WorldWideScience

Sample records for beambased feedback systems

  1. Commissioning and Initial Performance of the LHC Beam-Based Feedback Systems

    CERN Document Server

    Boccardi, A; Calvo Giraldo, E; Denz, R; Gasior, M; Gonzalez, JL; Jackson, S; Jensen, LK; Jones, OR; King, Q; Kruk, G; Lamont, M; Page, S; Steinhagen, RJ; Wenninger, J

    2010-01-01

    The LHC deploys a comprehensive suite of beam-based feedbacks for safe and reliable machine operation. This contribution summarises the commissioning and early results of the LHC feedback control systems on orbit, tune, chromaticity, and energy. Their performance – strongly linked to the associated beam instrumentation, external beam perturbation sources and optics uncertainties – is evaluated and compared with the initial feedback design assumptions

  2. Tutorial on beam-based feedback systems for linacs

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, L.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Ross, M.; Sass, R.; Shoaee, H.

    1994-08-01

    A generalized fast feedback system stabilizes beams in the SLC. It performs measurements and modifies actuator settings to control beam states such as position, angle, energy and intensity on a pulse to pulse basis. An adaptive cascade feature allows communication between a series of linac loops, avoiding overcorrection problems. The system is based on the state space formalism of digital control theory. Due to the database-driven design, new loops are added without requiring software modifications. Recent enhancements support the monitoring and control of nonlinear states such as beam phase using excitation techniques. In over three years of operation, the feedback system has grown from its original eight loops to more than fifty loops, and it has been invaluable in stabilizing the machine.

  3. DESIGN AND PERFORMANCE OF INTRA-TRAIN FEEDBACK SYSTEMS AT ATF2

    CERN Document Server

    Resta-Lopez, J

    2009-01-01

    The major goals of the final focus test beam line facility ATF2 are to provide electron beams with a few tens of nanometer beam sizes and beam stability control at the nanometer level. In order to achieve such a level of stability beam-based feedback systems are necessary at different timescales to correct static and dynamic effects. In particular, we present the design of intra-train feedback systems to correct the impact of fast jitter sources. We study a bunchto- bunch feedback system installed in the extraction line to combat the ring extraction transverse jitters. In addition, we design a bunch-to-bunch feedback system at the interaction point for correction of position jitter due to the fast vibration of the magnets in the final focus. Optimum feedback software algorithms are discussed and simulation results are presented.

  4. Policy Feedback System (PFS)

    Data.gov (United States)

    Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...

  5. Semiautomatic beam-based LHC collimator alignment

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Wollmann, Daniel; Sammut, Nicholas; Rossi, Adriana; Redaelli, Stefano

    2012-01-01

    Full beam-based alignment of the LHC collimation system was a time-consuming procedure (up to 28 hours) as the collimators were set up manually. A yearly alignment campaign has been sufficient for now, although in the future due to tighter tolerances this may lead to a decrease in the cleaning efficiency if machine parameters such as the beam orbit drift over time. Automating the collimator setup procedure can reduce the beam time for collimator setup and allow for more frequent alignments, therefore reducing the risk of performance degradation. This article describes the design and testing of a semiautomatic algorithm as a first step towards a fully automatic setup procedure. The parameters used to measure the accuracy and performance of the alignment are defined and determined from experimental data. A comparison of these measured parameters at 450 GeV and 3.5 TeV with manual and semiautomatic alignment is provided.

  6. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  7. Feedback control of quantum system

    Institute of Scientific and Technical Information of China (English)

    DONG Dao-yi; CHEN Zong-hai; ZHANG Chen-bin; CHEN Chun-lin

    2006-01-01

    Feedback is a significant strategy for the control of quantum system.Information acquisition is the greatest difficulty in quantum feedback applications.After discussing several basic methods for information acquisition,we review three kinds of quantum feedback control strategies:quantum feedback control with measurement,coherent quantum feedback,and quantum feedback control based on cloning and recognition.The first feedback strategy can effectively acquire information,but it destroys the coherence in feedback loop.On the contrary,coherent quantum feedback does not destroy the coherence,but the capability of information acquisition is limited.However,the third feedback scheme gives a compromise between information acquisition and measurement disturbance.

  8. KEKB bunch feedback systems

    Energy Technology Data Exchange (ETDEWEB)

    Tobiyama, M.; Kikutani, E. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Design and the present status of the bunch by bunch feedback systems for KEKB rings are shown. The detection of the bunch oscillation are made with the phase detection for longitudinal plane, the AM/PM method for transverse plane. Two GHz component of the bunch signal which is extracted with an analog FIR filter is used for the detection. Hardware two-tap FIR filter systems to shift the phase of the oscillation by 90deg will be used for the longitudinal signal processing. The same system will be used with no filtering but with only digital delay for transverse system. The candidate for the kicker and the required maximum power are also estimated. (author)

  9. FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENGDaizhan; XIZairong

    2002-01-01

    This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.

  10. FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENG Daizhan; XI Zairong

    2002-01-01

    This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.

  11. Multi-bunch Feedback Systems

    CERN Document Server

    Lonza, M

    2014-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main co...

  12. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  13. Luminosity performance studies of the compact linear collider with intra-train feedback system at the interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Resta-Lopez, J; Burrows, P N; Christian, G, E-mail: j.restalopez@physics.ox.ac.u [John Adams Institute for Accelerator Science, Oxford University, Oxford, OX1 3RH (United Kingdom)

    2010-09-15

    To achieve the design luminosity at future linear colliders, control of beam stability at the sub-nanometre level at the interaction point will be necessary. Any source of beam motion which results in relative vertical offsets of the two beams at the interaction point may significantly reduce the luminosity from the nominal value. Beam-based intra-train feedback systems located in the interaction region are foreseen to correct the relative beam-beam offset and thus to steer the two beams into collision. These feedback systems must be capable of acting within the bunch train. In addition, these feedback systems might considerably help to relax the tight stability tolerances required for the final doublet magnets. For the Compact Linear Collider (CLIC), the extremely short nominal bunch spacing (0.5 ns) and very short nominal pulse duration (156 ns) make the intra-train feedback implementation technically very challenging. In this paper the conceptual design of an intra-train feedback system for the CLIC interaction point is described. Results of luminosity performance simulations are presented and discussed for different scenarios of ground motion. We also show how the intra-train feedback system can help to relax the very tight tolerances of the vertical vibration on the CLIC final doublet quadrupoles.

  14. Balanced bridge feedback control system

    Science.gov (United States)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  15. Comparison of LHC collimator beam-based alignment to BPM-Interpolated centers

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Muller, G J; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    The beam centers at the Large Hadron Collider collimators are determined by beam-based alignment, where both jaws of a collimator are moved in separately until a loss spike is detected on a Beam LossMonitor downstream. Orbit drifts of more than a few hundred micrometers cannot be tolerated, as they would compromise the performance of the collimation system. Beam Position Monitors (BPMs) are installed at various locations around the LHC ring, and a linear interpolation of the orbit can be obtained at the collimator positions. In this paper, the results obtained from beam-based alignment are compared with the orbit interpolated from the BPM data throughout the 2011 and 2012 LHC proton runs.

  16. Logistic systems with linear feedback

    Science.gov (United States)

    Son, Leonid; Shulgin, Dmitry; Ogluzdina, Olga

    2016-08-01

    A wide variety of systems may be described by specific dependence, which is known as logistic curve, or S-curve, between the internal characteristic and the external parameter. Linear feedback between these two values may be suggested for a wide set of systems also. In present paper, we suggest a bifurcation behavior for systems with both features, and discuss it for two cases, which are the Ising magnet in external field, and the development of manufacturing enterprise.

  17. Probabilistic models for feedback systems.

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Matthew D.; Boggs, Paul T.

    2011-02-01

    In previous work, we developed a Bayesian-based methodology to analyze the reliability of hierarchical systems. The output of the procedure is a statistical distribution of the reliability, thus allowing many questions to be answered. The principal advantage of the approach is that along with an estimate of the reliability, we also can provide statements of confidence in the results. The model is quite general in that it allows general representations of all of the distributions involved, it incorporates prior knowledge into the models, it allows errors in the 'engineered' nodes of a system to be determined by the data, and leads to the ability to determine optimal testing strategies. In this report, we provide the preliminary steps necessary to extend this approach to systems with feedback. Feedback is an essential component of 'complexity' and provides interesting challenges in modeling the time-dependent action of a feedback loop. We provide a mechanism for doing this and analyze a simple case. We then consider some extensions to more interesting examples with local control affecting the entire system. Finally, a discussion of the status of the research is also included.

  18. Multimedia Feedback Systems for Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gladwell, S.; Gottlieb, E.J.; McDonald, M.J.; Slutter, C.L.

    1998-12-15

    The World Wide Web has become a key tool for information sharing. Engineers and scientists are finding that the web is especially suited to publishing the graphical, multi-layered information that is typical of their work. Web pages are easier to distribute than hardcopy. Web movies have become more accessible, in many offices, than videos. Good VRML viewing software, bundled with most new PCs, has sufficient power to support many engineering needs. In addition to publishing information science and engineering has an important tradition of peer and customer review. Reports, drawings and graphs are typically printed, distributed, reviewed, marked up, and returned to the author. Adding review comments to paper is easy. When, however, the information is in electronic form, this ease of review goes away. It's hard to write on videos. It's even harder to write comments on animated 3D models. These feedback limitations reduce the value of the information overall. Fortunately, the web can also be a useful tool for collecting peer and customer review information. When properly formed, web reports, movies, and 3D animations can be readily linked to review notes. This paper describes three multimedia feed-back systems that Sandia National Laboratories has developed to tap that potential. Each system allows people to make context-sensitive comments about specific web content and electronically ties the comments back to the web content being referenced. The fuel system ties comments to specific web pages, the second system ties the comments to specific frames of digital movies, and the third ties the comments to specific times and viewpoints within 3D animations. In addition to the technologies, this paper describes how they are being used to support intelligent machine systems design at Sandia.

  19. FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM

    Science.gov (United States)

    Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance

  20. Feedback linearization of piecewise linear systems

    NARCIS (Netherlands)

    Camlibel, Kanat; Ustoglu, Ilker

    2005-01-01

    One of the classical problems of nonlinear systems and control theory is feedback linearization. Its obvious motivation is that one can utilize linear control theory if the nonlinear system at hand is linearizable by feedback. This problem is well-understood for the smooth nonlinear systems. In the

  1. ON FEEDBACK CONTROL OF DELAYED CHAOTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    李丽香; 彭海朋; 卢辉斌; 关新平

    2001-01-01

    In this paper two different types of feedback control technique are discussed: the standard feedback control and the time-delay feedback control which have been successfully used in many control systems. In order to understand to what extent the two different types of control technique are useful in delayed chaotic systems, some analytic stabilization conditions for chaos control from the two types of control technique are derived based on Lyapunov stabilization arguments. Similarly, we discuss the tracking problem by applying the time-delay feedback control. Finally, numerical examples are provided.

  2. Augmenting Environmental Interaction in Audio Feedback Systems

    Directory of Open Access Journals (Sweden)

    Seunghun Kim

    2016-04-01

    Full Text Available Audio feedback is defined as a positive feedback of acoustic signals where an audio input and output form a loop, and may be utilized artistically. This article presents new context-based controls over audio feedback, leading to the generation of desired sonic behaviors by enriching the influence of existing acoustic information such as room response and ambient noise. This ecological approach to audio feedback emphasizes mutual sonic interaction between signal processing and the acoustic environment. Mappings from analyses of the received signal to signal-processing parameters are designed to emphasize this specificity as an aesthetic goal. Our feedback system presents four types of mappings: approximate analyses of room reverberation to tempo-scale characteristics, ambient noise to amplitude and two different approximations of resonances to timbre. These mappings are validated computationally and evaluated experimentally in different acoustic conditions.

  3. A tracking system with space virtual feedback

    Institute of Scientific and Technical Information of China (English)

    Zheng MAO; Xiaojun QU; Fuling WEI; Yali WANG

    2008-01-01

    In this paper,a tracking system with space virtual feedback(SVF)is presented.The whole tracking system is closed by the space virtual feedback line that is the line of sight(LOS),but the parts in the system,such as the tracking subsystem and the servo subsystem.are in the state of open-loop.Because the SVF tracking model is used.the correcting loops can be removed in this system architecture.So the tracking speed and accuracy of the system are greatly improved.

  4. REGULARIZATION OF SINGULAR SYSTEMS BY OUTPUT FEEDBACK

    Institute of Scientific and Technical Information of China (English)

    De-lin Chu; Da-yong Cai

    2000-01-01

    Problem of regularization of a singular system by derivative and proportional output feedback is studied. Necessary and sufficient conditions are obtained under which a singular system can be regularized into a closed-loop system that is regular and of index at most one. The reduced form is given that can easily explore the system properties as well as the feedback to be determined. The main results of the present paper are based on orthogonal transformations. Therefore, they can be implemented by numerically stable ways.

  5. Developing 360 degree feedback system for KINS

    Energy Technology Data Exchange (ETDEWEB)

    Han, In Soo; Cheon, B. M.; Kim, T. H.; Ryu, J. H. [Chungman National Univ., Daejeon (Korea, Republic of)

    2003-12-15

    This project aims to investigate the feasibility of a 360 degree feedback systems for KINS and to design guiding rules and structures in implementing that systems. Literature survey, environmental analysis and questionnaire survey were made to ensure that 360 degree feedback is the right tool to improve performance in KINS. That review leads to conclusion that more readiness and careful feasibility review are needed before implementation of 360 degree feedback in KINS. Further the project suggests some guiding rules that can be helpful for successful implementation of that system in KINS. Those include : start with development, experiment with one department, tie it to a clear organization's goal, train everyone involve, make sure to try that system in an atmosphere of trust.

  6. PEP-II RF feedback system simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tighe, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A model containing the fundamental impedance of the PEP-II cavity along with the longitudinal beam dynamics and RF feedback system components is in use. It is prepared in a format allowing time-domain as well as frequency-domain analysis and full graphics capability. Matlab and Simulink are control system design and analysis programs (widely available) with many built-in tools. The model allows the use of compiled C-code modules for compute intensive portions. We desire to represent as nearly as possible the components of the feedback system including all delays, sample rates and applicable nonlinearities. (author)

  7. Diversity in School Performance Feedback Systems

    Science.gov (United States)

    Verhaeghe, Goedele; Schildkamp, Kim; Luyten, Hans; Valcke, Martin

    2015-01-01

    As data-based decision making is receiving increased attention in education, more and more school performance feedback systems (SPFSs) are being developed and used worldwide. These systems provide schools with data on their functioning. However, little research is available on the characteristics of the different SPFSs. Therefore, this study…

  8. Feedback control system for walking in man.

    Science.gov (United States)

    Petrofsky, J S; Phillips, C A; Heaton, H H

    1984-01-01

    A computer control stimulation system is described which has been successfully tested by allowing a paraplegic subject to stand and walk through closed loop control. This system is a Z80 microprocessor system with eight channels of analog to digital and 16 channels of digital to analog control. Programming is written in CPM and works quite successfully for maintaining lower body postural control in paraplegics. Further expansion of this system would enable a feedback control system for multidirectional walking in man.

  9. Novel Reduced-Feedback Wireless Communication Systems

    KAUST Repository

    Shaqfeh, Mohammad Obaidah

    2011-11-20

    Modern communication systems apply channel-aware adaptive transmission techniques and dynamic resource allocation in order to exploit the peak conditions of the fading wireless links and to enable significant performance gains. However, conveying the channel state information among the users’ mobile terminals into the access points of the network consumes a significant portion of the scarce air-link resources and depletes the battery resources of the mobile terminals rapidly. Despite its evident drawbacks, the channel information feedback cannot be eliminated in modern wireless networks because blind communication technologies cannot support the ever-increasing transmission rates and high quality of experience demands of current ubiquitous services. Developing new transmission technologies with reduced-feedback requirements is sought. Network operators will benefit from releasing the bandwidth resources reserved for the feedback communications and the clients will enjoy the extended battery life of their mobile devices. The main technical challenge is to preserve the prospected transmission rates over the network despite decreasing the channel information feedback significantly. This is a noteworthy research theme especially that there is no mature theory for feedback communication in the existing literature despite the growing number of publications about the topic in the last few years. More research efforts are needed to characterize the trade-off between the achievable rate and the required channel information and to design new reduced-feedback schemes that can be flexibly controlled based on the operator preferences. Such schemes can be then introduced into the standardization bodies for consideration in next generation broadband systems. We have recently contributed to this field and published several journal and conference papers. We are the pioneers to propose a novel reduced-feedback opportunistic scheduling scheme that combines many desired features

  10. Wearable feedback systems for rehabilitation

    OpenAIRE

    Marci Carl; Sung Michael; Pentland Alex

    2005-01-01

    Abstract In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communicat...

  11. Feedback linearization application for LLRF control system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1999-06-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.

  12. Feedback linearization application for LLRF control system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1998-12-31

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.

  13. Mining Feedback in Ranking and Recommendation Systems

    Science.gov (United States)

    Zhuang, Ziming

    2009-01-01

    The amount of online information has grown exponentially over the past few decades, and users become more and more dependent on ranking and recommendation systems to address their information seeking needs. The advance in information technologies has enabled users to provide feedback on the utilities of the underlying ranking and recommendation…

  14. Automatic Computer Algorithms for Beam-based Setup of the LHC Collimators

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Redaelli, S; Salvachua, B; Wollmann, D

    2012-01-01

    Beam-based setup of the LHC collimators is necessary to establish the beam centers and beam sizes at the collimator locations and determine the operational settings during various stages of the LHC machine cycle.

  15. Transversality for Cyclic Negative Feedback Systems

    OpenAIRE

    2014-01-01

    Transversality of stable and unstable manifolds of hyperbolic periodic trajectories is proved for monotone cyclic systems with negative feedback. Such systems in general are not in the category of monotone dynamical systems in the sense of Hirsch. Our main tool utilized in the proofs is the so-called cone of high rank. We further show that stable and unstable manifolds between a hyperbolic equilibrium and a hyperbolic periodic trajectory, or between two hyperbolic equilibria with different di...

  16. Robust synchronization of chaotic systems via feedback

    Energy Technology Data Exchange (ETDEWEB)

    Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion

    2008-07-01

    This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)

  17. Wearable feedback systems for rehabilitation

    Directory of Open Access Journals (Sweden)

    Marci Carl

    2005-06-01

    Full Text Available Abstract In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine.

  18. Wearable feedback systems for rehabilitation.

    Science.gov (United States)

    Sung, Michael; Marci, Carl; Pentland, Alex

    2005-06-29

    In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine.

  19. Simulator for beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  20. Assessing biosphere feedbacks on Earth System Processes

    Science.gov (United States)

    McElwain, Jennifer

    2016-04-01

    The evolution and ecology of plant life has been shaped by the direct and indirect influence of plate tectonics. Climatic change and environmental upheaval associated with the emplacement of large igneous provinces have triggered biosphere level ecological change, physiological modification and pulses of both extinction and origination. This talk will investigate the influence of large scale changes in atmospheric composition on plant ecophysiology at key intervals of the Phanerozoic. Furthermore, I will assess the extent to which plant ecophysiological response can in turn feedback on earth system processes such as the global hydrological cycle and biogeochemical cycling of nitrogen and carbon. Palaeo-atmosphere simulation experiments, palaeobotanical data and recent historical (last 50 years) data-model comparison will be used to address the extent to which plant physiological responses to atmospheric CO2 can modulate global climate change via biosphere level feedback.

  1. Lectures in feedback design for multivariable systems

    CERN Document Server

    Isidori, Alberto

    2017-01-01

    This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “...

  2. Feedback system design with an uncertain plant

    Science.gov (United States)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  3. Synchronization between two different chaotic systems with nonlinear feedback control

    Institute of Scientific and Technical Information of China (English)

    Lü Ling; Guo Zhi-An; Zhang Chao

    2007-01-01

    This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.

  4. Velocity Feedback Control of a Mechatronics System

    Directory of Open Access Journals (Sweden)

    Ayman A. Aly

    2013-07-01

    Full Text Available Increasing demands in performance and quality make drive systems fundamental parts in the progressive automation of industrial process. The analysis and design of Mechatronics systems are often based on linear or linearized models which may not accurately represent the servo system characteristics when the system is subject to inputs of large amplitude. The impact of the nonlinearities of the dynamic system and its stability needs to be clarified.The objective of this paper is to present a nonlinear mathematical model which allows studying and analysis of the dynamic characteristic of an electro hydraulic position control servo. The angular displacement response of motor shaft due to large amplitude step input is obtained by applying velocity feedback control strategy. The simulation results are found to be in agreement with the experimental data that were generated under similar conditions.

  5. LHC beam stability and feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, Ralph

    2007-07-20

    This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a

  6. Quantum feedback in a weakly driven cavity QED system

    Science.gov (United States)

    Reiner, J. E.; Smith, W. P.; Orozco, L. A.; Wiseman, H. M.; Gambetta, Jay

    2004-08-01

    Quantum feedback in strongly coupled systems can probe a regime where one quantum of excitation is a large fluctuation. We present theoretical and experimental studies of quantum feedback in an optical cavity QED system. The time evolution of the conditional state, following a photodetection, can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured in a new steady state and then released. The feedback protocol requires resonance operation, and proper amplitude and delay for the change in the drive. We demonstrate the successful use of feedback in the suppression of the vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return to steady state. The feedback works only because we have an entangled quantum system, rather than an analogous correlated classical system.

  7. Downlink transmission in multi-carrier systems with reduced feedback

    DEFF Research Database (Denmark)

    Wang, Yuanye; Pedersen, Klaus; Sørensen, Troels Bundgaard

    2010-01-01

    in this paper we address the problem of reducing the feedback for the downlink transmission in multi-carrier systems. In these systems multiple Component Carriers (CCs) are aggregated together to form a wide spectrum. Consequently, a large feedback overhead is required to report the channel quality...... information over such a wide bandwidth. We first generalize two existing feedback reduction techniques, and then propose a new one. These techniques use different feedback schemes across the CCs, or allow some CCs to be un-reported, for the purpose of reducing the amount of feedback. Performance...

  8. The beam-based calibration of an X-ray pinhole camera at SSRF

    Institute of Scientific and Technical Information of China (English)

    LENG Yong-Bin; HUANG Guo-Qing; ZHANG Man-Zhou; CHEN Zhi-Chu; CHEN Jie; YE Kai-Rong

    2012-01-01

    A pinhole camera for imaging X-ray synchrotron radiation from a dipole magnet is now in operation at the Shanghai Synchrotron Radiation Facility (SSRF) storage ring.The electron beam size is derived by unfolding the radiation image and the point spread function (PSF) with deconvolution techniques.The performance of the pinhole is determined by the accuracy of the PSF measurement.This article will focus on a beam-based calibration scheme to measure the PSF system by varying the beam images with different quadrupole settings and fitting them with the corresponding theoretical beam sizes.Applying this method at SSRF,the PSF value of the pinhole is revised from 37 to 44 μm.The deviation in beam size between the theoretical value and the measured value is minimized to 4% after calibration.This optimization allows us to observe the horizontal disturbance due to injection down to as small as 0.5 μm.

  9. The output feedback control for uncertain nonholonomic systems

    Institute of Scientific and Technical Information of China (English)

    Qiangde WANG; Chunling WEI; Siying ZHANG

    2006-01-01

    This paper considers the problems of almost asymptotic stabilization and global asymptotic regulation (GAR) by output feedback for a class of uncertain nonholonomic systems. By combining the nonsmooth change of coordinates and output feedback domination design together, we construct a simple linear time-varying output feedback controller, which can universally stabilize a whole family of uncertain nonholonomic systems. The simulation demonstrates the effectiveness of the proposed controller.

  10. A feedback system in residency to evaluate CanMEDS roles and provide high-quality feedback : Exploring its application

    NARCIS (Netherlands)

    Renting, Nienke; Gans, Rijk O. B.; Borleffs, Jan C. C.; Van Der Wal, Martha A.; Jaarsma, A. Debbie C.; Cohen-Schotanus, Janke

    2016-01-01

    Introduction: Residents benefit from regular, high quality feedback on all CanMEDS roles during their training. However, feedback mostly concerns Medical Expert, leaving the other roles behind. A feedback system was developed to guide supervisors in providing feedback on CanMEDS roles. We analyzed w

  11. Feedback control design for discrete-time piecewise affine systems

    Institute of Scientific and Technical Information of China (English)

    XU Jun; XIE Li-hua

    2007-01-01

    This paper investigates the design of state feedback and dynamic output feedback stabilizing controllers for discrete-time piecewise affine (PWA) systems. The main objective is to derive design methods that will incorporate the partition information of the PWA systems so as to reduce the design conservatism embedded in existing design methods. We first introduce a transformation that converts the feedback control design problem into a bilinear matrix inequality (BMI) problem. Then, two iterative algorithms are proposed to compute the feedback controllers characterized by the BMI. Several simulation examples are given to demonstrate the advantages of the proposed design.

  12. Design of output feedback controller for a unified chaotic system

    Institute of Scientific and Technical Information of China (English)

    Li Wen-Lin; Chen Xiu-Qin; Shen Zhi-Ping

    2008-01-01

    In this paper,the synchronization of a unified chaotic system is investigated by the use of output feedback controllers;a two-input single-output feedback controller and single-input single-output feedback controller are presented to synchronize the unified chaotic system when the states are not all measurable.Compared with the existing results,the controllers designed in this paper have some advantages such as small feedback gain,simple structure and less conservation.Finally,numerical simulations results are provided to demonstrate the validity and effectiveness of the proposed method.

  13. Direct laser additive fabrication system with image feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  14. Feedback.

    Science.gov (United States)

    Richardson, Barbara K

    2004-12-01

    The emergency department provides a rich environment for diverse patient encounters, rapid clinical decision making, and opportunities to hone procedural skills. Well-prepared faculty can utilize this environment to teach residents and medical students and gain institutional recognition for their incomparable role and teamwork. Giving effective feedback is an essential skill for all teaching faculty. Feedback is ongoing appraisal of performance based on direct observation aimed at changing or sustaining a behavior. Tips from the literature and the author's experience are reviewed to provide formats for feedback, review of objectives, and elements of professionalism and how to deal with poorly performing students. Although the following examples pertain to medical student education, these techniques are applicable to the education of all adult learners, including residents and colleagues. Specific examples of redirection and reflection are offered, and pitfalls are reviewed. Suggestions for streamlining verbal and written feedback and obtaining feedback from others in a fast-paced environment are given. Ideas for further individual and group faculty development are presented.

  15. Geometric Structures of Stable Time-Variant State Feedback Systems

    Institute of Scientific and Technical Information of China (English)

    ZHONG Feng-wei; SUN Hua-fei; ZHANG Zhen-ning

    2007-01-01

    A new technique for considering the stabilizing time-variant state feedback gains is proposed from the viewpoint of information geometry. First, parametrization of the set of all stabilizing time-variant state feedback gains is given. Moreover, a diffeomorphic structure between the set of stabilizing time-variant state feedback gains and the Cartesian product of positive definite matrix and skew symmetric matrix satisfying certain algebraic conditions is constructed. Furth ermore, an immersion and some results about the eigenvalue locations of stable state feedback systems are derived.

  16. Minimal-Inversion Feedforward-And-Feedback Control System

    Science.gov (United States)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  17. Nonlinear feedback synchronization of hyperchaos in higher dimensional systems

    Institute of Scientific and Technical Information of China (English)

    FangJin-Qing; AliMK

    1997-01-01

    Nonlinear feedback functional method is presented to realize synchronization of hyperchaos in higher dimensional systems,New nonlinear feedback functions and superpositions of linear and nonlinear feedback functions are also introduced to synchronize hyperchaos.The robustness of the method based on the flexibility of choices of feedback functions is discussed.By coupling well-known chaotic or chaotic-hyperchaotic systems in low-dimensional systems,such as Lorenz system,Van der Pol oscillator,Duffing oscillator and Roessler system,ten dimensional hyperchaotic systems are formed as the model systems.It can be found that there is not any noticeable difference in synchronization based on the numbers of positive Lyapunov exponents and of dimensions.

  18. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  19. Corresponding Angle Feedback in an innovative weighted transportation system

    Science.gov (United States)

    Dong, Chuanfei; Ma, Xu

    2010-05-01

    The optimal information feedback has a significant effect on many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. In this Letter, we study dynamics of traffic flow with real-time information. The influence of a feedback strategy named Corresponding Angle Feedback Strategy (CAFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  20. Weighted congestion coefficient feedback in intelligent transportation systems

    Science.gov (United States)

    Dong, Chuan-Fei; Ma, Xu; Wang, Bing-Hong

    2010-03-01

    In traffic systems, a reasonable information feedback can improve road capacity. In this Letter, we study dynamics of traffic flow with real-time information. And the influence of a feedback strategy named Weighted Congestion Coefficient Feedback Strategy (WCCFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  1. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    CERN Document Server

    Xia, Feng; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results sh...

  2. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    Science.gov (United States)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  3. Feedback Systems: An Introduction for Scientists and Engineers

    OpenAIRE

    Åström, Karl Johan; Murray, Richard M.

    2008-01-01

    This book provides an introduction to the basic principles and tools for the design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information and social systems.We have attempted to keep the mathematical prerequisites to a minimum while being careful not to sacrifice rigor in the process. We have also attempted to make use of examples from a variety of...

  4. State feedback design for singularly perturbed system using unified approach

    Institute of Scientific and Technical Information of China (English)

    Chenxiao CAI; Yun ZOU; Duanjin ZHANG

    2004-01-01

    The state feedback design for singularly perturbed systems described in Delta operator is considered.The composite state feedback controller for slow and fast subsystems is designed by using the direct method.The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework.A simulation example is presented to demonstrate the validity and efficiency of the design.

  5. Predictor feedback for delay systems implementations and approximations

    CERN Document Server

    Karafyllis, Iasson

    2017-01-01

    This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems’ nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book’s core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (b...

  6. Behavioral System Feedback Measurement Failure: Sweeping Quality under the Rug

    Science.gov (United States)

    Mihalic, Maria T.; Ludwig, Timothy D.

    2009-01-01

    Behavioral Systems rely on valid measurement systems to manage processes and feedback and to deliver contingencies. An examination of measurement system components designed to track customer service quality of furniture delivery drivers revealed the measurement system failed to capture information it was designed to measure. A reason for this…

  7. Time-delay identification for vibration systems with multiple feedback

    Science.gov (United States)

    Sun, Yi-Qiang; Jin, Meng-Shi; Song, Han-Wen; Xu, Jian

    2016-12-01

    An approach for time-delay identification is proposed in multiple-degree-of-freedom (MDOF) linear systems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteristics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay identification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the "frequencies" of the oscillation curve, the time-delays can be obtained from the "frequencies" of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.

  8. Time-delay identification for vibration systems with multiple feedback

    Institute of Scientific and Technical Information of China (English)

    Yi-Qiang Sun; Meng-Shi Jin; Han-Wen Song; Jian Xu

    2016-01-01

    An approach for time-delay identification is pro-posed in multiple-degree-of-freedom (MDOF) linear sys-tems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteris-tics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay iden-tification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the“frequencies”of the oscillation curve, the time-delays can be obtained from the“frequencies”of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.

  9. Optimal nonlinear feedback control of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    1999-01-01

    An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.

  10. Tracking control of chaotic dynamical systems with feedback linearization

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; MA Guo-jin

    2005-01-01

    A new method was proposed for tracking the desired output of chaotic dynamical system using the feedback linearization and nonlinear extended statement observer method. The feedback linearization was used to convert the nonlinear chaotic system into linear system. The extended Luenberger-like statements observer was designed to reconstructing and observing the unmeasured statements when the tracking controller was designed. By this way, the chaotic system could be forced to track variable desired output, which could be a time variant function or an equilibrium points.Taken the Lorenz chaotic system as example, the simulation results show the validity of the conclusion and effectiveness of the algorithm.

  11. Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information

    Science.gov (United States)

    Yamamoto, Naoki

    2014-10-01

    To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

  12. Are there rapid feedback effects on Approximate Number System acuity?

    Science.gov (United States)

    Lindskog, Marcus; Winman, Anders; Juslin, Peter

    2013-01-01

    Humans are believed to be equipped with an Approximate Number System (ANS) that supports non-symbolic representations of numerical magnitude. Correlations between individual measures of the precision of the ANS and mathematical ability have raised the question of whether the precision can be improved by feedback training. A study (DeWind and Brannon, 2012) reported improvement in discrimination precision occurring within 600-700 trials of feedback, suggesting ANS malleability with rapidly improving acuity in response to feedback. We tried to replicate the rapid improvement in a control group design, while controlling for the use of perceptual cues. The results indicate no learning effects, but a minor constant advantage for the feedback group. The measures of motivation suggest that feedback has a positive effect on motivation and that the difference in discrimination is due to the greater motivation of participants with feedback. These results suggest that at least for adults the number sense may not respond to feedback in the short-term.

  13. Are there rapid feedback effects on Approximate Number System acuity?

    Directory of Open Access Journals (Sweden)

    Marcus eLindskog

    2013-06-01

    Full Text Available Humans are believed to be equipped with an Approximate Number System (ANS that supports non-symbolic representations of numerical magnitude. Correlations between individual measures of the precision of the ANS and mathematical ability have raised the question of whether the precision can be improved by feedback training. A study (DeWind & Brannon, 2012 reported improvement in discrimination precision occurring within 600-700 trials of feedback, suggesting ANS malleability with rapidly improving acuity in response to feedback. We tried to replicate the rapid improvement in a control group design, while controlling for the use of perceptual cues. The results indicate no learning effects, but a minor constant advantage for the feedback group. The measures of motivation suggest that feedback has a positive effect on motivation and that the difference in discrimination is due to the greater motivation of participants with feedback. These results suggest that at least for adults the number sense may not respond to feedback in the short-term.

  14. Feedback Control of a Class of Nonholonomic Hamiltonian Systems

    DEFF Research Database (Denmark)

    Sørensen, Mathias Jesper

    Feedback control of nonholonomic systems has always been problematic due to the nonholonomic constraints that limit the space of possible system velocities. This property is very basic, and Brockett proved that a nonholonomic system cannot be asymptotically stabilized by a time-invariant smooth...... turns out to be useful when stabilizing the nonholonomic system. If the system is properly actuated it is possible to asymptotically stabilize the primary part of the configuration coordinates via a passive energy shaping and damping injecting feedback. The feedback is smooth and time...... of the closed loop system some extensions are provided: integral action for asymptotic stabilization under the influence of disturbances, and an adaptive damping scheme ensuring that the robot travels at a predefined speed when tracking a path. Both of these extensions are defined in the framework...

  15. Implementing a Measurement Feedback System: A Tale of Two Sites.

    Science.gov (United States)

    Bickman, Leonard; Douglas, Susan R; De Andrade, Ana Regina Vides; Tomlinson, Michele; Gleacher, Alissa; Olin, Serene; Hoagwood, Kimberly

    2016-05-01

    A randomized experiment was conducted in two outpatient clinics evaluating a measurement feedback system called contextualized feedback systems. The clinicians of 257 Youth 11-18 received feedback on progress in mental health symptoms and functioning either every 6 months or as soon as the youth's, clinician's or caregiver's data were entered into the system. The ITT analysis showed that only one of the two participating clinics (Clinic R) had an enhanced outcome because of feedback, and only for the clinicians' ratings of youth symptom severity on the SFSS. A dose-response effect was found only for Clinic R for both the client and clinician ratings. Implementation analyses showed that Clinic R had better implementation of the feedback intervention. Clinicians' questionnaire completion rate and feedback viewing at Clinic R were 50 % higher than clinicians at Clinic U. The discussion focused on the differences in implementation at each site and how these differences may have contributed to the different outcomes of the experiment.

  16. Disturbance Attenuation State-Feedback Control for Uncertain Interconnected Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems viastate feedback. This class of systems are described by a state space model, which contains unknown nonlinear interactionand time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach wedesign state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the inter-connected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate theresults.

  17. CONTROL CHAOS IN TRANSITION SYSTEM USING SAMPLED-DATA FEEDBACK

    Institute of Scientific and Technical Information of China (English)

    陆君安; 谢进; 吕金虎; 陈士华

    2003-01-01

    The method for controlling chaotic transition system was investigated using sampled-data. The output of chaotic transition system was sampled at a given sampling rate,then the sampled output was used by a feedbacks subsystem to construct a control signal for controlling chaotic transition system to the origin. Numerical simulations are presented to show the effectiveness and feasibility of the developed controller.

  18. Global feedback control for pattern-forming systems.

    Science.gov (United States)

    Stanton, L G; Golovin, A A

    2007-09-01

    Global feedback control of pattern formation in a wide class of systems described by the Swift-Hohenberg (SH) equation is investigated theoretically, by means of stability analysis and numerical simulations. Two cases are considered: (i) feedback control of the competition between hexagon and roll patterns described by a supercritical SH equation, and (ii) the use of feedback control to suppress the blowup in a system described by a subcritical SH equation. In case (i), it is shown that feedback control can change the hexagon and roll stability regions in the parameter space as well as cause a transition from up to down hexagons and stabilize a skewed (mixed-mode) hexagonal pattern. In case (ii), it is demonstrated that feedback control can suppress blowup and lead to the formation of spatially localized patterns in the weakly nonlinear regime. The effects of a delayed feedback are also investigated for both cases, and it is shown that delay can induce temporal oscillations as well as blowup.

  19. Energy-Spread-Feedback System for the KEKB Injector Linac

    CERN Document Server

    Satoh, Masanori; Suwada, Tsuyoshi

    2005-01-01

    New energy-spread feedback system using nondestructive energy-spread monitors have been developed in order to control and stabilize the energy spreads of single-bunch electron and positron beams in the KEKB injector linac. The well-controlled feedback systems of the injector linac are successfully working in dairy operation not only for keeping the injection rate higher along with the beam-orbit and energy feedback systems but also for reducing a background level to the high-energy B-factory experiment. The energy spreads of the injection beams are well stabilized within 0.2%, 0.5% and 0.3% for the electron beam, the positron beam, and the high-current primary electron beam for positron production, respectively, through the energy-spread feedback system under the nominal operation condition. In this paper, we will report in detail the energy-spread feedback system using the nondestructive energy-spread monitors with multi-strip-line electrodes and their performance in the KEKB operation.

  20. Dynamical behaviour of Liu system with time delayed feedback

    Institute of Scientific and Technical Information of China (English)

    Qian Qin; Wang Lin; Ni Qiao

    2008-01-01

    This paper investigates the dynamical behaviour of the Liu system with time delayed feedback.Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed.It is shown that the Liu system with time delayed feedback may exhibit interesting and extremely rich dynamical behaviour.The evolution of the dynamics is shown to be complex with varying time-delay parameter.Moreover,the strange attractor like 'wormhole' is detected via numerical simulations.

  1. Output feedback controller design for uncertain piecewise linear systems

    Institute of Scientific and Technical Information of China (English)

    Jianxiong ZHANG; Wansheng TANG

    2007-01-01

    This paper proposes output feedback controller design methods for uncertain piecewise linear systems based on piecewise quadratic Lyapunov function. The α-stability of closed-loop systems is also considered. It is shown that the output feedback controller design procedure of uncertain piecewise linear systems with α-stability constraint can be cast as solving a set of bilinear matrix inequalities (BMIs). The BMIs problem in this paper can be solved iteratively as a set of two convex optimization problems involving linear matrix inequalities (LMIs) which can be solved numerically efficiently. A numerical example shows the effectiveness of the proposed methods.

  2. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  3. Feedback Control Systems Loop Shaping Design with Practical Considerations

    Science.gov (United States)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  4. A prototype fast feedback system for energy lock at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhary, M.; Krafft, G.A.; Shoaee, H.; Simrock, S.N.; Watson, W.A.

    1995-12-31

    The beam energy at CEBAF must be controlled accurately against phase and gradient fluctuations in RF cavities in order to achieve a 2.5 {times} 10{sup {minus}5} relative energy spread. A prototype fast feedback system based on the concepts of Modern Control Theory has been implemented in the CEBAF control system to function as an energy lock. Measurements performed during the pulsed mode operations indicate presence of noise components at 4 Hz and 12 Hz on beam energy. This fast feedback prototype operates at 60 Hz rate and is integrated with EPICS. This paper describes the implementation of the fast feedback prototype, and operational experience with this system at CEBAF. 5 refs., 3 figs.

  5. Design and Simulation of PMSM Feedback Linearization Control System

    Directory of Open Access Journals (Sweden)

    SONG Xiao-jing

    2013-01-01

    Full Text Available With the theory of AC adjustable speed as well as a new control theory research is unceasingly thorough, the permanent magnet synchronous motor control system requires high precision of control and high reliability of the occasion, access to a wide range of applications, in the modern AC motor has play a decisive role position. Based on the deep research on the feedback linearization technique based on, by choosing appropriate state transformation and control transform, PMSM model input output linearization, and the design of the feedback linearization controller, realized PMSM decoupling control based on Matlab, and PMSM feedback linearization control system simulation. The simulation results show that, the system in a certain range of speed than the traditional PI controller has better control performance, but to the parameter variation has strong sensitivity. It also determines the direction for future research. 

  6. Asymptotically optimal feedback control for a system of linear oscillators

    Science.gov (United States)

    Ovseevich, Alexander; Fedorov, Aleksey

    2013-12-01

    We consider problem of damping of an arbitrary number of linear oscillators under common bounded control. We are looking for a feedback control steering the system to the equilibrium. The obtained control is asymptotically optimal: the ratio of motion time to zero with this control to the minimum one is close to 1, if the initial energy of the system is large.

  7. ON THE ALMOST PERIODIC KOLMOGOROV COMPETITIVE SYSTEMS WITH FEEDBACK CONTROLS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we consider an almost periodic multi-species Kolmogorov type com-petitive system with feedback controls. Applying Schauder's fixed point theorem, a criterion on the existence of the positive almost periodic solution to the system is obtained. Our results improve and generalize some existing conclusions.

  8. Event-triggered output feedback control for distributed networked systems.

    Science.gov (United States)

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature.

  9. Transfer Function Model of Multirate Feedback Control Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the suitably defined multivariable version of Krancoperators and the extended input and output vectors, the multirate sampling plant is transformed to a equivalent time invariant single rate one, then the transfer function model of the multivariable multirate sampling plant is obtained. By combining this plant model with the time invariant description of the multirate controller in terms of extended vectors, the closed-loop transfer function model of the multirate feedback control system can be determinated. This transfer function model has a very simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling feedback control systems in the frequency domain.

  10. Output Feedback Adaptive Stabilization of Uncertain Nonholonomic Systems

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wu

    2014-01-01

    Full Text Available This paper investigates the problem of output feedback adaptive stabilization control design for a class of nonholonomic chained systems with uncertainties, involving virtual control coefficients, unknown nonlinear parameters, and unknown time delays. The objective is to design a robust nonlinear output-feedback switching controller, which can guarantee the stabilization of the closed loop systems. An observer and an estimator are employed for states and parameters estimates, respectively. A constructive controller design procedure is proposed by applying input-state scaling transformation, parameter separation technique, and backstepping recursive approach. Simulation results are provided to show the effectiveness of the proposed method.

  11. Magnetic fields and the technology challenges they pose to beam-based equipment: a semiconductor perspective

    Science.gov (United States)

    Esqueda, Vincent; Montoya, Julian A.

    2005-08-01

    As semiconductor devices shrink in size to accommodate faster processing speeds, the need for higher resolution beam-based metrology equipment and beam-based writing equipment will increase. The electron and ion beams used within these types of equipment are sensitive to very small variations in magnetic force applied to the beam. This phenomenon results from changes in Alternating Current (AC) and Direct Current (DC) magnetic flux density at the beam column which causes deflections of the beam that can impact equipment performance. Currently the most sensitive beam-based microscope manufacturers require an ambient magnetic field environment that does not have variations that exceed 0.2 milli-Gauss (mG). Studies have shown that such low levels of magnetic flux density can be extremely difficult to achieve. As examples, scissor lifts, vehicles, metal chairs, and doors moving in time and space under typical use conditions can create distortions in the Earth's magnetic field that can exceed 0.2 mG at the beam column. In addition it is known that changes in the Earth's magnetic field caused by solar flares, earthquakes, and variations in the Earth's core itself all cause changes in the magnetic field that can exceed 0.2 mG. This paper will provide the reader with the basic understanding of the emerging problem, will discuss the environmental and facility level challenges associated in meeting such stringent magnetic field environments, will discuss some of the mitigation techniques used to address the problem, and will close by discussing needs for further research in this area to assure semiconductor and nanotechnology industries are pre-positioned for even more stringent magnetic field environmental requirements.

  12. Global Stability in Dynamical Systems with Multiple Feedback Mechanisms

    DEFF Research Database (Denmark)

    Andersen, Morten; Vinther, Frank; Ottesen, Johnny T.

    2016-01-01

    . This is a bounded set with non-negative elements where solutions cannot escape. All solutions are shown to converge to a “minimal” trapping region. 2) At least one fixed point exists. 3) Sufficient criteria for a unique fixed point are formulated. One case where this is fulfilled is when the feedbacks are negative.......A class of n-dimensional ODEs with up to n feedbacks from the n’th variable is analysed. The feedbacks are represented by non-specific, bounded, non-negative C1 functions. The main result is the formulation and proof of an easily applicable criterion for existence of a globally stable fixed point...... of the system. The proof relies on the contraction mapping theorem. Applications of this type of systems are numerous in biology, e.g., models of the hypothalamic-pituitary-adrenal axis and testosterone secretion. Some results important for modelling are: 1) Existence of an attractive trapping region...

  13. Decentralized-feedback pole placement of linear systems

    Science.gov (United States)

    Wang, X.; Martin, C. F.; Gilliam, D.; Byrnes, C. I.

    1992-01-01

    A projectile product spaces model is used to analyze decentralized systems. The degree of the pole placement map is computed. The conditions under which the degree is odd are also given. Twin lift systems are studied. It is proved that the poles of a twin lift system can be assigned to any values by local static and local dynamic feedback laws if and only if the system is jointly controllable.

  14. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hwang, Ching-Shiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan (China)

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  15. Strong chaos without butterfly effect in dynamical systems with feedback

    CERN Document Server

    Boffetta, G; Vulpiani, A; Boffetta, Guido; Paladin, Giovanni; Vulpiani, Angelo

    1995-01-01

    We discuss the predictability of a conservative system that drives a chaotic system with positive maximum Lyapunov exponent \\lambda_0, such as the erratic motion of an asteroid in the gravitational field of two bodies of much larger mass. We consider the case where in absence of feedback (restricted model), the driving system is regular and completely predictable. A small feedback of strength \\epsilon still allows a good forecasting in the driving system up to a very long time T_p \\sim \\epsilon^{-\\alpha}, where \\alpha depends on the details of the system. The most interesting situation happens when the Lyapunov exponent of the total system is strongly chaotic with \\lambda_{tot} \\approx \\lambda_0 , practically independent of \\epsilon. Therefore an exponential amplification of a small incertitude on the initial conditions in the driving system for any \\epsilon \

  16. Feedback Improvement in Automatic Program Evaluation Systems

    Science.gov (United States)

    Skupas, Bronius

    2010-01-01

    Automatic program evaluation is a way to assess source program files. These techniques are used in learning management environments, programming exams and contest systems. However, use of automated program evaluation encounters problems: some evaluations are not clear for the students and the system messages do not show reasons for lost points.…

  17. Swing Damping for Helicopter Slung Load Systems using Delayed Feedback

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2009-01-01

    This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous h...

  18. LHC Transverse Feedback System First Results of Commissionning

    CERN Document Server

    Zhabitsky, V M; Lebedev, N I; Makarov, A A; Pilyar, N V; Rabtsun, S V; Smolkov, R A; Baudrenghien, P; Höfle, Wolfgang; Killing, F; Kojevnikov, I; Kotzian, G; Louwerse, R; Montesinos, E; Rossi, V; Schokker, M; Thepenier, E; Valuch, D

    2008-01-01

    A powerful transverse feedback system ("Damper") has been installed in LHC. It will stabilise the high intensity beam against coupled bunch transverse instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The LHC Damper can also be used as means of exciting transverse oscillations for the purposes of abort gap cleaning and tune measurement. The LHC Damper includes 4 feedback systems on 2 circulating beams (in other words one feedback system per beam and plane). Every feedback system consists of 4 electrostatic kickers, 4 push-pull wide band power amplifiers, 8 preamplifiers, two digital processing units and 2 beam position monitors with low-level electronics. The power and low-level subsystem layout is described along with first results from the commissioning of 16 power amplifiers and 16 electrostatic kickers located in the LHC tunnel. The achieved performance is compared with earlier predictions ...

  19. State-feedback control of LPV sampled-data systems

    Directory of Open Access Journals (Sweden)

    K. Tan

    2000-01-01

    norm of such sampled-data LPV systems using parameter-dependent Lyapunov functions. Based on these analysis results, the sampled-data state-feedback control synthesis problems are examined. Both analysis and synthesis conditions are formulated in terms of linear matrix inequalities that can be solved via efficient interior-point algorithms.

  20. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Directory of Open Access Journals (Sweden)

    Jinxiang Dong

    2008-07-01

    Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.

  1. Constructing a Multimedia Mobile Classroom Using a Novel Feedback System

    Science.gov (United States)

    Huang, Wen-Chen; Chen, Ching-Wen; Weng, Richard

    2015-01-01

    In the conventional classroom, many obstacles hinder interaction between an instructor and students, such as limited class hours, fixed seating, and inadequate time for meetings after class. This work develops a novel multimedia mobile classroom feedback system (MMCFS) that instantly displays students' responses, such as class-related questions or…

  2. On the stabilization of bilinear systems via constant feedback

    NARCIS (Netherlands)

    Luesink, Rob; Nijmeijer, Henk

    1989-01-01

    We study the problem of stabilization of a bilinear system via a constant feedback. The question reduces to an eigenvalue problem on the pencil A+α0B of two matrices. Using the idea of simultaneous triangularization of the matrices involved, some easily checkable conditions for the solvability of th

  3. A Chinese Interactive Feedback System for a Virtual Campus

    Science.gov (United States)

    Chen, Jui-Fa; Lin, Wei-Chuan; Jian, Chih-Yu; Hung, Ching-Chung

    2008-01-01

    Considering the popularity of the Internet, an automatic interactive feedback system for Elearning websites is becoming increasingly desirable. However, computers still have problems understanding natural languages, especially the Chinese language, firstly because the Chinese language has no space to segment lexical entries (its segmentation…

  4. Bifurcation Analysis of a Discrete Logistic System with Feedback Control

    Institute of Scientific and Technical Information of China (English)

    WU Dai-yong

    2015-01-01

    The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.

  5. Chaotic motion in nonlinear feedback systems

    Energy Technology Data Exchange (ETDEWEB)

    Baillieul, J. (Scientific Systems, Inc., Cambridge, MA); Brockett, R.W.; Washburn, R.B.

    1980-11-01

    New criteria are found which imply the existence of chaos in R/sup n/. These differ significantly from criteria previously reported in the mathematics literature, and in fact our methods apply to a class of systems which do not satisfy the hypotheses of the usual theorems on chaos in R/sup n/. The results are stated in such a way as to preserve the flavor of many well-known frequency-domain stability techniques. The results provide easily verifiable criteria for the existence of chaos in systems which are of dimension greater than one.

  6. Implementation of integral feedback control in biological systems.

    Science.gov (United States)

    Somvanshi, Pramod R; Patel, Anilkumar K; Bhartiya, Sharad; Venkatesh, K V

    2015-01-01

    Integral control design ensures that a key variable in a system is tightly maintained within acceptable levels. This approach has been widely used in engineering systems to ensure offset free operation in the presence of perturbations. Several biological systems employ such an integral control design to regulate cellular processes. An integral control design motif requires a negative feedback and an integrating process in the network loop. This review describes several biological systems, ranging from bacteria to higher organisms in which the presence of integral control principle has been hypothesized. The review highlights that in addition to the negative feedback, occurrence of zero-order kinetics in the process is a key element to realize the integral control strategy. Although the integral control motif is common to these systems, the mechanisms involved in achieving it are highly specific and can be incorporated at the level of signaling, metabolism, or at the phenotypic levels.

  7. Iterative feedback tuning of uncertain state space systems

    Directory of Open Access Journals (Sweden)

    J. K. Huusom

    2010-09-01

    Full Text Available Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned.

  8. Modeling mutual feedback between users and recommender systems

    CERN Document Server

    Zeng, An; Medo, Matus; Zhang, Yi-Cheng

    2015-01-01

    Recommender systems daily influence our decisions on the Internet. While considerable attention has been given to issues such as recommendation accuracy and user privacy, the long-term mutual feedback between a recommender system and the decisions of its users has been neglected so far. We propose here a model of network evolution which allows us to study the complex dynamics induced by this feedback, including the hysteresis effect which is typical for systems with non-linear dynamics. Despite the popular belief that recommendation helps users to discover new things, we find that the long-term use of recommendation can contribute to the rise of extremely popular items and thus ultimately narrow the user choice. These results are supported by measurements of the time evolution of item popularity inequality in real systems. We show that this adverse effect of recommendation can be tamed by sacrificing part of short-term recommendation accuracy.

  9. Autonomous learning by simple dynamical systems with delayed feedback.

    Science.gov (United States)

    Kaluza, Pablo; Mikhailov, Alexander S

    2014-09-01

    A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.

  10. Output Feedback Control for a Class of Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Keylan Alimhan; Hiroshi Inaba

    2006-01-01

    This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly known. Using a feedback domination design method, we explicitly construct a dynamic output compensator which globally stabilizes such an uncertain nonlinear system. The usefulness of our result is illustrated with an example.

  11. Adaptive Fuzzy Output-Feedback Stabilization Control for a Class of Switched Nonstrict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    2016-03-16

    This paper proposes an fuzzy adaptive output-feedback stabilization control method for nonstrict feedback uncertain switched nonlinear systems. The controlled system contains unmeasured states and unknown nonlinearities. First, a switched state observer is constructed in order to estimate the unmeasured states. Second, a variable separation approach is introduced to solve the problem of nonstrict feedback. Third, fuzzy logic systems are utilized to identify the unknown uncertainties, and an adaptive fuzzy output feedback stabilization controller is set up by exploiting the backstepping design principle. At last, by applying the average dwell time method and Lyapunov stability theory, it is proven that all the signals in the closed-loop switched system are bounded, and the system output converges to a small neighborhood of the origin. Two examples are given to further show the effectiveness of the proposed switched control approach.

  12. Stability of constant gain systems with vector feedback

    Science.gov (United States)

    Vonpragenau, G. L.

    1978-01-01

    The state space, the controllability, and the observability concepts are discussed in connection with the proposed stability analysis which permits drastic dimensional reductions for a vector feedback problem. Any constant gain system's stability can thus be analyzed in the frequency domain with a single Nyquist plot. The analysis considers the total system with all loops closed, a disturbance vector as input, and the feedback vector as output. All constant gain systems are shown to be decomposable into stable subsystems where the degree of the decomposition determines the dimensions. The maximum decomposition results in the state-space approach which is the limit case. The method is demonstrated with the stability analysis of the pogo phenomenon, an oscillatory interaction between the propulsion and the structure of a space vehicle. This problem, with eigenvalues over a hundred, was drastically but rigorously reduced to a stability analysis of a 4x4 matrix.

  13. Design of Telerobotic Drilling Control System with Haptic Feedback

    Directory of Open Access Journals (Sweden)

    Faraz Shah

    2013-01-01

    system with haptic feedback that allows for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using a haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual environment is rendered as a virtual spring with stiffness updated based on the estimate of the stiffness of the rock currently being cut. Based on the existing mathematical models of drill string/drive systems and rock cutting/penetration process, a robust servo controller is designed which guarantees the tracking of the reference vertical penetration velocity of the drill bit. A scheme for on-line estimation of the rock intrinsic specific energy is implemented. Simulations of the proposed control and parameter estimation algorithms have been conducted; consequently, the overall telerobotic drilling system with a human operator controlling the process using PHANTOM Omni haptic device is tested experimentally, where the drilling process is simulated in real time in virtual environment.

  14. Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System

    Directory of Open Access Journals (Sweden)

    Wen-Qing Zhang

    2013-01-01

    Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.

  15. Observer-based H-infinity output feedback control with feedback gain and observer gain variations for Delta operator system

    Institute of Scientific and Technical Information of China (English)

    Ruiquan LIN; Fuwen YANG; Renchong PENG

    2009-01-01

    Considering that the controller feedback gain and the observer gain are of additive norm-bounded variations, a design method of observer-based H-infinity output feedback controller for uncertain Delta operator systems is proposed in this paper. A sufficient condition of such controllers is presented in linear matrix inequality (LMI) forms. A numerical example is then given to illustrate the effectiveness of this method, that is, the obtained controller guarantees the closed-loop system asymptotically stable and the expected H-infinity performance even if the controller feedback gain and the observer gain are varied.

  16. Design of Magnetic Flux Feedback Controller in Hybrid Suspension System

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.

  17. Parameterized design of nonlinear feedback controllers for servo positioning systems

    Institute of Scientific and Technical Information of China (English)

    Cheng Guoyang; Jin Wenguang

    2006-01-01

    To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.

  18. State-feedback control of LPV sampled-data systems

    Directory of Open Access Journals (Sweden)

    Tan K.

    2000-01-01

    Full Text Available In this paper, we address the analysis and the state-feedback synthesis problems for linear parameter-varying (LPV sampled-data control systems. We assume that the state-space data of the plant and the sampling interval depend on parameters that are measurable in real-time and vary in a compact set with bounded variation rates. We explore criteria such as the stability, the energy-to-energy gain (induced L 2 norm and the energy-to-peak gain (induced L 2 -to- L ∞ norm of such sampled-data LPV systems using parameter-dependent Lyapunov functions. Based on these analysis results, the sampled-data state-feedback control synthesis problems are examined. Both analysis and synthesis conditions are formulated in terms of linear matrix inequalities that can be solved via efficient interior-point algorithms.

  19. On Output Feedback Multiobjective Control for Singularly Perturbed Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ghasem Moghadam

    2011-01-01

    Full Text Available A new design procedure for a robust 2 and ∞ control of continuous-time singularly perturbed systems via dynamic output feedback is presented. By formulating all objectives in terms of a common Lyapunov function, the controller will be designed through solving a set of inequalities. Therefore, a dynamic output feedback controller is developed such that ∞ and 2 performance of the resulting closed-loop system is less than or equal to some prescribed value. Also, ∞ and 2 performance for a given upperbound of singular perturbation parameter ∈(0,∗] are guaranteed. It is shown that the -dependent controller is well defined for any ∈(0,∗] and can be reduced to an -independent one so long as is sufficiently small. Finally, numerical simulations are provided to validate the proposed controller. Numerical simulations coincide with the theoretical analysis.

  20. Speed of Last Vehicle Feedback Strategy in Intelligent Transportation Systems

    Science.gov (United States)

    Chen, Bokui; Chen, Mengsu; Zhang, Ziling; Xie, Yanbo; Wang, Binghong

    Traffic jam has become a big problem in the development of economy. How to effectively improve the road capacity is becoming the key problem in the research of traffic flow. As the core part of the next generation intelligent transportation systems, the feedback strategy has attracted much attention. In recent years, researchers have proposed many effective strategies. In this paper, a strategy called speed of last vehicle feedback strategy is introduced, and simulated in a two-route scenario with one exit. Result shows that compared with other strategies, this strategy has certain advantages on average flux — a criteria describing traffic capacity of traffic systems. More importantly, the implementation of this strategy is very simple.

  1. Digital bunch-by-bunch transverse feedback system at SSRF

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to suppress multi-bunch couple instabilities caused by transverse impedance, a bunch-by-bunch transverse feedback system based on a FPGA digital processor is commissioned at SSRF storage ring. The RF front end has two COD pre-rejected attenuators for increasing the system arrangement and signal noise ratio, and the 3*RF Local signal comes from the BPM’s sum signal using a FIR filter for avoiding the effect of longitudinal oscillation. The digital processor receives the coupled horizontal and vertical oscillation signals in the base band and transforms the coupled signals to the horizontal and vertical feedback signals with two series double-zeroes FIR filters. A matlab GUI is applied for producing the FIR coefficients when the tune is shifted. The horizontal and vertical Kickers have a special design for increasing the shunt impedance. Then the multi-bunch instabilities are suppressed respectively and the minimum damping time is about 0.4 ms.

  2. Feedback Equivalence of 1-dimensional Control Systems of the 1-st Order

    OpenAIRE

    2008-01-01

    The problem of local feedback equivalence for 1-dimensional control systems of the 1-st order is considered. The algebra of differential invariants and criteria for the feedback equivalence for regular control systems are found.

  3. System and method of designing models in a feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, Luke C.; Pulsipher, Trenton C.; Sego, Landon H.

    2017-02-14

    A method and system for designing models is disclosed. The method includes selecting a plurality of models for modeling a common event of interest. The method further includes aggregating the results of the models and analyzing each model compared to the aggregate result to obtain comparative information. The method also includes providing the information back to the plurality of models to design more accurate models through a feedback loop.

  4. Lazy global feedbacks for quantized nonlinear event systems

    CERN Document Server

    Jerg, Stefan

    2012-01-01

    We consider nonlinear event systems with quantized state information and design a globally stabilizing controller from which only the minimal required number of control value changes along the feedback trajectory to a given initial condition is transmitted to the plant. In addition, we present a non-optimal heuristic approach which might reduce the number of control value changes and requires a lower computational effort. The constructions are illustrated by two numerical examples.

  5. Orbit correction algorithm for SSRF fast orbit feedback system

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; YIN Chongxian; LIU Dekang

    2009-01-01

    A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in the bandwidth up to 100 Hz.The SVD (Singular value decomposition) algorithm is applied to calculate the inverse response matrix in global orbit correction.The number of singular eigenvalues will influence orbit noise suppression and corrector strengths.The method to choose singular eigenvalue rejection threshold is studied in this paper,and the simulation and experiment results are also presented.

  6. Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems.

    Science.gov (United States)

    Wang, Huanqing; Liu, Kefu; Liu, Xiaoping; Chen, Bing; Lin, Chong

    2015-09-01

    In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.

  7. Microseconds-scale magnetic actuators system for plasma feedback stabilization

    Science.gov (United States)

    Kogan, K.; Be'ery, I.; Seemann, O.

    2016-10-01

    Many magnetic confinement machines use active feedback stabilization with magnetic actuators. We present a novel magnetic actuators system with a response time much faster than previous ones, making it capable of coping with the fast plasma instabilities. The system achieved a response time of 3 μs with maximal current of 500 A in a coil with inductance of 5.2 μH. The system is based on commercial solid-state switches and FPGA state machine, making it easily scalable to higher currents or higher inductivity.

  8. Output Feedback for Stochastic Nonlinear Systems with Unmeasurable Inverse Dynamics

    Institute of Scientific and Technical Information of China (English)

    Xin Yu; Na Duan

    2009-01-01

    This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law.

  9. State Feedback with Memory for Constrained Switched Positive Linear Systems

    Directory of Open Access Journals (Sweden)

    Jinjin Liu

    2015-04-01

    Full Text Available In this paper, the stabilization problem in switched linear systems with time-varying delay under constrained state and control is investigated. The synthesis of bounded state-feedback controllers with memory ensures that a closed-loop state is positive and stable. Firstly, synthesis with a sign-restricted (nonnegative and negative control is considered for general switched systems; then, the stabilization issue under bounded controls including the asymmetrically bounded controls and states constraints are addressed. In addition, the results are extended to systems with interval and polytopic uncertainties. All the proposed conditions are solvable in term of linear programming. Numerical examples illustrate the applicability of the results.

  10. Beam-Based Error Identification and Correction Methods for Particle Accelerators

    CERN Document Server

    AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas

    2014-06-10

    Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...

  11. Beam-based model of broad-band impedance of the Diamond Light Source

    Science.gov (United States)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  12. LHC Transverse Feedback System and its Hardware Commissioning

    CERN Document Server

    Baudrenghien, P; Höfle, Wolfgang; Killing, F; Kojevnikov, I; Kotzian, G; Lebedev, N I; Louwerse, R; Makarov, A A; Montesinos, E; Rabtsun, S V; Rossi, V; Schokker, M; Thepenier, E; Valuch, D; Zhabitsky, V

    2008-01-01

    A powerful transverse feedback system ("Damper") has been installed in LHC. It will stabilise coupled bunch instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The transverse damper can also be used as an exciter for purposes of abort gap cleaning or tune measurement. The power and lowlevel systems layouts are described along with results from the hardware commissioning. The achieved performance is compared with earlier predictions and requirements for injection damping and instability control.

  13. A new hyperchaotic system and its linear feedback control

    Institute of Scientific and Technical Information of China (English)

    Cai Guo-Liang; Zheng-Song; TianLi-Xin

    2008-01-01

    This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system,studies some of its basic dynamical properties,such as the hyperchaotic attractor,Lyapunov exponents,bifurcation diagram and the hyperchaotic attractor evolving into periodic,quasi-periodic dynamical behaviours by varying parameter k.Furthermore,effective linear feedback control method is used to suppress hyperchaes to unstable equilibrium,periodic orbits and quasi-periodic orbits.Numerical simulations are presented to show these results.

  14. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    Science.gov (United States)

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  15. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  16. A feedback control system for high-fidelity digital microfluidics.

    Science.gov (United States)

    Shih, Steve C C; Fobel, Ryan; Kumar, Paresh; Wheeler, Aaron R

    2011-02-07

    Digital microfluidics (DMF) is a technique in which discrete droplets are manipulated by applying electrical fields to an array of electrodes. In an ideal DMF system, each application of driving potential would cause a targeted droplet to move onto an energized electrode (i.e., perfect fidelity between driving voltage and actuation); however, in real systems, droplets are sometimes observed to resist movement onto particular electrodes. Here, we implement a sensing and feedback control system in which all droplet movements are monitored, such that when a movement failure is observed, additional driving voltages can be applied until the droplet completes the desired operation. The new system was evaluated for a series of liquids including water, methanol, and cell culture medium containing fetal bovine serum, and feedback control was observed to result in dramatic improvements in droplet actuation fidelity and velocity. The utility of the new system was validated by implementing an enzyme kinetics assay with continuous mixing. The new platform for digital microfluidics is simple and inexpensive and thus should be useful for scientists and engineers who are developing automated analysis platforms.

  17. The Permanence in a Single Species Nonautonomous System with Delays and Feedback Control

    OpenAIRE

    2010-01-01

    We consider a single species nonautonomous system with delays and feedback control. A general criterion on the permanence for all positive solutions is established. The results show that the feedback control does not influence the permanence of species.

  18. On the minimax feedback control of uncertain dynamic systems.

    Science.gov (United States)

    Bertsekas, D. P.; Rhodes, I. B.

    1971-01-01

    In this paper the problem of optimal feedback control of uncertain discrete-time dynamic systems is considered where the uncertain quantities do not have a stochastic description but instead are known to belong to given sets. The problem is converted to a sequential minimax problem and dynamic programming is suggested as a general method for its solution. The notion of a sufficiently informative function, which parallels the notion of a sufficient statistic of stochastic optimal control, is introduced, and conditions under which the optimal controller decomposes into an estimator and an actuator are identified.

  19. Iterative Feedback Tuning in Fuzzy Control Systems. Theory and Applications

    Directory of Open Access Journals (Sweden)

    Stefan Preitl

    2006-07-01

    Full Text Available The paper deals with both theoretical and application aspects concerningIterative Feedback Tuning (IFT algorithms in the design of a class of fuzzy controlsystems employing Mamdani-type PI-fuzzy controllers. The presentation is focused on twodegree-of-freedom fuzzy control system structures resulting in one design method. Thestability analysis approach based on Popov’s hyperstability theory solves the convergenceproblems associated to IFT algorithms. The suggested design method is validated by realtimeexperimental results for a fuzzy controlled nonlinear DC drive-type laboratoryequipment.

  20. Multi source feedback based performance appraisal system using Fuzzy logic decision support system

    Directory of Open Access Journals (Sweden)

    G.Meenakshi

    2012-03-01

    Full Text Available In Multi-Source Feedback or 360 Degree Feedback, data on the performance of an individual are collected systematically from a number of stakeholders and are used for improving performance. The 360-Degree Feedback approach provides a consistent management philosophy meeting the criterion outlined previously. The 360-degree feedback appraisal process describes a human resource methodology that is frequently used for both employee appraisal and employee development. Used in employee performance appraisals, the 360-degree feedback methodology is differentiated from traditional, top-down appraisalmethods in which the supervisor responsible for the appraisal provides the majority of the data. Instead it seeks to use information gained from other sources to provide a fuller picture of employees’ performances. Similarly, when this technique used in employee development it augments employees’ perceptions of training needs with those of the people with whom they interact. The 360-degree feedback based appraisal is a comprehensive method where in the feedback about the employee comes from all the sources that come into contact with the employee on his/her job. The respondents for an employee can be her/his peers, managers, subordinates team members, customers, suppliers and vendors. Hence anyone who comes into contact with the employee, the 360 degree appraisal has four components that include self-appraisal, superior’s appraisal, subordinate’s appraisal student’s appraisal and peer’s appraisal .The proposed system is an attempt to implement the 360 degree feedback based appraisal system in academics especially engineering colleges.

  1. Fast Electronics for the Dafne Transverse Feedback Systems

    CERN Document Server

    Drago, A; Serio, M

    2001-01-01

    Transverse feedback systems for controlling the vertical coupled-bunch instabilities in the positron and electron main rings are installed at DAFNE. They started to be operative respectively from June and September 2000. For the horizontal plane, similar systems have been installed in summer 2001 with less kicker power. Design specifications and the basic system concepts are presented. Real time bunch-by-bunch offset correction is implemented using digital signal processors and dual-port RAM's. Fast analog to digital sampling is performed at the maximum bunch frequency (368 MHz). The system manages at full speed a continuous flow of 8-bits data and it has the capability to invert the sign or put to zero the output for any combination of bunches. A conversion from digital to analog produces the output correcting signal.

  2. Fast Electronics for the Dafne Transverse Feedback Systems

    Science.gov (United States)

    Drago, Alessandro

    Transverse feedback systems for controlling the vertical coupled-bunch instabilities in the positron and electron main rings are installed at DAFNE. They started to be operative respectively from June and September 2000. For the horizontal plane, similar systems have been installed in summer 2001 with less kicker power. Design specifications and the basic system concepts are presented. Real time bunch-by-bunch offset correction is implemented using digital signal processors and dual-port RAM's. Fast analog to digital sampling is performed at the maximum bunch frequency (368 MHz). The system manages at full speed a continuous flow of 8-bits data and it has the capability to invert the sign or put to zero the output for any combination of bunches. A conversion from digital to analog produces the output correcting signal.

  3. State feedback control of switched linear systems: An LMI approach

    Science.gov (United States)

    Montagner, V. F.; Leite, V. J. S.; Oliveira, R. C. L. F.; Peres, P. L. D.

    2006-10-01

    This paper addresses the problem of state feedback control of continuous-time switched linear systems with arbitrary switching rules. A quadratic Lyapunov function with a common matrix is used to derive a stabilizing switching control strategy that guarantees: (i) the assignment of all the eigenvalues of each linear subsystem inside a chosen circle in the left-hand half of the complex plane; (ii) a minimum disturbance attenuation level for the closed-loop switched system. The proposed design conditions are given in terms of linear matrix inequalities that encompass previous results based on quadratic stability conditions with fixed control gains. Although the quadratic stability based on a fixed Lyapunov matrix has been widely used in robust control design, the use of this condition to provide a convex design method for switching feedback gains has not been fully investigated. Numerical examples show that the switching control strategy can cope with more stringent design specifications than the fixed gain strategy, being useful to improve the performance of this class of systems.

  4. Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)

    Science.gov (United States)

    Weisbrich, R.; Perley, R.; Howes, H.

    1977-01-01

    The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.

  5. Output feedback trajectory stabilization of the uncertainty DC servomechanism system.

    Science.gov (United States)

    Aguilar-Ibañez, Carlos; Garrido-Moctezuma, Ruben; Davila, Jorge

    2012-11-01

    This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system.

  6. Robust adaptive output feedback control of nonlinearly parameterized systems

    Institute of Scientific and Technical Information of China (English)

    LIU Yusheng; LI Xingyuan

    2007-01-01

    The ideas of adaptive nonlinear damping and changing supply functions were used to counteract the effects of parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The high-gain observer was used to estimate the state of the system.A robust adaptive output feedback control scheme was proposed for nonlinearly parameterized systems represented by inputoutput models.The scheme does not need to estimate the unknown parameters nor add a dynamical signal to dominate the effects of unmodeled dynamics.It is proven that the proposed control scheme guarantees that all the variables in the closed-loop system are bounded and the mean-square tracking error can be made arbitrarily small by choosing some design parameters appropriately.Simulation results have illustrated the effectiveness of the proposed robust adaptive control scheme.

  7. Accelerating of Image Retrieval in CBIR System with Relevance Feedback

    Directory of Open Access Journals (Sweden)

    Radosavljević Vladan

    2007-01-01

    Full Text Available Content-based image retrieval (CBIR system with relevance feedback, which uses the algorithm for feature-vector (FV dimension reduction, is described. Feature-vector reduction (FVR exploits the clustering of FV components for a given query. Clustering is based on the comparison of magnitudes of FV components of a query. Instead of all FV components describing color, line directions, and texture, only their representative members describing FV clusters are used for retrieval. In this way, the "curse of dimensionality" is bypassed since redundant components of a query FV are rejected. It was shown that about one tenth of total FV components (i.e., the reduction of 90% is sufficient for retrieval, without significant degradation of accuracy. Consequently, the retrieving process is accelerated. Moreover, even better balancing between color and line/texture features is obtained. The efficiency of FVR CBIR system was tested over TRECVid 2006 and Corel 60 K datasets.

  8. Accelerating of Image Retrieval in CBIR System with Relevance Feedback

    Directory of Open Access Journals (Sweden)

    Branimir Reljin

    2007-01-01

    Full Text Available Content-based image retrieval (CBIR system with relevance feedback, which uses the algorithm for feature-vector (FV dimension reduction, is described. Feature-vector reduction (FVR exploits the clustering of FV components for a given query. Clustering is based on the comparison of magnitudes of FV components of a query. Instead of all FV components describing color, line directions, and texture, only their representative members describing FV clusters are used for retrieval. In this way, the “curse of dimensionality” is bypassed since redundant components of a query FV are rejected. It was shown that about one tenth of total FV components (i.e., the reduction of 90% is sufficient for retrieval, without significant degradation of accuracy. Consequently, the retrieving process is accelerated. Moreover, even better balancing between color and line/texture features is obtained. The efficiency of FVR CBIR system was tested over TRECVid 2006 and Corel 60 K datasets.

  9. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  10. Dynamical output feedback stabilization for neutral systems with mixed delays

    Institute of Scientific and Technical Information of China (English)

    Wei QIAN; Guo-jiang SHEN; You-xian SUN

    2008-01-01

    This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays.The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems.Based on the model transformation of neutral type,the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion.Then,through the controller parameterization and some matrix transformation techniques,the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs),and the desired controller is explicitly formulated.A numerical example is given to illustrate the effectiveness of the proposed method.

  11. Feedback Reduction in Uplink MIMO OFDM Systems by Chunk Optimization

    Directory of Open Access Journals (Sweden)

    Arogyaswami Paulraj

    2008-01-01

    Full Text Available The performance of multiuser MIMO systems can be significantly increased by channel-aware scheduling and signal processing at the transmitters based on channel state information. In the multipleantenna uplink multicarrier scenario, the base station decides centrally on the optimal signal processing and spectral power allocation as well as scheduling. An interesting challenge is the reduction of the overhead in order to inform the mobiles about their transmit strategies. In this work, we propose to reduce the feedback by chunk processing and quantization. We maximize the weighted sum rate of a MIMO OFDM MAC under individual power constraints and chunk size constraints. An efficient iterative algorithm is developed and convergence is proved. The feedback overhead as a function of the chunk size is considered in the rate computation and the optimal chunk size is determined by numerical simulations for various channel models. Finally, the issues of finite modulation and coding schemes as well as quantization of the precoding matrices are addressed.

  12. Laser Soldering of Rat Skin Using a Controlled Feedback System

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Nourbakhsh

    2009-03-01

    Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.

  13. Integration of a force feedback joystick with a VR system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.C. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report shows the result carried out at the Robotics and Information Systems Division of ENEA (National Agency for New Technology, Energy and the Environment) in the Casaccia Centre (Rome). The study presents an approach to the problem of integrating force feedback with a complete real-time virtual environment system: in particular bulky computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-quality forces are to be obtained. The control system has been developed for the force-feedback joystick Impulse 2000, from Immersion Co., and the integration of it to a virtual environment is presented here. Technical issues related to the development of control architectures for Internet-based exchange of haptic information, in a stable way are discussed. [Italian] Il presente rapporto descrive il lavoro eseguito nella divisione robotica e informatica del dipartimento innovazione dell'ENEA del centro ricerche della Casaccia (Roma): il sistema di controllo del dispositivo con ritorno di forza in un sistema RV (real-time virtual environment system) ed illustra l'approccio a questa problematica ed in particolare la lentezza di esecuzione del ciclo di calcoli per la resa delle immagini da parte del sistema grafico e del ciclio per la simulazione della dinamica di sistema. Viene descritto il sistema di controllo per il joystick con ritorno di forza Impulse 2000 (Immersion Co.) e la sua integrazione ad un ambiente virtuale. Sono inoltre discusse le problematiche connesse allo sviluppo di sistemi che consentano lo scambio dell'informazione tattile attraverso Internet.

