WorldWideScience

Sample records for beam wobbling function

  1. Spiral wobbling beam illumination uniformity in HIF fuel target implosion

    Directory of Open Access Journals (Sweden)

    Kawata S.

    2013-11-01

    Full Text Available A few % wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF throughout the heavy ion beam (HIB driver pulse by a newly introduced spiraling beam axis motion in the first two rotations. The wobbling HIB illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may produce a time-dependent implosion acceleration, which reduces the Rayleigh-Taylor (R-T growth [Laser Part. Beams 11, 757 (1993, Nuclear Inst. Methods in Phys. Res. A 606, 152 (2009, Phys. Plasmas 19, 024503 (2012] and the implosion nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100 MHz ∼ 1 GHz [Phys. Rev. Lett. 104, 254801 (2010]. Three-dimensional HIBs illumination computations present that the few % wobbling HIBs illumination nonuniformity oscillates with the same wobbling HIBs frequency.

  2. Statistical property of the Chandler wobble excitation function

    Institute of Scientific and Technical Information of China (English)

    LIAO Dechun; LIAO Xinhao; ZHOU Yonghong

    2004-01-01

    The Chandler wobble excitation function (hereinafter, geodetic excitation) is obtained by removing the seasonal components and low frequency components with periods from several years to decades from the polar motion excitation function derived from SPACE2002 series. The geophysical excitation functions of the individual AAM, OAM, HAM, and two combined excitations of the AAM + OAM and AAM + OAM + HAM at 1d, 5d, 1m and 3m intervals are statistically tested for the hypothesis of the normality, and then tested for the hypotheses of identical distribution between the geodetic and the geophysical excitations. The results show that, among the total 16 components of the two combined excitation functions at 1d, 5d, 1m and 3m intervals,most follow random normal processes, the hypotheses of identical distribution between the geodetic excitation and the two combined excitation are acceptable, while most of the hypotheses of identical distribution between the geodetic excitation and the individual excitations of the AAM, OAM, and HAM are rejectable.These results elucidate from a new point of view, that the excitations from AAM, OAM, and HAM are the main sources of the Chandler wobble, and the Chandler wobble excitation function is of a random normal property.

  3. Transverse wobbling

    CERN Document Server

    Frauendorf, S

    2013-01-01

    The wobbling motion of a triaxial rotor coupled to a high-j quasiparticle is treated semiclassically. Longitudinal and transverse coupling regimes can be distinguished depending on, respectively whether the quasiparticle a.m. is oriented parallel or perpendicular to the rotor axis with the largest MoI. Simple analytical expressions for the wobbling frequency and the electromagnetic E2 and M1 transition probabilites are derived assuming rigid alignment of the quasiparticle with one of the rotor axes and harmonic oscillations (HFA). Transverse wobbling is characterized by a decrease of the wobbling frequency with increasing a.m.. Two examples for transverse wobbling, $^{163}$Lu and $^{135}$Pr, are studied in the framework of the full triaxial particle-rotor model and the HFA. The signature of transverse wobbling, decreasing wobbling frequency and enhanced E2 inter-band transitions, is found in agreement with experiment.

  4. Longitudinal Wobbling in $^{133}$La

    CERN Document Server

    Biswas, S; Garg, U; Bhat, G H; Frauendorf, S; Li, W; Sheikh, J A; Sethi, J; Saha, S; Singh, Purnima; Choudhury, D; Matta, J T; Ayangeakaa, A D; Dar, W >; Singh, V; Sihotra, S

    2016-01-01

    Excited states of $^{133}$La have been investigated to search for the wobbling excitation mode in the low-spin regime. Wobbling bands with $n_\\omega$ = 0 and 1 are identified along with the interconnecting $\\Delta I$ = 1, $E2$ transitions, which are regarded as fingerprints of the wobbling motion. An increase in wobbling frequency %of the $n_\\omega$ = 1 band with spin implies longitudinal wobbling for $^{133}$La, in contrast with the case of transverse wobbling observed in $^{135}$Pr. This is the first observation of a longitudinal wobbling band in nuclei. The experimental observations are accounted for by calculations using the quasiparticle triaxial rotor with harmonic frozen approximation and the triaxial projected shell model approaches, which attribute the appearance of longitudinal wobbling to the early alignment of an h$_{11/2}$ neutron pair.

  5. Transverse Wobbling in $^{135}$Pr

    CERN Document Server

    Matta, J T; Li, W; Frauendorf, S; Ayangeakaa, A D; Patel, D; Schlax, K W; Palit, R; Saha, S; Sethi, J; Trivedi, T; Ghugre, S S; Raut, R; Sinha, A K; Janssens, R V F; Zhu, S; Carpenter, M P; Lauritsen, T; Seweryniak, D; Chiara, C J; Kondev, F G; Hartley, D J; Petrache, C M; Mukhopadhyay, S; Lakshmi, D Vijaya; Raju, M Kumar; Rao, P V Madhusudhana; Tandel, S K; Ray, S; Dönau, F

    2015-01-01

    A pair of transverse wobbling bands has been observed in the nucleus $^{135}$Pr. The wobbling is characterized by $\\Delta I$ =1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the Tilted Axis Cranking (TAC) model and the Quasiparticle Triaxial Rotor (QTR) Model.

  6. Measuring and correcting wobble in large-scale transmission radiography

    CERN Document Server

    Rogers, Thomas W; Morton, Edward J; Griffin, Lewis D

    2016-01-01

    Large-scale transmission radiography scanners are used to image vehicles and cargo containers. Acquired images are inspected for threats by a human operator or a computer algorithm. To make accurate detections, it is important that image values are precise. However, due to the scale of such systems, they can be mechanically unstable, causing the imaging array to wobble during a scan. This leads to an effective loss of precision in the captured image. We consider the measurement of wobble and amelioration of the consequent loss of image precision. Following our previous work, we use Beam Position Detectors (BPDs) to measure the cross-sectional profile of the X-ray beam, allowing for estimation, and thus correction of wobble. We propose: (i) a model of image formation with a wobbling detector array; (ii) a method of wobble correction derived from this model; (iii) methods for calibrating sensor sensitivities and relative offsets; (iv) a Random Regression Forest based method for instantaneous estimation of detec...

  7. Prediction of the Chandler wobble

    Science.gov (United States)

    Zotov, L.; Bizouard, C.

    2015-08-01

    Chandler wobble amplitude have been decreasing in 2010s as in 1930s. We try to predict its future behaviour through prediction of its complex envelope. The excitation of the Chandler wobble (ChW) reconstructed by Panteleev's filter was also analized. The equation for the complex envelope propagation through the Euler-Liouville equation was derived. Similarities with the climate change characteristics are discussed.

  8. Beam shifts and distribution functions

    CERN Document Server

    Aiello, Andrea

    2011-01-01

    When a beam of light is reflected by a smooth surface its behavior deviates from geometrical optics predictions. Such deviations are quantified by the so-called spatial and angular Goos-Haenchen (GH) and Imbert-Fedorov (IF) shifts of the reflected beam. These shifts depend upon the shape of the incident beam, its polarization and on the material composition of the reflecting surface. In this article we suggest a novel approach that allows one to unambiguously isolate the beam-shape dependent aspects of GH and IF shifts. We show that this separation is possible as a result of some universal features of shifted distribution functions which are presented and discussed.

  9. The wobbling-to-swimming transition of rotated helices

    CERN Document Server

    Man, Yi

    2014-01-01

    A growing body of work aims at designing and testing micron-scale synthetic swimmers. One method, inspired by the locomotion of flagellated bacteria, consists of applying a rotating magnetic field to a rigid, helically-shaped, propeller attached to a magnetic head. When the resulting device, termed an artificial bacteria flagellum, is aligned perpendicularly to the applied field, the helix rotates and the swimmer moves forward. Experimental investigation of artificial bacteria flagella shows that at low frequency of the applied field, the axis of the helix does not align perpendicularly to the field but wobbles around the helix, with an angle increasing as the inverse of the field frequency. By numerical computations and asymptotic analysis, we provide a theoretical explanation for this wobbling behavior. We numerically demonstrate the wobbling-to-swimming transition as a function of the helix geometry and the dimensionless Mason number which quantifies the ratio of viscous to magnetic torques. We then employ...

  10. A cycloidal wobble motor driven by shape memory alloy wires

    Science.gov (United States)

    Hwang, Donghyun; Higuchi, Toshiro

    2014-05-01

    A cycloidal wobble motor driven by shape memory alloy (SMA) wires is proposed. In realizing a motor driving mechanism well known as a type of reduction system, a cycloidal gear mechanism is utilized. It facilitates the achievement of bidirectional continuous rotation with high-torque capability, based on its high efficiency and high reduction ratio. The applied driving mechanism consists of a pin/roller based annular gear as a wobbler, a cycloidal disc as a rotor, and crankshafts to guide the eccentric wobbling motion. The wobbling motion of the annular gear is generated by sequential activation of radially phase-symmetrically placed SMA wires. Consequently the cycloidal disc is rotated by rolling contact based cycloidal gearing between the wobbler and the rotor. In designing the proposed motor, thermomechanical characterization of an SMA wire biased by extension springs is experimentally performed. Then, a simplified geometric model for the motor is devised to conduct theoretical assessment of design parametric effects on structural features and working performance. With consideration of the results from parametric analysis, a functional prototype three-phase motor is fabricated to carry out experimental verification of working performance. The observed experimental results including output torque, rotational speed, bidirectional positioning characteristic, etc obviously demonstrate the practical applicability and potentiality of the wobble motor.

  11. High Frequency Chandler Wobble Excitation

    Science.gov (United States)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    Variations of Earth rotation on sub-daily to secular timescales are caused by mass redistributions in the Earth system as a consequence of geophysical processes and gravitational influences. Forced oscillations of polar motion are superposed by free oscillations of the Earth, i.e. the Chandler wobble and the free core nutation. In order to study the interactions between externally induced polar motion and the Earth's free oscillations, a non-linear gyroscopic model has been developed. In most of the former investigations on polar motion, the Chandler wobble is introduced as a damped oscillation with predetermined frequency and amplitude. However, as the effect of rotational deformation is a backcoupling mechanism of polar motion on the Earth's rotational dynamics, both period and amplitude of the Chandler wobble are time-dependent when regarding additional excitations from, e.g., atmospheric or oceanic mass redistributions. The gyroscopic model is free of any explicit information concerning amplitude, phase, and period of free oscillations. The characteristics of the Earth's free oscillation is reproduced by the model from rheological and geometrical parameters and rotational deformation is taken into account. This enables to study the time variable Chandler oscillation when the gyro is forced with atmospheric and oceanic angular momentum from the global atmospheric ECHAM3-T21 general circulation model together with the ocean model for circulation and tides OMCT driven by ECHAM including surface pressure. Besides, mass redistributions in the Earth's body due to gravitational and loading deformations are regarded and external torques exerted by Moon and Sun are considered. The numerical results of the gyro are significantly related with the geodetically observed time series of polar motion published by the IERS. It is shown that the consistent excitation is capable to counteract the damping and thus to maintain the Chandler amplitude. Spectral analyses of the ECHAM

  12. On the maintenance of the Chandler wobble

    CERN Document Server

    Jenkins, Alejandro

    2015-01-01

    We offer a model of the Chandler wobble (the Earth's torqueless precession, with a period of about fourteen months) as a self-oscillation driven by positive feedback between the wobble and the centrifugal deformation of the portion of the Earth's mass contained in circulating fluids. The wobble may thus extract energy from geophysical circulations whose natural periods are unrelated to the wobble's. This can explain, more plausibly than previous models based on stochastic perturbations or forced resonance, what maintains the wobble against viscous dissipation. Variations in the magnitude and distribution of the circulations can turn off the positive feedback, accounting for the occasional extinctions, followed by random phase jumps, seen in the data. This model may have implications for broader questions about the relation between stochastic and deterministic dynamics in complex systems, and the statistical analysis thereof.

  13. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    OpenAIRE

    Kurosaki, T; Kawata, S.; Noguchi, K.; Koseki, S; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.; Barnard, J. J.; Logan, B. G.

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and s...

  14. Celebrating wobble decoding: Half a century and still much is new.

    Science.gov (United States)

    Agris, Paul F; Eruysal, Emily R; Narendran, Amithi; Väre, Ville Y P; Vangaveti, Sweta; Ranganathan, Srivathsan V

    2017-08-16

    A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.

  15. On Torsion of Functionally Graded Elastic Beams

    Directory of Open Access Journals (Sweden)

    Marina Diaco

    2016-01-01

    Full Text Available The evaluation of tangential stress fields in linearly elastic orthotropic Saint-Venant beams under torsion is based on the solution of Neumann and Dirichlet boundary value problems for the cross-sectional warping and for Prandtl stress function, respectively. A skillful solution method has been recently proposed by Ecsedi for a class of inhomogeneous beams with shear moduli defined in terms of Prandtl stress function of corresponding homogeneous beams. An alternative reasoning is followed in the present paper for orthotropic functionally graded beams with shear moduli tensors defined in terms of the stress function and of the elasticity of reference inhomogeneous beams. An innovative result of invariance on twist centre is also contributed. Examples of functionally graded elliptic cross sections of orthotropic beams are developed, detecting thus new benchmarks for computational mechanics.

  16. Functionally graded piezoelectric cantilever beam under load

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.F.; Chen, Y. [Beijing Jiaotong University, School of Civil Engineering, Beijing (China)

    2004-12-01

    In the present paper, the problem of a functionally graded piezoelectric cantilever beam subjected to different loadings is studied. The piezoelectric beam is characterized by continuously graded properties for one elastic parameter and the material density. A pair of stress and induction functions in the form of polynomials is proposed and determined. Based on these functions, a set of analytical solutions for the beam subjected to different loadings is obtained. As particular cases, series of solutions for some canonical problems can be directly obtained from the solutions of the present paper, such as for the problems of a piezoelectric cantilever beam with constant body force or without body forces, etc. (orig.)

  17. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  18. Chandler wobbles and the geomagnetic field

    Science.gov (United States)

    Flodmark, Stig; Davstad, K.

    1986-11-01

    Paleomagnetic motion of the magnetic pole is explained by angular momentum balance between the magnetic field, inner core, outer core, and mantle. The Chandler wobbles are explained as a nutation of the mantle and crust, caused by transfer of angular momentum between the core and mantle. Evidence is found for the atmosphere not to be fully responsible for the annual oscillation period of the Chandler wobbles. The main reasons for the principal periods of 12 and 14 months are found to be the flattenings of mantle and core, respectively. The fluid core rotates collectively, as a consequence of globally coworking long-distance electromagnetic coupling. Short-distance forces may locally displace fluid core material without essentially deforming its ellipsoid of inertia. The longitudinal polar drifts of the mantle and outer core are also explained by core-mantle interaction. The core is found to force the Chandler period on the mantle, and it has high wobbling energy in comparison with the mantle.

  19. Static Analysis of Functionally Graded Composite Beams

    Science.gov (United States)

    Das, S.; Sarangi, S. K.

    2016-09-01

    This paper presents a study of functionally graded (FG) composite beam. The FG material for the beam is considered to be composed of different layers of homogeneous material. The fiber volume fraction corresponding to each layer is calculated by considering its variation along the thickness direction (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and a beam composed of this FG material is modelled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG beam. The model developed is validated by comparing the results with those numerical results available in literature. Results are presented for simply supported and fixed boundary conditions for the FG beam. The stress distribution across the thickness of the FG composite beam has also been analyzed.

  20. Transverse wobbling motion in $^{134}$Ce and $^{136}$Nd

    CERN Document Server

    Petrache, C M

    2016-01-01

    The existence of one-phonon and possible two-phonon transverse wobbling bands is proposed for the first time in two even-even nuclei, $^{134}$Ce and $^{136}$Nd. The predominant $E2$ character of the $\\Delta I = 1$ transitions connecting the one-phonon wobbling band in $^{134}$Ce to the two-quasiparticle yrast band supports the wobbling interpretation. The extracted wobbling frequencies decrease with increasing spin, indicating the transverse character of the wobbling motion, with the angular momenta of the two quasiparticles aligned perpendicular to the axis of collective rotation. A candidate for two-phonon wobbling motion is also proposed in $^{136}$Nd. The wobbling frequencies calculated in the harmonic frozen approximation are in good agreement with the experimental ones for both the$^{134}$Ce and $^{136}$Nd nuclei.

  1. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA

    DEFF Research Database (Denmark)

    van den Born, E.; Vagbo, C. B.; Songe-Moller, L.

    2011-01-01

    RNA) methyltransferase domain, which generates the wobble nucleoside 5-methoxycarbonylmethyluridine (mcm(5)U) from its precursor 5-carboxymethyluridine (cm(5)U). In this study, we report that (R)- and (S)-5-methoxycarbonylhydroxymethyluridine (mchm(5)U), hydroxylated forms of mcm(5)U, are present in mammalian t...... into ( S)- mchm(5)U in tRNAUCCGly. These findings expand the function of the ALKBH oxygenases beyond nucleic acid repair and increase the current knowledge on mammalian wobble uridine modifications and their biogenesis....

  2. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    CERN Document Server

    Kurosaki, T; Noguchi, K; Koseki, S; Barada, D; Ma, Y Y; Ogoyski, A I; Barnard, J J; Logan, B G

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs illumination nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100MHz-1GHz. Three-dimensional HIBs illumination computations presented here show that the few percent wobbling HIBs illumination nonuniformity oscillates successfully with the same wobbling HIBs frequency.

  3. Process Parameter Optimization for Wobbling Laser Spot Welding of Ti6Al4V Alloy

    Science.gov (United States)

    Vakili-Farahani, F.; Lungershausen, J.; Wasmer, K.

    Laser beam welding (LBW) coupled with "wobble effect" (fast oscillation of the laser beam) is very promising for high precision micro-joining industry. For this process, similarly to the conventional LBW, the laser welding process parameters play a very significant role in determining the quality of a weld joint. Consequently, four process parameters (laser power, wobble frequency, number of rotations within a single laser pulse and focused position) and 5 responses (penetration, width, heat affected zone (HAZ), area of the fusion zone, area of HAZ and hardness) were investigated for spot welding of Ti6Al4V alloy (grade 5) using a design of experiments (DoE) approach. This paper presents experimental results showing the effects of variating the considered most important process parameters on the spot weld quality of Ti6Al4V alloy. Semi-empirical mathematical models were developed to correlate laser welding parameters to each of the measured weld responses. Adequacies of the models were then examined by various methods such as ANOVA. These models not only allows a better understanding of the wobble laser welding process and predict the process performance but also determines optimal process parameters. Therefore, optimal combination of process parameters was determined considering certain quality criteria set.

  4. Coexisting wobbling and quasiparticle excitations in the triaxial potential well of {sup 163}Lu

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.R.; Hagemann, G.B.; Herskind, B.; Sletten, G.; Wilson, J.N. [Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Hamamoto, I. [Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Department of Mathematical Physics, LTH, University of Lund, Lund (Sweden); Oedegaard, S.W. [Department of Physics, University of Oslo, PB 1048 Blindern, N-0316, Oslo (Norway); Spohr, K. [Department of Electronic Engineering and Physics, University of Paisley (United Kingdom); Huebel, H.; Bringel, P.; Neusser, A.; Schoenwasser, G.; Singh, A.K. [Helmholtz-Institut fuer Strahlen- und Kernphysik, University of Bonn, Nussallee 14-16, D-53115, Bonn (Germany); Ma, W.C.; Amro, H. [Mississippi State University, MS 39762, Mississippi State (United States); Bracco, A.; Leoni, S.; Benzoni, G. [Dipartimento di Fisica and INFN, Sezione di Milano, Milano (Italy); Maj, A. [Niewodniczanski Insitute of Nuclear Physics, Krakow (Poland); Petrache, C.M. [Dipartimento di Fisica and INFN, Sezione di Padova, Padova (Italy); Dipartimento di Matematica e Fisica, Universita di Camerino, Camerino (Italy); Lo Bianco, G.; Bednarczyk, P.; Curien, D.

    2004-02-01

    High-spin states of the nucleus {sup 163}Lu have been populated through the fusion-evaporation reaction {sup 139}La({sup 29}Si,5n) with a beam energy of 157 MeV. In addition to the two lowest excited triaxial strongly deformed (TSD) bands, recently interpreted as one- and two-phonon wobbling excitations, a third excited TSD band has been firmly established decaying to the yrast TSD band. The assignment of this band as a three-quasiparticle band shows together with the normal deformed (ND) level scheme the presence not only of shape coexistence between ND and TSD structures, but also an interplay of wobbling and quasiparticle excitations in the triaxial strongly deformed potential well of {sup 163}Lu. (orig.)

  5. Modeling of vibration for functionally graded beams

    Directory of Open Access Journals (Sweden)

    Yiğit Gülsemay

    2016-01-01

    Full Text Available In this study, a vibration problem of Euler-Bernoulli beam manufactured with Functionally Graded Material (FGM, which is modelled by fourth-order partial differential equations with variable coefficients, is examined by using the Adomian Decomposition Method (ADM.The method is one of the useful and powerful methods which can be easily applied to linear and nonlinear initial and boundary value problems. As to functionally graded materials, they are composites mixed by two or more materials at a certain rate. This mixture at a certain rate is expressed with an exponential function in order to try to minimize singularities from transition between different surfaces of materials as much as possible. According to the structure of the ADM in terms of initial conditions of the problem, a Fourier series expansion method is used along with the ADM for the solution of simply supported functionally graded Euler-Bernoulli beams. Finally, by choosing an appropriate mixture rate for the material, the results are shown in figures and compared with those of a standard (homogeneous Euler-Bernoulli beam.

  6. The period and Q of the Chandler wobble of Mars

    Science.gov (United States)

    Zharkov, V. N.; Gudkova, T. V.

    2009-03-01

    The calculations of the Chandler wobble period T W have been performed for a set of interior structure models of Mars with 50- and 100-km thick crust and averaged crustal density varying in the range 2700-3200 kg/m 3. The models satisfy new values for the moment of inertia and the elastic tidal Love number k2s. The observational data constrain the radius of a liquid core to be within 1700-1800 km. Because of inelasticity the value of T W depends on frequency (as the Love number depends on frequency). We assume that the power creep function is valid for description of inelastic processes in Martian interiors in the range of periods from T2Ph=5.55 h to T W≈200 days. Then the dynamical shear modulus μ0( σ) and dissipative factor Q μ( σ) varies with frequency σ as σn. As a reference frequency we used the frequency of Phobos' tidal wave σ t. The substitution of k( σ t) in the formula for T W gives the estimate for the minimum model value of the Chandler period 202.8⩽TWt⩽203.4 days. For the exponent of creep function 0.1⩽ n⩽0.2 (by analogy with the calculations for the Earth) the shift of the Chandler period to longer periods due to inelasticity δT W is in the interval 0.981⩽ δT W⩽1.42 days. Combining both estimates we obtain the interval for the model value of Chandler wobble period of Mars as 203.8⩽ TWt+ δT W⩽204.8

  7. Atmospheric, hydrological and oceanic comprehensive contributions to seasonal polar wobble of Earth Rotation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The geophysical quantitative excitation on seasonal polar wobble of Earth Rotation has not been well achieved so far. The atmospheric, hydrologic and oceanic angular momentum variations are investigated from monthly values simulated by a coupled ocean-atmosphere general circulation model. The simulated equatorial AAM functions agree well with that from the JMA operational analysis in 90°E direction, but disagree along Greenwich meridian. As for the annual cycle, not only the hydrologic and oceanic excitations partly match the residuals between geodetic functions of polar wobble and JMA AAM functions, but also the combinations with NCEP and JMA analysis AAM functions are better than those estimated from NCAR-CSM1 climate model.

  8. Wobbling phonon excitations, coexisting with normal deformed structures in sup 1 sup 6 sup 3 Lu

    CERN Document Server

    Jensen, D R; Hamamoto, I; Oedegard, S W; Bergström, M H; Herskind, B; Sletten, G; Toermaenen, S; Wilson, J N; Tjøm, P O; Spohr, K; Hübel, H; Görgen, A; Schoenwasser, G; Bracco, A; Leoni, S; Maj, A; Petrache, C M; Bednarczyk, P; Curien, D

    2002-01-01

    Wobbling is a rotational mode unique to a triaxial body. The Lu-Hf isotopes with N approx 94 at high spin provide a possible region of nuclei with pronounced triaxiality. We have investigated sup 1 sup 6 sup 3 Lu through the fusion-evaporation reaction sup 1 sup 3 sup 9 La( sup 2 sup 9 Si,5n) sup 1 sup 6 sup 3 Lu with a beam energy of 152 MeV. Three excited bands decaying into the known, presumably triaxial, superdeformed (TSD) band built on the i sub 1 sub 3 sub / sub 2 proton orbital are observed. The electromagnetic properties of the connecting transitions from the two strongest populated excited TSD bands have been investigated. New particle-rotor calculations in which one i sub 1 sub 3 sub / sub 2 quasiproton is coupled to the core of triaxial shape produce a variety of bands, whose properties can clearly be interpreted either as 'wobbling' or 'cranking' motion of the core. Evidence for the assignment of the excited TSD bands as one, and possibly even two wobbling phonon modes built on the yrast TSD band...

  9. Regional atmospheric influence on the Chandler wobble

    Science.gov (United States)

    Zotov, L. V.; Bizouard, C.

    2015-03-01

    From the maps of regional contribution to atmospheric angular momentum (AAM) over the period 1948-2011 (NCEP/NCAR reanalysis data) time domain excitation in Chandler frequency band was extracted by Panteleev's filtering method. This permits us to investigate the evolution of the regional atmospheric influence on Chandler wobble. It appears that the temperate latitudes bring the strongest inputs. For pressure term they are limited to continents, and highlight the role of Europe. For the wind term they mostly result from ocean area, encompassing in particular North Atlantic. A quasi-20 year cycle is found in the regional patterns of the atmospheric excitation. The integrated AAM is finally compared with the geodetic excitation reconstructed from the observed polar motion.

  10. NLC Luminosity as a Function of Beam Parameters

    CERN Document Server

    Nosochkov, Yu M; Raubenheimer, T O; Seryi, Andrei

    2002-01-01

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  11. Wobbling motion in $^{135}$Pr within a collective Hamiltonian

    CERN Document Server

    Chen, Q B; Meng, J

    2016-01-01

    The recently reported wobbling bands in $^{135}$Pr are investigated by the collective Hamiltonian, in which the collective parameters, including the collective potential and the mass parameter, are respectively determined from the tilted axis cranking (TAC) model and the harmonic frozen alignment (HFA) formula. It is shown that the experimental energy spectra of both yrast and wobbling bands are well reproduced by the collective Hamiltonian. It is confirmed that the wobbling mode in $^{135}$Pr changes from transverse to longitudinal with the rotational frequency. The mechanism of this transition is revealed by analyzing the effective moments of inertia of the three principal axes, and the corresponding variation trend of the wobbling frequency is determined by the softness and shapes of the collective potential.

  12. Bending analysis of a functionally graded piezoelectric cantilever beam

    Institute of Scientific and Technical Information of China (English)

    YU Tao; ZHONG Zheng

    2007-01-01

    A new analysis based on Airy stress function method is presented for a functionally graded piezoelectric material cantilever beam.Assuming that the mechanical and electric properties of the material have the same variations along the thickness direction,a two-dimensional plane elasticity solution is obtained for the coupling electroelastic fields of the beam under different loadings.This solution will be useful in analyzing FGPM beam with arbitrary variations of material properties.The influences of the functionally graded material properties on the structural response of the beam subjected to different loads are also studied through numerical examples.

  13. Bending analysis of a functionally graded piezoelectric cantilever beam

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new analysis based on Airy stress function method is presented for a functionally graded piezoelectric material cantilever beam. Assuming that the mechanical and electric properties of the material have the same variations along the thickness direction, a two-dimensional plane elasticity solution is obtained for the coupling electroelastic fields of the beam under different loadings. This solution will be useful in analyzing FGPM beam with arbitrary variations of material properties. The influences of the functionally graded material properties on the structural response of the beam subjected to different loads are also studied through numerical examples.

  14. Chandler Wobble Period and Q Derived by Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    De-Chun Liao; Yong-Hong Zhou

    2004-01-01

    We apply complex Morlet wavelet transform to three polar motion data series,and derive quasi-instantaneous periods of the Chandler and annual wobble by differencing the wavelet transform results versus the scale factor,and then find their zero points.The results show that the mean periods of the Chandler(annual)wobble are 430.71±1.07(365.24±0.11)and 432.71±0.42(365.23±0.18)mean solar days for the data sets of 1900-2001 and 1940-2001,respectively.The maximum relative variation of the quasi-instantaneous period to the mean of the Chandler wobble is less than 1.5% during 1900-2001(3%-5% during 1920-1940),and that of the annual wobble is less than 1.6% during 1900-2001.Quasi-instantaneous and mean values of Q are also derived by using the energy density-period profile of the Chandler wobble.An asymptotic value of Q = 36.7 is obtained by fitting polynomial of exponential of σ-2 to the relationship between Q and σ during 1940-2001.

  15. Using an Augmented Wobble Board as a Game Controller

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania

    2017-01-01

    and evaluation of three prototypes intended to provide individuals in need of ankle rehabilitation with the necessary motivation. The prototypes leverage video games potential as a source of intrinsic motivation by allowing individuals to control a game by means of a wobble board—an instrument used for ankle...... vibrotactile feedback during wobble board games since the feedback may distract the user, but also has the potential to make the experience more involving......., and a user study suggested that participants generally found the act of playing intrinsically motivating. In a second study we compared a the wobble board interface with to commercially available input devices (the Wii balance board, and keyboard and mouse). The results provided insights about...

  16. THERMAL POST-BUCKLING OF FUNCTIONALLY GRADED MATERIAL TIMOSHENKO BEAMS

    Institute of Scientific and Technical Information of China (English)

    LI Shi-rong; ZHANG Jing-hua; ZHAO Yong-gang

    2006-01-01

    Analysis of thermal post-buckling of FGM (Functionally Graded Material)Timoshenko beams subjected to transversely non-uniform temperature rise is presented.By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely non-uniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.

  17. Adaptive merit function in SPGD algorithm for beam combining

    Science.gov (United States)

    Yang, Guo-qing; Liu, Li-sheng; Jiang, Zhen-hua; Wang, Ting-feng; Guo, Jin

    2016-09-01

    The beam pointing is the most crucial issue for beam combining to achieve high energy laser output. In order to meet the turbulence situation, a beam pointing method that cooperates with the stochastic parallel gradient descent (SPGD) algorithm is proposed. The power-in-the-bucket ( PIB) is chosen as the merit function, and its radius changes gradually during the correction process. The linear radius and the exponential radius are simulated. The results show that the exponential radius has great promise for beam pointing.

  18. Base-pairing versatility determines wobble sites in tRNA anticodons of vertebrate mitogenomes.

    Directory of Open Access Journals (Sweden)

    Miguel M Fonseca

    Full Text Available BACKGROUND: Vertebrate mitochondrial genomes typically have one transfer RNA (tRNA for each synonymous codon family. This limited anticodon repertoire implies that each tRNA anticodon needs to wobble (establish a non-Watson-Crick base pairing between two nucleotides in RNA molecules to recognize one or more synonymous codons. Different hypotheses have been proposed to explain the factors that determine the nucleotide composition of wobble sites in vertebrate mitochondrial tRNA anticodons. Until now, the two major postulates--the "codon-anticodon adaptation hypothesis" and the "wobble versatility hypothesis"--have not been formally tested in vertebrate mitochondria because both make the same predictions regarding the composition of anticodon wobble sites. The same is true for the more recent "wobble cost hypothesis". PRINCIPAL FINDINGS: In this study we have analyzed the occurrence of synonymous codons and tRNA anticodon wobble sites in 1553 complete vertebrate mitochondrial genomes, focusing on three fish species with mtDNA codon usage bias reversal (L-strand is GT-rich. These mitogenomes constitute an excellent opportunity to study the evolution of the wobble nucleotide composition of tRNA anticodons because due to the reversal the predictions for the anticodon wobble sites differ between the existing hypotheses. We observed that none of the wobble sites of tRNA anticodons in these unusual mitochondrial genomes coevolved to match the new overall codon usage bias, suggesting that nucleotides at the wobble sites of tRNA anticodons in vertebrate mitochondrial genomes are determined by wobble versatility. CONCLUSIONS/SIGNIFICANCE: Our results suggest that, at wobble sites of tRNA anticodons in vertebrate mitogenomes, selection favors the most versatile nucleotide in terms of wobble base-pairing stability and that wobble site composition is not influenced by codon usage. These results are in agreement with the "wobble versatility hypothesis".

  19. The cost of wobble translation in fungal mitochondrial genomes: integration of two traditional hypotheses

    Directory of Open Access Journals (Sweden)

    Xia Xuhua

    2008-07-01

    Full Text Available Abstract Background Fungal and animal mitochondrial genomes typically have one tRNA for each synonymous codon family. The codon-anticodon adaptation hypothesis predicts that the wobble nucleotide of a tRNA anticodon should evolve towards maximizing Watson-Crick base pairing with the most frequently used codon within each synonymous codon family, whereas the wobble versatility hypothesis argues that the nucleotide at the wobble site should be occupied by a nucleotide most versatile in wobble pairing, i.e., the tRNA wobble nucleotide should be G for NNY codon families, and U for NNR and NNN codon families (where Y stands for C or U, R for A or G and N for any nucleotide. Results We here integrate these two traditional hypotheses on tRNA anticodons into a unified model based on an analysis of the wobble costs associated with different wobble base pairs. This novel approach allows the relative cost of wobble pairing to be qualitatively evaluated. A comprehensive study of 36 fungal genomes suggests very different costs between two kinds of U:G wobble pairs, i.e., (1 between a G at the wobble site of a tRNA anticodon and a U at the third codon position (designated MU3:G and (2 between a U at the wobble site of a tRNA anticodon and a G at the third codon position (designated MG3:U. Conclusion In general, MU3:G is much smaller than MG3:U, suggesting no selection against U-ending codons in NNY codon families with a wobble G in the tRNA anticodon but strong selection against G-ending codons in NNR codon families with a wobble U at the tRNA anticodon. This finding resolves several puzzling observations in fungal genomics and corroborates previous studies showing that U3:G wobble is energetically more favorable than G3:U wobble.

  20. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Stefan

    2010-02-22

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  1. About Titan's rotation: A forced "free" resonant wobble

    CERN Document Server

    Noyelles, B

    2007-01-01

    In Noyelles et al. (2007), a resonance involving the wobble of Titan is being suspected. This paper studies the probability of this scenario and its consequences. The first step is to build an accurate analytical model that would help to feel the likely resonances in the rotation of every synchronous body. I n this model, I take the orbital eccentricity of the body into account, and also two terms in its orbital inclination. Then an analytical study using the theory of the adiabatic invariant is being performed to study the interesting resonance. Finally, I study the dissipative consequences of this resonance. I find that this resonance might have increased the wobble of Titan of several degrees. Thanks to an original formula, I find that the dissipation involved by the forced wobble might not be negligeable compared to the contribution of the eccentricity. I also suspect that, due to the forced wobble, Titan's period of rotation might be a little underestimated by observers. I finally use the analytical mode...

  2. Wobble friction coefficient in post-stressed concrete

    Directory of Open Access Journals (Sweden)

    Diego Ernesto Dueñas Puentes

    2010-04-01

    Full Text Available This work was aimed at establishing a wobble friction coefficient (K from records regarding some post-stressed bridges built in Colombia. Such records were arranged and analysed together with stress diagrams resulting from the corres-ponding plans, calculations and reports. Suitable records were produced from this review to make the analysis. Once the records had been selected, the probable wobble friction coefficient (K was then calculated for each case and this coefficient was related to the length of the cable and the total area of the strands composing the cable. These records and their results were subsequently grouped according to the type of bridge to produce a wobble friction coefficient (K for each specific structure. The study indicated that the wobble friction coefficient was lower than that indicated by the Colombian Seismic Bridge Design Code, Instituto Nacional De Vías, 1995]. The influence of tensioning equipment, materials and labour suggested a format for recording tensioning to reduce inaccuracy when readings are being taken. A reduction in the costs of tensioning would arise from taking the forgoing into account.

  3. MD 1407 - