goal is to enable a new technology to overcome the key gaps that are limiting modern day inspection in the fab; primarily, throughput and sensitivity to detect ultra-small critical defects. The program specifically targets revolutionary solutions based on massively parallel e-beam technologies, as opposed to incremental improvements to existing e-beam and optical inspection platforms. Wafer inspection is the primary target, but attention is also being paid to next generation mask inspection. During the first phase of the multi-year program multiple technologies were reviewed, a down-selection was made to the top candidates, and evaluations began on proof of concept systems. A champion technology has been selected and as of late 2014 the program has begun to move into the core technology maturation phase in order to enable eventual commercialization of an HVM system. Performance data from early proof of concept systems will be shown along with roadmaps to achieving HVM performance. SEMATECH's vision for moving from early-stage development to commercialization will be shown, including plans for development with industry leading technology providers.

  3. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    Energy Technology Data Exchange (ETDEWEB)

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  4. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness

    Science.gov (United States)

    Buchler, Norbou; Fitzhugh, Sean M.; Marusich, Laura R.; Ungvarsky, Diane M.; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  5. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness.

    Science.gov (United States)

    Buchler, Norbou; Fitzhugh, Sean M; Marusich, Laura R; Ungvarsky, Diane M; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  6. Phase-change recording medium that enables ultrahigh-density electron-beam data storage

    Science.gov (United States)

    Gibson, G. A.; Chaiken, A.; Nauka, K.; Yang, C. C.; Davidson, R.; Holden, A.; Bicknell, R.; Yeh, B. S.; Chen, J.; Liao, H.; Subramanian, S.; Schut, D.; Jasinski, J.; Liliental-Weber, Z.

    2005-01-01

    An ultrahigh-density electron-beam-based data storage medium is described that consists of a diode formed by growing an InSe/GaSe phase-change bilayer film epitaxially on silicon. Bits are recorded as amorphous regions in the InSe layer and are detected via the current induced in the diode by a scanned electron beam. This signal current is modulated by differences in the electrical properties of the amorphous and crystalline states. The success of this recording scheme results from the remarkable ability of layered III-VI materials, such as InSe, to maintain useful electrical properties at their surfaces after repeated cycles of amorphization and recrystallization.

  7. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    Science.gov (United States)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  8. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Božović, I. [Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2015-06-01

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  9. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    Directory of Open Access Journals (Sweden)

    J. Wu

    2015-06-01

    Full Text Available Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  10. Enabling inspection solutions for future mask technologies through the development of massively parallel E-Beam inspection

    Science.gov (United States)

    Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Jindal, Vibhu; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik

    2015-09-01

    The new device architectures and materials being introduced for sub-10nm manufacturing, combined with the complexity of multiple patterning and the need for improved hotspot detection strategies, have pushed current wafer inspection technologies to their limits. In parallel, gaps in mask inspection capability are growing as new generations of mask technologies are developed to support these sub-10nm wafer manufacturing requirements. In particular, the challenges associated with nanoimprint and extreme ultraviolet (EUV) mask inspection require new strategies that enable fast inspection at high sensitivity. The tradeoffs between sensitivity and throughput for optical and e-beam inspection are well understood. Optical inspection offers the highest throughput and is the current workhorse of the industry for both wafer and mask inspection. E-beam inspection offers the highest sensitivity but has historically lacked the throughput required for widespread adoption in the manufacturing environment. It is unlikely that continued incremental improvements to either technology will meet tomorrow's requirements, and therefore a new inspection technology approach is required; one that combines the high-throughput performance of optical with the high-sensitivity capabilities of e-beam inspection. To support the industry in meeting these challenges SUNY Poly SEMATECH has evaluated disruptive technologies that can meet the requirements for high volume manufacturing (HVM), for both the wafer fab [1] and the mask shop. Highspeed massively parallel e-beam defect inspection has been identified as the leading candidate for addressing the key gaps limiting today's patterned defect inspection techniques. As of late 2014 SUNY Poly SEMATECH completed a review, system analysis, and proof of concept evaluation of multiple e-beam technologies for defect inspection. A champion approach has been identified based on a multibeam technology from Carl Zeiss. This paper includes a discussion on the

  11. Heavy ion beam test results of the silicon charge detector for the CREAM cosmic ray balloon mission

    CERN Document Server

    Park, I H; Bok, J B; Ganel, O; Hahn, J H; Han, W; Hyun, H J; Kim, H J; Kim, M Y; Kim, Y J; Lee, J K; Lutz, L; Malinine, A; Min, K W; Nam, S W; Nam, W; Park, H; Park, N H; Seo, E S; Seon, K I; Sone, J H; Yang, J; Zinn, S Y

    2004-01-01

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to measure cosmic ray elemental spectra to help understand the source and acceleration mechanisms of ultra-high-energy cosmic rays. The payload is planned to launch in December 2004 from McMurdo Station, Antarctica as a balloon mission. A Silicon Charge Detector (SCD) was designed and constructed for the CREAM experiment to provide precision charge measurements of incident cosmic rays with a resolution of 0.2 charge unit or better. The SCD was exposed to heavy ion beams at CERN's H2 beam line in November 2003. The results reported here show the SCD performs as designed.

  12. Simulation-To-Flight (STF-1): A Mission to Enable CubeSat Software-Based Validation and Verification

    Science.gov (United States)

    Morris, Justin; Zemerick, Scott; Grubb, Matt; Lucas, John; Jaridi, Majid; Gross, Jason N.; Ohi, Nicholas; Christian, John A.; Vassiliadis, Dimitris; Kadiyala, Anand; hide

    2016-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  13. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Rebecca K.S., E-mail: rebecca.wong@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel; Varma, Anita [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Martin, Melanie; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Panzarella, Tony [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Gospodarowicz, Mary [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam

  14. Future spaceborne ocean missions using high sensitivity multiple-beam radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Søbjærg, Sten Schmidl; Kristensen, Steen Savstrup

    2014-01-01

    Design considerations concerning a scanning as well as a push-broom microwave radiometer system are presented. Strict requirements to spatial and radiometric resolution leads to a multiple-beam scanner achieving good sensitivity through integration over many beams, or to a push-broom system where...

  15. Very high delta-V missions to the edge of the solar system and beyond enabled by the dual-stage 4-grid ion thruster concept

    Science.gov (United States)

    Bramanti, C.; Izzo, D.; Samaraee, T.; Walker, R.; Fearn, D.

    2009-04-01

    A new and innovative type of gridded ion thruster, the "Dual-Stage 4-Grid" or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed. A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a "medium-term" SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific

  16. Pre-Mission Input Requirements to Enable Successful Sample Collection by a Remote Field/EVA Team

    Science.gov (United States)

    Cohen, B. A.; Young, K. E.; Lim, D. S.

    2015-01-01

    This paper is intended to evaluate the sample collection process with respect to sample characterization and decision making. In some cases, it may be sufficient to know whether a given outcrop or hand sample is the same as or different from previous sampling localities or samples. In other cases, it may be important to have more in-depth characterization of the sample, such as basic composition, mineralogy, and petrology, in order to effectively identify the best sample. Contextual field observations, in situ/handheld analysis, and backroom evaluation may all play a role in understanding field lithologies and their importance for return. For example, whether a rock is a breccia or a clast-laden impact melt may be difficult based on a single sample, but becomes clear as exploration of a field site puts it into context. The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is a new activity focused on a science and exploration field based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused, and moreover, is sampling-focused, with the explicit intent to return the best samples for geochronology studies in the laboratory. This specific objective effectively reduces the number of variables in the goals of the field test and enables a more controlled investigation of the role of the crewmember in selecting samples. We formulated one hypothesis to test: that providing details regarding the analytical fate of the samples (e.g. geochronology, XRF/XRD, etc.) to the crew prior to their traverse will result in samples that are more likely to meet specific analytical

  17. Applications of same-beam VLBI in the orbit determination of multi-spacecrafts in a lunar sample-return mission

    Institute of Scientific and Technical Information of China (English)

    GOOSSENS; Sander; KIKUCHI; Fuyuhiko; MATSUMOTO; Koji; HANADA; Hideo

    2010-01-01

    Same-beam VLBI means that two spacecrafts with small separation angles that transmit multi-frequency signals specially designed are observed simultaneously through the main beam of receiving antennas. In same-beam VLBI,the differential phase delay between the two spacecrafts and the two receiving antennas can be obtained within a small error of several picoseconds. As a successful application,the short-arc orbit determination of several hours for Rstar and Vstar,which are two small sub-spacecrafts of SELENE,has been much improved by using the same-beam VLBI data together with the Doppler and range data. The long-arc orbit determination of several days has also been accomplished within an error of about 10 m with the same-beam VLBI data incorporated. These results show the value of the same-beam VLBI for the orbit determination of multi-spacecrafts. This paper introduces the same-beam VLBI and Doppler observations of SELENE and the orbit determination results. In addition,this paper introduces how to use the same-beam VLBI for a lunar sample-return mission,which usually consists of an orbiter,a lander and a return unit. The paper also offers the design for the onboard radio sources in the lunar sample-return mission,and introduces applications of S-band multi-frequency same-beam VLBI in lunar gravity exploration and applications during all stages in the position/orbit determinations such as orbiting,landing,sampling,ascending,and docking.

  18. Magnetoelastoelectric coupling in core-shell nanoparticles enabling directional and mode-selective magnetic control of THz beam propagation.

    Science.gov (United States)

    Dutta, Moumita; Natarajan, Kamaraju; Betal, Soutik; Prasankumar, Rohit P; Bhalla, Amar S; Guo, Ruyan

    2017-09-14

    Magnetoelastoelectric coupling in an engineered biphasic multiferroic nanocomposite enables a novel magnetic field direction-defined propagation control of terahertz (THz) waves. These core-shell nanoparticles are comprised of a ferromagnetic cobalt ferrite core and a ferroelectric barium titanate shell. An assembly of these nanoparticles, when operated in external magnetic fields, exhibits a controllable amplitude modulation when the magnetic field is applied antiparallel to the THz wave propagation direction; yet the same assembly displays an additional phase modulation when the magnetic field is applied along the propagation direction. While field-induced magnetostriction of the core leads to amplitude modulation, phase modulation is a result of stress-mediated piezoelectricity of the outer ferroelectric shell.

  19. Concept of a Staged FEL Enabled by Fast Synchrotron Radiation Cooling of Laser-Plasma Accelerated Beam by Solenoidal Magnetic Fields in Plasma Bubble

    CERN Document Server

    Seryi, Andrei; Andreev, Alexander; Konoplev, Ivan

    2016-01-01

    A novel method for generating GigaGauss solenoidal field in laser-plasma bubble, using screw-shaped laser pulses, has been recently presented in arXiv:1604.01259 [physics.plasm-ph]. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper we present an outline of how a staged plasma-acceleration FEL could look like and discuss further studies needed to investigate the feasibility of the concept in detail.

  20. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Science.gov (United States)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  1. Systems Engineering and Integration as a Foundation for Mission Engineering

    Science.gov (United States)

    2015-09-01

    218 –219) describes the uniqueness of systems engineering through its focus on “(1) the product or service as an enabler of the desired user behaviors...final system; humans may be involved in training, maintenance, planning, manufacture , and many aspects of the systems engineering life cycle. As such... ENGINEERING AND INTEGRATION AS A FOUNDATION FOR MISSION ENGINEERING by David F. Beam September 2015 Thesis Advisor: Gary Langford Second Reader

  2. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    Science.gov (United States)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  3. Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution

    Science.gov (United States)

    Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Abdou Ahmed, Marwan

    2016-04-01

    The efficient generation of a cylindrically (radially or azimuthally) polarized LG01 mode was investigated using a ring-shaped pumping distribution in a high-power Yb:YAG thin-disk laser setup. This was realized by implementing a 300 mm long customized fused silica fiber capillary in the pump beam path of the pumping optics of a thin-disk laser. Furthermore, a grating waveguide mirror based on the leaky-mode coupling mechanism was used as one of the cavity end mirrors to allow sufficient reduction of the reflectivity of the polarization state to be suppressed in the resonator. In order to achieve efficient laser operation, an optimized mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian doughnut mode is required. This was investigated theoretically by analyzing the intensity distribution generated by different fiber geometries using a commercially raytracing software (Zemax). The output power, polarization state and efficiency of the emitted laser beam were compared to that obtained with a standard flattop pumping distribution. In particular, the thermal behavior of the disk was investigated since the excessive fluorescence caused by the non-saturated excitation in the center of the homogeneously pumped disk leads to a strong heating of the crystal. This considerable heating source is avoided in the case of the ring-shaped pumping and a reduction of the temperature increase on the disk surface of about 21% (at 280 W of pump power) was observed. This should allow higher pump power densities without increasing the risk of damaging the disk or distorting the polarization purity. With a laser efficiency of 41.2% to be as high as in the case of the flattop pumping, a maximum output power of 107 W was measured.

  4. Simultaneous Counter-Ion Co-Deposition a Technique Enabling Matrix Isolation Spectroscopy Studies Using Low-Energy Beams of Mass-Selected Ions

    Science.gov (United States)

    Ludwig, Ryan M.; Moore, David T.

    2014-06-01

    Matrix isolation spectroscopy was first developed in Pimentel's group during the 1950's to facilitate spectroscopic studies of transient species. Cryogenic matrices of condensed rare gases provide an inert chemical environment with facile energy dissipation and are transparent at all wavelengths longer than vacuum UV, making them ideal for studying labile and reactive species such as radicals, weakly bound complexes, and ions. Since frozen rare gases are poor electrolytes, studies of ions require near-equal populations of anions and cations in order to stabilize the number densities required for spectroscopic experiments. Many techniques for generation of ions for using in matrix isolation studies satisfy this criterion intrinsically, however when ion beams generated in external sources are deposited, the counter-ions typically arise via secondary processes that are at best loosely controlled. It has long been recognized that it would be desirable to stabilize deposition of mass-selected ions generated in an external source using simultaneous co-deposition of a beam of counter-ions, however previous attempts to achieve this have been reported as unsuccessful. The Moore group at Lehigh has demonstrated successful experiments of this type, using mass-selected anions generated from a metal cluster source, co-deposited with a balanced current of cations generated in a separate electron ionization source. This talk will focus on the details of the technique, and present some results from proof-of-concept studies on anionic copper carbonyl complexes formed in argon matrices following co-deposition of Cu- with Ar+ or Kr+. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged. Whittle et al., J. Chem. Phys. 22, p.1943 (1954); Becker et al., J. Chem. Phys. 25, p.224 (1956). Godbout et al., J. Chem. Phys. 96, p.2892 (1996). Sabo et al., Appl. Spectrosc. 45, p. 535 (1991).

  5. Hierarchical multiple bit clusters and patterned media enabled by novel nanofabrication techniques -- High resolution electron beam lithography and block polymer self assembly

    Science.gov (United States)

    Xiao, Qijun

    This thesis discusses the full scope of a project exploring the physics of hierarchical clusters of interacting nanomagnets. These clusters may be relevant for novel applications such as multilevel data storage devices. The work can be grouped into three main activities: micromagnetic simulation, fabrication and characterization of proof-of-concept prototype devices, and efforts to scale down the structures by creating the hierarchical structures with the aid of diblock copolymer self assembly. Theoretical micromagnetic studies and simulations based on Landau-Lifshitz-Gilbert (LLG) equation were conducted on nanoscale single domain magnetic entities. For the simulated nanomagnet clusters with perpendicular uniaxial anisotropy, the simulation showed the switching field distributions, the stability of the magnetostatic states with distinctive total cluster perpendicular moments, and the stepwise magnetic switching curves. For simulated nanomagnet clusters with in-plane shape anisotropy, the simulation showed the stepwise switching behaviors governed by thermal agitation and cluster configurations. Proof-of-concept cluster devices with three interacting Co nanomagnets were fabricated by e-beam lithography (EBL) and pulse-reverse electrochemical deposition (PRECD). EBL patterning on a suspended 100 nm SiN membrane showed improved lateral lithography resolution to 30 nm. The Co nanomagnets deposited using the PRECD method showed perpendicular anisotropy. The switching experiments with external applied fields were able to switch the Co nanomagnets through the four magnetostatic states with distinctive total perpendicular cluster magnetization, and proved the feasibility of multilevel data storage devices based on the cluster concept. Shrinking the structures size was experimented by the aid of diblock copolymer. Thick poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer templates aligned with external electrical field were used to fabricate long Ni

  6. WE-DE-207A-02: Advances in Cone Beam CT Anatomical and Functional Imaging in Angio-Suite to Enable One-Stop-Shop Stroke Imaging Workflow.

    Science.gov (United States)

    Chen, G

    2016-06-01

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introduction of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT.

  7. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  8. Retroreflecting polarization spectroscopy enabling miniaturization.

    Science.gov (United States)

    Groswasser, D; Waxman, A; Givon, M; Aviv, G; Japha, Y; Keil, M; Folman, R

    2009-09-01

    We describe and characterize alternative configurations for Doppler-free polarization spectroscopy. The suggested apparatus enables complete pump/probe beam overlap and allows substantial miniaturization. Its utility and performance for narrow linewidth, high-stability frequency locking is discussed for the /5S(1/2)F=2>-->/5P(3/2)F(')>D(2) transition in (87)Rb.

  9. Second generation Mars landed missions

    Science.gov (United States)

    Graf, J.; Rivellini, T.; Sabahi, D.; Thurman, S.; Eisen, H.

    2000-01-01

    This paper addresses some of the candidate missions being considered for the next generation projects, discusses the new approaches being developed to implement safe and accurate entry, descent and landing to the Martian surface, and describes the rover technology that enables the long distance and duration surface mission.

  10. NEAR Shoemaker spacecraft mission operations

    Science.gov (United States)

    Holdridge, Mark E.

    2002-01-01

    On 12 February 2001, Near Earth Asteroid Rendezvous (NEAR) Shoemaker became the first spacecraft to land on a small body, 433 Eros. Prior to that historic event, NEAR was the first-ever orbital mission about an asteroid. The mission presented general challenges associated with other planetary space missions as well as challenges unique to an inaugural mission around a small body. The NEAR team performed this operations feat with processes and tools developed during the 4-year-long cruise to Eros. Adding to the success of this historic mission was the cooperation among the NEAR science, navigation, guidance and control, mission design, and software teams. With clearly defined team roles, overlaps in responsibilities were minimized, as were the associated costs. This article discusses the processes and systems developed at APL that enabled the success of NEAR mission operations.

  11. Composable Mission Framework for Rapid End-to-End Mission Design and Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is the Composable Mission Framework (CMF)?a model-based software framework that shall enable seamless continuity of mission design and...

  12. Enhancing Science from Future Space Missions and Planetary Radar with the SKA

    CERN Document Server

    Jones, Dayton L

    2014-01-01

    Both Phase 1 of the Square Kilometre Array (SKA1) and the full SKA have the potential to dramatically increase the science return from future astrophysics, heliophysics, and especially planetary missions, primarily due to the greater sensitivity (AEFF / TSYS) compared with existing or planned spacecraft tracking facilities. While this is not traditional radio astronomy, it is an opportunity for productive synergy between the large investment in the SKA and the even larger investments in space missions to maximize the total scientific value returned to society. Specific applications include short-term increases in downlink data rate during critical mission phases or spacecraft emergencies, enabling new mission concepts based on small probes with low power and small antennas, high precision angular tracking via VLBI phase referencing using in-beam calibrators, and greater range and signal/noise ratio for bi-static planetary radar observations. Future use of higher frequencies (e.g., 32 GHz and optical) for spac...

  13. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  14. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  15. NEEMO 7 undersea mission

    Science.gov (United States)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  16. Power transmission by laser beam from lunar-synchronous satellite

    Science.gov (United States)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1993-01-01

    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.

  17. Fusion-Enabled Pluto Orbiter and Lander

    Science.gov (United States)

    Thomas, Stephanie

    2017-01-01

    The Pluto orbiter mission proposed here is credible and exciting. The benefits to this and all outer-planet and interstellar-probe missions are difficult to overstate. The enabling technology, Direct Fusion Drive, is a unique fusion engine concept based on the Princeton Field-Reversed Configuration (PFRC) fusion reactor under development at the Princeton Plasma Physics Laboratory. The truly game-changing levels of thrust and power in a modestly sized package could integrate with our current launch infrastructure while radically expanding the science capability of these missions. During this Phase I effort, we made great strides in modeling the engine efficiency, thrust, and specific impulse and analyzing feasible trajectories. Based on 2D fluid modeling of the fusion reactors outer stratum, its scrape-off-layer (SOL), we estimate achieving 2.5 to 5 N of thrust for each megawatt of fusion power, reaching a specific impulse, Isp, of about 10,000 s. Supporting this model are particle-in-cell calculations of energy transfer from the fusion products to the SOL electrons. Subsequently, this energy is transferred to the ions as they expand through the magnetic nozzle and beyond. Our point solution for the Pluto mission now delivers 1000 kg of payload to Pluto orbit in 3.75 years using 7.5 N constant thrust. This could potentially be achieved with a single 1 MW engine. The departure spiral from Earth orbit and insertion spiral to Pluto orbit require only a small portion of the total delta-V. Departing from low Earth orbit reduces mission cost while increasing available mission mass. The payload includes a lander, which utilizes a standard green propellant engine for the landing sequence. The lander has about 4 square meters of solar panels mounted on a gimbal that allows it to track the orbiter, which beams 30 to 50 kW of power using a 1080 nm laser. Optical communication provides dramatically high data rates back to Earth. Our mass modeling investigations revealed that if

  18. Beam Stop for Electron Accelerator Beam Characterisation

    Science.gov (United States)

    Roach, Greg; Sharp, Vic; Tickner, James; Uher, Josef

    2009-08-01

    Electron linear accelerator applications involving the generation of hard X-rays frequently require accurate knowledge of the electron beam parameters. We developed a beam stop device which houses a tungsten Bremsstrahlung target and enables the electron beam current, energy and position to be monitored. The beam stop consisted of four plates. The first was a removable aluminium (Al) transmission plate. Then followed the tungsten target. Behind the target there were four Al quadrant plates for beam position measurement. The last plate was a thick Al back-stop block. Currents from the four quadrants and the back-stop were measured and the beam lateral position, energy and current were calculated. The beam stop device was optimised using Monte-Carlo simulation, manufactured (including custom-made electronics and software) in our laboratory and tested at the ARPANSA (Australian Radiation Protection and Nuclear Safety Agency) linear accelerator in Melbourne. The electron beam energy was determined with a precision of 60 keV at beam energies between 11 and 21 MeV and the lateral beam position was controlled with a precision of 200 mum. The relative changes of the beam current were monitored as well.

  19. The Mothership Mission Architecture

    Science.gov (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  20. The Advanced Compton Telescope Mission

    CERN Document Server

    Boggs, S E; Ryan, J; Aprile, E; Gehrels, N; Kippen, M; Leising, M; Oberlack, U; Wunderer, C; Zych, A; Bloser, P; Harris, M; Hoover, A; Klimenk, A; Kocevski, D; McConnell, M; Milne, P; Novikova, E I; Phlips, B; Polsen, M; Sturner, S; Tournear, D; Weidenspointner, G; Wulf, E; Zoglauer, A; Baring, M; Beacom, J; Bildsten, L; Dermer, C; Hartmann, D; Hernanz, M; Smith, D; Starrfield, S; Boggs, Steven E.; Kurfess, James; Ryan, James; Aprile, Elena; Gehrels, Neil; Kippen, Marc; Leising, Mark; Oberlack, Uwe; Wunderer, Cornelia; Zych, Allen; Bloser, Peter; Harris, Michael; Hoover, Andrew; Klimenk, Alexei; Kocevski, Dan; Connell, Mark Mc; Milne, Peter; Novikova, Elena I.; Phlips, Bernard; Polsen, Mark; Sturner, Steven; Tournear, Derek; Weidenspointner, Georg; Wulf, Eric; Zoglauer, Andreas; Baring, Matthew; Beacom, John; Bildsten, Lars; Dermer, Charles; Hartmann, Dieter; Hernanz, Margarita; Smith, David; Starrfield, Sumner

    2006-01-01

    The Advanced Compton Telescope (ACT), the next major step in gamma-ray astronomy, will probe the fires where chemical elements are formed by enabling high-resolution spectroscopy of nuclear emission from supernova explosions. During the past two years, our collaboration has been undertaking a NASA mission concept study for ACT. This study was designed to (1) transform the key scientific objectives into specific instrument requirements, (2) to identify the most promising technologies to meet those requirements, and (3) to design a viable mission concept for this instrument. We present the results of this study, including scientific goals and expected performance, mission design, and technology recommendations.

  1. The OCO-3 MIssion

    Science.gov (United States)

    Eldering, A.; Kaki, S.; Crisp, D.; Gunson, M. R.

    2013-12-01

    For the OCO-3 mission, NASA has approved a proposal to install the OCO-2 flight spare instrument on the International Space Station (ISS). The OCO-3 mission on ISS will have a key role in delivering sustained, global, scientifically-based, spaceborne measurements of atmospheric CO2 to monitor natural sources and sinks as part of NASA's proposed OCO-2/OCO-3/ASCENDS mission sequence and NASA's Climate Architecture. The OCO-3 mission will contribute to understanding of the terrestrial carbon cycle through enabling flux estimates at smaller spatial scales and through fluorescence measurements that will reduce the uncertainty in terrestrial carbon flux measurements and drive bottom-up land surface models through constraining GPP. The combined nominal missions of both OCO-2 and OCO-3 will likely span a complete El Niño Southern Oscillation (ENSO) cycle, a key indicator of ocean variability. In addition, OCO-3 may allow investigation of the high-frequency and wavenumber structures suggested by eddying ocean circulation and ecosystem dynamics models. Finally, significant growth of urban agglomerations is underway and projected to continue in the coming decades. With the city mode sampling of the OCO-3 instrument on ISS we can evaluate different sampling strategies aimed at studying anthropogenic sources and demonstrate elements of a Greenhouse Gas Information system, as well as providing a gap-filler for tracking trends in the fastest-changing anthropogenic signals during the coming decade. In this presentation, we will describe our science objectives, the overall approach of utilization of the ISS for OCO-3, and the unique features of XCO2 measurements from ISS.