  14. A hypertext system that learns from user feedback

    Science.gov (United States)

    Mathe, Nathalie

    1994-01-01

    Retrieving specific information from large amounts of documentation is not an easy task. It could be facilitated if information relevant in the current problem solving context could be automatically supplied to the user. As a first step towards this goal, we have developed an intelligent hypertext system called CID (Computer Integrated Documentation). Besides providing an hypertext interface for browsing large documents, the CID system automatically acquires and reuses the context in which previous searches were appropriate. This mechanism utilizes on-line user information requirements and relevance feedback either to reinforce current indexing in case of success or to generate new knowledge in case of failure. Thus, the user continually augments and refines the intelligence of the retrieval system. This allows the CID system to provide helpful responses, based on previous usage of the documentation, and to improve its performance over time. We successfully tested the CID system with users of the Space Station Freedom requirements documents. We are currently extending CID to other application domains (Space Shuttle operations documents, airplane maintenance manuals, and on-line training). We are also exploring the potential commercialization of this technique.

  15. Linear Feedback Synchronization Used in the Three-Dimensional Duffing System

    Directory of Open Access Journals (Sweden)

    Jian-qun Han

    2015-01-01

    Full Text Available It has been realized that synchronization using linear feedback control method is efficient compared to nonlinear feedback control method due to the less computational complexity and the synchronization error. For the problem of feedback synchronization of Duffing chaotic system, in the paper, we firstly established three-dimensional Duffing system by method of variable decomposition and, then, studied the synchronization of Duffing chaotic system and designed the control law based on linear feedback control and Lyapunov stability theory. It is proved theoretically that the two identical integer order chaotic systems are synchronized analytically and numerically.

  16. Iterative Feedback Tuning in district heating systems; Iterative Feedback Tuning i vaermeproduktionsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin; Velut, Stephane; Bari, Siavosh Amanat

    2010-10-15

    The project goal is to evaluate and describe how Iterative Feedback Tuning (IFT) can be used to tune controllers in the typical control loops in heat- and power plants. There are only a few practical studies carried out for IFT and they are not really relevant for power and heat processes. It is the practical problems in implementing the IFT and the result of trimming that is the focus of this project. The project will start with theoretical studies of the IFT-method, then realization and simple simulations in scilab. The IFT equations are then implemented in Freelance 2000, an ABB control system, for practical tests on a SISO- and a MIMO-process. By performing reproducible experiments on the process and analyze the results IFT can adjust the controller parameters to minimize a cost function that represents the control goal. The project selected for SISO experiments a pressure controller in an oil transportation system. By controlling the valve position of a control valve for the reversal to the supply tank, the pressure in the oil transport system is regulated. A disturbance in oil pressure can be achieved by changing the position of a valve that lets oil through to the day tank. The selected MIMO-process is a pre-heater in a degassing process. In this process, a valve on the secondary side is utilized to control the flow in the secondary system. A valve on the primary side is utilized to control the district heating water flow through the heat exchanger to control the temperature on the secondary side. An increased secondary flow increases the heat demand and thus requiring an increase in primary flow to maintain the secondary side outlet temperature. This is the cross-coupling responsible for why it is an advantage to consider the process as multi-variable. Using the IFT method, the two original PID-controllers and a feed-forward controller is tuned simultaneously. IFT-method was difficult to implement but worked well in both simulations and in real processes

  17. Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays.

    Science.gov (United States)

    Chen, Weisheng; Jiao, Licheng; Li, Jing; Li, Ruihong

    2010-06-01

    For the first time, this paper addresses the problem of adaptive output-feedback control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delays using neural networks (NNs). The circle criterion is applied to designing a nonlinear observer, and no linear growth condition is imposed on nonlinear functions depending on system states. Under the assumption that time-varying delays exist in the system output, only an NN is employed to compensate for all unknown nonlinear terms depending on the delayed output, and thus, the proposed control algorithm is more simple even than the existing NN backstepping control schemes for uncertain systems described by ordinary differential equations. Three examples are given to demonstrate the effectiveness of the control scheme proposed in this paper.

  18. User Driven Feedback Control System driven using CAN Protocol

    Directory of Open Access Journals (Sweden)

    Ankita Goyal

    2013-09-01

    Full Text Available -Industrial automation is a sector having vast possibilities for major improvements. The system described in this paper consists of a console master computer (CMC which will monitor various physical nodes usually found in a large industry. The proposed work analyzes the capability of CAN networking which includes data traffic management. The CMC is designed using MATLAB 7.12; the CAN networking is supported using the Vehicular Network Toolbox. The proposed system using CAN has the advantages of being simple in its design which contributes to the overall low cost. The novelty of the work lies in the low cost approach, and fails safe methodology of CAN communication. The proposed system is capable of sending and receiving signals with the additional benefit of feedback mechanism .The proposed work is implementable in any industry with the cost advantage of CAN interface. The proposed work can be used as a cheaper and robust alternative to native technologies like PLC (Programmable Logic Controller. Moreover, the CAN network system is immune from the electrical interferences.

  19. Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System.

    Science.gov (United States)

    Bugiel, Michael; Jannasch, Anita; Schäffer, Erik

    2017-01-01

    Feedback systems can be used to control the value of a system variable. In optical tweezers, active feedback is often implemented to either keep the position or tension applied to a single biomolecule constant. Here, we describe the implementation of the latter: an optical force-clamp setup that can be used to study the motion of processive molecular motors under a constant load. We describe the basics of a software-implemented proportional-integral-derivative (PID) controller, how to tune it, and how to determine its optimal feedback rate. Limitations, possible feed-forward applications, and extensions into two- and three-dimensional optical force clamps are discussed. The feedback is ultimately limited by thermal fluctuations and the compliance of the involved molecules. To investigate a particular mechanical process, understanding the basics and limitations of the feedback system will be helpful for choosing the proper feedback hardware, for optimizing the system parameters, and for the design of the experiment.

  20. Semi-global output regulation for linear systems with input saturation by composite nonlinear feedback control

    Science.gov (United States)

    Wang, Chongwen; Yu, Xiao; Lan, Weiyao

    2014-10-01

    To improve transient performance of output response, this paper applies composite nonlinear feedback (CNF) control technique to investigate semi-global output regulation problems for linear systems with input saturation. Based on a linear state feedback control law for a semi-global output regulation problem, a state feedback CNF control law is constructed by adding a nonlinear feedback part. The extra nonlinear feedback part can be applied to improve the transient performance of the closed-loop system. Moreover, an observer is designed to construct an output feedback CNF control law that also solves the semi-global output regulation problem. The sufficient solvability condition of the semi-global output regulation problem by CNF control is the same as that by linear control, but the CNF control technique can improve the transient performance. The effectiveness of the proposed method is illustrated by a disturbance rejection problem of a translational oscillator with rotational actuator system.

  1. Stabilization of nonlinear sandwich systems via state feedback-Discrete-time systems

    NARCIS (Netherlands)

    Wang, Xu; Stoorvogel, Anton A.; Saberi, Ali; Grip, H°avard Fjær; Sannuti, Peddapullaiah

    2011-01-01

    A recent paper (IEEE Trans. Aut. Contr. 2010; 55(9):2156–2160) considered stabilization of a class of continuous-time nonlinear sandwich systems via state feedback. This paper is a discrete-time counterpart of it. The class of nonlinear sandwich systems consists of saturation elements sandwiched bet

  2. Analysis, Design, and Evaluation of Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng

    2013-01-01

    application that whereas the traditional and stateof- the-art acoustic feedback cancellation systems fail with significant sound distortions and howling as consequences, the new probe noise approach is able to remove feedback artifacts caused by the feedback path change in no more than a few hundred......Acoustic feedback problems occur when the output loudspeaker signal of an audio system is partly returned to the input microphone via an acoustic coupling through the air. This problem often causes significant performance degradations in applications such as public address systems and hearing aids....... In the worst case, the audio system becomes unstable and howling occurs. In this work, first we analyze a general multiple microphone audio processing system, where a cancellation system using adaptive filters is used to cancel the effect of acoustic feedback. We introduce and derive an accurate approximation...

  3. Systematic design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak

    NARCIS (Netherlands)

    Hennen, B.A.; Westerhof, E.; Nuij, Pwjm; M.R. de Baar,; Steinbuch, M.

    2012-01-01

    Suppression of tearing modes is essential for the operation of tokamaks. This paper describes the design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak. The two main control tasks of this feedback control system are the radial alignment of electron cyclot

  4. PERMANENCE OF A DISCRETE SINGLE SPECIES SYSTEM WITH DELAYS AND FEEDBACK CONTROL

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,a discrete single species system with time delays and feedback control is considered.Sufficient conditions which guarantee the permanence of all positive solutions to this discrete system are obtained.The results show that the feedback control is harmless for the permanence of the species.

  5. A class of standard mechanical system with force feedback in the port-Hamiltonian framework

    NARCIS (Netherlands)

    Muñoz-Arias, Mauricio; Scherpen, Jacquelien M A; Dirksz, Daniel A.

    2012-01-01

    In this paper we show force feedback and position control of a class of standard mechanical system in the port-Hamiltonian framework. Furthermore, we show how to derive an extended port-Hamiltonian system with structure preservation which can be used for force feedback purposes besides providing the

  6. Stabilization of three-dimensional chaotic systems via single state feedback controller

    Energy Technology Data Exchange (ETDEWEB)

    Yu Wenguang, E-mail: smilewgyu@163.co [School of Statistics and Mathematics, Shandong Economic University, Jinan 250014 (China)

    2010-03-29

    This Letter investigates the stabilization of three-dimensional chaotic systems, and proposes a novel simple adaptive-feedback controller for chaos control. In comparison with previous methods, the present controller which only contains single state feedback, to our knowledge, is the simplest control scheme for controlling the three-dimensional chaotic system. The results are validated using numerical simulations.

  7. A Social Learning Management System Supporting Feedback for Incorrect Answers Based on Social Network Services

    Science.gov (United States)

    Son, Jiseong; Kim, Jeong-Dong; Na, Hong-Seok; Baik, Doo-Kwon

    2016-01-01

    In this research, we propose a Social Learning Management System (SLMS) enabling real-time and reliable feedback for incorrect answers by learners using a social network service (SNS). The proposed system increases the accuracy of learners' assessment results by using a confidence scale and a variety of social feedback that is created and shared…

  8. On a new time-delayed feedback control of chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tian Lixin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China)], E-mail: tianlx@ujs.edu.cn; Xu Jun; Sun Mei; Li Xiuming [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China)

    2009-01-30

    In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.

  9. Time-delay feedback control in a delayed dynamical chaos system and its applications

    Institute of Scientific and Technical Information of China (English)

    Ye Zhi-Yong; Yang Guang; Deng Cun-Bing

    2011-01-01

    The feedback control of a delayed dynamical system, which also includes various chaotic systems with time delays, is investigated. On the basis of stability analysis of a nonautonomons system with delays, some simple yet less conservative criteria are obtained for feedback control in a delayed dynamical system. Finally, the theoretical result is applied to a typical class of chaotic Lorenz system and Chua circuit with delays. Numerical simulations are also given to verify the theoretical results.

  10. Feedback threshold with guaranteed QoS in multiuser OFDM systems

    Institute of Scientific and Technical Information of China (English)

    YANG Rui-zhe; YUAN Chao-wei; TENG Ying-lei; ZHANG Yan-hua

    2009-01-01

    A threshold setting scheme is proposed based on the resource management and limited feedback theory in multiuser orthogonal frequency division multiplexing (OFDM) systems. In adaptive resource allocation, the factors denoting the quality of service (QoS) and fairness are both considered as the user weight. From the aspect of feedback outage probability, the proposed algorithm sets the threshold for each user related to its weight, which brings enough feedback to the user with greater weight. Analysis and simulation results show that, compared with the threshold ignoring weights, the proposed scheme has much lower feedback load while with better QoS.

  11. Application of Feedback Linearization Method in Airplane Automatic Landing Control System

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaoyan; Feng Jiang; Feng Xiujuan; Wu Junqin

    2004-01-01

    Summarizes the I/O feedback linearization about MIMO system, and applies it to nonlinear control equation of airplane. And also designs the tracing control laws for airplane longitudinal automatic landing control system.

  12. Output regulation problem for discrete-time linear time-delay systems by output feedback control

    Institute of Scientific and Technical Information of China (English)

    Yamin YAN; Jie HUANG

    2016-01-01

    In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.

  13. Distributed User Selection in Network MIMO Systems with Limited Feedback

    KAUST Repository

    Elkhalil, Khalil

    2015-09-06

    We propose a distributed user selection strategy in a network MIMO setting with M base stations serving K users. Each base station is equipped with L antennas, where LM ≪ K. The conventional selection strategy is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Such technique, however, requires perfect channel state information at the transmitter (CSIT), which might not be available or need large feedback overhead. This paper proposes an alternative distributed user selection technique where each user sets a timer that is inversely proportional to his channel quality indicator (CQI), as a means to reduce the feedback overhead. The proposed strategy allows only the user with the highest CQI to respond with a feedback. Such technique, however, remains collision free only if the transmission time is shorter than the difference between the strongest user timer and the second strongest user timer. To overcome the situation of longer transmission times, the paper proposes another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and all users encode their feedback information and send it back to the base-stations simultaneously. The paper shows that the problem can be formulated as a block sparse recovery problem which is agnostic on the transmission time, which makes it a good alternative to the timer approach when collision is dominant.

  14. Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

    Directory of Open Access Journals (Sweden)

    Mike eSkocik

    2013-01-01

    Full Text Available Studies of behavioral and neural responses to distorted auditory feedback can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds’ songs.

  15. A Moral Experience Feedback Loop: Modeling a System of Moral Self-Cultivation in Everyday Life

    Science.gov (United States)

    Sherblom, Stephen A.

    2015-01-01

    This "systems thinking" model illustrates a common feedback loop by which people engage the moral world and continually reshape their moral sensibility. The model highlights seven processes that collectively form this feedback loop: beginning with (1) one's current moral sensibility which shapes processes of (2) perception, (3)…

  16. Market factors feedback system of the pilot program of the Energy Extension Service

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The market factors feedback system of the pilot program of the Energy Extension Service are described. The description contains the plans of the 10 pilot EES states and the DOE for operating the system between December 1977 and March 1979. Chapter one contains the planned scope of the market factors feedback system during the pilot program: the target audiences, program services, likely topics of market factors feedback, and energy decision makers. Chapter two presents how the market factors feedback system will operate over the pilot program period. Chapter three summarizes the roles and functions of DOE/EXT in supporting state EES market factors feedback operations and in evaluating the program. There are three appendices. Appendix A contains the market factors feedback plans of the pilot EES states. Appendix B describes how DOE/EXT will work with national-level energy decision makers on market factors feedback received from state EESs. Appendix C is the design for the formal evaluation of the market factors feedback component of the pilot EES program. (MCW)

  17. Permanence of a Single Species System with Distributed Time Delay and Feedback Control

    Directory of Open Access Journals (Sweden)

    Yali Shen

    2012-01-01

    Full Text Available We study the permanence of a classofsingle species system with distributed time delay and feedback controls. General criteria on permanence are established in this paper. A very important fact is found in our results; that is, the feedback control is harmless to the permanence of species.

  18. Arbitrarily low sensitivity (ALS) in linear distributed systems using pointwise linear feedback

    NARCIS (Netherlands)

    Kelemen, Matei; Kennai, Yakar; Horowitz, Isaac

    1990-01-01

    The sensitivity problem is defined for feedback systems with plants described by linear partial differential operators having constant coefficients, in a bounded one-dimensional domain. there are also finitely many observation points and finitely many lumped feedback loops, and a finite number of di

  19. Synchronization control of cross-strict feedback hyperchaotic system based on cross active backstepping design

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jing [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: wjnotice@gmail.com; Gao Jinfeng [School of Electrical Engineering, Zhengzhou University, Zhengzhou 450002 (China); Ma Xikui [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-10-01

    This Letter presents a novel cross active backstepping design method for synchronization control of cross-strict feedback hyperchaotic system, in which the ordinary backstepping design is unavailable. The proposed control method, combining backstepping design and active control approach, extends the application of backstepping technique in chaos control. Based on this method, different combinations of controllers can be designed to meet the needs of different applications. The proposed method is applied to achieve chaos synchronization of two identical cross-strict feedback hyperchaotic systems. Also it is used to implement synchronization between cross-strict feedback hyperchaotic system and Roessler hyperchaotic system. Numerical examples illustrate the validity of the control method.

  20. Effect of biased feedback on motor imagery learning in BCI-teleoperation system

    Directory of Open Access Journals (Sweden)

    Maryam eAlimardani

    2014-04-01

    Full Text Available Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users’ BC performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects’ performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects’ BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects’ online performance, evaluation of brain activity patterns revealed that subjects’ self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects’ motor imagery skills.

  1. Tranceiver Design using Linear Precoding in a Multiuser MIMO System with Limited Feedback

    CERN Document Server

    Islam, Muhammad Nazmul

    2010-01-01

    We investigate quantization and feedback of channel state information in a multiuser (MU) multiple input multiple output (MIMO) system. Each user may receive multiple data streams. Our design minimizes the sum mean squared error (SMSE) while accounting for the imperfections in channel state information (CSI) at the transmitter. This paper makes three contributions: first, we provide an end-to-end SMSE transceiver design that incorporates receiver combining, feedback policy and transmit precoder design with channel uncertainty. This enables the proposed transceiver to outperform the previously derived limited feedback MU linear transceivers. Second, we remove dimensionality constraints on the MIMO system, for the scenario with multiple data streams per user, using a combination of maximum expected signal combining (MESC) and minimum MSE receiver. This makes the feedback of each user independent of the others and the resulting feedback overhead scales linearly with the number of data streams instead of the numb...

  2. A Selfish Linear Precoding Strategy for Downlink Two-User MIMO Systems Using Limited Rate Feedback

    Directory of Open Access Journals (Sweden)

    Lei Lv

    2013-07-01

    Full Text Available This letter proposes a limited feedback-based selfish linear precoding (SLP strategy for downlink two-user MIMO systems. In the proposed strategy, each user selfishly chooses the other user’s precoding matrix which minimizes its capacity loss. The proposed SLP strategy has two advantages comparing with traditional linear precoding strategies. First, SLP improves the system capacity by resisting interference more effectively. Second, the computing complexity of transmitter is reduced since the base station needs not to calculate precoding matrix. Simulation results verify the effectiveness of SLP on system capacity improvement comparing to limited feedback block diagonalization (LFBD algorithm, especially when feedback bits are insufficient.

  3. Robust synchronization of chaotic non-autonomous systems using adaptive-feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Lei Youming [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)]. E-mail: leiyouming@nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Shen Jianwei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2007-01-15

    In this paper, we apply the simple adaptive-feedback control scheme to synchronize a class of chaotic non-autonomous systems. Based on the invariance principle of differential equations, some generic sufficient conditions for global asymptotic synchronization are obtained. Unlike the usual linear feedback, the variable feedback strength is automatically adapted to completely synchronize two identical systems and simple to implement in practice. As illustrative examples, synchronization of two parametrically excited chaotic pendulums and that of two 4D new systems are considered here. Numerical simulations show the proposed method is effective and robust against the effect of noise.

  4. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2004-01-01

    Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

  5. Feedback control of water supply in an NFT growing system

    NARCIS (Netherlands)

    Gieling, Th.H.; Janssen, H.J.J.; Vries, de H.C.; Loef, P.

    2001-01-01

    The paper explores a concept of irrigation control, where the supply of nutrient solution is controlled without the use of predictive uptake models but rather by the use of a direct feedback of a drain flow measurement. This concept proves to be a viable approach. Results are presented, showing the

  6. Time-Delay Systems with Band-Limited Feedback

    Science.gov (United States)

    2005-08-01

    used as generators of chaos in applications such as communication, chaos control , and ranging. As an example, such devices are studied as a signal...tions [Lukin, 1997; Myneni, 2001]. Furthermore, time delayed feedback is used in the chaos control scheme known as time-delay autosynchronization

  7. Ultrashort pulse laser microsurgery system with plasma luminescence feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.

    1997-11-10

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  8. Affective feedback in a tutoring system for procedural tasks

    NARCIS (Netherlands)

    Heylen, D.K.J.; Vissers, M.; Akker, op den H.J.A.; Nijholt, A.; André, E.; Dybkjaer, L.; Minker, W.; Heisterkamp, P.

    2004-01-01

    We discuss the affective aspects of tutoring dialogues in an ITS -called INES- that helps students to practice nursing tasks using a haptic device and a virtual environment. Special attention is paid to affective control in the tutoring process by means of selecting the appropriate feedback, taking

  9. Judges in judo conform to the referee because of the reactive feedback system.

    Science.gov (United States)

    Boen, Filip; Ginis, Pieter; Smits, Tim

    2013-01-01

    This experiment tested whether the conformism observed among panels of judges in aesthetic sports also occurs among judges in judo. Similar to aesthetic sports, judo judging relies upon a form of open feedback. However, in judo, this system is reactive (i.e. two judges have to publicly 'correct' the score given by the higher-status referee), whereas it is active in aesthetic sports (i.e. judges with equal status report their score simultaneously and can use the feedback about the scores of their colleagues for evaluating later performances). In order to test whether such reactive open-feedback system leads to conformism among judges in judo, we designed an experiment in which this feedback was manipulated. Participants were 20 certified Flemish judges, who had to score two sets of 11 ambiguous video sequences that are used during formation and training of judo judges: one set with feedback about the referee's score and one set without feedback. The results revealed that when participants knew the referee's score, their scores were significantly more in line with this score than when they did not know this score. More specifically, for both sets of sequences at least 10% less deviations from the referee were observed when participants were given feedback about the score of the referee. These results suggest that preventable conformism can occur in typical judo judging, that is with reactive open feedback.

  10. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    Science.gov (United States)

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2007-09-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.

  11. H∞ State Feedback Delay-dependent Control for Discrete Systems with Multi-time-delay

    Institute of Scientific and Technical Information of China (English)

    Bai-Da Qu

    2005-01-01

    In this paper,H∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H∞ performance indices is induced, and then a strategy for H∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach.

  12. Feedback stabilization of the Cahn-Hilliard type system for phase separation

    Science.gov (United States)

    Barbu, Viorel; Colli, Pierluigi; Gilardi, Gianni; Marinoschi, Gabriela

    2017-02-01

    This article is concerned with the internal feedback stabilization of the phase field system of Cahn-Hilliard type, modeling the phase separation in a binary mixture. Under suitable assumptions on an arbitrarily fixed stationary solution, we construct via spectral separation arguments a feedback controller having its support in an arbitrary open subset of the space domain, such that the closed loop nonlinear system exponentially reaches the prescribed stationary solution. This feedback controller has a finite dimensional structure in the state space of solutions. In particular, every constant stationary solution is admissible.

  13. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system

    Directory of Open Access Journals (Sweden)

    Antfolk Christian

    2010-09-01

    Full Text Available Abstract Background The users of today's commercial prosthetic hands are not given any conscious sensory feedback. To overcome this deficiency in prosthetic hands we have recently proposed a sensory feedback system utilising a "tactile display" on the remaining amputation residual limb acting as man-machine interface. Our system uses the recorded pressure in a hand prosthesis and feeds back this pressure onto the forearm skin. Here we describe the design and technical solution of the sensory feedback system aimed at hand prostheses for trans-radial/humeral amputees. Critical parameters for the sensory feedback system were investigated. Methods A sensory feedback system consisting of five actuators, control electronics and a test application running on a computer has been designed and built. Firstly, we investigate which force levels were applied to the forearm skin of the user while operating the sensory feedback system. Secondly, we study if the proposed system could be used together with a myoelectric control system. The displacement of the skin caused by the sensory feedback system would generate artefacts in the recorded myoelectric signals. Accordingly, EMG recordings were performed and an analysis of the these are included. The sensory feedback system was also preliminarily evaluated in a laboratory setting on two healthy non-amputated test subjects with a computer generating the stimuli, with regards to spatial resolution and force discrimination. Results We showed that the sensory feedback system generated approximately proportional force to the angle of control. The system can be used together with a myoelectric system as the artefacts, generated by the actuators, were easily removed using a simple filter. Furthermore, the application of the system on two test subjects showed that they were able to discriminate tactile sensation with regards to spatial resolution and level of force. Conclusions The results of these initial experiments

  14. All-Optical WDM Buffer System Realized by NOLM and Feedback Loop Structure

    Institute of Scientific and Technical Information of China (English)

    Seungwoo Yi; Kyeong-Mo Yoon; Yong-Gi Lee; Jinseob Eom

    2003-01-01

    We propose an all-optical WDM buffer for optical packet switching system, which consists of NOLM and feedback loop. The proposed structure provides more than 40 turn buffering and nice output of buffered data when selected by control signal.

  15. Feedback control in a general almost periodic discrete system of plankton allelopathy.

    Science.gov (United States)

    Yin, Wenshuang

    2014-01-01

    We study the properties of almost periodic solutions for a general discrete system of plankton allelopathy with feedback controls and establish a theorem on the uniformly asymptotic stability of almost periodic solutions.

  16. PERMANENCE OF GENERAL NONAUTONOMOUS SINGLE-SPECIES KOLMOGOROV TYPE SYSTEM WITH DELAY AND FEEDBACK CONTROLS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we consider the general nonautonomous single-species Kolmogorov type system with delay and feedback controls. Sufficient conditions for the permanence of species are established. Our results generalize some known results.

  17. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    Science.gov (United States)

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed.

  18. Effects of altered auditory feedback across effector systems: production of melodies by keyboard and singing.

    Science.gov (United States)

    Pfordresher, Peter Q; Mantell, James T

    2012-01-01

    We report an experiment that tested whether effects of altered auditory feedback (AAF) during piano performance differ from its effects during singing. These effector systems differ with respect to the mapping between motor gestures and pitch content of auditory feedback. Whereas this action-effect mapping is highly reliable during phonation in any vocal motor task (singing or speaking), mapping between finger movements and pitch occurs only in limited situations, such as piano playing. Effects of AAF in both tasks replicated results previously found for keyboard performance (Pfordresher, 2003), in that asynchronous (delayed) feedback slowed timing whereas alterations to feedback pitch increased error rates, and the effect of asynchronous feedback was similar in magnitude across tasks. However, manipulations of feedback pitch had larger effects on singing than on keyboard production, suggesting effector-specific differences in sensitivity to action-effect mapping with respect to feedback content. These results support the view that disruption from AAF is based on abstract, effector independent, response-effect associations but that the strength of associations differs across effector systems.

  19. Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System

    Science.gov (United States)

    Jorgenson, Philip C. E.; Loh, Ching Y.

    2004-01-01

    The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.

  20. Linear Feedback Analysis of Cardiovascular System using Seismocardiogram

    Directory of Open Access Journals (Sweden)

    Marcel Jiřina

    2005-01-01

    Full Text Available The paper deals with an analysis of relationship between heart rate described by a sequence of cardiac interbeat intervals and mechanical activity of heart represented by a sequence of systolic forces. Both the quantities were determined from seismocardiograms recorded from healthy subjects under two different experimental conditions. The method of the linear feedback baroreflex approach originally developed in [1], [2] and [3] was applied for the analysis. Different character of obtained results in comparison to those described in [1], [2] or [3], is explained by differences between frequency properties of the recorded sequences of the systolic forces and values of systolic blood pressure.

  1. Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems With Time Delay.

    Science.gov (United States)

    Zhao, Xudong; Yang, Haijiao; Karimi, Hamid Reza; Zhu, Yanzheng

    2016-06-01

    In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main contributions of this paper lie in that the systems under consideration are more general, and an effective design procedure of output-feedback controller is developed for the considered systems, which is more applicable in practice. Simulation results demonstrate the efficiency of the proposed algorithm.

  2. Performance Comparison of Different System Identification Algorithms for FACET and ATF2

    CERN Document Server

    Pfingstner, J; Schulte, D

    2013-01-01

    Good system knowledge is an essential ingredient for the operation of modern accelerator facilities. For example, beam-based alignment algorithms and orbit feedbacks rely strongly on a precise measurement of the orbit response matrix. The quality of the measurement of this matrix can be improved over time by statistically combining the effects of small system excitations with the help of system identification algorithms. These small excitations can be applied in a parasitic mode without stopping the accelerator operation (on-line). In this work, different system identification algorithms are used in simulation studies for the response matrix measurement at ATF2. The results for ATF2 are finally compared with the results for FACET, latter originating from an earlier work.

  3. A practical nonlinear controller for levitation system with magnetic flux feedback

    Institute of Scientific and Technical Information of China (English)

    李金辉; 李杰

    2016-01-01

    This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedback are analyzed when compared with the current feedback. Then, a backstepping controller with magnetic flux feedback based on the mathematical model of levitation module is developed. To obtain magnetic flux signals for full-size maglev system, a physical method with induction coils installed to winding of the electromagnet is developed. Furthermore, to avoid its hardware addition, a novel conception of virtual magnetic flux feedback is proposed. To demonstrate the feasibility of the proposed controller, the nonlinear dynamic model of full-size maglev train with quintessential details is developed. Based on the nonlinear model, the numerical comparisons and related experimental validations are carried out. Finally, results illustrating closed-loop performance are provided.

  4. Delayed feedback control of unstable steady states in fractional-order chaotic systems

    CERN Document Server

    Gjurchinovski, Aleksandar; Urumov, Viktor

    2010-01-01

    We study the possibility to stabilize unstable steady states in chaotic fractional-order dynamical systems by the time-delayed feedback method with both constant and time-varying delays. By performing a linear stability analysis in the constant delay case, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parametrizad by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. It is shown numerically that delayed feedback control with a variable time-delay significantly enlarges the stability region of the steady states in comparison to the classical time-delayed feedback scheme with a constant delay.

  5. Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delays

    Science.gov (United States)

    Guan, Wei

    2012-04-01

    This article studies the adaptive output feedback control problem of a class of uncertain nonlinear systems with unknown time delays. The systems considered are dominated by a triangular system without zero dynamics satisfying linear growth in the unmeasurable states. The novelty of this article is that a universal-type adaptive output feedback controller is presented to time-delay systems, which can globally regulate all the states of the uncertain systems without knowing the growth rate. An illustrative example is provided to show the applicability of the developed control strategy.

  6. COMMISSIONING OF THE DIGITAL TRANSVERSE BUNCH-BY-BUNCH FEEDBACK SYSTEM FOR THE TLS.

    Energy Technology Data Exchange (ETDEWEB)

    HU, K.H.; KUO, C.H.; CHOU, P.J.; LEE, D.; HSU, S.Y.; CHEN, J.; WANG, C.J.; HSU, K.T.; KOBAYASHI, K.; NAKAMURA, T.; CHAO, A.W.; WENG, W.T.

    2006-06-26

    Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even beam loss. Feedback systems are used to suppress multi-bunch instabilities associated with the resistive wall of the beam ducts, cavity-like structures, and trapped ions. A new digital transverse bunch-by-bunch feedback system has recently been commissioned at the Taiwan Light Source, and has replaced the previous analog system. The new system has the advantages that it enlarges the tune acceptance and improves damping for transverse instability at high currents, such that top-up operation is achieved. After a coupled-bunch transverse instability was suppressed, more than 350 mA was successfully stored during preliminary commissioning. In this new system, a single feedback loop simultaneously suppresses both horizontal and vertical multi-bunch instabilities. Investigating the characteristics of the feedback loop and further improving the system performances are the next short-term goals. The feedback system employs the latest generation of field-programmable gate array (FPGA) processor to process bunch signals. Memory has been installed to capture up to 250 msec of bunch oscillation signal, considering system diagnostics suitable to support various beam physics studies.

  7. Programmable immersive peripheral environmental system (PIPES): a prototype control system for environmental feedback devices

    Science.gov (United States)

    Frend, Chauncey; Boyles, Michael

    2015-03-01

    This paper describes an environmental feedback device (EFD) control system aimed at simplifying the VR development cycle. Programmable Immersive Peripheral Environmental System (PIPES) affords VR developers a custom approach to programming and controlling EFD behaviors while relaxing the required knowledge and expertise of electronic systems. PIPES has been implemented for the Unity engine and features EFD control using the Arduino integrated development environment. PIPES was installed and tested on two VR systems, a large format CAVE system and an Oculus Rift HMD system. A photocell based end-to-end latency experiment was conducted to measure latency within the system. This work extends previously unpublished prototypes of a similar design. Development and experiments described in this paper are part of the VR community goal to understand and apply environment effects to VEs that ultimately add to users' perceived presence.

  8. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    Science.gov (United States)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  9. Bifurcation suppression of nonlinear systems via dynamic output feedback and its applications to rotating stall control

    Institute of Scientific and Technical Information of China (English)

    Pengnian CHEN; Huashu QIN; Shengwei MEI

    2005-01-01

    This paper deals with the problems of bifurcation suppression and bifurcation suppression with stability of nonlinear systems. Necessary conditions and sufficient conditions for bifurcation suppression via dynamic output feedback are presented;Sufficient conditions for bifurcation suppression with stability via dynamic output feedback are obtained. As an application, a dynamic compensator, which guarantees that the bifurcation point of rotating stall in axial flow compressors is stably suppressed, is constructed.

  10. Capture and release of a conditional state of a cavity QED system by quantum feedback.

    Science.gov (United States)

    Smith, W P; Reiner, J E; Orozco, L A; Kuhr, S; Wiseman, H M

    2002-09-23

    Detection of a single photon escaping an optical cavity QED system prepares a nonclassical state of the electromagnetic field. The evolution of the state can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured (stabilized) and then released. This is observed by a conditional intensity measurement that shows suppression of vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return.

  11. Poisoned Feedback: The Impact of Malicious Users in Closed-Loop Multiuser MIMO Systems

    CERN Document Server

    Mukherjee, Amitav

    2010-01-01

    Accurate channel state information (CSI) at the transmitter is critical for maximizing spectral efficiency on the downlink of multi-antenna networks. In this work we analyze a novel form of physical layer attacks on such closed-loop wireless networks. Specifically, this paper considers the impact of deliberately inaccurate feedback by malicious users in a multiuser multicast system. Numerical results demonstrate the significant degradation in performance of closed-loop transmission schemes due to intentional feedback of false CSI by adversarial users.

  12. Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system.

    Science.gov (United States)

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Schaphoff, Sibyll; Sitch, Stephen

    2004-11-01

    Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net

  13. Variable-delay feedback control of unstable steady states in retarded time-delayed systems

    CERN Document Server

    Gjurchinovski, Aleksandar; 10.1103/PhysRevE.81.016209

    2010-01-01

    We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.

  14. A New Kicker for the TLS Longitudinal Feedback System

    CERN Document Server

    Lau, Wai-Keung; Dehler, Micha; Hsu, Kuo-Tung; Hsu, San-Yuang; Jung Chou Ping; Wei Chen, Cheng; Yang Chen Huan; Yang Tze Te

    2005-01-01

    A new longitudinal kicker that is modified from the Swiss Light Source (SLS) design to fit into the TLS storage ring. It will be served as the actuator in the longitudinal multi-bunch feedback control loop. Beam coupling impedance has been calculated by Gdfidl with a PC cluster. Previous to the installation of this new kicker, bench measurement has been performed in the laboratory to characterize this new kicker. The experimental setups for bandwidth and coaxial wire measurement of longitudinal coupling impedance and their corresponding test results will be reported. As a cross check, bead-pull measurement has also been done to verify the beam coupling measurement by coaxial wire method at the kicker center frequency. Longitudinal field profile of the accelerating mode along the beam path has also been mapped. High order cavity modes of the kicker have also been observed and their effects on the beam are evaluated.

  15. Finite-time quantised feedback asynchronously switched control of sampled-data switched linear systems

    Science.gov (United States)

    Wang, Ronghao; Xing, Jianchun; Li, Juelong; Xiang, Zhengrong

    2016-10-01

    This paper studies the problem of stabilising a sampled-data switched linear system by quantised feedback asynchronously switched controllers. The idea of a quantised feedback asynchronously switched control strategy originates in earlier work reflecting actual system characteristic of switching and quantising, respectively. A quantised scheme is designed depending on switching time using dynamic quantiser. When sampling time, system switching time and controller switching time are all not uniform, the proposed switching controllers guarantee the system to be finite-time stable by a piecewise Lyapunov function and the average dwell-time method. Simulation examples are provided to show the effectiveness of the developed results.

  16. Chaotifying a stable linear controllable system by single input state feedback

    Institute of Scientific and Technical Information of China (English)

    Wu Zheng-Mao; Lu Jun-Guo; Xie Jian-Ying

    2007-01-01

    In this paper, an approach for chaotifying a stable controllable linear system via single input state-feedback is presented. The overflow function of the system states is designed as the feedback controller, which can make the fixed point of the closed-loop system to be a snap-back repeller, thereby yields chaotic dynamics. Based on the Marotto theorem, it proves theoretically that the closed-loop system is chaotic in the sense of Li and Yorke. Finally, the simulation results are used to illustrate the effectiveness of the proposed method.

  17. Chaos control for the family of Roessler systems using feedback controllers

    Energy Technology Data Exchange (ETDEWEB)

    Liao Xiaoxin [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Yu Pei [Department of Applied Mathematics, University of Western Ontario, London, Ont., N6A 5B7 (Canada)]. E-mail: pyu@pyu1.apmaths.uwo.ca

    2006-07-15

    This paper presents a new method for controlling chaos in several classical chaotic Roessler systems using feedback control strategy. In particular, for an arbitrarily given equilibrium point of a Roessler system, we design explicit and simple feedback control laws by which the equilibrium point is globally and exponentially stabilized. Six typical Roessler systems are studied, and explicit formulas are derived for estimating the convergence rate of these systems. Numerical examples are presented to illustrate the theoretical results. A mistake has been found in the existing literature, and a correct result is given.

  18. Signatures of Biogeomorphic Feedbacks in Salt-Marsh Systems

    Science.gov (United States)

    D'Alpaos, Andrea; Marani, Marco

    2015-04-01

    Salt-marsh ecosystems which play a large role in the bio-geomorphological evolution of intertidal areas. Dense stands of halophytic vegetations which populate salt marshes largely control the dynamics of these ecosystems influencing marsh hydrodynamics and sediment transport through enhanced flow resistance and settling, and direct particle capture by plant stems. Moreover, plants are also known to increase vertical accretion through direct organic accretion. Field evidence and the results of biomorphodynamic models indeed show that the interplay between physical and biological processes generates some striking biological and morphological patterns at different scales. One such pattern, vegetation zonation, consists in a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. Here we develop a two-dimensional model which describes the mutual interaction and adjustment between tidal flows, sediment transport and morphology mediated by vegetation influence. The model allows us describe the coupled evolution of marsh platforms and channel networks cutting through them. A number of different scenarios were modelled to analyze the changes induced in bio-geomorphic patterns by plants with different characteristics, within marshes characterized by different drainage densities, or subjected to changing environmental forcing such as rates of relative sea level rise and sediment supply. Model results emphasize that zonation patterns are a signature of bio-geomorphic feedbacks with vegetation acting as a landscape constructor which feeds back on, directly alters, and contributes to shape tidal environments. In addition, model results show that biogeomorphic feedbacks critically affect the response and the resilience of salt-marsh landscapes to changes in the environmental forcing.

