WorldWideScience

Sample records for beam-foil spectroscopy

  1. Practical and research aspects of beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Bashkin, S.

    1974-01-01

    Practical aspects of the application of low-energy accelerators to research in beam-foil spectroscopy are discussed, and the kinds of equipment and associated costs are described in some detail. Some typical beam-foil experiments, emphasizing the most recent studies, are treated so as to show how relatively simple facilities can be used to produce physics of great interest

  2. Practical and research aspects of beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Bashkin, S.

    1975-01-01

    The application of a heavy-ion accelerator to research in beam-foil spectroscopy requires certain capital equipment which is somewhat unorthodox when viewed from the standpoint of conventional, low-energy nuclear physics. It is necessary that people who wish to expand their accelerator work to include beam-foil studies understand the nature and cost of such major apparatus. We will survey the equipment needs, starting with the particle analyzer at the output of the accelerator and including the equipment used in a variety of beam-foil experiments. Electronic and computer devices will not be discussed since they are essentially identical with those employed in nuclear studies. Considerable attention will be given to optical spectrometers and spectographs including simple instruments which might be used by a laboratory just getting started in beam-foil research, or which has limited financial resources. Attention will be given to the production and use of the exciter foils. We will then discuss some typical beam-foil experiments having to do with the excitation, detection, and analysis of spectral lines from electronic levels in multiply-ionized atoms, and also with the measurement of the mean lives of such levels. Finally, we will review some of the special properties of the beam-foil light source as regards the population of the magnetic sub-states of a given level. Recent work on the character of the emitted light will be presented. That work will deal specifically with the origin of the polarization of the light. The relevant experiments involve varying the angle between the plane of the exciter foil and the particle velocity. (author)

  3. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  4. Beam-foil-gas spectroscopy - A technique for studying steady-state non-equilibrium processes.

    Science.gov (United States)

    Bickel, W. S.; Veje, E.; Carriveau, G.; Anderson, N.

    1971-01-01

    When a thin foil is inserted in the beam of a beam-gas experiment, the beam particle state populations are driven far from their beam-gas equilibrium values. Downstream from the foil, the 'new beam' and gas species interact to produce a new equilibrium, usually different from the beam-gas equilibrium. Experimental results are presented to demonstrate this effect and to show how relative cross-section measurements can be used to study the beam-foil interaction.

  5. Beam foil spectroscopy of N = 3 to N = 2 transitions in highly stripped heavy ions. Revision 1

    International Nuclear Information System (INIS)

    Dietrich, D.D.; Chandler, G.A.; Egan, P.O.; Ziock, K.P.; Mokler, P.H.; Reusch, S.; Hoffmann, D.H.H.

    1986-09-01

    The spectroscopy of very highly ionized atoms provides an important testing ground for multi-electron atomic theory. We report preliminary experimental results on the n = 3 → 2 spectra of Bi +73 and A +69 obtained at the GSI UNILAC accelerator. 19 refs., 4 figs

  6. Electronic state alignment, orientation, and coherence produced by beam-foil collisions

    International Nuclear Information System (INIS)

    Church, D.A.

    1975-01-01

    The cylindrically symmetric beam-foil collision produces excitation and alignment of atom and ion levels similar, but not identical, to that resulting at comparable energies from ion-atom or ion-molecule collisions. When the foil is tilted, the macroscopic change acts on the microscopic scale to produce coherent alignment and orientation of the excited levels. The maximum beam energy range bounding this interaction has not yet been defined. The dynamic interaction which produces these effects is currently not predicted by any theory, although the dynamics of the ions subsequent to the collision are well understood. Refinement of current experimental technique can be expected to better define the final foil surface. The beam-tilted-foil collision promises to be useful in the study of ionic structure via quantum beat, radio-frequency and level-crossing spectroscopy techniques, and may provide a useful probe for certain surface interactions. 4 figs, 48 refs

  7. Beam-foil spectroscopy of chlorine and sulfur ions

    International Nuclear Information System (INIS)

    Frot, D.; Barchewitz, R.; Cukier, M.; Bruneau, J.

    1987-01-01

    We report on the measurement of spectra of highly stripped chlorine and sulfur ions in the energy ranges of, respectively, 2900 - 3500 eV and 2300 - 2600 eV. The spectra have been obtained after excitation of ions travelling through a thin carbon foil. X-rays emitted by the emerging beam are analysed with a Johann-type bent crystal spectrometer. The observation angle with respect to the beam axis is 54 0 . The interpretation of the spectra is performed by comparing experimental results with Multiconfiguration Dirac-Fock (MCDF) calculated energies and intensities. All the lines are interpreted by 2p - ls transitions (K α spectrum) in excited ions with, respectively, H-, He-, Li-, Be- and B-like electron structures

  8. A study of molecular effects in beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Andresen, B.; Veje, E.

    1979-01-01

    Relative populations of ns + nd levels in hydrogen as functions of the principal quantum number n have been measured with beams of H + , H 2 + , and H 3 + impinging on thin carbon foils at 25 keV/amu and 100 keV/amu. Enhancements of 20% and 45% for dimer and trimer clusters are observed uniformly for all levels. A possible explanation in terms of screening of the Coulomb repulsion between the protons inside the foil, thus reducing the effective thickness of the foil, is given. All relative populations closely follow an nsup(P) power law with p = -4.0 and -3.7 at 25 keV/amu and 100 keV/amu, respectively, in perfect analogy with atomic collision experiments. O + /O 2 + -foil excitations at 100 keV and 155 keV show a simular molecular effect, but in reverse with a larger mean charge produced by the dimer. (Auth.)

  9. Study of the light emission from hydrogen atoms excited by the beam-foil technique

    International Nuclear Information System (INIS)

    Broll, Norbert.

    1976-01-01

    Zero-field and Stark-induced quantum beat measurements have been performed for beam foil excited hydrogen (H + and H 2 + beam). Experimental evidence of coherent excitation of S and P states of Lyman α line has been demonstrated [fr

  10. Experimental and simulated beam-foil decay curves for some transitions in Zn II

    International Nuclear Information System (INIS)

    Hultberg, S.; Liljeby, L.; Mannervik, S.; Veje, E.; Lindgaard, A.

    1980-01-01

    Experimental beam-foil decay curves for the 4s-4p, 4p-4d, 4d-4f, and the 4p-5s transitions in Zn II are compared to decay curves synthesized from transition probabilities calculated in the numerical Coulomb approximation and either measured initial level populations or population models. Good agreement exists between experimental curves and those based on the measured initial level populations for the 5s, 4d, and 4f levels while certain deviations are noted for the 4p term. None of the applied population models reproduce all experimental curves satisfyingly well. In addition, lifetimes are determined experimentally for 7 terms in Zn II, and good agreement with the numerical Coulomb approximation lifetimes is generally found except for some p terms. Beam-foil excitation-mechanism results for zinc are presented and compared to previous results from light projectiles. (Auth.)

  11. The Stark effect of 1H and 4He+ in the beam foil source

    International Nuclear Information System (INIS)

    Doobov, M.H.; Hay, H.J.; Sofield, C.J.; Newton, C.S.

    1974-01-01

    The appearance of Stark patterns obtained with a beam-foil source differed from those characteristically obtained from gas discharge sources. In the former source excitation of the hydrogenic ions occurred in a brief time interval ( 14 s) during the passage of a high velocity unidirectional beam of ions which produces non-statistical population distributions for the Stark perturbed states. The relative intensities of Stark perturbed components of the Hsub(β) hydrogen line and the Fsub(α) ionized helium line have been measured in a beam-foil source. In each case an initial population of states of principal quantum number n = 4 due to radiative decay and Stark mixing, and comparing the resultant patterns with the observed patterns. The inferred population distributions indicate that the states of low orbital angular momentum (L) are preferentially populated, and alignment referred to the beam axis is produced such that states with lower z component of L are preferentially populated. (author)

  12. Absolute Ly-α yields for beam foil excitations of protons between 0.3 and 2.0 MeV

    International Nuclear Information System (INIS)

    Straumann, U.; Truoel, P.

    1981-01-01

    Beam foil excitation of protons and other positive ions is a well established technique in atomic physics. It was proposed to extend this technique to exotic atoms, especially to the spectroscopy of the hitherto unobserved pionium atom, a bound state of a postive pion and an electron. A pionium atom excited into a 2p-state could for instance be created by passing slow pions through thin foils and detected by its Ly-α radiation. Since the excitation cross-sections depend only on the velocity of the particle, not on its mass, one may use proton data in the design study for such an experiment. The measurements described extend the energy interval from 0.2 to 2 MeV, and absolute cross-sections are reported. (Auth.)

  13. Relative and absolute level populations in beam-foil--excited neutral helium

    International Nuclear Information System (INIS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n -3 , but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number

  14. Beam-foil study of neon in the EUV with foils of carbon, silver and gold

    International Nuclear Information System (INIS)

    Demarest, J.A.; Watson, R.L.; Texas A and M Univ., College Station

    1988-01-01

    A beam-foil study of 40 MeV neon was conducted in the EUV with a 1-meter grazing incidence spectrometer configured with a position sensitive microchannel plate detector. A number of new lines of Ne IX, mainly from transitions to n = 3 levels, were detected in the wavelength region covering 50-350 A. Comparison of the spectra obtained using the different foils revealed that the average charge state of the neon projectiles was nearly one unit higher with carbon than with either of the two metals. Measurements of line intensities versus distance from the foils showed that cascade contributions were greatly reduced for the metals. It was also found that n = 3 states of low l were overpopulated relative to a statistical distribution, irrespective of the foil material. (orig.)

  15. Relative and absolute level populations in beam-foil-excited neutral helium

    Science.gov (United States)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  16. Beam-foil spectroscopy of the Cu I and Zn I isoelectronic sequences

    International Nuclear Information System (INIS)

    Pinnington, E.H.; Bahr, J.L.; Irwin, D.J.G.; Kernahan, J.A.

    1982-01-01

    A summary is presented of recent investigations of the Cu I and Zn I isoelectronic sequences. A discussion is given of the 4s4d 1 D term, with a provisional energy assignment being made for Se V. Two other Se V terms and five As V terms are also assigned. Lifetimes are presented for the 4p, 4d and 5s levels of the Ge IV, As V and Se VI members of the Cu I sequence, the 4p results being obtained from ANDC analyses usinq decay curve data for the 4s-4p, 4p-5s and 4p-4d transitions. The multiplet f-values derived for the 4s-4p transition are in excellent agreement with theoretical predictions. Lifetimes are also given for the 4s4p 1 P 0 , 4p 2 1 D 2 , 4s4d 1 D 2 and 4s5s 1 S 0 levels of the Ge III, AS IV and Se V members of the Zn I sequence, the 4s4p 1 P 0 results again coming from ANDC or constrained-fitting analyses. The agreement with theoretical values here is good up to As IV, but for higher series members the theoretical f-values are significantly higher than the experimental values. Possible reasons for this discrepancy are discussed. (orig.)

  17. Recent progress in the studies of atomic spectra and transition probabilities by beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Martinson, I.

    1982-01-01

    A review is given of recent studies of atomic structure (in particular atomic spectra, energy levels and transition probabilities) using fast beams from ion accelerators. Thanks to improved spectral resolution detailed and quite accurate studies of energy levels are now possible, a number of such results will be discussed. The non-autoionizing, multiply excited levels in atoms and ions (including negative ions) are being vigorously investigated at present, some new results will be reported. The accuracy in lifetime determinations continues to improve, and several new ways for reduction of cascading effects have been developed. Some selected examples of recent progress in lifetime measurements are also included. (orig.)

  18. Atomic spectroscopy sympsoium, Gaithersburg, Maryland, September 23--26, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Abstracts of one hundred papers given at the conference are presented along with the conference program and an author index. Session topics include: highly ionized atoms; laser spectroscopy and hyperfine structure; complex spectra; laser spectroscopy, radiation theory; theory of highly ionized atoms and analysis of plasmas; plasma spectroscopy, line strengths; spectral analysis, instrumentation, reference wavelengths; beam foil spectroscopy, line strengths, energy levels; absorption spectroscopy, autoionization, and related theory; and spectral analysis, instrumentation, and VUV physics

  19. Atomic spectroscopy sympsoium, Gaithersburg, Maryland, September 23--26, 1975. [Program, abstracts, and author index

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Abstracts of one hundred papers given at the conference are presented along with the conference program and an author index. Session topics include: highly ionized atoms; laser spectroscopy and hyperfine structure; complex spectra; laser spectroscopy, radiation theory; theory of highly ionized atoms and analysis of plasmas; plasma spectroscopy, line strengths; spectral analysis, instrumentation, reference wavelengths; beam foil spectroscopy, line strengths, energy levels; absorption spectroscopy, autoionization, and related theory; and spectral analysis, instrumentation, and VUV physics. (GHT)

  20. Part 1, Angular distribution measurement of beam-foil muonium, Part 2, Muon injection simulation for a new muon g-2 experiment

    International Nuclear Information System (INIS)

    Ahn, H.E.

    1992-10-01

    The angular and energy distributions of positive muons μ + and muonium M produced by the beam-foil method have been measured for the first time. A 7 MeV/c subsurface μ + beam was delivered to our apparatus from the Stopped Muon Channel at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF). The μ + formed M by electron capture in a thin Al target foil. A low pressure multi-wire proportional chamber upstream of the target foil was used both as a moderator and as a muon counter. To observe muonium, muons sere swept away by a bending magnet which was placed downstream of the target foil. This magnet was turned off while measuring the μ + distribution. Beyond the magnetic field, particles were collimated and then stopped by a microchannel plate detector located at various angles to the incident muon beam axis. Two pairs of scintillators mounted above (St) and below (Sb) the MC-P were used to detect the decay positrons to verify from the lifetime spectrum that the particles detected by the MCP are muons. The intensities of μ + and M emerging from the Al foil at different angles were obtained from both a time-of-flight spectrum and a lifetime spectrum

  1. Spectroscopy Division progress report (January 1991 to June 1992)

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Kartha, V.B.

    1993-01-01

    The research and development activities of the Spectroscopy Division during the calendar year 1990-1992 are reported in the form of individual summaries. These are arranged under the headings: (1) analytical spectroscopy, (2) infrared and Raman spectroscopy, (3) atomic spectra, (4) molecular and electronic spectra, (5) laser spectroscopy (6) synchrotron, beam foil and plasma spectroscopy, (7) optics, (8) design, fabrication and workshop etc. The list of publications and papers presented at the various conferences, symposia etc. by the staff members of the Division during the report period is given at the end. (author). figs

  2. Spectroscopy Division progress report (July 1992-June 1993)

    International Nuclear Information System (INIS)

    Singh, Mahavir

    1994-01-01

    The research and development activities of the Spectroscopy Division during the year July 1992-June 1993 are reported in the form of individual summaries. These are arranged under the headings: (1) analytical spectroscopy, (2) infrared and Raman spectroscopy, (3) atomic spectra, (4) electronic spectra, (5) laser spectroscopy, (6) synchrotron beam foil and plasma spectroscopy, (7) optics, (8) electronics and instrumentation, and (9) design, fabrication and workshop etc. The list of publications and papers presented at the various conferences, symposia, workshops etc. by the staff members of the Division during the report period is also given. (author)

  3. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  4. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  5. International Conference on The Physics of Highly Ionised Atoms, Incorporating the International Conference on Beam Foil Spectroscopy (7th), Held in England on July 2 - 5, 1984. Programme and Abstracts

    Science.gov (United States)

    1984-07-05

    on He and H2 collisions, at Montesquieu 32 10.5 qkeV Electron capture into Rydberg states in • O collisions between multiply-charged ions J...Bordenave- Montesquieu , A. 5, 32 Bottcher, C. 81 Bottrell, G. J. 81 Bozek, E. 90 Brazuk, A. 35, 71 Brouillard, F. 37 Brown, J. S. 75, 92 Bruandet, J. F...AGRIPPA FACILITY S. Bliman, J.J. Bonnet, A. Bordenave- Montesquieu , J. Desesquelles, 0 M. Druetta, D. Hitz & M. Mayo AGRIPPA GIS CEA/CNRS, Centre d’Etudes

  6. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  7. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... Full Length Research Paper. Determination of lactic acid bacteria in Kaşar cheese and identification by Fourier transform infrared (FTIR) spectroscopy. İlkay Turhan1* and Zübeyde Öner2. 1Department of Nutrition and Dietetic, School of Health Sciences, T.C.Istanbul Arel University, 34537 Buyukcekmece /.

  8. Spectroscopy Division: progress report for 1990

    International Nuclear Information System (INIS)

    Sharma, A.; Marathe, S.M.

    1991-01-01

    This report summarises the work done by members of the Spectroscopy Division both within BARC as well as in scientific institutions elsewhere during the calendar year 1990. Main areas of research activity include atomic spectroscopy for hyperfine structure and isotope shift determination, theoretical and experimental studies of diatomic molecules, infrared and Raman spectroscopy of polyatomic molecules, design and fabrication of beam line optics for INDUS-I synchrotron radiation source, beam foil spectroscopy and laser spectroscopy of various atomic and molecular systems. Major experimental facilities that have been utilised include a fourier transform spectrometer, an excimer laser pumped dye-laser and a continous wave argon-ion laser. The report also includes the spectroscopic analytical service rendered for various DAE units and describes briefly some new analytical facilities like laser enhanced ionization in flames and resonance ionization mass spectroscopy using pulsed lasers which are being set up. The above activites were reported by members of the Spectroscopy Division via invited lectures, papers presented in various national and international conferences and publication in scientific journals. Details of these are given at the end of the report. (author). figs., tabs

  9. Spectroscopy Division : Progress report for Oct 1979 - Dec 1980

    International Nuclear Information System (INIS)

    Saksena, G.D.; Naik, R.C.

    1981-01-01

    An account of the activities, with an individual summary of each, of the Spectroscopy Division of the Bhabha Atomic Research Centre (BARC), Bombay, for the period from October 1979 to December 1980 is given. The activities of the Division are mainly concerned with: (1) spectrochemical analysis of nuclear fuels, reactor materials, mineral samples, environmental samples, biological samples, and other samples by methods of optical emission spectroscopy, electron spectroscopy, and X-ray fluorescence spectroscopy, (2) research and development primarily in the field of high resolution atomic and molecular spectroscopy, and (3) design and fabrication of high precision optical instruments and electronic components for other Divisions of BARC and other constituent units of the Department of Atomic Energy. During the report period, the following were fabricated: a monochromator using a concave holographic grating, a holographic grating spectrograph, a core viewing system for the Fast Breeder Test Reactor now under construction at Kalpakkam, a critical angle refractometer for heavy water analysis in the Rajasthan Atomic Power Station, electronic equipment like frequency divider amplifier, lock-in-voltmeter, analog ratio meter etc. required for laser spectroscopy. Lists of the staff members, their publications during the report period, educational and training activities of the Division are also given. Two feature articles, one dealing with beam foil spectroscopy and the other with monochromatization of synchrotron radiation, are also included. (M.G.B.)

  10. Spectroscopy Division progress report for January 1987 - December 1988

    International Nuclear Information System (INIS)

    Dixit, R.M.

    1989-01-01

    During the period January 1987 - December 1988, the Spectroscopy Division has carried out research and development in many areas of analytical spectroscopy, atomic spectra and spectra of diatomic and polyatomic molecules. The Division has acquired an ICP spectrometer and an excimer laser pumped dye laser during this period and they have been used very fruitfully for research and development. Research in high resolution atomic spectroscopy has continued to flourish. Beam foil spectroscopy and spectroscopy of low energy plasma focus sources have been put on a firm foundation. Setting up of new experimental systems for solid state spectral studies at liquid helium temperatures have been started. A good amount of theoretical work in forbidden transitions, has been carried out. Diode laser spectroscopy has been used for high precision intensity and frequency measurements. Service facilities like quality control analysis of nuclear materials and supply of optical components and thin film devices have performed with maximum efficiency. The electronics and instrumentation group has developed several facilities for various experimental set ups. Brief description of all these and other activities of the Division are given in the present progress report. A list of publications and a divisional staff chart are also given. (author). figs., tabs

  11. Beam foil interaction studies for the future stripper of Ganil

    International Nuclear Information System (INIS)

    Baron, E.; Ricaud, C.

    1988-01-01

    The GANIL 3 - cyclotron accelerator complex is to be upgraded in 1989 by increasing the beam energy at the stripper. In view of this modification, the effect of carbon stripper foils of various thicknesses (from 50 to 250 μg/cm 2 ) on the energy spread of Ar, Kr, Xe and Ta beams was measured using the analysing section of the 270 0 spectrometer. Energies ranging from 3.2 to 6.5 MeV/A (i.e corresponding to the future energy range) were used, and intensities of several hundreds of electrical nanoamperes were concentrated over a few mm 2 spot. Unusually large values of the additional energy spread are reported. In addition, charge state distributions of the 6.48 MeV/A Xe and 4.81 MeV/A Ta beams were measured as a function of the carbon thickness, in order to be able to choose how close to the equilibrium thickness the stripper should be, while keeping the energy spread of the outgoing beams within reasonable limits

  12. Alignment and orientation effects in beam-foil experiments

    International Nuclear Information System (INIS)

    Band, Y.B.

    1975-01-01

    A theory of the orientation and alignment of atoms observed upon emergence from tilted foils is presented. The interaction with the foil surface is taken into account in the production process of particular states. Once they are produced, the evolution of these states, under the influence of the residual field near the surface, is calculated in the fashion introduced by Eck. The most general effect of this evolution is presented

  13. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    International Nuclear Information System (INIS)

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy

  14. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy. (GHT)

  15. Proceedings of the 3rd US-Japan Workshop on Plasma Polarization Spectroscopy

    International Nuclear Information System (INIS)

    Beiersdorfer, P; Flyimoto, T

    2002-01-01

    The third US-Japan Workshop on Plasma Polarization Spectroscopy was held at the Lawrence Livermore National Laboratory in Livermore, California, on June 18-21, 2001. The talks presented at this workshop are summarized in these proceedings. The papers cover both experimental investigation and applications of plasma polarization spectroscopy as well as the theoretical foundation and formalisms to understand and describe the polarization phenomena. The papers give an overview of the history of plasma polarization spectroscopy, derive the formal aspects of polarization spectroscopy, including the effects of electric and magnetic fields, discuss spectra perturbed by intense microwave fields, charge exchange, and dielectronic recombination, and present calculations of various collisional excitation and ionization cross sections and the modeling of plasma polarization spectroscopy phenomena. Experimental results are given from the WT-3 tokamak, the MST reverse field pinch, the Large Helical Device, the GAMMA 10 mirror machine, the Nevada Terrawatt Facility, the Livermore EBIT-II electron beam ion trap, and beam-foil spectroscopy. In addition, results were presented from studies of several laser-produced plasma experiments and new instrumental techniques were demonstrated

  16. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  17. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  18. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  19. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  20. Electronic spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is

  1. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  2. Chemical spectroscopy

    International Nuclear Information System (INIS)

    Eckert, J.; Brun, T.O.; Dianoux, A.J.; Howard, J.; Rush, J.J.; White, J.W.

    1984-01-01

    The purpose of chemical spectroscopy with neutrons is to utilize the dependence of neutron scattering cross-sections on isotope and on momentum transfer (which probes the spatial extent of the excitation) to understand fundamental and applied aspects of the dynamics of molecules and fluids. Chemical spectroscopy is divided into three energy ranges: vibrational spectroscopy, 25-500 MeV, for which much of the work is done on Be-filter analyzer instruments; low energy spectroscopy, less than 25 MeV; and high resolution spectroscopy, less than 1 MeV, which typically is performed on backscattering spectrometers. Representative examples of measurements of the Q-depenence of vibrational spectra, higher energy resolution as well as extension of the Q-range to lower values at high energy transfers, and provisions of higher sensitivities in vibrational spectroscopy are discussed. High resolution, high sensitivity, and polarization analysis studies in low energy spectroscopy are discussed. Applications of very high resolution spectroscopy are also discussed

  3. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... containing systems and are characterized using techniques in optical spectroscopy. Of the standard techniques in optical spectroscopy, particular attention has been paid to those based on time-resolved measurements and polarization, which is reflected in the experiment design in the projects. Not all...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  4. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  5. Hadron Spectroscopy

    International Nuclear Information System (INIS)

    Binon, F.; Frere, J.M.; Peigneux, J.P.

    1989-01-01

    HADRON 89 is the third of a series of biennial conferences on hadron spectroscopy which are now replacing the former separate meson and baryon spectroscopy conferences. The first one, HADRON 85, was held at the University of Maryland. The second one, HADRON 87, has taken place at KEK in Tsukuba in Japan. This conference is divided into 7 sessions bearing on: - session 1 Light mesons and exotics (19 conferences) - session 2 Light mesons and exotics-theory-phonomenology (15 conferences) - session 3 Theoretical problems (14 conferences) - session 4 New detectors factories (9 conferences) - session 5 Baryons (7 conferences) - session 6 Heavy flavor spectroscopy (7 conferences) - session 7 Concluding hadron 89 (3 conferences)

  6. Electronic spectroscopies

    OpenAIRE

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is directly chemical since the outer shell electrons of the TMI are probed and provide information about the oxidation state and coordination environment of TMI on surfaces. Furthermore, the DRS technique ca...

  7. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  8. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  9. Emission spectroscopy

    International Nuclear Information System (INIS)

    Barnes, R.M.

    1978-01-01

    This 16th article in the series of biennial reviews of emission spectroscopy surveys with emphasis the emission spectrochemical literature appearing in referred publications during 1976 and 1977. Books and general reviews of emission spectroscopy and closely related subjects are considered in the first section, whereas specific reviews and texts are included in each of the five tropical sections. Spectral descriptions and classifications are examined in the second section. An abbreviated instrumentation section follows, and standards, samples, calibrations, and calculations are evaluated in the fourth section. The emphasis on excitation sources reflects the size of section five. In the sixth section, important applications are explored

  10. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  11. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  12. Flexoelectric spectroscopy.

    Science.gov (United States)

    Scott, J F

    2013-08-21

    Flexoelectricity is an increasingly popular subject because it can be extremely large in thin films and permits switching of devices in nonpolar (non-piezoelectric) crystals via application of inhomogeneous stresses. However, recent work has been limited to macroscopic measurement of voltage or strain. Here, we discuss the vibrational spectroscopy of flexoelectricity as a recommended new tool for thin-film characterization, with special emphasis upon incommensurate crystals.

  13. Flexoelectric spectroscopy

    International Nuclear Information System (INIS)

    Scott, J F

    2013-01-01

    Flexoelectricity is an increasingly popular subject because it can be extremely large in thin films and permits switching of devices in nonpolar (non-piezoelectric) crystals via application of inhomogeneous stresses. However, recent work has been limited to macroscopic measurement of voltage or strain. Here, we discuss the vibrational spectroscopy of flexoelectricity as a recommended new tool for thin-film characterization, with special emphasis upon incommensurate crystals. (viewpoint)

  14. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  15. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  16. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  17. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Zemcik, T.