  2. Open Source Next Generation Visualization Software for Interplanetary Missions

    Science.gov (United States)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  3. Solar sail propulsion: enabling new capabilities for heliophysics

    CERN Document Server

    Johnson, L; Alhorn, D; Heaton, A; Vansant, T; Campbell, B; Pappa, R; Keats, W; Liewer, P C; Alexander, D; Ayon, J; Wawrzyniak, G; Burton, R; Carroll, D; Matloff, G; Kezerashvili, R Ya

    2010-01-01

    Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions.

  4. Solar Sail Propulsion: Enabling New Capabilities for Heliophysics

    Science.gov (United States)

    Johnson, L.; Young, R.; Alhorn, D.; Heaton, A.; Vansant, T.; Campbell, B.; Pappa, R.; Keats, W.; Liewer, P. C.; Alexander, D.; Wawrzyniak, G.; Ayon, J.; Burton, R.; Carroll, D.; Matloff, G.; Kezerashvili, R. Ya.

    2010-01-01

    Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions

  5. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    Science.gov (United States)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    CARB depolarizer or polarizer. Enabled by measurement of the geoCARB grating efficiencies the simulated intensities Ism include the slow polarization induced spectral change across the band. These Ism are input to the retrieval SW that was used in the original study. There is no significant change to the very positive previous results for the mission objective of gas column retrieval.

  6. The Juno Mission

    Science.gov (United States)

    Bolton, S. J.

    2015-12-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrives at Jupiter in July 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Jupiter's formation is fundamental to the evolution of our solar system and to the distribution of volatiles early in the solar system's history. Juno's measurements of the abundance of Oxygen and Nitrogen in Jupiter's atmosphere, and the detailed maps of Jupiter's gravity and magnetic field structure will constrain theories of early planetary development. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. The Juno design enables the first detailed investigation of Jupiter's interior structure, and deep atmosphere as well as the first in depth exploration of Jupiter's polar magnetosphere. The Juno mission design, science goals, and measurements related to the origin of Jupiter will be presented.

  7. Human Terrain Teams: An Enabler for Judge Advocates and Paralegals

    National Research Council Canada - National Science Library

    Dan Tanabe

    2010-01-01

      [...] the Future Concepts Directorate (FCD) offers this practice note to identify and describe an additional enabler judge advocates and paralegals can leverage to accomplish their complex missions when deployed...

  8. Explorations of Psyche and Callisto Enabled by Ion Propulsion

    Science.gov (United States)

    Wenkert, Daniel D.; Landau, Damon F.; Bills, Bruce G.; Elkins-Tanton, Linda T.

    2013-01-01

    Recent developments in ion propulsion (specifically solar electric propulsion - SEP) have the potential for dramatically reducing the transportation cost of planetary missions. We examine two representative cases, where these new developments enable missions which, until recently, would have required resouces well beyond those allocated to the Discovery program. The two cases of interest address differentiation of asteroids and large icy satellites

  9. PHM Enabled Autonomous Propellant Loading Operations

    Science.gov (United States)

    Walker, Mark; Figueroa, Fernando

    2017-01-01

    The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.

  10. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Beam Maps and Window Functions

    Science.gov (United States)

    Hill, R.S.; Weiland, J.L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C.L.; Halpern, M.; Kogut, A.; Page, L.; hide

    2008-01-01

    Cosmology and other scientific results from the WMAP mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of approximately 2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of approximately 1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of approximately 2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly. errors in the measured disk temperature are approximately 0.5%.

  11. Noise-Enabled Optical Ratchets

    CERN Document Server

    León-Montiel, Roberto de J

    2016-01-01

    In this work we demonstrate single microparticle transport enabled by noise in a one dimensional optical lattice with periodic symmetric potentials and a small constant external force. The one dimensional lattice is implemented by six focused beams with holographic optical tweezers, where a microparticle is trapped in three dimensions. Transport initiates when dynamical disorder is added to the diffracted laser power at each trap ($\\pm 30\\%$) at a fixed frequency (0 to 35 Hz), while the direction of motion is set by the constant external force. We find that transport is only achieved within a narrow noise frequency range, which is consistent with simulations, and the predicted behavior and observations of noise-induced energy transport in quantum and classical systems. To our knowledge this is the first direct observation of noise-assisted transport in a colloidal system.

  12. An Imaging X-Ray Polarimetry Mission

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  13. Sustainable, Reliable Mission-Systems Architecture

    Science.gov (United States)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  14. An Imaging X-Ray Polarimetry Mission

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; hide

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  15. Power transmission by laser beam from lunar-synchronous satellites to a lunar rover

    Science.gov (United States)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1992-01-01

    This study addresses the possibility of beaming laser power from synchronous lunar orbits (L1 and L2 LaGrange points) to a manned long-range lunar rover. The rover and two versions of a satellite system (one powered by a nuclear reactor; the other by photovoltaics) are described in terms of their masses, geometry, power needs, mission and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with on-board power are discussed along with the possibility of enabling other missions.

  16. Organising to Enable Innovation

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approa...... of explorative and exploitative learning in uncertain environments. Shedding light on the cross-disciplinary theories to organise innovation provides a contribution at the firm level to enable innovation.......The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approach....... The findings reveal a continous organising process between individual/ team creativity and organisational structures/control to enable innovation at firm level. Organising provides a dynamic approach and contains the integrated reconstruction of creativity, structures and boundaries for enhanced balance...

  17. Edge-Enabled Tactical Systems (Poster)

    Science.gov (United States)

    2014-10-23

    We will develop an algorithm that can assign a credibility score quickly (seconds) and provide a human - understandable chain of reasoning in the...Mobile Systems Team FY14 Research Focus Group Autonomy for Mobile Systems (GAMS): Develop middleware and algorithms to enable a single human operator to...control a heterogeneous swarm of sensors, tailored to mission contexts • Create algorithms for distributed prioritized and pheromone -based area

  18. Apollo 11 Mission Commemorated

    Science.gov (United States)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  19. Solar sail mission design

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, M.

    2000-02-01

    The main subject of this work is the design and detailed orbit transfer analysis of space flight missions with solar sails utilizing solar pressure for primary propulsion. Such a sailcraft requires ultra-light weight, gossamer-like deployable structures and materials in order to effectively utilize the transfer of momentum of solar photons. Different design concepts as well as technological elements for solar sails are considered, and an innovative design of a deployable sail structure including new methods for sail folding and unfolding is presented. The main focus of this report is on trajectory analysis, simulation and optimization of planetocentric as well as heliocentric low-thrust orbit transfers with solar sails. In a parametric analysis, geocentric escape spiral trajectories are simulated and corresponding flight times are determined. In interplanetary space, solar sail missions to all planets in our solar system as well as selected minor bodies are included in the analysis. Comparisons to mission concepts utilizing chemical propulsion as well as ion propulsion are included in order to assess whether solar sailing could possibly enhance or even enable this mission. The emphasis in the interplanetary mission analysis is on novel concepts: a unique method to realize a sun-synchronous Mercury orbiter, fast missions to the outer planets and the outer heliosphere applying a ''solar photonic assist'', rendezvous and sample return missions to asteroids and comets, as well as innovative concepts to reach unique vantage points for solar observation (''Solar Polar Orbiter'' and ''Solar Probe''). Finally, a propellant-less sailcraft attitude control concept using an external torque due to solar pressure is analyzed. Examples for sail navigation and control in circular Earth orbit applying a PD-control algorithm are shown, illustrating the maneuverability of a sailcraft. (orig.) [German] Gegenstand dieser

  20. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Slaug, Bjørn; Brandt, Åse

    2010-01-01

    This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients and their home environments. The instrument was translated...... from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland and Iceland. This iterative process involved occupational therapists, architects, building engineers and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently from each other, collected data from 106 cases by means of the Nordic Housing...

  1. Organising to Enable Innovation

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    . The findings reveal a continous organising process between individual/ team creativity and organisational structures/control to enable innovation at firm level. Organising provides a dynamic approach and contains the integrated reconstruction of creativity, structures and boundaries for enhanced balance......The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approach...... of explorative and exploitative learning in uncertain environments. Shedding light on the cross-disciplinary theories to organise innovation provides a contribution at the firm level to enable innovation....

  2. Climate Benchmark Missions: CLARREO

    Science.gov (United States)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in

  3. Enabling Global Collaboration

    DEFF Research Database (Denmark)

    Brix, Anders; de Gier, Nicolai

    2014-01-01

    recognizing the value of incremental refinement of tradition and sustainability obtained through cultivation of the culturally and visually sustainable. As a contribution to this development, we propose: 1) The notion of tectonics as a core concept enabling a mutual, cross-cultural design discourse...

  4. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, T.; Nygren, C.; Slaug, B.

    2014-01-01

    This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument was transla......This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument...... was translated from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland, and Iceland. This iterative process involved occupational therapists, architects, building engineers, and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently of each other, collected data from 106 cases by means of the Nordic Housing...

  5. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples being...... studied with an Atomic Force Microscope....

  6. Pilot project as enabler?

    DEFF Research Database (Denmark)

    Neisig, Margit; Glimø, Helle; Holm, Catrine Granzow;

    This article deals with a systemic perspective on transition. The field of study addressed is a pilot project as enabler of transition in a highly complex polycentric context. From a Luhmannian systemic approach, a framework is created to understand and address barriers of change occurred using p...

  7. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples bein...

  8. Bunched Beam Cooling in the Fermilab Recycler

    CERN Document Server

    Neuffer, David V; Burov, Alexey; Nagaitsev, Sergei

    2005-01-01

    Stochastic cooling with bunched beam in a linear bucket has been obtained and implemented operationally in the fermilab recycler. In this implementation the particle bunch length is much greater than the cooling system wavelengths. The simultaneous longitudinal bunching enables cooling to much smaller longitudinal emittances than the coasting beam or barrier bucket system. Characteristics and limitations of bunched beam stochastic cooling are discussed.

  9. Missions and Moral Judgement.

    Science.gov (United States)

    Bushnell, Amy Turner

    2000-01-01

    Addresses the history of Spanish-American missions, discussing the view of missions in church history, their role in the Spanish conquest, and the role and ideas of Herbert E. Bolton. Focuses on differences among Spanish borderlands missions, paying particular attention to the Florida missions. (CMK)

  10. Innovations in mission architectures for exploration beyond low Earth orbit.

    Science.gov (United States)

    Cooke, D R; Joosten, B J; Lo, M W; Ford, K M; Hansen, R J

    2003-01-01

    Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration.

  11. In-Orbit Servicing: The Master Enabler

    Science.gov (United States)

    Reed, Benjamin B.; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool--a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  12. The "Master Enabler" - In-Orbit Servicing

    Science.gov (United States)

    Reed, Benjamin; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith; Cassidy, Justin

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool-a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  13. The Master Enabler: In Orbit Servicing

    Science.gov (United States)

    Reed, Benjamin B.; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith; Cassidy, Justin

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool--a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  14. SIM-Lite Mission Spectral Calibration Sensitivities and Refinements

    Science.gov (United States)

    Zhai, C.; An, X.; Goullioud, R.; Nemati, B.; Shao, M.; Shen, J.; Wehmeier, U.; Wang, X.; Weiler, M.; Werne, T.; Wu, J.

    2010-01-01

    SIM-Lite missions will perform astrometry at microarcsecond accuracy using star light interferometry. For typical baselines that are shorter than 10 meters, this requires to measure optical path difference (OPD) accurate to tens of picometers calling for highly accurate calibration. A major challenge is to calibrate the star spectral dependency in fringe measurements -- the spectral calibration. Previously, we have developed a spectral calibration and estimation scheme achieving picometer level accuracy. In this paper, we present the improvements regarding the application of this scheme from sensitivity studies. Data from the SIM Spectral Calibration Development Unit (SCDU) test facility shows that the fringe OPD is very sensitive to pointings of both beams from the two arms of the interferometer. This sensitivity coupled with a systematic pointing error provides a mechanism to explain the bias changes in 2007. Improving system alignment can effectively reduce this sensitivity and thus errors due to pointing errors. Modeling this sensitivity can lead to further improvement in data processing. We then investigate the sensitivity to a model parameter, the bandwidth used in the fringe model, which presents an interesting trade between systematic and random errors. Finally we show the mitigation of calibration errors due to system drifts by interpolating instrument calibrations. These improvements enable us to use SCDU data to demonstrate that SIM-Lite missions can meet the 1pm noise floor requirement for detecting earth-like exoplanets.

  15. Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Brandt, Åse

    2009-01-01

    Development and reliability testing of the Nordic Housing Enabler – an instrument for accessibility assessment of the physical housing. Tina Helle & Åse Brandt University of Lund, Health Sciences, Faculty of Medicine (SE) and University College Northern Jutland, Occupational Therapy department (DK......). Danish Centre for Assistive Technology. Abstract. For decades, accessibility to the physical housing environment for people with functional limitations has been of interest politically, professionally and for the users. Guidelines and norms on accessible housing design have gradually been developed......, however, the built environment shows serious deficits when it comes to accessibility. This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of inter-rater reliability, when used in occupational therapy practice. The instrument was translated from...

  16. Spatially enabled land administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    . In other words: Good governance and sustainable development is not attainable without sound land administration or - more broadly – sound land management. The paper presents a land management vision that incorporates the benefits of ICT enabled land administration functions. The idea is that spatial...... enabling of land administration systems managing tenure, valuation, planning, and development will allow the information generated by these activities to be much more useful. Also, the services available to private and public sectors and to community organisations should commensurably improve. Knowledge...... the communication between administrative systems and also establish more reliable data due to the use the original data instead of copies. In Denmark, such governmental guidelines for a service-oriented ITarchitecture in support of e-government are recently adopted. Finally, the paper presents the role of FIG...

  17. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  18. Enabling Global Collaboration

    DEFF Research Database (Denmark)

    Brix, Anders; de Gier, Nicolai

    2014-01-01

    recognizing the value of incremental refinement of tradition and sustainability obtained through cultivation of the culturally and visually sustainable. As a contribution to this development, we propose: 1) The notion of tectonics as a core concept enabling a mutual, cross-cultural design discourse...... of the studio informed by the theory of tectonics together provides cross-cultural students with a mutual language to discuss intrinsic matters of form....

  19. Beam characteristics of energy-matched flattening filter free beams

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  20. 2016 Science Mission Directorate Technology Highlights

    Science.gov (United States)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs.

  1. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  2. Next Generation Gravity Mission: a Step Forward in the Earth's Gravity Field Determination

    Science.gov (United States)

    Silvestrin, P.; Aguirre, M.; Massotti, L.; Cesare, S.

    2009-04-01

    This paper concerns with the "System Support to Laser Interferometry Tracking Technology Development for Gravity Field Monitoring" study of the European Space Agency, a mission study for monitoring the variations of Earth's gravity field at high resolution (up to harmonic degree 200) over a long time period (>5 years). The mission exploits the use of a heterodyne laser interferometer for the high-resolution measurement of the displacement between two satellites flying at low altitude (around 325 km). More in details, employing a formation of two co-orbiting satellites at 10 km relative distance, a resolution of about 1 nm rms is needed in the inter-satellite distance measurement, and the non gravitational accelerations must be measured with a resolution of about 10-10 m/s2 rms to achieve geoid height variation rate error equal to 0.1 mm/year at degree 200. Starting from the geophysical phenomena to be investigated, a detailed derivation of the mission requirements on the orbit, satellite formation and control, measurement instruments (laser interferometer and accelerometer) was performed using analytical models and numerical simulations, and the satellite GNC (Guidance, Navigation & Control) was approached through different techniques. A possible solution for the optical metrology suitable for the realization of a Next-Generation Gravimetric Mission has been identified, designed, breadboarded and tested to a level of detail sufficient to assess its feasibility. The main elements of this optical metrology are: 1) a Michelson-type heterodyne laser interferometer for measuring the distance variation between the retro-reflectors installed on two satellites. The innovative feature of the interferometer consists in chopping the laser beam with a frequency related to the satellite distance. This enables its proper functioning with a retro-reflector placed at large distances (around 10 km) from the source; 2) an optical device consisting of three small telescopes endowed

  3. Mission design options for human Mars missions

    Science.gov (United States)

    Wooster, Paul D.; Braun, Robert D.; Ahn, Jaemyung; Putnam, Zachary R.

    Trajectory options for conjunction-class human Mars missions are examined, including crewed Earth-Mars trajectories with the option for abort to Earth, with the intent of serving as a resource for mission designers. An analysis of the impact of Earth and Mars entry velocities on aeroassist systems is included, and constraints are suggested for interplanetary trajectories based upon aeroassist system capabilities.

  4. Enabling Digital Literacy

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Georgsen, Marianne

    2010-01-01

    There are some tensions between high-level policy definitions of “digital literacy” and actual teaching practice. We need to find workable definitions of digital literacy; obtain a better understanding of what digital literacy might look like in practice; and identify pedagogical approaches, which......, these operate on a meso-level mediating between high-level concepts of digital literacy and classroom practice....... support teachers in designing digital literacy learning. We suggest that frameworks such as Problem Based Learning (PBL) are approaches that enable digital literacy learning because they provide good settings for engaging with digital literacy. We illustrate this through analysis of a case. Furthermore...

  5. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  6. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  7. Center for Beam Physics, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993.

  8. Cubesat Gravity Field Mission

    Science.gov (United States)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  9. Beam and experiments: summary

    Energy Technology Data Exchange (ETDEWEB)

    Blondel, A.; Bueno, A.; Campanelli, M.; Cervera, A.; Cline, D.B.; Collot, J.; Jong, M. de; Donini, A.; Dydak, F. E-mail: friedrich.dydak@cern.ch; Edgecock, R.; Gavela, M.B.; Gomez-Cadenas, J.J.; Gonzalez-Garcia, M.C.; Gruber, P.; Harris, D.A.; Hernandez, P.; Kuno, Y.; Litchfield, P.J.; McFarland, K.; Mena, O.; Migliozzi, P.; Palladino, V.; Panman, J.; Papadopoulos, I.M.; Para, A.; Pena-Garay, C.; Perez, P.; Rigolin, S.; Romanino, A.; Rubbia, A.; Strolin, P.; Wojcicki, S

    2000-08-21

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour mixing. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. Most importantly, the neutrino factory is the only known way to generate a high-intensity beam of electron neutrinos of high energy. The neutrino beam from a neutrino factory, in particular the electron-neutrino beam, enables the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it.

  10. IMPaCT - Integration of Missions, Programs, and Core Technologies

    Science.gov (United States)

    Balacuit, Carlos P.; Cutts, James A.; Peterson, Craig E.; Beauchamp, Patricia M.; Jones, Susan K.; Hang, Winnie N.; Dastur, Shahin D.

    2013-01-01

    IMPaCT enables comprehensive information on current NASA missions, prospective future missions, and the technologies that NASA is investing in, or considering investing in, to be accessed from a common Web-based interface. It allows dependencies to be established between missions and technology, and from this, the benefits of investing in individual technologies can be determined. The software also allows various scenarios for future missions to be explored against resource constraints, and the nominal cost and schedule of each mission to be modified in an effort to fit within a prescribed budget.

  11. The third mission

    OpenAIRE

    Francisco José GARCÍA-PEÑALVO

    2016-01-01

    The editorial of this first issue of volume 17, corresponding to 2016, is devoted to the university-business-society relationships that is usually known as Third Mission of the University or the knowledge transfer mission.

  12. Mission of Librarian

    Directory of Open Access Journals (Sweden)

    Reşit Sarıgül

    2013-11-01

    Full Text Available This article is a review of the book titled “Mission of Librarian” authored by Jose Ortega y Gasset and translated into Turkish by M. Turker Acaroğlu. The book, which is published by  İstanbul Branch of Turkish Librarians’ Association, explains mission, professional mission and mission of librarian in the future. The book also includes an interview with M. Turker Acaroğlu.

  13. Enabling graphene nanoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  14. Threads of Mission Success

    Science.gov (United States)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  15. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  16. Logistics Reduction Technologies for Exploration Missions

    Science.gov (United States)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  17. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which are enabled by a printable...

  18. Demonstration of Interferometric SAR Onboard Processing for Planetary Mapping Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This task will enable future planetary mapping missions through a technique called interferometric synthetic aperture radar, using microwave and triangulation to...

  19. Enabling immersive simulation.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Josh (University of California Santa Cruz, Santa Cruz, CA); Mateas, Michael (University of California Santa Cruz, Santa Cruz, CA); Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  20. Liquid metal enabled microfluidics.

    Science.gov (United States)

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  1. The echo-enabled harmonic generation options for FLASH II

    CERN Document Server

    Deng, Haixiao; Faatz, Bart

    2011-01-01

    FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed.

  2. The Europa Clipper Mission Concept

    Science.gov (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  3. Software Innovation in a Mission Critical Environment

    Science.gov (United States)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  4. NASA's Radiation Belt Storm Probe Mission

    Science.gov (United States)

    Sibeck, David G.

    2011-01-01

    NASA's Radiation Belt Storm Probe (RBSP) mission, comprising two identically-instrumented spacecraft, is scheduled for launch in May 2012. In addition to identifying and quantifying the processes responsible for energizing, transporting, and removing energetic particles from the Earth's Van Allen radiation, the mission will determine the characteristics of the ring current and its effect upon the magnetosphere as a whole. The distances separating the two RBSP spacecraft will vary as they move along their 1000 km altitude x 5.8 RE geocentric orbits in order to enable the spacecraft to separate spatial from temporal effects, measure gradients that help identify particle sources, and determine the spatial extent of a wide array of phenomena. This talk explores the scientific objectives of the mission and the manner by which the mission has been tailored to achieve them.

  5. Solar Electric Propulsion for Future NASA Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.

    2015-01-01

    Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.

  6. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  7. Chemically enabled nanostructure fabrication

    Science.gov (United States)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  8. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    Science.gov (United States)

    Doyle, Richard; Bergman, Larry; Some, Raphael; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and the mission; it can be aptly viewed as a "technology multiplier" in that advances in onboard computing provide dramatic improvements in flight functions and capabilities across the NASA mission classes, and will enable new flight capabilities and mission scenarios, increasing science and exploration return per mission-dollar.

  9. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  10. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    Science.gov (United States)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  11. Integrated Network Architecture for NASA's Orion Missions

    Science.gov (United States)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  12. Tandem-X Mission Status

    Science.gov (United States)

    Zink, M.

    2015-04-01

    TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) is an innovative formation flying radar mission that opens a new era in spaceborne radar remote sensing. Its primary objective is the acquisition of a global Digital Elevation Model (DEM) with unprecedented accuracy (12 m horizontal resolution and 2 m relative height accuracy). This goal is achieved by extending the TerraSAR-X synthetic aperture radar (SAR) mission by a second TerraSAR-X like satellite, TanDEM-X (TDX). Both satellites fly in close orbit formation of a few hundred meters distance, and the resulting large single-pass SAR interferometer features flexible baseline selection enabling the acquisition of highly accurate cross-track interferograms not impacted by temporal decorrelation and atmospheric disturbances. Beyond the global DEM, several secondary mission objectives based on along-track interferometry as well as new bistatic and multistatic SAR techniques have been defined. Since 2010 both satellites have been operated in close formation to map all land surfaces at least twice and difficult terrain even up to four times. While data acquisition for the DEM generation will be concluded by the end of 2014 it is expected to complete the processing of the global DEM in the second half of 2016.

  13. Ongoing Mars Missions: Extended Mission Plans

    Science.gov (United States)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  14. Sentinel-3 Mission Overview

    Science.gov (United States)

    Klein, U.; Berruti, B.; Donlon, C.; Frerick, J.; Mavrocordatos, C.; Nieke, J.; Seitz, B.; Stroede, J.; Rebhan, H.

    2009-04-01

    The series of Sentinel-3 satellites will provide global, frequent and near-realtime ocean, ice and land monitoring. Sentinel-3 will be particularly devoted to the provision of observation data in routine, long term (20 years of operations) and continuous fashion with a consistent quality and a very high level of availability. It will continue the successful observations of similar predecessor instruments onboard Envisat from 2012 onwards. The Ocean and Land Colour Instrument (OLCI) is based on the Envisat MEdium Resolution Imaging Spectrometer Instrument (MERIS) instrument. It fulfils ocean-colour and land-cover objectives with a larger swath and additional spectral bands. The Sea and Land Surface Temperature radiometer (SLSTR) is based on Envisat's Advanced Along Track Scanning Radiometer (AATSR). SLSTR has a double-scanning mechanism, yielding a wider swath and a complete overlap with OLCI. This enables the generation of a synergy product with a total of 30 spectral bands, fully co-registered for new and innovative ocean and land products. The topography mission has the primary objective of providing accurate, closely spaced altimetry measurements from a high-inclination orbit with a long repeat cycle. It will complement the Jason ocean altimeter series monitoring mid-scale circulation and sea levels. The altimeter will be operated in two different modes, a classical low resolution mode and a synthetic aperture mode similar to CryoSat for increased along-track resolution and improved performance. Accompanying the altimeter will be a Precise Orbit Determination system and microwave radiometer (MWR) for removing the errors related to the altimeter signals being delayed by water vapour in the atmosphere. The altimeter will track over a variety of surfaces: Open ocean, coastal zones, sea ice and inland waters. The conceptual designs of the major instruments and their basic performance parameters will be introduced together with the expected accuracies of the main

  15. JPL Mission Bibliometrics

    Science.gov (United States)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  16. The MicroMAS CubeSat Mission

    Science.gov (United States)

    Cahoy, K.; Blackwell, W. J.; Allen, G.; Bury, M.; Efromson, R.; Galbraith, C.; Hancock, T.; Leslie, V.; Osaretin, I.; Retherford, L.; Scarito, M.; Shields, M.; Toher, D.; Wight, K.; Miller, D.; Marinan, A.; Paek, S.; Peters, E.; Schmidt, F. H.; Alvisio, B.; Wise, E.; Masterson, R.; Franzim Miranda, D.; Crail, C.; Kingsbury, R.; Souffrant, A.; Orrego, L.; Eslinger, G.; Nicholas, A.; Pong, C.