  19. A Complete Parametric Solutions of Eigenstructure Assignment by State-Derivative Feedback for Linear Control Systems

    Directory of Open Access Journals (Sweden)

    T. H. S. Abdelaziz

    2005-01-01

    Full Text Available In this paper we introduce a complete parametric approach for solving the problem of eigenstructure assignment via state-derivative feedback for linear systems. This problem is always solvable for any controllable systems iff the open-loop system matrix is nonsingular. In this work, two parametric solutions to the feedback gain matrix are introduced that describe the available degrees of freedom offered by the state-derivative feedback in selecting the associated eigenvectors from an admissible class. These freedoms can be utilized to improve robustness of the closed-loop system. Accordingly, the sensitivity of the assigned eigenvalues to perturbations in the system and gain matrix is minimized. Numerical examples are included to show the effectiveness of the proposed approach. 

  20. At the Intersection of Health Information Technology and Decision Support: Measurement Feedback Systems... and Beyond.

    Science.gov (United States)

    Chorpita, Bruce F; Daleiden, Eric L; Bernstein, Adam D

    2016-05-01

    We select and comment on concepts and examples from the target articles in this special issue on measurement feedback systems, placing them in the context of some of our own insights and ideas about measurement feedback systems, and where those systems lie at the intersection of technology and decision making. We contend that, connected to the many implementation challenges relevant to many new technologies, there are fundamental design challenges that await a more elaborate specification of the clinical information and decision models that underlie these systems. Candidate features of such models are discussed, which include referencing multiple evidence bases, facilitating observed and expected value comparisons, fostering collaboration, and allowing translation across multiple ontological systems. We call for a new metaphor for these technologies that goes beyond measurement feedback and encourages a deeper consideration of the increasingly complex clinical decision models needed to manage the uncertainty of delivering clinical care.

  1. Upgrade of plasma density feedback control system in HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    ZHAO Da-Zheng; LUO Jia-Rong; LI Gang; JI Zhen-Shan; WANG Feng

    2004-01-01

    The HT-7 is a superconducting tokamak in China used to make researches on the controlled nuclear fusion as a national project for the fusion research. The plasma density feedback control subsystem is the one of the subsystems of the distributed control system in HT-7 tokamak (HT7DCS). The main function of the subsystem is to control the plasma density on real-time. For this reason, the real-time capability and good stability are the most significant factors, which will influence the control results. Since the former plasma density feedback control system (FPDFCS) based on Windows operation system could not fulfill such requirements well, a new subsystem has to be developed. The paper describes the upgrade of the plasma density feedback control system (UPDFCS), based on the dual operation system (Windows and Linux), in detail.

  2. Robust control of a class of non-affine nonlinear systems by state and output feedback

    Institute of Scientific and Technical Information of China (English)

    陈贞丰; 章云

    2014-01-01

    Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers:the first to estimate the feedback linearization error based on the full state information and the second to estimate the unmeasured states of the system when only the system output is available for feedback. All the signals in the closed loop are guaranteed to be uniformly ultimately bounded (UUB) and the output of the system is proven to converge to a small neighborhood of the origin. The proposed approach not only handles the difficulty in controlling non-affine nonlinear systems but also simplifies the stability analysis of the closed loop due to its linear control structure. Simulation results show the effectiveness of the approach.

  3. Feedback quality and environmentally friendly use of domestic central heating systems.

    Science.gov (United States)

    Sauer, J; Schmeink, C; Wastell, D G

    2007-06-01

    The study examined the influence of system-embedded feedback on user behaviour during the environmentally friendly operation of a central heating system. A PC-based simulation, called CHESS, was developed to model the critical features of a central heating system. After having received 30 min of training on the simulation task, 60 participants worked on a series of operational scenarios under different levels of system feedback. In addition to the collection of various performance measures (e.g. energy consumption, energy wastage), a range of user variables was collected (e.g. environmental concern). As hypothesized, the results showed that increased feedback resulted in improved environmentally friendly performance and, more importantly, the specific feedback indicator influenced the type of strategy used to improve human - machine system performance. A major implication is that system designers need to develop feedback indicators that are chiefly influenced by user behaviour and are largely immune to factors that are beyond the user's control (e.g. weather conditions).

  4. Feasibility study of system identification of orbit response matrices at FACET

    CERN Document Server

    Pfingstner, Jürgen

    2012-01-01

    Beam-based alignment methods, orbit feedback systems and diagnosis tools rely on good knowledge of the orbit response matrix. In this paper, different on-line system identification algorithms are used to estimate the orbit response matrix of the \\emph{Facility for Advanced Accelerator Experiment Tests} (FACET) at the SLAC National Accelerator Laboratory. The performance of the different algorithms is compared via simulation studies. It is found that an identification of the full orbit response matrix with an acceptable accuracy takes several hours in a parasitic mode (during physics operation). If the identification algorithms do not have to run in a parasitic mode (large emittance increase) the full response matrix can be identified in less than an hour. The adapted algorithm formulations, the performance comparisons and the found algorithm limitations provide important information that can be applied to the system identification of other accelerators.

  5. Tracking control and synchronization of chaotic systems based upon sampled-data feedback

    Institute of Scientific and Technical Information of China (English)

    陈士华; 刘杰; 谢进; 陆君安

    2002-01-01

    A novel tracking control and synchronization method is proposed based upon sampled-data feedback. This methodcan make a chaotic system approach any desired smooth orbit and synchronize the driving system and the responsesystem, both in the same structure and in diverse structures. Finally, a numerical simulation with a Lorenz system isprovided for the purpose of illustration and verification.

  6. Evaluation of State-of-the-Art Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2013-01-01

    This research evaluates four state-of-the-art acoustic feedback cancellation systems in hearing aids in terms of the cancellation performance, sound quality degradation, and computational complexity. The authors compared a traditional full-band system to a system with a prediction error method...

  7. State derivative feedback in second-order linear systems: A comparative analysis of perturbed eigenvalues under coefficient variation

    Science.gov (United States)

    Araújo, José M.; Dórea, Carlos E. T.; Gonçalves, Luiz M. G.; Datta, Biswa N.

    2016-08-01

    This paper presents a comparative study of sensitivity to parameter variation in two feedback techniques applied in second-order linear systems: state feedback technique and the less conventional state derivative feedback technique. The former uses information on displacements and velocities whereas the latter uses velocities and accelerations. Several contributions on the problem of partial or full eigenvalue/eigenstructure assignment using the state feedback technique are presented in the literature. Recently, some interesting possibilities, such as solving the regularization problem in singular mass second-order systems, are approached using state derivative feedback. In this work, a general equivalence between state feedback and state derivative feedback is first established. Then, figures of merit on the resulting perturbed spectrum are proposed in order to assess the sensitivity of the closed-loop system to variations on the system matrices. Numerical examples are presented to support the obtained results.

  8. A waveguide overloaded cavity kicker for the HLS II longitudinal feedback system

    CERN Document Server

    Li, Wubin; Sun, Baogen; Wu, Fangfang; Xu, Wei; Lu, Ping; Yang, Yongliang

    2013-01-01

    In the upgrade project of Hefei Light Source (HLS II), a new digital longitudinal bunch-by-bunch feedback system will be developed to suppress the coupled bunch instabilities in the storage ring effectively. We design a new waveguide overloaded cavity longitudinal feedback kicker as the feedback actuator. The beam pipe of the kicker is racetrack shape so as to avoid a transition part to the octagonal vacuum chamber. The central frequency and the bandwidth of the kicker have been simulated and optimized to achieve design goals by the HFSS code. The higher shunt impedance can be obtained by using a nose cone to reduce the feedback power requirement. Before the kicker cavity was installed in the storage ring, a variety of measurements were carried out to check its performance. All these results of simulation and measurement are presented.

  9. Design of an optimal output feedback control system with modal insensitivity

    Science.gov (United States)

    Raman, K. V.; Calise, A. J.

    1984-01-01

    This paper deals with the design of an output feedback controller which results in selected modal insensitivity, and at the same time optimizes a quadratic performance index representative of desired system performance for nominal plant parameter values. The approach taken here is to characterize the class of attainable eigenvectors for a given set of eigenvalues (distinct or non-distinct) which lie in a subspace called the 'Modal Insensitivity Subspace'. A constraint is established on the feedback matrix which results in modal insensitivity. Necessary conditions for optimality subject to the constraint on the feedback matrix are given. This forms the basis for a numerical algorithm to compute the optimal feedback gain which analyzed for convergence. To illustrate the procedure, a design is carried out using the lateral dynamics of an L-1011 aircraft.

  10. Multi User Feedback System Based On Performance and Appraisal Using Fuzzy Logic Base System- Design and Implementation

    Directory of Open Access Journals (Sweden)

    Ameet.D.Shah

    2014-03-01

    Full Text Available In Multi-user Feedback support system or 3600 Feedback, data on the performance of an individual are collected systematically from a number of stakeholders and are used for improving performance. The 3600 Feedback approach provides a consistent management philosophy meeting the criterion outlined previously. The 3600 feedback based appraisal is a comprehensive method where in the feedback about the employee comes from all the sources that come into contact with the employee on his/her job. The respondents for an employee can be her/his peers, managers, subordinates team members, customers, suppliers and vendors. Hence anyone who comes into contact with the employee, the 3600 appraisal has four components that include self-appraisal, superior’s appraisal, subordinate’s appraisal student’s appraisal and peer’s appraisal.

  11. ASSESSMENT OF THE VOLUNTEERED GEOGRAPHIC INFORMATION FEEDBACK SYSTEM FOR THE DUTCH TOPOGRAPHICAL KEY REGISTER

    Directory of Open Access Journals (Sweden)

    M. Grus

    2015-08-01

    Full Text Available Since Topographical Key Register has become an open data the amount of users increased enormously. The highest grow was in the private users group. The increasing number of users and their growing demand for high actuality of the topographic data sets motivates the Dutch Kadaster to innovate and improve the Topographical Key Register (BRT. One of the initiatives was to provide a voluntary geographical information project aiming at providing a user-friendly feedback system adjusted to all kinds of user groups. The feedback system is a compulsory element of the Topographical Key Register in the Netherlands. The Dutch Kadaster is obliged to deliver a feedback system and the key-users are obliged to use it. The aim of the feedback system is to improve the quality and stimulate the usage of the data. The results of the pilot shows that the user-friendly and open to everyone feedback system contributes enormously to improve the quality of the topographic dataset.

  12. Impact of Feedback Channel on Measured MIMO Systems and Its Lower Bound

    Institute of Scientific and Technical Information of China (English)

    ZHANGDuo; WEIGuo; ZHUJinkang

    2005-01-01

    A lower bound of the rate in feedback channel from a receiver to a transmitter is presented for measured Multiple-input-multiple-output (MIMO) systems based on the formulae of the open-loop and the closedloop MIMO capacity, under the assumptions of quasi-static block-fading MIMO channel, independent nondispersive fading between each transmit and receive antenna, sampling with the period equal to the reciprocal of the signal bandwidth at the receiver, and zero feedback delay. Through Monte Carlo simulations~ we numerically validate the existence of the lower bound and show numerical results of the bound for system design. Also, we conclude that, the Signal-to-noise ratio (SNR) impacts little on the lower bound of the feedback rate for low antenna numbers, a closed-loop system with a feedback rate less than the lower bound is worse than a open-loop system, and the lower bound remains small with respect to the increase of antenna number for low SNRs. Finally, it is shown that the lower bound of the feedback rate and the conclusions are applicable to practical closed-loop MIMO systems.

  13. A new output feedback synchronization theorem for a class of chaotic systems with a scalar transmitted signal

    Institute of Scientific and Technical Information of China (English)

    Lu Jun-Guo

    2006-01-01

    This paper proposes a new, simple and yet applicable output feedback synchronization theorem for a large class of chaotic systems. We take a linear combination of drive system state variables as a scale-driving signal. It is proved that synchronization between the drive and the response systems can be obtained via a simple linear output error feedback control. The linear feedback gain is a function of a free parameter. The approach is illustrated using the Rossler hyperchaotic systems and Chua's chaotic oscillators.

  14. Transverse Feedback System For The Cooler Synchrotron COSY-Jülich - First Results

    CERN Document Server

    Kamerdzhiev, V; Mohos, I

    2003-01-01

    The cooler synchrotron COSY delivers unpolarized and polarized protons and deuterons in the momentum range 300 MeV/c up to 3.65 GeV/c. Electron cooling at injection level and stochastic cooling covering the range from 1.5 GeV/c up to maximum momentum are available to prepare high precision beams for internal as well as for external experiments in hadron physics. In case of electron cooled beam the intensity is limited by transverse instabilities. The major losses are due to the vertical coherent beam oscillations. To damp these instabilities a transverse feedback system is under construction. First results with a simple feedback system are presented. Due to the feedback system operation the intensity and lifetime of the electron cooled proton beam at injection energy could be significantly increased. Measurements in frequency and time domain illustrate the performance of the system.

  15. Modelling and Studies for a Wideband Feedback System for Mitigation of Transverse Single Bunch Instabilities

    CERN Document Server

    Li, K S B; Rumolo, G; Cesaratto, J; Dusatko, J; Fox, J; Pivi, M; Pollock, K; Rivetta, C; Turgut, O

    2013-01-01

    As part of the LHC Injector Upgrade (LIU) Project [1], a wideband feedback system is under study for mitigation of coherent single bunch instabilities. This type of system may provide a generic way of shifting the instability threshold to regions that are currently inaccessible, thus, boosting the brightness of future beams. To study the effectiveness of such systems, a numerical model has been developed that constitutes a realistic feedback system including real transfer functions for pickup and kicker, realistic N-tap FIR and IIR filters as well as noise and saturation effects. Simulations of SPS cases have been performed with HEADTAIL to evaluate the feedback effectiveness in the presence of transverse mode coupling and electron clouds. Some results are presented addressing bandwidth limitations and amplifier power requirements.

  16. ON LIMITATIONS OF THE SAMPLED-DATA FEEDBACK FOR NONPARAMETRIC DYNAMICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    XUE Feng; GUO Lei

    2002-01-01

    In this paper, we study a basic class of first order sampled-data control systems with unknown nonlinear structure and with sampling rate not necessarily fast enough,aiming at understanding the capability and limitations of the sampled-data feedback. We show that if the unknown nonlinear function has a linear growth rate with its "slope"(denoted by L) being a measure of the "size" of uncertainty, then the sampling rate should not exceed 1/L multiplied by a constant (≈ 7.53) for the system to be globally stabilizable by the sampled-data feedback. If, however, the unknown nonlinear function has a growth rate faster than linear, and if the system is disturbed by noises modeled as the standard Brownian motion, then an example is given, showing that the corresponding sampled-data system is not stabilizable by the sampled-data feedback in general, no matter how fast the sampling rate is.

  17. Winner-take-all selection in a neural system with delayed feedback

    CERN Document Server

    Brandt, Sebastian F

    2007-01-01

    We consider the effects of temporal delay in a neural feedback system with excitation and inhibition. The topology of our model system reflects the anatomy of the avian isthmic circuitry, a feedback structure found in all classes of vertebrates. We show that the system is capable of performing a `winner-take-all' selection rule for certain combinations of excitatory and inhibitory feedback. In particular, we show that when the time delays are sufficiently large a system with local inhibition and global excitation can function as a `winner-take-all' network and exhibit oscillatory dynamics. We demonstrate how the origin of the oscillations can be attributed to the finite delays through a linear stability analysis.

  18. Output-back fuzzy logic systems and equivalence with feedback neural networks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new idea, output-back fuzzy logic systems, is proposed. It is proved that output-back fuzzy logic systems must be equivalent to feedback neural networks. After the notion of generalized fuzzy logic systems is defined, which contains at least a typical fuzzy logic system and an output-back fuzzy logic system, one important conclusion is drawn that generalized fuzzy logic systems are almost equivalent to neural networks.

  19. Robust output feedback H-infinity control and filtering for uncertain linear systems

    CERN Document Server

    Chang, Xiao-Heng

    2014-01-01

    "Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.

  20. Neural Feedback Passivity of Unknown Nonlinear Systems via Sliding Mode Technique.

    Science.gov (United States)

    Yu, Wen

    2015-07-01

    Passivity method is very effective to analyze large-scale nonlinear systems with strong nonlinearities. However, when most parts of the nonlinear system are unknown, the published neural passivity methods are not suitable for feedback stability. In this brief, we propose a novel sliding mode learning algorithm and sliding mode feedback passivity control. We prove that for a wide class of unknown nonlinear systems, this neural sliding mode control can passify and stabilize them. This passivity method is validated with a simulation and real experiment tests.

  1. Control of Multibunch Longitudinal Instabilities and Beam Diagnostics Using a DSP-based Feedback System

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2000-03-30

    A bunch-by-bunch longitudinal feedback system has been designed and built to control coupled-bunch instabilities in the PEP-II machine. A prototype system has been installed at the Advanced Light Source at LBNL. Programmable DSPs allow longitudinal feedback processing in conjunction with data acquisition or instrumentation algorithms. Here the authors describe techniques developed for different beam and system diagnostics, such as measurements of the modal growth and damping rates and measurements of the bunch-by-bunch currents. Results from the Advanced Light Source are presented to illustrate these techniques.

  2. Minimal-order observer and output-feedback stabilization control design of stochastic nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    LIU Yungang; ZHANG Jifeng

    2004-01-01

    A minimal-order observer and output-feedback stabilization control are given for single-input multi-output stochastic nonlinear systems with unobservable states, unmodelled dynamics and stochastic disturbances. Based on the observer designed, the estimates of all observable states of the system are given, and the convergence of the estimation errors are analyzed. In addition, by using the integrator backstepping approach,an output-feedback stabilization control is constructively designed, and sufficient conditions are obtained under which the closed-loop system is asymptotically stable in the large or bounded in probability, respectively.

  3. AN M/M/1/N FEEDBACK QUEUING SYSTEM WITH REVERSE BALKING

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2015-06-01

    Full Text Available In this paper we develop an M/M/1/N feedback queuing system with reverse balking. Reverse balking is a type of customer behavior according to which an arriving customer joins a system with high probability if he encounters large system size and vice-versa. This behavior of a customer can be observed in many businesses such as investment. Feedback customer in queuing literature refers to a customer who is unsatisfied with incomplete, partial or unsatisfactory service. We derive the steady-state solution of the model and obtain some important measures of performance. Sensitivity analysis of the model is also performed with respect to the parameters involved.

  4. The use of differential pressure feedback in an automatic flight control system

    Science.gov (United States)

    Levy, D. W.; Roskam, J.; Finn, P. D.

    1982-01-01

    A feasibility study has been performed to evaluate the performance of a system whereby a control surface is positioned with differential pressure as the feedback variable. Analogous to a position command system, the control surface is commanded to move until a certain differential pressure is achieved at a given point on the surface. Frequency response tests and theoretical considerations indicate that the pressure feedback transfer function is first order, with a break frequency up to 50 rad/sec. There exist applications to the outer loops of flight control systems as well. Stability augmentation, gust alleviation, and stall prevention appear to be possible by feeding back differential pressure across lifting and control surfaces.

  5. Multiobject Holographic Feedback Control of Differential Algebraic System with Application to Power System

    Directory of Open Access Journals (Sweden)

    Lanmei Cong

    2015-01-01

    Full Text Available A multiobject holographic feedback (MOHF control method for studying the nonlinear differential algebraic (NDA system is proposed. In this method, the nonlinear control law is designed in a homeomorphous linear space by means of constructing the multiobject equations (MOEq which is in accord with Brunovsky normal form. The objective functions of MOEq are considered to be the errors between the output functions and their references. The relative degree for algebraic system is defined that is key to connecting the nonlinear and the linear control laws. Pole assignment method is addressed for the stability domain of this MOHF control. Since there is no any approximation, the MOHF control is effective in governing the dynamic performance stably both to the small and major disturbance. The application in single machine infinite system (SMIS shows that this approach is effective in the improvement of stable and transient stability for power system on the disturbance of active power or three-phase short circuit fault.

  6. Mean Velocity Prediction Information Feedback Strategy in Two-Route Systems under ATIS

    Directory of Open Access Journals (Sweden)

    Jianqiang Wang

    2015-02-01

    Full Text Available Feedback contents of previous information feedback strategies in advanced traveler information systems are almost real-time traffic information. Compared with real-time information, prediction traffic information obtained by a reliable and effective prediction algorithm has many undisputable advantages. In prediction information environment, a traveler is prone to making a more rational route-choice. For these considerations, a mean velocity prediction information feedback strategy (MVPFS is presented. The approach adopts the autoregressive-integrated moving average model (ARIMA to forecast short-term traffic flow. Furthermore, prediction results of mean velocity are taken as feedback contents and displayed on a variable message sign to guide travelers' route-choice. Meanwhile, discrete choice model (Logit model is selected to imitate more appropriately travelers' route-choice behavior. In order to investigate the performance of MVPFS, a cellular automaton model with ARIMA is adopted to simulate a two-route scenario. The simulation shows that such innovative prediction feedback strategy is feasible and efficient. Even more importantly, this study demonstrates the excellence of prediction feedback ideology.

  7. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O' Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  8. Biogeophysical feedbacks enhance Arctic terrestrial carbon sink in regional Earth system dynamics

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2014-05-01

    Full Text Available Continued warming of the Arctic will likely accelerate terrestrial carbon (C cycling by increasing both uptake and release of C. There are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based an either stand-alone process-based models or coupled climate–C cycle general circulation models, in either case disregarding biogeophysical feedbacks of land surface changes to the atmosphere. To understand how biogeophysical feedbacks will impact on both climate and C budget over Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an GCMs CMIP5 climate projection under the RCP 8.5 scenario. We perform two simulations with or without interactive vegetation dynamics respectively to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until 2060s–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are considerable, around 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. Albedo feedback dominates over winter and spring season, amplifying the near-surface warming by up to 1.35 K in spring, while evapotranspiration feedback dominates over summer exerting the evaporative cooling by up to 0.81 K. Such feedbacks stimulate vegetation growth with an earlier onset of growing-season, leading to compositional changes in woody plants and vegetation

  9. On the functional diversity of dynamical behaviour in genetic and metabolic feedback systems

    Directory of Open Access Journals (Sweden)

    Kulasiri Don

    2009-05-01

    Full Text Available Abstract Background Feedback regulation plays crucial roles in the robust control and maintenance of many cellular systems. Negative feedbacks are found to underline both stable and unstable, often oscillatory, behaviours. We explore the dynamical characteristics of systems with single as well as coupled negative feedback loops using a combined approach of analytical and numerical techniques. Particularly, we emphasise how the loop's characterising factors (strength and cooperativity levels affect system dynamics and how individual loops interact in the coupled-loop systems. Results We develop an analytical bifurcation analysis based on the stability and the Routh- Hurwitz theorem for a common negative feedback system and a variety of its variants. We demonstrate that different combinations of the feedback strengths of individual loops give rise to different dynamical behaviours. Moreover, incorporating more negative feedback loops always tend to enhance system stability. We show that two mechanisms, in addition to the lengthening of pathway, can lower the Hill coefficient to a biologically plausible level required for sustained oscillations. These include loops coupling and end-product utilisation. We find that the degradation rates solely affect the threshold Hill coefficient for sustained oscillation, while the synthesis rates have more significant roles in determining the threshold feedback strength. Unbalancing the degradation rates between the system species is found as a way to improve stability. Conclusion The analytical methods and insights presented in this study demonstrate that reallocation of the feedback loop may or may not make the system more stable; the specific effect is determined by the degradation rates of the newly inhibited molecular species. As the loop moves closer to the end of the pathway, the minimum Hill coefficient for oscillation is reduced. Furthermore, under general (unequal values of the degradation rates

  10. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  11. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas (Open Grid Computing, Inc., Austin, TX); Thompson, David

    2011-09-01

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the face of the ever increasing size and complexity of HPC systems.

  12. Simulations of the TESLA Linear Collider with a Fast Feedback System

    CERN Document Server

    Schulte, Daniel; White, G

    2003-01-01

    The tolerances on the beams as they collide at the interaction point of the TESLA linear collider are very tight due to the nano-metre scale final vertical bunch spot sizes. Ground motion causes the beams to increase in emittance and drift out of collision leading to dramatic degradation of luminosity performance. To combat this, both slow orbit and fast intra-train feedback systems will be used. The design of these feedback systems depends critically on how component misalignment effects the beam throughout the whole accelerator. A simulation has been set up to study in detail the accelerator performance under such conditions by merging the codes of PLACET, MERLIN and GUINEA-PIG together with Simulink code to model feedback systems, all under a Matlab environment.

  13. The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak

    Science.gov (United States)

    Ke, Xin; Chen, Zhipeng; Ba, Weigang; Shu, Shuangbao; Gao, Li; Zhang, Ming; Zhuang, Ge

    2016-02-01

    The plasma density feedback control system (PDFCS) has been established on the Joint Texas Experimental Tokamak (J-TEXT) for meeting the need for an accurate plasma density in physical experiments. It consists of a density measurement subsystem, a feedback control subsystem and a gas puffing subsystem. According to the characteristic of the gas puffing system, a voltage amplitude control mode has been applied in the feedback control strategy, which is accomplished by the proportion, integral and differential (PID) controller. In this system, the quantity calibration of gas injection, adjusted responding to the change of the density signal, has been carried out. Some experimental results are shown and discussed. supported by the National Magnetic Confinement Fusion Science Program (Nos. 2014GB103001 and 2013GB106001) and National Natural Science Foundation of China (Nos. 11305070 and 11105028)

  14. Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Jia Li-Xin; Dai Hao; Hui Meng

    2010-01-01

    This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems.Based on Lyapunov stability theory and numerical differentiation,a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems.Numerical simulation results are presented to illustrate the effectiveness of this method.

  15. Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Dan; WANG Zhen; ZHAO Pin-Dong

    2008-01-01

    We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state.This method is checked with some examples of numeric simulation.A constructive theorem is proposed for generalized synchronization related to the above chaotic system.

  16. Stabilization of sandwich non-linear systems with low-and-high gain feedback design

    NARCIS (Netherlands)

    Stoorvogel, Anton A.; Wang, Xu; Saberi, Ali; Sannuti, Peddapullaiah

    2010-01-01

    In this paper, we consider the problems of semi- global and global internal stabilization of a class of sandwich systems consisting of two linear systems with a saturation element in between. We develop here low-and-high gain and scheduled low-and-high gain state feedback design methodolo- gies to s

  17. The Optimal Linear Quadratic Feedback State Regulator Problem for Index One Descriptor Systems

    NARCIS (Netherlands)

    Engwerda, J.C.; Salmah, Y.; Wijayanti, I.E.

    2008-01-01

    In this note we present both necessary and sufficient conditions for the existence of a linear static state feedback controller if the system is described by an index one descriptor system. A priori no definiteness restrictions are made w.r.t. the quadratic performance criterium. It is shown that in

  18. Impact of feedback torque level on perceived comfort and control in steer-by-wire systems

    NARCIS (Netherlands)

    Anand, S.; Terken, J.; Hogema, J.H.; Martens, J.B.

    2012-01-01

    Steer-by-Wire systems enable designers to offer completely personalized steering feel to drivers, unlike existing steering systems that offer limited or no personalization. In this paper we focus on feedback torque level, a significant factor for steering feel. Earlier studies indicate that the pref

  19. Stabilizing equilibrium by linear feedback control for controlling chaos in Chen system

    Energy Technology Data Exchange (ETDEWEB)

    Costa, V A [Departamento de Ciencias Basicas, Facultad de IngenierIa (UNLP), La Plata (Argentina); Gonzalez, G A, E-mail: vacosta@ing.unlp.edu.ar, E-mail: ggonzal@fi.ub.ar [Departamento de Matematica, Facultad de Ingenieria (UBA), Buenos Aires (Argentina)

    2011-03-01

    Stabilization of a chaotic system in one of its unstable equilibrium points by applying small perturbations is studied. A two-stage control strategy based on linear feedback control is applied. Improvement of system performance is addressed by exploiting the ergodicity of the original dynamics and using Lyapunov stability results for control design. Extension to the not complete observability case is also analyzed.

  20. PERMANENCE AND GLOBAL STABILITY OF A FEEDBACK CONTROL SYSTEM WITH DELAYS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper considers a feedback control systems of differential equations with delays. By applying the differential inequality theorem, sufficient conditions for the permanence of the system are obtained. Also, by constructing a suitable Lyapunov functional, a criterion for the global stability of the model is obtained.

  1. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems

    NARCIS (Netherlands)

    Venkatraman, Aneesh; Ortega, Romeo; Sarras, Ioannis; Schaft, Arjan van der

    2010-01-01

    The problems of speed observation and position feedback stabilization of mechanical systems are addressed in this paper. Our interest is centered on systems that can be rendered linear in the velocities via a (partial) change of coordinates. It is shown that the class is fully characterized by the s

  2. FORMAS--Feedback to Oral Reading Analysis System. Training Manual. Manual No. 5085.

    Science.gov (United States)

    Hoffman, J. V.; And Others

    The Feedback to Oral Reading Miscue Analysis System (FORMAS) is a low-inference coding system developed to characterize verbal interaction between teacher and students during oral reading instruction. The six lessons presented in this manual are designed to teach the use of FORMAS in approximately ten hours. Each of the lessons deals with one of…

  3. Design of bounded feedback controls for linear dynamical systems by using common Lyapunov functions

    Institute of Scientific and Technical Information of China (English)

    Igor; Ananievskii; Nickolai; Anokhin; Alexander; Ovseevich

    2011-01-01

    For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It is shown that the constructed control remains effective in the presence of small perturbations.

  4. Decentralized Output-Feedback Stabilization of Linear Time-invariant Interconnected Systems with Delays

    Energy Technology Data Exchange (ETDEWEB)

    Shim, D.S. [Chung-Ang University, Seoul (Korea, Republic of)

    1998-04-01

    We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H{infinity} control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system. (author). 9 refs.

  5. The response of nonlinear controlled system under an external excitation via time delay state feedback

    Directory of Open Access Journals (Sweden)

    A.M. Elnaggar

    2016-01-01

    Full Text Available An analysis of primary, superharmonic of order five, and subharmonic of order one-three resonances for non-linear s.d.o.f. system with two distinct time-delays under an external excitation is investigated. The method of multiple scales is used to determine two first order ordinary differential equations which describe the modulation of the amplitudes and the phases. Steady-state solutions and their stabilities in each resonance are studied. Numerical results are obtained by using the Software of Mathematica, which presented in a group of figures. The effect of the feedback gains and time-delays on the non-linear response of the system is discussed and it is found that: an appropriate feedback can enhance the control performance. A suitable choice of the feedback gains and time-delays can enlarge the critical force amplitude, and reduce the peak amplitude of the response (or peak amplitude of the free oscillation term for the case of primary resonance (superharmonic resonance. Furthermore, a proper feedback can eliminate saddle-node bifurcation, thereby eliminating jump and hysteresis phenomena taking place in the corresponding uncontrolled system. For subharmonic resonance, an adequate feedback can reduce the regions of subharmonic resonance response.

  6. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    Science.gov (United States)

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  7. Observer-based output feedback control of discrete-time linear systems with input and output delays

    Science.gov (United States)

    Zhou, Bin

    2014-11-01

    In this paper, we study observer-based output feedback control of discrete-time linear systems with both multiple input and output delays. By generalising our recently developed truncated predictor feedback approach for state feedback stabilisation of discrete-time time-delay systems to the design of observer-based output feedback, two types of observer-based output feedback controllers, one being memory and the other memoryless, are constructed. Both full-order and reduced-order observer-based controllers are established in both the memory and memoryless schemes. It is shown that the separation principle holds for the memory observer-based output feedback controllers, but does not hold for the memoryless ones. We further show that the proposed observer-based output feedback controllers solve both the l2 and l∞ semi-global stabilisation problems. A numerical example is given to illustrate the effectiveness of the proposed approaches.

  8. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    Science.gov (United States)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  9. Algebraic stability criteria and symbolic derivation of stability conditions for feedback control systems

    Science.gov (United States)

    Wang, Dongming

    2012-10-01

    This article provides algebraic settings of the stability criteria of Nyquist and Popov and the circle criterion for closed-loop linear control systems with linear or nonlinear feedback whose transfer functions are rational ones with integer coefficients. The proposed settings make use of algebraic methods of parametric curve implicitisation, real root isolation, symbolic integration and quantifier elimination and allow one to derive exact stability conditions for feedback control systems with symbolic computation. An example is presented to illustrate the algebraic approach and its effectiveness. Some numerical stability results obtained previously are confirmed.

  10. Dynamic Output Feedback Passive Control of Uncertain Switched Stochastic Systems with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Huimei Jia

    2013-01-01

    Full Text Available This paper is concerned with the issues of passivity analysis and dynamic output feedback (DOF passive control for uncertain switched stochastic systems with time-varying delay via multiple storage functions (MSFs method. Firstly, based on the MSFs method, a sufficient condition for the existence of the passivity of the underlying system is established in terms of linear matrix inequalities (LMIs. Furthermore, the problem of dynamic output feedback passive control is investigated. Based on the obtained passivity condition, a sufficient condition for the existence of the desired switched passive controller is derived. Finally, a numerical example is presented to show the effectiveness of the proposed method.

  11. Global adaptive output feedback control for a class of nonlinear time-delay systems.

    Science.gov (United States)

    Zhai, Jun-yong; Zha, Wen-ting

    2014-01-01

    This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.

  12. Time-Delayed Feedback Control in a Single-Mode Laser System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of time-delayed feedback control in a single-mode laser system is investigated. Using the small time delay approximation, the analytic expression of the stationary probability distribution function of the laser field is obtaincd. The mean, normalized variance and skewness of the steady-state laser intensity are calculated. It is found that the time-delayed feedback control can suppress the intensity fluctuation of the laser system. The numerical simulations are in good agreement with the approximate analytic results.

  13. Design and Simulation of a Feedback Control System for a Steel Plate Storage

    Institute of Scientific and Technical Information of China (English)

    Torben; Feld; Holmgaard; Kristensen; Hans; Holm; Jesper; Hansen

    2002-01-01

    A discrete event heuristic feedback control system fo r a steel plate storage at Odense Steel Shipyard Ltd is developed and implemente d in a computer-based simulation model. The plant is subject to stochastic dist urbances. The control system is able to handle this stochastic behaviour bec ause of the feedback design. The present simulation results indicate that a bene fit in the range of 30%~40% is reachable by modifying the plant. Plant description The steel plate storage is located at Odense Steel ...

  14. Phase-locked laser diode interferometer: high-speed feedback control system.

    Science.gov (United States)

    Suzuki, T; Sasaki, O; Higuchi, K; Maruyama, T

    1991-09-01

    We have previously proposed a phase-locked laser diode interferometer. In that previous interferometer, however, there was substantial room for improvement in the reduction of measurement time. This reduction is achieved by using a different process for generation of the feedback signal in which the output of a chargecoupled device image sensor is used effectively. We analyze the feedback control system of the interferometer as a discrete-time system and discuss the characteristics of the interferometer. It is shown that the measurement time is much shorter than that of the interferometer proposed previously.

  15. Recurrent fuzzy neural network by using feedback error learning approaches for LFC in interconnected power system

    Energy Technology Data Exchange (ETDEWEB)

    Sabahi, Kamel; Teshnehlab, Mohammad; Shoorhedeli, Mahdi Aliyari [Department of Electrical Engineering, K.N. Toosi University of Technology, Intelligent System Lab, Tehran (Iran)

    2009-04-15

    In this study, a new adaptive controller based on modified feedback error learning (FEL) approaches is proposed for load frequency control (LFC) problem. The FEL strategy consists of intelligent and conventional controllers in feedforward and feedback paths, respectively. In this strategy, a conventional feedback controller (CFC), i.e. proportional, integral and derivative (PID) controller, is essential to guarantee global asymptotic stability of the overall system; and an intelligent feedforward controller (INFC) is adopted to learn the inverse of the controlled system. Therefore, when the INFC learns the inverse of controlled system, the tracking of reference signal is done properly. Generally, the CFC is designed at nominal operating conditions of the system and, therefore, fails to provide the best control performance as well as global stability over a wide range of changes in the operating conditions of the system. So, in this study a supervised controller (SC), a lookup table based controller, is addressed for tuning of the CFC. During abrupt changes of the power system parameters, the SC adjusts the PID parameters according to these operating conditions. Moreover, for improving the performance of overall system, a recurrent fuzzy neural network (RFNN) is adopted in INFC instead of the conventional neural network, which was used in past studies. The proposed FEL controller has been compared with the conventional feedback error learning controller (CFEL) and the PID controller through some performance indices. (author)

  16. Direct control of stabilization for nonlinear systems using power state feedback; Hisenkei system no beki jotai feedback ni yoru chokusetsutekina anteika seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, S. [Yamagata Univ. (Japan)

    1998-11-30

    The design method for stabilization of nonlinear systems by direct feedback without using evaluation function is shown. This method is a very important controlling method which is the basis for nonlinear system control, and it is expected to be applied to very wide fields. It is made clear that numerical solution is not possible because the number of equations exceeds that of variables in the extended Lyapunov equation which becomes an equation for the design. There is no concept of pole of linear system in nonlinear systems although stabilization of nonlinear system is natural extension of stabilization of linear system in case of using Lyapunov function. Numerical difficulty is avoided by the use of genetic algorithm in the design calculation, and strict designing with finite degree becomes possible as a result. This method can design strictly nonlinear feedback control law of bounded power degree to stabilize globally nonlinear system of odd highest degree polynomial. The effectiveness of this system is shown an instance of numerical calculation. 5 refs., 6 figs.