    1984-01-01

    The emission and absorption of photons taking place without changes in the frequency spectrum of the crystal lattice are known as the Moessbauer effect. It takes place in the low energy levels of heavy nuclei in solid lattices at low temperatures. On the basis of the hyperfine structure of Moessbauer spectra the notions are explained of isomer shift, quadrupole splitting and magnetic splitting. The principle and function are explained of Moessbauer spectrometers and the methods of graphical processing of spectra, also the use of the least square fit. Moessbauer spectroscopy is nondestructive, highly sensitive and selective and makes structural resolution possible. It is used for quantitative and qualitative analysis of compounds. Examples are given of the use of this method for mineralogical and crystallo-chemical analysis of lunar minerals and rocks, for analysis of corrosion products of iron and for phase analysis of alloys. (M.D.)

  18. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  19. SIMP spectroscopy

    International Nuclear Information System (INIS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2016-01-01

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e + e − colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  20. SIMP spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kuflik, Eric [Department of Physics, LEPP, Cornell University,Ithaca NY 14853 (United States); Murayama, Hitoshi [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Center for Japanese Studies, University of California,Berkeley, CA 94720 (United States)

    2016-05-16

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e{sup +}e{sup −} colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  1. Amateur spectroscopy

    Science.gov (United States)

    Gavin, M. V.

    1998-06-01

    (The 1997 Presidential Address to the British Astronomical Association.) Auguste Comte is remembered for an unfortunate remark. In 1825 he said the chemical composition of stars would never be revealed. Within a decade or so the heart of the atom was being explored in remote stars through the science of spectroscopy. In simplistic terms one can regard the atom as a miniature solar system, but with the novel option that electrons (representing planets) having the ability to 'jump' from one orbit to another. In 'falling' to a lower orbit a photon of light of precise wavelength is released to travel outwards. When the electron 'jumps' to a higher orbit a photon of light is absorbed. This is taking place on a vast scale which we observe as lines in the spectrum - their position and prominence relates to the particular atomic element, temperature and pressure within the stellar atmosphere. It is beyond the scope of this Address to discuss the various processes that affect spectra, or to provide a mathematical explanation which can be found elsewhere. In any case the lack of a deep understanding does not preclude enjoyable or useful observations. Methods and results from amateurs conducting such observations are discussed in this paper.

  2. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  3. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  4. Progress in K spectroscopy

    International Nuclear Information System (INIS)

    Leith, D.W.G.S.

    1977-07-01

    The progress in the field of K* spectroscopy is reviewed within the framework of the simple harmonic oscillator quark model, and contrasted with the recent progress made in the charmonium spectroscopy

  5. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  7. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  8. Symposium on atomic spectroscopy

    International Nuclear Information System (INIS)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented

  9. Coherent Raman spectroscopy

    CERN Document Server

    Eesley, G L

    1981-01-01

    Coherent Raman Spectroscopy provides a unified and general account of the fundamental aspects of nonlinear Raman spectroscopy, also known as coherent Raman spectroscopy. The theoretical basis from which coherent Raman spectroscopy developed is described, along with its applications, utility, and implementation as well as advantages and disadvantages. Experimental data which typifies each technique is presented. This book is comprised of four chapters and opens with an overview of nonlinear optics and coherent Raman spectroscopy, followed by a discussion on nonlinear transfer function of matter

  10. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  11. Spectroscopy of Burn Wounds

    Science.gov (United States)

    1990-04-01

    first task was to select and purchase a Visible/Near- infrared spectrophotometer suitable for non-contacting spectroscopy of biological tissues...FiLE COPY AD 0 NContract No: DAMD17-88-C-8125 N Title: Spectroscopy of Burn Wounds I Principal Investigator: Martin A. Afromowitz, Ph.D. PI Address...Include Security Classification) SPECTROSCOPY OF BURN WOUNDS 12. PERSONAL AUTHOR(S) Martin A. Afromowitz, Ph.D., and James B. Callis, Ph.D. 13a. TYPE OF

  12. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...

  13. Heterodyned holographic spectroscopy

    NARCIS (Netherlands)

    Douglas, NG

    In holographic spectroscopy an image of an interference pattern is projected onto a detector and transformed back to the input spectrum. The general characteristics are similar to those of Fourier transform spectroscopy, but the spectrum is obtained without scanning. In the heterodyned arrangement

  14. Hadron spectroscopy: Workshop summary

    International Nuclear Information System (INIS)

    Comyn, M.

    1993-01-01

    The hadron spectroscopy sessions of the Working Group on Hadron and Nuclear Spectroscopy are summarized. The present status of the field is discussed, along with the main priorities and open questions for the future. The required characteristics of optimum future facilities are outlined

  15. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    GENERAL ARTICLE. Single-Molecule Spectroscopy. Every Molecule is Different! Kankan Bhattacharyya. Keywords. Single-molecule spectroscopy. (SMS), confocal microscopy,. FCS, sm-FRET, FLIM. 1 High-resolution spectrum re- fers to a spectrum consisting of very sharp lines. The sharp lines clearly display transitions to ...

  16. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  17. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  18. Quantum-limit spectroscopy

    CERN Document Server

    Ficek, Zbigniew

    2017-01-01

    This book covers the main ideas, methods, and recent developments of quantum-limit optical spectroscopy and applications to quantum information, resolution spectroscopy, measurements beyond quantum limits, measurement of decoherence, and entanglement. Quantum-limit spectroscopy lies at the frontier of current experimental and theoretical techniques, and is one of the areas of atomic spectroscopy where the quantization of the field is essential to predict and interpret the existing experimental results. Currently, there is an increasing interest in quantum and precision spectroscopy both theoretically and experimentally, due to significant progress in trapping and cooling of single atoms and ions. This progress allows one to explore in the most intimate detail the ways in which light interacts with atoms and to measure spectral properties and quantum effects with high precision. Moreover, it allows one to perform subtle tests of quantum mechanics on the single atom and single photon scale which were hardly eve...

  19. Homogeneity spoil spectroscopy

    International Nuclear Information System (INIS)

    Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.

    1987-01-01

    One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy

  20. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  1. IR Spectroscopy. An introduction

    International Nuclear Information System (INIS)

    Guenzler, H.; Gremlich, H.U.

    2002-01-01

    The following topics are dealt with: absorption and molecular design, spectrometers, sample preparation, qualitative spectral interpretation and assertions, near-infrared and far-infrared spectroscopy, reference spectra and expert systems

  2. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    ARTICLE. Electron Paramagnetic Resonance Spectroscopy. Biological Applications. B G Hegde. Recently, electron paramagnetic resonance (EPR) spectros- copy has emerged as a powerful tool to study the structure and dynamics of biological macromolecules such as proteins, protein aggregates ... research interests are.

  3. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  4. Charmonium spectroscopy, 1987

    International Nuclear Information System (INIS)

    Cahn, R.N.

    1987-01-01

    The state of charmonium spectroscopy is reviewed. All analyses proceed from a spin-dependent, non-relativistic Schroedinger equation. Many of the possible branching ratios for charm like states are investigated. 17 refs

  5. Dual THz comb spectroscopy

    Science.gov (United States)

    Yasui, Takeshi

    2017-08-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  6. Fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Hink, M.A.; Verveer, P.J.

    2015-01-01

    Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the

  7. Methods of laser spectroscopy

    International Nuclear Information System (INIS)

    Prior, Y.; Ben-Reuven, A.; Rosenbluh, M.

    1986-01-01

    This book presents information on the following topics: the one-atom maser and cavity quantum electrodynamics; Rydberg atoms and radiation; investigation of nonthermal population distributions with femtosecond optical pulses; intra- and intermolecular energy transfer of large molecules in solution after picosecond excitation; new techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses; spectral linewidth of semiconductor lasers; the hydrogen atom in a new light; laser frequency division and stabilization; modified optical Bloch equations for solids; CARS spectroscopy of transient species; off resonant laser induced ring emission; UV laser ionization spectroscopy and ion photochemistry; laser spectroscopy of proton-transfer in microsolvent clusters; recent advances in intramolecular electronic energy transfer; and photoionization and dissociation of the H 2 molecule near the ionization threshold

  8. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  9. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  10. Moessbauer spectroscopy. Tutorial book

    International Nuclear Information System (INIS)

    Yoshida, Yutaka; Langouche, Guido

    2013-01-01

    First textbook on Moessbauer Spectroscopy covering the complete field. Offers a concise introduction to all aspects of Moessbauer spectroscopy by the leading experts in the field. Tutorials on Moessbauer Spectroscopy. Since the discovery of the Moessbauer Effect many excellent books have been published for researchers and for doctoral and master level students. However, there appears to be no textbook available for final year bachelor students, nor for people working in industry who have received only basic courses in classical mechanics, electromagnetism, quantum mechanics, chemistry and materials science. The challenge of this book is to give an introduction to Moessbauer Spectroscopy for this level. The ultimate goal of this book is to give this audience not only a scientific introduction to the technique, but also to demonstrate in an attractive way the power of Moessbauer Spectroscopy in many fields of science, in order to create interest among the readers in joining the community of Moessbauer spectroscopists. This is particularly important at times where in many Moessbauer laboratories succession is at stake.

  11. Plasmon enhanced spectroscopy.

    Science.gov (United States)

    Aroca, Ricardo F

    2013-04-21

    Surface enhanced spectroscopy encompasses a broad field of linear and nonlinear optical techniques that arose with the discovery of the surface-enhanced Raman scattering (SERS) effect. SERS enabled ultrasensitive and single molecule detection with molecular fingerprint specificity, opening the door for a large variety of chemical sensing applications. Basically, from the beginning it was realized that the necessary condition for SERS to be observed was the presence of a metallic nanostructure, and with this condition, the optical enhancement found a home in the field of plasmonics. Although plasmonic practitioners claim that SERS is "the most spectacular application of plasmonics", perhaps it is more appropriate to say that the spectacular development of plasmonics is due to SERS. Here is a brief recollection from surface enhanced spectroscopy to plasmon enhanced spectroscopy.

  12. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  13. Infrared spectroscopy of stars

    Science.gov (United States)

    Merrill, K. M.; Ridgway, S. T.

    1979-01-01

    This paper reviews applications of IR techniques in stellar classification, studies of stellar photospheres, elemental and isotopic abundances, and the nature of remnant and ejected matter in near-circumstellar regions. Qualitative IR spectral classification of cool and hot stars is discussed, along with IR spectra of peculiar composite star systems and of obscured stars, and IR characteristics of stellar populations. The use of IR spectroscopy in theoretical modeling of stellar atmospheres is examined, IR indicators of stellar atmospheric composition are described, and contributions of IR spectroscopy to the study of stellar recycling of interstellar matter are summarized. The future of IR astronomy is also considered.

  14. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  15. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Astronomical Spectroscopy -24 ...

    Indian Academy of Sciences (India)

    in Mendeleev's Periodic Table when the latter was formulated in. 1869. Cesium was discovered ten years earlier, in 1859; it is the first element discovered by spectroscopy. Kirchhoff and Bunsen continued their search; another new element was discovered in. 1860. It was named rubidium, and it filled up another slot in the.

  17. Outlook for baryon spectroscopy

    International Nuclear Information System (INIS)

    Tripp, R.D.

    1976-09-01

    The review of baryon spectroscopy includes a number of new generation experiments with greatly improved statistics which have emerged and are enhancing experimental knowledge of baryon resonances. The future research directions are pointed out, and some problems and deficiencies which can be resolved with contemporary techniques are mentioned

  18. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  19. Charmonium spectroscopy - A review

    Indian Academy of Sciences (India)

    to a renewed interest in the precision spectroscopy of charmonium. These are the successful exploitation of proton-antiproton annihilation in the /× = 2 9-4.0. GeV range at Fermilab (FNAL experiments E760, E835), and the BEs spectrometer program at BEPC, the electron positron collider at Beijing. Both these experiments.

  20. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Charmonium spectroscopy - A review

    Indian Academy of Sciences (India)

    A review is presented of the latest developments in the spectroscopy of char- monium. Keywords. Charmonium ... More than half the decays measured have errors larger than 30%. The bound states,. ' (21Л0) and .... at sLAC claimed to have found it, but no other past experiment succeeded in confirming it. E760 and E835 ...

  2. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    essential to understand their structure. Membrane-bound proteins are generally not amenable to crystallization and often their sizes are so large that conventional techniques such as X-ray crystal- lography and nuclear magnetic resonance (NMR) spectroscopy will have limited applications in deciphering their structure. In.

  3. Spectroscopy of new particles

    International Nuclear Information System (INIS)

    Goldhaber, G.

    1977-08-01

    A review of the spectroscopy of the ''psions'' with hidden charm or charm quantum number ch = o is followed by a discussion of charmed mesons and baryons. The anomalous C-μ events and the heavy lepton hypothesis are briefly considered

  4. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE. February 2015. GENERAL ARTICLE. Single-Molecule Spectroscopy. Every Molecule is Different! Kankan Bhattacharyya. Keywords. Single-molecule ..... Resonance Energy. Transfer (FRET) is an elegant technique to measure the distance between a donor and an acceptor molecule. FRET refers to the.

  5. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  6. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! ... Author Affiliations. Kankan Bhattacharyya1. Department of Physical Chemistry, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700 032 India.

  7. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  8. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  9. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  10. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  11. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  12. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  13. BATSE spectroscopy detector calibration

    Science.gov (United States)

    Band, D.; Ford, L.; Matteson, J.; Lestrade, J. P.; Teegarden, B.; Schaefer, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.

    1992-01-01

    We describe the channel-to-energy calibration of the Spectroscopy Detectors of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO). These detectors consist of NaI(TI) crystals viewed by photomultiplier tubes whose output in turn is measured by a pulse height analyzer. The calibration of these detectors has been complicated by frequent gain changes and by nonlinearities specific to the BATSE detectors. Nonlinearities in the light output from the NaI crystal and in the pulse height analyzer are shifted relative to each other by changes in the gain of the photomultiplier tube. We present the analytical model which is the basis of our calibration methodology, and outline how the empirical coefficients in this approach were determined. We also describe the complications peculiar to the Spectroscopy Detectors, and how our understanding of the detectors' operation led us to a solution to these problems.

  14. Hadron spectroscopy with COMPASS

    CERN Document Server

    Bernhard, Johannes

    2010-01-01

    The COmmon Muon and Proton Apparatus for Structure and Spectroscopy is a fixed target experiment at the CERN SPS accelerator. In the past two years hadron spectroscopy was brought into focus. A huge amount of data was taken, using hadronic beams at a momentum of 190 GeV$/c$ impinging on hydrogen, lead, nickel and tungsten targets. The primary goal for the hadron programme is the study of resonance production by diractive scattering, central production and photon exchange. To bring clarity in the intriguing question about the existence of exotic states, such as glueballs and hybrids, the analysis of several channels have been started. We present here a selective overview of the current status.

  15. Visible spectroscopy on ASDEX

    International Nuclear Information System (INIS)

    Hofmann, J.V.

    1991-12-01

    In this report visible spectroscopy and impurity investigations on ASDEX are reviewed and several sets of visible spectra are presented. As a basis for identification of metallic impurity lines during plasma discharges spectra from a stainless steel - Cu arc have been recorded. In a next step a spectrum overview of ASDEX discharges is shown which reveals the dominating role of lines from light impurities like carbon and oxygen throughout the UV and visible range (2000 A ≤ λ ≤ 8000 A). Metallic impurity lines of neutrals or single ionized atoms are observed near localized surfaces. The dramatic effect of impurity reduction by boronization of the vessel walls is demonstrated in a few examples. In extension to some ivesti-gations already published, further diagnostic applications of visible spectroscopy are presented. Finally, the hardware and software system used on ASDEX are described in detail. (orig.)

  16. Magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    A major function of the liver is regulation of carbohydrate, lipid, and nitrogen metabolism. Food is absorbed by the intestines and transported to the liver by the portal circulation. Substrates are metabolized and stored in the liver to maintain optimal blood concentrations of glucose and lipids. Ammonia generated in the gastrointestinal tract is converted to urea in the liver by the urea cycle. Various forms of liver disease are associated with disorders of carbohydrate, fat, and nitrogen metabolism. Therefore the ability to characterize liver metabolism noninvasively is of potential diagnostic value. Magnetic resonance spectroscopy (MRS) provides information about tissue metabolism by measuring concentrations of metabolites. However, to determine the anatomic location from which spectroscopic signals are derived, MRS could be performed in conjunction with MRI. This paper summarizes the current experience with spectroscopy ion animal models of human disease and reviews the clinical experience with hepatic MRS to date

  17. Basic Principles of Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.

  18. Hadron spectroscopy in LHCb

    CERN Document Server

    Palano, Antimo

    2018-01-01

    The LHCb experiment is designed to study the properties and decays of heavy flavored hadrons produced in pp collisions at the LHC. The data collected in the LHC Run I enables precision spectroscopy studies of beauty and charm hadrons. The latest results on spectroscopy of conventional and exotic hadrons are reviewed. In particular the discovery of the first charmonium pentaquark states in the $J/\\psi p$ system, the possible existence of four-quark states decaying to $J/\\psi \\phi$ and the confirmation of resonant nature of the $Z_c(4430)^−$ mesonic state are discussed. In the sector of charmed baryons, the observation of five new $\\Omega_c$ states, the observation of the $\\Xi^+_{cc}$ and the study of charmed baryons decaying to $D^0 p$ are presented.

  19. Spectroscopy of neutral radium

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Aran; De, Subhadeep; Jungmann, Klaus; Wilschut, Hans; Willmann, Lorenz [KVI, University of Groningen, Groningen (Netherlands)

    2008-07-01

    The heavy alkaline earth atoms radium is uniquely sensitive towards parity and time reversal symmetry violations due to a large enhancement of an intrinsic permanent electric dipole moment of the nucleous or the electron. Furthermore, radium is sensitive to atomic parity violation and the nuclear anapole moment. To prepare such experiments spectroscopy of relevant atomic states need to be done. At a later stage we will build a neutral atom trap for radium. We have built an atomic beam of the short lived isotope {sup 225}Ra with a flux of several 10{sup 4} atoms/sec. We are preparing the laser spectroscopy using this beam setup. In the preparation for efficient laser cooling and trapping we have successfully trapped barium, which is similar in it's requirements for laser cooling. The techniques which we have developed with barium can be used to trap rare radium isotopes. We report on the progress of the experiments.

  20. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  1. 2008 Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  2. Infrared spectroscopy in astronomy

    Science.gov (United States)

    Houck, J. R.

    1981-01-01

    The use of infrared spectroscopy in astronomy has increased dramatically in the past ten years. The broad design considerations are discussed in terms of wavelength coverage and resolution. Three rough resolution ranges, lambda/Delta lambda of approximately 100, 1000 and 10,000, are identified in which various types of astronomical problems can be studied. Numerous existing systems are briefly discussed and references are given to more complete descriptions.

  3. Secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Sroubek, Z.; Zavadil, J.; Kubec, F.

    1977-01-01

    Secondary ion mass spectroscopy is one of the modern methods suitable for the analysis of thin films and solid state surfaces. The method is capable of providing the compositional information with a depth resolution below 0.1 μm and a sensitivity of the order of 10 -3 ppm for some impurities. The review article contains a description of the method, a list of typical applications and a short account of relevant theories. (author)

  4. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.

    2007-01-01

    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  5. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  6. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  7. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  8. Layman friendly spectroscopy

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    Affordable consumer grade spectroscopes (e.g. SCiO, Qualcomm Tricorder XPRIZE) are becoming more available to the general public. We introduce the concepts of spectroscopy to the public and K12 students and motivate them to delve deeper into spectroscopy in a dramatic participatory presentation and play. We use diffraction gratings, lasers, and light sources of different spectral properties to provide a direct experience of spectroscopy techniques. Finally, we invite the audience to build their own spectroscope--utilizing the APS SpectraSnapp cell phone application--and study light sources surrounding them in everyday life. We recontextualize the stigma that science is hard (e.g. ``Math, Science Popular Until Students Realize They're Hard,'' The Wall Street Journal) by presenting the material in such a way that it demonstrates the scientific method, and aiming to make failure an impersonal scientific tool--rather than a measure of one's ability, which is often a reason for shying away from science. We will present lessons we have learned in doing our outreach to audiences of different ages. This work is funded by the APS Outreach Grant ``Captain, we have matter matters!'' We thank New Mexico Tech Physics Department and Physics Club for help and technical equipment.

  9. Moessbauer spectroscopy on actinides

    International Nuclear Information System (INIS)

    Boge, M.

    1988-01-01

    The wide spatial extend of the 5f electrons leads a broad spectrum of chemical and physical properties, in particular magnetic, in compounds of light actinides. Their behaviour goes from the localized magnetism of lanthanides to the itinerant magnetism often found in transition metals compounds. One parameter which strongly influences the magnetic character is the actinide-actinide distance. Moessbauer spectroscopy of the 59.5 KeV resonance in 237 Np allows a detailed study of local magnetic properties of the Np ion. Some results are presented on compounds of different crystallographic structure, showing the large variety of magnetic properties

  10. MR spectroscopy in dementia

    International Nuclear Information System (INIS)

    Hauser, T.; Gerigk, L.; Giesel, F.; Schuster, L.; Essig, M.

    2010-01-01

    With an increasingly aging population we are faced with the problem of an increasing number of dementia patients. In addition to clinical, neuropsychological and laboratory procedures, MRI plays an important role in the early diagnosis of dementia. In addition to various morphological changes functional changes can also help in the diagnosis and differential diagnosis of dementia. Overall the diagnosis of dementia can be improved by using parameters from MR spectroscopy. This article focuses on MR spectroscopic changes in the physiological aging process as well as on changes in mild cognitive impairment a precursor of Alzheimer's dementia, in Alzheimer's dementia, frontotemporal dementia, vascular dementia and Lewy body dementia. (orig.) [de

  11. Fourier transforms in spectroscopy

    CERN Document Server

    Kauppinen, Jyrki

    2000-01-01

    This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

  12. Plasma polarization spectroscopy

    CERN Document Server

    Iwamae, Atsushi

    2008-01-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment.

  13. Wave mixing spectroscopy

    International Nuclear Information System (INIS)

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr +3 :LaF 3 verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the 3 H 4 , 3 H 6 , and 3 P 0 levels of the praseodymium ions

  14. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  15. Meson and baryon spectroscopy

    International Nuclear Information System (INIS)

    Lanius, K.

    1977-01-01

    Some of the essential results are given of the hadron spectroscopy which have been obtained in the last two years. The progress in meson spectroscopy originates in high statistics and in the extensive use of partial wave analysis. The resonances established fill the major meson multiplets. The rotational excitation (α)=0 multiplet is complete. With regard to the gaps in the 1 ++ and 1 +- nonets of the α=1 multiplet there are some good condidates, like Q 2 (1400) and D(1285). Concerning the α=2 and 3 multiplets, there are only very few established states. The reactions that should be studied in searching for the missing states are exclusive channels with multiparticle final state. Both the new evidence about meson resonances and the non-evidence for exotic states, which cannot be represented as a bound q anti q pair, show that the general pattern of meson states is in agreement with the naive nonrelativistic quark model. The summary of SU(6)xO(3) multiplets, as far as it belongs to the distribution of the observed resonances among the different multiplets, can be changed in future. Only the [56.0 + ] can be considered as well established concerning the distribution of the states. As far as it belongs to the [56.1 - ], [70.2 + ] and the second [56.2 + ], additional confirmations are necessary

  16. Handbook of High Resolution Spectroscopy

    OpenAIRE

    2011-01-01

    The field of High resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy laser technology chemical computation and experiments Handbook of High resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today with emphasis on the recent developments. This essential handbook for advanced research students graduate students and researchers takes a systematic approach through the rang...

  17. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  18. Mass Spectroscopy/Mass Spectroscopy Method for Quantitative ...

    African Journals Online (AJOL)

    Purpose: To determine naproxen levels in human plasma using a new liquid chromatography-Mass spectroscopy/Mass spectroscopy (LC-MS/MS) method that involves a simple and single step extraction procedure using low-cost reagents. Method: A novel liquid chromatography.tandem mass spectrometry method for the ...

  19. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  20. Scanning image correlation spectroscopy.

    Science.gov (United States)

    Digman, Michelle A; Gratton, Enrico

    2012-05-01

    Molecular interactions are at the origin of life. How molecules get at different locations in the cell and how they locate their partners is a major and partially unresolved question in biology that is paramount to signaling. Spatio-temporal correlations of fluctuating fluorescently tagged molecules reveal how they move, interact, and bind in the different cellular compartments. Methods based on fluctuations represent a remarkable technical advancement in biological imaging. Here we discuss image analysis methods based on spatial and temporal correlation of fluctuations, raster image correlation spectroscopy, number and brightness, and spatial cross-correlations that give us information about how individual molecules move in cells and interact with partners at the single molecule level. These methods can be implemented with a standard laser scanning microscope and produce a cellular level spatio-temporal map of molecular interactions. Copyright © 2012 WILEY Periodicals, Inc.

  1. Electromagnetic induction spectroscopy

    Science.gov (United States)

    Won, I. J.; Keiswetter, Dean A.

    1998-09-01

    An object, made partly or wholly of metals, has a distinct combination of electrical conductivity, magnetic permeability, and geometrical shape and size. When the object is exposed to a low-frequency electromagnetic field, it produces a secondary magnetic field. By measuring the secondary field in a broadband spectrum, we obtain a distinct spectral signature that may uniquely identify the object. Based on the response spectrum, we attempt to 'fingerprint' the object. This is the basic concept of Electromagnetic Induction Spectroscopy (EMIS). EMIS technology may be particularly useful for detecting buried landmines and unexploded ordnance. By fully characterizing and identifying an object without excavation. We should be able to reduce significantly the number of false targets. EMIS should be fully applicable to many other problems where target identification and recognition (without intrusive search) are important. For instance, an advanced EMIS device at an airport security gate may be able to recognize a particular weapon by its maker and type.

  2. NMR-spectroscopy

    International Nuclear Information System (INIS)

    Lundin, A.G.; Fedin, Eh.I.

    1986-01-01

    Physical foundations are given and the most important areas of nuclear magnetic resonance (NMR) application in physics, chemistry, biology are described. A detailed review of the investigations conducted and the NMR applications in different science and technology fields is presented. The method basic experimental variants, including such new ones as high resolution in a solid body; rare isotope resonance; two-dimensional and multi-quantum fourier-spectroscopy; large molecule NMR; NMR tomography and NMR intrascopy etc. are considered. The instruments are briefly described. NMR is characterized as one of the most important investigation methods of the material composition, its molecular and crystal structure, visualization of the living organism and nonmetallic object inner structure

  3. Near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  4. Transit spectroscopy with GTC

    Directory of Open Access Journals (Sweden)

    Osorio M.R. Zapatero

    2013-04-01

    Full Text Available Thanks to different ground-based surveys and space missions, nowadays we have a fairly large sample of discovered extra-solar planets to study and, without a doubt, this number will increase in the future. One of the most succesful techniques that allows us to prove the physical properties and atmospheric composition of these exoplanets is transmission spectroscopy. The level of precision that is require to measure these effects provides a technical challenge that is solved by using big telescopes and stable instruments to reach low noise levels. In this article, we will discuss the use of the 10m class telescope GTC to observed planetary transits in spectroscopic mode and some of the results that we are currently obtaining.