    2012-12-01

    The recently published Midterm Assessment of NASA's Implementation of the Decadal Survey finds that, "The nation's Earth observing system is beginning a rapid decline in capability as long-running missions end and key new missions are delayed, lost, or canceled. The projected loss of observing capability could have significant adverse consequences for science and society." In this presentation, we explore low-cost, mission-flexible, and rapidly deployable spaceborne sensors that can meet stringent performance requirements pervading the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. New technologies have enabled a novel approach toward this science observational goal, and in this paper we describe recent technology develop efforts to address the challenges above through the use of CubeSat radiometers. The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (30x10x10 cm, ~4kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately 500-km altitude. A MicroMAS flight unit is currently being developed in anticipation of a 2014 launch to be provided by NASA. A parabolic reflector is mechanically rotated as the spacecraft orbits the earth, thus directing a cross-track scanned beam with FWHM beamwidth of 2.4-degrees, yielding an approximately 25-km diameter footprint from a nominal altitude of 500 km. Radiometric calibration is carried out using observations of cold space, the earth's limb, and an internal noise diode that is weakly coupled through the RF front-end electronics. A key technology feature is the development of an ultra-compact intermediate frequency processor module for channelization, detection, and A-to-D conversion. The antenna system and RF front

  17. The STEREO Mission

    CERN Document Server

    2008-01-01

    The STEREO mission uses twin heliospheric orbiters to track solar disturbances from their initiation to 1 AU. This book documents the mission, its objectives, the spacecraft that execute it and the instruments that provide the measurements, both remote sensing and in situ. This mission promises to unlock many of the mysteries of how the Sun produces what has become to be known as space weather.

  18. FOILFEST :community enabled security.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.; Drayer, Darryl Donald; Cummings, John C., Jr. (.,; .)

    2005-09-01

    The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological

  19. A Virtual Mission Operations Center: Collaborative Environment

    Science.gov (United States)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system

  20. Atrial Fibrillation During an Exploration Class Mission

    Science.gov (United States)

    Lipset, Mark A.; Lemery, Jay; Polk, J. D.; Hamilton, Douglas R.

    2010-01-01

    Background: A long-duration exploration class mission is fraught with numerous medical contingency plans. Herein, we explore the challenges of symptomatic atrial fibrillation (AF) occurring during an exploration class mission. The actions and resources required to ameliorate the situation, including the availability of appropriate pharmaceuticals, monitoring devices, treatment modalities, and communication protocols will be investigated. Challenges of Atrial Fibrillation during an Exploration Mission: Numerous etiologies are responsible for the initiation of AF. On Earth, we have the time and medical resources to evaluate and determine the causative situation for most cases of AF and initiate therapy accordingly. During a long-duration exploration class mission resources will be severely restricted. How is one to determine if new onset AF is due to recent myocardial infarction, pulmonary embolism, fluid overload, thyrotoxicosis, cardiac structural abnormalities, or CO poisoning? Which pharmaceutical therapy should be initiated and what potential side effects can be expected? Should anti-coagulation therapy be initiated? How would one monitor the therapeutic treatment of AF in microgravity? What training would medical officers require, and which communication strategies should be developed to enable the best, safest therapeutic options for treatment of AF during a long-duration exploration class mission? Summary: These questions will be investigated with expert opinion on disease elucidation, efficient pharmacology, therapeutic monitoring, telecommunication strategies, and mission cost parameters with emphasis on atrial fibrillation being just one illustration of the tremendous challenges that face a long-duration exploration mission. The limited crew training time, medical hardware, and drugs manifested to deal with such an event predicate that aggressive primary and secondary prevention strategies be developed to protect a multibillion-dollar asset like the

  1. Mission Architecture and Technology Options for a Flagship Class Venus In Situ Mission

    Science.gov (United States)

    Balint, Tibor S.; Kwok, Johnny H.; Kolawa, Elizabeth A.; Cutts, James A.; Senske, David A.

    2008-01-01

    Venus, as part of the inner triad with Earth and Mars, represents an important exploration target if we want to learn more about solar system formation and evolution. Comparative planetology could also elucidate the differences between the past, present, and future of these three planets, and can help with the characterization of potential habitable zones in our solar system and, by extension, extrasolar systems. A long lived in situ Venus mission concept, called the Venus Mobile Explorer, was prominently featured in NASA's 2006 SSE Roadmap and supported in the community White Paper by the Venus Exploration Analysis Group (VEXAG). Long-lived in situ missions are expected to belong to the largest (Flagship) mission class, which would require both enabling and enhancing technologies beside mission architecture options. Furthermore, extreme environment mitigation technologies for Venus are considered long lead development items and are expected to require technology development through a dedicated program. To better understand programmatic and technology needs and the motivating science behind them, in this fiscal year (FY08) NASA is funding a Venus Flaghip class mission study, based on key science and technology drivers identified by a NASA appointed Venus Science and Technology Definition Team (STDT). These mission drivers are then assembled around a suitable mission architecture to further refine technology and cost elements. In this paper we will discuss the connection between the final mission architecture and the connected technology drivers from this NASA funded study, which - if funded - could enable a future Flagship class Venus mission and potentially drive a proposed Venus technology development program.

  2. Mission interplanetary: Using radioisotope power to explore the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Gary L., E-mail: UserSg4282@aol.com

    2008-03-15

    The exploration of space both by humans and robots has been greatly enhanced and, in many cases, enabled by the use of radioisotope power sources (RPSs) to power and/or heat scientific instruments. Radioisotope power sources have enabled such breakthrough missions as the Pioneer flights to Jupiter, Saturn and beyond; the Voyager flights to Jupiter, Saturn, Uranus, Neptune, and beyond; the Apollo lunar surface experiments; the Viking Lander studies of Mars; the Galileo spacecraft that orbited Jupiter; the Ulysses mission to study the polar regions of the Sun; the Cassini spacecraft orbiting Saturn; and the recently launched New Horizons spacecraft to Pluto. Radioisotope heater units have enhanced or enabled the Apollo Early Scientific Experiment Package and the Mars exploration rover missions (Sojourner, Spirit and Opportunity). Since 1961, the United States has successfully flown 41 radioisotope thermoelectric generators (RTGs) to provide electrical power for 23 space missions.

  3. The Rosetta mission

    Science.gov (United States)

    Taylor, Matt; Altobelli, Nicolas; Martin, Patrick; Buratti, Bonnie J.; Choukroun, Mathieu

    2016-10-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Following its launch in March 2004, Rosetta underwent 3 Earth and 1 Mars flybys to achieve the correct trajectory to capture the comet, including flybys of asteroid on 2867 Steins and 21 Lutetia. For June 2011- January 2014 the spacecraft passed through a period of hibernation, due to lack of available power for full payload operation and following successful instrument commissioning, successfully rendezvoused with the comet in August 2014. Following an intense period of mapping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was successfully deployed. Rosetta then embarked on the main phase of the mission, observing the comet on its way into and away from perihelion in August 2015. At the time of writing the mission is planned to terminate with the Rosetta orbiter impacting the comet surface on 30 September 2016. This presentation will provide a brief overview of the mission and its science. The first author is honoured to give this talk on behalf of all Rosetta mission science, instrument and operations teams, for it is they who have worked tirelessly to make this mission the success it is.

  4. Mission Medical Information System

    Science.gov (United States)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  5. The SPICA mission

    NARCIS (Netherlands)

    Sibthorpe, B.; Helmich, F.; Roelfsema, P.; Kaneda, H.; Shibai, H.; Simon, R.; Schaaf, R.; Stutzki, J,

    2016-01-01

    SPICA is a mid and far-infrared space mission to be submitted as a candidate to ESA's fifth medium class mission call, due in early 2016. This will be a joint project between ESA and JAXA, with ESA taking the lead role. If selected, SPICA will launch in ˜2029 and operate for a goal lifetime of 5 yea

  6. KEEL for Mission Planning

    Science.gov (United States)

    2016-10-06

    cognitive technology for application in automotive , industrial automation, medical, military, governmental, enterprise software and electronic gaming...evaluate risks or develop and test new tactics and strategies. This paper separates Mission Planning Software into two domains: 1. Rendering of the...simplest form, Mission Planning is the process of evaluating information in the form of risks (threats) and rewards (opportunities) to most appropriately

  7. Bering Mission Navigation Method

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2003-01-01

    "Bering", after the name of the famous Danish explorer, is a near Earth object (NEO) and main belt asteroids mapping mission envisaged by a consortium of Danish universities and research institutes. To achieve the ambitious goals set forth by this mission, while containing the costs and risks...

  8. The Pioneer Venus Missions.

    Science.gov (United States)

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  9. A Secure NEC-enabling Architecture : Disentangling Infrastructure, Information and Security

    NARCIS (Netherlands)

    Boonstra, D.; Hartog, T.; Schotanus, H.A.; Verkoelen, C.A.A.

    2011-01-01

    The NATO Network-Enabled Capability (NNEC) study envisions effective and efficient cooperation among the coalition partners in missions. This requires information sharing and efficient deployment of IT assets. Current military communication infrastructures are mostly deployed as stand-alone

  10. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  11. Exploration Mission Benefits From Logistics Reduction Technologies

    Science.gov (United States)

    Broyan, James Lee, Jr.; Schlesinger, Thilini; Ewert, Michael K.

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logical mass can have a significant impact because it also reduces the packing burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting and trash processing technologies to increase habitable volume and improve protection against solar storm events are under development. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio frequency identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and there mission benefits for exploration missions.

  12. The COBE mission - Its design and performance two years after launch

    Science.gov (United States)

    Boggess, N. W.; Mather, J. C.; Weiss, R.; Bennett, C. L.; Cheng, E. S.; Dwek, E.; Gulkis, S.; Hauser, M. G.; Janssen, M. A.; Kelsall, T.

    1992-01-01

    The COBE mission, NASA's first space mission devoted primarily to cosmology, is described and the spacecraft concepts central to enabling the mission to achieve its scientific objectives are examined. The major components of the COBE instrument and spacecraft modules are shown and their characteristics are given. Early scientific results are summarized and plans for continuing satellite operations and data analysis are addressed.

  13. Jefferson Lab Personnel Safety Fast Beam Kicker System

    Science.gov (United States)

    Mahoney, K.; Garza, O.; Stitts, E.; Areti, H.; O'Sullivan, M.

    1997-05-01

    The CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) uses a continuous electron beam with up to 800 kilowatts of average beam power. The laboratory beam containment policy requires that in the event of an errant beam striking a beam blocking device, the beam must be shut off by three methods in less than 1 millisecond. One method implemented is to shut off the beam at the gun. Two additional methods have been developed which use fast beam kickers to deflect the injector beam on to a water cooled aperture. The kickers designed and implemented at Jefferson Lab are able to deflect the injector beam in less than 200 microseconds. The kicker system includes self-test and monitoring capabilities that enable the system to be used for personnel safety. This paper will describe the requirements and performance of the fast beam kicker system.

  14. Recce mission planning

    Science.gov (United States)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  15. All Sky Survey Mission Observing Scenario Strategy

    CERN Document Server

    Spangelo, Sara C; Unwin, Stephen C; Bock, Jamie J

    2014-01-01

    This paper develops a general observing strategy for missions performing all-sky surveys, where a single spacecraft maps the celestial sphere subject to realistic constraints. The strategy is flexible such that targeted observations and variable coverage requirements can be achieved. This paper focuses on missions operating in Low Earth Orbit, where the thermal and stray-light constraints due to the Sun, Earth, and Moon result in interacting and dynamic constraints. The approach is applicable to broader mission classes, such as those that operate in different orbits or that survey the Earth. First, the instrument and spacecraft configuration is optimized to enable visibility of the targeted observations throughout the year. Second, a constraint-based high-level strategy is presented for scheduling throughout the year subject to a simplified subset of the constraints. Third, a heuristic-based scheduling algorithm is developed to assign the all-sky observations over short planning horizons. The constraint-based...

  16. Cassini: Mission to Saturn and Titan

    Science.gov (United States)

    Kerridge, Stuart J.; Flury, Walter; Horn, Linda J.; Lebreton, Jean-Pierre; Stetson, Douglas S.; Stoller, Richard L.; Tan, Grace H.

    1992-01-01

    The Cassini Mission to Saturn and Titan represents an important step into the exploration of the outerplanets. It will expand on the flyby encounters of Pioneer and Voyager and parallel the detailed exploration of the Jupiter system to be accomplished by the Galileo Mission. By continuing the study of the two giant planets and enabling detailed comparisons of their structure and behavior, Cassini will provide a tremendous insight into the formation and evolution of the solar system. In addition, by virtue of its focus on the Saturnian satellite Titan, Cassini will return detailed data on an environment whose atmospheric chemistry may resemble that of the primitive Earth. The scientific objectives can be divided into five categories: Titan, Saturn, rings, icy satellites, and magnetospheres. The key area of interest to exobiologists is Titan; the other four scientific categories will be discussed briefly to provide a comprehensive overview of the Cassini Mission.

  17. The LISA Pathfinder mission

    Science.gov (United States)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Caleno, M.; Cañizares, P.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Ferrone, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hernández, V.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Racca, G. D.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H.-B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Ziegler, T.; Zweifel, P.

    2012-06-01

    In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.

  18. Design Reference Missions for Deep-Space Optical Communication

    Science.gov (United States)

    Breidenthal, J.; Abraham, D.

    2016-05-01

    We examined the potential, but uncertain, NASA mission portfolio out to a time horizon of 20 years, to identify mission concepts that potentially could benefit from optical communication, considering their communications needs, the environments in which they would operate, and their notional size, weight, and power constraints. A set of 12 design reference missions was selected to represent the full range of potential missions. These design reference missions span the space of potential customer requirements, and encompass the wide range of applications that an optical ground segment might eventually be called upon to serve. The design reference missions encompass a range of orbit types, terminal sizes, and positions in the solar system that reveal the chief system performance variables of an optical ground segment, and may be used to enable assessments of the ability of alternative systems to meet various types of customer needs.

  19. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard

    2006-01-01

    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me an opportu...

  20. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard

    2006-01-01

    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me...

  1. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  2. Global Precipitation Mission Visualization Tool

    Science.gov (United States)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  3. The NeXT Mission

    CERN Document Server

    Takahashi, T; Mitsuda, K; Kunieda, H; Petre, R; White, N; Dotani, T; Fujimoto, R; Fukazawa, Y; Hayashida, K; Ishida, M; Ishisaki, Y; Kokubun, M; Makishima, K; Koyama, K; Madejski, G M; Mori, K; Mushotzky, R; Nakazawa, K; Ogasaka, Y; Ohashi, T; Ozaki, M; Tajima, H; Tashiro, M; Terada, Y; Tsunemi, H; Tsuru, T G; Ueda, Y; Yamasaki, N; Watanabe, S

    2008-01-01

    The NeXT (New exploration X-ray Telescope), the new Japanese X-ray Astronomy Satellite following Suzaku, is an international X-ray mission which is currently planed for launch in 2013. NeXT is a combination of wide band X-ray spectroscopy (3 - 80 keV) provided by multi-layer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3 - 10 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector. With these instruments, NeXT covers very wide energy range from 0.3 keV to 600 keV. The micro-calorimeter system will be developed by international collaboration lead by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of Delta E ~ 7 eV by the micro-calorimeter will enable a wide variety of important science themes to be pursued.

  4. Zenith Movie showing Phoenix's Lidar Beam (Animation)

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing. The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible. The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Draft Strategic Laboratory Missions Plan. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

  6. Uganda Mission PRS

    Data.gov (United States)

    US Agency for International Development — A web-based performance reporting system that is managed by IBI that interfaces with the Mission's GIS database that supports USAID/Uganda and its implementing...

  7. STS-83 Mission Insignia

    Science.gov (United States)

    1997-01-01

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  8. The Prisma Hyperspectra Mission

    Science.gov (United States)

    Loizzo, R.; Ananasso, C.; Guarini, R.; Lopinto, E.; Candela, L.; Pisani, A. R.

    2016-08-01

    PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an Italian Space Agency (ASI) hyperspectral mission currently scheduled for the lunch in 2018. PRISMA is a single satellite placed on a sun- synchronous Low Earth Orbit (620 km altitude) with an expected operational lifetime of 5 years. The hyperspectral payload consists of a high spectral resolution (VNIR-SWIR) imaging spectrometer, optically integrated with a medium resolution Panchromatic camera. PRISMA will acquire data on areas of 30 km Swath width and with a Ground Sampling Distance (GSD) of 30 m (hyperspectral) and of 5 m Panchromatic (PAN). The PRISMA Ground Segment will be geographically distributed between Fucino station and ASI Matera Space Geodesy Centre and will include the Mission Control Centre, the Satellite Control Centre and the Instrument Data Handling System. The science community supports the overall lifecycle of the mission, being involved in algorithms definition, calibration and validation activities, research and applications development.

  9. Athena Mission Performance

    Science.gov (United States)

    den Herder, Jan-Willem; Piro, Luigi; Rau, Arne

    2015-09-01

    The optimization of the Athena mission, the ESA's large X-ray observatory for 2028, is a key challenge. Critical elements for achieving the scientific performances are obviously the two instruments and the optics. However, additional aspects related to the overall mission performances are crucial as well, including the particle background environment (separate presentation), the calibration, the response time to Target of Opportunity requests, the functionality of the science ground segment, and the available high-quality data analysis tools. In addition, the full performance of the satellite will be modeled by an end-to-end simulator. In this presentation we will give an overview of the various systems and also present the Mock Observing Plan that is used to optimize the mission. The work presented in this contribution is based on a collective effort of the Athena science community and is coordinated by the Athena Mission Performance Working Group.

  10. Doing mission inclusively

    African Journals Online (AJOL)

    2016-06-24

    Jun 24, 2016 ... language, rituals, rules, values, and other religious and cultural settings. ... This article posits that Christians, while being in the world, are not of this world. ..... is at the heart of all Christian missions, a core competence of.

  11. Autonomous Mission Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future human spaceflight missions will occur with crews and spacecraft at large distances, with long communication delays, to the Earth. The one-way light-time delay...

  12. Creative Analytics of Mission Ops Event Messages

    Science.gov (United States)

    Smith, Dan

    2017-01-01

    Historically, tremendous effort has been put into processing and displaying mission health and safety telemetry data; and relatively little attention has been paid to extracting information from missions time-tagged event log messages. Todays missions may log tens of thousands of messages per day and the numbers are expected to dramatically increase as satellite fleets and constellations are launched, as security monitoring continues to evolve, and as the overall complexity of ground system operations increases. The logs may contain information about orbital events, scheduled and actual observations, device status and anomalies, when operators were logged on, when commands were resent, when there were data drop outs or system failures, and much much more. When dealing with distributed space missions or operational fleets, it becomes even more important to systematically analyze this data. Several advanced information systems technologies make it appropriate to now develop analytic capabilities which can increase mission situational awareness, reduce mission risk, enable better event-driven automation and cross-mission collaborations, and lead to improved operations strategies: Industry Standard for Log Messages. The Object Management Group (OMG) Space Domain Task Force (SDTF) standards organization is in the process of creating a formal standard for industry for event log messages. The format is based on work at NASA GSFC. Open System Architectures. The DoD, NASA, and others are moving towards common open system architectures for mission ground data systems based on work at NASA GSFC with the full support of the commercial product industry and major integration contractors. Text Analytics. A specific area of data analytics which applies statistical, linguistic, and structural techniques to extract and classify information from textual sources. This presentation describes work now underway at NASA to increase situational awareness through the collection of non

  13. Galileo Mission Science Briefing

    Science.gov (United States)

    1989-07-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  14. Bering Mission Navigation Method

    OpenAIRE

    2003-01-01

    "Bering", after the name of the famous Danish explorer, is a near Earth object (NEO) and main belt asteroids mapping mission envisaged by a consortium of Danish universities and research institutes. To achieve the ambitious goals set forth by this mission, while containing the costs and risks, "Bering" sports several new technological enhancements and advanced instruments under development at the Technical University of Denmark (DTU). The autonomous on-board orbit determination method is part...

  15. The LISA Pathfinder Mission

    Science.gov (United States)

    McNamara, Paul

    2013-04-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future interferometric spaceborne gravitational wave observatories, for example the proposed eLISA mission. The technologies required for eLISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical eLISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the eLISA constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the eLISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  16. Advanced Microwave Radiometer (AMR) for SWOT mission

    Science.gov (United States)

    Chae, C. S.

    2015-12-01

    The objective of the SWOT (Surface Water & Ocean Topography) satellite mission is to measure wide-swath, high resolution ocean topography and terrestrial surface waters. Since main payload radar will use interferometric SAR technology, conventional microwave radiometer system which has single nadir look antenna beam (i.e., OSTM/Jason-2 AMR) is not ideally applicable for the mission for wet tropospheric delay correction. Therefore, SWOT AMR incorporates two antenna beams along cross track direction. In addition to the cross track design of the AMR radiometer, wet tropospheric error requirement is expressed in space frequency domain (in the sense of cy/km), in other words, power spectral density (PSD). Thus, instrument error allocation and design are being done in PSD which are not conventional approaches for microwave radiometer requirement allocation and design. A few of novel analyses include: 1. The effects of antenna beam size to PSD error and land/ocean contamination, 2. Receiver error allocation and the contributions of radiometric count averaging, NEDT, Gain variation, etc. 3. Effect of thermal design in the frequency domain. In the presentation, detailed AMR design and analyses results will be discussed.

  17. The Europa Clipper mission concept

    Science.gov (United States)

    Pappalardo, Robert; Lopes, Rosaly

    Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces

  18. Robotic Mission Simulation Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes a software tool to predict robotic mission performance and support supervision of robotic missions even when environments and...

  19. Rotorcraft and Enabling Robotic Rescue

    Science.gov (United States)

    Young, Larry A.

    2010-01-01

    This paper examines some of the issues underlying potential robotic rescue devices (RRD) in the context where autonomous or manned rotorcraft deployment of such robotic systems is a crucial attribute for their success in supporting future disaster relief and emergency response (DRER) missions. As a part of this discussion, work related to proof-of-concept prototyping of two notional RRD systems is summarized.

  20. Multi-shaped beam proof of lithography

    Science.gov (United States)

    Slodowski, Matthias; Doering, Hans-Joachim; Dorl, Wolfgang; Stolberg, Ines A.

    2010-03-01

    In this paper a full package high throughput multi electron-beam approach, called Multi Shaped Beam (MSB), for applications in mask making as well as direct write will be presented including complex proof-of-lithography results. The basic concept enables a significant exposure shot count reduction for advanced patterns compared to standard Variable Shaped Beam (VSB) systems and allows full pattern flexibility by concurrently using MSB, VSB and Cell Projection (CP). Proof of lithography results will be presented, which have been performed using a fully operational electron-beam lithography system including data path and substrate scanning by x/y-stage movement.

  1. Far-Infrared Beam-splitter For CLARREO

    Science.gov (United States)

    Jordan, D. C.; Milanovic, Z.

    2008-12-01

    Hyper-spectral missions in the 5-50 um wavelength range over a long lifetime with a small calibration error requirement such as CLARREO have beam-splitter needs dictated by the specific details of the mission. Good performance over the long wavelength range (10 x in length) is technically challenging for a coating design. The long wavelength range and the long end of the wavelength band eliminate from consideration (due to bulk material absorption) many of the common beam-splitter substrate and beam-splitter coating materials typically used for LWIR space borne instruments. For a Fourier Transform Spectrometer (FTS) mission like CLARREO, the beam-splitter requirements are derived from the NEdN requirement (radiometric noise) and the radiometric uncertainty requirement (radiometric bias). The goal is for the beam-splitter to provide a high modulation of the signal resulting from the two beam interference. A material survey was done to determine the applicable beam-splitter substrate and coating candidate materials. Based on the survey, several preliminary designs were created and evaluated. A cesium iodine approach appears to work well and will be the subject of future activity. The plan is to design and manufacture a beam-splitter in Phase 1. In Phase 2 and Phase 3 a test set to characterize beam-splitter performance over the spectral range will be designed and constructed and the beam-splitter will be characterized using the test set.

  2. Mission Control Technologies: A New Way of Designing and Evolving Mission Systems

    Science.gov (United States)

    Trimble, Jay; Walton, Joan; Saddler, Harry

    2006-01-01

    Current mission operations systems are built as a collection of monolithic software applications. Each application serves the needs of a specific user base associated with a discipline or functional role. Built to accomplish specific tasks, each application embodies specialized functional knowledge and has its own data storage, data models, programmatic interfaces, user interfaces, and customized business logic. In effect, each application creates its own walled-off environment. While individual applications are sometimes reused across multiple missions, it is expensive and time consuming to maintain these systems, and both costly and risky to upgrade them in the light of new requirements or modify them for new purposes. It is even more expensive to achieve new integrated activities across a set of monolithic applications. These problems impact the lifecycle cost (especially design, development, testing, training, maintenance, and integration) of each new mission operations system. They also inhibit system innovation and evolution. This in turn hinders NASA's ability to adopt new operations paradigms, including increasingly automated space systems, such as autonomous rovers, autonomous onboard crew systems, and integrated control of human and robotic missions. Hence, in order to achieve NASA's vision affordably and reliably, we need to consider and mature new ways to build mission control systems that overcome the problems inherent in systems of monolithic applications. The keys to the solution are modularity and interoperability. Modularity will increase extensibility (evolution), reusability, and maintainability. Interoperability will enable composition of larger systems out of smaller parts, and enable the construction of new integrated activities that tie together, at a deep level, the capabilities of many of the components. Modularity and interoperability together contribute to flexibility. The Mission Control Technologies (MCT) Project, a collaboration of

  3. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  4. Computer Security Systems Enable Access.