  17. Biogeophysical feedbacks trigger shifts in the modelled vegetation-atmosphere system at multiple scales

    Directory of Open Access Journals (Sweden)

    S. C. Dekker

    2010-04-01

    Full Text Available Terrestrial vegetation influences climate by modifying the radiative-, momentum-, and hydrologic-balance. This paper contributes to the ongoing debate on the question whether positive biogeophysical feedbacks between vegetation and climate may lead to multiple equilibria in vegetation and climate and consequent abrupt regime shifts. Several modelling studies argue that vegetation-climate feedbacks at local to regional scales could be strong enough to establish multiple states in the climate system. An Earth Model of Intermediate Complexity, PlaSim, is used to investigate the resilience of the climate system to vegetation disturbance at regional to global scales. We hypothesize that by starting with two extreme initialisations of biomass, positive vegetation-climate feedbacks will keep the vegetation-atmosphere system within different attraction domains. Indeed, model integrations starting from different initial biomass distributions diverged to clearly distinct climate-vegetation states in terms of abiotic (precipitation and temperature and biotic (biomass variables. Moreover, we found that between these states there are several other steady states which depend on the scale of perturbation. From here global susceptibility maps were made showing regions of low and high resilience. The model results suggest that mainly the boreal and monsoon regions have low resiliences, i.e. instable biomass equilibria, with positive vegetation-climate feedbacks in which the biomass induced by a perturbation is further enforced. The perturbation did not only influence single vegetation-climate cell interactions but also caused changes in spatial patterns of atmospheric circulation due to neighbouring cells constituting in spatial vegetation-climate feedbacks. Large perturbations could trigger an abrupt shift of the system towards another steady state. Although the model setup used in our simulation is rather simple, our results stress that the coupling of

  18. H{sup {infinity}} State Feedback Control for Generalized Continuous/Discrete Time Delay System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Lee, S.K.; Park, H.B. [Kyungpook National University, Taegu (Korea, Republic of); Jeung, E.T. [Changwon National University, Changwon (Korea, Republic of)

    1998-04-01

    In this paper, we consider the problem of designing H{sup {infinity}} state feedback controller for the generalized time delay systems with delayed states and control inputs in continuous and discrete time cases, respectively. The generalized time delay system problems are solved on the basis of LMI(linear matrix inequality) technique considering time delays. The sufficient condition for the existence of controller and H{sup {infinity}} state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be rewritten as a LMI form in terms of transformed variables. The proposed controller design method can be extended into the problem of robust H{sup {infinity}} state feedback controller design method easily. (author). 15 refs.

  19. A weighted mean velocity feedback strategy in intelligent two-route traffic systems

    Institute of Scientific and Technical Information of China (English)

    Xiang Zheng-Tao; Xiong Li

    2013-01-01

    Information feedback strategies can influence the traffic efficiency of intelligent traffic systems greatly.Based on the more practical symmetrical two-route scenario with one entrance and one exit,an improved weighted mean velocity feedback strategy (WMVFS) is proposed,which is not sensitive to the precision of global position system (GPS) devices.The applicability of WMVFS to different weight factors,aggressive probabilities,densities of dynamic vehicles,and different two-route scenarios (symmetrical scenario and asymmetrical scenario with a speed limit bottleneck) is analyzed.Results show that WMVFS achieves the best performance compared with three other information feedback strategies when considering the traffic flux and stability.

  20. Quantized Feedback Control Software Synthesis from System Level Formal Specifications

    CERN Document Server

    Mari, Federico; Salvo, Ivano; Tronci, Enrico

    2011-01-01

    Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of SBCS control software. We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System, DTLHS) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit.

  1. Fast digital transverse feedback system for bunch train operation in CESR

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.T.; Billing, M.G.; Dobbins, J.A. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies] [and others

    1996-08-01

    We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e{sup +}e{sup -} collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)

  2. Instruction, Feedback and Biometrics: The User Interface for Fingerprint Authentication Systems

    Science.gov (United States)

    Riley, Chris; Johnson, Graham; McCracken, Heather; Al-Saffar, Ahmed

    Biometric authentication is the process of establishing an individual’s identity through measurable characteristics of their behaviour, anatomy or physiology. Biometric technologies, such as fingerprint systems, are increasingly being used in a diverse range of contexts from immigration control, to banking and personal computing. As is often the case with emerging technologies, the usability aspects of system design have received less attention than technical aspects. Fingerprint systems pose a number of challenges for users and past research has identified issues with correct finger placement, system feedback and instruction. This paper describes the development of an interface for fingerprint systems using an iterative, participative design approach. During this process, several different methods for the presentation of instruction and feedback were identified. The different types of instruction and feedback were tested in a study involving 82 participants. The results showed that feedback had a statistically significant effect on overall system performance, but instruction did not. The design recommendations emerging from this study, and the use of participatory design in this context, are discussed.

  3. Research of a New 6-Dof Force Feedback Hand Controller System

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2014-01-01

    Full Text Available The field of teleoperation with force telepresence has expanded its scope to include manipulation at different scales and in virtual worlds, and the key component of which is force feedback hand controller. This paper presents a novel force feedback hand controller system, including a 3-dof translational and 3-dof rotational hand controllers, respectively, to implement position and posture teleoperation of the robot end effector. The 3-dof translational hand controller adopts innovative three-axes decoupling structure based on the linear motor; the 3-dof rotational hand controller adopts serial mechanism based on three-axes intersecting at one point, improving its overall stiffness. Based on the kinematics, statics, and dynamics analyses for two platforms separately, the system applies big closed-loop force control method based on the zero force/torque, improving the feedback force/torque accuracy effectively. Experimental results show that self-developed 6-dof force feedback hand controller has good mechanical properties. The translational hand controller has the following advantages: simple kinematics solver, fast dynamic response, and better than 0.05 mm accuracy of three-axis end positioning, while the advantages of the rotational hand controller are wide turning space, larger than 1 Nm feedback, greater than 180 degrees of operating space of three axes, respectively, and high operation precision.

  4. Immediate Web-Based Essay Critiquing System Feedback and Teacher Follow-Up Feedback on Young Second Language Learners' Writings: An Experimental Study in a Hong Kong Secondary School

    Science.gov (United States)

    Lee, Cynthia; Cheung, William Kwok Wai; Wong, Kelvin Chi Kuen; Lee, Fion Sau Ling

    2013-01-01

    This article is an effort to add to computer-assisted language learning by extending a study on an essay critiquing system (ECS) feedback to secondary school language learners' writing. The study compared two groups of participants' performance, namely the treatment group which received both the system feedback and teacher feedback (i.e., blended…

  5. USING RANDOM PROPORTIONAL PULSE FEEDBACK OF SYSTEM VARIABLES TO CONTROL CHAOS AND HYPERCHAOS

    Institute of Scientific and Technical Information of China (English)

    LUO XIAO-SHU; WANG BING-HONG; GAO YUAN; JIANG FENG

    2001-01-01

    A method that allows one to control chaotic and hyperchaotic systems by a random proportional pulse feedback of system variables is proposed. This method is illustrated with the Rossler chaotic and the complex Lorenz-Harken hyperchaotic systems, and a better control result is obtained. The advantage of this method is that just one perturbed system variable is enough to obtain a stabilized periodic orbit.

  6. Nonlinear Systems Feedback Linearization Optimal Zero-State-Error Control Under Disturbances Compensation

    Directory of Open Access Journals (Sweden)

    Gao Dexin

    2012-10-01

    Full Text Available This paper concentrates on the solution of state feedback exact linearization zero steady-state error optimal control problem for nonlinear systems affected by external disturbances. Firstly, the nonlinear system model with external disturbances is converted to quasi-linear system model by differential homeomorphism. Using Internal Model Optional Control (IMOC, the disturbances compensator is designed, which exactly offset the impact of external disturbances on the system. Taking the  system and the disturbances compensator in series, a new augmented system is obtained. Then the zero steady-state error optimal control problem is transformed into the optimal regulator design problem of an augmented system, and the optimal static error feedback control law is designed according to the different quadratic performance index. At last, the simulation results show the effectiveness of the method.

  7. Stabilization of generalized fractional order chaotic systems using state feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Wajdi M. E-mail: wajdi@sharjah.ac.ae; El-Khazali, Reyad E-mail: khazali@ece.ac.ae; Al-Assaf, Yousef E-mail: yassaf@aus.ac.ae

    2004-10-01

    In this paper, we address the problem of chaos control of three types of fractional order systems using simple state feedback gains. Electronic chaotic oscillators, mechanical 'jerk' systems, and the Chen system are investigated when they assume generalized fractional orders. We design the static gains to place the eigenvalues of the system Jacobian matrices in a stable region whose boundaries are determined by the orders of the fractional derivatives. We numerically demonstrate the effectiveness of the controller in eliminating the chaotic behavior from the state trajectories, and driving the states to the nearest equilibrium point in the basin of attraction. For the recently introduced Chen system, in particular, we demonstrate that with a proper choice of model parameters, chaotic behavior is preserved when the system order becomes fractional. Both state and output feedback controllers are then designed to stabilize a generalized fractional order Chen system.

  8. Feedback control and beam diagnostic algorithms for a multiprocessor DSP system

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, D.; Claus, R.; Fox, J.; Hindi, H.; Linscott, I.; Prabhakar, S. [Stanford Linear Accelerator Center, P.O. Box 4349, Stanford, California 94309 (United States); Drago, A. [INFN---Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati (Roma) (Italy); Stover, G. [Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94563 (United States)

    1997-01-01

    The multibunch longitudinal feedback system developed for use by PEP-II, ALS, and DA{Phi}NE uses a parallel array of digital signal processors (DSPs) to calculate the feedback signals from measurements of beam motion. The system is designed with general-purpose programmable elements which allow many feedback operating modes as well as system diagnostics, calibrations, and accelerator measurements. The overall signal processing architecture of the system is illustrated. The real-time DSP algorithms and off-line postprocessing tools are presented. The problems in managing 320k samples of data collected in one beam transient measurement are discussed and our solutions are presented. Example software structures are presented showing the beam feedback process, techniques for modal analysis of beam motion (used to quantify growth and damping rates of instabilities), and diagnostic functions (such as timing adjustment of beam pick-up and kicker components). These operating techniques are illustrated with example results obtained from the system installed at the Advanced Light Source at LBL. {copyright} {ital 1997 American Institute of Physics.}

  9. Feedback control and beam diagnostic algorithms for a multiprocessor DSP system

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, D.; Claus, R.; Fox, J.; Hindi, H.; Linscott, I.; Prabhakar, S. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Drago, A. [INFN, Roma (Italy). Lab. Nazionali di Frascati; Stover, G. [Lawrence Berkeley Lab., CA (United States)

    1996-09-01

    The multibunch longitudinal feedback system developed for use by PEP-II, ALS and DA{Phi}NE uses a parallel array of digital signal processors to calculate the feedback signals from measurements of beam motion. The system is designed with general-purpose programmable elements which allow many feedback operating modes as well as system diagnostics, calibrations and accelerator measurements. The overall signal processing architecture of the system is illustrated. The real-time DSP algorithms and off-line postprocessing tools are presented. The problems in managing 320 K samples of data collected in one beam transient measurement are discussed and the solutions are presented. Example software structures are presented showing the beam feedback process, techniques for modal analysis of beam motion(used to quantify growth and damping rates of instabilities) and diagnostic functions (such as timing adjustment of beam pick-up and kicker components). These operating techniques are illustrated with example results obtained from the system installed at the Advanced Light Source at LBL.

  10. Output Feedback Controller Design with Symbolic Observers for Cyber-physical Systems

    Directory of Open Access Journals (Sweden)

    Masashi Mizoguchi

    2016-12-01

    Full Text Available In this paper, we design a symbolic output feedback controller of a cyber-physical system (CPS. The physical plant is modeled by an infinite transition system. We consider the situation that a finite abstracted system of the physical plant, called a c-abstracted system, is given. There exists an approximate alternating simulation relation from the c-abstracted system to the physical plant. A desired behavior of the c-abstracted system is also given, and we have a symbolic state feedback controller of the physical plant. We consider the case where some states of the plant are not measured. Then, to estimate the states with abstracted outputs measured by sensors, we introduce a finite abstracted system of the physical plant, called an o-abstracted system, such that there exists an approximate simulation relation. The relation guarantees that an observer designed based on the state of the o-abstracted system estimates the current state of the plant. We construct a symbolic output feedback controller by composing these systems. By a relation-based approach, we proved that the controlled system approximately exhibits the desired behavior.

  11. Sliding Mode Reference Coordination of Constrained Feedback Systems

    OpenAIRE

    Alejandro Vignoni; Fabricio Garelli; Jesús Picó

    2013-01-01

    This paper addresses the problem of coordinating dynamical systems with possibly different dynamics (e.g., linear and nonlinear, different orders, constraints, etc.) to achieve some desired collective behavior under the constraints and capabilities of each system. To this end, we develop a new methodology based on reference conditioning techniques using geometric set invariance and sliding mode control: the sliding mode reference coordination (SMRCoord). The main idea is to coordinate the sys...

  12. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    Science.gov (United States)

    1990-12-01

    Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply Existence of a Linear Stabilizing Control ," IEEE Trans...799-802, 1985. 13. I. R. Petersen, "Quadratic Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply...Existence of a Linear Stabilizing Control ," IEEE Trans. Autom. Contr., Vol. AC-30, pp. 291-293, 1985. 14. B. R. Barmish and A. R. Galimidi

  13. OUTPUT FEEDBACK CONTROL FOR MIMO NONLINEAR SYSTEMS WITH EXOGENOUS SIGNALS

    Institute of Scientific and Technical Information of China (English)

    Ying ZHOU; Yuqiang WU

    2006-01-01

    The paper addresses the global output tracking of a class of multi-input multi-output(MIMO) nonlinear systems affected by disturbances, which are generated by a known exosystem. An adaptive controller is designed based on the proposed observer and the backstepping approach to asymptotically track arbitrary reference signal and to guarantee the boundedness of all the signals in the closed loop system. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.

  14. Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics

    Institute of Scientific and Technical Information of China (English)

    潘子刚; 刘允刚; 施颂椒

    2001-01-01

    In this paper, we study the problem of output feedback stabilization for stochastic nonlinear systems. We consider a class of stochastic nonlinear systems in observer canonical form with stable zero-dynamics. We introduce a sequence of state transformations that transform the system into a lower triangular structure that is amenable for integrator backstepping design. Then we design the output-feedback controller and prove that the closed-loop system is bounded in probability. Furthermore, when the disturbance vector field vanishes at the origin, the closed-loop system is asymptotically stable in the large. With special care, the controller preserves the equilibrium of the nonlinear system. An example is included to illustrate the theoretical findings.

  15. High-performance laser power feedback control system for cold atom physics

    Institute of Scientific and Technical Information of China (English)

    Bo Lu; Thibault Vogt; Xinxing Liu; Xiaoji Zhou; Xuzong Chen

    2011-01-01

    @@ A laser power feedback control system that features fast response,large-scale performance,low noise,and excellent stability is presented.Some essential points used for optimization are described.Primary optical lattice experiments are given as examples to show the performance of this system.With these performance characteristics,the power control system is useful for applications in cold atom physics and precision measurements.%A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.

  16. Enhancement of mobility in an interacting colloidal system under feedback control.

    Science.gov (United States)

    Gernert, Robert; Klapp, Sabine H L

    2015-08-01

    Feedback control schemes are a promising way to manipulate transport properties of driven colloidal suspensions. In the present article, we suggest a feedback scheme to enhance the collective transport of colloidal particles with repulsive interactions through a one-dimensional tilted washboard potential. The control is modeled by a harmonic confining potential, mimicking an optical "trap," with the center of this trap moving with the (instantaneous) mean particle position. Our theoretical analysis is based on the Smoluchowski equation combined with dynamical density functional theory for systems with hard-core or ultrasoft (Gaussian) interactions. For either type of interaction, we find that the feedback control can lead to an enhancement of the mobility by several orders of magnitude relative to the uncontrolled case. The largest effects occur for intermediate stiffness of the trap and large particle numbers. Moreover, in some regions of the parameter space the feedback control induces oscillations of the mean velocity. Finally, we show that the enhancement of mobility is robust against a small time delay in implementing the feedback control.

  17. On the M/G/1 queueing system with multiclass customers and fixed feedback

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-zhi

    2008-01-01

    The M/G/1 queueing system with multiclass customer arrivals, fixed feedback, and first come first served policy is considered, where different classes of customers have different arrival rates, service-time distributions, and feedback numbers. The joint probability generation function of queue size of each class and the Laplace-Stieltjes transform of the total sojourn time of a customer in each class are presented, which extended the results obtained by Choi B D. The mean queue size of each class and mean total sojourn time of a customer in each class are obtained with this result. The results can be used in computer and communication networks for their performance analysis.

  18. Decentralized H∞ Control for Uncertain Interconnected Systems of Neutral Type via Dynamic Output Feedback

    Directory of Open Access Journals (Sweden)

    Heli Hu

    2014-01-01

    Full Text Available The design of the dynamic output feedback H∞ control for uncertain interconnected systems of neutral type is investigated. In the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results are given to show the effectiveness of the proposed method.

  19. Piecewise output feedback control for affine systems with disturbances based on linear temporal logic specifications

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the paper,we investigate the problem of finding a piecewise output feedback control law for an uncertain affine system such that the resulting closed-loop output satisfies a desired linear temporal logic (LTL) specification.A two-level hierarchical approach is proposed to solve the problem in a triangularized output space.In the lower level,we explore whether there exists a robust output feedback control law to make the output starting in a simplex either remains in it or leaves via a specific facet.In t...

  20. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  1. Analysis of the traffic running cost in a two-route system with feedback strategy

    Science.gov (United States)

    Tang, Tie-Qiao; Yu, Qiang; Liu, Kai

    2017-01-01

    In this paper, we apply the FVD (full velocity difference) model to study the influences of MVFS (mean velocity feedback strategy) and NVFS (the number of vehicles feedback strategy) on each vehicle's running cost and each route's total cost in a two-route system from the numerical perspective. The numerical results illustrate that MFVS and NVFS have significant effects on each vehicle's running cost and each route's total cost, and that the impacts, each vehicle's running cost and each route's total cost are related to the gap of each vehicle's departure time at the origin.

  2. Global stabilizer of a general class of feedback nonlinear systems and its exponential convergence

    Institute of Scientific and Technical Information of China (English)

    Runing MA; Jundi DIAN

    2005-01-01

    We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent. Our stabilizer consists of a nested saturation function, which is a nonlinear combination of satrration functions. Here we prove the exponential convergence of the stabilizer for the first time and give numerical examples to illustrate the efficiency of the result given above.

  3. Approaching Error-Free Customer Satisfaction through Process Change and Feedback Systems

    Science.gov (United States)

    Berglund, Kristin M.; Ludwig, Timothy D.

    2009-01-01

    Employee-based errors result in quality defects that can often impact customer satisfaction. This study examined the effects of a process change and feedback system intervention on error rates of 3 teams of retail furniture distribution warehouse workers. Archival records of error codes were analyzed and aggregated as the measure of quality. The…

  4. Positive Periodic Solutions of Cooperative Systems with Delays and Feedback Controls

    Directory of Open Access Journals (Sweden)

    Tursuneli Niyaz

    2013-01-01

    Full Text Available This paper studies a class of periodic n species cooperative Lotka-Volterra systems with continuous time delays and feedback controls. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin, some new sufficient conditions on the existence of positive periodic solutions are established.

  5. Effectiveness of Feedback for Enhancing English Pronunciation in an ASR-Based CALL System

    Science.gov (United States)

    Wang, Y.-H.; Young, S. S.-C.

    2015-01-01

    This paper presents a study on implementing the ASR-based CALL (computer-assisted language learning based upon automatic speech recognition) system embedded with both formative and summative feedback approaches and using implicit and explicit strategies to enhance adult and young learners' English pronunciation. Two groups of learners including 18…

  6. A new algorithm for pole assignment of single-input linear systems using state feedback

    Institute of Scientific and Technical Information of China (English)

    QIAN Jiang; CHENG Mingsong; XU Shufang

    2005-01-01

    In this paper we present a new algorithm for the single-input pole assignment problem using state feedback. This algorithm is based on the Schur decomposition of the closed-loop system matrix, and the numerically stable unitary transformations are used whenever possible, and hence it is numerically reliable.The good numerical behavior of this algorithm is also illustrated by numerical examples.

  7. Robust Admissibilization of Descriptor Systems by Static Output-Feedback: An LMI Approach

    Directory of Open Access Journals (Sweden)

    M. Chaabane

    2011-01-01

    static output-feedback is studied in this paper and an approach to solve it is proposed. For this, sufficient conditions are derived for the closed-loop system to be admissible (i.e., stable, regular, and impulse-free. These conditions are expressed in terms of a strict Linear Matrix Inequality (LMI; so they are tractable using numerical computations. The proposed controller design methodology is based on two steps: the first is dedicated to synthesizing a classical state-feedback controller, which is used as the initial value for the second step, which uses an LMI problem to obtain static output-feedback controllers that give admissibility. Finally, a numerical example is given to illustrate the results.

  8. Optimal feedback control of linear quantum systems in the presence of thermal noise

    Science.gov (United States)

    Genoni, Marco G.; Mancini, Stefano; Serafini, Alessio

    2013-04-01

    We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal environment to nonclassical stationary states by feedback loops based on weak measurements and conditioned linear driving. We derive general analytical upper bounds for the single-mode squeezing and multimode entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in the bath allow for larger steady-state squeezing and entanglement if the efficiency of the optimal continuous measurements conditioning the feedback loop is high enough. We also consider the performance of feedback strategies based on homodyne detection and show that, at variance with the optimal measurements, it degrades with increasing temperature.

  9. Simulation of feedback instability in the coupled magnetosphere-ionosphere system

    Science.gov (United States)

    Hasegawa, Hiroki; Ohno, Nobuaki; Sato, Tetsuya

    2010-08-01

    Quiet auroral arcs formation has been investigated theoretically and numerically in a self-consistent dynamic way. By using a three-dimensional magneto-hydro-dynamics simulation of a dipole magnetosphere-ionosphere coupling system, it is shown that multiple longitudinally striated structures of the ionospheric plasma density and the field-aligned current are formed, resulting from nonlinear feedback instability. The areas where these structures appear are consistent with the prediction by the integrated feedback theory that includes the effects of the spatially non-uniform electric field and non-uniform plasma density. Effects of the difference of the field line lengths between the ionosphere and the magnetospheric equator over the auroral latitudes are also discussed on the feedback instability.

  10. Infinite-Dimensional Feedback Systems: The Circle Criterion and Input-to-State Stability

    OpenAIRE

    2008-01-01

    An input-to-state stability theory, which subsumes results of circle criterion type, is developed in the context of a class of infinite-dimensional systems. The generic system is of Lur’e type: a feedback interconnection of a well-posed infinite-dimensional linear system and a nonlinearity. The class of nonlinearities is subject to a (generalized) sector condition and contains, as particular subclasses, both static nonlinearities and hysteresis operators of Preisach type.

  11. Delay-dependent state feedback robust stabilization for uncertain singular time-delay systems

    Institute of Scientific and Technical Information of China (English)

    Gao Huanli; Xu Bugong

    2008-01-01

    The problem of robust stabilization for uncertain singular time-delay systems is studied.First,a new delay-dependent asymptotic stability criteria for normal singular time-delay systems is given,which is less conservative.Using this result,the problem of state feedback robust stabilization for uncertain singular time-delay systems is discussed.Finally,two examples are given to illustrate the effectiveness of the results.

  12. Recovery of systems with a linear filter and nonlinear delay feedback in periodic regimes.

    Science.gov (United States)

    Ponomarenko, V I; Prokhorov, M D

    2008-12-01

    We propose a set of methods for the estimation of the parameters of time-delay systems with a linear filter and nonlinear delay feedback performing periodic oscillations. The methods are based on an analysis of the system response to regular external perturbations and are valid only for systems whose dynamics can be perturbed. The efficiency of the methods is illustrated using both numerical and experimental data.

  13. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.

    Science.gov (United States)

    Jiang, Yu; Jiang, Zhong-Ping

    2014-05-01

    This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system.

  14. Multiuser Beamforming with Limited Feedback for FDD Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Senyao Zheng

    2016-01-01

    Full Text Available This paper discusses the multiuser beamforming in FDD massive MIMO systems. It first introduces the feature of FDD massive MIMO systems to implement multiuser beamforming schemes. After that, considering the realistic implementation of multiuser beamforming scheme in FDD massive MIMO systems, it introduces the knowledge of channel quantization. In the main part of the paper, we introduce two traditional multiuser beamforming schemes and analyse their merits and demerits. Based on these, we propose a novel multiuser beamforming scheme to flexibly combine the merits of the traditional beamforming schemes. In the final part of the paper, we give some simulation results to compare the beamforming schemes mentioned in the paper. These simulation results show the superiority of the proposed beamforming scheme.

  15. Nonlinear System Design: Adaptive Feedback Linearization with Unmodeled Dynamics

    Science.gov (United States)

    1991-09-30

    First, we address severe restrictions of the two currently available types of the regulation problem . In Section 11 we characterize the schemes: the...existence of such a Lyapunov II. THE CLASS OF NONLINEAR SYSTEMS function cannot be aserned a priori. fa . The adaptive regulation problem will first be

  16. Adaptive Fuzzy Tracking Control for a Class of MIMO Nonlinear Systems in Nonstrict-Feedback Form.

    Science.gov (United States)

    Chen, Bing; Lin, Chong; Liu, Xiaoping; Liu, Kefu

    2015-12-01

    This paper focuses on the problem of fuzzy adaptive control for a class of multiinput and multioutput (MIMO) nonlinear systems in nonstrict-feedback form, which contains the strict-feedback form as a special case. By the condition of variable partition, a new fuzzy adaptive backstepping is proposed for such a class of nonlinear MIMO systems. The suggested fuzzy adaptive controller guarantees that the proposed control scheme can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking errors eventually converge to a small neighborhood around the origin. The main advantage of this paper is that a control approach is systematically derived for nonlinear systems with strong interconnected terms which are the functions of all states of the whole system. Simulation results further illustrate the effectiveness of the suggested approach.

  17. A pyrometric feedback system covering the entire temperature program for electrothermal atomization-atomic absorption spectrometry

    Science.gov (United States)

    Herber, R. F. M.; Pieters, H. J.; Roelofsen, A. M.; Van Deijck, W.

    A new pyrometric temperature feedback control system for ETA-AAS is introduced which controls the entire temperature range needed for analysis. The system consists of a single infrared sensitive detector and independent feedback control circuitry for the three separate heating stages of a Varian CRA 63 or CRA 90 power supply to which it was added. The temperature region covered by the system encompassed from 300 to 3300 K. The precision of the temperature control amounts to ±20 K at 330 K., ±5 K at 700 K and ±2 K at 2300 K. In order to test the performance of the system, lead in blood and cadmium in urine were determined. Substantial improvements as compared to the conventional system were obtained with respect to optimization of the temperature program, precision and sensitivity. Patent pending.

  18. Multi source feedback based performance appraisal system using Fuzzy logic decision support system

    CERN Document Server

    Meenakshi, G

    2012-01-01

    In Multi-Source Feedback or 360 Degree Feedback, data on the performance of an individual are collected systematically from a number of stakeholders and are used for improving performance. The 360-Degree Feedback approach provides a consistent management philosophy meeting the criterion outlined previously. The 360-degree feedback appraisal process describes a human resource methodology that is frequently used for both employee appraisal and employee development. Used in employee performance appraisals, the 360-degree feedback methodology is differentiated from traditional, top-down appraisal methods in which the supervisor responsible for the appraisal provides the majority of the data. Instead it seeks to use information gained from other sources to provide a fuller picture of employees' performances. Similarly, when this technique used in employee development it augments employees' perceptions of training needs with those of the people with whom they interact. The 360-degree feedback based appraisal is a c...

  19. Augmented Feedback System to Support Physical Therapy of Non-specific Low Back Pain

    Science.gov (United States)

    Brodbeck, Dominique; Degen, Markus; Stanimirov, Michael; Kool, Jan; Scheermesser, Mandy; Oesch, Peter; Neuhaus, Cornelia

    Low back pain is an important problem in industrialized countries. Two key factors limit the effectiveness of physiotherapy: low compliance of patients with repetitive movement exercises, and inadequate awareness of patients of their own posture. The Backtrainer system addresses these problems by real-time monitoring of the spine position, by providing a framework for most common physiotherapy exercises for the low back, and by providing feedback to patients in a motivating way. A minimal sensor configuration was identified as two inertial sensors that measure the orientation of the lower back at two points with three degrees of freedom. The software was designed as a flexible platform to experiment with different hardware, and with various feedback modalities. Basic exercises for two types of movements are provided: mobilizing and stabilizing. We developed visual feedback - abstract as well as in the form of a virtual reality game - and complemented the on-screen graphics with an ambient feedback device. The system was evaluated during five weeks in a rehabilitation clinic with 26 patients and 15 physiotherapists. Subjective satisfaction of subjects was good, and we interpret the results as encouraging indication for the adoption of such a therapy support system by both patients and therapists.

  20. A sensory feedback system for prosthetic hand based on evoked tactile sensation.

    Science.gov (United States)

    Liu, X X; Chai, G H; Qu, H E; Lan, N

    2015-01-01

    The lack of reliable sensory feedback has been one of the barriers in prosthetic hand development. Restoring sensory function from prosthetic hand to amputee remains a great challenge to neural engineering. In this paper, we present the development of a sensory feedback system based on the phenomenon of evoked tactile sensation (ETS) at the stump skin of residual limb induced by transcutaneous electrical nerve stimulation (TENS). The system could map a dynamic pattern of stimuli to an electrode placed on the corresponding projected finger areas on the stump skin. A pressure transducer placed at the tip of prosthetic fingers was used to sense contact pressure, and a high performance DSP processor sampled pressure signals, and calculated the amplitude of feedback stimulation in real-time. Biphasic and charge-balanced current pulses with amplitude modulation generated by a multi-channel laboratory stimulator were delivered to activate sensory nerves beneath the skin. We tested this sensory feedback system in amputee subjects. Preliminary results showed that the subjects could perceive different levels of pressure at the tip of prosthetic finger through evoked tactile sensation (ETS) with distinct grades and modalities. We demonstrated the feasibility to restore the perceptual sensation from prosthetic fingers to amputee based on the phenomenon of evoked tactile sensation (ETS) with TENS.

  1. Passive thermo-optic feedback for robust athermal photonic systems

    Science.gov (United States)

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  2. Scheduling of network access for feedback-based embedded systems

    Science.gov (United States)

    Liberatore, Vincenzo

    2002-07-01

    nd communication capabilities. Examples range from smart dust embedded in building materials to networks of appliances in the home. Embedded devices will be deployed in unprecedented numbers, will enable pervasive distributed computing, and will radically change the way people interact with the surrounding environment [EGH00a]. The paper targets embedded systems and their real-time (RT) communication requirements. RT requirements arise from the

  3. Further results on saturated globally stabilizing linear state feedback control laws for single-input neutrally stable planar systems

    NARCIS (Netherlands)

    Yang, Tao; Stoorvogel, Anton A.; Saberi, Ali; Johansson, Karl H.

    2013-01-01

    It is known that for single-input neutrally stable planar systems, there exists a class of saturated globally stabilizing linear state feedback control laws. The goal of this paper is to characterize the dynamic behavior for such a system under arbitrary locally stabilizing linear state feedback con

  4. Dynamic Behaviors of a Discrete Lotka-Volterra Competition System with Infinite Delays and Single Feedback Control

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2014-01-01

    Full Text Available A nonautonomous discrete two-species Lotka-Volterra competition system with infinite delays and single feedback control is considered in this paper. By applying the discrete comparison theorem, a set of sufficient conditions which guarantee the permanence of the system is obtained. Also, by constructing some suitable discrete Lyapunov functionals, some sufficient conditions for the global attractivity and extinction of the system are obtained. It is shown that if the the discrete Lotka-Volterra competitive system with infinite delays and without feedback control is permanent, then, by choosing some suitable feedback control variable, the permanent species will be driven to extinction. That is, the feedback control variable, which represents the biological control or some harvesting procedure, is the unstable factor of the system. Such a finding overturns the previous scholars’ recognition on feedback control variables.

  5. Output feedback control for a class of nonlinear systems with actuator degradation and sensor noise.

    Science.gov (United States)

    Ai, Weiqing; Lu, Zhenli; Li, Bin; Fei, Shumin

    2016-11-01

    This paper investigates the output feedback control problem of a class of nonlinear systems with sensor noise and actuator degradation. Firstly, by using the descriptor observer approach, the origin system is transformed into a descriptor system. On the basis of the descriptor system, a novel Proportional Derivative (PD) observer is developed to asymptotically estimate sensor noise and system state simultaneously. Then, by designing an adaptive law to estimate the effectiveness of actuator, an adaptive observer-based controller is constructed to ensure that system state can be regulated to the origin asymptotically. Finally, the design scheme is applied to address a flexible joint robot link problem.

  6. Robust Passivity and Feedback Design for Nonlinear Stochastic Systems with Structural Uncertainty

    Directory of Open Access Journals (Sweden)

    Zhongwei Lin

    2013-01-01

    Full Text Available This paper discusses the robust passivity and global stabilization problems for a class of uncertain nonlinear stochastic systems with structural uncertainties. A robust version of stochastic Kalman-Yakubovitch-Popov (KYP lemma is established, which sustains the robust passivity of the system. Moreover, a robust strongly minimum phase system is defined, based on which the uncertain nonlinear stochastic system can be feedback equivalent to a robust passive system. Following with the robust passivity theory, a global stabilizing control is designed, which guarantees that the closed-loop system is globally asymptotically stable in probability (GASP. A numerical example is presented to illustrate the effectiveness of our results.

  7. SAFCM: A Security-Aware Feedback Control Mechanism for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Ma, Yue; Jiang, Wei; Sang, Nan

    2012-01-01

    Distributed Real-time Embedded (DRE) systems are facing great challenges in networked, unpredictable and especially unsecured environments. In such systems, there is a strong need to enforce security on distributed computing nodes in order to guard against potential threats, while satisfying...... the real-time requirements. This paper proposes a Security-Aware Feedback Control Mechanism (SAFCM) which has the ability to dynamically change the security level to guarantee soft real-time requirements and make the security protection as strong as possible. In order to widely support distributed real......-time systems, a multi-input multi-output feedback loop is designed and a model predictive controller is deployed based on an equation model that describes the dynamic behavior of the DRE systems. This control loop uses security level scaling to globally control the CPU utilization and security performance...

  8. Adaptive Fuzzy Output Feedback Control for Switched Nonlinear Systems With Unmodeled Dynamics.

    Science.gov (United States)

    Tong, Shaocheng; Li, Yongming

    2017-02-01

    This paper investigates a robust adaptive fuzzy control stabilization problem for a class of uncertain nonlinear systems with arbitrary switching signals that use an observer-based output feedback scheme. The considered switched nonlinear systems possess the unstructured uncertainties, unmodeled dynamics, and without requiring the states being available for measurement. A state observer which is independent of switching signals is designed to solve the problem of unmeasured states. Fuzzy logic systems are used to identify unknown lumped nonlinear functions so that the problem of unstructured uncertainties can be solved. By combining adaptive backstepping design principle and small-gain approach, a novel robust adaptive fuzzy output feedback stabilization control approach is developed. The stability of the closed-loop system is proved via the common Lyapunov function theory and small-gain theorem. Finally, the simulation results are given to demonstrate the validity and performance of the proposed control strategy.

  9. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  10. Front-end signal analysis of the transverse feedback system for SSRF

    Institute of Scientific and Technical Information of China (English)

    HAN Lifeng; YUAN Renxian; YU Luyang; YE Kairong

    2008-01-01

    Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even cause beam loss. A feedback system is used to suppress multi-bunch instabilities associated with resistive wall of the beam ducts, cavity-like structures, and trapped ions. A digital TFS (Transverse Feedback System) is in construction at the SSRF (Shanghai Synchrotron Radiation Facility), which is based on the latest generation of FPGA (Field Programmable Gate Array) processor. Before we get such FPGA digital board, investigation and simulation of the front-end were done in the first place. The signal flow was analyzed by SystemView. Construction and optimization of the entire system is our next goal.

  11. Controlling Chaos for Fractional Order Loss Type of Coupled Dynamos Systems via Feedback

    Science.gov (United States)

    Hao, Jianhong; Xiong, Xueyan; Bin, Hong; Sun, Nayan

    This paper studies the problem of chaos control for the fractional order modified coupled dynamos system that involves mechanical damping loss. Based on the Routh-Hurwitz criterion generalized to the fractional order stability theory, the stability conditions of the controlled system are discussed. We adopt a simple single-variable linear feedback method to suppress chaos to the unstable equilibrium point and limit cycle. Then, a modified feedback control method is developed in light of the sliding mode variable structure, namely exerting the controller only when the system trajectory is close to the target orbit. This method not only maintains the dynamics of the system, but provides the optimal control time and adjustable limit cycles radius. Numerical simulation proves the validity of this method.

  12. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  13. Synthesis of dissipative output feedback controllers. Application to mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Johannessen, Erling Aarsand

    1997-12-31

    This thesis presents new results on the synthesis of linear controllers with passivity, or more general, dissipativity properties. These methods may be applied to obtain more accurate control over mechanical systems and in the control of chemical processes that involve dissipative subsystems. The thesis presents two different approaches for synthesis of dissipative controllers: (1) A method that exploits the Riccati equation solution to the state space formulation of the H{sub {infinity}} control problem is investigated, illustrated by synthesising a controller for damping of flexible modes in a beam. (2) A more general method for dissipative control synthesis is developed that retains the well-known techniques of loop-shaping and frequency weighting in H{sub {infinity}}. A method is also presented for controller synthesis directly from frequency response data. 82 refs., 34 figs., 3 tabs.

  14. Malleability of the approximate number system: effects of feedback and training

    Directory of Open Access Journals (Sweden)

    Nicholas Kurshan DeWind

    2012-04-01

    Full Text Available Prior research demonstrates that animals and humans share an approximate number system (ANS, characterized by ratio dependence and that the precision of this system increases substantially over human development. The goal of the present research was to investigate the malleability of the ANS (as measured by weber fraction in adult subjects in response to feedback and to explore the relationship between ANS acuity and acuity on another magnitude comparison task. We tested each of 20 subjects over six 1-hour sessions. The main findings were that a weber fractions rapidly decreased when trial-by-trial feedback was introduced in the second session and remained stable over continued training, b weber fractions remained steady when trial-by-trial feedback was removed in session six, c weber fractions from the number comparison task were positively correlated with weber fractions from a line length comparison task, d improvement in weber fractions in response to feedback for the number task did not transfer to the line length task, e finally, the precision of the ANS was positively correlated with math, but not verbal, SAT or GRE scores. Potential neural correlates of the perceptual information and decision processes are considered, and predictions regarding the neural correlates of ANS malleability are discussed.

  15. State-Feedback Control for Fractional-Order Nonlinear Systems Subject to Input Saturation

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available We give a state-feedback control method for fractional-order nonlinear systems subject to input saturation. First, a sufficient condition is derived for the asymptotical stability of a class of fractional-order nonlinear systems. Then based on Gronwall-Bellman lemma and a sector bounded condition of the saturation function, a linear state-feed back controller is designed. Finally, two simulation examples are presented to show the validity of the proposed method.

  16. Almost Periodic Solution of a Multispecies Discrete Mutualism System with Feedback Controls

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2015-01-01

    Full Text Available We consider an almost periodic multispecies discrete Lotka-Volterra mutualism system with feedback controls. We firstly obtain the permanence of the system by utilizing the theory of difference equation. By means of constructing a suitable Lyapunov function, sufficient conditions are obtained for the existence of a unique positive almost periodic solution which is uniformly asymptotically stable. An example together with numerical simulation indicates the feasibility of the main result.