  5. Heavy meson spectroscopy

    International Nuclear Information System (INIS)

    Chakrabarty, S.

    1989-08-01

    In this article we give a review of certain aspects of the present understanding of spectroscopy of heavy mesons and constituent quark masses in the light of non-relativistic potential model approach motivated by quantum chromodynamics. We find that the one gluon exchange at short distance and colour-confining interaction at large distance which is pure scalar (or scalar-vector admixture with dominant scalar interaction) under the Lorentz transformation, can explain only partially the present data on 1P states of cc-bar and bb-bar states. The S-wave data, that are available at present, however can be understood with both scalar confinement or scalar-vector admixture with scalar-dominant interaction. (author). 44 refs, 13 tabs

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  7. Superconductivity for mass spectroscopy

    International Nuclear Information System (INIS)

    Ohkubo, Masataka

    2007-01-01

    Time-of-Flight Mass Spectroscopy (TOF-MS) with super-conducting detectors has two advantages over MS with conventional ion detectors. First, it is coverage for a very wide range of molecule weight over 1,000,000. Secondly, kinetic energies of accelerated molecules can be measured at impact events one by one. These unique features enable an ultimate detection efficiency of 100% for intact ions and a fragmentation analysis that is critical for top-down proteomics. Superconducting MS is expected to play a role in, for example, the detection of antigen-antibody complexes, which are important for medical diagnosis. In this paper, how superconductivity contributes to MS is described. (author)

  8. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  9. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    In Raman spectroscopy, inelastic scattering of photons from an atom or molecule in chemical entities is utilized to analyze the composition of solids, liquids and gases. However, the low cross-section limits its applications. The introduction of sur- face-enhanced Raman spectroscopy in 1974 has attracted a lot of attention ...

  10. Ultrabroadband spectroscopy for security applications

    DEFF Research Database (Denmark)

    Engelbrecht, Sunniva; Berge, Luc; Skupin, Stefan

    2015-01-01

    Ultrabroadband spectroscopy is a promising novel approach to overcome two major hurdles which have so far limited the application of THz spectroscopy for security applications: the increased bandwidth enables to record several characteristic spectroscopic features and the technique allows...... evaluation of the technique for defense and civil security applications....

  11. Spectroscopy, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…

  12. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  13. Industrial applications of Raman spectroscopy

    Science.gov (United States)

    Grasselli, J. G.; Walder, F.; Petty, C.; Kemeny, G.

    1993-03-01

    In the last two decades, Raman spectroscopy has matured as an important method for the study of molecules and complex molecular systems. This is evident from the number of fine texts and the many review articles which have been published describing theory and applications of Raman spectroscopy over a very broad range of subjects (1-10). Raman spectroscopy is the essential partner to infrared spectroscopy for a complete vibrational analysis of a molecule in structure determinations. From the understanding developed on small molecules, theory was extended to interpret the spectra of larger systems such as polymers, biological molecules, and ordered condensed phases. The contribution of Raman spectroscopy to these areas has been significant. It was the development of commercial lasers in the 1960s which spurred the renewed interest in the Raman technique. But applications were still limited for highly fluorescing or intensely colored systems. In 1986, a breakthrough paper by Hirschfeld and Chase (11) described the use of near-infrared laser excitation and a commercial interferometer-based FT-IR spectrometer to record FT-Raman spectra. Significant advantages included the inherent multiplex, throughput and data processing features of the FT interferometers and the use of a ND:YAG laser (1.064 μm) which dramatically decreased problems with sample fluorescence and decomposition. A deluge of papers describing applications of FT-Raman spectroscopy can be found in the Journal of Raman Spectroscopy, Spectrochimica Acta (special issues 40A ad 47A), and Applied Spectroscopy since then.

  14. Partial symmetries in nuclear spectroscopy

    International Nuclear Information System (INIS)

    Leviatan, A.

    1996-01-01

    The notions of exact, dynamical and partial symmetries are discussed in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. (Author)

  15. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  16. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  17. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  18. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  19. Hadron Spectroscopy in COMPASS

    CERN Document Server

    Grube, Boris

    2012-01-01

    The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. In the naive Constituent Quark Model (CQM) mesons are bound states of quarks and antiquarks. QCD, however, predict the existence of hadrons beyond the CQM with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). One main goal of COMPASS is to search for these states. Particularly interesting are so called spin-exotic mesons which have J^{PC} quantum numbers forbidden for ordinary q\\bar{q} states. Its large acceptance, high resolution, and high-rate capability make the COMPASS experiment an excellent device to study the spectrum of light-quark mesons in diffractive and central production reactions up to masses of about 2.5 GeV. COMPASS is able to measure final states with charged as well as neutral particles, so that resonances can be studied ...

  20. Meson spectroscopy with COMPASS

    CERN Document Server

    Nerling, Frank

    2011-01-01

    The COMPASS fixed-target experiment at CERN SPS is dedicated to the study of hadron structure and dynamics. In the physics programme using hadron beams, the focus is on the detection of new states, in particular the search for $J^{PC}$ exotic states and glueballs. After a short pilot run in 2004 (190 GeV/c negative pion beam, lead target), we started our hadron spectroscopy programme in 2008 by collecting an unprecedented statistics with a negative hadron beam (190 GeV/c) on a liquid hydrogen target. A similar amount of data with positive hadron beam (190 GeV/c) has been taken in 2009, as well as some additional data with negative beam on nuclear targets. The spectrometer features a large angular acceptance and high momentum resolution and also good coverage by electromagnetic calorimetry, crucial for the detection of final states involving $\\pi^0$ or $\\eta$. A first important result is the observation of a significant $J^{PC}$ spin exotic signal consistent with the disputed $\\pi_1(1600)$ in the pilot run dat...

  1. Meson Spectroscopy at COMPASS

    CERN Document Server

    Grube, Boris

    2016-11-29

    The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer $t$ to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^-\\pi^+$ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the $a_1(1420)$, with unusual properties. Novel analysis techniques have been...

  2. Taurid Compex reflectance spectroscopy

    Science.gov (United States)

    Birlan, M.; Popescu, M.; Nedelcu, A.

    2014-07-01

    The Taurid complex is a massive stream of material in the inner part of the Solar System. Its name is related to the Taurid meteor shower. This complex is characterized by a cluster of objects having low-inclination (i < 12°), large-eccentricity (0.64--0.85) orbits with semimajor axes spanning the range 1.8--2.6 au. The largest body of the Taurid Complex is the comet P/Encke, and this complex contains more than 20 near-Earth asteroids (NEAs). There is an important lack of information concerning the physical parameters of the Taurid complex. The observational campaign for observing NEAs of the Taurid complex was started in 2011 in order to provide valuable spectroscopic data for characterizing the surfaces of the complex members. The paper presents near-infrared spectroscopy using IRTF/SpeX obtained remotely from Paris Observatory and Bucharest Observatory for the following asteroids: (2201) Oljato, (4183) Cuno, (4486) Mithra, (5243) Heracles, (6063) Jason, and (269690) 1996 RG_3. We will present a detailed analysis of these spectra which allows their association with several minerals and laboratory spectra of meteorites.

  3. Heavy flavor spectroscopy

    International Nuclear Information System (INIS)

    Rosen, J.; Marques, J.; Spiegel, L.

    1993-01-01

    As a useful by-product of the unfolding searches for mixing and CP-violation effects in the beauty sector there will accrue very large data samples for the study of heavy flavor spectroscopy. (I) Hidden flavor states, i.e. c bar c and b bar b onium states. (II) Open flavor states (a) the D, D s , B, B s , and B c meson systems; (b) Charm and beauty flavored baryons. In this brief note the authors emphasize that there are many missing (undiscovered) states in both categories - states which are not readily produced exclusively due to quantum number preferences or states which are not readily observed inclusively due to experimentally difficult decay channels. As recorded luminosities increase it may be possible to fill in some of the holes in the present listings of heavy flavor states. Of particular interest to the authors would be the identification of heavy flavor mesons which are not easily explained in terms of a q bar q paradigm but rather may be evidence for hadro-molecular status. At Snowmass 1993 the topic of self-tagging schemes in B meson production was very much in vogue. Whether or not excited B-meson flavor-tagging will prove to be competitive with traditional methods based on the partner B decay remains to be seen. The authors suggest however that the richness of the excited B-system may undetermine the efficacy of self-tagging schemes

  4. Heavy quark spectroscopy

    International Nuclear Information System (INIS)

    Rosner, J.L.

    1985-10-01

    New experimental and theoretical developments in heavy quark spectroscopy are reviewed. From studies of J/psi decays, the eta' is found to have some ''glue'' or other inert component, while the iota (a glueball candidate) probably contains some quarks as well. The xi(2.2) persists in new Mark III data, but is not seen by the DM2 collaboration. The production of charmonium states by anti pp reactions is reviewed. First evidence for a P- wave charmed meson, D(2420), has been presented by the ARGUS group. Radiative UPSILON decay studies fail to confirm the zeta(8.3) and begin to place useful limits on Higgs bosons. First results from an experiment at Fermilab on low-background hadronic production of UPSILON states are shown. Accurate measurements of chi/sub b/(1P) masses by the ARGUS collaboration are noted, and interpreted as favoring scalar quark confinement. Studies of t and other heavy quarks will probe the q anti q interaction below 0.05 fm, are likely to be strongly affected by t anti t-Z interference, and can provide varied information on Higgs bosons. 144 refs., 21 figs

  5. Relic Neutrino Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  6. Moessbauer spectroscopy in space

    International Nuclear Information System (INIS)

    Klingelhoefer, G.; Held, P.; Teucher, R.; Schlichting, F.; Foh, J.; Kankeleit, E.

    1995-01-01

    Nearly 40 years after the discovery of the Moessbauer effect for the first time a Moessbauer spectrometer will leave our planet to explore in situ the surface of another solar system body: the red planet Mars [1]. We are currently developing a miniaturized Moessbauer spectrometer (MIMOS) which is part of the scientific payload of the Russian Mars96 mission, to be launched within the next 2-4 years [2,3]. To fulfill the requirements for a space mission to the planet Mars, all parts of the spectrometer had to be extremely miniaturized and ruggedized to withstand the space flight and Mars environmental conditions. The relevant parts (e.g. drive, detector system, electronics etc.) will be described in more detail and its characteristics compared to standard systems. Because of this new development there now is a growing interest to include a Moessbauer (MB) instrument in future space missions to other solar system bodies as for instance Venus, the terrestrial Moon, and a comet nucleus. Because of extremely different environmental conditions (e.g. nearly zero gravity on the surface of a comet nucleus, high pressure and temperature on the surface of Venus, etc.) different instrument designs and concepts are required for different missions. We will present some ideas for various types of missions, as well as the motivation for using Moessbauer spectroscopy in these cases. (orig.)

  7. Broadband transmission EPR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wilfred R Hagen

    Full Text Available EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (biomolecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.

  8. Recon Spectroscopy with TRES

    Science.gov (United States)

    Latham, David W.; TRES Team

    2018-01-01

    The Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5-m Tillinghast Reflector at the Fred L. Whipple Observatory on Mount Hopkins has been a workhorse for reconnaissance spectroscopy of transiting-planet candidates identified by a variety of ground- and space-based photometric surveys, including Vulcan, TrES, HATNet, KELT, QES, Kepler, and K2. In support of NASA missions, quick-look classifications of effective temperature, surface gravity, metallicity, line broadening due to rotation, and absolute radial velocity have been uploaded to ExoFOP at NExScI on a timely schedule. More careful results derived using the Stellar Parameter Classification (SPC) tool can be provided in support of publications. For example, SPC results for effective temperature and metallicity have been used extensively to help constrain asteroseismic analyses of Kepler and K2 targets. TRES has also been used effectively for orbital solutions, Rossiter-McLaughlin observations, and Doppler tomography of large planets orbiting brighter. We look forward to continuing this work on TESS Objects of Interest.

  9. Self-Powered Optical Spectroscopy

    Science.gov (United States)

    2015-08-27

    UV   spectroscopy  using   visible  light  detectors,  we   developed...physical  structures.  In  many  ways,   absorption  and   transmission   spectroscopy  are  fundamentally  connected  to  the... spectroscopy  in  the   UV   and  infrared  regimes  –  although  outside  the  bandwidth  of  the  human

  10. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  11. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    Science.gov (United States)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  12. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    2006-01-01

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  13. Spectroscopy: Mapping spins in flatland

    Science.gov (United States)

    Aharonovich, Igor; Jelezko, Fedor

    2017-04-01

    Nuclear quadrupole resonance spectroscopy is used to map the properties of atomically thin hexagonal boron nitride, with the help of the nitrogen-vacancy colour centres engineered in a diamond layer placed under the 2D material.

  14. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr

    2008-01-01

    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  15. Dual Comb Fourier Transform Spectroscopy

    Science.gov (United States)

    Hänsch, T. W.; Picqué, N.

    2010-06-01

    The advent of laser frequency combs a decade ago has already revolutionized optical frequency metrology and precision spectroscopy. Extensions of laser combs from the THz region to the extreme ultraviolet and soft x-ray frequencies are now under exploration. Such laser combs have become enabling tools for a growing tree of applications, from optical atomic clocks to attosecond science. Recently, the millions of precisely controlled laser comb lines that can be produced with a train of ultrashort laser pulses have been harnessed for highly multiplexed molecular spectroscopy. Fourier multi-heterodyne spectroscopy, dual comb spectroscopy, or asynchronous optical sampling spectroscopy with frequency combs are emerging as powerful new spectroscopic tools. Even the first proof-of-principle experiments have demonstrated a very exciting potential for ultra-rapid and ultra-sensitive recording of complex molecular spectra. Compared to conventional Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. Longer recording times allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. The spectral structure of sharp lines of a laser comb can be very useful even in the recording of broadband spectra without sharp features, as they are e.g. encountered for molecular gases or in the liquid phase. A second frequency comb of different line spacing permits the generation of a comb of radio frequency beat notes, which effectively map the optical spectrum into the radio frequency regime, so that it can be recorded with a single fast photodetector, followed by digital signal analysis. In the time domain, a pulse train of a mode-locked femtosecond laser excites some molecular medium at regular time intervals. A second pulse train of different repetition

  16. ESR spectroscopy and electron distribution

    International Nuclear Information System (INIS)

    Davies, A.G.

    1997-01-01

    EPR spectroscopy can map out the electron distribution in a molecule, in much the same way as proton NMR spectroscopy can map out the proton distribution, and it provides some of the most direct evidence for the principal concepts underlying the electronic theory of organic structure and mechanism. This is illustrated for phenomena of conjugation, hyper-conjugation, substituent effects in annulenes, Hueckel theory, ring strain, the Mills-Nixon effect, and ion pairing. (author)

  17. Semiconductor optoelectronic infrared spectroscopy

    International Nuclear Information System (INIS)

    Hollingworth, A.R.

    2001-08-01

    We use spectroscopy to study infrared optoelectronic inter and intraband semiconductor carrier dynamics. The overall aim of this thesis was to study both III-V and Pb chalcogenide material systems in order to show their future potential use in infrared emitters. The effects of bandstructure engineering have been studied in the output characteristics of mid-IR III-V laser diodes to show which processes (defects, radiative, Auger and phonon) dominate and whether non-radiative processes can be suppressed. A new three-beam pump probe experiment was used to investigate interband recombination directly in passive materials. Experiments on PbSe and theory for non-parabolic near-mirror bands and non-degenerate statistics were in good agreement. Comparisons with HgCdTe showed a reduction in the Auger coefficient of 1-2 orders of magnitude in the PbSe. Using Landau confinement to model spatial confinement in quantum dots (QDs) 'phonon bottlenecking' was studied. The results obtained from pump probe and cyclotron resonance saturation measurements showed a clear suppression in the cooling of carriers when Landau level separation was not resonant with LO phonon energy. When a bulk laser diode was placed in a magnetic field to produce a quasi quantum wire device the resulting enhanced differential gain and reduced Auger recombination lowered I th by 30%. This result showed many peaks in the light output which occurred when the LO phonon energy was a multiple of the Landau level separation. This showed for the first time evidence of the phonon bottleneck in a working laser device. A new technique called time resolved optically detected cyclotron resonance, was used as a precursor to finding the carrier dynamics within a spatially confined quantum dot. By moving to the case of a spatial QD using an optically detected intraband resonance it was possible to measure the energy separation interband levels and conduction and valence sublevels within the dot simultaneously. Furthermore

  18. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  19. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  20. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  1. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  2. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  3. Laser Spectroscopy : XII International Conference

    CERN Document Server

    Allegrini, Maria; Sasso, Antonio

    1996-01-01

    This text includes all the recent advances in the field of laser spectroscopy. Major results span from the control of matter by electromagnetic fields (trapping and coding) to high precision measurements on simple atomic systems and to quantum optics with single atoms. It includes a report of the Bose-Einstein condensation achieved by laser-cooling of rubidium atoms. Achievements in the technology of tunable sources, in particular of miniaturized solid state devices, are also reported. Most recent advances in molecular spectroscopy are illustrated with emphasis on "cooled" spectra, clusters and high accuracy frequency references. Topics such as atomic interferometry and microcavity quantum optics are also covered.

  4. Quantum Spectroscopy of Plasmonic Nanostructures

    Directory of Open Access Journals (Sweden)

    Dmitry A. Kalashnikov

    2014-03-01

    Full Text Available We use frequency-entangled photons, generated via spontaneous parametric down conversion, to measure the broadband spectral response of an array of gold nanoparticles exhibiting Fano-type plasmon resonance. Refractive-index sensing of a liquid is performed by measuring the shift of the array resonance. This method is robust in excessively noisy conditions compared with conventional broadband transmission spectroscopy. Detection of a refractive-index change is demonstrated with a noise level 70 times higher than the signal, which is shown to be inaccessible with the conventional transmission spectroscopy. Use of low-photon fluxes makes this method suitable for measurements of photosensitive biosamples and chemical substances.

  5. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...

  6. Industrial Applications of Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Berry, Frank J.

    2002-01-01

    The historical development of the use of Moessbauer spectroscopy in industrial applications is briefly outlined. The power of the technique for the study of commercially important materials and its capacity to make contributions as a research tool, in quality control, and for in-service evaluation are reviewed. The disadvantages of the technique in the industrial setting are considered. The power of Moessbauer spectroscopy when used to approach specific industrial problems is illustrated by its use in monitoring the nature of corrosion resistant coated steel for automobile manufacture and the in situ characterization of Fischer-Tropsch catalysts.

  7. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  8. Optical Spectroscopy of Single Nanowires

    OpenAIRE

    Trägårdh, Johanna

    2008-01-01

    This thesis describes optical spectroscopy on III-V semiconductor nanowires. The nanowires were grown by metal-organic vapor phase epitaxy (MOVPE) and chemical beam epitaxy (CBE). Photoluminescence and photocurrent spectroscopy are used as tools to investigate issues such as the size of the band gap, the effects of surface states, and the charge carrier transport in core-shell nanowires. The band gap of InAs1-xPx nanowires with wurtzite crystal structure is measured as a function of ...

  9. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  10. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  11. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Alexandra [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO2 and NO3) and unstable neutral species ([IHI] and [FH2]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  12. Laboratory infrared spectroscopy of PAHs

    NARCIS (Netherlands)

    Oomens, J.; Joblin, C.; Tielens, A.G.G.M.

    2011-01-01

    The hypothesis that polyaromatic molecules are the carriers of the infrared interstellar emission bands has spurred the laboratory spectroscopy of this class of molecules. Here we will give an overview of the infrared spectroscopic methods that have been applied over the past two decades to

  13. More seminars on muonium spectroscopy

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1984-12-01

    The paper concerns topics which illustrate the use of muonium spectroscopy in four major areas. The experimental method -muon spin rotation (muSR) is employed in the four topics, which include: muSR studies in magnetism, muons in metals and metal hydrides, muonium in semiconductors and muSR studies in chemistry. (U.K.)

  14. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  15. High spin spectroscopy of Pr

    Indian Academy of Sciences (India)

    2001-07-31

    Jul 31, 2001 ... c Indian Academy of Sciences. Vol. 57, No. 1. — journal of. July 2001 physics pp. 175–179. High spin spectroscopy of. 139. Pr. S CHANDA. ½. , SARMISHTHA BHATTACHARYYA. ¾. , TUMPA BHATTACHARJEE .... which is configured under LINUX platform. Around 90 x10 two and higher fold events were ...

  16. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    near-ultraviolet range of electromagnetic spectra. The shift in energy in Raman effect gives information about the ... Raman spectroscopy is commonly used in chemistry, since vibrational information is very specific for the ... in polarizability is compatible with preservation of the center of symmetry. Thus, in a centrosymmetric ...

  17. Fluorescence Spectroscopy and its Applications

    Indian Academy of Sciences (India)

    TECS

    derstanding of the chemical kinetics and molecular dynamics of the excited molecule. This special issue contains eighteen articles dealing with many dif- ferent aspects of fluorescence spectroscopy and applications in chemistry, which I hope would be useful to both chemists and spectroscopists. I thank the Indian Academy ...

  18. Moessbauer spectroscopy of implanted sources

    International Nuclear Information System (INIS)

    Niesen, L.

    1983-01-01

    A review is given of the field of Moessbauer spectroscopy of ion-implanted sources. After an introduction to the various aspects of the ion-implantation method, the following topics are treated: final site selection of implanted impurities; trapping of defects at implanted ions; on-line implantation; implantation in metals, semiconductors and insulators. (Auth.)

  19. High resolution X ray spectroscopy

    International Nuclear Information System (INIS)

    Bartiromo, R.

    1987-01-01

    This paper is devoted to a detailed discussion of the physical processes which are responsible for the emission spectra of H-like and He-like ion of high Z impurities in low density plasmas. The application of high resolution X-ray spectroscopy to the diagnostic of tokamak plasmas is also discussed and examples of the results obtained are presented

  20. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  1. Rotational tunnelling spectroscopy with neutrons

    International Nuclear Information System (INIS)

    Carlile, C.J.; Prager, M.

    1993-04-01

    Neutron tunnelling spectroscopy has been a very fruitful field for almost two decades and is still expanding into new areas, both experimentally and theoretically. The development of the topic is reviewed from the theoretical point of view, highlighting new approaches, and selected examples of more recent experimental work are presented. A brief discussion of instrument performance and experimental requirements is given. (author)

  2. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  3. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  4. High-spin nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  5. Photoemission Electron Spectroscopy IV: Angle-resolved photoemission spectroscopy

    OpenAIRE

    Lee, J. D.; Nagatomi, T. (Translator); Mizutani, G. (Translator); Endo, K. (Translation Supervisor)

    2010-01-01

    The angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental tool to probe themomentum-resolved electronic structure, i.e., the electronic band dispersion ε(k), of solids and their surfaces. ARPES is also an ideal tool to address the question concerning the electron correlation effect on quasiparticle excitations in the low-dimensional (one- or two-dimensional) correlated electron systems. In this issue, we briefly introduce representative studies of ARPES and their fruitf...

  6. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF/sub 2/ as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states. (GHT)

  7. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  8. Design and development of a spectroscopy amplifier

    International Nuclear Information System (INIS)

    Ahmad, N.; Khalaf, M.A.

    1998-01-01

    Spectroscopy amplifier is an integral part of my detection system used for the measurement and spectroscopy of nuclear radiations. Its performance determination the contribution of the electronics to the energy resolution of the system. A spectroscopy amplifier has been designed and developed using locally available components. The design and description of this unit is discussed in this article. (author)

  9. Basic principles of ultrafast Raman loss spectroscopy

    Indian Academy of Sciences (India)

    One such nonlinear process, namely, the third order nonlinear spectroscopy has become a popular tool to study molecular structure. Thus, the spectroscopy based on the third order optical nonlinearity called stimulated Raman spectroscopy (SRS) is a tool to extract the structural and dynamical information about a molecular ...

  10. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  11. Laser spectroscopy of sputtered atoms

    International Nuclear Information System (INIS)

    Gruen, D.M.; Pellin, M.J.; Young, C.E.; Calaway, W.F.

    1985-01-01

    The use of laser radiation to study the sputtering process is of relatively recent origin. Much has been learned from this work about the basic physics of the sputtering process itself through measurements of velocity and excited state distributions of sputtered atoms and the effects of adsorbates on substrate sputtering yields. Furthermore, the identification, characterization, and sensitive detection of sputtered atoms by laser spectroscopy has led to the development of in situ diagnostics for impurity fluxes in the plasma edge regions of tokamaks and of ultrasensitive methods (ppB Fe in Si) for surface analysis with ultralow (picocoulomb) ion fluences. The techniques involved in this work, laser fluorescence and multiphoton resonance ionization spectroscopy, will be described and illustrations given of results achieved up to now. 55 refs., 5 figs., 1 tab

  12. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  13. Light hadron spectroscopy at BESIII

    Science.gov (United States)

    Xu, Lei; Besiii Collaboration

    2017-01-01

    J / ψ (ψ 3686) decay is an ideal place to study light hadron spectroscopy. BESIII has collected the largest J / ψ , ψ (3686) samples in the world, including 1.31 billion J / ψ events and 0.5 billion ψ (3686) events. In this paper, latest experimental results at BESIII about the p p ‾ mass threshold enhancement and X (1835) are presented, which help us to understood the nature of the states around 1.8 GeV. Results of a model independent partial wave analysis of J / ψ → γπ0π0 and a partial wave analysis of J / ψ → γϕϕ are also presented, which may contribute to the search for possible scalar, pseudoscalar or tensor glueballs. More experimental results about light hadron spectroscopy at BESIII are expected.

  14. Heavy quark spectroscopy and decay

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  15. Spectroscopy, scattering, and KK molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J. [Univ. of Mississippi, University, MS (United States)

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  16. Optical spectroscopy and tooth decay

    Science.gov (United States)

    Misra, P.; De, T.; Singh, R.

    2005-11-01

    Optical spectroscopy in the ultraviolet, visible and mid-infrared spectral regions has been used to discriminate between healthy and diseased teeth of patients in the age range 15-75 years. Spectral scans of absorbance versus wavenumber and fluorescence intensity versus wavelength have been recorded and investigated for caries and periodontal disease. Such optical diagnostics can prove very useful in the early detection and treatment of tooth decay.

  17. Developments in inverse photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sheils, W.; Leckey, R.C.G.; Riley, J.D.

    1996-01-01

    In the 1950's and 1960's, Photoemission Spectroscopy (PES) established itself as the major technique for the study of the occupied electronic energy levels of solids. During this period the field divided into two branches: X-ray Photoemission Spectroscopy (XPS) for photon energies greater than ∼l000eV, and Ultra-violet Photoemission Spectroscopy (UPS) for photon energies below ∼100eV. By the 1970's XPS and UPS had become mature techniques. Like XPS, BIS (at x-ray energies) does not have the momentum-resolving ability of UPS that has contributed much to the understanding of the occupied band structures of solids. BIS moved into a new energy regime in 1977 when Dose employed a Geiger-Mueller tube to obtain density of unoccupied states data from a tantalum sample at a photon energy of ∼9.7eV. At similar energies, the technique has since become known as Inverse Photoemission Spectroscopy (IPS), in acknowledgment of its complementary relationship to UPS and to distinguish it from the higher energy BIS. Drawing on decades of UPS expertise, IPS has quickly moved into areas of interest where UPS has been applied; metals, semiconductors, layer compounds, adsorbates, ferromagnets, and superconductors. At La Trobe University an IPS facility has been constructed. This presentation reports on developments in the experimental and analytical techniques of IPS that have been made there. The results of a study of the unoccupied bulk and surface bands of GaAs are presented

  18. High spin spectroscopy of Pr

    Indian Academy of Sciences (India)

    2001-07-31

    Jul 31, 2001 ... High spin states; nuclear structure; gamma-ray spectroscopy;. ½¿. Pr energy levels. PACS Nos 21.10.-k; 23.20.-g; 27.60.+j; 29.30.Kv. 1. Introduction. The transitional nuclei in the A. ½ ¼ region with N between 77 and 81 are interesting as it offer good scope to look for possible shape changes, similar to ...