    Science.gov (United States)

    Riggen, Gary

    1989-01-01

    A good security system enables access and protects information from damage or tampering, but the most important aspects of a security system aren't technical. A security procedures manual addresses the human element of computer security. (MLW)

  5. Taxonomy Enabled Discovery (TED) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal addresses the NASA's need to enable scientific discovery and the topic's requirements for: processing large volumes of data, commonly available on the...

  6. BRRISON Mission Design and Development

    Science.gov (United States)

    O'Malley, Terence; Kremic, T.; Adams, D.; Arnold, S.; Cheng, A.

    2013-10-01

    In September 2012, the comet C/2012 S1 “ISON” was discovered by Russian amateur astronomers. A team consisting of personnel from Glenn Research Center (GRC) Space Science Project Office, the Johns Hopkins University Applied Physics Lab (APL), and the Southwest Research Institute (SWRI) was established to identify the science return on a high altitude balloon mission to observe ISON, and develop a plan based on re-using most of the hardware from the Stratospheric Terahertz Observatory (STO). The team determined that measuring the comet’s H20/CO2 ratio with an infra-red Camera would be a high-value and unique scientific contribution of a balloon borne payload. The BRRISON scientific payload consists of a heritage 80-cm telescope, a near-ultraviolet visible optical bench and instruments, and an infrared optical bench and instruments. The telescope, which has flown on prior balloon missions, consists of a light-weighted f/1.5 hyperboloid 80 cm diameter primary and a secondary mirror to provide an f/17 beam. The near ultra-violet and visible cameras and associated instruments are being integrated to an optics bench by SwRI. These instruments consist of a fine steering mirror (FSM) and a CMOS high rate camera to provide sub-arcsec pointing, and a CCD camera for low noise science operation, and a dichroic for splitting the f/17 beam between the two cameras. The infrared optics bench and instruments consist of an optics bench, re-imaging optics and cold stop, filter wheel and filters, and an infrared camera that is sensitive over the required wavelengths of 2.5 - 5 microns. The IR optics bench and instruments will be enclosed in an aluminum housing, which will be cooled to reduce the thermal background contribution to the IR signal. The BRRISON gondola is composed of a metal frame that carries and protects the science payload and subsystems and is the structural interface with the balloon flight train. They are composed of a Command & Control system, a Pointing

  7. Lessons learned from planetary entry probe missions

    Science.gov (United States)

    Niemann, Hasso; Atreya, Sushil K.; Kasprzak, Wayne

    technology will also play an important role. The emergence over the past twenty years of Micro-electro-mechanical Systems (MEMS), utilizing lithographic semiconductor fabrication techniques to produce instrument systems in miniature, holds great promise for application to spaceflight. For example, a highly miniaturized, high performance and low-power gas chromatograph mass spectrometer would enormously benefit entry probe missions, allowing, for example, parallel measurements (e.g., multiple simultaneous gas chromatographic and direct atmospheric measurements). Such an instrument would also enable mass spectrometry on board small multiple entry probes. The challenge facing us in the development of MEMS based instruments is to move beyond the proof-of-concept, where research dollars tend to focus, and carry out the detailed work of developing high performance flight instrument systems on a chip which reach the required high technical readiness level for space flight.

  8. No mission is impossible for LHCb

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Time: 01:37:51 am, 3 October, 2011. The LHC is producing million collisions per second in its detectors. But at that time, one collision is “more special” than the others in the LHCb detector: the milestone of 1 inverse femtobarn of luminosity is surpassed. What was considered as “mission impossible” at the beginning of the year is now “mission accomplished”.   Mike Lamont (Operations Group Leader), Pierluigi Campana (LHCb Spokesperson), Steve Myers (Director for Accelerators and Technology), and Paul Collier (Head of the Beams Department) celebrate the LHCb milestone. LHCb is the CERN experiment specialising in the study of b-quarks, whose properties and behaviour are likely to provide physicists with important hints on several physics processes, including some new physics. “One inverse femtobarn of luminosity corresponds to about seventy billion b-quark pairs decayed in the LHCb detector,” explains Pierluigi Cam...

  9. The Aerosol, Clouds and Ecosystem (ACE) Mission

    Science.gov (United States)

    Schoeberl, M.; Remer, L.; Kahn, R.; Starr, D.; Hildebrand, P.; Colarco, P.; Diner, D.; Vane, D.; Im, E.; Behrenfeld, M.; Stephens, G.; Maring, H.; Bontempi, P.; Martins, J. V.

    2008-12-01

    The Aerosol, Clouds and Ecosystem (ACE) Mission is a second tier Decadal Survey mission designed to characterize the role of aerosols in climate forcing, especially their impact on precipitation and cloud formation. ACE also includes ocean biosphere measurements (chlorophyll and dissolved organic materials) which will be greatly improved by simultaneous measurements of aerosols. The nominal ACE payload includes lidar and multiangle spectropolarimetric polarimetric measurements of aerosols, radar measurements of clouds and multi-band spectrometer for the measurement of ocean ecosystems. An enhancement to ACE payload under consideration includes µ-wave radiometer measurements of cloud ice and water outside the nadir path of the radar/lidar beams. This talk will cover ACE instrument and science options, updates on the science team definition activity and science potential.

  10. Advanced power sources for space missions

    Science.gov (United States)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  11. KuaFu Mission

    Institute of Scientific and Technical Information of China (English)

    XIA Lidong; TU Chuanyi; Schwenn Rainer; Donovan Eric; Marsch Eckart; WANG Jingsong; ZHANG Yongwei; XIAO Zuo

    2006-01-01

    The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.

  12. Radioactive Ion Beams and Radiopharmaceuticals

    Science.gov (United States)

    Laxdal, R. E.; Morton, A. C.; Schaffer, P.

    2014-02-01

    Experiments performed at radioactive ion beam facilities shed new light on nuclear physics and nuclear structure, as well as nuclear astrophysics, materials science and medical science. The many existing facilities, as well as the new generation of facilities being built and those proposed for the future, are a testament to the high interest in this rapidly expanding field. The opportunities inherent in radioactive beam facilities have enabled the search for radioisotopes suitable for medical diagnosis or therapy. In this article, an overview of the production techniques and the current status of RIB facilities and proposals will be presented. In addition, accelerator-generated radiopharmaceuticals will be reviewed.

  13. An MCNPX accelerator beam source

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elson, Jay S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jason, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Laurie S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-06-04

    MCNPX is a powerful Monte Carlo code that can be used to conduct sophisticated radiation-transport simulations involving complex physics and geometry. Although MCNPX possesses a wide assortment of standardized modeling tools, there are instances in which a user's needs can eclipse existing code capabilities. Fortunately, although it may not be widely known, MCNPX can accommodate many customization needs. In this article, we demonstrate source-customization capability for a new SOURCE subroutine as part of our development to enable simulations involving accelerator beams for active-interrogation studies. Simulation results for a muon beam are presented to illustrate the new accelerator-source capability.

  14. The experimental study of neutralized electron beams for electron cooling

    CERN Document Server

    Bosser, Jacques; MacCaferri, R; Molinari, G; Tranquille, G; Varenne, F; Korotaev, Yu V; Meshkov, I N; Polyakov, V A; Smirnov, A; Syresin, E M

    1996-01-01

    In this report we present the latest experimental results on electron beam neutralization. These experiments have been made at LEAR and on the JINR test bench. The main difficulty in obtaining neutralized beams resides in an instability which is dependent on the electron beam current. A number of methods have been developed in order to overcome this instability and have enabled us to further investigate the possibility of generating intense low energy electron beams for the cooling of Pb ions.

  15. Signals of Opportunity Earth Reflectometry (SoOp-ER): Enabling new microwave observations from small satellites

    Science.gov (United States)

    Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.

    2016-12-01

    Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations

  16. NASA Facts: Edison Demonstration of Spacecraft Networks (EDSN) Mission

    Science.gov (United States)

    Ord, Stephen; Yost, Bruce D.; Petro, Andrew J.

    2013-01-01

    NASA's Edison Demonstration of Smallsat Networks (EDSN) mission will launch and deploy a swarm of 8 cubesats into a loose formation approximately 500 km above Earth. EDSN will develop technology to send multiple, advanced, yet affordable nanosatellites into space with cross-link communications to enable a wide array of scientific, commercial, and academic research. Other goals of the mission include lowering the cost and shortening the development time for future small spacecraft.

  17. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach

    Science.gov (United States)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

    2011-01-01

    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  18. The PROBA-3 Mission

    Science.gov (United States)

    Zhukov, Andrei

    2016-07-01

    PROBA-3 is the next ESA mission in the PROBA line of small technology demonstration satellites. The main goal of PROBA-3 is in-orbit demonstration of formation flying techniques and technologies. The mission will consist of two spacecraft together forming a giant (150 m long) coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). The bigger spacecraft will host the telescope, and the smaller spacecraft will carry the external occulter of the coronagraph. ASPIICS heralds the next generation of solar coronagraphs that will use formation flying to observe the inner corona in eclipse-like conditions for extended periods of time. The occulter spacecraft will also host the secondary payload, DARA (Davos Absolute RAdiometer), that will measure the total solar irradiance. PROBA-3 is planned to be launched in 2019. The scientific objectives of PROBA-3 will be discussed in the context of other future solar and heliospheric space missions.

  19. The Hinode Mission

    CERN Document Server

    Sakurai, Takashi

    2009-01-01

    The Solar-B satellite was launched in 2006 by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), and was renamed Hinode ('sunrise' in Japanese). Hinode carries three instruments: the X-ray telescope (XRT), the EUV imaging spectrometer (EIS), and the Solar Optical Telescope (SOT). These instruments were developed by ISAS/JAXA in cooperation with the National Astronomical Observatory of Japan as domestic partner, and NASA and the Science and Technology Facilities Council (UK) as international partners. ESA and the Norwegian Space Center have been providing a downlink station. The Hinode (Solar-B) Mission gives a comprehensive description of the Hinode mission and its instruments onboard. This book is most useful for researchers, professionals, and graduate students working in the field of solar physics, astronomy, and space instrumentation. This is the only book that carefully describes the details of the Hinode mission; it is richly illustrated with full-color ima...

  20. Athena Mission Status

    Science.gov (United States)

    Lumb, D.

    2016-07-01

    Athena has been selected by ESA for its second large mission opportunity of the Cosmic Visions programme, to address the theme of the Hot and Energetic Universe. Following the submission of a proposal from the community, the technical and programmatic aspects of the mission design were reviewed in ESA's Concurrent Design Facility. The proposed concept was deemed to betechnically feasible, but with potential constraints from cost and schedule. Two parallel industry study contracts have been conducted to explore these conclusions more thoroughly, with the key aim of providing consolidated inputs to a Mission Consolidation Review that was conducted in April-May 2016. This MCR has recommended a baseline design, which allows the agency to solicit proposals for a community provided payload. Key design aspects arising from the studies are described, and the new reference design is summarised.

  1. The ALEXIS mission recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B. [Los Alamos National Lab., NM (United States); Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R. [AeroAstro, Inc., Herndon, VA (United States)

    1994-03-01

    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  2. MIV Project: Mission scenario

    DEFF Research Database (Denmark)

    Ravazzotti, Mariolina T.; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions.......Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions....

  3. The Asteroid Impact Mission

    Science.gov (United States)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  4. STS-65 Mission Insignia

    Science.gov (United States)

    1994-01-01

    Designed by the mission crew members, the STS-65 insignia features the International Microgravity Lab (IML)-2 mission and its Spacelab module which flew aboard the Space Shuttle Columbia. IML-2 is reflected in the emblem by two gold stars shooting toward the heavens behind the IML lettering. The Space Shuttle Columbia is depicted orbiting the logo and reaching off into space, with Spacelab on an international quest for a better understanding of the effects of space flight on materials processing and life sciences.

  5. Towards A Shared Mission

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen; Orth Gaarn-Larsen, Carsten

    A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome of the univer......A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome...

  6. Magellan: mission summary.

    Science.gov (United States)

    Saunders, R S; Pettengill, G H

    1991-04-12

    The Magellan radar mapping mission is in the process of producing a global, high-resolution image and altimetry data set of Venus. Despite initial communications problems, few data gaps have occurred. Analysis of Magellan data is in the initial stages. The radar system data are of high quality, and the planned performance is being achieved in terms of spatial resolution and geometric and radiometric accuracy. Image performance exceeds expectations, and the image quality and mosaickability are extremely good. Future plans for the mission include obtaining gravity data, filling gaps in the initial map, and conducting special studies with the radar.

  7. Nonlinear dynamic characteristic analysis of jointed beam with clearance

    Science.gov (United States)

    Zhang, Jing; Guo, Hong-Wei; Liu, Rong-Qiang; Wu, Juan; Kou, Zi-Ming; Deng, Zong-Quan

    2016-12-01

    The impact and elasticity of discontinuous beams with clearance frequently affect the dynamic response of structures used in space missions. This study investigates the dynamic response of jointed beams which are the periodic units of deployable structures. The vibration process of jointed beams includes free-play and impact stages. A method for the dynamic analysis of jointed beams with clearance is proposed based on mode superposition and instantaneous static deformation. Transfer matrix, which expresses the relationship of the responses before and after the impact of jointed beams, is derived to calculate the response of the jointed beams after a critical position. The dynamic responses of jointed beams are then simulated. The effects of various parameters on the displacement and velocity of beams are investigated.

  8. Phoenix's Laser Beam in Action on Mars

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation The Surface Stereo Imager camera aboard NASA's Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog. The brighter area at the top of the beam is due to enhanced scattering of the laser light in a cloud. The Canadian-built lidar instrument emits pulses of laser light and records what is scattered back. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams.

    Science.gov (United States)

    Bitman, Assaf; Moshe, Inon; Zalevsky, Zeev

    2012-10-01

    We report new results related to imaging using broadband Bessel-like beams at the terahertz (THz) domain that were generated by use of axicons and pulsed THz radiation emitting at a bandwidth 0.1 to 1 THz. Such Bessel-like beams exhibit an invariant line of focus with an extended length compared to Gaussian-beams Rayleigh range, which enables imaging through the extended length. We demonstrate this imaging property using a resolution target illuminated by broadband-THz beams and show an improvement by a factor of 3.5 in imaging depth while using Bessel-like beams over Gaussian beams. Our results highlight the potential in using broadband THz radiation together with nondiffractive Bessel beams to significantly improve spatial separation over deep view.

  10. High Power Electric Propulsion for Outer Planet Missions

    Science.gov (United States)

    Donahue, Benjamin B.

    2003-01-01

    Focused technology trade studies for Nuclear Electric Propulsion vehicle concepts for outer planet missions are presented; representative mission, vehicle and technology characterizations illustrate samples of work done under the NASA Marshall Space Flight Center-Boeing-SAIC In-Space Technology Assessment (ISTA) contract. An objective of ISTA is to identify and present sound technical and programtic options for the formulation and implementation of advanced electric and chemical propulsion solar system exploration missions. Investigations to date include a variety of outer planet destinations, trip times, science payload allotments, orbital capture techniques, all conducted to illustrate how advanced technology would maximize mission benefits. Architecture wide optimizations that facilitate good propulsion technology investments for advanced electric and chemical propulsion systems were conducted, including those relevant to the nuclear system initiative. Representative analyses of vehicles utilizing fission reactors with advanced power generation, Conversion, processing and electric propulsion systems, which would enable scientifically rich robotic exploration missions, are presented.

  11. Design of the ARES Mars Airplane and Mission Architecture

    Science.gov (United States)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  12. NASA's Space Launch System: An Enabling Capability for Discovery

    Science.gov (United States)

    Creech, Stephen D.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human spaceflight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Making its first uncrewed test flight in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, capable of supporting human missions into deep space and to Mars. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130 t lift capability. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and recordbreaking engine testing, to life-cycle milestones such as the vehicle's Preliminary Design Review in the summer of 2013. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. In addition, this paper will demonstrate how the Space Launch System is being designed to enable or enhance not only human exploration missions, but robotic scientific missions as well. Because of its unique launch capabilities, SLS will support simplifying spacecraft complexity, provide improved mass margins and radiation mitigation, and reduce mission durations. These capabilities offer attractive advantages for ambitious science missions by reducing

  13. New Technology and Lunar Power Option for Power Beaming Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Kare, J; Early, J; Krupke, W; Beach, R

    2004-10-11

    Orbit raising missions (LEO to GEO or beyond) are the only missions with enough current traffic to be seriously considered for near-term power beaming propulsion. Even these missions cannot justify the development expenditures required to deploy the required new laser, optical and propulsion technologies or the programmatic risks. To be deployed, the laser and optics technologies must be spin-offs of other funded programs. The manned lunar base nighttime power requirements may justify a major power beaming program with 2MW lasers and large optical systems. New laser and optical technologies may now make this mission plausible. If deployed these systems could be diverted for power beaming propulsion applications. Propulsion options include a thermal system with an Isp near 1000 sec., a new optical coupled thermal system with an Isp over 2000 sec. photovoltaic-ion propulsion systems with an Isp near 3000 sec., and a possible new optical coupled thermal system with an Isp over 2000 sec.

  14. Robustness of mission plans for unmanned aircraft

    Science.gov (United States)

    Niendorf, Moritz

    , and criticalities are derived. This analysis is extended to Euclidean minimum spanning trees. This thesis aims at enabling increased mission performance by providing means of assessing the robustness and optimality of a mission and methods for identifying critical elements. Examples of the application to mission planning in contested environments, cargo aircraft mission planning, multi-objective mission planning, and planning optimal communication topologies for teams of unmanned aircraft are given.

  15. Mission Operations Assurance

    Science.gov (United States)

    Faris, Grant

    2012-01-01

    Integrate the mission operations assurance function into the flight team providing: (1) value added support in identifying, mitigating, and communicating the project's risks and, (2) being an essential member of the team during the test activities, training exercises and critical flight operations.

  16. The Gaia mission

    NARCIS (Netherlands)

    Collaboration, Gaia; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I. -C; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by Euro

  17. Inspiration is "Mission Critical"

    Science.gov (United States)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  18. The LISA Pathfinder Mission

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  19. The Lobster Mission

    Science.gov (United States)

    Barthelmy, Scott

    2011-01-01

    I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.

  20. Mission from Mars

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  1. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissanc

  2. Robust UAV mission planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissance

  3. Robust UAV Mission Planning

    NARCIS (Netherlands)

    L. Evers (Lanah); T.A.B. Dollevoet (Twan); A.I. Barros (Ana); H. Monsuur (Herman)

    2011-01-01

    textabstractUnmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a re

  4. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissanc

  5. EOS Aura Mission Status

    Science.gov (United States)

    Guit, William J.

    2015-01-01

    This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.

  6. The Gaia mission

    NARCIS (Netherlands)

    Collaboration, Gaia; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I. -C; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by

  7. Planetary cubesats - mission architectures

    Science.gov (United States)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  8. Mission from Mars:

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  9. MIV Project: Mission scenario

    DEFF Research Database (Denmark)

    Ravazzotti, Mariolina T.; Jørgensen, John Leif; Thuesen, Gøsta;

    1997-01-01

    Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions....

  10. The Phoenix Mars Mission

    Science.gov (United States)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  11. The SVOM gamma-ray burst mission

    CERN Document Server

    Cordier, B; Atteia, J -L; Basa, S; Claret, A; Daigne, F; Deng, J; Dong, Y; Godet, O; Goldwurm, A; Götz, D; Han, X; Klotz, A; Lachaud, C; Osborne, J; Qiu, Y; Schanne, S; Wu, B; Wang, J; Wu, C; Xin, L; Zhang, B; Zhang, S -N

    2015-01-01

    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the...

  12. Microsats for On-Orbit Support Missions

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A G

    2001-03-15

    I appreciate the opportunity to address this conference and describe some of our work and plans for future space missions and capabilities. My presentation will consist of a short overview of our program, some potential missions and enabling technologies, as well as, a description of some of our test vehicles and ongoing docking experiments. The Micro-Satellite Technology Program at Lawrence Livermore National Laboratory is developing technologies for a new generation of a very highly capable autonomous microsats. A microsat is defined here as a vehicle that's less than 100 kilograms in mass. We're looking at a number of different microsat design configurations, between 0.5 to 1 meter in length and less than 40 kg in mass. You'll see several ground-test vehicles that we have been building that are modeled after potential future on-orbit systems. In order to have very aggressive missions, these microsats will require new integrated proximity operation sensors, advanced propulsion, avionics and guidance systems. Then to make this dream a reality a new approach to high fidelity ''hardware-in-the-loop'' ground testing, will be discussed that allows repeated tests with the same vehicle multiple times. This will enable you to ''get it right'' before going into space. I'll also show some examples of our preliminary docking work completed as of today.

  13. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  14. Pastoral ministry in a missional age: Towards a practical theological understanding of missional pastoral care

    Directory of Open Access Journals (Sweden)

    Guillaume H. Smit

    2015-03-01

    Full Text Available This article concerns itself with the development of a missional ecclesiology and the practices that may accept the challenge of conducting pastoral ministry in the context of South African, middleclass congregations adapting to a rapidly changing, post-apartheid environment. Some practical theological perspectives on pastoral counselling are investigated, whilst Narrative Therapy is explored as an emerging theory of deconstruction to enable the facilitating of congregational change towards a missional understanding of church life in local communities. Subsequently, the theological paradigm of missional ecclesiology is investigated before drawing the broad lines of a theory for pastoral ministry within missional ecclesiology.Intradisciplinary and/or interdisciplinary implications: In this article, a missional base theory is proposed for pastoral counselling, consisting of interdisciplinary insights gained from the fields of Missiology, Practical Theology, Narrative Therapy and Cognitive Behaviour Therapy. The implications of this proposal for the development of a missional pastoral theory focus on the following three aspects:� re-establishing pastoral identity: exploring Christ� pastoral development: intentional faith formation� pastoral ministry: enabling Christ-centred lives.In such a missional pastoral theory four practices should be operationalised: first of all, a cognitive approach to increasing knowledge of the biblical narrative is necessary. This provides the hermeneutical skills necessary to enable people to internalise the biblical ethics and character traits ascribed to the Christian life. Secondly, a pastoral theory needs to pay close attention to development of emotional intelligence. Thirdly, this should be done in the context of small groups, where the focus falls on the personality development of members. Finally, missional pastoral theory should also include the acquisition of life coaching skills, where leaders can be

  15. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  16. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...

  17. Secure Enclaves-Enabled Technologies

    Science.gov (United States)

    2014-04-25

    solution. Recommendations There is the potential to exploit extremely lucrative opportunities utilizing our first- mover advantage in this...emerging market segment. However, there is still significant work to be completed. The SE Enabled browser extension application is still in the early

  18. Mission-Centered Network Models: Defending Mission-Critical Tasks From Deception

    Science.gov (United States)

    2015-09-29

    be dynamically changed in terms of what tasks should be reformulated or added in order to make the mission possible given the ongoing threat. • We...workflow specifications at the domain layer: 1. A language must be developed to express domain tasks with sufficient generality to encompass...provenance records. In addition, we use two extensions of these languages that are more specific to workflows and enable us to represent workflow

  19. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  20. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  1. NASA's Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2017-01-01

    Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.

  2. Defining Space Mission Architects for the Smaller Missions

    Science.gov (United States)

    Anderson, C.

    1999-01-01

    The definition of the Space Mission Architect (SMA) must be clear in both technical and human terms if we expect to train and/or to find people needed to architect the numbers of smaller missions expected in the future.

  3. SLS launched missions concept studies for LUVOIR mission

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-09-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and estimated 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-m class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  4. Sentinel-2 Mission status

    Science.gov (United States)

    Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin

    2016-04-01

    Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the

  5. NASA's Asteroid Redirect Mission: Overview and Status

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Brophy, John; Mazanek, Dan; Muirhead, Brian

    A major element of the National Aeronautics and Space Administration’s (NASA) new Asteroid Initiative is the Asteroid Redirect Mission (ARM). This concept was first proposed in 2011 during a feasibility study at the Keck Institute for Space Studies (KISS)[1] and is under consideration for implementation by NASA. The ARM involves sending a high-efficiency (ISP 3000 s), high-power (40 kW) solar electric propulsion (SEP) robotic vehicle that leverages technology developed by NASA’s Space Technology Mission Directorate (STMD) to rendezvous with a near-Earth asteroid (NEA) and return asteroidal material to a stable lunar distant retrograde orbit (LDRO)[2]. There are two mission concepts currently under study, one that captures an entire 7 - 10 meter mean diameter NEA[3], and another that retrieves a 1 - 10 meter mean diameter boulder from a 100+ meter class NEA[4]. Once the retrieved asteroidal material is placed into the LDRO, a two person crew would launch aboard an Orion capsule to rendezvous and dock with the robotic SEP vehicle. After docking, the crew would conduct two extra-vehicular activities (EVA) to collect asteroid samples and deploy instruments prior to Earth return. The crewed portion of the mission is expected to last approximately 25 days and would represent the first human exploration mission beyond low-Earth orbit (LEO) since the Apollo program. The ARM concept leverages NASA’s activities in Human Exploration, Space Technology, and Planetary Defense to accomplish three primary objectives and several secondary objectives. The primary objective relevant to Human Exploration is to gain operational experience with vehicles, systems, and components that will be utilized for future deep space exploration. In regard to Space Technology, the ARM utilizes advanced SEP technology that has high power and long duration capabilities that enable future missions to deep space destinations, such as the Martian system. With respect to Planetary Defense, the ARM

  6. Lunar mission design using Nuclear Thermal Rockets

    Science.gov (United States)

    Stancati, Michael L.; Collins, John T.; Borowski, Stanley K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits.