  17. A matrix transformation approach to H∞ control via static output feedback for input delay systems

    OpenAIRE

    Du, B; Shu, Z; Lam, J.

    2009-01-01

    This paper addresses the static output feedback (SOF) H∞ control for continuous-time linear systems with an unknown input delay from a novel perspective. New equivalent characterizations on the stability and H∞ performance of the closed-loop system are established in terms of nonlinear matrix inequalities with free parametrization matrices. These delay-dependent characterizations possess a special monotonic structure, which leads to linearized iterative computation. The effectiveness and meri...

  18. Observer design and output feedback stabilization for linear singular time-delay systems with unknown inputs

    Institute of Scientific and Technical Information of China (English)

    Peng CUI; Chenghui ZHANG

    2008-01-01

    The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed.The sufficient conditions of the existence of observers,which are normal linear time-delay systems,and the corresponding design steps are presented via linear matrix inequality(LMI).Moreover,the observer-based feedback stabilizing controller is obtained.Three examples are given to show the effectiveness of the proposed methods.

  19. The permanence and global attractivity of a competitive system with feedback controls and toxic substance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we consider a nonautonomous competitive system with feedback controls and toxic substance. Some average couditions for the permanence and global attractivity of the system are obtained. It is shown that our results are generalization or improvement of those of Zhao, Jiang and Lazer [ Nonlinear Analysis: Real World Applications, 5 ( 4 ) ( 2004 ), 265 - 276 ], Xia, Cao, Zhang and Chen [ Journal of Mathematical Analysis and Applications ,294 (2) ( 2004 ), 503 - 522 ] and Chen [ Nonlinear Analysis: Real World Applications, in press ].

  20. Chaos control in delayed chaotic systems via sliding mode based delayed feedback

    Energy Technology Data Exchange (ETDEWEB)

    Vasegh, Nastaran [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)], E-mail: vasegh@eetd.kntu.ac.ir; Sedigh, Ali Khaki [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyed Khandan Bridge, Shariati St. 16314, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of)

    2009-04-15

    This paper investigates chaos control for scalar delayed chaotic systems using sliding mode control strategy. Sliding surface design is based on delayed feedback controller. It is shown that the proposed controller can achieve stability for an arbitrary unstable fixed point (UPF) or unstable periodic orbit (UPO) with arbitrary period. The chaotic system used in this study to illustrate the theoretical concepts is the well known Mackey-Glass model. Simulation results show the effectiveness of the designed nonlinear sliding mode controller.

  1. Robust H∞ Controller Design for Uncertain Neutral Systems via Dynamic Observer Based Output Feedback

    Institute of Scientific and Technical Information of China (English)

    Fatima El Haoussi; El (H)oussaine Tissir

    2009-01-01

    In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controllcd output. Numerical examples are provided for illustration and comparison of the proposed conditions.

  2. Distributed Robust H∞ Consensus Control of Multiagent Systems with Communication Errors Using Dynamic Output Feedback Protocol

    Directory of Open Access Journals (Sweden)

    Xi Yang

    2013-01-01

    Full Text Available This paper studies robust consensus problem for multiagent systems modeled by an identical linear time-invariant system under a fixed communication topology. Communication errors in the transferred data are considered, and only the relative output information between each agent and its neighbors is available. A distributed dynamic output feedback protocol is proposed, and sufficient conditions for reaching consensus with a prescribed H∞ performance are presented. Numerical examples are given to illustrate the theoretical results.

  3. A switched state feedback law for the stabilization of LTI systems.

    Energy Technology Data Exchange (ETDEWEB)

    Santarelli, Keith R.

    2009-09-01

    Inspired by prior work in the design of switched feedback controllers for second order systems, we develop a switched state feedback control law for the stabilization of LTI systems of arbitrary dimension. The control law operates by switching between two static gain vectors in such a way that the state trajectory is driven onto a stable n - 1 dimensional hyperplane (where n represents the system dimension). We begin by briefly examining relevant geometric properties of the phase portraits in the case of two-dimensional systems to develop intuition, and we then show how these geometric properties can be expressed as algebraic constraints on the switched vector fields that are applicable to LTI systems of arbitrary dimension. We then derive necessary and sufficient conditions to ensure stabilizability of the resulting switched system (characterized primarily by simple conditions on eigenvalues), and describe an explicit procedure for designing stabilizing controllers. We then show how the newly developed control law can be applied to the problem of minimizing the maximal Lyapunov exponent of the corresponding closed-loop state trajectories, and we illustrate the closed-loop transient performance of these switched state feedback controllers via multiple examples.

  4. Adaptive set-point tracking of the Lorenz chaotic system using non-linear feedback

    Energy Technology Data Exchange (ETDEWEB)

    Haghighatdar, F. [Department of Electronic Engineering, University of Isfahan, Hezar-Jerib St., Postal code: 8174673441, Isfahan (Iran, Islamic Republic of)], E-mail: fr_haghighat@yahoo.com; Ataei, M. [Department of Electronic Engineering, University of Isfahan, Hezar-Jerib St., Postal code: 8174673441, Isfahan (Iran, Islamic Republic of)], E-mail: mataei1971@yahoo.com

    2009-05-30

    In this paper, an adaptive control method for set-point tracking of the Lorenz chaotic system by using non-linear feedback is proposed. The design procedure of the proposed controller is accomplished in two steps. At the first step, using Lyapunov's direct method, a non-linear state feedback is selected so that without any need to apply identification techniques, in despite of the uncertain parameters existence in the system state equations, the asymptotic stability of the general Lorenz system is guaranteed in a stochastic point of the manifold containing general system equilibrium points. At the second step, a linear state feedback with adaptive gain is added to the prior controller to eliminate the tracking error. In order to guarantee the system asymptotic stability at desired set-point, the indirect Lyapunov's method is used. Finally, to show the effectiveness of the proposed methodology, the simulation results of different experiments including system parameters changes and set-point variation are provided.

  5. Digital controller design: Analysis of the annular suspension pointing system. [analog controllers with feedback

    Science.gov (United States)

    Kuo, B. C.

    1978-01-01

    The analog controllers of the annular suspension pointing system are designed for control of the chi, phi sub 1, and phi sub 2 bandwidth dynamics through decoupling and pole placement. Since it is virtually impossible to find an equivalent bandwidth of the overall system and establish a general eigenvalue requirement for the system, the subsystem dynamics are decoupled through state feedback and the poles are placed simultaneously to realize the desired bandwidths for the three system components. Decoupling and pole placement are also used to design the closed-loop digital system through approximation.

  6. AN ALTERNATIVE APPROACH TO GLOBAL ROBUST OUTPUT REGULATION OF OUTPUT FEEDBACK SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Jie HUANG

    2007-01-01

    The global robust output regulation problem of the output feedback systems has been extensively studied under various assumptions of the complexity and uncertainty. All these approaches boil down to a stabilization problem of a so-called augmented extended system. This paper will describe an alternative approach which converts the original problem into a stabilization problem of a so-called extended augmented system. As the extended augmented system is somewhat simpler than the augmented extended system, this alternative approach is also simpler than the first approach.

  7. Analysis and control for a new chaotic system via piecewise linear feedback

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianxiong [Institute of Systems Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: jxzhang@tju.edu.cn; Tang Wansheng [Institute of Systems Engineering, Tianjin University, Tianjin 300072 (China)

    2009-11-30

    This paper presents a new three-dimensional chaotic system containing two system parameters and a nonlinear term in the form of arc-hyperbolic sine function. The complicated dynamics are studied by virtue of theoretical analysis, numerical simulation and Lyapunov exponents spectrum. The system proposed is converted to an uncertain piecewise linear system. Then, based on piecewise quadratic Lyapunov function technique, the global control of the new chaotic system with {alpha}-stability constraint via piecewise linear state feedback is studied, where the optimal controller maximizing the decay rate {alpha} can be obtained by solving an optimization problem under bilinear matrix inequalities (BMIs) constraints.

  8. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  9. Combined indirect and direct method for adaptive fuzzy output feedback control of nonlinear system

    Institute of Scientific and Technical Information of China (English)

    Ding Quanxin; Chen Haitong; Jiang Changsheng; Chen Zongji

    2007-01-01

    A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted.Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.

  10. Controlling chaos and synchronization for new chaotic system using linear feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Yassen, M.T. [Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)] e-mail: mtyassen@yahoo.com

    2005-11-01

    This paper is devoted to study the problem of controlling chaos for new chaotic dynamical system (four-scroll dynamical system). Linear feedback control is used to suppress chaos to unstable equilibria and to achieve chaos synchronization of two identical four-scroll systems. Routh-Hurwitz criteria is used to study the conditions of the asymptotic stability of the equilibrium points of the controlled system. The sufficient conditions for achieving synchronization of two identical four-scroll systems are derived by using Lyapunov stability theorem. Numerical simulations are presented to demonstrate the effectiveness of the proposed chaos control and synchronization schemes.

  11. Decentralized Robust Adaptive Output Feedback Stabilization for Interconnected Nonlinear Systems with Uncertainties

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2016-01-01

    Full Text Available Based on adaptive nonlinear damping, a novel decentralized robust adaptive output feedback stabilization comprising a decentralized robust adaptive output feedback controller and a decentralized robust adaptive observer is proposed for a large-scale interconnected nonlinear system with general uncertainties, such as unknown nonlinear parameters, bounded disturbances, unknown nonlinearities, unmodeled dynamics, and unknown interconnections, which are nonlinear function of not only states and outputs but also unmodeled dynamics coming from other subsystems. In each subsystem, the proposed stabilization only has two adaptive parameters, and it is not needed to generate an additional dynamic signal or estimate the unknown parameters. Under certain assumptions, the proposed scheme guarantees that all the dynamic signals in the interconnected nonlinear system are bounded. Furthermore, the system states and estimate errors can approach arbitrarily small values by choosing the design parameters appropriately large. Finally, simulation results illustrated the effectiveness of the proposed scheme.

  12. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2015-07-01

    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.

  13. A simplified adaptive neural network prescribed performance controller for uncertain MIMO feedback linearizable systems.

    Science.gov (United States)

    Theodorakopoulos, Achilles; Rovithakis, George A

    2015-03-01

    In this paper, the problem of deriving a continuous, state-feedback controller for a class of multiinput multioutput feedback linearizable systems is considered with special emphasis on controller simplification and reduction of the overall design complexity with respect to the current state of the art. The proposed scheme achieves prescribed bounds on the transient and steady-state performance of the output tracking errors despite the uncertainty in system nonlinearities. Contrary to the current state of the art, however, only a single neural network is utilized to approximate a scalar function that partly incorporates the system nonlinearities. Furthermore, the loss of model controllability problem, typically introduced owing to approximation model singularities, is avoided without attaching additional complexity to the control or adaptive law. Simulations are performed to verify and clarify the theoretical findings.

  14. Feedback in a cavity QED system for control of quantum beats

    Directory of Open Access Journals (Sweden)

    Cimmarusti A.D.

    2013-08-01

    Full Text Available Conditional measurements on the undriven mode of a two-mode cavity QED system prepare a coherent superposition of ground states which generate quantum beats. The continuous system drive induces decoherence through the phase interruptions from Rayleigh scattering, which manifests as a decrease of the beat amplitude and an increase of the frequency of oscillation. We report recent experiments that implement a simple feedback mechanism to protect the quantum beat. We continuously drive the system until a photon is detected, heralding the presence of a coherent superposition. We then turn off the drive and let the superposition evolve in the dark, protecting it against decoherence. At a later time we reinstate the drive to measure the amplitude, phase, and frequency of the beats. The amplitude can increase by more than fifty percent, while the frequency is unchanged by the feedback.

  15. Output Feedback Distributed Containment Control for High-Order Nonlinear Multiagent Systems.

    Science.gov (United States)

    Li, Yafeng; Hua, Changchun; Wu, Shuangshuang; Guan, Xinping

    2017-01-31

    In this paper, we study the problem of output feedback distributed containment control for a class of high-order nonlinear multiagent systems under a fixed undirected graph and a fixed directed graph, respectively. Only the output signals of the systems can be measured. The novel reduced order dynamic gain observer is constructed to estimate the unmeasured state variables of the system with the less conservative condition on nonlinear terms than traditional Lipschitz one. Via the backstepping method, output feedback distributed nonlinear controllers for the followers are designed. By means of the novel first virtual controllers, we separate the estimated state variables of different agents from each other. Consequently, the designed controllers show independence on the estimated state variables of neighbors except outputs information, and the dynamics of each agent can be greatly different, which make the design method have a wider class of applications. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed method.

  16. Robust Output Feedback Stabilization of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2013-01-01

    Full Text Available The magnetic suspension system (MSS is very important in many engineering applications. This paper proposes the dynamic output feedback control of a field-sensed MSS (FSMSS. Subsequently, the mathematical model of the MSS is described by discrete-time systems. Ideally, the coefficients of a nominal polynomial can precisely determine the Schur stability. But in reality, the coefficients may contain uncertainties due to reasons such as computational errors. Therefore, there is a need to address the problem of robust stability for discrete-time systems. In this paper, the size of allowable perturbation in polynomial coefficient space was estimated for the output feedback control of the MSS. The ℓ∞-norm and a lower bound for the size of the Schur stability hypercube are provided in this paper.

  17. Adaptive lag synchronization of uncertain dynamical systems with time delays via simple transmission lag feedback

    Institute of Scientific and Technical Information of China (English)

    Gu Wei-Dong; Sun Zhi-Yong; Wu Xiao-Ming; Yu Chang-Bin

    2013-01-01

    In this paper we present an adaptive scheme to achieve lag synchronization for uncertain dynamical systems with time delays and unknown parameters.In contrast to the nonlinear feedback scheme reported in the previous literature,the proposed controller is a linear one which only involves simple feedback information from the drive system with signal propagation lags.Besides,the unknown parameters can also be identified via the proposed updating laws in spite of the existence of model delays and transmission lags,as long as the linear independence condition between the related function elements is satisfied.Two examples,i.e.,the Mackey-Glass model with single delay and the Lorenz system with multiple delays,are employed to show the effectiveness of this approach.Some robustness issues are also discussed,which shows that the proposed scheme is quite robust in switching and noisy environment.

  18. Adaptive Output Feedback Sliding Mode Control for Complex Interconnected Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Van Van Huynh

    2015-01-01

    Full Text Available We extend the decentralized output feedback sliding mode control (SMC scheme to stabilize a class of complex interconnected time-delay systems. First, sufficient conditions in terms of linear matrix inequalities are derived such that the equivalent reduced-order system in the sliding mode is asymptotically stable. Second, based on a new lemma, a decentralized adaptive sliding mode controller is designed to guarantee the finite time reachability of the system states by using output feedback only. The advantage of the proposed method is that two major assumptions, which are required in most existing SMC approaches, are both released. These assumptions are (1 disturbances are bounded by a known function of outputs and (2 the sliding matrix satisfies a matrix equation that guarantees the sliding mode. Finally, a numerical example is used to demonstrate the efficacy of the method.

  19. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    Science.gov (United States)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  20. Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Matthew [Regents Of The University Of California, Riverside, CA (United States); Boriboonsomsin, Kanok [Regents Of The University Of California, Riverside, CA (United States)

    2014-12-31

    The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for driving performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used

  1. Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Wang, Wei; Tong, Shaocheng

    2017-01-10

    This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.

  2. Combined input shaping and feedback control for double-pendulum systems

    Science.gov (United States)

    Mar, Robert; Goyal, Anurag; Nguyen, Vinh; Yang, Tianle; Singhose, William

    2017-02-01

    A control system combining input shaping and feedback is developed for double-pendulum systems subjected to external disturbances. The proposed control method achieves fast point-to-point response similar to open-loop input-shaping control. It also minimizes transient deflections during the motion of the system, and disturbance-induced residual swing using the feedback control. Effects of parameter variations such as the mass ratio of the double pendulum, the suspension length ratio, and the move distance were studied via numerical simulation. The most important results were also verified with experiments on a small-scale crane. The controller effectively suppresses the disturbances and is robust to modelling uncertainties and task variations.

  3. PSO Based State Feedback Controller Design for SVC to Enhance the Stability of Power System

    Directory of Open Access Journals (Sweden)

    Saeid Jalilzadeh

    2012-08-01

    Full Text Available SVC is one of the most significant devices in FACTS technology, which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and, etc. designing a proper controller is effective in operation of SVC. In this paper, a simplified analysis of the effect of a SVC on the stability of a Single Machine Infinite Bus (SMIB system is presented. The SVC which is located at the terminal of the generator has the state feedback controller in which the coefficients of state feedback are optimized by the Particle Swarm Optimization (PSO algorithm in order to damp the Low Frequency Oscillations (LFO. The equations that describe the proposed system have been linearized, and then the optimum state feedback controller has been designed for SVC which its optimal coefficients have been earned by PSO algorithm. The system with proposed controller has been simulated for a special disturbance in nominal loading condition. Thereafter, for three states viz light loading condition, normal loading condition and heavy loading condition, to show the robustness of the proposed controller, the previous disturbance has been applied again. Then the dynamic responses of the generator have been presented. The simulation results showed that the system composed with proposed controller has a suitable operation in fast damping of oscillations of the power system. to ensure stability and tracking. Simulations is carried out to verify the theoretical results.

  4. Use of elaborate feedback and an audience-response-system in dental education.

    Science.gov (United States)

    Rahman, Alexander; Jacker-Guhr, Silke; Staufenbiel, Ingmar; Meyer, Karen; Zupanic, Michaela; Hahnemann, Merle; Lührs, Anne-Katrin; Eberhard, Jörg

    2013-01-01

    Einleitung: Die Studie soll die Frage klären, ob sich durch Anwendung von elaboriertem Feedback und einem Audience-Response-Systems (ARS) der Lernerfolg im Studienfach Zahnerhaltung signifikant verbessert. Methodik: Die Studierenden des 1. klinischen Semesters wurden in eine Studien- und eine Kontrollgruppe randomisiert eingeteilt. Die Randomisierung erfolgte unter Berücksichtigung der Faktoren Alter, Geschlecht und Note im Physikum. Im Verlauf von 10 Vorlesungen wurden pro Vorlesung 5 Multiple-Choice-Fragen zu den formulierten Lernzielen gestellt. Diese wurden unter Anwendung eines ARS von den Studierenden beantwortet. Nur die Studiengruppe erhielt sofort ein elaboriertes Feedback zu den Ergebnissen. Die am Ende durchgeführte Abschlussklausur und Evaluation sollten ermitteln, ob das elaborierte Feedback zu einem Lernerfolg führt und welchen Effekt das ARS auf die Vorlesungsatmosphäre hat. Ergebnisse: Die Ergebnisse der Abschlussklausuren ergaben keinen signifikanten Unterschied zwischen dem Lernerfolg der Studien- und der Kontrollgruppe. Schlussfolgerung: Durch das elaborierte Feedback zeigte sich in dieser Untersuchung kein Unterschied im Lernerfolg. Mit dem ARS ließ sich jedoch eine interaktivere, positivere Lernatmosphäre schaffen.

  5. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  6. An analysis of a performance feedback system: the effects of timing and feedback, public posting, and praise upon academic performance and peer interaction.

    Science.gov (United States)

    Van Houten, R; Hill, S; Parsons, M

    1975-01-01

    In the first experiment, after establishing baseline composition rates in each classroom, timing (announcing time limits) and feedback (student self-scoring) were introduced followed by the introduction, removal, and reintroduction of public posting of highest scores. Timing and feedback improved story writing performance and public posting of highest scores improved performance even further in both classrooms. Teacher praise produced further improvement in one classroom but had no effect on performance in the other. Changes in on-task behavior paralleled changes in writing rate. Comments made by children concerning their own work or work of their peers were recorded throughout the experiment. Although the baseline rate of performance comments was almost zero, the introduction of each variable markedly increased the rate of performance comments. In the second experiment, baseline rates on reading and language exercises were established in a fifth-grade classroom. The entire performance feedback system was introduced on a multiple baseline across the two behaviors and then removed during the final phase of the experiment. Introducing the system improved performance on both tasks. These results further increased the generality of some of the findings of the previous experiment and of previous research on the efficacy of the experimental package of timing, feedback, public posting, and praise.

  7. Mathematical Models of Feedback Systems for Control of Intra-Bunch Instabilities Driven by E-Clouds and TMCI

    CERN Document Server

    Rivetta, C H; Mastoridis, T; Pivi, M T F; Turgut, O; Höfle, W; Secondo, R; Vay, J L

    2011-01-01

    The feedback control of intrabunch instabilities driven by E-Clouds or strong head-tail coupling (TMCI) requires sufficient bandwidth to sense the vertical position and drive multiple sections of a nanosecond scale bunch. These requirements impose challenges and limits in the design and implementation of the feedback system. This paper presents models for the feedback subsystems: receiver, processing channel, amplifier and kicker, that take into account their frequency response and limits. These models are included in multiparticle simulation codes (WARP/CMAD/Head-Tail) and reduced mathematical models of the bunch dynamics to evaluate the impact of subsystem limitations in the bunch stabilization and emittance improvement. With this realistic model of the hardware, it is possible to analyze and design the feedback system. This research is crucial to evaluate the performance boundary of the feedback control system due to cost and technological limitations. These models define the impact of spurious perturbatio...

  8. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    Science.gov (United States)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  9. Implementation of an Automated Grading System with an Adaptive Learning Component to Affect Student Feedback and Response Time

    Science.gov (United States)

    Matthews, Kevin; Janicki, Thomas; He, Ling; Patterson, Laurie

    2012-01-01

    This research focuses on the development and implementation of an adaptive learning and grading system with a goal to increase the effectiveness and quality of feedback to students. By utilizing various concepts from established learning theories, the goal of this research is to improve the quantity, quality, and speed of feedback as it pertains…

  10. Assessing Online Textual Feedback to Support Student Intrinsic Motivation Using a Collaborative Text-Based Dialogue System: A Qualitative Study

    Science.gov (United States)

    Shroff, Ronnie H.; Deneen, Christopher

    2011-01-01

    This paper assesses textual feedback to support student intrinsic motivation using a collaborative text-based dialogue system. A research model is presented based on research into intrinsic motivation, and the specific construct of feedback provides a framework for the model. A qualitative research methodology is used to validate the model.…

  11. The role of time delay in adaptive cellular negative feedback systems.

    Science.gov (United States)

    Lapytsko, Anastasiya; Schaber, Jörg

    2016-06-07

    Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour.

  12. ON LIMITATIONS OF THE SAMPLED—DATA FEEDBACK FOR NONPARAMETRIC DYNAMICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    XUEFeng; GUOLei

    2002-01-01

    In this paper,we study a basic class of first order sampled-data control systems with unknown nonlinear structure and with sampling rate not necessarily fast enouth,aimiung at understanding the capability and limitations of the sampled-data feedback.We show that if the unknown nonlinear function has a linear growth rate with its"slope"(denoted by L) being a measure of the "size"of uncertainty,then the sampling rate should not exceed 1/L multiplied by a constant (≈7.53)for the system to be globally stabilizable by the sampled=-data feedback.If.however,the unknown nonlinear function has a growth rate faster than linear ,and if the system is disturbed by noises modeled as the standard Brownian motion,then an example is given,showing that the corresponding sampled-data system is not stabilizable by the sampled-data feedback in general ,no matter how fast the sampling rate is .

  13. Uncertainty Modeling and Robust Output Feedback Control of Nonlinear Discrete Systems: A Mathematical Programming Approach

    Directory of Open Access Journals (Sweden)

    Olav Slupphaug

    2001-01-01

    Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.

  14. Simulation of chaotic synchronization communication system based on incoherent optical feedback and injection

    Institute of Scientific and Technical Information of China (English)

    MA Jun-shan; GU Wen-hua

    2006-01-01

    In this paper,we numerically study chaotic synchronization communication system based on incoherent optical feedback and incoherent optical injection.The characteristics of the system,such as synchronization time,synchronization error,chaos shift keying encoding/decoding and modulation rate are analyzed.The results of simulation show that the system has good synchronization quality and good abilities of robust secure.The synchronization time is 1ns and the chaos shift keying encoding can reach a high rate of 1 Gbit/s.The system has a good ability of robust secure.It proves the feasibility of the optical secure communication.

  15. Motion Control of underwater vehicle-manipulator systems using feedback linearization

    Directory of Open Access Journals (Sweden)

    Ingrid Schjølberg

    1996-01-01

    Full Text Available In this paper control of underwater vehicle-manipulator systems using feedback linearization has been studied. Performance, robustness and energy consumption of the system depend on the choice of output variables, these output variables can be chosen in several ways. In this paper two alternatives have been analysed by simulations, decoupling of the manipulator end-effector velocities from the vehicle velocities and from the total system momentum. The performance is almost the same for the two choices of decoupling schemes while robustness and energy consumption of the system depend on the accuracy of the dynamic model.

  16. Stability and Performance of First-Order Linear Time-Delay Feedback Systems: An Eigenvalue Approach

    Directory of Open Access Journals (Sweden)

    Shu-An He

    2011-01-01

    Full Text Available Linear time-delay systems with transcendental characteristic equations have infinitely many eigenvalues which are generally hard to compute completely. However, the spectrum of first-order linear time-delay systems can be analyzed with the Lambert function. This paper studies the stability and state feedback stabilization of first-order linear time-delay system in detail via the Lambert function. The main issues concerned are the rightmost eigenvalue locations, stability robustness with respect to delay time, and the response performance of the closed-loop system. Examples and simulations are presented to illustrate the analysis results.

  17. Delayed Feedback Control of Bao Chaotic System Based on Hopf Bifurcation Analysis

    Directory of Open Access Journals (Sweden)

    Farhad Khellat

    2014-11-01

    Full Text Available This paper is concerned with bifurcation and chaos control in a new chaotic system recently introduced by Bao et al [9]. First a condition that the system has a Hopf bifurcation is derived. Then by applying delayed feedback controller, the chaotic system is forced to have a stable periodic orbit extracting from chaotic attractor. This is done by making Hopf bifurcation value of the open loop and the closed loop systems identical. Also by suitable tuning of the controller parameters, unstable equilibrium points become stable. Numerical simulations verify the results.

  18. Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.-H. [Department of Mechanical Engineering, HsiuPing Institute of Technology, Taichung 412, Taiwan (China)], E-mail: richard@mail.hit.edu.tw

    2009-04-15

    Liu chaotic systems exhibit two- or four-scroll attractors and are observed in a variety of engineering phenomena, including rigid body motion, brushless DC motor system and so forth. This study applies the Lyapunov stability theorem to identify the sufficient conditions for the asymptotic stability of the equilibrium points of Liu chaotic systems. A linear balanced feedback gain control method is then employed to design a controller to achieve the global synchronization of two identical four-scroll Liu chaotic systems. The feasibility and effectiveness of the proposed chaos stability and synchronization schemes are verified via numerical simulations.

  19. Development of comprehensive unattended child warning and feedback system in vehicle

    Directory of Open Access Journals (Sweden)

    Sulaiman Norizam

    2017-01-01

    Full Text Available The cases of children being trapped and suffocated in unattended vehicle keep increasing even though the awareness campaign on the safety of children in non-moving vehicle were carried out by government. Various methods were introduced by researchers to overcome this issue but yet to be effective. Among them were the usage of capacitive sensor, microwave sensor, pressure sensor and image sensor where most of the techniques or systems were applied on the child’s seat to detect the presence of baby or infant. Thus, this research is carried out to provide a comprehensive and effective detection system to detect the presence of children including infant in unattended vehicle by using the combination of human physiological signals (voice and body odor detectors with the temperature and motion sensors. Here, once the proposed system recognizes any signals that generated from voice, odor, motion and temperature detectors in vehicle’s cabin, the system then will provide effective feedback system by sending short message to the parents first. If no response received in the specified allocation time, the system then will activate the vehicle’s horn system. Finally, the system will lower down the vehicle’s window to release the toxic gas and reduce the cabin temperature. The system is in prototyping stage where every design component was evaluated individually. Besides, the overall system was successfully tested where the detection and feedback system follow the instruction given by the microcontroller.

  20. Development and Piloting of a Classroom-Focused Measurement Feedback System.

    Science.gov (United States)

    Nadeem, Erum; Cappella, Elise; Holland, Sibyl; Coccaro, Candace; Crisonino, Gerard

    2016-05-01

    The present study used a community partnered research method to develop and pilot a classroom-focused measurement feedback system (MFS) for school mental health providers to support teachers' use of effective universal and target classroom practices related to student emotional and behavioral issues. School personnel from seven urban elementary and middle school classrooms participated. Phase I involved development and refinement of the system through a baseline needs assessment and rapid-cycle feedback. Phase II involved detailed case study analysis of pre-to-post quantitative and implementation process data. Results suggest that teachers who used the dashboard along with consultation showed improvement in observed classroom organization and emotional support. Results also suggest that MFS use was tied closely to consultation dose, and that broader support at the school level was critical. Classroom-focused MFSs are a promising tool to support classroom improvement, and warrant future research focused on their effectiveness and broad applicability.

  1. State Feedback Consensus for Multi-Agent System with Multiple Time-Delays

    Directory of Open Access Journals (Sweden)

    Jia Wei

    2013-09-01

    Full Text Available In this paper, we study the multi-agent system to achieve a faster consensus with multiple time-delays under a directed asymmetric information exchange topology. We first assume that an agent processes its own state information with self-delay and receives state information from its neighbors with communication delays. Based on state proportion derivative feedback, the improved consensus protocol can accelerate the system to achieve a consensus. A sufficient condition for reaching consensus is then derived based on the Nyquist stability criterion and frequency domain analysis. In addition, a specific form of consensus equilibrium is obtained which is influenced by the initial states of agents, time-delays and state feedback intensity. Finally, simulations are presented to verify the validity of the theoretical results.

  2. Predictor-Based Neural Dynamic Surface Control for Uncertain Nonlinear Systems in Strict-Feedback Form.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Wang, Jun

    2016-06-22

    This paper presents a predictor-based neural dynamic surface control (PNDSC) design method for a class of uncertain nonlinear systems in a strict-feedback form. In contrast to existing NDSC approaches where the tracking errors are commonly used to update neural network weights, a predictor is proposed for every subsystem, and the prediction errors are employed to update the neural adaptation laws. The proposed scheme enables smooth and fast identification of system dynamics without incurring high-frequency oscillations, which are unavoidable using classical NDSC methods. Furthermore, the result is extended to the PNDSC with observer feedback, and its robustness against measurement noise is analyzed. Numerical and experimental results are given to demonstrate the efficacy of the proposed PNDSC architecture.

  3. Opportunistic Scheduling and Beamforming for MIMO-OFDMA Downlink Systems with Reduced Feedback

    CERN Document Server

    Pun, Man-On; Poor, H Vincent

    2008-01-01

    Opportunistic scheduling and beamforming schemes with reduced feedback are proposed for MIMO-OFDMA downlink systems. Unlike the conventional beamforming schemes in which beamforming is implemented solely by the base station (BS) in a per-subcarrier fashion, the proposed schemes take advantages of a novel channel decomposition technique to perform beamforming jointly by the BS and the mobile terminal (MT). The resulting beamforming schemes allow the BS to employ only {\\em one} beamforming matrix (BFM) to form beams for {\\em all} subcarriers while each MT completes the beamforming task for each subcarrier locally. Consequently, for a MIMO-OFDMA system with $Q$ subcarriers, the proposed opportunistic scheduling and beamforming schemes require only one BFM index and $Q$ supportable throughputs to be returned from each MT to the BS, in contrast to $Q$ BFM indices and $Q$ supportable throughputs required by the conventional schemes. The advantage of the proposed schemes becomes more evident when a further feedback ...

  4. Linear stable unity-feedback system - Necessary and sufficient conditions for stability under nonlinear plant perturbations

    Science.gov (United States)

    Desoer, C. A.; Kabuli, M. G.

    1989-01-01

    The authors consider a linear (not necessarily time-invariant) stable unity-feedback system, where the plant and the compensator have normalized right-coprime factorizations. They study two cases of nonlinear plant perturbations (additive and feedback), with four subcases resulting from: (1) allowing exogenous input to Delta P or not; 2) allowing the observation of the output of Delta P or not. The plant perturbation Delta P is not required to be stable. Using the factorization approach, the authors obtain necessary and sufficient conditions for all cases in terms of two pairs of nonlinear pseudostate maps. Simple physical considerations explain the form of these necessary and sufficient conditions. Finally, the authors obtain the characterization of all perturbations Delta P for which the perturbed system remains stable.

  5. Feedback Scheduling of Model-based Networked Control Systems with Flexible Workload

    Institute of Scientific and Technical Information of China (English)

    Xian-Ming Tang; Jin-Shou Yu

    2008-01-01

    In this paper, a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints. The state update time is adjusted according to the real-time network congestion situation. State observer is used under the situation where the state of the controlled plant could not be acquired. The stability criterion of the proposed structure is proved with time-varying state update time. On the basis of the stability of the novel system structure, the compromise between the control performance and the network utilization is realized by using feedback scheduler.Examples are provided to show the advantage of the proposed control structure.

  6. Analysis of DSP-based longitudinal feedback system: Trials at SPEAR and ALS

    Energy Technology Data Exchange (ETDEWEB)

    Hindi, H.; Eisen, N.; Fox, J.; Linscott, I.; Oxoby, G.; Sapozhnikov, L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Serio, M. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1993-04-01

    Recently a single-channel prototype of the proposed PEP-II longitudinal feedback system was successfully demonstrated at SPEAR and ALS on single-bunch beams. The phase oscillations are detected via a wide-band pick up. The feedback signal is then computed using a digital signal processor (DSP) and applied to the beam by phase modulating the rf. We analyze results in the frequency- and the time-domain and show how the closed-loop transfer functions can be obtained rigorously by proper modeling of the various components of this hybrid continuous/digital system. The technique of downsampling was used in the experiments to reduce the number of computations and allowed the use of the same digital hardware on both machines.

  7. Moment Stability of the Critical Case of PWM Feedback Systems with Stochastic Perturbations

    Directory of Open Access Journals (Sweden)

    Zhong Zhang

    2012-01-01

    Full Text Available This paper further studies the moment stability of pulse-width-modulated (PWM feedback system which is subjected to multiplicative and additive random disturbance modeled by the derivative of Wiener process. Different from the existing investigation, we focus on its critical case. The linear plant considered herein is assumed to be critically stable; that is, the plant has one and only one pole at the origin, and the rest of the poles are left half of complex plane. We establish several globally asymptotically stability criteria for such PWM feedback systems and then propose an algorithm to calculate the stability bound effectively. Furthermore, we present two numerical examples to show the effectiveness of the theoretical results.

  8. Rotorcraft control system design for uncertain vehicle dynamics using quantitative feedback theory

    Science.gov (United States)

    Hess, R. A.

    1994-01-01

    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which must meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. This theory is applied to the design of the longitudinal flight control system for a linear model of the BO-105C rotorcraft. Uncertainty in the vehicle model is due to the variation in the vehicle dynamics over a range of airspeeds from 0-100 kts. For purposes of exposition, the vehicle description contains no rotor or actuator dynamics. The design example indicates the manner in which significant uncertainty exists in the vehicle model. The advantage of using a sequential loop closure technique to reduce the cost of feedback is demonstrated by example.

  9. Adaptive output feedback control for nonlinear time-delay systems using neural network

    Institute of Scientific and Technical Information of China (English)

    Weisheng CHEN; Junmin LI

    2006-01-01

    This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on LyapunovKrasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved.The feasibility is investigated by two illustrative simulation examples.

  10. Global Practical Tracking by Output Feedback for Nonlinear Systems with Unknown Growth Rate and Time Delay

    Science.gov (United States)

    Yan, Xuehua

    2014-01-01

    This paper is the further investigation of work of Yan and Liu, 2011, and considers the global practical tracking problem by output feedback for a class of uncertain nonlinear systems with not only unmeasured states dependent growth but also time-varying time delay. Compared with the closely related works, the remarkableness of the paper is that the time-varying time delay and unmeasurable states are permitted in the system nonlinear growth. Motivated by the related tracking results and flexibly using the ideas and techniques of universal control and dead zone, an adaptive output-feedback tracking controller is explicitly designed with the help of a new Lyapunov-Krasovskii functional, to make the tracking error prescribed arbitrarily small after a finite time while keeping all the closed-loop signals bounded. A numerical example demonstrates the effectiveness of the results. PMID:25276859

  11. Robust multi-objective optimization of state feedback controllers for heat exchanger system with probabilistic uncertainty

    Science.gov (United States)

    Lotfi, Babak; Wang, Qiuwang

    2013-07-01

    The performance of thermal control systems has, in recent years, improved in numerous ways due to developments in control theory and information technology. The shell-and-tube heat exchanger (STHX) is a medium where heat transfer process occurred. The accuracy of the heat exchanger depends on the performance of both elements. Therefore, both components need to be controlled in order to achieve a substantial result in the process. For this purpose, the actual dynamics of both shell and tube of the heat exchanger is crucial. In this paper, optimal reliability-based multi-objective Pareto design of robust state feedback controllers for a STHX having parameters with probabilistic uncertainties. Accordingly, the probabilities of failure of those objective functions are also considered in the reliability-based design optimization (RBDO) approach. A new multi-objective uniform-diversity genetic algorithm (MUGA) is presented and used for Pareto optimum design of linear state feedback controllers for STHX problem. In this way, Pareto front of optimum controllers is first obtained for the nominal deterministic STHX using the conflicting objective functions in time domain. Such Pareto front is then obtained for STHX having probabilistic uncertainties in its parameters using the statistical moments of those objective functions through a Hammersley Sequence Sampling (HSS) approach. It is shown that multi-objective reliability-based Pareto optimization of the robust state feedback controllers using MUGA includes those that may be obtained by various crisp threshold values of probability of failures and, thus, remove the difficulty of selecting suitable crisp values. Besides, the multi-objective Pareto optimization of such robust feedback controllers using MUGA unveils some very important and informative trade-offs among those objective functions. Consequently, some optimum robust state feedback controllers can be compromisingly chosen from the Pareto frontiers.

  12. Quantum control of atomic systems by time resolved homodyne detection and feedback

    OpenAIRE

    Hofmann, Holger Friedrich; Mahler, Günter; Hess, Ortwin

    1997-01-01

    We investigate the possibilities of preserving and manipulating the coherence of atomic two-level systems by ideal projective homodyne detection and feedback. For this purpose, the photon emission process is described on time scales much shorter than the lifetime of the excited state using a model based on Wigner- Weisskopf theory. The backaction of this emission process is analytically described as a quantum diffusion of the Bloch vector. It is shown that the evolution of the atomic wave fun...