  19. Decoherence Spectroscopy for Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Raisa Trubko

    2016-08-01

    Full Text Available Decoherence due to photon scattering in an atom interferometer was studied as a function of laser frequency near an atomic resonance. The resulting decoherence (contrast-loss spectra will be used to calibrate measurements of tune-out wavelengths that are made with the same apparatus. To support this goal, a theoretical model of decoherence spectroscopy is presented here along with experimental tests of this model.

  20. Photoelectron spectroscopy principles and applications

    CERN Document Server

    Hüfner, Stefan

    1995-01-01

    Photoelectron Spectroscopy presents an up-to-date introduction to the field by treating comprehensively the electronic structures of atoms, molecules, solids and surfaces Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction Experimental aspects are considered throughout the book, and the results are carefully interpreted by theory A wealth of measured data is presented in the form of tables for easy use by experimentalists

  1. Compressive spectroscopy by spectral modulation

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Stern, Adrian

    2017-05-01

    We review two compressive spectroscopy techniques based on modulation in the spectral domain that we have recently proposed. Both techniques achieve a compression ratio of approximately 10:1, however each with a different sensing mechanism. The first technique uses a liquid crystal cell as a tunable filter to modulate the spectral signal, and the second technique uses a Fabry-Perot etalon as a resonator. We overview the specific properties of each of the techniques.

  2. Heavy quark production and spectroscopy

    International Nuclear Information System (INIS)

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation

  3. Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research

    International Nuclear Information System (INIS)

    Maron, Yitzhak; Oliver, Bryan Velten; Portillo, Salvador; Johnston, Mark D.; Rose, David Vincent; Hahn, Kelly Denise; Schamiloglu, Edl; Welch, Dale R.; Droemer, Darryl W.; Rovang, Dean Curtis; Maenchen, John Eric

    2005-01-01

    Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

  4. Raman spectroscopy of bone metastasis

    Science.gov (United States)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  5. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  6. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  7. Laser excitation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Solarz, R.W.

    1976-01-01

    Laser excitation spectroscopy, recently applied to uranium enrichment research at LLL, has produced a wealth of new and vitally needed information about the uranium atom and its excited states. Among the data amassed were a large number of cross sections, almost a hundred radiative lifetimes, and many level assignments. Rydberg states, never before observed in uranium or any of the actinides, have been measured and cataloged. This work puts a firm experimental base under laser isotope separation, and permits a choice of the laser frequencies most appropriate for practical uranium enrichment

  8. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  9. Development of MEMS photoacoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex Lockwood; Eichenfield, Matthew S.; Griffin, Benjamin; Harvey, Heidi Alyssa; Nielson, Gregory N.; Okandan, Murat; Langlois, Eric; Resnick, Paul James; Shaw, Michael J.; Young, Ian; Givler, Richard C.; Reinke, Charles M.

    2014-01-01

    After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

  10. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  11. Supraconductor magnet for optical spectroscopy

    International Nuclear Information System (INIS)

    Levy, G.; Buhler, S.

    1985-01-01

    A superconductive magnet system for optic spectroscopy has been built. It includes an elaborate support structure, a LN2/LHe cryostat with its supplies and controls and a superconductive magnet of the split pole type equipped with a superconductive switch. A vertically introduced sample in the LHe bath, on request subcooled down to 2.2K is observed through two optical passages. Magnet characteristics are as follows : - clear bore 35mm - clear split 20mm - central field 6.33 Teslas - homogeneity over 10mm D.S.V.: 1% [fr

  12. General Remarks about mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Mirzababayev, R.M.

    2001-01-01

    More than forty years have passed since the discovery of Mossbauer effect; one of the most brilliant findings in modern physics. This effect proved itself to be the powerful tool in almost all disciplines of the natural sciences and technology. Its unique feature is that it gives the possibility to get the results which cannot be obtained by any other physical methods. Mossbauer effect has been used as a key to unlock some basic physical, chemical and biological phenomena, as a guide for finding the new ways of solving applied scientific and technical problems of electronics, metallurgy, civil engineering, and even fine arts and archaeology. Very few scientific techniques can claim entry into as many countries as Mossbauer spectroscopy. Due to its wide application in an education and research processes the community of Mossbauer spectroscopists extends to almost 100 different countries. Laboratory equipment necessary for conducting gamma resonance spectroscopy, do not require large investments, premises, personnel. The spectrometer is rather small in size and could be installed on the ordinary laboratory table. That is why Mossbauer effect is widely used at numerous Universities all over the world as an universal instrument for tuition and research

  13. Nonlinear spectroscopy of trapped ions

    Science.gov (United States)

    Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas

    2014-08-01

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  14. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2000-01-01

    Full text: The contributions given hereafter to this Annual Report cover a broad activity of the Department in 1999 both in the pure nuclear spectroscopy and in the applied spectroscopy investigations. That activity is then assembled in the two main groups: the nuclear structure studies with the application of the multidetector systems such as GASP, GAMMASPHERE, EUROBALL and the RFD - as its ancillary device, and investigations of condensed matter properties with the use of nuclear methods. In addition, non-nuclear methods such as the atomic force microscopy provided several new encouraging results. The nice data obtained are due to the great skill and hard work of all members of the staff, and a vast cooperation both with international and national institutes and institutions. When anticipated for calling the attractive results of the past year, I would rather admit that all data given here pretend to be those. To meet with, I refer directly to the short presentations given in the next pages. (author)

  15. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  16. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...... in the methodology and quality of the MRS migraine studies over time, some results were consistent and reproducible. 31P-MRS studies suggested reduced availability of neuronal energy and implied a mitochondrial dysfunction in the migraine brain. 1H-MRS studies reported interictal abnormalities in the excitatory...... and inhibitory neurotransmitters, glutamate and g-aminobutyric acid (GABA), suggesting persistent altered excitability in migraine patients. N-Acetylaspartate levels were decreased in migraine, probably due to a mitochondrial dysfunction and abnormal energy metabolism. The reported abnormalities may increase...

  17. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  18. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  19. Doppler-free Fourier transform spectroscopy.

    Science.gov (United States)

    Meek, Samuel A; Hipke, Arthur; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2018-01-01

    Sub-Doppler broadband multi-heterodyne spectroscopy is proposed and experimentally demonstrated. Using two laser frequency combs of slightly different repetition frequencies, we have recorded Doppler-free two-photon dual-comb spectra of atomic rubidium resonances of a width of 6 MHz, while simultaneously interrogating a spectral span of 10 THz. The atomic transitions are uniquely identified via the intensity modulation of the observed fluorescence radiation. To the best of our knowledge, these results represent the first demonstration of Doppler-free Fourier transform spectroscopy and extend the range of applications of broadband spectroscopy towards precision nonlinear spectroscopy.

  20. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  1. HOMES - Holographic Optical Method for Exoplanet Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...

  2. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  3. Screening spectroscopy of prostate cancer

    Science.gov (United States)

    Yermolenko, S. B.; Voloshynskyy, D. I.; Fedoruk, O. S.

    2015-11-01

    The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the state of prostate cancer and choosing the best personal treatment. The objects of study were selected venous blood plasma of patient with prostate cancer, histological sections of rat prostate gland in the postoperative period. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5-25 microns) dry residue of plasma by spectral diagnostic technique of thin histological sections of biological tissues.

  4. Terahertz spectroscopy of plasmonic fractals.

    Science.gov (United States)

    Agrawal, A; Matsui, T; Zhu, W; Nahata, A; Vardeny, Z V

    2009-03-20

    We use terahertz time-domain spectroscopy to study the transmission properties of metallic films perforated with aperture arrays having deterministic or stochastic fractal morphologies ("plasmonic fractals"), and compare them with random aperture arrays. All of the measured plasmonic fractals show transmission resonances and antiresonances at frequencies that correspond to prominent features in their structure factors in k space. However, in sharp contrast to periodic aperture arrays, the resonant transmission enhancement decreases with increasing array size. This property is explained using a density-density correlation function, and is utilized for determining the underlying fractal dimensionality, D(fractals relative to the transmission of the corresponding random aperture arrays is obtained, and is shown to be universal.

  5. Wavelength modulation spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.E.

    1977-10-01

    The use of modulation spectroscopy to study the electronic properties of solids has been very productive. The construction of a wide range Wavelength Modulation Spectrometer to study the optical properties of solids is described in detail. Extensions of the working range of the spectrometer into the vacuum ultraviolet are discussed. Measurements of the reflectivity and derivative reflectivity spectra of the lead chalcogenides, the chalcopyrite ZnGeP/sub 2/, the layer compounds GaSe and GaS and their alloys, the ferroelectric SbSI, layer compounds SnS/sub 2/ and SnSe/sub 2/, and HfS/sub 2/ were made. The results of these measurements are presented along with their interpretation in terms of band structure calculations.

  6. The COMPASS Hadron Spectroscopy Programme

    CERN Document Server

    Austregesilo, A

    2011-01-01

    COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...

  7. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  8. Programmable spectroscopy enabled by DLP

    Science.gov (United States)

    Rose, Bjarke; Rasmussen, Michael; Herholdt-Rasmussen, Nicolai; Jespersen, Ole

    2015-03-01

    Ibsen Photonics has since 2012 worked to deploy Texas Instruments DLP® technology to high efficiency, fused silica transmission grating based spectrometers and programmable light sources. The use of Digital Micromirror Devices (DMDs) in spectroscopy, allows for replacement of diode array detectors by single pixel detectors, and for the design of a new generation of programmable light sources, where you can control the relative power, exposure time and resolution independently for each wavelength in your spectrum. We present the special challenges presented by DMD's in relation to stray light and optical throughput, and we comment on the possibility for instrument manufacturers to generate new, dynamic measurement schemes and algorithms for increased speed, higher accuracy, and greater sample protection. We compare DMD based spectrometer designs with competing, diode array based designs, and provide suggestions for target applications of the technology.

  9. Decay spectroscopy of $^{178}$Au

    CERN Document Server

    Whitmore, B

    In this thesis, the neutron-deficient nucleus $^{178}$Au is investigated through decay spectroscopy. Si and HPGe detectors were used to analyse the decay radiation of $^{178}$Au and its daughter nuclei. Previous studies have been unable to distinguish decay radiation from different isomeric states of this nucleus. This thesis represents the first time such isomeric discrimination has been achieved, and presents tentative spin assignments of both the ground state and an isomer. The neutron-deficient gold isotopes are an area of interest for the study of shape coexistence. This is the phenomenon exhibited by nuclei able to exist at a number of close lying energy minima, each reflecting a distinct type of deformation. It is hoped that studies such as this can help identify the evolution of nuclear deformation in this region of the nuclear chart.

  10. Spectroscopy after the new particles

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1975-01-01

    Conventional spectroscopy is reexamined in a search for puzzles and paradoxes which have arisen in attempting to describe the properties of the known particles. These may offer clues to the missing elements necessary for the description of the new particles. The minimum number of elementary building blocks, charm and color, the colored quark model for saturation, spin splittings in the meson spectrum, three kinds of quarks, the Melosh transformation and the Jackson frame, beyond the single-quark transition--the Zweig rule mystery, new particles and old symmetries, the f--A2 interference, and tests of the Zweig rule by rho--ω and f--A2--f' interference are considered

  11. Visible and UV emission spectroscopy

    International Nuclear Information System (INIS)

    Monier-Garbet, P.

    1991-01-01

    Visible and ultra-violet emission spectroscopy is a well established plasma diagnostic technique extensively used in contemporary fusion experiments. Theoretical plasma models are required to derive the relevant physical parameters. These models are reviewed in the first part of this paper. They allow spectral line intensities and radiative power losses to be calculated from the knowledge of the detailed atomic physics processes occurring in the plasma. In tokamak plasma experiments, impurity contamination and transport are important concerns. Basic spectroscopic methods used in their understanding are described. They include the determination of impurity concentrations either by line emission modelling (through the use of an impurity transport code), or by direct charge-exchange recombination measurement. They also include the evaluation of neutral particle fluxes at the plasma periphery. Finally, the experimental techniques used in the derivation of impurity transport coefficients are reported

  12. Photon correlation spectroscopy in ophthalmology

    Science.gov (United States)

    Rovati, L.

    2011-05-01

    On the basis of the theory of light scattering, photon correlation spectroscopy has been used for more than three decades to study ocular tissues. From first in-vitro experiments to study cataractogenesis, this approach has been extended to characterize semi-quantitatively in-vivo all the ocular tissues from cornea to retina and choroids. In order to acquire high quality measurement data from the experiments, serious attention has to be paid to the detector and processing system performance. Detector noise, sensitivity, dead time and afterpulsing lead to a direct or indirect corruption of the acquired correlation function whereas counting range and resolution should be optimized to take into account the wide variability of the ocular tissue optical characteristics.

  13. MR spectroscopy in clinical research

    DEFF Research Database (Denmark)

    Henriksen, O

    1994-01-01

    MR spectroscopy (MRS) offers unique possibilities for non-invasive evaluation of biochemistry in vivo. During recent years there has been a growing body of evidence from clinical research studies on human beings using 31P and 1H MRS. The results indicate that it is possible to evaluate phosphorous...... for non-invasive follow-up of treatment. Taken together, the evidence obtained so far certainly shows some trends for clinical applications of MRS. Methods are now available for the clinical research necessary for establishing routine clinical MRS examinations....... energy metabolism, loss of neurones, and lactate production in a large number of brain diseases. Furthermore, 31P and 1H MRS may be particularly clinically useful in evaluation of various disorders in skeletal muscle. In the heart 31P MRS seems at the moment the most suitable for evaluation of global...

  14. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  15. Spectroscopy of family gauge bosons

    Directory of Open Access Journals (Sweden)

    Yoshio Koide

    2014-09-01

    Full Text Available Spectroscopy of family gauge bosons is investigated based on a U(3 family gauge boson model proposed by Sumino. In his model, the family gauge bosons are in mass eigenstates in a diagonal basis of the charged lepton mass matrix. Therefore, the family numbers are defined by (e1,e2,e3=(e,μ,τ, while the assignment for quark sector are free. For possible family-number assignments (q1,q2,q3, under a constraint from K0–K¯0 mixing, we investigate possibilities of new physics, e.g. production of the lightest family gauge boson at the LHC, μ−N→e−N, rare K and B decays, and so on.

  16. A Century of Galaxy Spectroscopy

    Science.gov (United States)

    Rubin, Vera C.

    1995-10-01

    The first successful spectrum of a galaxy, M31, was obtained in 1898 and published in a two-page paper in the young Astrophysical Journal (Scheiner 1899). Thus the first century of galaxy spectroscopy and the first century of the Astrophysical Journal are almost coincident; I celebrate both in this paper. I describe the very early history of the determination of internal kinematics in spiral galaxies, often by quoting the astronomers' own published words. By mid-century, observations with improved optical and radio telescopes offered evidence that much of the matter in a galaxy is dark. As the century ends, research interests have enlarged to include study of spheroidal and disk galaxies with complex nuclear (and other) kinematics. These complicated velocity patterns are understood as the result of interactions, acquisitions, and mergers, and offer clear evidence of the important role of gravitational effects in galaxy evolution.

  17. Materials characterization by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Nascente, P.A.P.

    2010-01-01

    Low energy electrons are suitable for investigating surfaces due to their low mean free path in solids, which correspond to a few atomic layers (0.5 to 3.0 nm), and could be used in one of the following ways: incident electrons cause the emission of backscattered and secondary electrons and the electrons are excited by irradiated photons. The first case includes the emission of Auger electrons, while photoemission corresponds to the second case. X-ray photoelectron spectroscopy (XPS) is one of the most used surface analysis techniques since it is able to identify not only the surface constituents but also their chemical states. XPS can be employed in several areas of science and engineering, but in this report it will be presented only few examples of its use in the characterization of metallic materials, with an emphasis on thin films of noble and transition metals. (author)

  18. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  19. MR spectroscopy in clinical research

    DEFF Research Database (Denmark)

    Henriksen, O

    1994-01-01

    for non-invasive follow-up of treatment. Taken together, the evidence obtained so far certainly shows some trends for clinical applications of MRS. Methods are now available for the clinical research necessary for establishing routine clinical MRS examinations.......MR spectroscopy (MRS) offers unique possibilities for non-invasive evaluation of biochemistry in vivo. During recent years there has been a growing body of evidence from clinical research studies on human beings using 31P and 1H MRS. The results indicate that it is possible to evaluate phosphorous...... energy metabolism, loss of neurones, and lactate production in a large number of brain diseases. Furthermore, 31P and 1H MRS may be particularly clinically useful in evaluation of various disorders in skeletal muscle. In the heart 31P MRS seems at the moment the most suitable for evaluation of global...

  20. Raman spectroscopy peer review report

    International Nuclear Information System (INIS)

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs

  1. a near ambient pressure UV photoelectron spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumar Ghosalya

    2018-03-02

    Mar 2, 2018 ... VB photoelectron spectroscopy with low energy photons is an important tool to access mostly sur- face specific electronic changes. Indeed, near ambient pressure (NAP) ultraviolet photoelectron spectroscopy. (NAP-UPS) is fully relevant to explore silver-oxygen interaction, since Ag 4d and O 2p orbitals ...

  2. Magnetic field modulation spectroscopy of rubidium atoms

    Indian Academy of Sciences (India)

    Modulation spectroscopy; saturation absorption spectroscopy; Zeeman splitting. PACS Nos 42.62.Fi; 32.60.+i; 33.55. ... easily circumvent the usual problem of laser intensity fluctuation and offer en suite phase-sensitive detection of the ..... Faraday effect can contribute to the signal profile. It has been established that optical.

  3. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  4. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  5. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.

    2013-01-01

    in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...

  6. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  7. Consistent spectroscopy for a extended gauge model

    International Nuclear Information System (INIS)

    Oliveira Neto, G. de.

    1990-11-01

    The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)

  8. Baryonic spectroscopy and its immediate future

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1975-01-01

    The quark model is reviewed briefly for baryons and the various versions of SU(6) symmetry which were proposed and used in connection with baryon spectroscopy are reviewed. A series of basic questions are reviewed which experimental work in this field should aim to settle, as a minimal program. One also heralds the beginning of a new baryon spectroscopy associated with psi physics

  9. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    solution makes NMR more suitable for studying the dynamic behavior of macromolecules. The first high resolution protein structure by NMR spectroscopy was carried out in mid-1980s [3]. Before the beginning of this millennium, NMR spectroscopy was limited to solving 3D struc- tures of proteins with molecular masses less ...

  10. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  11. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Science.gov (United States)

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.

  12. Active beam spectroscopy for ITER

    International Nuclear Information System (INIS)

    Von Hellermann, M.; Giroud, C.; Jaspers, R.; Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D.; Krasilnikov, A.; Tugarinov, S.; Lotte, P.; Malaquias, A.; Rachlew, E.

    2003-01-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV

  13. Anelastic spectroscopy in superconducting oxides

    International Nuclear Information System (INIS)

    Albuquerque Gimenez, J.M. de; Grandini, C.R.; Santos, D.L. dos; Cunha, A.G. da

    2005-01-01

    Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the ''step'' in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and O5 of the lattice. (orig.)

  14. Anelastic spectroscopy in superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Gimenez, J.M. de [USP, Inst. de Fisica de Sao Carlos, Sao Carlos, SP (Brazil); UNESP, Dept. de Fisica, Bauru, SP (Brazil); Grandini, C.R.; Santos, D.L. dos [UNESP, Dept. de Fisica, Bauru, SP (Brazil); Cunha, A.G. da [UFES, Dept. de Fisica, Vitoria, ES (Brazil)

    2005-07-01

    Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the ''step'' in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and O5 of the lattice. (orig.)

  15. Fourier Spectroscopy: A Bayesian Way

    Directory of Open Access Journals (Sweden)

    Stefan Schmuck

    2017-01-01

    Full Text Available The concepts of standard analysis techniques applied in the field of Fourier spectroscopy treat fundamental aspects insufficiently. For example, the spectra to be inferred are influenced by the noise contribution to the interferometric data, by nonprobed spatial domains which are linked to Fourier coefficients above a certain order, by the spectral limits which are in general not given by the Nyquist assumptions, and by additional parameters of the problem at hand like the zero-path difference. To consider these fundamentals, a probabilistic approach based on Bayes’ theorem is introduced which exploits multivariate normal distributions. For the example application, we model the spectra by the Gaussian process of a Brownian bridge stated by a prior covariance. The spectra themselves are represented by a number of parameters which map linearly to the data domain. The posterior for these linear parameters is analytically obtained, and the marginalisation over these parameters is trivial. This allows the straightforward investigation of the posterior for the involved nonlinear parameters, like the zero-path difference location and the spectral limits, and hyperparameters, like the scaling of the Gaussian process. With respect to the linear problem, this can be interpreted as an implementation of Ockham’s razor principle.

  16. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  17. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  18. Future Directions in Ultraviolet Spectroscopy

    Science.gov (United States)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  19. Fluorescence Spectroscopy in a Shoebox

    Science.gov (United States)

    Farooq Wahab, M.

    2007-08-01

    This article describes construction of a simple, inexpensive fluorometer. It utilizes a flashlight or sunlight source, highlighter marker ink, bowl of water with mirror as dispersing element, and colored cellophane sheets as filters. The human eye is used as a detector. This apparatus is used to demonstrate important concepts related to fluorescence spectroscopy. Using ink from a highlighter marker, one can demonstrate the difference between light scattering and fluorescence emission, the need for an intense light source, phenomenon of the Stokes shift, the choice of filters, the preferred geometry of excitation source and emission detector, and the low detection limits that can be achieved by fluorescence measurements. By reflecting the fluorescence emission from a compact disk, it can be seen that the light emitted by molecules is not monochromatic. Furthermore, a spectrofluorometer is constructed using gratings made from a DVD or a CD. The shoebox fluorometer and spectrofluorometer can serve as useful teaching aids in places where commercial instruments are not available, and it avoids the black box problem of modern instruments.

  20. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-01-01

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  1. Raman spectroscopy of skin neoplasms

    Science.gov (United States)

    Moryatov, A. A.; Kozlov, S. V.; Kaganov, O. I.; Orlov, A. E.; Zaharov, V. P.; Batrachenko, I. A.; Artemiev, D. N.; Blinov, N. V.

    2017-09-01

    Skin melanoma is spread inhomogeneously worldwide, particularly in Samara region there are high figures of skin neoplasms sick rate as well—18.6%. Research goal: to develop a new method of early non-invasive differential diagnostics of skin neoplasms. Registration of Raman spectrum was implemented in the distance of 3-4 mm, the spectrum registration from pathologically changed zone was subsequently conducted, then from healthy skin zone. The test time for 1 patient was no longer than 3-5 min. In a range of experiments ex vivo there were the following results: melanoma—24, basal cell cancer—25, squamosus cell sarcinoma—7, nevus pigmentosis—9, other malignant neoplasms—6; in vivo: melanoma—9, basal cell cancer—8, nevus pigmentosis—2, other benign neoplasms—2. The first results of the research dedicated to studying permissive opportunities of Raman spectroscopy, with successive two-phase analysis of received parameters display high efficiency of method of differential diagnostic for skin melanoma and other malignant neoplasms, pigment and benign skin neoplasms. Safety and rapidity of the research reveal a high potential of the technique.

  2. Molecular spectroscopy of interstellar medium

    International Nuclear Information System (INIS)

    Varshalovich, D.A.; Khersonskij, V.K.

    1980-01-01

    Experimental data obtained in the investigation into molecules of interstellar medium by molecular-spectroscopic methods are discussed generally. Ion-molecule reactions play a significant part in the formation of multiatom molecules in the interstellar medium as well as reactions proceeding on the surface of interstellar dust. More than 50 types of molecules have been detected in the interstellar medium at present. In a wide range of wave lengths over 500 spectral lines belonging to various molecules and molecular fragments have been recorded. Interstellar molecules permit to investigate interstellar gas from all the sides. They are a suitable indicator of the isotope composition of interstellar gas. Radio observations of interstellar molecules make it possible to effectively investigate kinematics and space structure both separate gas-dust complexes and total gas distribution in Galaxy. It is noted that achievements of molecular spectroscopy of the interstellar medium radically change representations of the chemical composition of interstellar gas, of isotope abundance and organic substance in the Universe

  3. Planetary gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1978-01-01

    The chemical composition of a planet can be inferred from the gamma rays escaping from its surface and can be used to study its origin and evolution. The measured intensities of certain gamma rays of specific energies can be used to determine the abundances of a number of elements. The major sources of these gamma-ray lines are the decay of natural radionuclides, reactions induced by energetic galactic-cosmic-ray particles, capture of low energy neutrons, and solar-proton-induced radioactivities. The fluxes of the more intense gamma-ray lines emitted from 30 elements were calculated using current nuclear data and existing models. The source strengths for neutron-capture reactions were modified from those previously used. The fluxes emitted from a surface of average lunar composition are reported for 288 gamma-ray lines. These theoretical fluxes have been used elsewhere to convert the data from the Apollo gamma-ray spectrometers to elemental abundances and can be used with results from future missions to map the concentrations of a number of elements over a planet's surface. Detection sensitivities for these elements are examined and applications of gamma-ray spectroscopy for future orbiters to Mars and other solar-system objects are discussed

  4. Reliable measurement of the Li-like 2248Ti 1s2s2p 4P5/2o level lifetime by beam-foil and beam-two-foil experiments

    International Nuclear Information System (INIS)

    Nandi, T.; Ahmad, Nissar; Wani, A. A.; Marketos, P.

    2006-01-01

    We have determined the lifetime of the Li-like 22 48 Ti 1s2s2p 4 P 5/2 o level (210.5±13.5 ps) using data from its x-ray decay channel through beam single- and two-foil experiments, coupled to a multicomponent iterative growth and decay analysis. Theoretical lifetime estimates for this zero-nuclear-spin ion lies within the uncertainty range of our experimental results, indicating that blending contributions to this level from the He-like 1s2p 3 P 2 o and 1s2s 3 S 1 levels are eliminated within the current approach. A previously reported discrepancy between experimental and theoretical 1s2s2p 4 P 5/2 o level lifetimes in 23 51 V may, as a result, be attributed to hyperfine quenching

  5. Vibrational Spectroscopy and Search for Extraterrestrial Life

    Science.gov (United States)

    Girish, T. E.; Sony, K. S.