  7. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  8. The Sentinel-3 Mission

    Science.gov (United States)

    Berruti, B.; Mavrocordatos, C.

    2010-12-01

    The Sentinel-3 Operational Mission is part of the Global Monitoring for Environment and Security (GMES) initiative, which was established to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The series of Sentinel-3 satellites will ensure global, frequent and near-realtime ocean, ice and land monitoring, with the provision of observation data in routine, long term (20 years of operations) and continuous fashion, with a consistent quality and a very high level of availability. The first launch is expected in 2013. Currently half way through the development phase of the project, this paper presents the consolidated Sentinel-3 design and expected performances related to the different mission objectives (ocean colour, altimetry, surface temperature, land). The operational concept and key system performances are also addressed, as well as the satellite and instruments design. Finally, the schedule for the remaining development is presented.

  9. The Euclid mission design

    CERN Document Server

    Racca, Giuseppe D; Stagnaro, Luca; Salvignol, Jean Christophe; Alvarez, Jose Lorenzo; Criado, Gonzalo Saavedra; Venancio, Luis Gaspar; Short, Alex; Strada, Paolo; Boenke, Tobias; Colombo, Cyril; Calvi, Adriano; Maiorano, Elena; Piersanti, Osvaldo; Prezelus, Sylvain; Rosato, Pierluigi; Pinel, Jacques; Rozemeijer, Hans; Lesna, Valentina; Musi, Paolo; Sias, Marco; Anselmi, Alberto; Cazaubiel, Vincent; Vaillon, Ludovic; Mellier, Yannick; Amiaux, Jerome; Berthe, Michel; Sauvage, Marc; Azzollini, Ruyman; Cropper, Mark; Pottinger, Sabrina; Jahnke, Knud; Ealet, Anne; Maciaszek, Thierry; Pasian, Fabio; Zacchei, Andrea; Scaramella, Roberto; Hoar, John; Kohley, Ralf; Vavrek, Roland; Rudolph, Andreas; Schmidt, Micha

    2016-01-01

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the sc...

  10. The THEMIS Mission

    CERN Document Server

    Burch, J. L

    2009-01-01

    The THEMIS mission aims to determine the trigger and large-scale evolution of substorms by employing five identical micro-satellites which line up along the Earth's magnetotail to track the motion of particles, plasma, and waves from one point to another and for the first time, resolve space-time ambiguities in key regions of the magnetosphere on a global scale. The primary goal of THEMIS is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map: (i) local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection. The probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives. This volume describes the mission, the instrumentation, and the data derived from them.

  11. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  12. Deep Blue Mission

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese Navy dispatches ships to the Gulf of Aden on a second escort mission, marking its growing strength in the face of more diverse challenges Elarly in the morning of April 23, crew- imembers from the Chinese Navy’s second escort fleet in the Gulf of Aden Igathered on deck and saluted to the east, paying their respects to the motherland in celebration of the 60th anniversary of the Chinese Navy. This fleet,

  13. Space VLBI Mission: VSOP

    Science.gov (United States)

    Murata, Yasuhiro; Hirabayashi, Hisashi; Kobayashi, Hideyuki; Shibata, Katsunori M.; Umemoto, Tomofumi; Edwards, P. G.

    2001-03-01

    We succeeded in performing space VLBI observations using the VLBI satellite HALCA (VSOP satellite), launched in February, 1997 aboard the first M-V rocket developed by ISAS. The mission is led by ISAS and NAO, with the collaborations from CRL, NASA, NRAO, and other institutes and observatories in Europe, Australia, Canada, South-Africa, and China, We succeeded to make a lot of observations and to get the new features from the active galaxies, the cosmic jets, and other astronomical objects.

  14. A Somalia mission experience.

    Science.gov (United States)

    Mahomed, Zeyn; Moolla, Muhammad; Motara, Feroza; Laher, Abdullah

    2012-06-28

    Reports about The Horn of Africa Famine Crisis in 2011 flooded our news bulletins and newspapers. Yet the nations of the world failed to respond and alleviate the unfolding disaster. In August 2011, the Gift of the Givers Foundation mobilised what was to become the largest humanitarian mission ever conducted by an African organisation. Almost a year later, the effort continues, changing the face of disaster medicine as we know it.

  15. A Mars 1984 mission

    Science.gov (United States)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  16. Cyber Network Mission Dependencies

    Science.gov (United States)

    2015-09-18

    Technology applications 12 5 VMs allow one host to belong to multiple VLANs 14 6 Asset recommendation system mockup 15 7 Perturbative mapping may...extended list of critical assets based on communications patterns and software dependencies. Once vulnerabilities have been assessed, AMMO produces a...status of not just network machines, but also software tools, network connections, server room conditions, and many other mission parameters. From this

  17. Titan Saturn System Mission

    Science.gov (United States)

    Reh, Kim R.

    2009-01-01

    Titan is a high priority for exploration, as recommended by NASA's 2006 Solar System Exploration (SSE) Roadmap. NASA's 2003 National Research Council (NRC) Decadal Survey and ESA's Cosmic Vision Program Themes. Recent revolutionary Cassini-Huygens discoveries have dramatically escalated interest in Titan as the next scientific target in the outer solar system. This study demonstrates that an exciting Titan Saturn System Mission (TSSM) that explores two worlds of intense astrobiological interest can be initiated now as a single NASA/ESA collaboration.

  18. MEMS: Enabled Drug Delivery Systems.

    Science.gov (United States)

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed.

  19. Digital communication constraints in prior space missions

    Science.gov (United States)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  20. Medical System Concept of Operations for Mars Exploration Missions

    Science.gov (United States)

    Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric

    2017-01-01

    Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.

  1. Space Mission Concept Development Using Concept Maturity Levels

    Science.gov (United States)

    Wessen, Randii R.; Borden, Chester; Ziemer, John; Kwok, Johnny

    2013-01-01

    Over the past five years, pre-project formulation experts at the Jet Propulsion Laboratory (JPL) has developed and implemented a method for measuring and communicating the maturity of space mission concepts. Mission concept development teams use this method, and associated tools, prior to concepts entering their Formulation Phases (Phase A/B). The organizing structure is Concept Maturity Level (CML), which is a classification system for characterizing the various levels of a concept's maturity. The key strength of CMLs is the ability to evolve mission concepts guided by an incremental set of assessment needs. The CML definitions have been expanded into a matrix form to identify the breadth and depth of analysis needed for a concept to reach a specific level of maturity. This matrix enables improved assessment and communication by addressing the fundamental dimensions (e.g., science objectives, mission design, technical risk, project organization, cost, export compliance, etc.) associated with mission concept evolution. JPL's collaborative engineering, dedicated concept development, and proposal teams all use these and other CML-appropriate design tools to advance their mission concept designs. This paper focuses on mission concept's early Pre-Phase A represented by CMLs 1- 4. The scope was limited due to the fact that CMLs 5 and 6 are already well defined based on the requirements documented in specific Announcement of Opportunities (AO) and Concept Study Report (CSR) guidelines, respectively, for competitive missions; and by NASA's Procedural Requirements NPR 7120.5E document for Projects in their Formulation Phase.

  2. The Gaia mission

    Science.gov (United States)

    Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-11-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gaia

  3. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  4. Landsat Data Continuity Mission

    Science.gov (United States)

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  5. Advanced concept for a crewed mission to the martian moons

    Science.gov (United States)

    Conte, Davide; Di Carlo, Marilena; Budzyń, Dorota; Burgoyne, Hayden; Fries, Dan; Grulich, Maria; Heizmann, Sören; Jethani, Henna; Lapôtre, Mathieu; Roos, Tobias; Castillo, Encarnación Serrano; Schermann, Marcel; Vieceli, Rhiannon; Wilson, Lee; Wynard, Christopher

    2017-10-01

    This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission. The mission's objectives are to deliver a crew of four astronauts to the surface of Deimos and perform a robotic exploration mission to Phobos. Over the course of the 343 day mission during the years 2031 and 2032, the crew will perform surface excursions, technology demonstrations, In Situ Resource Utilization (ISRU) of the Martian moons, as well as site reconnaissance for future human exploration of Mars. This mission design makes use of an innovative hybrid propulsion concept (chemical and electric) to deliver a relatively low-mass reusable crewed spacecraft (approximately 100 mt) to cis-martian space. The crew makes use of torpor which minimizes launch payload mass. Green technologies are proposed as a stepping stone towards minimum environmental impact space access. The usage of beamed energy to power a grid of decentralized science stations is introduced, allowing for large scale characterization of the Martian environment. The low-thrust outbound and inbound trajectories are computed through the use of a direct method and a multiple shooting algorithm that considers various thrust and coast sequences to arrive at the final body with zero relative velocity. It is shown that the entire mission is rooted within the current NASA technology roadmap, ongoing scientific investments and feasible with an extrapolated NASA Budget. The presented mission won the 2016 Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) competition.

  6. Multi-Mission SDR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless transceivers used for NASA space missions have traditionally been highly custom and mission specific. Programs such as the GRC Space Transceiver Radio...

  7. Mission Critical Occupation (MCO) Charts

    Data.gov (United States)

    Office of Personnel Management — Agencies report resource data and targets for government-wide mission critical occupations and agency specific mission critical and/or high risk occupations. These...

  8. Conceptual Design Methods and the Application of a Tradespace Modeling Tool for Deep Space Missions

    Science.gov (United States)

    Jones, Melissa A.; Chase, James P.

    2008-01-01

    Concept studies for deep space missions are typically time-consuming and costly, given the variety of missions and uniqueness of each design. Yet, in an increasingly cost-constrained environment, it is critical to identify the most scientifically valuable and cost-effective designs early in the design process. Modeling is an integral part in helping to identify the most desirable design option. While some spacecraft design models currently exist for Earth-orbiting spacecraft, there has been less success with deep space missions. Instead, these missions require a modified design and modeling approach to enable the same construction of a comprehensive, yet credible, mission tradespace. This paper presents an approach for efficiently constructing such a mission tradespace. In addition to a proposed design and modeling approach, three case study missions are presented including a solar orbiter, a Europa orbiter, and a near-Earth asteroid (NEA) sample return mission.

  9. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. The Aerosol/Cloud/Ecosystems Mission (ACE)

    Science.gov (United States)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  11. NICER: Mission Overview and Status

    Science.gov (United States)

    Arzoumanian, Zaven; Gendreau, Keith C.

    2016-04-01

    NASA's Neutron star Interior Composition Explorer (NICER) mission will explore the structure, dynamics, and energetics of neutron stars through soft X-ray (0.2-12 keV) timing and spectroscopy. An external attached payload on the International Space Station (ISS), NICER is manifested on the Commercial Resupply Services SpaceX-11 flight, with launch scheduled for late 2016. The NICER payload is currently in final integration and environmental testing. Ground calibration has provided robust performance measures of the optical and detector subsystems, demonstrating that the instrument meets or surpasses its effective area, timing resolution, energy resolution, etc., requirements. We briefly describe the NICER hardware, its continuing testing, operations and environment on ISS, and the objectives of NICER's prime mission—including precise radius measurements for a handful of neutron stars to constrain the equation of state of cold, ultra-dense matter. Other contributions at this meeting address specific scientific investigations that are enabled by NICER, for neutron stars in their diverse manifestations as well as for broader X-ray astrophysics through a brief, approved Guest Observer program beginning in 2018.

  12. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power (~5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both science and future manned exploration and utilization.

  13. Exomars Mission Achievements

    Science.gov (United States)

    Lecomte, J.; Juillet, J. J.

    2016-12-01

    ExoMars is the first step of the European Space Agency's Aurora Exploration Programme. Comprising two missions, the first one launched in 2016 and the second one to be launched in 2020, ExoMars is a program developed in a broad ESA and Roscosmos co-operation, with significant contribution from NASA that addresses the scientific question of whether life ever existed on Mars and demonstrate key technologies for entry, descent, landing, drilling and roving on the Martian surface . Thales Alenia Space is the overall prime contractor of the Exomars program leading a large industrial team The Spacecraft Composite (SCC), consisting of a Trace Gas Orbiter (TGO) and an EDL (Entry Descend and Landing) Demonstrator Module (EDM) named Schiaparelli, has been launched on 14 March 2016 from the Baikonur Cosmodrome by a Proton Launcher. The two modules will separate on 16 October 2016 after a 7 months cruise. The TGO will search for evidence of methane and other atmospheric gases that could be signatures of active biological or geological processes on Mars and will provide communications relay for the 2020 surface assets. The Schiaparelli module will prove the technologies required to safely land a payload on the surface of Mars, with a package of sensors aimed to support the reconstruction of the flown trajectory and the assessment of the performance of the EDL subsystems. For the second Exomars mission a space vehicle composed of a Carrier Module (CM) and a Descent Module (DM), whose Landing Platform (LP) will house a Rover, will begin a 7 months long trip to Mars in August 2020. In 2021 the Descent Module will be separated from the Carrier to carry out the entry into the planet's atmosphere and subsequently make the Landing Platform and the Rover land gently on the surface of Mars. While the LP will continue to measure the environmental parameters of the landing site, the Rover will begin exploration of the surface, which is expected to last 218 Martian days (approx. 230 Earth

  14. Studies of beam dynamics in relativistic klystron two- beam accelerators

    Science.gov (United States)

    Lidia, Steven Michael

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka-band (~30-35 GHz) frequency regions. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. A mapping algorithm is used so that tens or hundreds of thousands of macroparticles can be pushed from the solution of a few hundreds of differential equations. This is a great cost-savings device from the standpoint of CPU cycles. It can increase by several orders of magnitude the number of macroparticles that take place in the simulation, enabling more accurate modeling of the evolution of the beam distribution and enhanced sensitivity to effects due to the beam's halo. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split- operator algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The beam-cavity interaction is analyzed and divided naturally into two distinct times scales. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 TW of power from 40 input, gain

  15. 75 FR 6178 - Mission Statement

    Science.gov (United States)

    2010-02-08

    ...), thermal coal, and palm oil exports for bio fuel, dominate energy exports. Sound fiscal and monetary.... Mission Statement Secretarial Indonesia Clean Energy Business Development Mission May 23-25, 2010. Mission... to Jakarta, Indonesia May 23-25, 2010 to discuss market development policies and promote U.S. exports...

  16. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  17. The Facility for Rare Isotope Beams

    Directory of Open Access Journals (Sweden)

    Wrede C.

    2015-01-01

    Full Text Available The Facility for Rare Isotope Beams (FRIB is a United States Department of Energy user facility currently under construction on the campus of Michigan State University. Based on a 400 kW, 200 MeV/u heavy-ion driver linac, FRIB will deliver high-quality fast, thermalized, and re-accelerated beams of rare isotopes with unprecedented intensities to a variety of experimental areas and equipment. New science opportunities at the frontiers of nuclear structure, nuclear astrophysics, fundamental symmetries, and societal applications will be enabled by this future world-leading rare-isotope beam facility.

  18. The Facility for Rare Isotope Beams

    Science.gov (United States)

    Wrede, C.

    2015-05-01

    The Facility for Rare Isotope Beams (FRIB) is a United States Department of Energy user facility currently under construction on the campus of Michigan State University. Based on a 400 kW, 200 MeV/u heavy-ion driver linac, FRIB will deliver high-quality fast, thermalized, and re-accelerated beams of rare isotopes with unprecedented intensities to a variety of experimental areas and equipment. New science opportunities at the frontiers of nuclear structure, nuclear astrophysics, fundamental symmetries, and societal applications will be enabled by this future world-leading rare-isotope beam facility.

  19. High power, high beam quality regenerative amplifier

    Science.gov (United States)

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  20. International partnership in lunar missions: Inaugural address

    Indian Academy of Sciences (India)

    Dr A P J Abdul Kalam

    2005-12-01

    I am delighted to participate in the 6th International Conference on Exploration and Utilization of the Moon organized by the Physical Research Laboratory,Ahmedabad.I greet the organizers, eminent planetary exploration and space scientists from India and abroad,academicians,industrialists,engineers,entrepreneurs and distinguished guests.I understand that the International Lunar Conference is a forum to discuss scienti fic results of the ongoing and future space missions related to lunar exploration.This conference will also be utilized to develop understanding on various strategies,initiatives and missions leading to a permanent human presence on our Moon as the future objective.I am happy to note that interactions that took place in the earlier conferences have been bene ficial to participating countries through the intense sharing of scientific knowledge,data and hands-on mission experiences of various space agencies pursuing lunar exploration programmes.I find that nearly 100 scientific papers are being presented in this conference and that the Moon missions being planned and conducted by all the space faring nations of the world are being presented,reviewed and discussed.I note with excitement that many key issues related to space science and Moon missions are being addressed in this conference.These deliberations are important for the world space science community.This will enable you to obtain a comprehensive picture of the goals and policies of all nations striving towards a common vision of space research,being made available for the bene fit of all mankind.Indeed this augurs well for progress towards universal peace and harmony that is a cherished goal of the people of the world as a whole.

  1. Autonomous Mission Design in Extreme Orbit Environments

    Science.gov (United States)

    Surovik, David Allen

    An algorithm for autonomous online mission design at asteroids, comets, and small moons is developed to meet the novel challenges of their complex non-Keplerian orbit environments, which render traditional methods inapplicable. The core concept of abstract reachability analysis, in which a set of impulsive maneuvering options is mapped onto a space of high-level mission outcomes, is applied to enable goal-oriented decision-making with robustness to uncertainty. These nuanced analyses are efficiently computed by utilizing a heuristic-based adaptive sampling scheme that either maximizes an objective function for autonomous planning or resolves details of interest for preliminary analysis and general study. Illustrative examples reveal the chaotic nature of small body systems through the structure of various families of reachable orbits, such as those that facilitate close-range observation of targeted surface locations or achieve soft impact upon them. In order to fulfill extensive sets of observation tasks, the single-maneuver design method is implemented in a receding-horizon framework such that a complete mission is constructed on-the-fly one piece at a time. Long-term performance and convergence are assured by augmenting the objective function with a prospect heuristic, which approximates the likelihood that a reachable end-state will benefit the subsequent planning horizon. When state and model uncertainty produce larger trajectory deviations than were anticipated, the next control horizon is advanced to allow for corrective action -- a low-frequency form of feedback control. Through Monte Carlo analysis, the planning algorithm is ultimately demonstrated to produce mission profiles that vary drastically in their physical paths but nonetheless consistently complete all goals, suggesting a high degree of flexibility. It is further shown that the objective function can be tuned to preferentially minimize fuel cost or mission duration, as well as to optimize

  2. Overview of RICOR tactical cryogenic refrigerators for space missions

    Science.gov (United States)

    Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan

    2016-05-01

    Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design

  3. Enablers and constrainers to participation

    DEFF Research Database (Denmark)

    Desjardins, Richard; Milana, Marcella

    2007-01-01

    with constraining and enabling elements so as to raise participation among otherwise disadvantaged groups. To begin addressing this question, consideration is given to different types of constraints and different types of policies. These are brought together within a broad demand and supply framework, so...... as to construct a tool for analyzing the targeting of adult learning policy, with regard to both its coverage and expected consequences. Our aim is to develop a means for a more in-depth analysis of the match-mismatch of public policy and persisting constraints to participation....

  4. Optimized microsystems-enabled photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Young, Ralph W.; Resnick, Paul J.; Okandan, Murat; Gupta, Vipin P.

    2015-09-22

    Technologies pertaining to designing microsystems-enabled photovoltaic (MEPV) cells are described herein. A first restriction for a first parameter of an MEPV cell is received. Subsequently, a selection of a second parameter of the MEPV cell is received. Values for a plurality of parameters of the MEPV cell are computed such that the MEPV cell is optimized with respect to the second parameter, wherein the values for the plurality of parameters are computed based at least in part upon the restriction for the first parameter.

  5. Multiple-beam Propagation in an Anderson Localized Optical Fiber

    CERN Document Server

    Karbasi, Salman; Mafi, Arash

    2012-01-01

    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers which can be used for practical beam-multiplexing applications.

  6. The Mars Pathfinder Mission

    Science.gov (United States)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  7. Directed energy missions for planetary defense

    Science.gov (United States)

    Lubin, Philip; Hughes, Gary B.; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E.; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-09-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning.

  8. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    Science.gov (United States)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  9. The CHEOPS Mission

    Science.gov (United States)

    Broeg, Christopher; benz, willy; fortier, andrea; Ehrenreich, David; beck, Thomas; cessa, Virginie; Alibert, Yann; Heng, Kevin

    2015-12-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry. It is expected to be launch-ready at the end of 2017.CHEOPS will be the first space observatory dedicated to search for transits on bright stars already known to host planets. It will have access to more than 70% of the sky. This will provide the unique capability of determining accurate radii for planets for which the mass has already been estimated from ground-based radial velocity surveys and for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The measurement of the radius of a planet from its transit combined with the determination of its mass through radial velocity techniques gives the bulk density of the planet, which provides direct insights into the structure and/or composition of the body. In order to meet the scientific objectives, a number of requirements have been derived that drive the design of CHEOPS. For the detection of Earth and super-Earth planets orbiting G5 dwarf stars with V-band magnitudes in the range 6 ≤ V ≤ 9 mag, a photometric precision of 20 ppm in 6 hours of integration time must be reached. This time corresponds to the transit duration of a planet with a revolution period of 50 days. In the case of Neptune-size planets orbiting K-type dwarf with magnitudes as faint as V=12 mag, a photometric precision of 85 ppm in 3 hours of integration time must be reached. To achieve this performance, the CHEOPS mission payload consists of only one instrument, a space telescope of 30 cm clear aperture, which has a single CCD focal plane detector. CHEOPS will be inserted in a low Earth orbit and the total duration of the CHEOPS mission is 3.5 years (goal: 5 years).The presentation will describe the current payload and mission design of CHEOPS, give the development status, and show the expected performances.

  10. The ARTEMIS mission

    CERN Document Server

    Angelopoulos, Vassilis

    2014-01-01

    The ARTEMIS mission was initiated by skillfully moving the two outermost Earth-orbiting THEMIS spacecraft into lunar orbit to conduct unprecedented dual spacecraft observations of the lunar environment. ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Indeed, this volume discusses initial findings related to the Moon’s magnetic and plasma environments and the electrical conductivity of the lunar interior. This work is aimed at researchers and graduate students in both heliophysics and planetary physics. Originally published in Space Science Reviews, Vol. 165/1-4, 2011.

  11. Nanomaterial-enabled neural stimulation

    Directory of Open Access Journals (Sweden)

    Yongchen eWang

    2016-03-01

    Full Text Available Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  12. Nanomaterial-Enabled Neural Stimulation.

    Science.gov (United States)

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  13. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  14. Deep Impact Mission: Looking Beneath the Surface of a Cometary Nucleus

    CERN Document Server

    Russell, Christopher T

    2005-01-01

    Deep Impact, or at least part of the flight system, is designed to crash into comet 9P/Tempel 1. This bold mission design enables cometary researchers to peer into the cometary nucleus, analyzing the material excavated with its imagers and spectrometers. The book describes the mission, its objectives, expected results, payload, and data products in articles written by those most closely involved. This mission has the potential of revolutionizing our understanding of the cometary nucleus.

  15. The COBE mission - its design and performance two years after launch

    Energy Technology Data Exchange (ETDEWEB)

    Boggess, N.W.; Mather, J.C.; Weiss, R.; Bennett, C.L.; Cheng, E.S.; Dwek, E.; Gulkis, S.; Hauser, M.G.; Janssen, M.A.; Kelsall, T. (NASA, Goddard Space Flight Center, Greenbelt, MD (United States) MIT, Cambridge, MA (United States) JPL, Pasadena, CA (United States))

    1992-10-01

    The COBE mission, NASA's first space mission devoted primarily to cosmology, is described and the spacecraft concepts central to enabling the mission to achieve its scientific objectives are examined. The major components of the COBE instrument and spacecraft modules are shown and their characteristics are given. Early scientific results are summarized and plans for continuing satellite operations and data analysis are addressed. 40 refs.

  16. Triple F - A Comet Nucleus Sample Return Mission

    Science.gov (United States)

    Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.; hide

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  17. Wide Field X-Ray Telescope Mission Concept Study Results

    Science.gov (United States)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  18. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  19. The SPICA mission

    Science.gov (United States)

    Sibthorpe, B.; Helmich, F.; Roelfsema, P.; Kaneda, H.; Shibai, H.

    2016-05-01

    SPICA is a mid and far-infrared space mission to be submitted as a candidate to ESA's fifth medium class mission call, due in early 2016. This will be a joint project between ESA and JAXA, with ESA taking the lead role. If selected, SPICA will launch in ˜2029 and operate for a goal lifetime of 5 years. The spacecraft will house a 2.5 m telescope actively cooled to 8 K, providing unprecedented sensitivity at mid-far infrared wavelengths. The low background environment and wavelength coverage provided by SPICA will make it possible to conduct detailed spectroscopic surveys of sources in both the local and distant Universe, deep into the most obscured regions. Using these data the evolution of galaxies over a broad and continuous range of cosmic time can be studied, spanning the era of peak star forming activity. SPICA will also provide unique access to, among others, the deep-lying water-ice spectral features and HD lines within planet forming discs. SPICA will conduct an extensive survey of both planet forming discs and evolved planetary systems, with the aim of providing the missing link between planet formation models and the large number of extrasolar planetary systems now being discovered.