  13. Noise-Induced Phase Locking and Frequency Mixing in an Optical Bistable System with Delayed Feedback

    Science.gov (United States)

    Misono, Masatoshi; Miyakawa, Kenji

    2011-11-01

    The interplay between stochastic resonance (SR) and coherence resonance (CR) is experimentally studied in an optical bistable system with a time-delayed feedback loop. We demonstrate that the phase of the noise-induced motion is locked to that of the periodic input when the ratio of their frequencies is a simple rational number. We also demonstrate that the interplay between SR and CR generates frequency-mixed modes, and that the efficiency of frequency mixing is enhanced by the optimum noise.

  14. Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics

    Institute of Scientific and Technical Information of China (English)

    Ming-Zhe Hou; Ai-Guo Wu; Guang-Ren Dua

    2008-01-01

    The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condition than the existing triangular- type condition. Under the assumption that the input unmodeled dynamics is minimum-phase and of relative degree zero, a dynamic output compensator is explicitly constructed based on the nonseparation principle. An example illustrates the usefulness of the proposed method.

  15. Static Output Feedback H-infinity Control for a Fractional-Order Glucose-Insulin System

    OpenAIRE

    2015-01-01

    This paper presents the H∞ static output feedback control of nonlinear fractional-order systems. Based on the extended bounded real lemma, the H∞ control is formulated and sufficient conditions are derived in terms of linear matrix inequalities (LMIs) formulation by using the fractional Lyapunov direct method where the fractional-order α belongs to 0 < α < 1. The control approach is finally applied to the regulation of the glucose level in diabetes type 1 treatment. Therefore, it is attemp...

  16. Stabilization of a class of discrete-time switched systems via observer-based output feedback

    Institute of Scientific and Technical Information of China (English)

    Jiao LI; Yuzhong LIU

    2007-01-01

    In this paper, observer-based static output feedback control problem for discrete-time uncertain switched systems is investigated under an arbitrary switching rule. The main method used in this note is combining switched. Lyapunov function (SLF) method with Finsler's Lemma. Based on linear matrix inequality (LMI) a less conservative stability condition is established and this condition allows extra degree of freedom for stability analysis. Finally, a simulation example is given to illustrate the efficiency of the result.

  17. Feedforward and feedback optimal control for linear time-varying systems with persistent disturbances

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The optimal control problem was studied for linear time-varying systems, which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion, we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable, efficient and robust to reject the external disturbances.

  18. Compensation for time-delayed feedback bang-bang control of quasi-integrable Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback bang-bang control is first introduced. Then, two time delay compensation methods, namely the method of changing control force amplitude (CFA) and the method of changing control delay time (CDT), are proposed. The conditions applicable to each compensation method are discussed. Finally, an example is worked out in detail to illustrate the application and effectiveness of the proposed methods and the two compensation methods in combination.

  19. Incomplete state feedback for time delay systems: observer applications in multidelay compensation

    Energy Technology Data Exchange (ETDEWEB)

    Ogunnaike, B.A.; Ray, W.H.

    1984-09-01

    This paper demonstrates how a recently developed observer for time delay systems may be used to estimate needed state variables for implementation of multivariable time delay compensation. The general results are illustrated by an example of a multireactor plant in which only one reactor concentration can be measured. The observer worked well in simulation for both multivariable PID control and multidelay compensated PID control and allowed both schemes to function with estimated state variables in the feedback loop. 16 references, 5 figures.

  20. A new role-and-feedback system for the supervisor and the organization.

    Science.gov (United States)

    MacStravic, R E

    1990-01-01

    Changes in industry in general and in health care are forcing changes in organizational structures and in people. A new role for supervisors is being demanded as layers of management are reduced to cut costs and simplify operations. The new supervisor will have to be a leader and decisionmaker. The feedback system suggested here provides a mechanism for ensuring that supervisors' leadership is going in the right direction and that their decisions are having the desired effects.

  1. Model-Based State Feedback Controller Design for a Turbocharged Diesel Engine with an EGR System

    Directory of Open Access Journals (Sweden)

    Tianpu Dong

    2015-05-01

    Full Text Available This paper describes a method for the control of transient exhaust gas recirculation (EGR systems. Firstly, a state space model of the air system is developed by simplifying a mean value model. The state space model is linearized by using linearization theory and validated by the GT-Power data with an operating point of the diesel engine. Secondly, a state feedback controller based on the intake oxygen mass fraction is designed for EGR control. Since direct measurement of the intake oxygen mass fraction is unavailable on the engine, the estimation method for intake oxygen mass fraction has been proposed in this paper. The control strategy is analyzed by using co-simulation with the Matlab/Simulink and GT-Powers software. Finally, the whole control system is experimentally validated against experimental data of a turbocharged diesel engine. The control effect of the state feedback controller compared with PID controller proved to be further verify the feasibility and advantages of the proposed state feedback controller.

  2. Toward an artificial sensory feedback system for prosthetic mobility rehabilitation: Examination of sensorimotor responses

    Directory of Open Access Journals (Sweden)

    Aman Sharma, MHSc

    2014-10-01

    Full Text Available People with lower-limb amputation have reduced mobility due to loss of sensory information, which may be restored by artificial sensory feedback systems built into prostheses. For an effective system, it is important to understand how humans sense, interpret, and respond to the feedback that would be provided. The goal of this study was to examine sensorimotor responses to mobility-relevant stimuli. Three experiments were performed to examine the effects of location of stimuli, frequency of stimuli, and means for providing the response. Stimuli, given as vibrations, were applied to the thigh region, and responses involved leg movements. Sensorimotor reaction time (RT was measured as the duration between application of the stimulus and initiation of the response. Accuracy of response was also measured. Overall average RTs for one response option were 0.808 +/– 0.142 s, and response accuracies were >90%. Higher frequencies (220 vs 140 Hz of vibration stimulus provided in anterior regions of the thigh produced the fastest RTs. When participants were presented with more than one stimulus and response option, RTs increased. Findings suggest that long sensorimotor responses may be a limiting factor in the development of an artificial feedback system for mobility rehabilitation applications; however, feed-forward techniques could potentially help to address these limitations

  3. Global stabilisation for a class of uncertain nonlinear time-delay systems by dynamic state and output feedback

    Science.gov (United States)

    Chai, Lin; Qian, Chunjiang

    2015-06-01

    This paper investigates the design problem of constructing the state and output feedback stabilisation controller for a class of uncertain nonlinear systems subject to time-delay. First, a dynamic linear state feedback control law with an adaptive strategy is developed to globally stabilise the uncertain nonlinear time-delay system under a lower-triangular higher-order growth condition. Then, one more challenging problem of the adaptive output feedback stabilisation is addressed, which can globally stabilise the time-delay system when the unmeasurable states linearly grow with rate functions consisting of higher-order output.

  4. A Self-regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning

    Science.gov (United States)

    Benazet, Jean-Denis; Bischofberger, Mirko; Tiecke, Eva; Gonalves, Alexandre; Martin, James F.; Zuniga, Aime; Naef, Felix; Zeller, Rolf

    Developmental pathways need to be robust against environmental and genetic variation to enable reliable morphogenesis. Here, we take a systems biology approach to explain how robustness is achieved in the developing mouse limb, a classical model of organogenesis. By combining quantitative genetics with computational modeling we established a computational model of multiple interlocked feedback modules, involving sonic hedgehog (SHH) morphogen, fibroblast growth factor (FGFs) signaling, bone morphogenetic protein (BMP) and its antagonist GREM1. Earlier modeling work had emphasized the versatile kinetic characteristics of interlocked feedback loops operating at different time scales. Here we develop and then validate a similar computational model to show how BMP4 first initiates and SHH then propagates feedback in the network through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to a slower SHH/GREM1/FGF feedback loop. Simulated gene expression profiles modeled normal limb development as well those of single-gene knockouts. Sensitivity analysis showed how the model was robust and insensitive to variability in parameters. A surprising prediction of the model was that an early Bmp4 signal is essential to kick-start Grem1 expression and the digit specification system. We experimentally validated the prediction using inducible alleles and showed that early, but not late, removal of Bmp4 dramatically disrupted limb development. Sensitivity analysis showed how robustness emerges from this circuitry. This study shows how modeling and computation can help us understand how self-regulatory signaling networks achieve robust regulation of limb development, by exploiting interconnectivity among the three signaling pathways. We expect that similar computational analyses will shed light on the origins of robustness in other developmental systems, and I will discuss some recent examples from

  5. Finite-time stabilization for a class of stochastic nonlinear systems via output feedback.

    Science.gov (United States)

    Zha, Wenting; Zhai, Junyong; Fei, Shumin; Wang, Yunji

    2014-05-01

    This paper investigates the problem of global finite-time stabilization in probability for a class of stochastic nonlinear systems. The drift and diffusion terms satisfy lower-triangular or upper-triangular homogeneous growth conditions. By adding one power integrator technique, an output feedback controller is first designed for the nominal system without perturbing nonlinearities. Based on homogeneous domination approach and stochastic finite-time stability theorem, it is proved that the solution of the closed-loop system will converge to the origin in finite time and stay at the origin thereafter with probability one. Two simulation examples are presented to illustrate the effectiveness of the proposed design procedure.

  6. Controlling a time-delay system using multiple delay feedback control

    Institute of Scientific and Technical Information of China (English)

    Qi Wei; Zhang Yan; Wang Ying-Hai

    2007-01-01

    In this paper multiple delay feedback control (MDFC) with different and independent delay times is shown to be an efficient method for stabilizing fixed points in finite-dimensional dynamical systems. Whether MDFC can be applied to infinite-dimensional systems has been an open question. In this paper we find that for infinite-dimensional systems modelled by delay differential equations, MDFC works well for stabilizing (unstable) steady states in long-, moderate-and short-time delay regions, in particular for the hyperchaotic case.

  7. Adaptive Compensation of Unknown Actuator Failures for Strict-feedback Systems

    Directory of Open Access Journals (Sweden)

    Jianping. Cai

    2011-08-01

    Full Text Available Actuator failures are inevitable in practice especially in complex systems. The unknown failure may cause instability and catastrophic accidents during operation of control systems. A state feedback control scheme is proposed by using backstepping techniques. Compared with exist results, The uncertainties caused by total failure are seen as the bounded term and an estimator is designed to estimate its upper bound. The stability of closed loop system and output tracking performance can be guaranteed by our control law and corresponding update laws of uncertain parameters.

  8. Comparison of Multiple-Microphone and Single-Loudspeaker Adaptive Feedback/Echo Cancellation Systems

    DEFF Research Database (Denmark)

    Guo, Meng; Elmedyb, Thomas Bo; Jensen, Søren Holdt;

    2011-01-01

    Recently, we introduced a frequency domain measure - the power transfer function - to predict the convergence rate, system stability bound and the steady-state behavior across time and frequency of a least mean square based feedback/echo cancellation algorithm in a general multiple......-microphone and single-loudspeaker system. In this work, we extend the theoretical analysis to the normalized least mean square and recursive least squares algorithms. Furthermore, we compare and discuss the system behaviors in terms of the power transfer function for all three adaptive algorithms....

  9. Feedback diagonal canonical form and its application to stabilization of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    CHENG Daizhan; HU Qingxi; QIN Huashu

    2005-01-01

    This paper considers the problem of stabilization of a class of nonlinear systems, which are possibly of non-minimum phase. A new feedback-equivalent canonical form, called diagonal normal form, of linear control systems is proposed. Using it, the corresponding normal form of affine nonlinear control systems is obtained. Based on this new normal form and the design technique of center manifold, a new constructing method for stabilizing control is presented. Certain examples are included to demonstrate the design strategy of stabilizers.

  10. Feedback control of time-delay systems with bounded control and state

    Directory of Open Access Journals (Sweden)

    M. Dambrine

    1995-01-01

    Full Text Available This paper is concerned with the problem of stabilizing linear time-delay systems under state and control linear constraints. For this, necessary and sufficient conditions for a given non-symmetrical polyhedral set to be positively invariant are obtained. Then existence conditions of linear state feedback control law respecting the constraints are established, and a procedure is given in order to calculate such a controller. The paper concerns memoryless controlled systems but the results can be applied to cases of delayed controlled systems. An example is given.

  11. Feedback Control System for Antenna Phase Difference in the LHCD Experiments

    Institute of Scientific and Technical Information of China (English)

    Jiang Min; Kuang Guangli; Shan Jiafang; Lin Jian'an; Kong Jun; HT-7 Team

    2005-01-01

    It is well accepted that lower hybrid current drive (LHCD) is the most efficient method for non-inductive current drive in fusion devices and the effect of the current drive is dependent on not only microwave power but also its grill phase shift. This paper presents a new kind of feedback control system for antenna phase difference in LHCD experiments. In this high-speed control system, a lot of new technologies and methods are incorporated. The results of the experiments show a very good agreement with the system design.

  12. Sinusoidal phase-modulating fiber-optic interferometer fringe with a feedback control system.

    Science.gov (United States)

    Lv, Changrong; Duan, Fajie; Bo, En; Duan, Xiaojie; Feng, Fan; Fu, Xiao

    2014-09-20

    A displacement measurement system using a fiber-optic interferometer fringe projector with a feedback control system is presented and demonstrated. The system utilizes the integrating bucket method to detect the desired phase or the displacement and Fresnel reflection signal to realize measurement of the disturbance and feed it back to the modulated signal of the laser at the same time. The continuous signal truly reflects the error information, as the output light and reflected light share the same optical path. Practical experiments validate the feasibility of this method.

  13. Study of the DEF Feedback Control System in AC Operation of Superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LUO Jiarong; YUAN Qiping; XU Congdong

    2007-01-01

    AC operation with multiple full cycles has been successfully performed on the superconducting tokamak HT-7. In the experiment, it was discovered that the saturation of the transformer magnetic flux with DEF, a signal name, was one of key aspects that affected the AC operation. The conditions of DEF were examined through the DEF feedback control system. By controlling the working patterns of the subsystems, namely the poloidal field control system and density control system, it was guaranteed that DEF would remain in the non-saturated status.

  14. Robust adaptive fuzzy control for a class of perturbed pure-feedback nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Jianjiang YU; Tianping ZHANG; Haijun GU

    2004-01-01

    A new design scheme of direct adaptive fuzzy controller for a class of perturbed pure-feedback nonlinear systems is proposed. The design is based on backstepping and the approximation capability of the first type fuzzy systems. A continuous robust term is adopted to minif-y the influence of modeling errors or disturbances. By introducing the modified integral-type Lyapunov function, the approach is able to avoid the requirement of the upper bound of the first time derivation of the high frequency control gain. Through theoretical analysis, the closed-loop control system is proven to be semi-globally uniformly ultimately bounded, with tracking error converging to a residual set.

  15. Adaptive Feedback Control for Chaos Control and Synchronization for New Chaotic Dynamical System

    Directory of Open Access Journals (Sweden)

    M. M. El-Dessoky

    2012-01-01

    Full Text Available This paper investigates the problem of chaos control and synchronization for new chaotic dynamical system and proposes a simple adaptive feedback control method for chaos control and synchronization under a reasonable assumption. In comparison with previous methods, the present control technique is simple both in the form of the controller and its application. Based on Lyapunov's stability theory, adaptive control law is derived such that the trajectory of the new system with unknown parameters is globally stabilized to the origin. In addition, an adaptive control approach is proposed to make the states of two identical systems with unknown parameters asymptotically synchronized. Numerical simulations are shown to verify the analytical results.

  16. Output Feedback Control for Couple-Group Consensus of Multiagent Systems

    Directory of Open Access Journals (Sweden)

    Huanyu Zhao

    2014-01-01

    Full Text Available This paper deals with the couple-group consensus problem for multiagent systems via output feedback control. Both continuous- and discrete-time cases are considered. The consensus problems are converted into the stability problem of the error systems by the system transformation. We obtain two necessary and sufficient conditions of couple-group consensus in different forms for each case. Two different algorithms are used to design the control gains for continuous- and discrete-time case, respectively. Finally, simulation examples are given to show the effectiveness of the proposed results.

  17. The Optimal Control for the Output Feedback Stochastic System at the Risk-Sensitive Cost

    Institute of Scientific and Technical Information of China (English)

    戴立言; 潘子刚; 施颂椒

    2003-01-01

    The optimal control of the partially observable stochastic system at the risk-sensitive cost is considered in this paper. The system dynamics has a general correlation between system and measurement noise. And the risk-sensitive cost contains a general quadratic term (with cross terms and extra linear terms). The explicit solution of such a problem is presented here using the output feedback control method. This clean and direct derivation enables one to convert such partial observable problems into the equivalent complete observable control problems and use the routine ways to solve them.

  18. Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems

    CERN Document Server

    Zhang, Guofeng

    2010-01-01

    The purpose of this paper is to study and design direct and indirect couplings for use in coherent feedback control of a class of linear quantum stochastic systems. A general physical model for a nominal linear quantum system coupled directly and indirectly to external systems is presented. Fundamental properties of stability, dissipation, passivity, and gain for this class of linear quantum models are presented and characterized using complex Lyapunov equations and linear matrix inequalities (LMIs). Coherent $H^\\infty$ and LQG synthesis methods are extended to accommodate direct couplings using multistep optimization. Examples are given to illustrate the results.

  19. Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    李海燕; 胡云安

    2011-01-01

    A certain backstepping control is proposed for synchronization of a class of hyper-chaotic systems.Only two control inputs are used to realize synchronization between hyper-chaotic systems,and the control avoids the possible singularity in the virtual control design.In addition,the adaptive backstepping control is proposed for the synchronization when the system parameters are unknown.The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form.Numerical simulations are given to demonstrate the effciency of the proposed control schemes.%A certain backstepping control is proposed for synchronization of a class of hyper-chaotic systems. Only two control inputs are used to realize synchronization between hyper-chaotic systems, and the control avoids the possible singularity in the virtual control design. In addition, the adaptive backstepping control is proposed for the synchronization when the system parameters are unknown. The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form. Numerical simulations are given to demonstrate the efficiency of the proposed control schemes.

  20. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  1. Analysing tutor feedback to students: first steps towards constructing an electronic monitoring system

    Directory of Open Access Journals (Sweden)

    Denise Whitelock

    2003-12-01

    Full Text Available Virtual Learning Environments provide the possibility of offering additional support to tutors, monitors and students in writing and grading essays and reports. They enable monitors to focus on the assignments that need most attention. This paper reports the findings from phase one of a feasibility study to assist the monitoring of student essays. It analyses tutor comments from electronically marked assignments and investigates how they match the mark awarded to each essay by the tutor. This involved carrying out a category analysis of the tutors' feedback to the students using Bales's 'interactional categories' as a theoretical basis. The advantage of this category system is that it distinguishes between task-orientated contributions, and the 'socio-emotive' element used by tutors to maintain student motivation. This reveals both how the tutor makes recommendations to improve the assignment content, and how they provide emotional support to students. Bales's analysis was presented to a group of tutors who felt an electronic feedback system based on this model would help them to get the right balance of responses to their students. These findings provide a modest start to designing a model of feedback for tutors of distance education students. Future work will entail refining these categories and testing this model with a larger sample from a different subject domain.

  2. Evaluation of a visual feedback system in gait retraining: a pilot study.

    Science.gov (United States)

    Hamacher, Daniel; Bertram, Dietrich; Fölsch, Cassandra; Schega, Lutz

    2012-06-01

    Abnormal gait pattern of the frontal plane (i.e. Duchenne gait and Trendelenburg gait) may be caused by a variety of diseases. The aim of this pilot study was to evaluate the instantaneous effect of a visual feedback system on frontal plane pelvis and trunk movements in order to use it in patients with THR in subsequent studies. A total of 24 women (45-65 years) were included in the study. According to acute functional impairments the subjects were assigned to the control group (CG, no gait disorders, n=15, age=59±11 years, BMI=27±4) or to the intervention group (IG, n=9, age=61±4, BMI=29±5), respectively. First, in Measurement 1 (M1) kinematic reference values were captured in a standardized clinical gait analysis (MVN, XSens). Afterwards, the influence of a visual real-time feedback on gait pattern was examined while using the feedback system (M2). While there was a significant difference of IG vs. CG in M1 in the mean inclination regarding pelvis and trunk movements, this was not detected in M2. Therefore it is concluded, especially in subjects with abnormal gait pattern, that the visualization leads to an improvement of the movement pattern of pelvis and trunk in the frontal plane while using the device.

  3. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  4. Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis

    CERN Document Server

    Combes, Joshua; Jacobs, Kurt; O'Connor, Anthony J

    2010-01-01

    Rapid-purification by feedback --- specifically, reducing the mean impurity faster than by measurement alone --- can be achieved by making the eigenbasis of the density matrix to be unbiased relative to the measurement basis. Here we further examine the protocol introduced by Combes and Jacobs [Phys.~Rev.~Lett.~{\\bf 96}, 010504 (2006)] involving continuous measurement of the observable $J_z$ for a $D$-dimensional system. We rigorously re-derive the lower bound $(2/3)(D+1)$ on the achievable speed-up factor, and also an upper bound, namely $D^2/2$, for all feedback protocols that use measurements in unbiased bases. Finally we extend our results to $n$ independent measurements on a register of $n$ qubits, and derive an upper bound on the achievable speed-up factor that scales linearly with $n$.

  5. Output feedback model matching in linear impulsive systems with control feedthrough: a structural approach

    Science.gov (United States)

    Zattoni, Elena

    2017-01-01

    This paper investigates the problem of structural model matching by output feedback in linear impulsive systems with control feedthrough. Namely, given a linear impulsive plant, possibly featuring an algebraic link from the control input to the output, and given a linear impulsive model, the problem consists in finding a linear impulsive regulator that achieves exact matching between the respective forced responses of the linear impulsive plant and of the linear impulsive model, for all the admissible input functions and all the admissible sequences of jump times, by means of a dynamic feedback of the plant output. The problem solvability is characterized by a necessary and sufficient condition. The regulator synthesis is outlined through the proof of sufficiency, which is constructive.

  6. Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction.

    Science.gov (United States)

    Hua, Chang-Chun; Wang, Qing-Guo; Guan, Xin-Ping

    2009-04-01

    In this paper, the robust-control problem is investigated for a class of uncertain nonlinear time-delay systems via dynamic output-feedback approach. The considered system is in the strict-feedback form with unknown control direction. A full-order observer is constructed with the gains computed via linear matrix inequality at first. Then, with the bounds of uncertain functions known, we design the dynamic output-feedback controller such that the closed-loop system is asymptotically stable. Furthermore, when the bound functions of uncertainties are not available, the adaptive fuzzy-logic system is employed to approximate the uncertain function, and the corresponding output-feedback controller is designed. It is shown that the resulting closed-loop system is stable in the sense of semiglobal uniform ultimate boundedness. Finally, simulations are done to verify the feasibility and effectiveness of the obtained theoretical results.

  7. [The effectiveness of cavity preparation training using a virtual reality simulation system with or without feedback].

    Science.gov (United States)

    Yasukawa, Yuriko

    2009-06-01

    The aims of this research were to examine the effectiveness of feedback (FB) study of cavity preparation using a virtual reality system (VRS) and to discuss the evidence from an educational standpoint Thirty-nine dental undergraduate students of the fifth grade of Tokyo Medical and Dental University were randomly divided into the FR group and no-FR group (FB group n=21, no-FR group n=18). All subjects of each group performed cavity preparation of class II on the lower left first molar using VRS (DentSim) four times every week (EXO-3). At session EXO, all subjects performed a pre-test to assess their basic skill leve. At sessions EX1 and EX2, the FR group received feedback from the instructor based on a computer-assessment system. The no-FR group practiced their self-judgment without any feedback. At the last session, EX3, the preparation test was administered. All cavity preparations were graded by the VRS. The results showed that the FR group obtained significantly higher scores than the no-FR group, such as total score, outline shape, outline centralization, outline smoothness, wall incline, wall smoothness, proximal clearance, and box width. By session EX2, the FR group tended to spend longer preparation time than the no-FR group, however, at session EX3, there was no difference between both groups. These resdlts confirmed the effectiveness of cavity preparation with feedback study using VRS. It is suggested that this method of learning cavity preparation techniques is suitable for novice undergraduate dental students at the initial stage of cavity preparation practice.

  8. Conversion of linear time-invariant time-delay feedback systems into delay-differential equations with commensurate delays

    Science.gov (United States)

    Yamazaki, Tatsuya; Hagiwara, Tomomichi

    2014-08-01

    A new stability analysis method of time-delay systems (TDSs) called the monodromy operator approach has been studied under the assumption that a TDS is represented as a time-delay feedback system consisting of a finite-dimensional linear time-invariant (LTI) system and a pure delay. For applying this approach to TDSs described by delay-differential equations (DDEs), the problem of converting DDEs into representation as time-delay feedback systems has been studied. With regard to such a problem, it was shown that, under discontinuous initial functions, it is natural to define the solutions of DDEs in two different ways, and the above conversion problem was solved for each of these two definitions. More precisely, the solution of a DDE was represented as either the state of the finite-dimensional part of a time-delay feedback system or a part of the output of another time-delay feedback system, depending on which definition of the DDE solution one is talking about. Motivated by the importance in establishing a thorough relationship between time-delay feedback systems and DDEs, this paper discusses the opposite problem of converting time-delay feedback systems into representation as DDEs, including the discussions about the conversion of the initial conditions. We show that the state of (the finite-dimensional part of) a time-delay feedback system can be represented as the solution of a DDE in the sense of one of the two definitions, while its 'essential' output can be represented as that of another DDE in the sense of the other type of definition. Rigorously speaking, however, it is also shown that the latter representation is possible regardless of the initial conditions, while some initial condition could prevent the conversion into the former representation. This study hence establishes that the representation of TDSs as time-delay feedback systems possesses higher ability than that with DDEs, as description methods for LTI TDSs with commensurate delays.

  9. Generating chaos in the sense of Devaney via decentralized feedback control from a stable Takagi-Sugeno fuzzy system

    Institute of Scientific and Technical Information of China (English)

    Lu Jun-Guo

    2005-01-01

    The problem of making a stable Takagi-Sugeno (TS) fuzzy system chaotic in the sense of Devaney by using decentralized state feedback control is studied. The proposed decentralized feedback controller is a decentralized linear feedback controller composed of the overflow nonlinear function of the 2's complement arithmetic. The overflow nonlinearity of the 2's complement arithmetic results in a rather complex dynamics. We apply the Shi-Chen theorem to mathematically prove that the controlled system is indeed chaotic in the sense of Devaney. In particular, an explicit formula for the computation of chaotification parameters is also obtained. A numerical example is used to visualize and illustrate the theoretical results.

  10. Simulation Results of a Feedback Control System to Damp Electron Cloud Single-Bunch Transverse Instabilities in the CERN SPS

    CERN Document Server

    Secondo, R; Venturini, M; Fox, J D; Rivetta, C H; Höfle, W

    2011-01-01

    Transverse Single-Bunch Instabilities due to Electron Cloud effect are limiting the operation at high current of the SPS at CERN. Recently a high-bandwidth Feedback System has been proposed as a possible solution to stabilize the beam and is currently under study. We analyze the dynamics of the bunch actively damped with a simple model of the Feedback in the macro-particle code WARP, in order to investigate the limitations of the System such as the minimum amount of power required to maintain stability. We discuss the feedback model, report on simulation results and present our plans for further development of the numerical model.

  11. Broadband feedback systems for the damping of coherent beam instabilities in the stretcher ring ELSA; Breitbandige Feedback-Systeme zur Daempfung kohaerenter Strahlinstabilitaeten am Stretcherring ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Andre

    2012-12-15

    At the Electron Stretcher Facility ELSA an upgrade of the internal beam current up to 200 mA would be desirable in order to increase the intensity of the extracted electron beam for the future experimental hadron physics program. However, such an upgrade is mainly limited by the excitation of coherent beam instabilities in the stretcher ring. As active counteraction, broadband bunch-by-bunch feedback-systems for the longitudinal, as well as for both transverse planes were installed. After detection of the motion of each of the 27 4 stored bunches via beam position monitors, the systems determine independent correction signals for each bunch using digital signal processors. The amplified correction signals are applied to the beam by means of broadband longitudinal and transverse kicker structures. The detailed setup, the commissioning procedure and measurement results of the damping performance of the systems are presented. In addition, the operation of the longitudinal system during the fast energy ramp of 4 GeV/s from 1.2 GeV to 3.2 GeV is investigated.

  12. Quantum optical feedback control for creating strong correlations in many-body systems

    CERN Document Server

    Mazzucchi, Gabriel; Ivanov, Denis A; Mekhov, Igor B

    2016-01-01

    Light enables manipulating many-body states of matter, and atoms trapped in optical lattices is a prominent example. However, quantum properties of light are completely neglected in all quantum gas experiments. Extending methods of quantum optics to many-body physics will enable phenomena unobtainable in classical optical setups. We show how using the quantum optical feedback creates strong correlations in bosonic and fermionic systems. It balances two competing processes, originating from different fields: quantum backaction of weak optical measurement and many-body dynamics, resulting in stabilized density waves, antiferromagnetic and NOON states. Our approach is extendable to other systems promising for quantum technologies.

  13. Cooperative linear output regulation for networked systems by dynamic measurement output feedback

    Science.gov (United States)

    Li, Shaobao; Feng, Gang; Wang, Juan; Luo, Xiaoyuan; Guan, Xinping

    2016-04-01

    This paper investigates the cooperative linear output regulation problem of a class of heterogeneous networked systems with a common reference input but with different disturbances for individual nodes. A novel distributed control law is presented based on dynamic measurement output feedback. It is shown that the overall networked closed-loop control system is asymptotically stable and the output regulation errors asymptotically approach zero as time goes to infinity under a sufficient and necessary condition. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed control law.

  14. Static feedback stabilization of nonlinear systems with single sensor and single actuator.

    Science.gov (United States)

    Wang, Jiqiang; Hu, Zhongzhi; Ye, Zhifeng

    2014-01-01

    This paper considers a single sensor and single actuator approach to the static feedback stabilization of nonlinear systems. This is essentially a remote control problem that is present in many engineering applications. The proposed method solves this problem that is less expensive to implement and more reliable in practice. Significant results are obtained on the design of controllers for stabilizing the nonlinear systems. Important issues on control implementation are also discussed. The proposed design method is validated through its application to nonlinear control of aircraft engines.

  15. Discussing Feedback System Thinking in Relation to a Balanced Scorecard, Inspired by an Actual Case

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    Since the emergence of the Balanced Scorecard at the beginning of the 1990s, only few articles have proposed a framework of translating BSC into an analytical numerical model. This paper addresses two research themes : (1) a discussion of the cause-and-effect modeling within the BSC and (2), how...... may the feedback systems thinking and causal loop reasoning be conducted within BSC. In contrast to previous literature on BSC this paper focuses on a System Dynamics Modeling approach to transform a static BSC into a dynamic and analytical closed loop management model by incorporating both time...

  16. Feedforward and Feedback Optimal Control for Linear Systems with Sinusoidal Disturbances

    Institute of Scientific and Technical Information of China (English)

    唐功友

    2001-01-01

    The linear systems affected by additive external sinusoidal disturbances is studied. he problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is proposed of realizable feedforward and feedback optimal control law for a linear timeinvariant system with sinusoidal disturbances. The algorithm of solving the optimal control law is given. It is shown that the control law is easily realized and is robust with respect to errors produced by the external sinusoidal disturbances through simulation results.

  17. Decentralized H∞ state feedback control for large-scale interconnected uncertain systems with multiple delays

    Institute of Scientific and Technical Information of China (English)

    陈宁; 桂卫华; 谢永芳

    2004-01-01

    Decentralized H∞ control was studied for a class of interconnected uncertain systems with multiple delays in the state and control and time varying but norm-bounded parametric uncertainties. A sufficient condition which makes the closed--loop system decentralized asymptotically stable with H∞ performance was derived based on Lyapunov stability theorem. This condition is expressed as the solvability problem of linear matrix inequalities. The method overcomes the limitations of the existing algebraic Riccati equation method. Finally, a numerical example was given to demonstrate the design procedure for the decentralized H∞ state feedback controller.

  18. Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems

    Science.gov (United States)

    Keldermann, R. H.; Nash, M. P.; Panfilov, A. V.

    2009-06-01

    In many practically important cases, wave propagation described by the reaction-diffusion equation initiates deformation of the medium. Mathematically, such processes are described by coupled reaction-diffusion-mechanics (RDM) systems. RDM systems were recently used to study the effects of deformation on wave propagation in cardiac tissue, so called mechano-electrical feedback (MEF). In this article, we review the results of some of these studies, in particular those relating to the effects of deformation on pacemaker activity and spiral wave dynamics in the heart. We also provide brief descriptions of the numerical methods used, and the underlying cardiac physiology.

  19. Multiobjective Output Feedback Control of a Class of Stochastic Hybrid Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    S. Aberkane

    2007-01-01

    Full Text Available This paper deals with dynamic output feedback control of continuous-time active fault tolerant control systems with Markovian parameters (AFTCSMP and state-dependent noise. The main contribution is to formulate conditions for multiperformance design, related to this class of stochastic hybrid systems, that take into account the problematic resulting from the fact that the controller only depends on the fault detection and isolation (FDI process. The specifications and objectives under consideration include stochastic stability, ℋ2 and ℋ∞ (or more generally, stochastic integral quadratic constraints performances. Results are formulated as matrix inequalities. The theoretical results are illustrated using a classical example from literature.

  20. Thermal—hydraulic stability of a natural circulation system with nuclear feedback

    Institute of Scientific and Technical Information of China (English)

    XuZhan-Jie; ChenLi-Qiang; 等

    1997-01-01

    The stability of low temperature nuclear heating reactor with varous subcoolings of reacotr core inlet has been studied by means of simulating experiments.The thermalhydraulic system and the data acquisition and processing system are presented.Especially,the process of realizing the simulating nuclear feedback is introduced in detail>finally,the experimental results are discussed in the opinions of nuclear reactor physics and thermal-hydraulics,The conclusion is that the nuclear reactor can operate stably only when the subcoopling of reactor core inlet is high enough.

  1. Multiple DSP system for real time parallel processing and feedback control on fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A.P.; Correia, C.M.B.; Varandas, C.A.F. [Associacao EURATOM, Lisboa (Portugal). Nucl. Inst. Superior Tecnico; Schneider, F. [Association EURATOM/IPP, Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany)

    1999-01-01

    This paper describes a specially designed system for real time parallel processing and feedback control on fusion experiments. The system is being implemented in PCI and VME modules, based on an array of four synchronizable DSPs, with 1 Mbyte of global RAM, 12 bits resolution, four analog inputs with sampling frequency up to 40 MSPS, two analog or waveform generator outputs with an update rate up to 100 MSPS, eight digital opto-coupled inputs/outputs and one external global trigger optical input. The user interface appears as a virtual instrument from LabView for Windows. (orig.) 7 refs.

  2. Using Feedback Error Learning for Control of Electro Hydraulic Servo System by Laguerre

    Directory of Open Access Journals (Sweden)

    Amir Reza Zare Bidaki

    2014-01-01

    Full Text Available In this paper, a new Laguerre controller is proposed to control the electro hydraulic servo system. The proposed controller uses feedback error learning method and leads to significantly improve performance in terms of settling time and amplitude of control signal rather than other controllers. All derived results are validated by simulation of nonlinear mathematical model of the system. The simulation results show the advantages of the proposed method for improved control in terms of both settling time and amplitude of control signal.

  3. Power-Bandwidth Efficiency and Capacity of Wireless Feedback Communication Systems

    CERN Document Server

    Platonov, Anatoliy

    2011-01-01

    The paper is devoted to the analysis of problems appearing in optimisation and improvement of the power-bandwidth efficiency of digital communication feedback systems (FCS). There is shown that unlike digital systems, adaptive FCS with the analogue forward transmission allow full optimisation and derivation of optimal transmission-reception algorithm approaching their efficiency to the Shannon boundary. Differences between the forward channel capacity and capacity of adaptive FCS as communication unit, as well as their influence of the power-bandwidth efficiency of transmission are considered.

  4. Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems.

    Science.gov (United States)

    Wang, Rong-Jyue; Lin, Wei-Wei; Wang, Wen-June

    2004-04-01

    This paper investigates the problem of designing a fuzzy state feedback controller to stabilize an uncertain fuzzy system with time-varying delay. Based on Lyapunov criterion and Razumikhin theorem, some sufficient conditions are derived under which the parallel-distributed fuzzy control can stabilize the whole uncertain fuzzy time-delay system asymptotically. By Schur complement, these sufficient conditions can be easily transformed into the problem of LMIs. Furthermore, the tolerable bound of the perturbation is also obtained. A practical example based on the continuous stirred tank reactor (CSTR) model is given to illustrate the control design and its effectiveness.

  5. Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.

    Science.gov (United States)

    Wang, Min; Chen, Bing; Shi, Peng

    2008-06-01

    This paper proposes a novel adaptive neural control scheme for a class of perturbed strict-feedback nonlinear time-delay systems with unknown virtual control coefficients. Based on the radial basis function neural network online approximation capability, an adaptive neural controller is presented by combining the backstepping approach and Lyapunov-Krasovskii functionals. The proposed controller guarantees the semiglobal boundedness of all the signals in the closed-loop system and contains minimal learning parameters. Finally, three simulation examples are given to demonstrate the effectiveness and applicability of the proposed scheme.

  6. Shifted Feedback Suppression of Turbulent Behavior in Advection-Diffusion Systems

    Science.gov (United States)

    Evain, C.; Szwaj, C.; Bielawski, S.; Hosaka, M.; Mochihashi, A.; Katoh, M.; Couprie, M.-E.

    2009-04-01

    In spatiotemporal systems with advection, suppression of noise-sustained structures involves questions that are outside of the framework of deterministic dynamical systems control (such as Ott-Grebogi-Yorke-type methods). Here we propose and test an alternate strategy where a nonlocal additive feedback is applied, with the objective to create a new deterministic solution that becomes robust to noise. As a remarkable fact—though the needed parameter perturbations required have essentially a finite size—they turn out to be extraordinarily small in principle: 10-8 in the free-electron laser experiment presented here.

  7. eMed Teamwork: a self-moderating system to gather peer feedback for developing and assessing teamwork skills.

    Science.gov (United States)

    Hughes, Chris; Toohey, Susan; Velan, Gary

    2008-02-01

    Students in the six-year undergraduate medicine program at UNSW must submit a portfolio which demonstrates inter alia their development in teamwork skills. Much of the feedback they need to develop these skills, as well as the evidence they require to document their achievements, can only come from their peers. The eMed Teamwork system, developed for this purpose, is a computer-based system which gathers feedback from peers in project groups. The feedback submitted to the system is available to the recipient for formative purposes, and becomes part of both the author's and the recipient's portfolios for later summative assessment. This dual use ensures that the feedback is thoughtful and constructive and the system operates without significant moderation by teachers.