    2008-11-01

    Vibrational spectroscopy is one of the vital tools in astrobiology. In this paper we have studied the role of IR spectroscopy in the detection of plant and animal life elsewhere in our galaxy. Using relevant astrophysical data of nearby extrasolar planets we have calculated the detection limits of IR spectra of life related chemical compounds from these objects. The probability of detection of methane and plant pigments is found to relatively higher near M type stars compared to G type stars. A list of Jupiter size extrasolar planets discovered around G type stars which are potential objects for possible detection of plant life through IR reflection spectroscopy is also prepared.

  6. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  7. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  8. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies...... of the hole in this manner. In a second example, a hole is created in an inner shell by the first pulse, and the second probe pulse couples an even more tightly bound state to that hole. The hole decays in this example by Auger electron emission, and the absorption spectroscopy follows the decay of the hole...

  9. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  10. News from Online: More Spectroscopy

    Science.gov (United States)

    Sweeney Judd, Carolyn

    1999-09-01

    rising from a cup of hot coffee. Next is an applet with atoms in a parabolic magnetic trap at http://www.colorado.edu/physics/2000/applets/bec.html. The height of the magnetic trap can be changed in order to allow for escape of the most energetic atoms, resulting in cooling so that the Bose-Einstein Condensate is formed. Physics 2000 demands robust computing power. Check the system requirements on the introductory screen before venturing too far into this site. Martin V. Goldman, from the University of Colorado at Boulder, is the Director of Physics 2000, which received support from the Colorado Commission on Higher Education and the National Science Foundation. David Rea is the Technical Director, and many others help make this excellent site possible. Mark your calendars: October 31 through December 3, 1999! Bookmark this site-- http://www.ched-ccce.org/confchem/1999/d/index.html --and sign up. The Winter 1999 CONFCHEM Online Conference will focus on Developments in Spectroscopy and Innovative Strategies for Teaching Spectroscopy in the Undergraduate Curriculum. Scott Van Bramer of Widener University is the conference chair. Experts will present six papers, each to be followed by online discussions. CONFCHEM Online Conferences are sponsored by the American Chemical Society Division of Chemical Education's Committee on Computers in Chemical Education (CCCE). Several Online Conferences are held each year--all are well worth your time. World Wide Web Addresses EMSpectrum Explorer http://mc2.cchem.berkeley.edu/chemcnx/light_energy/EMSpectrum/emspectrum.html Light and Energy http://mc2.cchem.berkeley.edu/chemcnx/light_energy/index.html Emission Spectrum Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/emission/index.html Absorption Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/absorption/index.html Removing Color with a Single Filter from Colored Light http://mc2.cchem

  11. Noise and detection in ''optical'' modulation spectroscopy

    International Nuclear Information System (INIS)

    Montelatici, V.

    1975-01-01

    The measuring techniques suitable for ''optical'' modulation spectroscopy are analyzed and source of noise identified. The choice of optical detector is for photoelectrical devices. It is shown that the shot noise of phototubes is the most important noise source

  12. Emerging Dental Applications of Raman Spectroscopy

    Science.gov (United States)

    Choo-Smith, Lin-P'ing; Hewko, Mark; Sowa, Michael G.

    Until recently, the application of Raman spectroscopy to investigate dental tissues has primarily focused on using microspectroscopy to characterize dentin and enamel structures as well as to understand the adhesive interface of various resin and bonding agents used in restorative procedures. With the advent of improved laser, imaging/mapping and fibre optic technologies, the applications have expanded to investigate various biomedical problems ranging from oral cancer, bacterial identification and early dental caries detection. The overall aim of these applications is to develop Raman spectroscopy into a tool for use in the dental clinic. This chapter presents the recent dental applications of Raman spectroscopy as well as discusses the potential, strengths and limitations of the technology in comparison with alternative techniques. In addition, a discussion and rationale about combining Raman spectroscopy with other optical techniques will be included.

  13. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  14. Near-infrared spectroscopy for cocrystal screening

    DEFF Research Database (Denmark)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...... of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis...

  15. Laser spectroscopy on neutron rich sodium isotopes

    CERN Document Server

    Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pinard, J; Thibault, C; Vialle, J L

    1976-01-01

    The authors describe results with single-mode dye lasers in high- resolution atomic line spectroscopy. Optical pumping and magnetic resonance detection of Na D-lines provide values of static nuclear groundstate properties.

  16. single voxel magnetic resonance spectroscopy in distinguishing

    African Journals Online (AJOL)

    2011-03-03

    Mar 3, 2011 ... magnetic resonance spectroscopy (MRI, MRS) in differentiating focal neoplastic lesions from focal non- neoplastic (infective or degenerative) brain lesions. Design: Descriptive, analytical - prospective study. Setting: The Aga Khan University MRI department. Subject: Seventy four consecutive patients.

  17. Solid-State Spectroscopy An Introduction

    CERN Document Server

    Kuzmany, Hans

    2009-01-01

    Spectroscopic methods have opened up a new horizon in our knowledge of solid-state materials. Numerous techniques using electromagnetic radiation or charged and neutral particles have been invented and worked out to a high level in order to provide more detailed information on the solids. The text presented here is an updated description of such methods as they were originally presented in the first edition. It covers linear response of solids to electromagnetic radiation in a frequency range extending from megahertz or gigahertz as used in spin resonance spectroscopy, to infrared spectroscopy and various forms of spectroscopy in the visible and near visible spectral range. It extends to spectroscopy in the UV and x-ray spectral range and eventually several spectroscopic methods are addressed in the frequency range of g radiation. Likewise linear response to irradiation with particles such as electrons, positrons, muons, neutrons, and atoms is discussed. Instrumental and technical background is provided as we...

  18. Review of Ge detectors for gamma spectroscopy

    CERN Document Server

    Alexiev, D; Mo, L; Smith, M L; Rosenfeld, A H

    2002-01-01

    A review is given of the use of germanium detectors for gamma spectroscopy. The advantages, principles of operation, and fabrication processes of semiconductor radiation detectors are described. Copyright (2002) Australasian College of Physical Scientists and Engineers in Medicine

  19. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.

    2015-11-12

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  20. Solar neutrino spectroscopy (before and after superkamiokande)

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.

    1996-11-01

    Results of solar neutrino spectroscopy based on data from four experiments are presented. Perspectives related to forthcoming experiments are discussed. Implications of the results for neutrino properties are considered. (author). 54 refs, 2 tabs

  1. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    International Nuclear Information System (INIS)

    Dominguez, A.G.B.

    1988-01-01

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.) [pt

  2. Raman and Photoluminescence Spectroscopy in Mineral Identification

    Science.gov (United States)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  3. Report of the Nuclear Spectroscopy Group

    International Nuclear Information System (INIS)

    Lerry, T.B.; Wylie, W.; Hugo

    1978-01-01

    This is a report of the group working with Nuclear Spectroscopy. They made a general discussion involving personnel, research interests (present and future) and suggestions, on general. (A.C.A.S.) [pt

  4. Spectroscopy and optical diagnostics for gases

    CERN Document Server

    Hanson, Ronald K; Goldenstein, Christopher S

    2016-01-01

    This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students an...

  5. EPR Spectroscopy in Environmental Lichen-Indication

    Science.gov (United States)

    Bondarenko, P. V.; Nguyet, Le Thi Bich; Zhuravleva, S. E.; Trukhan, E. M.

    2017-09-01

    The paramagnetic properties of lichens were investigated using EPR spectroscopy and Xanthoria parietina (L.) Th. Fr. as a case study. It was found that the concentration of paramagnetic centers in lichen thalli increased as the air-pollution level increased. Possible formation mechanisms of the paramagnetic centers in lichens were discussed. The efficiency of using EPR spectroscopy to study lichens as environmental quality indicators was demonstrated.

  6. Electron capture and energy-gain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taulbjerg, K.

    1989-01-01

    The applicability of translation energy spectroscopy as a tool to determine individual reaction cross sections in atomic collisions is analyzed with special emphasis on the electron capture process in highly charged ion collisions. A condition is derived to separate between higher collision energies where translation energy spectroscopy is problem free and lower energies where strong overlap of individual spectra features prohibits an analysis of the total translation energy spectrum by means of a simple deconvolution procedure. 8 refs., 6 figs.

  7. Photoacoustic spectroscopy of Entamoeba histolytica strains

    Science.gov (United States)

    Acosta-Avalos, D.; Alvarado-Gil, J. J.; Silva, E. F.; Orozco, E.; de Menezes, L. F.; Vargas, H.

    2005-06-01

    Pathogenic and non-pathogenic strains of E. histolytica are studied using photoacoustic spectroscopy. It is shown that the pathogenic strain presents a spectrum similar to that of iron sulfur proteins. The non-pathogenic strain does not show any relevant absorption at the studied wavelength range. The differences observed between the optical absorption spectra of both strains opens the possibility of using photoacoustic spectroscopy as a reliable and simple technique to identify different types of E. histolytica strains.

  8. Applications of Raman spectroscopy in life science

    Science.gov (United States)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  9. Bidimensional spectroscopy of interacting galaxies

    Science.gov (United States)

    Chatzichristou, E. T.

    We have undertaken a program of studying the central few kpc regions of interacting/merger candidates, that were specifically chosen to have a range of nuclear activity, IR properties and strength of interaction. Here we present data obtained using the integral field spectrograph ARGUS, on the CFHT for few of these objects. Unlike slit spectroscopy, these data provide a direct two-dimensional picture of the wavelength-dependant emission and absorption line properties of these galaxies. The main conclusions are: (1) Mkn 789 is a recent merger product, undergoing a strong burst of star formation, while the older stellar component did not have yet the time to relax. It has no compact nuclear structure and its strong star formation powers a large scale outflow ("superwind"), which gives characteristic multiple profiles. Mkn 463 on the other hand, appears at an intermediate merging stage where at least one of its two visible nuclei had time to become activated, showing a Seyfert-like spectrum. The distinct kinematic feature here is a strongly blueshifted component that is interpreted in terms of bowshocks driven by a radio jet into the ambient gas. (2) UGC 3995 is the brightest member of a pair of interacting spirals, has a low-ionization, Seyfert-like spectrum. The velocity field is smooth, characteristic of a retrogradely rotating disk, but we find rotation of the kinematic axis with wavelength, that correspond to isophotal distortions and an obvious line profile substructure. It seems that this is a distinct kinematic feature in Seyfert-like nuclei independently of their interaction stage, indicating radial gas motions that might be related to the activation of the central engine. (3) Both mergers (Mkn 463, Mkn 789) have higher IR activity, as expressed by the LFIR excess and "warm" far-IR colours, among the objects in our sample. This seems to be independent of the nature of the central engine. On the other hand, the 25 microns characteristic excess emission of

  10. Near infrared spectroscopy and exercise

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Caroline

    2002-07-01

    Near infrared spectroscopy (NIRS) provides a non-invasive method for the continuous monitoring of changes in tissue oxygenation and blood volume during aerobic exercise. During incremental exercise in adult subjects there was a positive correlation between lactate threshold (measured by blood sampling) and changes in the rate of muscle deoxygenation (measured by NIRS). However, the 7% failure rate for the NIRS test mitigated against the general use of this method. NIRS did not provide a valid method for LT determination in an adolescent population. NIRS was then used to examine whether haemodynamic changes could be a contributing factor to the mechanism underlying the cross-transfer effect. During a one-legged incremental aerobic exercise test the muscle was more deoxygenated in the exercising leg than in the non-exercising leg, consistent with oxygen consumption outstripping blood flow to the exercising limb. However, muscle blood volume increased equally in both legs. This suggests that blood flow may be raised to similar levels in both the legs; although local factors may signal an increase in blood volume, this effect is expressed in both legs. Muscle blood flow and changes in muscle blood volume were then measured directly by NIRS during an incremental one-arm aerobic exercise test. There was no significant difference in either blood volume or blood flow in the two arms at the end of the test. In the non-exercising arm changes in blood flow and blood volume were measured throughout the protocol. At higher exercise intensities, blood volume continued to rise as muscle blood flow plateaued, indicating that blood volume changes become independent of changes in blood flow. Finally, the effect of different training regimes on changes in muscle blood volume was examined. Subjects were assigned to a training group; two-arm training, one-arm training or a control group. Training did not affect blood volume changes during two-arm exercise. However, during one

  11. Near infrared spectroscopy and exercise

    International Nuclear Information System (INIS)

    Angus, Caroline

    2002-01-01

    Near infrared spectroscopy (NIRS) provides a non-invasive method for the continuous monitoring of changes in tissue oxygenation and blood volume during aerobic exercise. During incremental exercise in adult subjects there was a positive correlation between lactate threshold (measured by blood sampling) and changes in the rate of muscle deoxygenation (measured by NIRS). However, the 7% failure rate for the NIRS test mitigated against the general use of this method. NIRS did not provide a valid method for LT determination in an adolescent population. NIRS was then used to examine whether haemodynamic changes could be a contributing factor to the mechanism underlying the cross-transfer effect. During a one-legged incremental aerobic exercise test the muscle was more deoxygenated in the exercising leg than in the non-exercising leg, consistent with oxygen consumption outstripping blood flow to the exercising limb. However, muscle blood volume increased equally in both legs. This suggests that blood flow may be raised to similar levels in both the legs; although local factors may signal an increase in blood volume, this effect is expressed in both legs. Muscle blood flow and changes in muscle blood volume were then measured directly by NIRS during an incremental one-arm aerobic exercise test. There was no significant difference in either blood volume or blood flow in the two arms at the end of the test. In the non-exercising arm changes in blood flow and blood volume were measured throughout the protocol. At higher exercise intensities, blood volume continued to rise as muscle blood flow plateaued, indicating that blood volume changes become independent of changes in blood flow. Finally, the effect of different training regimes on changes in muscle blood volume was examined. Subjects were assigned to a training group; two-arm training, one-arm training or a control group. Training did not affect blood volume changes during two-arm exercise. However, during one

  12. Early prediction of skin viability using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy.

    Science.gov (United States)

    Zhu, Caigang; Chen, Shuo; Chui, Christopher Hoe-Kong; Tan, Bien-Keem; Liu, Quan

    2014-08-01

    Accurate and early prediction of skin flap viability is vitally important in reconstructive surgery. To the best of the authors' knowledge, this is the first pilot study to evaluate the simultaneous use of both visible diffuse reflectance and autofluorescence spectroscopy on a reverse MacFarlane rat dorsal skin flap model in the early prediction of skin viability. A total of 62 flap measurement sites from 11 Sprague-Dawley rats were monitored for 72 hours. Both statistical analysis using measured spectra and quantification of physiologically relevant tissue parameters using empirical methods were performed. The statistical analysis results suggest that either visible diffuse reflectance spectroscopy or autofluorescence spectroscopy alone can predict the skin viability accurately; however, autofluorescence spectroscopy is more sensitive to tissue changes in the first 2 hours after induction of ischemia. The pilot study shows that it is feasible to predict flap failures in the first 2 hours when using autofluorescence spectroscopy alone; moreover, it is possible to predict flap failures even in the first 15 minutes with high accuracy when using diffuse reflectance and autofluorescence spectroscopy simultaneously. Meanwhile, several physiologically relevant parameters including hemoglobin oxygenation, total hemoglobin concentration, and redox ratio indicators estimated from diffuse reflectance and autofluorescence spectra show distinctively different trends over time for nonviable and viable skin. These findings will be helpful to clinicians for making a precise judgment on flap viability. Furthermore, the authors' results highlight the advantage of using autofluorescence spectroscopy in the early prediction of skin flap viability relative to diffuse reflectance spectroscopy.

  13. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  14. Application of Raman spectroscopy for cancer diagnosis

    International Nuclear Information System (INIS)

    Krishnakumar, N.

    2011-01-01

    Cancer is the second leading causes of death next to heart diseases, Half of all cancer cases occur in developing countries. The conventional histopathology is usually the most trustable gold standard for pre-cancer and cancer diagnosis. However, the applicability of this method is more or less restricted because of the requirement of removing human tissues and the difficulty of real time diagnosis. Recently, there has been increased interest in 'optical biopsy' system using tissue spectroscopy to establish the pathological changes. Among optical based methods, Raman spectroscopy is a unique vibrational spectroscopic technique capable of probing biomolecular structures and conformation of tissues, and has excelled in the early detection of pre-cancer and cancer in the number of organs with high diagnostic specificity. Raman spectroscopy offers certain distinct advantages over than other optical diagnostic techniques such as high spatial resolution, use of less harmful NIR radiation, less or no sample preparation, no influence of water bands which facilitates in vivo/in situ measurements. This makes Raman spectroscopy also very useful for biomedical applications. Several research groups have demonstrated the efficacy of this technique in biomedical applications. The background and principle of these techniques will be discussed with some examples and discussions on how Raman spectroscopy can act as a promising technique for rapid in vivo diagnosis and detection of various cancers at the molecular level. (author)

  15. Nuclear spectroscopy using the neutron capture reaction

    International Nuclear Information System (INIS)

    Egidy, T.

    1982-01-01

    Experimental methods using neutron spectroscopy as a means to study the nucleus structure are described. Since reactions of neutron capture (n, γ) are non-selective, they permit to study the nature of excitation (monoparticle and collective) of nuclear levels, the nature of vibrational excitations, to check the connection between shell model and liquid drop model etc. In many cases (n, γ) reactions are the only way to check the forecast of nuclear models. Advantages of (n, γ) spectroscopy, possessing a high precision of measurement and high sensitivity, are underlined. Using neutron spectroscopy on facilities with a high density of neutron flux the structures of energy levels of a large group of nuclei are studied. In different laboratories complete schemes of energy levels of nuclei are obtained, a great number of new levels are found, the evergy level densities are determined, multipolarities of γ-transitions, spins, level parities are considered. StrUctures of rotational bands of heavy deformed nuclei are studied. The study of the structure of high-spin states is possible only using the methods of (n, γ) spectroscopy Investigation results of the nuclei 24 Na, 114 Cd, 154 Eu, 155 Cd, 155 Sm, 233 Th are considered as examples. The most interesting aspects of the investigations using neutron spectroscopy are discUssed

  16. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  17. Practical guide to surface science and spectroscopy

    CERN Document Server

    Chung, Yip-Wah

    2001-01-01

    Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-...

  18. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property, such as admi......Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  19. FTIR spectroscopy applications in forensic science

    International Nuclear Information System (INIS)

    Roux, C.; Maynard, P.; Dawson, M.

    1999-01-01

    Infrared spectroscopy, and especially Fourier transform infrared spectroscopy, is a well-established technique in analytical chemistry and finds widespread application in qualitative and quantitative analyses. Infrared spectra depend on the nature of the functional groups present in the analyte, and are generally complex with numerous maxima and minima. These features are useful for comparison purposes and, in most cases, the infrared spectrum of an organic compound is considered as a unique functional print of this compound (i e the infrared spectrum constitutes the chemical signature or fingerprint of an organic compound). Many inorganic substances may also be uniquely identified using infrared spectroscopy. Until recently, infrared spectroscopy was of only limited utility in forensic science, despite its high selectivity. This is because infrared spectroscopy suffered from a lack of sensitivity in its early forms. However, with the advance of modern technology this is no longer the case. The widespread use of microscope attachments, along with numerous new sampling accessories, has overcome most of the previous limitations. For example, with an infrared microscope, it is possible to focus the infrared beam, and therefore select relevant areas of the sample as small as 10 x 10 μm and achieve a measurement in situ. Such a configuration enables the rapid generation of high-resolution spectra from samples of 10 ng. Typical forensic applications include the analysis of single textile fibres, minute paint chips or smears, drugs, laser printer and photocopy toners, polymers and miscellaneous unknown substances. Here we will broadly review the most common applications of infrared spectroscopy in forensic science

  20. Classical ultraviolet photoelectron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Salaneck, W.R.

    2009-01-01

    Although X-ray photoelectron spectroscopy of polymers was well established by Clark and coworkers in the 1970s, ultraviolet photoelectron spectroscopy of polymer films, was developed later. Previous to the 1970s, the first attempts to use ultraviolet light on polymer films took the form of appearance potential (valence band edge) measurements. Only some years later could the full valence band region of thin polymer films, including insulating polymers, semiconducting polymers and electrically conducting polymers. The development of what might be termed 'classical ultraviolet photoelectron spectroscopy' of polymer films may be loosely based upon a variety of issues, including adapting thin polymer film technology to ultra high vacuum studies, the widespread use of helium resonance lamps for studies of solid surfaces, the combined advent of practical and sufficient theoretical-computational methods. The advent of, and the use of, easily available synchrotron radiation for multi-photon spectroscopies, nominally in the area of the near UV, is not included in the term 'classical'. At the same time, electrically conducting polymers were discovered, leading to applications of the corresponding semiconducting polymers, which added technologically driven emphasis to this development of ultraviolet photoelectron spectroscopy for polymer materials. This paper traces a limited number of highlights in the evolution of ultraviolet photoelectron spectroscopy of polymers, from the 1970s through to 2008. Also, since this issue is dedicated to Prof. Kazuhiko Seki, who has been a friend and competitor for over two decades, the author relies on some of Prof. Seki's earlier research, unpublished, on who-did-what-first. Prof. Seki's own contributions to the field, however, are discussed in other articles in this issue.

  1. A Brief History of Spectroscopy on EBIT

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2007-02-28

    In the autumn of 1986, the first electron beam ion trap, EBIT, was put into service as a light source for the spectroscopy of highly charged ions. On the occasion of the twentieth anniversary of EBIT, we review its early uses for spectroscopy, from the first measurements of x rays from L-shell xenon ions in 1986 to its conversion to SuperEBIT in 1992 and rebirth as EBIT-I in 2001. Together with their sibling, EBIT-II, these machines have been used at Livermore to perform a multitude of seminal studies of the physics of highly charged ions.

  2. Spectroscopy of element 115 decay chains.

    Science.gov (United States)

    Rudolph, D; Forsberg, U; Golubev, P; Sarmiento, L G; Yakushev, A; Andersson, L-L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Gregorich, K E; Gross, C J; Heßberger, F P; Herzberg, R-D; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Schädel, M; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2013-09-13

    A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  3. X-Ray photoelectron Spectroscopy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Droubay, Timothy C.; Du, Yingge

    2017-01-03

    With capability for obtaining quantitative elemental composition, chemical and electronic state, and overlayer thickness information from the top ~10 nm of a sample surface, X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) is a versatile and widely used technique for analyzing surfaces. The technique is applied to a host of materials, from insulators to conductors in virtually every scientific field and sub-discipline. More recently, XPS has been extended under in-situ and operando conditions. Following a brief introduction to XPS principles and instrument components, this article exemplifies widely ranging XPS applications in material and life sciences.

  4. Trap-assisted decay spectroscopy with ISOLTRAP

    CERN Document Server

    Kowalska, M; Agramunt, J.; Algora, A.; Beck, D.; Blank, B.; Blaum, K.; Böhm, Ch.; Borgmann, Ch.; Breitenfeldt, M.; Fraile, L.M.; George, S.; Herfurth, F.; Herlert, A.; Kreim, S.; Lunney, D.; Minaya-Ramirez, E.; Neidherr, D.; Rosenbusch, M.; Rubio, B.; Schweikhard, L.; Stanja, J.; Zuber, K.

    Penning traps are excellent high-precision mass spectrometers for radionuclides. The high-resolving power used for cleaning isobaric and even isomeric contaminants can be exploited to improve decay-spectroscopy studies by delivering purified samples. An apparatus allowing trap-assisted decay spectroscopy has been coupled to the ISOLTRAP mass spectrometer at ISOLDE/CERN. The results from studies with stable and radioactive ions show that the setup can be used to perform decay studies on purified short-lived nuclides and to assist mass measurements.

  5. Principles of laser spectroscopy and quantum optics

    CERN Document Server

    Berman, Paul R

    2011-01-01

    Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorptio

  6. Spectroscopy the key to the stars

    CERN Document Server

    Robinson, Keith

    2007-01-01

    This is the first non-technical book on spectroscopy written specifically for practical amateur astronomers. It includes all the science necessary for a qualitative understanding of stellar spectra, but avoids a mathematical treatment which would alienate many of its intended readers. Any amateur astronomer who carries out observational spectroscopy and who wants a non-technical account of the physical processes which determine the intensity and profile morphology of lines in stellar spectra will find this is the only book written specially for them. It is an ideal companion to existing books

  7. Explosive detection using infrared laser spectroscopy

    Science.gov (United States)

    Hildenbrand, J.; Herbst, J.; Wöllenstein, J.; Lambrecht, A.

    2009-01-01

    Stand-off and extractive explosive detection methods for short distances are investigated using mid-infrared laser spectroscopy. A quantum cascade laser (QCL) system for TATP-detection by open path absorption spectroscopy in the gas phase was developed. In laboratory measurements a detection limit of 5 ppm*m was achieved. For explosives with lower vapor pressure an extractive hollow fiber based measurement system was investigated. By thermal desorption gaseous TATP or TNT is introduced into a heated fiber. The small sample volume and a fast gas exchange rate enable fast detection. TNT and TATP detection levels below 100 ng are feasible even in samples with a realistic contaminant background.

  8. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA.......We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  9. Scikit-spectra: Explorative Spectroscopy in Python

    Directory of Open Access Journals (Sweden)

    Adam Hughes

    2015-06-01

    Full Text Available Scikit-spectra is an intuitive framework for explorative spectroscopy in Python. Scikit-spectra leverages the Pandas library for powerful data processing to provide datastructures and an API designed for spectroscopy. Utilizing the new IPython Notebook widget system, scikit-spectra is headed towards a GUI when you want it, API when you need it approach to spectral analysis. As an application, analysis is presented of the surface-plasmon resonance shift in a solution of gold nanoparticles induced by proteins binding to the gold’s surface. Please refer to the scikit-spectra website for full documentation and support: http://hugadams.github.io/scikit-spectra/

  10. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  11. Laser spectroscopy used in nuclear physics; La spectroscopie laser appliquee a la physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, F

    2001-04-05

    The study of nuclear shapes is a basic topic since it constitutes an excellent ground for testing and validating nuclear models. Measurements of the electron quadrupolar moment, of the nuclear charge radius and of the magnetic dipolar moment shed light on the nuclear deformation. Laser spectroscopy is a specific tool for such measurements, it is based on the interaction of the nucleus with the surrounding electron cloud (hyperfine structure), it is then an external approach of the shape of the nucleus whereas the classical nuclear spectroscopy ({alpha}, {beta} or {gamma}) gives information on the deformation from the inside of the nucleus. The author describes 2 techniques of laser spectroscopy: the colinear spectroscopy directly applied to a beam issued from an isotope separator and the resonant ionization spectroscopy linked with atom desorption that allows the study of particular nuclei. In order to illustrate both methods some effective measurements are presented: - the colinear spectroscopy has allowed the achievement of the complete description of the isomeric state (T = 31 years) of hafnium-178; - The experiment Complis has revealed an unexpected even-odd zigzag effect on very neutron-deficient platinum isotopes; and - the comparison of 2 isotopes of gold and platinum with their isomers has shown that the inversion of 2 levels of neutron, that was found out by nuclear spectroscopy, is in fact a consequence of a change in the nuclear shape. (A.C.)