  20. Calvin and mission

    Directory of Open Access Journals (Sweden)

    Jacobus (Kobus P. Labuschagne

    2009-11-01

    Full Text Available It has often been stated or implied that John Calvin and the Reformers in general were indifferent to or even against mission. The aim of this study is to point out that this understanding is not a true version of the facts. A thorough examination of the theology and actions of John Calvin, evaluated against the background of his times and world, reveals that he was firmly committed to spreading the Gospel of Jesus Christ, the Lord. Also the theological insights of Calvin and the Reformers not only provided the crucial theological basis to support the future massive missionary expansion of Protestant churches, but necessitate for all times Church mission as a sure consequence of their theology. Calvin’s theology can indeed be described as an ‘essentially missionary theology’. In the heart of Calvin’s theological thinking clearly features the doctrine of justifi cation – because medieval man’s concern for salvation needed to be answered.

  1. EU Universities’ Mission Statements

    Directory of Open Access Journals (Sweden)

    Liudmila Arcimaviciene

    2015-04-01

    Full Text Available In the last 10 years, a highly productive space of metaphor analysis has been established in the discourse studies of media, politics, business, and education. In the theoretical framework of Conceptual Metaphor Theory and Critical Discourse Analysis, the restored metaphorical patterns are especially valued for their implied ideological value as realized both conceptually and linguistically. By using the analytical framework of Critical Metaphor Analysis and procedurally employing Pragglejaz Group’s Metaphor Identification Procedure, this study aims at analyzing the implied value of the evoked metaphors in the mission statements of the first 20 European Universities, according to the Webometrics ranking. In this article, it is proposed that Universities’ mission statements are based on the positive evaluation of the COMMERCE metaphor, which does not fully correlate with the ideological framework of sustainability education but is rather oriented toward consumerism in both education and society. Despite this overall trend, there are some traceable features of the conceptualization reflecting the sustainability approach to higher education, as related to freedom of speech, tolerance, and environmental concerns. Nonetheless, these are suppressed by the metaphoric usages evoking traditional dogmas of the conservative ideology grounded in the concepts of the transactional approach to relationship, competitiveness for superiority, the importance of self-interest and strength, and quantifiable quality.

  2. The Gaia mission

    CERN Document Server

    ,

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We...

  3. OMV mission simulator

    Science.gov (United States)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  4. STS-78 Mission Insignia

    Science.gov (United States)

    1996-01-01

    The STS-78 patch links past with present to tell the story of its mission and science through a design imbued with the strength and vitality of the 2-dimensional art of North America's northwest coast Indians. Central to the design is the space Shuttle whose bold lines and curves evoke the Indian image for the eagle, a native American symbol of power and prestige as well as the national symbol of the United States. The wings of the Shuttle suggest the wings of the eagle whose feathers, indicative of peace and friendship in Indian tradition, are captured by the U forms, a characteristic feature of Northwest coast Indian art. The nose of the Shuttle is the strong downward curve of the eagle's beak, and the Shuttle's forward windows, the eagle's eyes, represented through the tapered S forms again typical of this Indian art form. The basic black and red atoms orbiting the mission number recall the original NASA emblem while beneath, utilizing Indian ovoid forms, the major mission scientific experiment package LMS (Life and Materials Sciences) housed in the Shuttle's cargo bay is depicted in a manner reminiscent of totem-pole art. This image of a bird poised for flight, so common to Indian art, is counterpointed by an equally familiar Tsimshian Indian symbol, a pulsating sun with long hyperbolic rays, the symbol of life. Within each of these rays are now encased crystals, the products of this mission's 3 major, high-temperature materials processing furnaces. And as the sky in Indian lore is a lovely open country, home of the Sun Chief and accessible to travelers through a hole in the western horizon, so too, space is a vast and beckoning landscape for explorers launched beyond the horizon. Beneath the Tsimshian sun, the colors of the earth limb are appropriately enclosed by a red border representing life to the Northwest coast Indians. The Indian colors of red, navy blue, white, and black pervade the STS-78 path. To the right of the Shuttle-eagle, the constellation

  5. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    Science.gov (United States)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  6. Spatially enabling the health sector

    Directory of Open Access Journals (Sweden)

    Tarun Stephen Weeramanthri

    2016-11-01

    Full Text Available Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article we offer the view that greater utilisation of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike.In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high and low-resource settings.

  7. Simulation Enabled Safeguards Assessment Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.

  8. Genome-enabled plant metabolomics.

    Science.gov (United States)

    Tohge, Takayuki; de Souza, Leonardo Perez; Fernie, Alisdair R

    2014-09-01

    The grand challenge currently facing metabolomics is that of comprehensitivity whilst next generation sequencing and advanced proteomics methods now allow almost complete and at least 50% coverage of their respective target molecules, metabolomics platforms at best offer coverage of just 10% of the small molecule complement of the cell. Here we discuss the use of genome sequence information as an enabling tool for peak identity and for translational metabolomics. Whilst we argue that genome information is not sufficient to compute the size of a species metabolome it is highly useful in predicting the occurrence of a wide range of common metabolites. Furthermore, we describe how via gene functional analysis in model species the identity of unknown metabolite peaks can be resolved. Taken together these examples suggest that genome sequence information is current (and likely will remain), a highly effective tool in peak elucidation in mass spectral metabolomics strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Informatics enables public health surveillance

    Directory of Open Access Journals (Sweden)

    Scott J. N McNabb

    2017-01-01

    Full Text Available Over the past decade, the world has radically changed. New advances in information and communication technologies (ICT connect the world in ways never imagined. Public health informatics (PHI leveraged for public health surveillance (PHS, can enable, enhance, and empower essential PHS functions (i.e., detection, reporting, confirmation, analyses, feedback, response. However, the tail doesn't wag the dog; as such, ICT cannot (should not drive public health surveillance strengthening. Rather, ICT can serve PHS to more effectively empower core functions. In this review, we explore promising ICT trends for prevention, detection, and response, laboratory reporting, push notification, analytics, predictive surveillance, and using new data sources, while recognizing that it is the people, politics, and policies that most challenge progress for implementation of solutions.

  10. Context-Enabled Business Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Troy Hiltbrand

    2012-04-01

    To truly understand context and apply it in business intelligence, it is vital to understand what context is and how it can be applied in addressing organizational needs. Context describes the facets of the environment that impact the way that end users interact with the system. Context includes aspects of location, chronology, access method, demographics, social influence/ relationships, end-user attitude/ emotional state, behavior/ past behavior, and presence. To be successful in making Business Intelligence content enabled, it is important to be able to capture the context of use user. With advances in technology, there are a number of ways in which this user based information can be gathered and exposed to enhance the overall end user experience.

  11. Potential anesthesia protocols for space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Watkins, Sharmila D; Lebuffe, Gilles; Clark, Jonathan B

    2013-03-01

    In spaceflight beyond low Earth's orbit, medical conditions requiring surgery are of a high level of concern because of their potential impact on crew health and mission success. Whereas surgical techniques have been thoroughly studied in spaceflight analogues, the research focusing on anesthesia is limited. To provide safe anesthesia during an exploration mission will be a highly challenging task. The research objective is thus to describe specific anesthesia procedures enabling treatment of pre-identified surgical conditions. Among the medical conditions considered by the NASA Human Research Program Exploration Medical Capability element, those potentially necessitating anesthesia techniques have been identified. The most appropriate procedure for each condition is thoroughly discussed. The substantial cost of training time necessary to implement regional anesthesia is pointed out. Within general anesthetics, ketamine combines the unique advantages of preservation of cardiovascular stability, the protective airway reflexes, and spontaneous ventilation. Ketamine side effects have for decades tempered enthusiasm for its use, but recent developments in mitigation means broadened its indications. The extensive experience gathered in remote environments, with minimal equipment and occasionally by insufficiently trained care providers, confirms its high degree of safety. Two ketamine-based anesthesia protocols are described with their corresponding indications. They have been designed taking into account the physiological changes occurring in microgravity and the specific constraints of exploration missions. This investigation could not only improve surgical care during long-duration spaceflights, but may find a number of terrestrial applications in isolated or austere environments.

  12. Juno at Jupiter: Mission and Science

    Science.gov (United States)

    Bolton, Scott

    2016-07-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrives at Jupiter in July 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Jupiter's formation is fundamental to the evolution of our solar system and to the distribution of volatiles early in the solar system's history. Juno's measurements of the abundance of Oxygen and Nitrogen in Jupiter's atmosphere, and the detailed maps of Jupiter's gravity and magnetic field structure will constrain theories of early planetary development. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. The Juno design enables the first detailed investigation of Jupiter's interior structure, and deep atmosphere as well as the first in depth exploration of Jupiter's polar magnetosphere. The Juno mission design, science goals, and measurements related to the atmosphere of Jupiter will be presented.

  13. General Mission Analysis Tool (GMAT): Mission, Vision, and Business Case

    Science.gov (United States)

    Hughes, Steven P.

    2007-01-01

    The Goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities businesses and other government organizations; and to share that technology in an open and unhindered way. GMAT's a free and open source software system; free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or future technology development.

  14. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  15. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  16. RAF and Mission Command

    Science.gov (United States)

    2015-02-01

    execute close to 100 security cooperation events in 34 African countries.55 The RAF concept calls for the Army to be regionally aligned and globally...Carlisle Compendia of Collaborative Research United States Army War College Student Publications Regionally Aligned Forces: Concept Viability...stress the importance of building partner capacity to enable regional allies to defeat terrorism: The struggle against violent extremists will not

  17. Spatiotemporal structure of femtosecond Bessel beams from spatial light modulators.

    Science.gov (United States)

    Froehly, L; Jacquot, M; Lacourt, P A; Dudley, J M; Courvoisier, F

    2014-04-01

    We numerically investigate the spatiotemporal structure of Bessel beams generated with spatial light modulators (SLMs). Grating-like phase masks enable the spatial filtering of undesired diffraction orders produced by SLMs. Pulse front tilt and temporal broadening effects are investigated. In addition, we explore the influence of phase wrapping and show that the spatiotemporal structure of SLM-generated femtosecond Bessel beams is similar to Bessel X-pulses at short propagation distance and to subluminal pulsed Bessel beams at long propagation distance.

  18. Nonparaxial propagation of phase-flipped Gaussian beams

    Institute of Scientific and Technical Information of China (English)

    Gao Zeng-Hui; Lü Bai-Da

    2008-01-01

    This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation properties of PFG beams and to compare nonparaxial results with paraxial ones. It is found that the f parameter, offsetting distance of the knife edge and truncation parameter affect the nonparaxial beam propagation properties. Only under certain conditions the paraxial approximation is applicable. The results are illustrated by numerical examples.

  19. Active beam spectroscopy for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von, E-mail: mgvh@jet.u [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Barnsley, R. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Biel, W. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Delabie, E. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Hawkes, N. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Jaspers, R. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Johnson, D. [Princeton Plasma Physics Laboratory, Princeton, NJ-08548 (United States); Klinkhamer, F. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Lischtschenko, O. [FOM Institute Rijnhuizen, Euratom Association, 3430BE Nieuwegein (Netherlands); Marchuk, O. [Institut fuer Energieforschung, Plasmaphysik, Forschungszentrum Juelich, Euratom Association, 52425 Juelich (Germany); Schunke, B. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Singh, M.J. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India); Snijders, B. [TNO Science and Industry, Stieltjesweg 1, 2628CK Delft (Netherlands); Summers, H.P. [Culham Centre for Fusion Energy, Euratom Association, Culham OX14 3DB (United Kingdom); Thomas, D. [ITER Organization, 13108 St.-Paul-Lez-Durance, Cadarache (France); Tugarinov, S. [TRINITI Troitsk, Moscow Region 142092 (Russian Federation); Vasu, P. [Institute for Plasma Research, Bhat, Gandhinagar, Gurajat 384828 (India)

    2010-11-11

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0

  20. Solar Probe Plus: Mission design challenges and trades

    Science.gov (United States)

    Guo, Yanping

    2010-11-01

    NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravity assist from Jupiter it was extremely difficult to get to the Sun, so designing a trajectory to reach the Sun that is technically feasible under the new mission guidelines became a key enabler to this highly challenging mission. Mission design requirements and challenges unique to this mission are reviewed and discussed, including various mission scenarios and six different trajectory designs utilizing various planetary gravity assists that were considered. The V 5GA trajectory design using five Venus gravity assists achieves a perihelion of 11.8 solar radii ( RS) in 3.3 years without any deep space maneuver (DSM). The V 7GA trajectory design reaches a perihelion of 9.5 RS using seven Venus gravity assists in 6.39 years without any DSM. With nine Venus gravity assists, the V 9GA trajectory design shows a solar orbit at inclination as high as 37.9° from the ecliptic plane can be achieved with the time of flight of 5.8 years. Using combined Earth and Venus gravity assists, as close as 9 RS from the Sun can be achieved in less than 10 years of flight time at moderate launch C3. Ultimately the V 7GA trajectory was chosen as the new baseline mission trajectory. Its design allowing for science investigation right after launch and continuing for nearly 7 years is unprecedented for interplanetary missions. The redesigned Solar Probe Plus mission is not only feasible under the new guidelines but also significantly outperforms the original mission concept

  1. Phobos Sample Return mission

    Science.gov (United States)

    Zelenyi, Lev; Zakharov, A.; Martynov, M.; Polischuk, G.

    Very mysterious objects of the Solar system are the Martian satellites, Phobos and Deimos. Attempt to study Phobos in situ from an orbiter and from landers have been done by the Russian mission FOBOS in 1988. However, due to a malfunction of the onboard control system the landers have not been delivered to the Phobos surface. A new robotics mission to Phobos is under development now in Russia. Its main goal is the delivery of samples of the Phobos surface material to the Earth for laboratory studies of its chemical, isotopic, mineral composition, age etc. Other goals are in situ studies of Phobos (regolith, internal structure, peculiarities in orbital and proper rotation), studies of Martian environment (dust, plasma, fields). The payload includes a number of scientific instruments: gamma and neutron spectrometers, gaschromatograph, mass spectrometers, IR spectrometer, seismometer, panoramic camera, dust sensor, plasma package. To implement the tasks of this mission a cruise-transfer spacecraft after the launch and the Earth-Mars interplanetary flight will be inserted into the first elliptical orbit around Mars, then after several corrections the spacecraft orbit will be formed very close to the Phobos orbit to keep the synchronous orbiting with Phobos. Then the spacecraft will encounter with Phobos and will land at the surface. After the landing the sampling device of the spacecraft will collect several samples of the Phobos regolith and will load these samples into the return capsule mounted at the returned vehicle. This returned vehicle will be launched from the mother spacecraft and after the Mars-Earth interplanetary flight after 11 monthes with reach the terrestrial atmosphere. Before entering into the atmosphere the returned capsule will be separated from the returned vehicle and will hopefully land at the Earth surface. The mother spacecraft at the Phobos surface carrying onboard scientific instruments will implement the "in situ" experiments during an year

  2. Electron beam control for barely separated beams

    Science.gov (United States)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  3. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  4. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  5. Using Natural Language to Enhance Mission Effectiveness

    Science.gov (United States)

    Trujillo, Anna C.; Meszaros, Erica

    2016-01-01

    . With a relatively well-defined and simple vocabulary, the operator can input the vast majority of the mission parameters using simple, intuitive voice commands. However, voice input may be more applicable to initial mission specification rather than for critical commands such as the need to land immediately due to time and feedback constraints. It would also be convenient to retrieve relevant mission information using voice input. Therefore, further on-going research is looking at using intent from operator utterances to provide the relevant mission information to the operator. The information displayed will be inferred from the operator's utterances just before key phrases are spoken. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables us to predict the operator's intent and supply the operator's desired information to the interface. This paper also describes preliminary investigations into the generation of the semantic space of UAV operation and the success at providing information to the interface based on the operator's utterances.

  6. Advanced Concepts: Enabling Future AF Missions Through the Discovery and Demonstration of Emerging Revolutionary Technologies

    Science.gov (United States)

    2012-10-03

    platforms, but too low for generating low-speed aerodynamic or buoyant lift (Pamb = 0.24 – 40 Torr). Some proposed aerodynamic or buoyant near-space...half days apart. As of early 2009, only two powered stratospheric airships have ever flown with a combined powered flight time of less than 4 hours...Aerostar International’s HiSentinel airship represents the current state of the art of stratospheric airships that have actually achieved powered

  7. Installation Mapping Enables Many Missions: The Benefits of and Barriers to Sharing Geospatial Data Assets

    Science.gov (United States)

    2007-01-01

    Dan Feinberg, Julie Finnegan, Lou Garcia, Jane Goldberg, Bill Goran, Lisa Greenfeld, Jeree Grimes, Tom Haake, Mark Hamilton, Andy Hanes, Keith...water supply and riparian habitat at the Teller Reservoir at the south border of the installation. Tama- risk is an invasive tree species that threatens

  8. Heatshield for Extreme Entry Environment Technology (HEEET) - Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.; Ma, J.; Milos, F.; Nishioka, O.; Poteet, C.; Splinter, S.; Stackpoole, M.; Venkatapathy, E.; Young, Z.

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  9. Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzaes, G.; Hamm, K.; Kazemba, C.; Ma, J.; Mahzari, M.; Milos, F.; Nishioka, O.; Peterson, K.; Poteet, C.; Prabhu, D.; Splinter, S.; Stackpoole, M.; Venkatapathy, E.; Young, Z.

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  10. RFID-Enabled Navigation and Communication Networks for Long-Duration Space Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Virtual EM Inc. proposes a system that employs semi-passive RFID sensors with carbon nanotube inkjet-printed antenna and solar powered mesh-networked beacons. The...

  11. Functional Performance of an Enabling Atmosphere Revitalization Subsystem Architecture for Deep Space Exploration Missions

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.; Scott, Joseph P.; Stanley, Christine M.

    2013-01-01

    A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.

  12. Enhanced Mission-Enabling Ultra-High Power Solar Array (Mega-ROSA EX) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mega-ROSA-EX is an enhanced, higher stiffness, higher sun-pointing accuracy, higher strength, higher specific power and even larger overall power / deployed size /...

  13. Enablement of defense missions with in-space 3D printing

    Science.gov (United States)

    Parsons, Michael; McGuire, Thomas; Hirsch, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    Outer space has the potential to become the battlefield of the 21st century. If this occurs, the United States will need to invest heavily into research and development regarding space assets, construction approaches, and anti-satellite technologies in order to ensure the requisite level of offensive and deterrent capabilities exist. One challenge that the U.S. faces is the expense of inserting satellites into orbit. With an in-space 3D printer, engineers would not need to incur the design and construction costs for developing a satellite that can survive the launch into orbit. Instead, they could just create the best design for their application and the in-space 3D printer could print and deploy it in orbit. This paper considers the foregoing and other uses for a 3D printer in space that advance national security.

  14. An Automated Information Asset Tracking Methodology to Enable Timely Cyber Incident Mission Impact Assessment

    Science.gov (United States)

    2008-06-01

    AFIT), 1999. [13] Lala , C. & B. Panda, B. "Evaluating damage from cyber attacks." IEEE Transactions on Systems, Man and Cybernetics 31(4): 300-310...c e Prior Research RAND Report (1995) – The Day After Exercises Lala and Panda (2001) – Database damage assessment Thiem (2005) – Lack of standardized

  15. Anisotropic damping of Timoshenko beam elements

    DEFF Research Database (Denmark)

    Hansen, M.H.

    2001-01-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risø for modeling wind turbines. The model has been developed to enable modeling of turbine blades which oftenhave different damping characteristics...

  16. SOHO Mission Science Briefing

    Science.gov (United States)

    1995-01-01

    Footage shows the SOHO Mission Pre-Launch Science Briefing. The moderator of the conference is Fred Brown, NASA/GSFC Public Affairs, introduces the panel members. Included are Professor Roger Bonnet, Director ESA Science Program, Dr. Wesley Huntress, Jr., NASA Associate Administrator for Space Science and Dr. Vicente Domingo, ESA SOHO Project Scientist. Also present are several members from the SOHO Team: Dr. Richard Harrison, Art Poland, and Phillip Scherrer. The discussions include understanding the phenomena of the sun, eruption of gas clouds into the atmosphere, the polishing of the mirrors for the SOHO satellite, artificial intelligence in the telescopes, and the launch and operating costs. The panel members are also seen answering questions from various NASA Centers and Paris.

  17. The Planck mission

    CERN Document Server

    Bouchet, François R

    2014-01-01

    These lecture from the 100th Les Houches summer school on "Post-planck cosmology" of July 2013 discuss some aspects of the Planck mission, whose prime objective was a very accurate measurement of the temperature anisotropies of the Cosmic Microwave Background (CMB). We announced our findings a few months ago, on March 21$^{st}$, 2013. I describe some of the relevant steps we took to obtain these results, sketching the measurement process, how we processed the data to obtain full sky maps at 9 different frequencies, and how we extracted the CMB temperature anisotropies map and angular power spectrum. I conclude by describing some of the main cosmological implications of the statistical characteristics of the CMB we found. Of course, this is a very much shortened and somewhat biased view of the \\Planck\\ 2013 results, written with the hope that it may lead some of the students to consult the original papers.

  18. The INTEGRAL mission

    DEFF Research Database (Denmark)

    Winkler, C.; Courvoisier, T.J.L.; Di Cocco, G.

    2003-01-01

    The ESA observatory INTEGRAL (International Gamma-Ray Astrophysics Laboratory) is dedicated to the fine spectroscopy (2.5 keV FWHM @ 1 MeV) and fine imaging (angular resolution: 12 arcmin FWHM) of celestial gamma-ray sources in the energy range 15 keV to 10 MeV with concurrent source monitoring......-angular resolution imaging (15 keV-10 MeV). Two monitors, JEM-X (Lund et al. 2003) in the (3-35) keV X-ray band, and OMC (Mas-Hesse et al. 2003) in optical Johnson V-band complement the payload. The ground segment includes the Mission Operations Centre at ESOC, ESA and NASA ground stations, the Science Operations...

  19. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  20. Descope of the ALIA mission

    CERN Document Server

    Gong, Xuefei; Xu, Shengnian; Amaro-Seoane, Pau; Bai, Shan; Bian, Xing; Cao, Zhoujian; Chen, Gerui; Chen, Xian; Ding, Yanwei; Dong, Peng; Gao, Wei; Heinzel, Gerhard; Li, Ming; Li, Shuo; Liu, Fukun; Luo, Ziren; Shao, Mingxue; Spurzem, Rainer; Sun, Baosan; Tang, Wenlin; Wang, Yan; Xu, Peng; Yu, Pin; Yuan, Yefei; Zhang, Xiaomin; Zhou, Zebing

    2014-01-01

    The present work reports on a feasibility study commissioned by the Chinese Academy of Sciences of China to explore various possible mission options to detect gravitational waves in space alternative to that of the eLISA/LISA mission concept. Based on the relative merits assigned to science and technological viability, a few representative mission options descoped from the ALIA mission are considered. A semi-analytic Monte Carlo simulation is carried out to understand the cosmic black hole merger histories starting from intermediate mass black holes at high redshift as well as the possible scientific merits of the mission options considered in probing the light seed black holes and their coevolution with galaxies in early Universe. The study indicates that, by choosing the armlength of the interferometer to be three million kilometers and shifting the sensitivity floor to around one-hundredth Hz, together with a very moderate improvement on the position noise budget, there are certain mission options capable ...

  1. STS-40 Mission Insignia

    Science.gov (United States)

    1990-01-01

    The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.

  2. Hayabusa2 Mission Overview

    Science.gov (United States)

    Watanabe, Sei-ichiro; Tsuda, Yuichi; Yoshikawa, Makoto; Tanaka, Satoshi; Saiki, Takanao; Nakazawa, Satoru

    2017-07-01

    The Hayabusa2 mission journeys to C-type near-Earth asteroid (162173) Ryugu (1999 JU3) to observe and explore the 900 m-sized object, as well as return samples collected from the surface layer. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on December 3, 2014 by an H-IIA launch vehicle and performed an Earth swing-by on December 3, 2015 to set it on a course toward its target Ryugu. Hayabusa2 aims at increasing our knowledge of the early history and transfer processes of the solar system through deciphering memories recorded on Ryugu, especially about the origin of water and organic materials transferred to the Earth's region. Hayabusa2 carries four remote-sensing instruments, a telescopic optical camera with seven colors (ONC-T), a laser altimeter (LIDAR), a near-infrared spectrometer covering the 3-μm absorption band (NIRS3), and a thermal infrared imager (TIR). It also has three small rovers of MINERVA-II and a small lander MASCOT (Mobile Asteroid Surface Scout) developed by German Aerospace Center (DLR) in cooperation with French space agency CNES. MASCOT has a wide angle imager (MasCam), a 6-band thermal radiator (MARA), a 3-axis magnetometer (MasMag), and a hyperspectral infrared microscope (MicrOmega). Further, Hayabusa2 has a sampling device (SMP), and impact experiment devices which consist of a small carry-on impactor (SCI) and a deployable camera (DCAM3). The interdisciplinary research using the data from these onboard and lander's instruments and the analyses of returned samples are the key to success of the mission.

  3. Advanced propulsion options for the Mars cargo mission

    Science.gov (United States)

    Frisbee, Robert H.; Blandino, John J.; Sercel, Joel C.; Sargent, Mark S.; Gowda, Nandini

    1990-01-01

    Several advanced propulsion options for a split-mission piloted Mars exploration scenario are presented. The primary study focus is on identifying concepts that can reduce total initial mass in low earth orbit (IMLEO) for the cargo delivery portion of the mission; in addition, concepts that can reduce the trip time of the piloted option are assessed. The propulsion options considered are nuclear thermal propulsion, solar sails, multimegawatt-class nuclear electric propulsion, solar electric propulsion, magnetic sails, mass drivers, rail guns, solar thermal rockets, beamed-energy propulsion systems, and tethers. For the cargo mission, solar sails are found to provide the greatest mass savings over the baseline chemical system, although they suffer from having very long trip times; a good performance compromise between a low IMLEO and a short trip time can be obtained using multimegawatt-class nuclear electric propulsion systems.

  4. Enabling Participation In Exoplanet Science

    Science.gov (United States)

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  5. Enabling technology for human collaboration.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Tim Andrew (MindTel, LLC, Syracuse, NY); Jones, Wendell Bruce; Warner, David Jay (MindTel, LLC, Syracuse, NY); Doser, Adele Beatrice; Johnson, Curtis Martin; Merkle, Peter Benedict

    2003-11-01

    This report summarizes the results of a five-month LDRD late start project which explored the potential of enabling technology to improve the performance of small groups. The purpose was to investigate and develop new methods to assist groups working in high consequence, high stress, ambiguous and time critical situations, especially those for which it is impractical to adequately train or prepare. A testbed was constructed for exploratory analysis of a small group engaged in tasks with high cognitive and communication performance requirements. The system consisted of five computer stations, four with special devices equipped to collect physiologic, somatic, audio and video data. Test subjects were recruited and engaged in a cooperative video game. Each team member was provided with a sensor array for physiologic and somatic data collection while playing the video game. We explored the potential for real-time signal analysis to provide information that enables emergent and desirable group behavior and improved task performance. The data collected in this study included audio, video, game scores, physiological, somatic, keystroke, and mouse movement data. The use of self-organizing maps (SOMs) was explored to search for emergent trends in the physiological data as it correlated with the video, audio and game scores. This exploration resulted in the development of two approaches for analysis, to be used concurrently, an individual SOM and a group SOM. The individual SOM was trained using the unique data of each person, and was used to monitor the effectiveness and stress level of each member of the group. The group SOM was trained using the data of the entire group, and was used to monitor the group effectiveness and dynamics. Results suggested that both types of SOMs were required to adequately track evolutions and shifts in group effectiveness. Four subjects were used in the data collection and development of these tools. This report documents a proof of concept

  6. Bigelow Expandable Activity Module (BEAM) - ISS Inflatable Module Technology Demonstration

    Science.gov (United States)

    Dasgupta, Rajib; Munday, Steve; Valle, Gerard D.

    2014-01-01

    INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, on-orbit performance, and disposal of the first ever man-rated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X-8, be extracted from the dragon trunk, and will attach to ISS at Node 3- Aft. BEAM performance will be monitored over a two-year period and then BEAM will be jettison using the SSRMS.

  7. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  8. ISR beam scrapers

    CERN Multimedia

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  9. Swarming UAVs mission design strategy

    Science.gov (United States)

    Lin, Kuo-Chi

    2007-04-01

    This paper uses a behavioral hierarchy approach to reduce the mission solution space and make the mission design easier. A UAV behavioral hierarchy is suggested, which is derived from three levels of behaviors: basic, individual and group. The individual UAV behavior is a combination of basic, lower level swarming behaviors with priorities. Mission design can be simplified by picking the right combination of individual swarming behaviors, which will emerge the needed group behaviors. Genetic Algorithm is used in both lower-level basic behavior design and mission design.

  10. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  11. PARIS to Hektor, A Mission to the Jovian Trojan Asteroids

    Science.gov (United States)

    Gold, R. E.; Ensworth, C. B.; McNutt, R. L.; Ostdiek, P. H.; Prockter, L. M.

    2005-12-01

    PARIS (Planetary Access with Radioisotope Ion-drive System) spacecraft enable a new class of missions to the outer solar system. The high power-to-mass ratio of new radioisotope power systems enables New-Frontiers class missions that carry a significant a science payload to new destinations. The PARIS spacecraft take advantage of the high-efficiency of Stirling radioisotope generators (SRGs) or new thermoelectric converters to provide the power for an electric propulsion system. These low-thrust missions launched to a high C3 are especially effective for exploring objects in shallow gravity wells. The Jovian Trojan asteroids are very primitive bodies located near the Jovian L4 and L5 Lagrange points and are discussed as targets in the Solar System Decadal Survey. There are estimated to be more than 105 Jovian Trojans greater than 1 km in diameter. We consider a PARIS mission that can reach the asteroids in less than 5 years, orbit 624 Hektor, the largest of the Jovian Trojans, and go on to orbit at least one other nearby object. The candidate payload for this mission includes wide-field and narrow-field cameras, a UV-Vis-IR spectrograph, gamma-ray and neutron spectrometers, and plasma and energetic particle spectrometers. About 900 W of power are required. The launch mass would be slightly less than 1000 kg. The generation power sources with a specific power of > 8W/kg.

  12. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; Busto, J.; Cohen, B.; Caldwell, B.; Jones, A. J. P.; Johnson, S.; Kobayashi, L.; Colaprete, A.

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  13. Beam Steering Mechanism (BSM) Lessons Learned

    Science.gov (United States)

    Blumenstock, Kenneth A.; Cramer, Alexander K.; Gostin, Alan B.; Hakun, Claef F.; Haney, Paul G.; Hinkle, Matthew R.; Lee, Kenneth Y.; Lugo, Carlos F.; Matuszeski, Adam J.; Morell, Armando; Armani, Nerses V.; Bonafede, Joseph; Jackson, Molly I.; Steigner, Peter J.; Stromsdorfer, Juan J.

    2016-01-01

    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. High resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of methodology to verify performance was a significant effortadvancement. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite 2 Mission (ICESat 2), which is scheduled to be launched in 2017. The ICESat 2 primary mission is to map the earths surface topography for the determination of seasonal changes of ice sheet thickness as well as vegetation canopy thickness.

  14. ATLAS Beam Steering Mechanism (BSM) Lessons Learned

    Science.gov (United States)

    Blumenstock, Kenneth A.; Cramer, Alexander K.; Gosten, Alan B.; Hakun, Claef F.; Haney, Paul G.; Hinkle, Matthew R.; Lee, Kenneth Y.; Lugo, Carlos F.; Matuszeski, Adam J.; Morell, Armando; Armani, Nerses V.; Bonafede, Joseph; Jackson, Molly I.; Steigner, Peter J.; Stromsdorfer, Juan J.

    2016-01-01

    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the Earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends.

  15. ATLAS Beam Steering Mechanism Lessons Learned

    Science.gov (United States)

    Blumenstock, Kenneth A.; Cramer, Alexander K.; Gostin, Alan B.; Hakun, Claef F.; Haney, Paul G.; Hinkle, Matthew R.; Lee, Kenneth Y.; Lugo, Carlos F.; Matuszeski, Adam J.; Morrell, Armando; Armani, Nerses V.; Bonafede, Joseph; Jackson, Molly I.; Steigner, Peter J.; Stromsdorfer, Juan J.

    2016-01-01

    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends.

  16. Flight-Tested Prototype of BEAM Software

    Science.gov (United States)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  17. Heritage Systems Engineering Lessons from NASA Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications

  18. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  19. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  20. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  1. Trajectories for a Near Term Mission to the Interstellar Medium

    Science.gov (United States)

    Arora, Nitin; Strange, Nathan; Alkalai, Leon

    2015-01-01

    Trajectories for rapid access to the interstellar medium (ISM) with a Kuiper Belt Object (KBO) flyby, launching between 2022 and 2030, are described. An impulsive-patched-conic broad search algorithm combined with a local optimizer is used for the trajectory computations. Two classes of trajectories, (1) with a powered Jupiter flyby and (2) with a perihelion maneuver, are studied and compared. Planetary flybys combined with leveraging maneuvers reduce launch C3 requirements (by factor of 2 or more) and help satisfy mission-phasing constraints. Low launch C3 combined with leveraging and a perihelion maneuver is found to be enabling for a near-term potential mission to the ISM.

  2. Advanced Materials and Cell Components for NASA's Exploration Missions

    Science.gov (United States)

    Reid, Concha M.

    2009-01-01

    This is an introductory paper for the focused session "Advanced Materials and Cell Components for NASA's Exploration Missions". This session will concentrate on electrochemical advances in materials and components that have been achieved through efforts sponsored under NASA's Exploration Systems Mission Directorate (ESMD). This paper will discuss the performance goals for components and for High Energy and Ultra High Energy cells, advanced lithium-ion cells that will offer a combination of higher specific energy and improved safety over state-of-the-art. Papers in this session will span a broad range of materials and components that are under development to enable these cell development efforts.

  3. Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges

    Science.gov (United States)

    Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter

    2006-09-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  4. Developing a culture of philanthropy to support your mission.

    Science.gov (United States)

    Yoon, Christina

    2014-01-01

    Nonprofit organizations and institutions should recognize and embrace the important role that philanthropy plays in our society. The key to success in fund-raising is nurturing a culture of philanthropy in your organization, which means that every member of your community must understand that philanthropy is critical to your mission, that each person has a role to play in fund-raising, and that donors are valued for more than just money. The focus should be on developing lasting relationships between you and your donors-a relationship that develops over time, enables deeper engagement, and ultimately results in more support for your mission. Common pitfalls to avoid are also reviewed.

  5. Simulation of Mission Phases

    Science.gov (United States)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  6. Enabling individualized therapy through nanotechnology

    Science.gov (United States)

    Sakamoto, Jason H.; van de Ven, Anne L.; Godin, Biana; Blanco, Elvin; Serda, Rita E.; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I.; De Rosa, Enrica; Martinez, Jonathan O.; Smid, Christine A.; Buchanan, Rachel M.; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-01-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of ‘losing sight of the forest for the trees’. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of “-omic” technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon “-omic” technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology “snapshot” of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to “self-correct” in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. PMID:20045055

  7. CUDA Enabled Graph Subset Examiner

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-22

    Finding Godsil-McKay switching sets in graphs is one way to demonstrate that a specific graph is not determined by its spectrum--the eigenvalues of its adjacency matrix. An important area of active research in pure mathematics is determining which graphs are determined by their spectra, i.e. when the spectrum of the adjacency matrix uniquely determines the underlying graph. We are interested in exploring the spectra of graphs in the Johnson scheme and specifically seek to determine which of these graphs are determined by their spectra. Given a graph G, a Godsil-McKay switching set is an induced subgraph H on 2k vertices with the following properties: I) H is regular, ii) every vertex in G/H is adjacent to either 0, k, or 2k vertices of H, and iii) at least one vertex in G/H is adjacent to k vertices in H. The software package examines each subset of a user specified size to determine whether or not it satisfies those 3 conditions. The software makes use of the massive parallel processing power of CUDA enabled GPUs. It also exploits the vertex transitivity of graphs in the Johnson scheme by reasoning that if G has a Godsil-McKay switching set, then it has a switching set which includes vertex 1. While the code (in its current state) is tuned to this specific problem, the method of examining each induced subgraph of G can be easily re-written to check for any user specified conditions on the subgraphs and can therefore be used much more broadly.

  8. Solar Glitter -- Microsystems Enabled Photovoltaics

    Science.gov (United States)

    Nielson, Gregory N.

    2012-02-01

    Many products have significantly benefitted from, or been enabled by, the ability to manufacture structures at an ever decreasing length scale. Obvious examples of this include integrated circuits, flat panel displays, micro-scale sensors, and LED lighting. These industries have benefited from length scale effects in terms of improved performance, reduced cost, or new functionality (or a combination of these). In a similar manner, we are working to take advantage of length scale effects that exist within solar photovoltaic (PV) systems. While this is a significant step away from traditional approaches to solar power systems, the benefits in terms of new functionality, improved performance, and reduced cost for solar power are compelling. We are exploring scale effects that result from the size of the solar cells within the system. We have developed unique cells of both crystalline silicon and III-V materials that are very thin (5-20 microns thick) and have very small lateral dimensions (on the order of hundreds of microns across). These cells minimize the amount of expensive semiconductor material required for the system, allow improved cell performance, and provide an expanded design space for both module and system concepts allowing optimized power output and reduced module and balance of system costs. Furthermore, the small size of the cells allows for unique high-efficiency, high-flexibility PV panels and new building-integrated PV options that are currently unavailable. These benefits provide a pathway for PV power to become cost competitive with grid power and allow unique power solutions independent of grid power.

  9. Enabling the space exploration initiative: NASA's exploration technology program in space power

    Science.gov (United States)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  10. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  11. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  12. A Secure NEC-enabling Architecture : Disentangling Infrastructure, Information and Security

    NARCIS (Netherlands)

    Boonstra, D.; Hartog, T.; Schotanus, H.A.; Verkoelen, C.A.A.

    2011-01-01

    The NATO Network-Enabled Capability (NNEC) study envisions effective and efficient cooperation among the coalition partners in missions. This requires information sharing and efficient deployment of IT assets. Current military communication infrastructures are mostly deployed as stand-alone networke

  13. Transmission Of Power Via Combined Laser Beams

    Science.gov (United States)

    Kwon, Jin H.; Lee, Ja H.

    1992-01-01

    Laser Diode Array (LDA) appears to be most efficient means of transferring power from Earth to satellites and between satellites, in terms of mass and size, of various laser configurations. To form large-scale-array amplifier (LSAA), element LDA's must generate well-defined diffraction-limited beams. Coherent matching of phases among LDA's enables system to generate good beam pattern in far field over thousands of kilometers. By passing beam from master laser through number of LDA amplifiers simultaneously, one realizes coherence among amplified output beams. LSAA used for transmission of power with efficiency of approximately 80 percent into receiver of moderate size at 5,000 km. Also transmits data at high rates by line-of-sight rather than fiber optics.

  14. Tailoring Accelerating Beams in Phase Space

    CERN Document Server

    Wen, Yuanhui; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-01-01

    An appropriate design of wavefront will enable light fields propagating along arbitrary trajectories thus forming accelerating beams in free space. Previous ways of designing such accelerating beams mainly rely on caustic methods, which start from diffraction integrals and only deal with two-dimensional fields. Here we introduce a new perspective to construct accelerating beams in phase space by designing the corresponding Wigner distribution function (WDF). We find such a WDF-based method is capable of providing both the initial field distribution and the angular spectrum in need by projecting the WDF into the real space and the Fourier space respectively. Moreover, this approach applies to the construction of both two- and three-dimensional fields, greatly generalizing previous caustic methods. It may therefore open up a new route to construct highly-tailored accelerating beams and facilitate applications ranging from particle manipulation and trapping to optical routing as well as material processing.

  15. Catenary nanostructures as compact Bessel beam generators.

    Science.gov (United States)

    Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Jin, Jinjin; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2016-02-04

    Non-diffracting Bessel beams, including zero-order and high-order Bessel Beams which carry orbital angular momentum (OAM), enable a variety of important applications in optical micromanipulation, sub-diffraction imaging, high speed photonics/quantum communication, etc. The commonly used ways to create Bessel beams, including an axicon or a digital hologram written to a spatial light modulator (SLM), have great challenges to operate at the nanoscale. Here we theoretically design and experimentally demonstrate one kind of planar Bessel beam generators based on metasurfaces with analytical structures perforated in ultra-thin metallic screens. Continuous phase modulation between 0 to 2π is realized with a single element. In addition, due to the dispersionless phase shift stemming from spin-orbit interaction, the proposed device can work in a wide wavelength range. The results may find applications in future optical communication, nanofabrication and super-resolution imaging, etc.

  16. Prebunched-beam free electron maser

    Science.gov (United States)

    Arbel, M.; Ben-Chaim, D.; Cohen, M.; Draznin, M.; Eichenbaum, A.; Gover, Abraham; Kleinman, H.; Kugel, A.; Pinhasi, Yosef; Witman, S.; Yakover, Y. M.

    1994-05-01

    The development status of a prebunched FEM is described. We are developing a 70 KeV FEM to allow high gain wideband operation and to enable variation of the degree of prebunching. We intend to investigate its operation as an amplifier and as an oscillator. Effects of prebunching, frequency variation, linear and nonlinear effects, will be investigated. The prebuncher consists of a Pierce e-gun followed by a beam modulating section. The prebunched beam is accelerated to 70 KeV and injected into a planar wiggler containing a waveguide. The results obtained to date will be presented. These include: characterization of the e-gun, e-beam transport to and through the wiggler, use of field modifying permanent magnets near the entrance and along the wiggler to obtain good e-beam transport through the wiggler, waveguide selection and characterization.

  17. MITA: An Italian minisatellite for small missions

    Science.gov (United States)

    Falvella, M. C.; Crisconio, M.; Lupi, T.; Sabatini, P.; Valentini, G.; Viola, F.

    On July 15th 2000 the first MITA (Italian Advanced Technology Minisatellite) was launched from Plesetsk (Russia) by a Cosmos rocket as a piggy-back of the CHAMP satellite. The main purpose of the first MITA mission is its in-flight validation. Furthermore the scientific payload NINA-2 of INFN (Istituto Nazionale di Fisica Nucleare) and the technological payload MTS-AOMS (Micro Tech Sensor for Attitude and Orbit Measurement System) were embarked. The NINA-2 goal is the survey of galactic and solar cosmic rays at 450 km altitude. MTS is an ESA multi-tasking autonomous sensor based on Active Pixel Sensor (star and horizon sensor), Angular Rate Sensor and Magnetic Field Sensor. In this paper the main MITA bus characteristics are reported, together with the description of the launch and the first commissioning phase. The first mission nominal orbit is circular, with a 450 Km altitude and a 87° inclination. The satellite attitude is nadir pointing, 3 axes stabilised. Spacecraft mass is 169.9 Kg. Two fixed solar panels provide an average power of 85 W EOL. The configuration of the satellite main body is based on a cubic shape module, made of Aluminium beams and honeycomb panels. The Mission Control Center is placed in Rome, while the TT&C stations are in Cordoba (Argentina) and, only during the commissioning phase, in Malindi (Kenia); Malindi TT&C station will then be replaced by Fucino (Italy). Since the contacts between spacecraft and the TT&C stations do not occur every orbit, the satellite on board S/W was designed in order to reach the nominal mode without telecommand from ground.

  18. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  19. ERIC: Mission, Structure, and Resources.

    Science.gov (United States)

    Robbins, Jane B.

    2001-01-01

    Provides an overview of the mission, structure, and resource base of the Educational Resources Information Center (ERIC). Highlights include problems in meeting the information needs of a wide variety of educational practitioners as part of the mission; structure, based on organizational decentralization; and resources that are limited by…

  20. Mission Assurance: Issues and Challenges

    Science.gov (United States)

    2010-07-15

    JFQ), Summer 1995. [9] Alberts , C.J. & Dorofee, A.J., “Mission Assurance Analysis Protocol (MAAP): Assessing Risk in Complex Environments... CAMUS : Automatically Mapping Cyber Assets to Missions and Users,” Proc. of the 2010 Military Communications Conference (MILCOM 2009), 2009. [23

  1. Mission Dolores and Jim Corbin.

    Science.gov (United States)

    Heaton, Moss, Ed.

    1985-01-01

    Written by history students at Gary High School, Gary, Texas, this issue includes two articles relevant to East Texas history. "Mission Dolores and Jim Corbin," (Moss Heaton and others) is a summary of material presented by Professor James Corbin about the early Spanish presence in East Texas. The first attempt at setting up a mission was in 1690…

  2. ESA CHEOPS mission: development status

    Science.gov (United States)

    Rando, N.; Asquier, J.; Corral Van Damme, C.; Isaak, K.; Ratti, F.; Safa, F.; Southworth, R.; Broeg, C.; Benz, W.

    2016-07-01

    The European Space Agency (ESA) Science Programme Committee (SPC) selected CHEOPS (Characterizing Exoplanets Satellite) in October 2012 as the first S-class mission (S1) within the Agency's Scientific Programme, targeting launch readiness by the end of 2017. The CHEOPS mission is devoted to the first-step characterization of known exoplanets orbiting bright stars, to be achieved through the precise measurement of exo-planet radii using the technique of transit photometry. It is implemented as a partnership between ESA and a consortium of Member States led by Switzerland. CHEOPS is considered as a pilot case for implementing "small science missions" in ESA with the following requirements: science driven missions selected through an open Call for missions (bottom-up process); spacecraft development schedule much shorter than for M and L missions, in the range of 4 years; and cost-capped missions to ESA with possibly higher Member States involvement than for M or L missions. The paper describes the CHEOPS development status, focusing on the performed hardware manufacturing and test activities.

  3. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  4. Disruptive Propulsive Technologies for European Space Missions

    OpenAIRE

    2013-01-01

    Advanced space technologies have been reviewed and analysed in view of heavy interplanetary missions of interest for Europe and European industry capabilities. Among the missions of interest: o Heavy robotic missions to outer planets, o Asteroid deflection missions, o Interplanetary manned mission (at longer term). These missions involve high speed increments, generally beyond the capability of chemical propulsion (except if gravitational swing-by can be used). For missions bey...

  5. UNAIDS: mission and roles.

    Science.gov (United States)

    1995-01-01

    The UN has responded to the ongoing AIDS crisis by creating a new Joint UN Programme on HIV/AIDS (UNAIDS). UNAIDS is the AIDS program of six UN agencies (UNICEF; the Development Programme; the Population Fund; the Educational, Scientific and Cultural Organization; the World Health Organization, and the World Bank). The mission of UNAIDS is to lead a multisectoral effort to prevent HIV transmission, provide care and support, alleviate the impact of the epidemic, and reduce vulnerability to HIV/AIDS. Thus, UNAIDS will operate in the areas of policy development and research, technical support, and advocacy. UNAIDS has had an executive director since January 1995, and a formal review of its strategic plan was scheduled for November 1995. At the country level, country representatives of the various agencies that make up UNAIDS will meet regularly to plan, program, and evaluate their HIV/AIDS activities. UNAIDS staff will be available to aid the country efforts. While UNAIDS will assume most of the global-level activities of its six cosponsor agencies, each agency will integrate HIV/AIDS considerations into their ongoing efforts.

  6. COSMOS 2044 Mission: Overview

    Science.gov (United States)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  7. Draft Mission Plan Amendment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-01

    The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

  8. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth- Moon system, which will require weeks, months, or even years of transit time.

  9. Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods

    Science.gov (United States)

    Bauer, Frank (Technical Monitor); Folta, David; Beckman, Mark

    2002-01-01

    Sun-Earth libration point orbits serve as excellent locations for scientific investigations. These orbits are often selected to minimize environmental disturbances and maximize observing efficiency. Trajectory design in support of libration orbits is ever more challenging as more complex missions are envisioned in the next decade. Trajectory design software must be further enabled to incorporate better understanding of the libration orbit solution space and thus improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple libration missions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes algorithm and software development. The recently launched Microwave Anisotropy Probe (MAP) and upcoming James Webb Space Telescope (JWST) and Constellation-X missions are examples of the use of improved numerical methods for attaining constrained orbital parameters and controlling their dynamical evolution at the collinear libration points. This paper presents a history of libration point missions, a brief description of the numerical and dynamical design techniques including software used, and a sample of future GSFC mission designs.

  10. Long-Term Cryogenic Propellant Storage for the TOPS Mission

    Science.gov (United States)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt; hide

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  11. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  12. CIRS-lite, a Fourier Transform Spectrometer for Low-Cost Planetary Missions

    Science.gov (United States)

    Brasunas, J.; Bly, V.; Edgerton, M.; Gong, Q.; Hagopian, J.; Mamakos, W.; Morelli, A.; Pasquale, B.; Strojny, C.

    2011-01-01

    Passive spectroscopic remote sensing of planetary atmospheres and surfaces in the thermal infrared is a powerful tool for obtaining information about surface and atmospheric temperatures, composition, and dynamics (via the thermal wind equation). Due to its broad spectral coverage, the Fourier transform spectrometer (FTS) is particularly suited to the exploration and discovery of molecular species. NASA's Goddard Space Flight Center (GSFC) developed the CIRS (Composite Infrared Spectrometer) FTS for the NASA/ESA Cassini mission to the Saturnian system. CIRS observes Saturn, Titan, icy moons such as Enceladus, and the rings in thermal self-emission over the spectral range of 7 to 1000 ell11. CIRS has given us important new insights into stratospheric composition and jets on Jupiter and Saturn, the cryo-geyser and thermal stripes on Enceladus, and the winter polar vortex on Titan. CIRS has a mass of 43 kg, contrasted with the earlier GSFC FTS, pre-Voyager IRIS (14 kg). Future low-cost planetary missions will have very tight constraints on science payload mass, thus we must endeavor to return to IRIS-level mass while maintaining CIRS-level science capabilities ("do more with less"). CIRS-lite achieves this by pursuing: a) more sensitive infrared detectors (high Tc superconductor) to enable smaller optics. b) changed long wavelength limit from 1000 to 300 microns to reduce diffraction by smaller optics. c) CVD (chemical vapor deposition) diamond beam-splitter for broad spectral coverage. d) single FTS architecture instead of a dual FTS architecture. e) novel materials, such as single crystal silicon for the input telescope primary.

  13. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  14. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  15. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    Energy Technology Data Exchange (ETDEWEB)

    Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare [Department of Physics and CNR-NANOTEC University of Calabria, I-87036 Rende (CS) (Italy); Paladugu, Sathyanarayana [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); Volpe, Giovanni [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey)

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  16. Potential for Fabric Damage by Welding Electron Beam

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    Welding electron beam effects on Nextel AF-62 ceramic fabric enable a preliminary, tentative interpretation of electron beam fabric damage. Static surface charging does not protect fabric from beam penetration, but penetration occurs only after a delay time. The delay time is thought to be that required for the buildup of outgassing products at the fabric surface to a point where arcing occurs. Extra long delays are noted when the gun is close enough to the surface to be shut off by outgassing emissions. Penetration at long distances is limited by beam attenuation from electronic collisions with the chamber atmosphere.

  17. NASA's Near Earth Asteroid Scout Mission

    Science.gov (United States)

    Johnson, Les; McNutt, Leslie; Castillo-Rogez, Julie

    2017-01-01

    continuous low thrust to enable a relatively slow flyby of the target asteroid under lighting conditions favorable to geological imaging. Once complete, NASA will have demonstrated the capability to fly low-cost, high Delta-V cubesats to perform interplanetary missions.