  8. The beam energy feedback system for Beijing electron positron collider II linac.

    Science.gov (United States)

    Wang, S; Iqbal, M; Chi, Y; Liu, R; Huang, X

    2017-03-01

    A beam-energy feedback system has been developed for the injection linac to meet the beam quality needed for the Beijing electron positron collider II storage ring. This paper describes the implementation and commissioning of this system in detail. The system consists of an energy measurement unit, application software, and an actuator unit. A non-intersecting beam energy monitor was developed to allow real-time online energy adjustment. The beam energy adjustment is achieved by adjusting the output microwave phase of the RF power source station. The phase control mechanism has also been modified, and a new control method taking the return difference of the phase shifter into account is used to improve the system's performance. This system achieves the design aim and can adjust the beam center energy with a rate of 2 Hz. With the energy feedback system, the stability of the injection rate is better; the fluctuation range is reduced from 20 mA/min to 10 mA/min, while the stability of the beam center energy is maintained within ±0.1%.

  9. Modeling and control of non-square MIMO system using relay feedback.

    Science.gov (United States)

    Kalpana, D; Thyagarajan, T; Gokulraj, N

    2015-11-01

    This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system.

  10. Multi-rate digital redesign of cascaded and dynamic output feedback systems

    Science.gov (United States)

    Xie, L. B.; Ozkul, S.; Sawant, M.; Shieh, L. S.; Tsai, J. S. H.; Tsai, C. H.

    2014-08-01

    In this paper, a new indirect digital redesign method is presented for multi-rate sampled-data control systems with cascaded and dynamic output feedback controllers. These analogue controllers are often pre-designed based on desirable frequency specifications, such as bandwidth, natural angular frequency, etc. To take advantage of the digital controller over the analogue controller, digital implementation of these analogue controllers are often desirable. As only measured input-output signals are available, an ideal state reconstructing algorithm is utilised to obtain the multi-rate discrete-time states of the original continuous-time system. Based on the Chebyshev quadrature method, the gains of the multi-rate cascaded and the output feedback digital controllers are determined from their continuous-time counterparts according to the different sampling rates employed in the different parts of the closed-loop system. As a result, the respective analogue controllers with the high-frequency and low-frequency characteristics can be implemented using the respective fast-rate sampling and slow-rate sampling digital controllers. Unlike the classical direct bilinear transform method, which is an open-loop direct digital redesign method, the proposed digital controllers take into account the state-matching of the original continuous-time closed-loop system and the digitally redesigned sampled-data closed-loop system. To further improve the state-matching performance, an improved digital redesign approach is also developed to construct the multi-rate cascaded and dynamic output feedback digital controllers. Illustrative examples are given to demonstrate the effectiveness of the developed methods.

  11. A Design Framework for Limited Feedback MIMO Systems with Zero-Forcing DFE

    CERN Document Server

    Shenouda, Michael Botros

    2008-01-01

    We consider the design of multiple-input multiple-output communication systems with a linear precoder at the transmitter, zero-forcing decision feedback equalization (ZF-DFE) at the receiver, and a low-rate feedback channel that enables communication from the receiver to the transmitter. The channel state information (CSI) available at the receiver is assumed to be perfect, and based on this information the receiver selects a suitable precoder from a codebook and feeds back the index of this precoder to the transmitter. Our approach to the design of the components of this limited feedback scheme is based on the development, herein, of a unified framework for the joint design of the precoder and the ZF-DFE under the assumption that perfect CSI is available at both the transmitter and the receiver. The framework is general and embraces a wide range of design criteria. This framework enables us to characterize the statistical distribution of the optimal precoder in a standard Rayleigh fading environment. Using t...

  12. Block backstepping design of nonlinear state feedback control law for underactuated mechanical systems

    CERN Document Server

    Rudra, Shubhobrata; Maitra, Madhubanti

    2017-01-01

    This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The math...

  13. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS TO A DISCRETE TIME NON-AUTONOMOUS COMPETING SYSTEM WITH FEEDBACK CONTROLS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,a class of discrete time non-autonomous competing system with feedback controls is considered. With the help of differential equations with piecewise constant arguments,we first propose a discrete model of a continuous non-autonomous competing system with feedback controls. Then,using the coincidence degree and the related continuation theorem as well as some priori estimations,a suficient condition for the existence of positive solutions to difference equations is obtained.

  14. LMI-based output feedback fuzzy control of chaotic system with uncertainties

    Institute of Scientific and Technical Information of China (English)

    Tan Wen; Wang Yao-Nan; Duan Feng; Li Xiao-Hui

    2006-01-01

    This paper studies the robust fuzzy control for nonlinear chaotic system in the presence of parametric uncertainties. An uncertain Takagi-Sugeno (T-S) fuzzy model is employed for fuzzy modelling of an unknown chaotic system. A sufficient condition formulated in terms of linear matrix inequality (LMI) for the existence of fuzzy controller is obtained. Then the output feedback fuzzy-model-based regulator derived from the LMI solutions can guarantee the stability of the closed-loop overall fuzzy system. The T-S fuzzy model of the chaotic Chen system is developed as an example for illustration. The effectiveness of the proposed controller design methodology is finally demonstrated through computer simulations on the uncertain Chen chaotic system.

  15. Modular design of adaptive robust controller for strict-feedback stochastic nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; XI Hong-sheng; JI Hai-bo; KANG Yu

    2006-01-01

    A modular approach of the estimation-based design in adaptive linear control systems has been extended to the adaptive robust control of strict-feedback stochastic nonlinear systems with additive standard Wiener noises and constant unknown parameters.By using It(o)'s differentiation rule, nonlinear damping and adaptive Backstepping procedure,the input-to-state stable controller of global stabilization in probability is developed,which guarantees that system states are bounded and the system has a robust stabilization.According to Swapping technique,we develop two filters and convert dynamic parametric models into static ones to which the gradient update law is designed.Transient performance of the system is estimated by the norm of error.Results of simulation show the effectiveness of the control algorithms.The modular design,which has a concise hierarchy,is more flexible and versatile than a Lyapunov-based algorithm.

  16. A software module for implementing auditory and visual feedback on a video-based eye tracking system

    Science.gov (United States)

    Rosanlall, Bharat; Gertner, Izidor; Geri, George A.; Arrington, Karl F.

    2016-05-01

    We describe here the design and implementation of a software module that provides both auditory and visual feedback of the eye position measured by a commercially available eye tracking system. The present audio-visual feedback module (AVFM) serves as an extension to the Arrington Research ViewPoint EyeTracker, but it can be easily modified for use with other similar systems. Two modes of audio feedback and one mode of visual feedback are provided in reference to a circular area-of-interest (AOI). Auditory feedback can be either a click tone emitted when the user's gaze point enters or leaves the AOI, or a sinusoidal waveform with frequency inversely proportional to the distance from the gaze point to the center of the AOI. Visual feedback is in the form of a small circular light patch that is presented whenever the gaze-point is within the AOI. The AVFM processes data that are sent to a dynamic-link library by the EyeTracker. The AVFM's multithreaded implementation also allows real-time data collection (1 kHz sampling rate) and graphics processing that allow display of the current/past gaze-points as well as the AOI. The feedback provided by the AVFM described here has applications in military target acquisition and personnel training, as well as in visual experimentation, clinical research, marketing research, and sports training.

  17. Implement and commissioning of the beam energy feedback system in BEPCII linac

    CERN Document Server

    Wang, Shaozhe; Liu, Rong; Huang, Xuefang; Qian, Lei

    2016-01-01

    In order to ensure the beam quality and meet the requirements introduced by the BEPCII storage ring, the beam energy feedback system has been developed at the exit of the linac. This paper describes the implementation and commissioning of this system in detail. The energy feedback system consists of an energy measurement unit, an application software and an execution unit. In order to ensure the real-time monitoring and adjustment of beam energy, we need to introduce a non-interceptive type of online beam energy measurement method which is on the first try in China and the effective mechanism of energy adjustment to achieve this goal. The adjustment of energy is achieved by adjusting the output microwave phase of the RF power source station. The system was put into operation in March 16th, 2016 and achieved the desired results. It can effectively eliminate the low point of the injection rate caused by the fluctuation of the beam center energy and has played an important role in maintaining a high constant inj...

  18. Study on fault diagnosis and load feedback control system of combine harvester

    Science.gov (United States)

    Li, Ying; Wang, Kun

    2017-01-01

    In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.

  19. Development of a systematic feedback isolation approach for targeted strains from mixed culture systems.

    Science.gov (United States)

    Poudel, Pramod; Tashiro, Yukihiro; Miyamoto, Hirokuni; Miyamoto, Hisashi; Okugawa, Yuki; Sakai, Kenji

    2017-01-01

    Elucidation of functions of bacteria in a mixed culture system (MCS) such as composting, activated sludge system is difficult, since the system is complicating with many unisolated bacteria. Here, we developed a systematic feedback isolation strategy for the isolation and rapid screening of multiple targeted strains from MCS. Six major strains (Corynebacterium sphenisci, Bacillus thermocloacae, Bacillus thermoamylovorans, Bacillus smithii, Bacillus humi, and Bacillus coagulans), which are detected by denaturing gradient gel electrophoresis (DGGE) analysis in our previous study on MCS for l-lactic acid production, were targeted for isolation. Based on information of suitable cultivation conditions (e.g., media, pH, temperature) from the literature, feedback isolation was performed to form 136 colonies. The following direct colony matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was optimised as the second screening to narrow down 20 candidate colonies from similar spectra patterns with six closest type strains. This step could distinguish bacteria at the species level with distance similarity scores ≥0.55 corresponding to 16S rRNA gene sequence similarity ≥98.2%, suggesting that this is an effective technique to minimize isolates close to targeted type strains. Analysis of 16S rRNA gene sequences indicated that two targeted strains and one strain related to the target had successfully been isolated, showing high similarities (99.5-100%) with the sequences from the DGGE bands, and that the other candidates were affiliated with three strains that were closely related to the target species. This study proposes a new method for systematic feedback isolation that may be useful for isolating targeted strains from MCS for further investigation.

  20. Bayesian feedback control of a two-atom spin-state in an atom-cavity system

    CERN Document Server

    Brakhane, Stefan; Kampschulte, Tobias; Martinez-Dorantes, Miguel; Reimann, René; Yoon, Seokchan; Widera, Artur; Meschede, Dieter

    2012-01-01

    We experimentally demonstrate real-time feedback control of the joint spin-state of two neutral Caesium atoms inside a high finesse optical cavity. The quantum states are discriminated by their different cavity transmission levels. A Bayesian update formalism is used to estimate state occupation probabilities as well as transition rates. We stabilize the balanced two-atom mixed state, which is deterministically inaccessible, via feedback control and find very good agreement with Monte-Carlo simulations. On average, the feedback loops achieves near optimal conditions by steering the system to the target state marginally exceeding the time to retrieve information about its state.

  1. Designing a Feedback Component of an Intelligent Tutoring System for Foreign Language

    Science.gov (United States)

    Ferreira, Anita; Atkinson, John

    In this paper, we provide a model of corrective feedback generation for an intelligent tutoring system for Spanish as a Foreign Language. We have studied two kind of strategies: ( 1) Giving-Answer Strategies (GAS), where the teacher directly gives the desired target form or indicates the location of the error, and (2) Prompting-Answer Strategies (PAS), where the teacher pushes the student less directly to notice and repair their own error. Based on different experimental settings and comparisons with face-to-face tutoring mode, we propose the design of a component of effective teaching strategies into ITS for Spanish as a foreign language.

  2. Bifurcation and Feedback Control of an Exploited Prey-Predator System

    Directory of Open Access Journals (Sweden)

    Uttam Das

    2014-01-01

    Full Text Available This paper makes an attempt to highlight a differential algebraic model in order to investigate the dynamical behavior of a prey-predator system due to the variation of economic interest of harvesting. In this regard, it is observed that the model exhibits a singularity induced bifurcation when economic profit is zero. For the purpose of stabilizing the proposed model at the positive equilibrium, a state feedback controller is therefore designed. Finally, some numerical simulations are carried out to show the consistency with theoretical analysis and to illustrate the effectiveness of the proposed controller.

  3. Sufficiently informative functions and the minimax feedback control of uncertain dynamic systems.

    Science.gov (United States)

    Bertsekas, D. P.; Rhodes, I. B.

    1973-01-01

    The problem of optimal feedback control of uncertain discrete-time dynamic systems is considered where the uncertain quantities do not have a stochastic description but instead are known to belong to given sets. The problem is converted to a sequential minimax problem and dynamic programming is suggested as a general method for its solution. The notion of a sufficiently informative function, which parallels the notion of a sufficient statistic of stochastic optimal control, is introduced, and conditions under which the optimal controller decomposes into an estimator and an actuator are identified.

  4. Bifurcation Analysis and Chaos Control in a Modified Finance System with Delayed Feedback

    Science.gov (United States)

    Yang, Jihua; Zhang, Erli; Liu, Mei

    2016-06-01

    We investigate the effect of delayed feedback on the finance system, which describes the time variation of the interest rate, for establishing the fiscal policy. By local stability analysis, we theoretically prove the existences of Hopf bifurcation and Hopf-zero bifurcation. By using the normal form method and center manifold theory, we determine the stability and direction of a bifurcating periodic solution. Finally, we give some numerical solutions, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable equilibrium or periodic orbit.

  5. Analysis and design of output feedback control systems with actuator saturation

    Institute of Scientific and Technical Information of China (English)

    Wei GUAN; Guanghong YANG

    2008-01-01

    A dynamic output feedback controller design approach based on cone complementary linearisafion procedure is proposed for linear time-invariant(LTI)systems with actuator saturation.First.the estimation of the domain of attraction is given.Then.a design method to find a larger estimation of the domain of attraction is presented.In the process of design,nonconvex conditions are obtained, so a cone complementary linearisation procedure is exploited to solve the nonconvex feasibility problem.Two examples are given to illustrate the efficiency of the design method.

  6. Fuzzy logic based feedback control system for laser beam pointing stabilization.

    Science.gov (United States)

    Singh, Ranjeet; Patel, Kiran; Govindarajan, J; Kumar, Ajai

    2010-09-20

    This paper reports a fuzzy logic based feedback control system for beam pointing stabilization of a high-power nanosecond Nd:YAG laser operating at 30 Hz. This is achieved by generating the correcting signal for each consequent pulse from the error in the pointing position of the previous laser pulse. We have successfully achieved a reduction of beam position fluctuation from ±60 to ±5.0 μrad without the focusing optics and ±0.9 μrad with focusing optics.

  7. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn; Tao, Gang, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, 200 XiaoLingwei Street, Nanjing 210094 (China)

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  8. A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory

    Science.gov (United States)

    Gorder, Peter James

    1993-01-01

    Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.

  9. Targeted Help for Spoken Dialogue Systems: Intelligent Feedback Improves Naive Users' Performance

    Science.gov (United States)

    Hockey, Beth Ann; Lemon, Oliver; Campana, Ellen; Hiatt, Laura; Aist, Gregory; Hieronymous, Jim; Gruenstein, Alexander; Dowding, John

    2003-01-01

    We present experimental evidence that providing naive users of a spoken dialogue system with immediate help messages related to their out-of-coverage utterances improves their success in using the system. A grammar-based recognizer and a Statistical Language Model (SLM) recognizer are run simultaneously. If the grammar-based recognizer suceeds, the less accurate SLM recognizer hypothesis is not used. When the grammar-based recognizer fails and the SLM recognizer produces a recognition hypothesis, this result is used by the Targeted Help agent to give the user feed-back on what was recognized, a diagnosis of what was problematic about the utterance, and a related in-coverage example. The in-coverage example is intended to encourage alignment between user inputs and the language model of the system. We report on controlled experiments on a spoken dialogue system for command and control of a simulated robotic helicopter.

  10. A bandwidth efficient two-user cooperative diversity system with limited feedback

    Institute of Scientific and Technical Information of China (English)

    LI Jing; GE JianHua; WANG Yong; TANG YunShuai; XIONG Xiong

    2009-01-01

    A two-user cooperative diversity system based on Alamouti signaling was proposed, which utilizes the orthogonal structure of Alamouti signaling to make cooperative users relay on the shared channel resources so that the spectral efficiency of the traditional cooperative system can be improved. When M-ary phase shift keying (M-PSK) modulation and an improved selection decode-and-forward (SDF) relaying protocol with limited feedback are used at the users and m(m ≥1) receive antennas are configured at the base station, the average bit-error-rata (BER) system performance for statistically similar uplink channels was derived and it was verified by simulations. Under various channel scenarios of interest, numerical and simulation results show that the diversity gain achieved and the BER performance of the proposed system increase with the interuser channel quality, and the full transmit diversity order of two can be obtained for sufficiently high interuser signal-to-noise ratios (SNRs).

  11. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    Science.gov (United States)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  12. Adaptive Neural Network Output Feedback Tracking Control for a Class of Complicated Agricultural Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2015-07-01

    Full Text Available The study presents an adaptive neural network output feedback tracking control scheme for a class of complicated agricultural mechanical systems. The scheme includes a dynamic gain observer to estimate the un-measurable states of the system. The main advantages of the authors scheme are that by introducing non-separation principle design neural network controller and the observer gain are simultaneously tuned according to output tracking error, the semi-globally ultimately bounded of output tracking error and all the states in the closed-loop system can be achieved by Lyapunov approach. With the universal approximation property of NN and the simultaneous parametrisation, no Lipschitz assumption and SPR condition are employed which makes the system construct simple. Finally the simulation results are presented to demonstrate the efficiency of the control scheme.

  13. Acoustic Feedback and Echo Cancellation Strategies for Multiple-Microphone and Single-Loudspeaker Systems

    DEFF Research Database (Denmark)

    Guo, Meng; Elmedyb, Thomas Bo; Jensen, Søren Holdt;

    2011-01-01

    Acoustic feedback/echo cancellation in a multiple-microphone and single-loudspeaker system is often carried out using a cancellation filter for each microphone channel, and the filters are adaptively estimated, independently of each other. In this work, we consider another strategy by estimating...... cancellation performance is achievable compared to the independent estimation strategy. Furthermore, we relate the joint estimation strategy to a stereophonic echo cancellation system and provide analytic expressions for its system behavior....... all the cancellation filters jointly and in this way exploit information from all microphone channels. We determine the statistical system behavior for the joint estimation strategy in terms of the convergence rate and steady-state behavior across time and frequency. We assess if an improved...

  14. Inversion-free decentralised quantitative feedback design of large-scale systems

    Science.gov (United States)

    Labibi, B.; Mahdi Alavi, S. M.

    2016-06-01

    In this paper, a new method for robust decentralised control of multi-input multi-output (MIMO) systems using quantitative feedback theory (QFT) is suggested. The proposed method does not need inversion of the plant transfer function matrix in the design process. For a given system, an equivalent descriptor system representation is defined. By using this representation, sufficient conditions for closed-loop diagonal dominance over the uncertainty space are obtained. These conditions transform the original MIMO system into a set of isolated multi-input single-output (MISO) subsystems. Then, the local controllers are designed by using the typical MISO QFT technique for each isolated subsystem to satisfy the predefined desired specifications and the closed-loop diagonal dominance sufficient conditions. The proposed technique is less conservative in comparison to the approaches using the over-bounding concept in the design procedure. The effectiveness of the proposed technique is finally assessed on a MIMO Scara robot.

  15. Experimental System for Investigation of Visual Sensory Input in Postural Feedback Control

    Directory of Open Access Journals (Sweden)

    Jozef Pucik

    2012-01-01

    Full Text Available The human postural control system represents a biological feedback system responsible for maintenance of upright stance. Vestibular, proprioceptive and visual sensory inputs provide the most important information into the control system, which controls body centre of mass (COM in order to stabilize the human body resembling an inverted pendulum. The COM can be measured indirectly by means of a force plate as the centre of pressure (COP. Clinically used measurement method is referred to as posturography. In this paper, the conventional static posturography is extended by visual stimulation, which provides insight into a role of visual information in balance control. Visual stimuli have been designed to induce body sway in four specific directions – forward, backward, left and right. Stabilograms were measured using proposed single-PC based system and processed to calculate velocity waveforms and posturographic parameters. The parameters extracted from pre-stimulus and on-stimulus periods exhibit statistically significant differences.

  16. Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Miguel C., E-mail: miguel@ifisc.uib-csic.es; Flunkert, Valentin; Fischer, Ingo [Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-12-15

    We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delay in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.

  17. A Higher Bandwidth Servo Design for Magnetic Disk Drives: A Head-positioning Control System with Strain Feedback Control

    Science.gov (United States)

    Nakagawa, Shinsuke; Yamaguchi, Takashi

    In magnetic disk drives, mechanical resonance modes prevent a higher bandwidth servo being used for head positioning control. To overcome this limitation and realize more precise head positioning, a strain feedback controller which is added to a conventional head-position feedback loop was developed. The controller of a strain-feedback control system was designed so that the gain and the phase delay of the sensitivity function of the strain-feedback control system were both reduced below the frequency of a primary mechanical resonance. The controller achieves gain suppression by about 10dB at a primary mechanical resonance and phase delay of about zero degrees. It was found that the head-position control system (i.e., the strain feedback plus the conventional head-position feedback loop) increases the servo bandwidth by 17% and improves the positioning accuracy by 18%. It was also confirmed that unlike conventional servo system, the new servo design does not suffer degradation of servo characteristics at high temperature.

  18. Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.

    Science.gov (United States)

    Min Wang; Xiaoping Liu; Peng Shi

    2011-12-01

    This paper is concerned with robust stabilization problem for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Novel continuous packaged functions are introduced in advance to remove unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay functions, which avoids the functions with control law to be approximated by radial basis function (RBF) neural networks. This technique combining implicit function and mean value theorems overcomes the difficulty in controlling the nonaffine pure-feedback systems. Dynamic surface control (DSC) is used to avoid "the explosion of complexity" in the backstepping design. Design difficulties from unknown time-delay functions are overcome using the function separation technique, the Lyapunov-Krasovskii functionals, and the desirable property of hyperbolic tangent functions. RBF neural networks are employed to approximate desired virtual controls and desired practical control. Under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced significantly, and semiglobal uniform ultimate boundedness of all of the signals in the closed-loop system is guaranteed. Simulation studies are given to demonstrate the effectiveness of the proposed design scheme.

  19. Modeling and Output Feedback Control of Networked Control Systems with Both Time Delays; and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Li Qiu

    2013-01-01

    Full Text Available This paper is concerned with the problem of modeling and output feedback controller design for a class of discrete-time networked control systems (NCSs with time delays and packet dropouts. A Markovian jumping method is proposed to deal with random time delays and packet dropouts. Different from the previous studies on the issue, the characteristics of networked communication delays and packet dropouts can be truly reflected by the unified model; namely, both sensor-to-controller (S-C and controller-to-actuator (C-A time delays, and packet dropouts are modeled and their history behavior is described by multiple Markov chains. The resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays model. Based on Lyapunov stability theory and linear matrix inequality (LMI method, sufficient conditions of the stochastic stability and output feedback controller design method for NCSs with random time delays and packet dropouts are presented. A numerical example is given to illustrate the effectiveness of the proposed method.

  20. Optimization of Feedback Controller in Restructured Power System Using Evolutionary Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    S.Farook,

    2011-05-01

    Full Text Available In this paper an attempt is made to optimize the feedback controller to improve the dynamics of a restructured multiarea power system using Evolutionary Real coded Genetic Algorithm (RCGA.Optimization using state variables is a difficult task as the access to all variables is limited and also measuring all of them is impossible. To solve the problem Evolutionary Genetic algorithms wereproposed to optimize the feedback gains of the controller, having access to few of the AGC variables. The feasibility and robustness of the algorithm is investigated on a two area interconnected power system consisting of two identical thermal plants in each areas in restructured environment. The dynamics of frequency deviations and tie-line power deviations were investigated by considering a demand of 0.1pu MW contracted by GENCOs in each area of the restructured power system. The results obtained by the proposed method are found to be quite encouraging when compared with those achieved using optimal controllers derived using Linear Quadratic Regulator (LQR theory.

  1. A Portable Gait Asymmetry Rehabilitation System for Individuals with Stroke Using a Vibrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Muhammad Raheel Afzal

    2015-01-01

    Full Text Available Gait asymmetry caused by hemiparesis results in reduced gait efficiency and reduced activity levels. In this paper, a portable rehabilitation device is proposed that can serve as a tool in diagnosing gait abnormalities in individuals with stroke and has the capability of providing vibration feedback to help compensate for the asymmetric gait. Force-sensitive resistor (FSR based insoles are used to detect ground contact and estimate stance time. A controller (Arduino provides different vibration feedback based on the gait phase measurement. It also allows wireless interaction with a personal computer (PC workstation using the XBee transceiver module, featuring data logging capabilities for subsequent analysis. Walking trials conducted with healthy young subjects allowed us to observe that the system can influence abnormality in the gait. The results of trials showed that a vibration cue based on temporal information was more effective than intensity information. With clinical experiments conducted for individuals with stroke, significant improvement in gait symmetry was observed with minimal disturbance caused to the balance and gait speed as an effect of the biofeedback. Future studies of the long-term rehabilitation effects of the proposed system and further improvements to the system will result in an inexpensive, easy-to-use, and effective rehabilitation device.

  2. Distributed Compressive CSIT Estimation and Feedback for FDD Multi-User Massive MIMO Systems

    Science.gov (United States)

    Rao, Xiongbin; Lau, Vincent K. N.

    2014-06-01

    To fully utilize the spatial multiplexing gains or array gains of massive MIMO, the channel state information must be obtained at the transmitter side (CSIT). However, conventional CSIT estimation approaches are not suitable for FDD massive MIMO systems because of the overwhelming training and feedback overhead. In this paper, we consider multi-user massive MIMO systems and deploy the compressive sensing (CS) technique to reduce the training as well as the feedback overhead in the CSIT estimation. The multi-user massive MIMO systems exhibits a hidden joint sparsity structure in the user channel matrices due to the shared local scatterers in the physical propagation environment. As such, instead of naively applying the conventional CS to the CSIT estimation, we propose a distributed compressive CSIT estimation scheme so that the compressed measurements are observed at the users locally, while the CSIT recovery is performed at the base station jointly. A joint orthogonal matching pursuit recovery algorithm is proposed to perform the CSIT recovery, with the capability of exploiting the hidden joint sparsity in the user channel matrices. We analyze the obtained CSIT quality in terms of the normalized mean absolute error, and through the closed-form expressions, we obtain simple insights into how the joint channel sparsity can be exploited to improve the CSIT recovery performance.

  3. Application of Design Methodologies for Feedback Compensation Associated with Linear Systems

    Science.gov (United States)

    Smith, Monty J.

    1996-01-01

    The work that follows is concerned with the application of design methodologies for feedback compensation associated with linear systems. In general, the intent is to provide a well behaved closed loop system in terms of stability and robustness (internal signals remain bounded with a certain amount of uncertainty) and simultaneously achieve an acceptable level of performance. The approach here has been to convert the closed loop system and control synthesis problem into the interpolation setting. The interpolation formulation then serves as our mathematical representation of the design process. Lifting techniques have been used to solve the corresponding interpolation and control synthesis problems. Several applications using this multiobjective design methodology have been included to show the effectiveness of these techniques. In particular, the mixed H 2-H performance criteria with algorithm has been used on several examples including an F-18 HARV (High Angle of Attack Research Vehicle) for sensitivity performance.

  4. Performance of Cross-Layer Design with Antenna Selection and Imperfect Feedback Information in MIMO Systems

    Directory of Open Access Journals (Sweden)

    Xiaoyu Dang

    2012-01-01

    Full Text Available By combining adaptive modulation and automatic repeat request, a cross-layer design (CLD scheme for MIMO system with antenna selection (AS and imperfect feedback is presented, and the corresponding performance is studied. Subject to a target packet loss rate and fixed power constraint, the variable switching thresholds of fading gain are derived. According to these results, and using mathematical manipulation, the average spectrum efficiency (SE and packet error rate (PER of the system are further derived. As a result, closed-form expressions of the average SE and PER are obtained, respectively. These expressions include the expressions under perfect channel state information as special cases and provide good performance evaluation for the system. Numerical results show that the proposed CLD scheme with antenna selection has higher SE than the existing CLD scheme with space-time block coding, and the CLD scheme with variable switching thresholds outperforms that with conventional-fixed switching thresholds.

  5. Robust adaptive neural control of uncertain pure-feedback nonlinear systems

    Science.gov (United States)

    Sun, Gang; Wang, Dan; Peng, Zhouhua; Wang, Hao; Lan, Weiyao; Wang, Mingxin

    2013-05-01

    In this paper, a robust adaptive neural control design approach is presented for a class of uncertain pure-feedback nonlinear systems. To reduce the complexity of the both controller structure and computation, only one neural network is used to approximate the lumped unknown function of the system at the last step of the recursive design process. By this approach, the complexity growing problem existing in conventional methods can be eliminated completely. Stability analysis shows that all the closed-loop system signals are uniformly ultimately bounded, and the steady state tracking error can be made arbitrarily small by appropriately choosing control parameters. Simulation results demonstrate the effectiveness and merits of the proposed approach.

  6. Output feedback adaptive control of multivariable nonlinear systems using Nussbaum gain method

    Institute of Scientific and Technical Information of China (English)

    Zhou Ying; Wu Yuqiang

    2006-01-01

    A new output feedback adaptive control scheme for multi-input and multi-output nonlinear systems with parametric uncertainty is presented based on the Nussbaum gain method and the backstepping approach. The high frequency gain matrix of the linear part of the system is not necessarily positive definite, but can be transformed into a lower or upper triangular matrix whose signs of diagonal elements are unknown. The new required condition for the high frequency gain matrix can be easily checked for certain plants so that the proposed method is widely applicable. The global stability of the closed loop systems is guaranteed through this control scheme, at the same time the tracking error converges to zero.

  7. Decentralized adaptive fuzzy output feedback control of nonlinear interconnected systems with time-varying delay

    Science.gov (United States)

    Wang, Qin; Chen, Zuwen; Song, Aiguo

    2017-01-01

    A robust adaptive output-feedback control scheme based on K-filters is proposed for a class of nonlinear interconnected time-varying delay systems with immeasurable states. It is difficult to design the controller due to the existence of the immeasurable states and the time-delay couplings among interconnected subsystems. This difficulty is overcome by use of the fuzzy system, the K-filters and the appropriate Lyapunov-Krasovskii functional. Based on Lyapunov theory, the closed-loop control system is proved to be semi-global uniformly ultimately bounded (SGUUB), and the output tracking error converges to a neighborhood of zero. Simulation results demonstrate the effectiveness of the approach.

  8. Anticontrol of chaos in continuous-time systems via time-delay feedback.

    Science.gov (United States)

    Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo

    2000-12-01

    In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.

  9. Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities.

    Science.gov (United States)

    Shahnazi, Reza

    2015-01-01

    An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations.

  10. Dynamical behaviors in time-delay systems with delayed feedback and digitized coupling

    Science.gov (United States)

    Mitra, Chiranjit; Ambika, G.; Banerjee, Soumitro

    2014-12-01

    We consider a network of delay dynamical systems connected in a ring via unidirectional positive feedback with constant delay in coupling. For the specific case of Mackey-Glass systems on the ring topology, we capture the phenomena of amplitude death, isochronous synchronization and phase-flip bifurcation as the relevant parameters are tuned. Using linear stability analysis and master stability function approach, we predict the region of amplitude death and synchronized states respectively in the parameter space and study the nature of transitions between the different states. For a large number of systems in the same dynamical configuration, we observe splay states, mixed splay states and phase locked clusters. We extend the study to the case of digitized coupling and observe that these emergent states still persist. However, the sampling and quantization reduce the regions of amplitude death and induce phase-flip bifurcation.

  11. Robust H∞ control for uncertain systems with heterogeneous time-varying delays via static output feedback

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Wei; Zeng Cai-Bin

    2012-01-01

    This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties.The objective is to design a static output feedback controller such that the closed-loop system is asymptotically stable while satisfying a prescribed H∞ performance level for all admissible uncertainties.By constructing an appropriate Lyapunov-Krasvskii functional,a delay-dependent stability criterion of the closed-loop system is presented with the help of the Jensen integral inequality.From the derived criterion,the solutions to the problem are formulated in terms of linear matrix inequalities and hence are tractable numerically.A simulation example is given to illustrate the effectiveness of the proposed design method.

  12. Adaptive Output-feedback Regulation for Nonlinear Delayed Systems Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying time-delay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results,where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.

  13. Fast Automatic Beam-Based Alignment of the LHC Collimator Jaws

    CERN Document Server

    Valentino, Gianluca; Assmann, R W

    2014-01-01

    The CERN Large Hadron Collider (LHC) in Geneva, Switzerland is the largest and most powerful particle accelerator ever built. With a circumference of 27 km, it is designed to collide particles in two counter-rotating beams at a centre-of-mass energy of 14 TeV to explore the fundamental forces and constituents of matter. Due to its potentially destructive high energy particle beams, the LHC is equipped with several machine protection systems. The LHC collimation system is tasked with scattering and absorbing beam halo particles before they can quench the superconducting magnets. The 108 collimators also protect the machine from damage in the event of very fast beam losses, and shields sensitive devices in the tunnel from radiation over years of operation. Each collimator is made up of two blocks or ‘jaws’ of carbon, tungsten or copper material. The collimator jaws need be placed symmetrically on either side of the beam trajectory, to clean halo particles with maximum efficiency. The beam orbit and beam siz...

  14. Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System

    Science.gov (United States)

    Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.

    2016-10-01

    The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).

  15. Towards a Transverse Feedback System and Damper for the SPS in the LHC Era

    CERN Document Server

    Höfle, Wolfgang

    1997-01-01

    The SPS will serve as injector for the LHC, accelerating up to 4 x 10^13 protons per cycle from 26 GeV/c to 450 GeV/c. The transverse feedback system (damper) is essential for keeping the transverse emittance blowup within the limits fixed for the LHC injector chain. The fast filamentation requires rapid damping of any injection errors. Injection errors are the combined result of steering errors and ripples on the magnet power supplies in the transfer line as well as from the PS extraction kicker and the SPS injection kicker. Besides damping injection oscillations the damper will also provide transverse feedback to stabilise the beam against the resistive wall coupled bunch instability. The required bandwidth, kick strength and power bandwidth (rise time) were discussed during the 1996 Montreux "Workshop on High Brightness Beams for Large Hadron Colliders" in the working group on "Active Emittance Control". In the present report the requirements for the damper are summarised and the development of a system to...

  16. Non-Linear Dynamic Deformation of a Piezothermoelastic Laminate with Feedback Control System

    Directory of Open Access Journals (Sweden)

    Masayuki Ishihara

    2014-03-01

    Full Text Available We study the control of free vibration with large amplitude in a piezothermoelastic laminated beam subjected to a uniform temperature with a feedback control system. The analytical model is the symmetrically cross-ply laminated beam composed of the elastic and piezoelectric layers. On the basis of the von Kármán strain and the classical laminate theory, the governing equations for the dynamic behavior are derived. The dynamic behavior is detected by the electric current in the sensor layer through the direct piezoelectric effect. The electric voltage with the magnitude of the current multiplied by the gain is applied to the actuator layer to constitute a feedback control system. The governing equations are reduced by the Galerkin method to a Liénard equation with respect to the representative deflection, and the equation is found to be dependent on the gain and the configuration of the actuator. By introducing the Liénard's phase plane, the equation is analyzed geometrically, and the essential characteristics of the beam and stabilization of the dynamic deformation are demonstrated.

  17. Resonances of a nonlinear SDOF system with time-delay in linear feedback control

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassiouny, A F [Mathematics Department, Faculty of Science, Benha University, Benha 13518 (Egypt); El-kholy, S [Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-kom (Egypt)], E-mail: atef_elbassiouny@yahoo.com

    2010-01-15

    The primary and subharmonic resonances of a nonlinear single-degree-of-freedom (SDOF) system under feedback control with a time delay have been studied by means of an asymptotic perturbation technique. Both external (forcing) and parametric excitations have been included. By means of the averaging method and multiple scales method, two slow-flow equations for the amplitude and phase of the primary and subharmonic resonances and all other parameters are obtained, respectively. The steady state solutions (fixed points) for the original system are investigated. The stability of the fixed points is examined by using the variational method. The effect of the feedback gains, time-delay, the coefficient of cubic term, the coefficients of external and parametric excitations on the steady state responses are investigated and the results are presented as plots of the steady state response amplitude versus the detuning parameter. The results obtained by the two methods are in excellent agreement. There exist saddle node bifurcations for the case of primary resonance and the solutions lose stability for the case of resonance subharmonic.

  18. [Open loop gain of the CO2-ventilation feedback control system in chronic obstructive pulmonary disease].

    Science.gov (United States)

    Kimura, H; Kunitomo, F; Okita, S; Tojima, H; Tatsumi, K; Kuriyama, T; Hashizume, I; Honda, Y

    1989-07-01

    To evaluate the stability of the CO2-ventilation feedback system, we measured its open loop gain (G) in 12 patients with chronic obstructive pulmonary disease (COPD) and 15 control subjects. Then, we compared G to the conventional slope of the CO2-ventilation response line (S) and that of the metabolic hyperbola (SL). G was determined as the ratio of S to SL by applying external dead space of 250 and 500 ml. G, S and 1/SL in the control and the COPD were +17.1 +/- 7.2 (Mean +/- SD), 1.70 +/- 0.75 L.min-1.Torr-1 and -10.4 +/- 2.0 L-1.min.Torr, and -7.2 +/- 3.3, 0.48 +/- 0.27 L.min-1.Torr-1 and -16.1 +/- 6.4 L-1.min.Torr, respectively. G was significantly correlated with S in both groups, but that was not the case in 1/SL. The magnitude of G and S in COPD was about 42% and 28% of the control, indicating that G was maintained more stable than S. These data suggest that the decreased G in the COPD resulted from insufficient compensation of ventilatory drive, whereas 1/SL increased higher than the control. We conclude that G can be used to indicate the stability of the CO2-ventilation feedback system better than S.

  19. Remote Synchronization Experiments for Quasi-Zenith Satellite System Using Multiple Navigation Signals as Feedback Control

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2011-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX is a remote control method that permits synchronization between a ground station atomic clock and Japanese quasi-zenith satellite system (QZSS crystal oscillators. To realize the RESSOX of the QZSS, the utilization of navigation signals of QZSS for feedback control is an important issue. Since QZSS transmits seven navigation signals (L1C/A, L1CP, L1CD, L2CM, L2CL, L5Q, and L5I, all combinations of these signals should be evaluated. First, the RESSOX algorithm will be introduced. Next, experimental performance will be demonstrated. If only a single signal is available, ionospheric delay should be input from external measurements. If multiple frequency signals are available, any combination, except for L2 and L5, gives good performance with synchronization error being within two nanoseconds that of RESSOX. The combination of L1CD and L5Q gives the best synchronization performance (synchronization error within 1.14 ns. Finally, in the discussion, comparisons of long-duration performance, computer simulation, and sampling number used in feedback control are considered. Although experimental results do not correspond to the simulation results, the tendencies are similar. For the overlapping Allan deviation of long duration, the stability of 1.23×10−14 at 100,160 s is obtained.

  20. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm

    Science.gov (United States)

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae

    2017-01-01

    Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506