  12. Single voxel magnetic resonance spectroscopy in distinguishing ...

    African Journals Online (AJOL)

    Objective: Assess diagnostic utility of combined magnetic resonance imaging and magnetic resonance spectroscopy (MRI, MRS) in differentiating focal neoplastic lesions from focal non- neoplastic (infective or degenerative) brain lesions. Design: Descriptive, analytical - prospective study. Setting: The Aga Khan University ...

  13. Overlapping β decay and resonance neutron spectroscopy

    International Nuclear Information System (INIS)

    Raman, S.; Fogelberg, B.

    1984-01-01

    By carrying out a detailed study of 87 Kr levels, we have shown that delayed neutron spectroscopy can be a viable method for studying individual levels and that a broad resonance-like structure is present in the β-strength distribution. 12 refs., 1 fig

  14. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  15. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  16. Laboratory system for alpha particle spectroscopy

    International Nuclear Information System (INIS)

    Dean, J.R.; Chiu, N.W.

    1987-03-01

    An automated alpha particle spectroscopy system has beeen designed and fabricated. It consists of two major components, the automatic sample changer and the controller/data acquisition unit. It is capable of unattended analysis of ten samples for up to 65,000 seconds per sample

  17. Monitoring of whey quality with NIR spectroscopy

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey; Lomborg, Carina

    2015-01-01

    The possibility of using near-infrared (NIR) spectroscopy for monitoring of liquid whey quality parameters during protein production process has been tested. The parameters included total solids, lactose, protein and fat content. The samples for the experiment were taken from real industrial...

  18. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  19. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  20. Pear quality characteristics by Vis / NIR spectroscopy.

    Science.gov (United States)

    Machado, Nicácia P; Fachinello, José C; Galarça, Simone P; Betemps, Débora L; Pasa, Mateus S; Schmitz, Juliano D

    2012-09-01

    Recently, non-destructive techniques such as the Vis / NIR spectroscopy have been used to evaluate the characteristics of maturation and quality of pears. The study aims to validate the readings by the Vis / NIR spectroscopy as a non-destructive way to assess the qualitative characteristics of pear cultivars 'Williams', 'Packams' and 'Carrick', produced according to Brazilian conditions. The experiment was conducted at the Pelotas Federal University, UFPel, in Pelotas / RS, and the instrument used to measure the fruit quality in a non-destructive way was the NIR- Case spectrophotometer (SACMI, Imola, Italy). To determine pears' soluble solids (SS) and pulp firmness (PF), it was established calibration equations for each variety studied, done from the evaluations obtained by a non-destructive method (NIR-Case) and a destructive method. Further on, it was tested the performance of these readings by linear regressions. The results were significant for the soluble solids parameter obtained by the Vis / NIR spectroscopy; however, it did not achieve satisfactory results for the pear pulp firmness of these cultivars. It is concluded that the Vis / NIR spectroscopy, using linear regression, allows providing reliable estimates of pears' quality levels, especially for soluble solids.

  1. Overview. Department of Nuclear Spectroscopy. Section 2

    Energy Technology Data Exchange (ETDEWEB)

    Styczen, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The 1994 year activity in the Nuclear Spectroscopy Department was like in previous years spread over large variety of subjects concerned with the in-beam nuclear spectroscopy and many nucleon transfer reactions, properties of high excited nuclear states, and the applied nuclear spectroscopy. The studies in the first two groups were mostly carried out in a vast international collaboration which enabled us to carry out experiments on highly sophisticated experimental facilities abroad like EUROGAM, GASP, HECTOR or OSIRIS, and others. Some preparations for `home` experiments have been carried out on the very much looked forward and recently obtained heavy ion beam from the cyclotron at the Warsaw University. The applied nuclear spectroscopy works, on the other hand, were based on using our own installations: an elaborated set-up for perturbed angular correlations, the RBS and PIXE set-ups at the Van de Graaff accelerator, the implanter, an atomic force microscope and several others. Much of the effort manifests itself in several valuable results which are summarized in the following pages. It is to be underlined that those results, as well as some new instrumentation developments were possible due to additional support via special grants and the promotion of the international cooperation by the State Committee for Scientific Research (KBN). (author).

  2. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  3. Reflectance spectroscopy and asteroid surface mineralogy

    International Nuclear Information System (INIS)

    Gaffey, M.J.; Bell, J.F.; Cruikshank, D.P.

    1989-01-01

    Information available from reflectance spectroscopy on the surface mineralogy of asteroids is discussed. Current spectral interpretive procedures used in the investigations of asteroid mineralogy are described. Present understanding of the nature and history of asteroids is discussed together with some still unresolved issues such as the source of ordinary chondrites. 100 refs

  4. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 1816-1821 ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  5. Monitoring of batch processes using spectroscopy

    NARCIS (Netherlands)

    Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K.

    2002-01-01

    There is an increasing need for new techniques for the understanding, monitoring and the control of batch processes. Spectroscopy is now becoming established as a means of obtaining real-time, high-quality chemical information at frequent time intervals and across a wide range of industrial

  6. Spectroscopy and decays of charm and bottom

    International Nuclear Information System (INIS)

    Butler, J.N.

    1997-10-01

    After a brief review of the quark model, we discuss our present knowledge of the spectroscopy of charm and bottom mesons and baryons. We go on to review the lifetimes, semileptonic, and purely leptonic decays of these particles. We conclude with a brief discussion B and D mixing and rare decays

  7. Synthesis, spectroscopy and supramolecular structures of two ...

    Indian Academy of Sciences (India)

    TECS

    2007-05-16

    May 16, 2007 ... Indian Academy of Sciences. 243. #. Dedicated to Prof. Dr. Werner Weisweiler on the occasion of his 69th birthday. *For correspondence. Synthesis, spectroscopy and supramolecular structures of two magnesium 4-nitrobenzoate complexes. #. BIKSHANDARKOIL R SRINIVASAN,. 1,. * JYOTI V SAWANT,.

  8. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Shimul Kumar Dam

    Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring. 1. Introduction. Batteries play an important role as energy storage devices for renewable energy sources, electric vehicle and many other applications. A battery bank is interfaced to load through a power converter, which controls ...

  9. Improving transition voltage spectroscopy of molecular junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian Sommer

    2011-01-01

    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin...

  10. Fourier Transform Infrared Spectroscopy Part III. Applications.

    Science.gov (United States)

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  11. High temperature impedance spectroscopy of barium stannate

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  12. Fourier transform infrared spectroscopy for sepia melanin

    CSIR Research Space (South Africa)

    Mbonyiryivuze, A

    2015-08-01

    Full Text Available range of electromagnetic radiation, antibiotic, thermoregulation. Melanins are found all over the body from the skin and blood to the nervous system but the role of melanin in all these system is unclear. FTIR spectroscopy technique is usually one...

  13. Monitoring Industrial Food Processes Using Spectroscopy & Chemometrics

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær; Engelsen, Søren Balling

    2001-01-01

    In the last decade rapid spectroscopic measurements have revolutionized quality control in practically all areas of primary food and feed production. Near-infrared spectroscopy (NIR & NIT) has been implemented for monitoring the quality of millions of samples of cereals, milk and meat with unprec...

  14. A New Spin on Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  15. The dawn of X‐ray spectroscopy

    DEFF Research Database (Denmark)

    Gerward, Leif

    2013-01-01

    This paper describes a few episodes from the early days of X‐ray spectroscopy. It relies on contemporary publications, especially those by Barkla, Moseley, Siegbahn, and Compton. The paper addresses the subject from the vantage point of physics and should be of interest to the X‐ray spectroscopist...

  16. Vibrational spectroscopy with neutrons: Recent developments

    Science.gov (United States)

    Parker, Stewart F.; Ramirez-Cuesta, Anibal J.; Daemen, Luke

    2018-02-01

    In this short review, we will briefly summarise the differences between INS spectroscopy and conventional infrared and Raman spectroscopies. We will illustrate these with the current state-of-the art, using C70 as an example. The main focus of the article will be on the key advances in INS spectroscopy over the last ten years or so, that are driving new areas of research. The developments fall into three broad categories: (i) new sources, (ii) new and/or upgraded instrumentation and (iii) novel uses for existing instruments. For (i) we summarise the new neutron sources that are now, or will be, operating. For (ii) we show the capabilities of new or upgraded instruments. These offer unprecedented levels of sensitivity: sub-millimole quantities of hydrogen can be measured and millimole quantities of low cross section materials. Recent work on hexahalo metallates and adsorbed CO2 is used to demonstrate what is now feasible. For (iii), instruments that were designed for studies of magnetism, are now being used for molecular spectroscopy, especially for catalysts. This is illustrated with work on CuH and methanol synthesis catalysts.

  17. Arbitrary-Region Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Hendrix, Jelle; Dekens, Tomas; Schrimpf, Waldemar; Lamb, Don C

    2016-10-18

    Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. 16th International Conference on Hadron Spectroscopy

    CERN Document Server

    2015-01-01

    The aim of this conference is to review the status, progress and future plans of the field of hadron spectroscopy, and relate these to understanding hadron dynamics. This series of biennial conferences began in 1985 at College Park, Maryland, USA, with the 15th conference held in Nara, Japan in November 2013. Hadron 2015 will be organized by Jefferson Lab.

  19. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    High temperature impedance spectroscopy of barium stannate, BaSnO3. SHAIL UPADHYAY. Department of Physics, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. MS received 29 May 2012; revised 14 July 2012. Abstract. Polycrystalline powder of BaSnO3 was prepared at 1300 ◦C using a ...

  20. Gamma and Xray spectroscopy at high performance

    International Nuclear Information System (INIS)

    Borchert, G.L.

    1984-01-01

    The author determines that for many interesting problems in gamma and Xray spectroscopy it is necessary to use crystal diffractometers. The basic features of such instruments are discussed and the special performance of crystal spectrometers is demonstrated by means of typical examples of various applications

  1. Small animal cardiovascular MR imaging and spectroscopy

    NARCIS (Netherlands)

    Bakermans, Adrianus J.; Abdurrachim, Desiree; Moonen, Rik P. M.; Motaal, Abdallah G.; Prompers, Jeanine J.; Strijkers, Gustav J.; Vandoorne, Katrien; Nicolay, Klaas

    2015-01-01

    The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a

  2. Time-dependent Autler-Townes spectroscopy

    CERN Document Server

    Qamar, S; Zubairy, M S

    2003-01-01

    Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly.

  3. Nanoscale Infrared Spectroscopy of Biopolymeric Materials

    Science.gov (United States)

    Curtis Marcott; Michael Lo; Kevin Kjoller; Craig Prater; Roshan Shetty; Joseph Jakes; Isao Noda

    2012-01-01

    Atomic Force Microscopy (AFM) and infrared (IR) spectroscopy have been combined in a single instrument capable of producing 100 nm spatial resolution IR spectra and images. This new capability enables the spectroscopic characterization of biomaterial domains at levels not previously possible. A tunable IR laser source generating pulses on the order of 10 ns was used...

  4. Heavy flavour hadron spectroscopy: An overview

    Indian Academy of Sciences (India)

    2014-10-31

    Oct 31, 2014 ... A comprehensive overview and some of the theoretical attempts towards understanding heavy flavour hadron spectroscopy are presented. Apart from the conventional quark structure (quark, antiquarks structure for the mesons and three-quarks structure of baryons) of hadrons, multiquark hadrons the ...

  5. Heavy flavour hadron spectroscopy: An overview

    Indian Academy of Sciences (India)

    Abstract. A comprehensive overview and some of the theoretical attempts towards understand- ing heavy flavour hadron spectroscopy are presented. Apart from the conventional quark structure. (quark, antiquarks structure for the mesons and three-quarks structure of baryons) of hadrons, multi- quark hadrons the hadron ...

  6. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  7. Spectroscopy of laser-produced plasmas

    Indian Academy of Sciences (India)

    It is a well-known fact that laser-induced breakdown spectroscopy (LIBS) has emerged as one of the best analytical techniques for multi-elemental compositional analysis of samples. We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified ...

  8. Structural, optical spectroscopy, optical conductivity and dielectric ...

    Indian Academy of Sciences (India)

    Fe and W co-substituted BaTiO3 perovskite ceramics, compositional formula BaTi 0.5 (Fe 0.33 W 0.17 )O 3 , were synthesized by the standard solid-state reaction method and studied by X-ray diffraction, scanning electronmicroscopy and spectroscopy ellipsometry. The prepared sample remains as double phases with the ...

  9. Laser induced breakdown spectroscopy in water | Boudjemai ...

    African Journals Online (AJOL)

    Sparks were generated in water by the focused beam of a Q-switched Nd:YAG laser Na and Cu aqueous solutions exhibited fluorescence signal on the decaying edge of plasma emission at their respective characteristic resonance lines. Potential of the laser plasma spectroscopy for in-situ pollution monitoring in natural ...

  10. Photoelectron Spectroscopy in Advanced Placement Chemistry

    Science.gov (United States)

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  11. Novel concepts for terahertz waveguide spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In the recent years there has been a tremendous interest in various waveguides for the THz range. A waveguide offers strong confinement of the field as well as low-loss propagation over significant distances, properties which are important for sensitive spectroscopy. The confinement of the field ...

  12. Intense Terahertz Sources for 2D Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov

    This Ph.D. thesis covers the development of terahertz (THz) spectroscopy systems for investigating nonlinear vibrational responses in organic biomolecules such as sucrose. First, an add-on module for the DFT-based ab initio software CASTEP is developed to include a THz pulse as an external field...

  13. Parallel reconstruction in accelerated multivoxel MR spectroscopy

    NARCIS (Netherlands)

    Boer, V. O.; Klomp, D. W. J.|info:eu-repo/dai/nl/298206382; Laterra, J.; Barker, P. B.

    PurposeTo develop the simultaneous acquisition of multiple voxels in localized MR spectroscopy (MRS) using sensitivity encoding, allowing reduced total scan time compared to conventional sequential single voxel (SV) acquisition methods. MethodsDual volume localization was used to simultaneously

  14. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  15. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    NARCIS (Netherlands)

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the

  16. Vibrational Spectroscopy in Studies of Atmospheric Corrosion.

    Science.gov (United States)

    Hosseinpour, Saman; Johnson, Magnus

    2017-04-18

    Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm.

  17. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Saman Hosseinpour

    2017-04-01

    Full Text Available Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm.

  18. Surface Fluctuation Scattering using Grating Heterodyne Spectroscopy

    DEFF Research Database (Denmark)

    Edwards, R. V.; Sirohi, R. S.; Mann, J. A.

    1982-01-01

    Heterodyne photon spectroscopy is used for the study of the viscoelastic properties of the liquid interface by studying light scattered from thermally generated surface fluctuations. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms...

  19. Analyzing Engineered Nanoparticles using Photothermal Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Yamada, Shoko

    fabricated, and Gambles solution with dispersed iron oxide nanoparticles showed lowered potential as expected. Despite the potential of this concept instability and lack of reproducibility continued to be an unneglectable issue. The concept of utilizing string resonators for photothermal spectroscopy was...

  20. The spectroscopy of the new particles

    International Nuclear Information System (INIS)

    Gottfried, K.

    1977-01-01

    Theories and models of heavy quark-antiquark systems are reviewed. The principal topics are: i) the spectroscopy of the psi-family both above and below charm threshold; ii) production of charmed mesons in e + e - annihilation; and iii) the consequences of interpreting UPSILON and UPSILON' as bound states of a new quark-antiquark system. (orig.) [de

  1. XAFS Spectroscopy : Fundamental Principles and Data Analysis

    NARCIS (Netherlands)

    Koningsberger, D.C.; Mojet, B.L.; Dorssen, G.E. van; Ramaker, D.E.

    2000-01-01

    The physical principles of XAFS spectroscopy are given at a sufficiently basic level to enable scientists working in the field of catalysis to critically evaluate articles dealing with XAFS studies on catalytic materials. The described data-analysis methods provide the basic tools for studying the

  2. Heavy flavour hadron spectroscopy: An overview

    Indian Academy of Sciences (India)

    Scopes and outlook of the hadron physics at the heavy flavour sector in view of the future experimental facilities are highlighted. Keywords. Heavy flavour; spectroscopy; potential models; exotics. PACS Nos 12.40.Yx; 14.40.Pq; 14.40.Rt; 12.39.Pn. 1. Introduction. In recent years, the investigation of hadrons containing heavy ...

  3. Prospects for in vivo Raman spectroscopy

    International Nuclear Information System (INIS)

    Hanlon, E.B.; Manoharan, R.; Koo, T.-W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S.

    2000-01-01

    Raman spectroscopy is a potentially important clinical tool for real-time diagnosis of disease and in situ evaluation of living tissue. The purpose of this article is to review the biological and physical basis of Raman spectroscopy of tissue, to assess the current status of the field and to explore future directions. The principles of Raman spectroscopy and the molecular level information it provides are explained. An overview of the evolution of Raman spectroscopic techniques in biology and medicine, from early investigations using visible laser excitation to present-day technology based on near-infrared laser excitation and charge-coupled device array detection, is presented. State-of-the-art Raman spectrometer systems for research laboratory and clinical settings are described. Modern methods of multivariate spectral analysis for extracting diagnostic, chemical and morphological information are reviewed. Several in-depth applications are presented to illustrate the methods of collecting, processing and analysing data, as well as the range of medical applications under study. Finally, the issues to be addressed in implementing Raman spectroscopy in various clinical applications, as well as some long-term directions for future study, are discussed. (author)

  4. LASER-INDUCED BREAKDOWN SPECTROSCOPY AND ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique, which can be used to perform ... environmental pollution by Cr results mainly from mining and smelting activities [2]. The ... mapping of large areas, for example soils around mines, for potential heavy metal pollutants. To the best of our ...

  5. Applied spectroscopy and the science of nanomaterials

    CERN Document Server

    2015-01-01

    This book focuses on several areas of intense topical interest related to applied spectroscopy and the science of nanomaterials. The eleven chapters in the book cover the following areas of interest relating to applied spectroscopy and nanoscience: ·         Raman spectroscopic characterization, modeling and simulation studies of carbon nanotubes, ·         Characterization of plasma discharges using laser optogalvanic spectroscopy, ·         Fluorescence anisotropy in understanding protein conformational disorder and aggregation, ·         Nuclear magnetic resonance spectroscopy in nanomedicine, ·         Calculation of Van der Waals interactions at the nanoscale, ·         Theory and simulation associated with adsorption of gases in nanomaterials, ·         Atom-precise metal nanoclusters, ·         Plasmonic properties of metallic nanostructures, two-dimensional materials, and their composites, ·         Applications of graphe...

  6. Spectroscopy of thin nanodiamond layers and membranes

    Czech Academy of Sciences Publication Activity Database

    Kravets, Roman; Remeš, Zdeněk; Vorlíček, Vladimír; Bryknar, Z.; Nesládek, M.; Potměšil, Jiří; Poruba, Aleš; Vaněček, Milan

    2006-01-01

    Roč. 352, - (2006), s. 1344-1347 ISSN 0022-3093 R&D Projects: GA ČR GA202/05/2233 Institutional research plan: CEZ:AV0Z10100521 Keywords : Raman scattering * chemical vapor deposition * optical spectroscopy * defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.362, year: 2006

  7. Complete system for portable gamma spectroscopy

    International Nuclear Information System (INIS)

    Fuess, D.A.

    1978-01-01

    The report described a system built around the Computing Gamma Spectrometer (PSA) LEA 74-008. The software primarily supports high-resolution gamma-ray spectroscopy using either a high-purity intrinsic germanium detector (HPGe) or a lithium-drifted germanium detector [Ge(Li)

  8. Comparison of photoacoustic spectroscopy, conventional absorption spectroscopy, and potentiometry as probes of lanthanide speciation

    International Nuclear Information System (INIS)

    Torres, R.A.; Palmer, C.E.A.; Baisden, P.A.; Russo, R.E.; Silva, R.J.

    1990-01-01

    The authors measured the stability constants of praseodymium acetate and oxydiacetate complexes by laser-induced photoacoustic spectroscopy, conventional UV-visible absorption spectroscopy, and pH titration. For the spectroscopic studies, changes in the free Pr absorption peaks at 468 and 481 nm were monitored at varying ligand concentrations. The total Pr concentration was 1 x 10 -4 M in solutions used for the photoacoustic studies and 0.02 M for conventional spectroscopy. For the pH titrations, we used solutions whose Pr concentrations varied from 5 x 10 -3 to 5 x 10 -2 M, with total ligand-to-metal ratios ranging from 1 to 10. A comparison of the results obtained by the three techniques demonstrates that photoacoustic spectroscopy can give the same information about metal-ligand speciation as more conventional methods. It is particularly suited to those situations where the other techniques are insensitive because of limited metal concentrations

  9. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  10. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  11. Terahertz time-domain spectroscopy of crystalline and aqueous systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Eichhorn, Finn

    2007-01-01

    We use ab-initio density-functional perturbation theory together with THz spectroscopy for precise prediction and assignment of vibrational modes in molecular crystals. We show that THz spectroscopy is useful for analysis of liquids and food products....

  12. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... be signicantly reduced. Besides time-resolved terahertz spectroscopy measurement, optical transmission, Raman spectroscopy, scanning electron microscope, energy dispersive X-ray, and X-ray diffraction spectroscopy experiments on black silicon are presented....

  13. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  14. Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macháň, Radek; Kapusta, Peter; Hof, Martin

    Roč. 406 , č. 20 (2014), s. 4797-4813 ISSN 1618-2642 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Filtered fluorescence correlation spectroscopy * Fluorescence lifetime correlation spectroscopy * Fluorescence spectral correlation spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.436, year: 2014

  15. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  16. Near-infrared spectroscopy during peripheral vascular surgery

    DEFF Research Database (Denmark)

    Eiberg, J P; Schroeder, T V; Vogt, K C

    1997-01-01

    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, during...... that near-infrared spectroscopy is appropriate for perioperative monitoring during vascular grafting....

  17. SPECTROSCOPY OF PUTATIVE BROWN DWARFS IN TAURUS

    International Nuclear Information System (INIS)

    Luhman, K. L.; Mamajek, E. E.

    2010-01-01

    Quanz and coworkers have reported the discovery of the coolest known member of the Taurus star-forming complex (L2 ± 0.5), and Barrado and coworkers have identified a possible protostellar binary brown dwarf in the same region. We have performed infrared spectroscopy on the former and the brighter component of the latter to verify their substellar nature. The resulting spectra do not exhibit the strong steam absorption bands that are expected for cool objects, demonstrating that they are not young brown dwarfs. The optical magnitudes and colors for these sources are also indicative of background stars rather than members of Taurus. Although the fainter component of the candidate protostellar binary lacks spectroscopy, we conclude that it is a galaxy rather than a substellar member of Taurus based on its colors and the constraints on its proper motion.

  18. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    are located in the visible range, e.g. for petroleum product analysis. Deep Ultraviolet Raman spectroscopy applied to this research field was claimed to be able to solve the problem. Chapter 5 is devoted to gasoline analysis by the use of the DUV Raman spectroscopy. Firstly, some sampling difficulties...... (absorption, condensation) are described. We have found a way to solve the problems, and our solution, using a special designed gas gap cell to obtain measurements of extraordinary high quality, are presented. The DUV Raman spectra of gasoline were excited by three different wavelengths, 257.3, 244.0 and 229...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  19. Laser-Induced Breakdown Spectroscopy in Africa

    Directory of Open Access Journals (Sweden)

    M. A. Kasem

    2015-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, known also as laser-induced plasma spectroscopy (LIPS, is a well-known spectrochemical elemental analysis technique. The field of LIBS has been rapidly matured as a consequence of growing interest in real-time analysis across a broad spectrum of applied sciences and recent development of commercial LIBS analytical systems. In this brief review, we introduce the contributions of the research groups in the African continent in the field of the fundamentals and applications of LIBS. As it will be shown, the fast development of LIBS in Africa during the last decade was mainly due to the broad environmental, industrial, archaeological, and biomedical applications of this technique.

  20. Applications of Raman spectroscopy to gemology.

    Science.gov (United States)

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  1. Kinetics and spectroscopy of low temperature plasmas

    CERN Document Server

    Loureiro, Jorge

    2016-01-01

    This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...

  2. Near Infrared Spectroscopy Systems for Tissue Oximetry

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl

    We present exible silicon device platforms, which combine polyimide with polydimethylsiloxane in order to add flexibility and biocompatibility to the silicon devices. The device platforms are intended as tissue oximeters, using near infrared spectroscopy, but could potentially also be used...... for other medical applications. The tissue oximeters are realised by incorporation of pn-diodes into the silicon in order to form arrays of infrared detectors. These arrays can then be used for spatially resolved spectroscopy measurements, with the targeted end user being prematurely born infant children....... Monte Carlo simulations have been performed on a model of a neonatal head and they show only weak changing signals as function of changes in cerebral oxygenation. A mechanical and electrical analysis of the device platforms, both by analytical expressions and numerical simulation, indicated...

  3. Positron annihilation induced Auger electron spectroscopy

    Science.gov (United States)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  4. Disease recognition by infrared and Raman spectroscopy.

    Science.gov (United States)

    Krafft, Christoph; Steiner, Gerald; Beleites, Claudia; Salzer, Reiner

    2009-02-01

    Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with microscopy, lateral information and fiber-optic probes. A crucial step is the classification of spectral data by a variety of algorithms. We discuss unsupervised algorithms such as cluster analysis or principal component analysis and supervised algorithms such as linear discriminant analysis, soft independent modeling of class analogies, artificial neural networks support vector machines, Bayesian classification, partial least-squares regression and ensemble methods. The selected topics include tumors of epithelial tissue, brain tumors, prion diseases, bone diseases, atherosclerosis, kidney stones and gallstones, skin tumors, diabetes and osteoarthritis. ((c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  5. Rare earth optogalvanic spectroscopy: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Destro, Marcelo G.; Neri, Jose W.; Rodrigues, Nicolau A.S.; Silveira, Carlos A.B.; Riva, Rudimar [Instituto de Estudos Avancados (IEAv/EFO), Sao Jose dos Campos, SP (Brazil). Div. de Fotonica]. E-mail: destro@ieav.cta.br; Victor, Alessandro R. [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2008-07-01

    The IEAv has special interest in the studies of rare earth isotope applications in laser medium and integrated optics as well as aerospace research. We are starting to work with Ytterbium, Erbium, Dysprosium and Neodymium laser selective photoionization research. This paper describes the preliminary results of emission and optogalvanic spectroscopy obtained from a Neodymium hollow cathode lamps. Furthermore these results were used to setup our laser systems to work to leads a Nd isotopes selective laser photoionization. (author)

  6. Reflection electron energy loss spectroscopy of aluminum

    Czech Academy of Sciences Publication Activity Database

    Jiříček, Petr; Bartoš, Igor; Zemek, Josef; Werner, W. S. M.

    2010-01-01

    Roč. 604, 11-12 (2010), s. 1006-1009 ISSN 0039-6028 R&D Projects: GA ČR GA202/07/0601; GA MŠk MEB060809 Institutional research plan: CEZ:AV0Z10100521 Keywords : Al(111) * polycrystalline Al * electron energy loss spectroscopy * photoelectron diffraction * PHD * REELS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.010, year: 2010

  7. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, S.; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (10(10)). (C) 2012 Optical Society of America...

  8. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (1010)....