  18. Electron Beam Freeform Fabrication in the Space Environment

    Science.gov (United States)

    Hafley, Robert A.; Taminger, Karen M. B.; Bird, R. Keith

    2007-01-01

    The influence of reduced gravitational forces (in space and on the lunar or Martian surfaces) on manufacturing processes must be understood for effective fabrication and repair of structures and replacement parts during long duration space missions. The electron beam freeform fabrication (EBF3) process uses an electron beam and wire to fabricate metallic structures. The process efficiencies of the electron beam and the solid wire feedstock make the EBF3 process attractive for use in-space. This paper will describe the suitability of the EBF3 process in the space environment and will highlight preliminary testing of the EBF3 process in a zero-gravity environment.

  19. Beam-Beam Experience at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl LF

    2002-11-11

    KEKB has achieved the peak luminosity of 4.1 x 10{sup 33} cm{sup -2} sec{sup -1} and the present capability for delivering integrated luminosity is 224 pb{sup -1}/day. This paper describes (1) the recent performance and the problems of KEKB and (2) the comparison of beam-beam simulations with experiments at KEKB.

  20. T10 Beam Studies & Beam Simulation

    CERN Document Server

    Bergmann, Michael Georges; Van Dijk, Maarten; CERN. Geneva. EN Department

    2017-01-01

    In order to test detector components before their installation in actual experiments, one uses test beams in which one can control particle typ, momentum and size to high degree. For this project the focus of a secondary beam at T10 in the East Area at CERN was analysed using an AZALEA telescope from DESY.

  1. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  2. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  3. Combustion-based power source for Venus surface missions

    Science.gov (United States)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  4. Gravity Science with The JUICE Mission

    Science.gov (United States)

    Parisi, M.; Finocchiaro, S.; Iess, L.

    2012-04-01

    JUICE (Jupiter Icy Moon Explorer) is a European mission to the Jovian system, proposed in the frame of the ESA Cosmic Vision program. The spacecraft will reach the Jovian system and fly several times by the moons Callisto and Europa before being inserted in a nearly circular, polar orbit around Ganymede. After its arrival in 2030, the mission timeline entails two Europa flybys (2030), twelve Callisto flybys (2031) and the orbital phase at Ganymede (2033) [1]. Gravity measurements will provide crucial information on the interior structure of the three satellites. If the bodies are in hydrostatic equilibrium, the radial density distribution may be constrained from their moment of inertia factor and low-degree gravity field coefficients [2]. Furthermore, the determination of the high-degree harmonics will provide the distribution of gravity anomalies. Evidence for subsurface oceans within Ganymede and Callisto, one of the main scientific goals of the mission, will be obtained by the determination of the tidal Love number k2 as part of a global solution for the static and variable gravity field. Gravity fields and tidal deformations will be determined by means of precise Doppler tracking of the spacecraft in Ka-band (32.5-34 GHz). The Radio Science Instrument (RSI) is enabled by a Ka-band transponder which, complemented by suitable ground instrumentation, will enable a radio link with a very high phase stability. The main observable quantity for gravity field determination is the range rate (to 3 micron/s at 1000 s integration time, two-way). The spacecraft range (accurate to 20 cm, two-way) will be used to improve the ephemerides of the Jupiter system. Gravity science at Ganymede will be carried out during the orbital phase. According to the mission profile (subject to change), the first 102 days will be spent at an altitude of 500 km. The orbit will be lowered to 200 km in the last 32 days of the mission. If the spacecraft will be endowed with a steerable medium gain

  5. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  6. Beam tests of the 12 MHz RFQ RIB injector for ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-05-06

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged {sup 132}Xe and {sup 84}Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations.

  7. Thesis: A Combined-light Mission For Exoplanet Molecular Spectroscopy

    Science.gov (United States)

    Deroo, Pieter; Swain, M. R.; Tinetti, G.; Griffith, C.; Vasisht, G.; Deming, D.; Henning, T.; Beaulieu, J.

    2010-01-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a MIDEX/Discovery class exoplanet mission. Building on the recent Spitzer and Hubble successes in exoplanet characterization and molecular spectroscopy, THESIS would extend these types of measurements to a large population of planets including non-transiting planets and super-Earths. The ability to acquire high-stability, spectroscopic data from the near-visible to the mid-infrared is a unique aspect of THESIS. A strength of the THESIS concept is simplicity low technical risk, and modest cost. By enabling molecular spectroscopy of exoplanet atmospheres, THESIS mission has the potential to dramatically advance our understanding of conditions on extrasolar worlds while serving as a stepping stone to more ambitious future missions.

  8. Future Mission Proposal Opportunities: Discovery, New Frontiers, and Project Prometheus

    Science.gov (United States)

    Niebur, S. M.; Morgan, T. H.; Niebur, C. S.

    2003-01-01

    The NASA Office of Space Science is expanding opportunities to propose missions to comets, asteroids, and other solar system targets. The Discovery Program continues to be popular, with two sample return missions, Stardust and Genesis, currently in operation. The New Frontiers Program, a new proposal opportunity modeled on the successful Discovery Program, begins this year with the release of its first Announcement of Opportunity. Project Prometheus, a program to develop nuclear electric power and propulsion technology intended to enable a new class of high-power, high-capability investigations, is a third opportunity to propose solar system exploration. All three classes of mission include a commitment to provide data to the Planetary Data System, any samples to the NASA Curatorial Facility at Johnson Space Center, and programs for education and public outreach.

  9. Planning and Executing Airborne Astronomy Missions for SOFIA

    CERN Document Server

    Gross, Michael A K

    2010-01-01

    SOFIA is a 2.5 meter airborne infrared telescope, mounted in a Boeing 747SP aircraft. Due to the large size of the telescope, only a few degrees of azimuth are available at the telescope bearing. This means the heading of the aircraft is fundamentally associated with the telescope's observation targets, and the ground track necessary to enable a given mission is highly complex and dependent on the coordinates, duration, and order of observations to be performed. We have designed and implemented a Flight Management Infrastructure (FMI) product in order to plan and execute such missions in the presence of a large number of external constraints (e.g. restricted airspace, international boundaries, elevation limits of the telescope, aircraft performance, winds at altitude, and ambient temperatures). We present an overview of the FMI, including the process, constraints and basic algorithms used to plan and execute SOFIA missions.

  10. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  11. Distributed situation management processing: enabling next generation C2

    Science.gov (United States)

    Dunkelberger, Kirk A.

    1996-06-01

    Increased use of joint task force concepts is expanding the battlespace and placing higher demands on interoperability. But simultaneous downsizing of forces is increasing the workload on warfighters; while there is a demand for increased decision aiding there has not been a corresponding increase in computational resources. Force wide situation management, the proactive command and control (C2) of the battlespace enabled by broad situation awareness and a deep understanding of mission context, is not likely given today's computational capability, system architecture, algorithmic, and datalink limitations. Next generation C2, e.g. decentralized, `rolling' etc., could be significantly enhanced by distributed situation management processing techniques. Presented herein is a sampling of core technologies, software architectures, cognitive processing algorithms, and datalink requirements which could enable next generation C2. Dynamic, adaptive process distribution concepts are discussed which address platform and tactical application computational capability limitations. Software and datalink architectures are then presented which facilitate situation management process distribution. Finally, required evolution of current algorithms and algorithms potentially enabled within these concepts are introduced.

  12. BeamOptics : a Symbolic Platform for Modeling and the Solution of Beam Optics System

    Energy Technology Data Exchange (ETDEWEB)

    Yu-Chiu Chao

    2000-11-01

    BeamOptics [1] is a Mathematica-based computing platform devoted to the following objectives: (1) Structured representation and manipulation of particle beam optics systems with symbolic capabilities, (2) Analytical and numerical modeling of beam optics system behaviors, (3) Solution to specific beam optical or general accelerator system problems, in algebraic form in certain cases, through customized algorithms. Taking advantage of and conforming to the highly formal and self-contained structure of Mathematica, BeamOptics provides a unique platform for developing accelerator design and analysis programs. The feature of symbolic computation and the ability to manipulate the beam optics system at the programming language level enable the user to solve or optimize his system with considerably more efficiency, rigour and insight than can be easily achieved with passive modeling or numerical simulation methods. BeamOptics is developed with continuous evolution in mind. New features and algorithms from diverse sources can be incorporated without major modification, due to its formal and generic structure. In this report, a survey is given of the basic structure and methodology of BeamOptics, as well as a demonstration of some of its more specialized applications, and possible direction of evolution.

  13. The Ulysses mission: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, R.G. [Space Science Dept. of ESA, Estec, Noordwijk (Netherlands)

    1996-11-01

    On 30 September 1995, Ulysses completed its initial, highly successful, survey of the polar regions of the heliosphere in both southern and northern hemispheres, thereby fulfilling its prime mission. The results obtained to date are leading to a revision of many earlier ideas concerning the solar wind and the heliosphere. Now embarking on the second phase of the mission, Ulysses will continue along its out-of-ecliptic flight path for another complete orbit of the Sun. In contrast to the high-latitude phase of the prime mission, which occurred near solar minimum, the next polar passes (in 2000 and 2001) will take place when the Sun is at its most active.

  14. BEAM PIPE IS INSTALLED

    CERN Multimedia

    The installation of the central section of the beam pipe into the heart of the  CMS was completed by 23 April. All the beam pipe elements have been successfully vacuum-tested and the bakeout started.  

  15. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  16. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  17. Vortices in Gaussian beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available . Gaussian beams with vortex dipoles CSIR National Laser Centre – p.2/30 Gaussian beam notation Gaussian beam in normalised coordinates: g(u, v, t) = exp ( −u 2 + v2 1− it ) u = xω0 v = yω0 t = zρ ρ = piω20 λ ω0 — 1/e2 beam waist radius; ρ— Rayleigh range ω ω...(z) 0 x z Rayleigh range Beam waist ρ ρ Rayleigh range CSIR National Laser Centre – p.3/30 Gaussian beam Gaussian beam in terms of amplitude and phase g(u, v, t) = exp ( −u 2 + v2 1 + t2 ) exp ( − it(u 2 + v2) 1 + t2 ) Normalised beam radius: √ 1 + t2...

  18. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  19. DIOS: the dark baryon exploring mission

    CERN Document Server

    Ohashi, T; Ezoe, Y; Yamada, S; Yamaguchi, S; Miyazaki, N; Tawara, Y; Mitsuda, K; Yamasaki, N Y; Takei, Y; Sakai, K; Nagayoshi, K; Yamamoto, R; Chiba, A; Hayashi, T

    2015-01-01

    DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2020 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a very wide field of view (30--50 arcmin diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earth's magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. We also consider revising the payload design to optimize the scientific capability allowed by the boundary conditions of the small mission.

  20. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    Science.gov (United States)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  1. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  2. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  3. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  4. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  5. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  6. Trajectory options for the DART mission

    Science.gov (United States)

    Atchison, Justin A.; Ozimek, Martin T.; Kantsiper, Brian L.; Cheng, Andrew F.

    2016-06-01

    meet its mission design objectives and enable this unique kinetic impact experiment.

  7. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  8. Distributed Optimization of Multi Beam Directional Communication Networks

    Science.gov (United States)

    2017-06-30

    Distributed Optimization of Multi-Beam Directional Communication Networks Theodoros Tsiligkaridis MIT Lincoln Laboratory Lexington, MA 02141, USA...based routing. I. INTRODUCTION Missions where multiple communication goals are of in- terest are becoming more prevalent in military applications...Multilayer communications may occur within a coalition; for example, a team consisting of ground vehicles and an airborne set of assets may desire to

  9. Novel multi-beam radiometers for accurate ocean surveillance

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2014-01-01

    Novel antenna architectures for real aperture multi-beam radiometers providing high resolution and high sensitivity for accurate sea surface temperature (SST) and ocean vector wind (OVW) measurements are investigated. On the basis of the radiometer requirements set for future SST/OVW missions...

  10. EXIST Mission Design Concept and Technology Program

    CERN Document Server

    Grindlay, J E; Gehrels, N; Harrison, F A; Hong, J

    2002-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed very large area coded aperture telescope array, incorporating 8m^2 of pixellated Cd-Zn-Te (CZT) detectors, to conduct a full-sky imaging and temporal hard x-ray (10-600 keV) survey each 95min orbit. With a sensitivity (5sigma, 1yr) of ~0.05mCrab (10-150 keV), it will extend the ROSAT soft x-ray (0.5-2.5keV) and proposed ROSITA medium x-ray (2-10 keV) surveys into the hard x-ray band and enable identification and study of sources ~10-20X fainter than with the ~15-100keV survey planned for the upcoming Swift mission. At ~100-600 keV, the ~1mCrab sensitivity is 300X that achieved in the only previous (HEAO-A4, non-imaging) all-sky survey. EXIST will address a broad range of key science objectives: from obscured AGN and surveys for black holes on all scales, which constrain the accretion history of the universe, to the highest sensitivity and resolution studies of gamma-ray bursts it will conduct as the Next Generation Gamma-Ray Burst mission. We ...

  11. The Scintillation Prediction Observations Research Task (SPORT) Mission

    Science.gov (United States)

    Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Denardin, Clezio; hide

    2017-01-01

    SPORT is a science mission using a 6U CubeSat and integrated ground network that will (1) advance understanding and (2) enable improved predictions of scintillation occurrence that impact GPS signals and radio communications. This is the science of Space Weather. SPORT is an international partnership with NASA, U.S. institutions, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA).

  12. Whistler-mode radiation from the Spacelab 2 electron beam

    Science.gov (United States)

    Gurnett, D. A.; Kurth, W. S.; Steinberg, J. T.; Banks, P. M.; Bush, R. I.

    1986-01-01

    During the Spacelab 2 mission the Plasma Diagnostics Package (PDP) performed a fly-around of the Shuttle at distances of up to 300 meters while an electron beam was being ejected from the Shuttle. A magnetic conjunction of the Shuttle and the PDP while the electron gun was operating in a steady (DC) mode is discussed. During this conjunction, the PDP detected a clear funnel-shaped emission that is believed to be caused by whistler-mode emission from the beam. Ray-path calculations show that the shape of the funnel can be accounted for by whistler-mode waves propagating near the resonance cone. Because the beam and waves are propagating in the same direction, the radiation must be produced by a Landau interaction with the beam. Other types of waves generated by the beam are also described.

  13. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  14. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  15. General Mission Analysis Tool (GMAT) Mathematical Specifications

    Science.gov (United States)

    Hughes, Steve

    2007-01-01

    The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development.

  16. General Mission Analysis Tool (GMAT)

    Science.gov (United States)

    Hughes, Steven P. (Compiler)

    2016-01-01

    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.

  17. Mission Critical: Preventing Antibiotic Resistance

    Science.gov (United States)

    ... file Error processing SSI file Mission Critical: Preventing Antibiotic Resistance Recommend on Facebook Tweet Share Compartir Can you ... spp. So, what can we do to prevent antibiotic resistance in healthcare settings? Patients, healthcare providers, healthcare facility ...

  18. Mission Level Autonomy for USSV

    Science.gov (United States)

    Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert

    2011-01-01

    On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010

  19. Accelerated iterative beam angle selection in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, Mark, E-mail: m.bangert@dkfz.de [Department of Medical Physics in Radiation Oncology, German Cancer Research Center—DKFZ, Im Neuenheimer Feld 280, Heidelberg D-69120 (Germany); Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2016-03-15

    Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could

  20. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  1. Center for beam physics 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Center for Beam Physics (CBP) is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Ernest Orlando Lawrence Berkeley National Laboratory of the University of California. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Special features of the Center`s program include addressing R&D issues needing long development time and providing a platform for conception, initiation, and support of institutional projects based on beams. The Center brings to bear a significant amount of diverse, complementary, and self-sufficient expertise in accelerator physics, synchrotron radiation, advanced microwave techniques, plasma physics, optics, and lasers on the forefront R&D issues in particle and photon beam research. In addition to functioning as a clearinghouse for novel ideas and concepts and related R&D (e.g., various theoretical and experimental studies in beam physics such as nonlinear dynamics, phase space control, laser-beam-plasma interaction, free-electron lasers, optics, and instrumentation), the Center provides significant support to Laboratory facilities and initiatives. This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP`s outstanding team and gives a flavor of their multifaceted activities during 1996 and 1997.

  2. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  3. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  4. KEPLER Mission: development and overview.

    Science.gov (United States)

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  5. Rosetta mission operations for landing

    Science.gov (United States)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente

    2016-08-01

    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  6. Characterizing the beam steering and distortion of Gaussian and Bessel beams focused in tissues with microscopic heterogeneities.

    Science.gov (United States)

    Chen, Ye; Liu, Jonathan T C

    2015-04-01

    Bessel beams have recently been investigated as a means of improving deep-tissue microscopy in highly scattering and heterogeneous media. It has been suggested that the long depth-of-field and self-reconstructing property of a Bessel beam enables an increased penetration depth of the focused beam in tissues compared to a conventional Gaussian beam. However, a study is needed to better quantify the magnitude of the beam steering as well as the distortion of focused Gaussian and Bessel beams in tissues with microscopic heterogeneities. Here, we have developed an imaging method and quantitative metrics to evaluate the motion and distortion of low-numerical-aperture (NA) Gaussian and Bessel beams focused in water, heterogeneous phantoms, and fresh mouse esophagus tissues. Our results indicate that low-NA Bessel beams exhibit reduced beam-steering artifacts and distortions compared to Gaussian beams, and are therefore potentially useful for microscopy applications in which pointing accuracy and beam quality are critical, such as dual-axis confocal (DAC) microscopy.

  7. A New Tour Design Technique to Enable an Enceladus Orbiter

    Science.gov (United States)

    Strange, N.; Campagnola, S.; Russell, R.

    2009-12-01

    new result adds new types of Enceladus missions to the feasible mission set beyond those identified by past studies. References [1] C.P. McKay, C.C. Porco, T. Altheide, W.L. Davis, and T.A. Kral, "The Possible Origin and Persistence of Life on Enceladus and Detection of Biomarkers in the Plume," Astrobiology, V. 8, No. 5, pp. 909-919. [2] "Enceladus Flagship Mission concept Study,: NASA Goddard Space Flight Center, August 29, 2007. See also: http://opfm.jpl.nasa.gov/library [3] R.P. Russell and M.P. Lara, "On the Design of an Enceladus Science Orbit," Acta Astronautica, V. 65, No. 1-2, pp. 27-39. [4] N.J. Strange, S. Campagnola, R.P. Russell, "Leveraging Flybys of Low Mass Moons to Enable An Enceladus Orbiter," AAS Paper 09-435, AAS/AIAA Astrodynamics Conference, Pittsburgh, PA, Aug. 2009. [5] T.R. Spilker, R.C. Moeller, C.S. Borden, W.D. Smythe, R.E. Lock, J.O. Elliott, J.A. Wertz, N.J. Strange, "Analysis of Architectures for the Scientific Exploration of Enceladus," IEEEAC Paper 1644, 2009 IEEE Aerospace conference, Mar. 2009. [6] "Titan Saturn System Mission Final Report on the NASA Contribution to a Joint Mission with ESA," Jet Propulsion Laboratory, January 30, 2009. See also: http://opfm.jpl.nasa.gov/library/

  8. Social Tagging of Mission Data

    Science.gov (United States)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; Pyrzak, Guy; Vaughn, Michael B.

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  9. Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES)

    Science.gov (United States)

    Obland, M. D.; Antill, C.; Browell, E. V.; Campbell, J. F.; CHEN, S.; Cleckner, C.; Dijoseph, M. S.; Harrison, F. W.; Ismail, S.; Lin, B.; Meadows, B. L.; Mills, C.; Nehrir, A. R.; Notari, A.; Prasad, N. S.; Kooi, S. A.; Vitullo, N.; Dobler, J. T.; Bender, J.; Blume, N.; Braun, M.; Horney, S.; McGregor, D.; Neal, M.; Shure, M.; Zaccheo, T.; Moore, B.; Crowell, S.; Rayner, P. J.; Welch, W.

    2013-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) multiple transmitter and telescope-aperture operations, (2) high-efficiency CO2 laser transmitters, (3) a high bandwidth detector and transimpedance amplifier (TIA), and (4) advanced algorithms for cloud and aerosol discrimination. The instrument architecture is being developed for ACES to operate on a high-altitude aircraft, and it will be directly scalable to meet the ASCENDS mission requirements. The above technologies are critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. This design employs several laser transmitters and telescope-apertures to demonstrate column CO2 retrievals with alignment of multiple laser beams in the far-field. ACES will transmit five laser beams: three from commercial lasers operating near 1.57-microns, and two from the Exelis atmospheric oxygen (O2) fiber laser amplifier system operating near 1.26-microns. The Master Oscillator Power Amplifier at 1.57-microns measures CO2 column concentrations using an Integrated-Path Differential Absorption (IPDA) lidar approach. O2 column amounts needed for calculating the CO2 mixing ratio will be retrieved using the Exelis laser system with a similar IPDA approach. The three aperture telescope design was built to meet the constraints of the Global Hawk high-altitude unmanned aerial vehicle (UAV). This assembly integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical signals from the three telescopes to the aft optics and detector package. The detector

  10. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  11. Optimization of beam transformation system for laser-diode bars.

    Science.gov (United States)

    Yu, Junhong; Guo, Linhui; Wu, Hualing; Wang, Zhao; Gao, Songxin; Wu, Deyong

    2016-08-22

    An optimized beam transformation system (BTS) is proposed to improve the beam quality of laser-diode bars. Through this optimized design, the deterioration of beam quality after the BTS can be significantly reduced. Both the simulation and experimental results demonstrate that the optimized system enables the beam quality of a mini-bar (9 emitters) approximately equal to 5.0 mm × 3.6 mrad in the fast-axis and slow-axis. After beam shaping by the optimized BTS, the laser-diode beam can be coupled into a 100 μm core, 0.15 numerical aperture (NA) fiber with an output power of over 100 W and an electric-optical efficiency of 46.8%.

  12. Status of ITER neutral beam cell remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Belcher, C. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Crofts, O. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Crowe, R. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Damiani, C. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Delavalle, S.; Meredith, L. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Mindham, T.; Raimbach, J. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  13. Status of ITER neutral beam cell remote handling system

    CERN Document Server

    Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

    2013-01-01

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  14. A review of Spacelab mission management approach

    Science.gov (United States)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  15. ALICE Injected Beam Accidents

    CERN Document Server

    Appleby, R B

    2009-01-01

    The ALICE (point 2) interaction region is sensitive to beam orbit errors arising from magnet setting errors on injection. In this report, beam accident scenarios under injection for ALICE are described, focusing on ultra- fast error injection scenarios for the interaction straight correctors and dipoles. Beam 1 and beam 2 accident scenarios are considered, where the errors can lead to beam orbits striking the ALICE vacuum chamber or elements of the machine. The required thresholds for magnet current interlocks are calculated to avoid machine and detector risk.

  16. LHCb Injected Beam Accidents

    CERN Document Server

    Appleby, R B

    2009-01-01

    The LHCb (point 8) interaction region is sensitive to beam orbit errors arising from magnet setting errors on injection. In this report, beam accident scenarios under injection for LHCb are described, focusing on ultra- fast error injection scenarios for the interaction straight correctors and dipoles. Beam 1 and beam 2 accident scenarios are considered, where the errors can lead to beam orbits striking the LHCb vacuum chamber or elements of the machine. The required thresholds for magnet current interlocks are calculated to avoid machine and detector risk.

  17. Planetary protection and Mars: requirements and constraints on the 2016 and 2018 missions, and beyond

    Science.gov (United States)

    Rummel, J.; Kminek, G.; Conley, C.

    2011-10-01

    The suite of missions being planned currently by NASA and ESA as a partnership under the name "ExoMars" include an orbiter and an entry, descent, and landing demonstrator module (EDM) for the 2016 "ExoMars Trace Gas Orbiter" mission (ExoMars TGO), as well as a highly capable rover to be launched in 2018 to address the original ExoMars objectives (including the Pasteur payload). This 2018 ExoMars rover is expected to begin a series of missions leading to the first sample return mission from Mars, also conducted jointly between NASA, ESA, and their partners (JMSR). Each of these missions and mission components has a role in enabling future Mars exploration, including the search for life or life-related compounds on Mars, and each of them has the potential to carry confounding biological and organic materials into sensitive environments on Mars. Accordingly, this suite of missions will be subjected to joint planetary protection requirements applied by both ESA and NASA to their respective components, according to the COSPAR-delineated planetary protection policy to protect Mars from contamination, and eventually to provide for the protection of the Earth from potential life returned in a martian sample. This paper will discuss the challenges ahead for mission designers and the mission science teams, and will outline some of the potential pitfalls involved with different mission options.

  18. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  19. Semantic Sensor Web Enablement for COAST Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sensor Web Enablement (SWE) is an Open Geospatial Consortium (OGC) standard Service Oriented Architecture (SOA) that facilitates discovery and integration of...

  20. Analysis of space concepts enabled by new transportation (ASCENT) study

    Science.gov (United States)

    Webber, Derek

    2002-01-01

    The ASCENT Study is evaluating all those markets (both commercial and government missions) that may be served by a future Second Generation Reusable Launch Vehicle. The markets are being analyzed, and twenty-year forecasts are being generated, in order to assist NASA in defining the attributes of the Second Generation RLV that will eventually replace the Space Shuttle. The forecasts will make possible an evaluation of alternative architectures for the Second Generation RLV, and also help assess the extent to which new commercial markets, enabled by the proposed pricing and reliability benefits of the Second Generation RLV, can contribute to the funding of the vehicle. This paper provides a status of the project at the time of the conference, and describes the way in which the markets are being treated and data is being obtained. The sectors range from the relatively well understood telecommunications markets to the newer evolving market opportunities like public space travel. .