  9. Heavy flavour production and spectroscopy at LHCb

    CERN Document Server

    INSPIRE-00258787

    2012-01-01

    At the Moriond QCD conference LHCb has presented results on heavy flavour production and spectroscopy. Here the latest results are discussed, which include the first observation and measurement of the branching fraction of the hadronic decay $B^+_e \\to J/\\psi\\pi^+ \\pi^- \\pi^+$, the mass measurement of the excited B mesons and the mass measurement of the $\\Xi_b$ and $\\Omega_b$ baryons.

  10. Ultraviolet photoelectron spectroscopy of transient species

    International Nuclear Information System (INIS)

    Leeuw, D.M. de.

    1979-01-01

    Transient species are studied in the isolation of the gas phase using ultraviolet photoelectron spectroscopy (PES). A description of the equipment used and a discussion of some theoretical topics, which play a role in the interpretation of PE spectra, are given. Koopmans' theorem, Hartree-Fock-Slater (HFS) calculations and the sum rule are discussed. A versatile ultraviolet PE spectrometer, designed specifically for this purpose, has been built and the construction and performance of this instrument are described. (Auth.)

  11. Genetic algorithm simulation for line shape spectroscopy

    International Nuclear Information System (INIS)

    Sun Ping; Pan Chuanhong; Cui Zhengying; Ding Xuantong; Wang Quanming

    2005-01-01

    Line shape spectroscopy is a valuable tool both for diagnostic, and for understanding the basic atomic processes in the boundary region of magnetically confined fusion plasmas. The D α line profiles are modeled with genetic algorithm. The modeling profiles are in good agreement with the line profiles obtained in experiment. The results of this analysis suggest that there are one population of hydrogen and three populations of deuterium with different temperatures and population ratios. (authors)

  12. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  13. Atomic Force Microscope for Imaging and Spectroscopy

    Science.gov (United States)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  14. Photoacoustic spectroscopy of β-hematin

    Science.gov (United States)

    Samson, Edward B.; Goldschmidt, Benjamin S.; Whiteside, Paul J. D.; Sudduth, Amanda S. M.; Custer, John R.; Beerntsen, Brenda

    2012-01-01

    Malaria affects over 200 million individuals annually, resulting in 800,000 fatalities. Current tests use blood smears and can only detect the disease when 0.1–1% of blood cells are infected. We are investigating the use of photoacoustic flowmetry to sense as few as one infected cell among 10 million or more normal blood cells, thus diagnosing infection before patients become symptomatic. Photoacoustic flowmetry is similar to conventional flow cytometry, except that rare cells are targeted by nanosecond laser pulses to induce ultrasonic responses. This system has been used to detect single melanoma cells in 10 ml of blood. Our objective is to apply photoacoustic flowmetry to detection of the malaria pigment hemozoin, which is a byproduct of parasite-digested hemoglobin in the blood. However, hemozoin is difficult to purify in quantities greater than a milligram, so a synthetic analog, known as β-hematin was derived from porcine haemin. The specific purpose of this study is to establish the efficacy of using β-hematin, rather than hemozoin, for photoacoustic measurements. We characterized β-hematin using UV-vis spectroscopy, TEM, and FTIR, then tested the effects of laser irradiation on the synthetic product. We finally determined its absorption spectrum using photoacoustic excitation. UV-vis spectroscopy verified that β-hematin was distinctly different from its precursor. TEM analysis confirmed its previously established nanorod shape, and comparison of the FTIR results with published spectroscopy data showed that our product had the distinctive absorbance peaks at 1661 and 1206 cm−1. Also, our research indicated that prolonged irradiation dramatically alters the physical and optical properties of the β-hematin, resulting in increased absorption at shorter wavelengths. Nevertheless, the photoacoustic absorption spectrum mimicked that generated by UV-vis spectroscopy, which confirms the accuracy of the photoacoustic method and strongly suggests that

  15. Photoacoustic spectroscopy of β-hematin

    Science.gov (United States)

    Samson, Edward B.; Goldschmidt, Benjamin S.; Whiteside, Paul J. D.; Sudduth, Amanda S. M.; Custer, John R.; Beerntsen, Brenda; Viator, John A.

    2012-06-01

    Malaria affects over 200 million individuals annually, resulting in 800 000 fatalities. Current tests use blood smears and can only detect the disease when 0.1-1% of blood cells are infected. We are investigating the use of photoacoustic flowmetry to sense as few as one infected cell among 10 million or more normal blood cells, thus diagnosing infection before patients become symptomatic. Photoacoustic flowmetry is similar to conventional flow cytometry, except that rare cells are targeted by nanosecond laser pulses to induce ultrasonic responses. This system has been used to detect single melanoma cells in 10 ml of blood. Our objective is to apply photoacoustic flowmetry to detection of the malaria pigment hemozoin, which is a byproduct of parasite-digested hemoglobin in the blood. However, hemozoin is difficult to purify in quantities greater than a milligram, so a synthetic analog, known as β-hematin was derived from porcine hemin. The specific purpose of this study is to establish the efficacy of using β-hematin, rather than hemozoin, for photoacoustic measurements. We characterized β-hematin using UV-vis spectroscopy, TEM, and FTIR, then tested the effects of laser irradiation on the synthetic product. We finally determined its absorption spectrum using photoacoustic excitation. UV-vis spectroscopy verified that β-hematin was distinctly different from its precursor. TEM analysis confirmed its previously established nanorod shape, and comparison of the FTIR results with published spectroscopy data showed that our product had the distinctive absorbance peaks at 1661 and 1206 cm-1. Also, our research indicated that prolonged irradiation dramatically alters the physical and optical properties of the β-hematin, resulting in increased absorption at shorter wavelengths. Nevertheless, the photoacoustic absorption spectrum mimicked that generated by UV-vis spectroscopy, which confirms the accuracy of the photoacoustic method and strongly suggests that

  16. Proximity Scanning Transmission Electron Microscopy/Spectroscopy

    OpenAIRE

    Hwang, Ing-Shouh

    2016-01-01

    Here a new microscopic method is proposed to image and characterize very thin samples like few-layer materials, organic molecules, and nanostructures with nanometer or sub-nanometer resolution using electron beams of energies lower than 20 eV. The microscopic technique achieves high resolution through the proximity (or near-field) effect, as in scanning tunneling microscopy (STM), while it also allows detection of transmitted electrons for imaging and spectroscopy, as in scanning transmission...

  17. Spectroscopy by frequency entangled photon pairs

    OpenAIRE

    Yabushita, Atsushi; Kobayashi, Takayoshi

    2003-01-01

    Quantum spectroscopy was performed using the frequency-entangled broadband photon pairs generated by spontaneous parametric down-conversion. An absorptive sample was placed in front of the idler photon detector, and the frequency of signal photons was resolved by a diffraction grating. The absorption spectrum of the sample was measured by counting the coincidences, and the result is in agreement with the one measured by a conventional spectrophotometer with a classical light source.

  18. Heavy baryon spectroscopy with relativistic kinematics

    International Nuclear Information System (INIS)

    Valcarce, A.; Garcilazo, H.; Vijande, J.

    2014-01-01

    We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.

  19. Meson and baryon spectroscopy on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    David Richards

    2010-12-01

    Recent progress at understanding the excited state spectrum of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum, and the program of anisotropic clover lattice generation designed for hadron spectroscopy. I present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  20. Monitoring of phenol photodegradation by ultraviolet spectroscopy

    Science.gov (United States)

    Roig, B.; Gonzalez, C.; Thomas, O.

    2003-01-01

    Advanced oxidation processes (AOPs) have been developed as an emerging technology for hazardous organic treatment in industrial wastewater. In this paper, the contribution of ultraviolet (UV) spectroscopy to follow phenol photodegradation was studied in a laboratory photochemical reactor equipped with a low pressure mercury lamp. It has been observed that a multicomponent approach is efficient for the evolution estimation of the initial product or intermediate compounds formed during the photodegradation.

  1. Candida parapsilosis Biofilm Identification by Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Mlynariková, K.; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, F.; Holá, Miroslava; Mahelová, M.

    2014-01-01

    Roč. 15, č. 12 (2014), s. 23924-23935 E-ISSN 1422-0067 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR GAP205/11/1687 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * Candida parapsilosis * biofilm Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.862, year: 2014

  2. Laser spectroscopy monitoring of cancer therapy

    International Nuclear Information System (INIS)

    Jyothi Lakshmi, R.; Ullas, G.; Kartha, V.B.; Alexander, Mohan

    2000-01-01

    Surgery, radiation therapy and chemotherapy are the major treatment modalities for many forms of cancer at present. Monitoring of the therapy, follow up studies on regression of the disease and detection of recurrence are very essential for successful treatment. Any technique which will be of assistance for these purposes will thus be of great help. This paper presents some of our results of Raman and Pulsed Laser fluorescence spectroscopy studies on tissues, body fluids and bone, in oral cancer subjects after radiation therapy

  3. Applications of chiroptical spectroscopy to coordination compounds

    Czech Academy of Sciences Publication Activity Database

    Wu, Tao; You, X. Z.; Bouř, Petr

    2015-01-01

    Roč. 284, SI (2015), s. 1-18 ISSN 0010-8545 R&D Projects: GA ČR GA13-03978S; GA ČR GAP208/11/0105 Grant - others:GA AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : chirality * coordination compounds * chiroptical spectroscopy * new materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.994, year: 2015

  4. Standoff spectroscopy using a conditioned target

    Science.gov (United States)

    Van Neste, Charles W [Kingston, TN; Morales-Rodriguez, Marissa E [Knoxville, TN; Senesac, Lawrence R [Knoxville, TN; Thundat, Thomas G [Knoxville, TN

    2011-12-20

    A system and method are disclosed for standoff spectroscopy of molecules (e.g. from a residue) on a surface from a distance. A source emits radiation that modifies or conditions the residue, such as through photodecomposition. A spectral generating source measures a spectrum of the residue before and after the residue is exposed to the radiation from that source. The two spectra are compared to produce a distinct identification of the residues on the surface or identify certain properties of the residue.

  5. γ spectroscopy of 11ΛB

    International Nuclear Information System (INIS)

    Miura, Y.; Ajimura, S.; Fujii, Y.; Fukuda, T.; Hashimoto, O.; Hotchi, H.; Imai, K.; Imoto, W.; Kakiguchi, Y.; Kameoka, S.; Krutenkova, A.; Maruta, T.; Matsumura, A.; Miwa, K.; Mizunuma, K.; Nakamura, S.N.; Nagae, T.; Nomura, H.; Noumi, H.; Outa, H.; Saha, P.K.; Saitoh, T.; Sato, Y.; Sekimoto, M.; Takahashi, T.; Tamura, H.; Tanida, K.; Toyoda, A.; Ukai, M.; Yamauchi, H.

    2005-01-01

    We have performed a γ spectroscopy experiment in 11 Λ B using a germanium detector array, Hyperball. In this experiment, we have observed six γ transitions from 11 Λ B. Among these transitions, the γ ray peak at 1482 keV is identified as E2 (1/2+->5/2+). The result of this experiment indicates that the level structure seems quite different from a theoretical prediction based on the results of the previous experiments

  6. Progress towards microwave spectroscopy of trapped antihydrogen

    International Nuclear Information System (INIS)

    Ashkezari, Mohammad D.; Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, Wil; Bowe, Paul D.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steve; Charlton, Michael; Deller, Adam; Eriksson, Stefan; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, Dave R.; Gutierrez, Andrea; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.

    2012-01-01

    Precision comparisons of hyperfine intervals in atomic hydrogen and antihydrogen are expected to yield experimental tests of the CPT theorem. The CERN-based ALPHA collaboration has initiated a program of study focused on microwave spectroscopy of trapped ground-state antihydrogen atoms. This paper outlines some of the proposed experiments, and summarizes measurements that characterize microwave fields that have been injected into the ALPHA apparatus.

  7. Spectroscopy: Developments in instrumentation and analysis

    Directory of Open Access Journals (Sweden)

    Dardenne, Pierre

    2002-03-01

    Full Text Available This review presents the characteristics, advantages, limits and potential of three spectroscopic techniques: near-infrared spectroscopy (NIR, mid-infrared spectroscopy (MIR and Raman spectroscopy. The theoretical aspects related with these techniques, the information that can supplied and the main features of the instrumentation are presented and briefly discussed. The last part of the review concerns the application of the spectroscopy to food analysis, with special emphasis on the lipid analysis. The illustrations and examples have been chosen to demonstrate the importance of spectroscopic techniques both in process (on-line control and in laboratories for the analysis of major or minor compounds.Este artículo de revisión presenta las características, ventajas, límites y potencial de tres técnicas espectroscópicas: las espectroscopias del infrarrojo cercano, del medio infrarrojo y Raman. Se presentan, y discuten brevemente, los aspectos teóricos relacionados con estas técnicas, la información que pueden suministrar, y las principales características de la instrumentación. La última parte de la revisión esta dedicada a las aplicaciones de la espectroscopia en análisis de alimentos, con especial énfasis en análisis de lípidos. La ilustraciones y los ejemplos se han elegido para demostrar la importancia de las técnicas espectroscópicas en los procesos en-línea y en los laboratorios en el análisis de componentes mayoritarios y minoritarios.

  8. Role of buffer gases in optoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Thomas III, L.J.; Kelly, M.J.; Amer, N.M.

    1978-01-01

    The dependence of an acoustically resonant optoacoustic signal on the molecular weight and thermodynamic and transport properpties of the buffer gas is reported. Our results show that careful selection of such gases can significantly increase the sensitivity and flexibility of optoacoustic spectroscopy. We also demonstrate that such thermodynamic quantities as γ (equivalentC/sub p//C/sub v/) and sound velocity can now be measured readily and accurately. Other potential applications are suggested

  9. Nuclear spectroscopy with direct relations II. Proceedings

    International Nuclear Information System (INIS)

    Throw, F. E.

    1964-01-01

    The Symposium on Nuclear Spectroscopy with Direct Reactions, sponsored and organized by Argonne National Laboratory under the auspices of the U. S. Atomic Energy Commission, was held on 9-11 March 1964 at the Center for Continuing Education, University of Chicago. The present volume contains the invited papers along with abstracts or summaries of the few short papers selected for their special relevance to the topics of the invited lecturers . Edited versions of the discussions are also included

  10. Raman spectroscopy in pharmaceutical product design

    DEFF Research Database (Denmark)

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-01-01

    molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant...... application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed....

  11. Nuclear spectroscopy with direct relations II. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Throw, F. E. [ed.

    1964-03-01

    The Symposium on Nuclear Spectroscopy with Direct Reactions, sponsored and organized by Argonne National Laboratory under the auspices of the U. S. Atomic Energy Commission, was held on 9-11 March 1964 at the Center for Continuing Education, University of Chicago. The present volume contains the invited papers along with abstracts or summaries of the few short papers selected for their special relevance to the topics of the invited lecturers . Edited versions of the discussions are also included.

  12. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  13. Visible light optical coherence correlation spectroscopy.

    Science.gov (United States)

    Broillet, Stephane; Szlag, Daniel; Bouwens, Arno; Maurizi, Lionel; Hofmann, Heinrich; Lasser, Theo; Leutenegger, Marcel

    2014-09-08

    Optical coherence correlation spectroscopy (OCCS) allows studying kinetic processes at the single particle level using the backscattered light of nanoparticles. We extend the possibilities of this technique by increasing its signal-to-noise ratio by a factor of more than 25 and by generalizing the method to solutions containing multiple nanoparticle species. We applied these improvements by measuring protein adsorption and formation of a protein monolayer on superparamagnetic iron oxide nanoparticles under physiological conditions.

  14. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Science.gov (United States)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  15. Hadron Spectroscopy: Seventh International Conference. Proceedings

    International Nuclear Information System (INIS)

    Chung, S.; Willutzki, H.J.

    1998-01-01

    These proceedings represent papers presented at the Seventh International Conference on Hadron Spectroscopy (HADRON close-quote 97) held in Upton, New York in August, 1997. The Conference provided a wonderful opportunity for practitioners of hadron spectroscopy to discuss and exchange the latest information on both theoretical and experimental progress. A wide range of topics was covered at the Conference, including proton-antiproton interactions, glueballs, quantum chromodynamics, quarkonium hybrid meson, long-lived exotic particles and gluon degrees of freedom in meson spectroscopy. The Conference represents results from various collaborations including the Fermilab E690 and E835, Crystal Barrel, the H1 and ZEUS, etc. The facilities represented included CERN-SPS, Fermilab-Main Injector, BNL-RHIC, KEK-JHF, BNL-AGS, Julich-COSY, Uppsala-CELSIUS, SLAC-PEPII and Cornell-CESR, Frascati-DAΦNE, Beijing-BEPC, Bonn-ELSA and CEBAF backslash TJNAF. The papers described the existing capabilities and active research programs at these facilities. The conference was supported by BNL and the U.S. Department of Energy. There were 155 presented, and out of these, 33 have been abstracted for the Energy Science and Technology database

  16. A Guided Inquiry Approach to NMR Spectroscopy

    Science.gov (United States)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  17. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  18. Mineral mapping and applications of imaging spectroscopy

    Science.gov (United States)

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  19. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  20. X-ray spectroscopy an introduction

    CERN Document Server

    Agarwal, Bipin K

    1979-01-01

    Rontgen's discovery of X-rays in 1895 launched a subject which became central to the development of modern physics. The verification of many of the predic­ tions of quantum theory by X-ray spectroscopy in the early part of the twen­ tieth century stimulated great interest in thi's area, which has subsequently influenced fields as diverse as chemical physics, nuclear physics, and the study of the electronic properties of solids, and led to the development of techniques such as Auger, Raman, and X-ray photoelectron spectroscopy. The improvement of the theoretical understanding of the physics underlying X-ray spectroscopy has been accompanied by advances in experimental techniques, and the subject provides an instructive example of how progress on both these fronts can be mutually beneficial. This book strikes a balance between his­ torical description, which illustrates this symbiosis, and the discussion of new developments. The application of X-ray spectroscopic methods to the in­ vestigation of chemical b...

  1. Characterizing Exoplanet Habitability with Emission Spectroscopy

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.

  2. Magnetic resonance spectroscopy of the human brain

    Science.gov (United States)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  3. Chemistry and infrared spectroscopy of interstellar grains

    International Nuclear Information System (INIS)

    Hagen, W.

    1982-01-01

    This thesis focuses on three aspects of interstellar grains: the photochemistry of the grain mantles, their infrared spectroscopy and the surface chemistry that takes place during mantle accretion. It provides a combination of pure and applied chemistry and spectroscopy. The experiments described in this thesis have been carried out with low temperature (10 K) solid molecular mixtures representing the mantles of interstellar grains. The samples have been prepared by slowly condensing gaseous mixtures of simple molecules (e.g. CO, H 2 O, NH 3 , CH 4 ) on a cold substrate (mirror or window) cooled by a cryogenic refrigerator mounted in a high vacuum chamber. Fourier transform infrared spectroscopy has been used to study the sample. A laboratory study of the photochemistry in interstellar grain mantles is described. It shows that irradiation of solid binary mixtures of CO with H 2 O, NH 3 or CH 4 with 1600 A vacuum ultraviolet light, which is representative of the interstellar ultraviolet field, gives rise to the formation of a number of large molecules as well as radicals. Moreover, a theoretical study is given of the chemical composition of grain mantles accreted in dense clouds. (Auth.)

  4. Force spectroscopy of hepatocytic extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Yongsunthon, R., E-mail: YongsuntR@Corning.com [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States); Baker, W.A.; Bryhan, M.D.; Baker, D.E.; Chang, T.; Petzold, O.N.; Walczak, W.J.; Liu, J.; Faris, R.A.; Senaratne, W.; Seeley, L.A.; Youngman, R.E. [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States)

    2009-07-15

    We present atomic force microscopy and force spectroscopy data of live hepatocytes (HEPG2/C3A liver cell line) grown in Eagle's Minimum Essential Medium, a complex solution of salts and amino acids commonly used for cell culture. Contact-mode imaging and force spectroscopy of this system allowed correlation of cell morphology and extracellular matrix (ECM) properties with substrate properties. Force spectroscopy analysis of cellular 'footprints' indicated that the cells secrete large polymers (e.g., 3.5 {mu}m contour length and estimated MW 1000 kDa) onto their substrate surface. Although definitive identification of the polymers has not yet been achieved, fluorescent-labeled antibody staining has specified the presence of ECM proteins such as collagen and laminin in the cellular footprints. The stretched polymers appear to be much larger than single molecules of known ECM components, such as collagen and heparan sulfate proteoglycan, thus suggesting that the cells create larger entangled, macromolecular structures from smaller components. There is strong evidence which suggests that the composition of the ECM is greatly influenced by the hydrophobicity of the substrate surface, with preferential production and/or adsorption of larger macromolecules on hydrophobic surfaces.

  5. Hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    2009-01-01

    Except in the very early stage of the development of X-ray photoemission spectroscopy (XPS) by Kai Siegbahn and his coworkers, the excitation sources for XPS studies have predominantly been the Al Kα and Mg Kα emission lines. The advent of synchrotron radiation sources opened up the possibility of tuning the excitation photon energy with much higher throughputs for photoemission spectroscopy, however the excitation energy range was limited to the vacuum ultra violet and soft X-ray regions. Over the past 5-6 years, bulk-sensitive hard X-ray photoemission spectroscopy using high-brilliance high-flux X-rays from third generation synchrotron radiation facilities has been developed. This article reviews the history of HXPES covering the period from Kai Siegbahn and his coworkers' pioneering works to the present, and describes the fundamental aspects, instrumentation, applications to solid state physics, applied physics, materials science, and industrial applications of HXPES. Finally, several challenging new developments which have been conducted at SPring-8 by collaborations among several groups are introduced.

  6. Spectroscopy of mobility-selected biomolecular ions.

    Science.gov (United States)

    Papadopoulos, Georgios; Svendsen, Annette; Boyarkin, Oleg V; Rizzo, Thomas R

    2011-01-01

    We describe here experiments that combine differential ion mobility, which separates conformational isomers of biomolecular ions, with electronic spectroscopy in a cold, radio-frequency ion trap. Although the low temperature attainable in a cold ion trap greatly simplifies the electronic spectra of large molecules, conformational heterogeneity can still be a significant source of congestion, complicating spectroscopic analysis. We demonstrate here that using differential ion mobility to separate gas-phase peptide conformers before injecting them into a cold ion trap allows one to decompose a dense spectrum into contributions from different conformational families. In the inverse sense, cold ion spectroscopy can be used as a conformation-specific detector for ion mobility, allowing one to separate an unresolved peak into contributions from different conformational families. The doubly protonated peptide bradykinin serves as a good test case for the marriage of these two techniques as it exhibits a considerable degree of conformational heterogeneity that results in a highly congested electronic spectrum. Our results demonstrate the feasibility and advantages of directly coupling ion mobility with spectroscopy and provide a diagnostic of conformational isomerization of this peptide after being produced in the gas phase by electrospray.

  7. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    Science.gov (United States)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  8. Spectroscopy techniques for human disease diagnosis

    Science.gov (United States)

    Navas-Moreno, Maria

    2011-12-01

    Modern medicine would benefit from the pursuit of new, more specific and easier to implement diagnosis tools. In recent years, Raman scattering, surface-enhanced Raman scattering and fluorescence spectroscopy have proven to be successful diagnostic techniques for a wide range of diseases including atherosclerosis, kidney stones, bone diseases, diabetes, and a wide collection of neoplasms. Optical spectroscopy has several advantages over more traditional diagnostic methods (i.e., histopathology, quantitative PCR, etc.) such as faster data analysis, nonspecific sample preparation, nonspecific labels/reagents/antibodies usage requirements, and immediate on-site implementation. In the present work, label-free in vitro fluorescence and surface enhanced Raman scattering (SERS) spectroscopy have been used to differentiate between blood cells of patients affected with myeloproliferative neoplasms (MPN) and those of healthy subjects. The SERS technique has also been applied to hemoglobin variants as well as to serum obtained from patients affected with chronic heart failure who positively or negatively responded to the seasonal influenza vaccine. We found that spectral ratios of the background fluorescence intensity that accompanies the SERS spectra of granulocytes serve as excellent markers for the presence of MPNs. In addition, we also found expression dysregulation of two hypoxia induced factor regulated genes, which correlates with our results obtained by SERS spectroscopy assay in MPN patients and supports the presence of the Warburg effect in MPNs. We hypothesize that SERS measures metabolic change in granulocytes through two possible mechanisms: (i) Changes in dielectric properties of the environment surrounding the silver-cell interface; and (ii) changes in flavin adenine dinucleotide concentrations, which in turn changes the relative contribution of the autofluorescence to the emission spectrum. These hypotheses are supported by SERS measurement of 2-deoxy

  9. General survey of recent development of photoemission spectroscopy

    International Nuclear Information System (INIS)

    Edamoto, Kazuyuki

    1994-01-01

    On the present state of the recent development of photoemission spectroscopy, by limiting the topics to the development of the spectroscopy proper and the development contributing to the progress of surface science, general explanation is made. As to the development that enabled to heighten spectrum resolution, surface core-level shift and the precise measurement of the Fermi surface of surface level are described, showing the example. Also a number of the developments which enabled the utilization of the light source, of which the wavelength is variable, and which was brought about by synchrotron radiation beam, were mentioned. Besides, spin polarized photoelectron spectroscopy, the development of photoelectron microscope and others are outlined. Photoemission spectroscopy is very useful for analyzing the electron condition of solid surfaces. There are two factors in heightening core level spectrum resolution, namely, heightening the resolution of an electron energy analyzer proper and the utilization of synchrotron radiation as a light source. High resolution core-level spectra, angle-resolved photoemission spectroscopy, and as the light source of which the wavelength is variable, resonance photoemission spectroscopy, constant initial state spectroscopy and soft X-ray photoemission spectroscopy, and as the recently developed spectroscopy, spin polarized photoemission spectroscopy, Auger photoelectron coincidence spectroscopy and photoelectron microscope are explained. (K.I.)

  10. Proceedings of the DAE-BRNS theme meeting on recent trends in spectroscopy: book of abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The meeting aimed at providing the latest developments in various spectroscopic techniques to the research students and practicing scientists. The proceedings of the symposium covered a wide range of topics of infrared and Raman spectroscopy, time resolved spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, rotational and vibrational spectroscopy, fluorescence spectroscopy, cavity ring down spectroscopy, laser based spectroscopic techniques and electrochemical spectroscopy. Papers relevant to INIS are indexed separately

  11. Issues in light meson spectroscopy: The case for meson spectroscopy at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, S. [Carleton Univ., Ottawa (Canada)

    1994-04-01

    The author reviews some outstanding issues in meson spectroscopy. The most important qualitative issue is whether hadrons with explicit gluonic degrees of freedom exist. To answer this question requires a much better understanding of conventional q{bar q} mesons. The author therefore begins by examining the status of conventional meson spectroscopy and how the situation can be improved. The expected properties of gluonic excitations are discussed with particular emphasis on hybrids to give guidance to experimental searches. Multiquark systems are commented upon as they are likely to be important in the mass region under study and will have to be understood better. In the final section the author discusses the opportunities that CEBAF can offer for the study of meson spectroscopy.

  12. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system

    OpenAIRE

    Johansson, Johannes D.; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-01-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in hei...

  13. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  14. Estimating radiological background using imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

    2014-06-13

    Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

  15. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  16. Ultraviolet Photodissociation Action Spectroscopy of Protonated Azabenzenes

    Science.gov (United States)

    Hansen, Christopher S.; Blanksby, Stephen J.; Bieske, Evan; Reimers, Jeffrey R.; Trevitt, Adam J.

    2014-06-01

    Azabenzenes are derivatives of benzene containing between one and six nitrogen atoms. Protonated azabenzenes are the fundamental building blocks of many biomolecules, charge-transfer dyes, ionic liquids and fluorescent tags. However, despite their ubiquity, there exists limited spectroscopic data that reveals the structure, behaviour and stability of these systems in their excited states. For the case of pyridinium (C_5H_5N-H^+), the simplest azabenzene, the electronic spectroscopy is complicated by short excited state lifetimes, efficient non-radiative deactivation methods and limited fluorescence. Ultraviolet (UV) photodissociation (PD) action spectroscopy provides new insight into the spectroscopic details, excited state behaviour and photodissociation processes of a series of protonated azabenzenes including pyridinium, diazeniums and their substituted derivatives. The room-temperature UV PD action spectra, often exhibiting vibronic detail,^b will be presented alongside PD mass spectra and the kinetic data from structurally-diagnostic ion-molecule reaction kinetics. Analysis of the spectra, with the aid of quantum chemical calculations, reveal that many azabenzenes prefer a non-planar excited state geometry reminiscent of the structures encountered in 'channel 3'-like deactivation of aromatics. The normal modes active in this isomerization contribute largely to the spectroscopy of the N-pyridinium ion as they build upon totally-symmetric vibronic transitions leading to repeating sets of closely-spaced spectral features. Hansen, C.S. et al.; J. Am. Soc. Mass Spectrom. 24:932-940 (2013) Hansen, C.S. et al.; J. Phys. Chem. A 117:10839-10846 (2013)

  17. Ultrafast Nonlinear Spectroscopy of Red Fluorescent Proteins

    Science.gov (United States)

    Konold, Patrick Eugene

    Red-emitting homologues (RFPs) of the native Green Fluorescent Protein (GFP) with emission wavelengths beyond 650 nm are desirable probes for in vivo imaging experiments. They offer the potential for deeper tissue penetration and lower background scatter given a cleaner spectral window. However, bioimaging applications are hindered by poor photophysics ( e.g. low fluorescence quantum yield, high photobleaching), which limits experimental resolution and represents a significant obstacle towards utilization for low copy-number, long-duration imaging applications. In this thesis, a variety of femtosecond nonlinear electronic spectroscopies were employed jointly with site-directed mutagenesis to investigate the photophysical properties of RFPs. In one study, the molecular mechanism of red emission was pursued in two notable RFPs, mPlum and TagRFP675. Solvation dynamics observed with time-resolved transient grating spectroscopy were interpreted with the aid of molecular dynamics simulations to indicate that their red-emission is correlated with the ability of specific chromophore-sidechain hydrogen-bonding interactions to interconvert between direct and water-mediated states. In a second set of studies, two-dimensional double quantum coherence spectroscopy was used to probe the electronic transitions of mPlum. It was discovered that it displayed a response distinctly different from an organic dye in bulk solvent. Modeling indicate of these spectra indicate the spectral features may be attributed to the existence of multiple high-lying (n>1) excited states. The results provide new insight into the electronic structure of these widely used fluorescent probes.

  18. Visible Light Spectroscopy of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  19. Implementation of the Electron conversion Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Hernandez, Torres, D.; Noriega Scull, C.

    1996-01-01

    In the present work has been exposed the principles of the Conversion Moessbauer Electron Spectroscopy and its possibilities of application. Is also described the operation of the parallel plate avalanche detector made at the CEADEN starting from modifications done to the Gancedo's model and is exposed examples of the use of this detector in the characterization of corroded surfaces, with chemical cleaning and in samples of welded joints. The experiences obtained of this work were extended to the National Polytechnic Institute of Mexico where a similar detector, made in our center, was installed there

  20. Polarized light in optics and spectroscopy

    CERN Document Server

    Kliger, David S

    1990-01-01

    This comprehensive introduction to polarized light provides students and researchers with the background and the specialized knowledge needed to fully utilize polarized light. It provides a basic introduction to the interaction of light with matter for those unfamiliar with photochemistry and photophysics. An in-depth discussion of polarizing optics is also given. Different analytical techniques are introduced and compared and introductions to the use of polarized light in various forms of spectroscopy are provided.Key Features* Starts at a basic level and develops tools for resear

  1. Iron oxides characterization by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Basurto Sanchez, R.

    1993-01-01

    In this work rust development on low carbon wire surface after the conformation process at different temperatures was studied by Moessbauer spectroscopy. The characterization was made by determining the following spectral parameters; 1) Quadrupole splitting, 2) Isomer shift, and 3) Magnetic splitting. The area quantification determined the percentage amount of three different iron oxides. These iron oxides were: a) Wustite (Fe O), b) Hematite (Fe 2 O 3 ), and c) Magnetite (Fe 3 O 4 ) which were present in the rust studied. With the results it was possible to establish the best temperature to favor the development of each of these iron oxides. (Author)

  2. Hadron spectroscopy in double pomeron exchange experiments

    Science.gov (United States)

    Albrow, Michael G.

    2017-03-01

    Central exclusive production in hadron-hadron collisions at high energies, for example p + p → p + X + p, where the + represents a large rapidity gap, is a valuable process for spectroscopy of mesonic states X. At collider energies the gaps can be large enough to be dominated by pomeron exchange, and then the quantum numbers of the state X are restricted. Isoscalar JPC = 0++ and 2++ mesons are selected, and our understanding of these spectra is incomplete. In particular, soft pomeron exchanges favor gluon-dominated states such as glueballs, which are expected in QCD but not yet well established. I will review some published data.

  3. Fourier transform infrared spectroscopy of peptides.

    Science.gov (United States)

    Bakshi, Kunal; Liyanage, Mangala R; Volkin, David B; Middaugh, C Russell

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopy provides data that are widely used for secondary structure characterization of peptides. A wide array of available sampling methods permits structural analysis of peptides in diverse environments such as aqueous solution (including optically turbid media), powders, detergent micelles, and lipid bilayers. In some cases, side chain vibrations can also be resolved and used for tertiary structure and chemical analysis. Data from several low-resolution spectroscopic techniques, including FTIR, can be combined to generate an empirical phase diagram, an overall picture of peptide structure as a function of environmental conditions that can aid in the global interpretation of large amounts of spectroscopic data.

  4. Rapid identification of staphylococci by Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rebrošová, K.; Šiler, Martin; Samek, Ota; Růžička, F.; Bernatová, Silvie; Holá, V.; Ježek, Jan; Zemánek, Pavel; Sokolová, J.; Petráš, P.

    2017-01-01

    Roč. 7, NOV (2017), s. 1-8, č. článku 14846. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : coagulase-negative staphylococci * Raman spectroscopy * rapid identification Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016

  5. Backscattering Moessbauer spectroscopy of Martian dust

    International Nuclear Information System (INIS)

    Bertelsen, P.; Madsen, M. B.; Binau, C. S.; Goetz, W.; Gunnlaugsson, H. P.; Hviid, S. F.; Kinch, K. M.; Klingelhoefer, G.; Leer, K.; Madsen, D. E.; Merrison, J.; Olsen, M.; Squyres, S. W.

    2005-01-01

    We report on the determination of the mineralogy of the atmospherically suspended Martian dust particles using backscattering 57 Fe Moessbauer spectroscopy on dust accumulated onto the magnets onboard the Mars Exploration Rovers. The spectra can be interpreted in terms of minerals of igneous origin, and shows only limited, if any, amounts of secondary minerals that may have formed in the presence of liquid water. These findings suggest that the dust has formed in a dry environment over long time in the history of the planet.

  6. Spectroscopie de vibration infrarouge du silicium amorphe ...

    African Journals Online (AJOL)

    ... évaporé (a-Si:H) préparées dans un bâti ultra-vide (UHV). L'hydrogène atomique est obtenu à l'aide d'un plasma dans un tube à décharge dirigé vers le porte-substrat. Les fréquences de vibrations et la nature des liaisons Si-H ont été analysées à partir des mesures de spectroscopie infrarouge à transformée de Fourier.

  7. Thermal luminescence spectroscopy chemical imaging sensor.

    Science.gov (United States)

    Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C

    2012-10-01

    The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.

  8. Proton magnetic resonance spectroscopy in schizophrenia

    International Nuclear Information System (INIS)

    Bertolino, Alessandro; Weinberger, Daniel R.

    1999-01-01

    Proton magnetic resonance spectroscopy (MRS) has become an important tool to study in vivo certain biochemical aspects of brain disorders. In the last decade this technique has been applied to the in vivo investigation of pathophysiological aspects of psychiatric disorders, extending knowledge of the related brain alterations. This review will focus on providing some background to clarify technical and biochemical issues and it will describe the studies that have been performed in schizophrenia. The results will be framed in a more general context to highlight what we have learned and what remains to be understood from the application of this technique to schizophrenia

  9. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy.

    Science.gov (United States)

    Tenne, D A; Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Katiyar, R S; Cantarero, A; Soukiassian, A; Vaithyanathan, V; Haeni, J H; Tian, W; Schlom, D G; Choi, K J; Kim, D M; Eom, C B; Sun, H P; Pan, X Q; Li, Y L; Chen, L Q; Jia, Q X; Nakhmanson, S M; Rabe, K M; Xi, X X

    2006-09-15

    We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature (Tc) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are not only ferroelectric (with Tc as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO3 layers adjacent to them. Tc was tuned by approximately 500 kelvin by varying the thicknesses of the BaTiO3 and SrTiO3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.

  10. Heavy hadron spectroscopy: A quark model perspective

    International Nuclear Information System (INIS)

    Vijande, J.; Valcarce, A.; Caramés, T.F.; Garcilazo, H.

    2013-01-01

    We present recent results of hadron spectroscopy and hadron–hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher order Fock space components in the hadron spectra and the connection of this extension with the hadron–hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory

  11. Spin noise spectroscopy in {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Boentgen, Tammo; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany); Riemann, Helge [Institut fuer Kristallzuechtung, Berlin (Germany)

    2009-07-01

    We employ spin noise spectroscopy to examine the intrinsic spin lifetime of electrons bound to phosphorus donors in isotopically pure {sup 28}Si at low temperatures. The up to now reported spin lifetime of these electrons are already extremely long but no measurement of the intrinsic lifetime has been undertaken yet. In addition we will measure the ultra narrow exciton transition lines in {sup 28}Si. These transition lines scale with the isotopical purity of the sample and should be according to calculations as small as 100 neV in the studied silicon.

  12. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  13. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  14. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  15. Method for conducting nonlinear electrochemical impedance spectroscopy

    Science.gov (United States)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  16. Gamma ray spectroscopy monitoring method and apparatus

    Science.gov (United States)

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  17. Chemical recognition with broadband THz spectroscopy

    DEFF Research Database (Denmark)

    Fischer, Bernd M.; Helm, Hanspeter; Jepsen, Peter Uhd

    2004-01-01

    contains unique fingerprints of a very large number of crystalline materials, including explosives, illicit drugs as well as most other chemicals in powder form. Since many packaging materials are transparent to THz radiation this fundamental property of crystalline compounds allows remote (contact...... with broadband THz spectroscopy. Amorphous systems of great biotechnical importance include DNA and proteins, both in aqueous solution and as dried matter. We will discuss methods for THz science and technology to attack the very complex problems involved in the extraction of useful new information which may...

  18. Extending applicability of terahertz spectroscopy for biosensing

    Science.gov (United States)

    Parthasarathy, Ramakrishnan

    Terahertz (THz) vibrational resonance spectroscopy has recently emerged as a promising technique for fingerprinting biological molecules. Absorption spectra in this frequency range (0.1-10 THz) reflect molecular internal vibrations involving the weakest hydrogen bonds and/or non-bonded interactions, which are species specific. Of prime importance is improving detection sensitivity of molecules with low absorption characteristics in the THz gap. Also of importance is the characterization of biological molecules in the THz gap (10-25 cm-1) by physical parameters (refractive index and absorption coefficient) rather than sample dependent parameters (transmission, reflection) and extending spectroscopy to the low THz range where remote sensing is most viable. To address the sensitivity issue, it is shown that periodic arrays of rectangular slots with subwavelength width provide for local electromagnetic field enhancements due to edge effects in the low frequency range of interest, 10-25 cm-1 (300-750 GHz). Periodic structures of Au, doped Si and InSb were studied. InSb is confirmed to offer the highest results with the local power enhancements on the order of 1100 at frequency 14 cm -1. InSb and Si have large skin depths in the frequency range of interest and so the analysis of their structures was done through the Fourier expansion method of field diffracted from gratings. Au however has small skin depths at these frequencies compared to the thickness. Surface impedance boundary conditions were employed to model the Au structure, for which the Fourier expansion method was unsuitable owing to the huge magnitude of Au permittivity. The applications possibly include development of novel bio-sensors, with the strongly enhanced local electromagnetic fields leading to increased detection sensitivity, and monitoring biophysical processes such as DNA denaturation. Transmission and reflection data from parallel, independent experiments are utilized in the Interference

  19. In vivo NMR spectroscopy of the liver

    International Nuclear Information System (INIS)

    Jehenson, P.; Cuenod, C.A.; Syrota, A.

    1989-01-01

    The application of in vivo MR spectroscopy to the study of the liver is currently an expanding field of research. Owing to technical difficulties, the results obtained thus far were mainly those of animal observations. Several nuclei have been considered: hydrogen, phosphorus, carbon or fluorine. This non-traumatic method allows following and quantifying the various metabolic pathways, especially during hepatic diseases. The major metabolic pathways, i.e. neoglycogenesis, glycogenolysis, Krebs' cycle, etc., are studied, as well as their alterations during diseases such as ischemia, diabetes or alcoholism. The development of this promising technique requires the cooperation of various clinical and fundamental disciplines [fr

  20. In vivo P-31 MR diffusion spectroscopy

    International Nuclear Information System (INIS)

    Moonen, C.T.W.; Vanzijl, P.C.M.; LeBihan, D.

    1988-01-01

    This paper discusses the Stejskal-Tanner diffusion spin-echo sequence modified for the in vivo diffusion spectroscopy. The apparent diffusion constant D α was measured as a function of the diffusion time. Contrary to the results in phantom samples, a strong dependency of the D α for phosphocreatine (PCr) in the rat muscle tissue on diffusion time was observed, clearly indicating restricted diffusion effects and allowing an approximation of the size of the restricted volume (8-13 μm). This size fits well with the known dimensions of a normal muscle cell

  1. Hadron Spectroscopy in Double Pomeron Exchange Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael [Fermilab

    2016-11-15

    Central exclusive production in hadron-hadron collisions at high energies, for example p + p -> p + X + p, where the "+" represents a large rapidity gap, is a valuable process for spectroscopy of mesonic states X. At collider energies the gaps can be large enough to be dominated by pomeron exchange, and then the quantum numbers of the state X are restricted. Isoscalar JPC = 0++ and 2++ mesons are selected, and our understanding of these spectra is incomplete. In particular, soft pomeron exchanges favor gluon-dominated states such as glueballs, which are expected in QCD but not yet well established. I will review some published data.

  2. The spectroscopy and chemistry of muonium

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1983-12-01

    The spectroscopy and chemistry of muonium is divided into two parts. Part I deals with muonium and the Breit-Rabi diagram, and explains the significance of muonium in atomic, molecular and solid state physics, as well as in chemistry. The identification of atomic muonium is described with reference to the Breit-Rabi diagram. Part II concerns muonic chemistry in gases and liquids, and deals with the physical processes by which implanted muons become thermalised in liquid and gaseous media. (U.K.)

  3. Infrared absorption spectroscopy with color center lasers

    Science.gov (United States)

    Carrick, P. G.; Curl, R. F.; Tittel, F. K.; Koester, E.; Pfeiffer, J.; Kasper, J. V. V.

    Results are presented of the application of a computer controlled color center laser combined with Stark modulation and magnetic rotation effect modulation for obtaining high resolution spectra of molecular species. The lowest electronic transition of the C2H free radical, of interest in astrophysics, is observed near 3772/cm and the high resolution spectra of methanol and hydroxylamine in the OH stretching region are obtained. It is concluded that color center laser absorption spectroscopy combined with sensitivy enhancement through modulation techniques is a sensitive and versatile means of determining the spectra of free radicals and transient molecules in the infared region.

  4. Self-adapted sliding scale spectroscopy ADC

    International Nuclear Information System (INIS)

    Xu Qichun; Wang Jingjin

    1992-01-01

    The traditional sliding scale technique causes a disabled range that is equal to the sliding length, thus reduces the analysis range of a MCA. A method for reduce ADC's DNL, which is called self-adapted sliding scale method, has been designed and tested. With this method, the disabled range caused by a traditional sliding scale method can be eliminated by a random trial scale and there is no need of an additional amplitude discriminator with swing threshold. A special trial-and-correct logic is presented. The tested DNL of the spectroscopy ADC described here is less than 0.5%

  5. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  6. Multiheterodyne spectroscopy using interband cascade lasers

    Science.gov (United States)

    Sterczewski, Lukasz A.; Westberg, Jonas; Patrick, Charles Link; Kim, Chul Soo; Kim, Mijin; Canedy, Chadwick L.; Bewley, William W.; Merritt, Charles D.; Vurgaftman, Igor; Meyer, Jerry R.; Wysocki, Gerard

    2018-01-01

    While midinfrared radiation can be used to identify and quantify numerous chemical species, contemporary broadband midinfrared spectroscopic systems are often hindered by large footprints, moving parts, and high power consumption. In this work, we demonstrate multiheterodyne spectroscopy (MHS) using interband cascade lasers, which combines broadband spectral coverage with high spectral resolution and energy-efficient operation. The lasers generate up to 30 mW of continuous-wave optical power while consuming portable and high-resolution solid-state spectroscopic chemical sensors operating in the midinfrared.

  7. Low Temperature Trapping: from Reactions to Spectroscopy

    Science.gov (United States)

    Schlemmer, S.; Asvany, O.; Brunken, S.

    2013-06-01

    The kinetics of ion - molecule reactions are investigated in higher-order multipole traps by observation of the temporal evolution of mass selected parent ions in the presence of a neutral reaction partner. Rate coeffients for fast reactions (proceeding at collision rate) and very slow reactions (taking millions of collisions) are determined over a wide range of temperatures. Endothermic or hindered reactions can be promoted by excitation of the ion via absorption of a photon. Scanning the photon energy while detecting the number of product ions establishes an action spectroscopy method which we developed over the last 10-15 years and termed LIR: laser or light induced reactions. The main advantages of LIR are mass selection of the parent ion and low temperature conditions in the trap. Long storage times in combination with a near unity detection efficiency make LIR one of the most sensitive spectroscopy methods. The status quo of LIR will be discussed on selected examples. Recent measurements are concerned with ro-vibrational spectra of CH_2D^+ and CH_5^+ at highest resolution using cw OPO radiation. In the particular case of CH_5^+, the lines in the mid IR have been measured at a nominal temperature of 10 K and a frequency comb has been used for absolute calibration. Line positions can be determined to an accuracy which shall enable us in the future to obtain rotational spectra in a THz-IR double resonance approach. We tested the feasibility of this two photon method recently on H_2D^+. S. Schlemmer, T. Kuhn, E. Lescop, and D. Gerlich, Laser excited N_2^+ in a 22-Pole Trap: Experimental Studies of Rotational Relaxation Processes, Int. J. Mass Spectrometry and Ion Processes, 185-187, 589-602, (1999), S.D. Ivanov, O. Asvany, A. Witt, E. Hugo, G. Mathias, B. Redlich, D. Marx and S. Schlemmer, Quantum-induced symmetry breaking explains infrared spectra of CH_5^+ isotopologues, Nature Chemistry, 2, 298-302 (2010) S. Gaertner, J. Krieg, A. Klemann, O. Asvany and S

  8. Nuclear Forensics using Gamma-ray Spectroscopy

    Directory of Open Access Journals (Sweden)

    Norman E. B.

    2016-01-01

    Full Text Available Much of George Dracoulis’s research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  9. Electrochemical impedance spectroscopy of polynucleotide adsorption

    Czech Academy of Sciences Publication Activity Database

    Strašák, Luděk; Dvořák, Jakub; Hasoň, Stanislav; Vetterl, Vladimír

    2002-01-01

    Roč. 56, 1/2 (2002), s. 37-41 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004002; GA AV ČR IBS5004107; GA ČR GV204/97/K084 Grant - others:GA FRVŠ(XC) G40583; GA FRVŠ(XC) F40564 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemical impedance spectroscopy * DNA adsorption * poly A adsorption Subject RIV: BO - Biophysics Impact factor: 1.463, year: 2002

  10. Vibrational spectroscopy in diagnosis and screening

    CERN Document Server

    Severcan, F

    2012-01-01

    In recent years there has been a tremendous growth in the use of vibrational spectroscopic methods for diagnosis and screening. These applications range from diagnosis of disease states in humans, such as cancer, to rapid identification and screening of microorganisms. The growth in such types of studies has been possible thanks to advances in instrumentation and associated computational and mathematical tools for data processing and analysis. This volume of Advances in Biomedical Spectroscopy contains chapters from leading experts who discuss the latest advances in the application of Fourier

  11. Spectroscopy 101: A Practical Introduction to Spectroscopy and Analysis for Undergraduate Organic Chemistry Laboratories

    Science.gov (United States)

    Morrill, Lucas A.; Kammeyer, Jacquelin K.; Garg, Neil K.

    2017-01-01

    An undergraduate organic chemistry laboratory that provides an introduction to various spectroscopic techniques is reported. Whereas organic spectroscopy is most often learned and practiced in the context of reaction analyses, this laboratory experiment allows students to become comfortable with [superscript 1]H NMR, [superscript 13]C NMR, and IR…

  12. Single Molecule Spectroscopy of Electron Transfer

    International Nuclear Information System (INIS)

    Holman, Michael; Zang, Ling; Liu, Ruchuan; Adams, David M.

    2009-01-01

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  13. On spectral averages in nuclear spectroscopy

    International Nuclear Information System (INIS)

    Verbaarschot, J.J.M.

    1982-01-01

    In nuclear spectroscopy one tries to obtain a description of systems of bound nucleons. By means of theoretical models one attemps to reproduce the eigenenergies and the corresponding wave functions which then enable the computation of, for example, the electromagnetic moments and the transition amplitudes. Statistical spectroscopy can be used for studying nuclear systems in large model spaces. In this thesis, methods are developed and applied which enable the determination of quantities in a finite part of the Hilbert space, which is defined by specific quantum values. In the case of averages in a space defined by a partition of the nucleons over the single-particle orbits, the propagation coefficients reduce to Legendre interpolation polynomials. In chapter 1 these polynomials are derived with the help of a generating function and a generalization of Wick's theorem. One can then deduce the centroid and the variance of the eigenvalue distribution in a straightforward way. The results are used to calculate the systematic energy difference between states of even and odd parity for nuclei in the mass region A=10-40. In chapter 2 an efficient method for transforming fixed angular momentum projection traces into fixed angular momentum for the configuration space traces is developed. In chapter 3 it is shown that the secular behaviour can be represented by a Gaussian function of the energies. (Auth.)

  14. CMS Heavy Flavor spectroscopy and exotica

    CERN Document Server

    Pompili, Alexis

    2016-01-01

    In the last 13 years the discovered quarkonium-like states have renewed the interest in hadron spectroscopy and the LHC experiments are highly contributing to this field.Two relevant contributions by the CMS Collaboration to the exotic heavy flavour spectroscopy are discussed.The first study concerns the production of the $X(3872)$, either prompt or from beauty hadron decays. The cross-section ratio of the $X(3872)$ with respect to the $\\psi(2S)$ in the $J/\\psi \\pi \\pi$ decay channel and the fraction of $X(3872)$ coming from \\textit{B}-hadron decays are measured as a function of transverse momentum ($p_{T}$), covering unprecedentedly high values of $p_{T}$. Moreover the prompt $X(3872)$ cross section times branching fraction is extracted differentially in $p_{T}$, for the first time in central rapidity region, and compared to the theoretical predictions available. Finally the dipion invariant mass spectrum of the $J/\\psi \\pi \\pi$ system, in the $X(3872)$ decay, is also investigated.The second study concerns t...

  15. Applications of terahertz spectroscopy to pharmaceutical sciences.

    Science.gov (United States)

    Taday, Philip F

    2004-02-15

    The application of terahertz pulsed spectroscopy within the US Food and Drug Administration's (FDA's) recent process analytical technology (PAT) initiative is considered. As a case study the potency levels in paracetamol (4-acetamidophenol) and aspirin (acetylsalicylic acid) test tablets have been recovered from the terahertz absorption spectra using a multivariate partial-least-squares (PLS) calibration model. Root-mean-square errors of cross-validation (RMSECVs) of 2.85% and 3.90% were obtained for paracetamol and aspirin, respectively. Information about other excipients can also be obtained; for example, using the strong lactose absorption lines in the tablets, RMSECVs of 3.65% and 4.30% could be recovered from the paracetamol and aspirin samples, respectively. As active ingredients may also change their solid-state form during formulation processing or storage and as this can adversely affect the final dosage performance, monitoring of pharmaceutical ingredients is essential for a 'right-first-time' philosophy within the industry. Terahertz pulse spectroscopy is a high-throughput technique with many areas of potential exploitation in the pharmaceutical industry; these issues are discussed in this paper.

  16. THz Spectroscopy and Spectroscopic Database for Astrophysics

    Science.gov (United States)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    Molecule specific astronomical observations rely on precisely determined laboratory molecular data for interpretation. The Herschel Heterodyne Instrument for Far Infrared, a suite of SOFIA instruments, and ALMA are each well placed to expose the limitations of available molecular physics data and spectral line catalogs. Herschel and SOFIA will observe in high spectral resolution over the entire far infrared range. Accurate data to previously unimagined frequencies including infrared ro-vibrational and ro-torsional bands will be required for interpretation of the observations. Planned ALMA observations with a very small beam will reveal weaker emission features requiring accurate knowledge of higher quantum numbers and additional vibrational states. Historically, laboratory spectroscopy has been at the front of submillimeter technology development, but now astronomical receivers have an enormous capability advantage. Additionally, rotational spectroscopy is a relatively mature field attracting little interest from students and funding agencies. Molecular data base maintenance is tedious and difficult to justify as research. This severely limits funding opportunities even though data bases require the same level of expertise as research. We report the application of some relatively new receiver technology into a simple solid state THz spectrometer that has the performance required to collect the laboratory data required by astronomical observations. Further detail on the lack of preparation for upcoming missions by the JPL spectral line catalog is given.

  17. Precision Saturated Absorption Spectroscopy of H3+

    Science.gov (United States)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  18. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  19. Electrochemical impedance spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Tiddia, Maria V. [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d' Armi, 09126 Cagliari (Italy)

    2014-04-01

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm{sup 2}, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed.

  20. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.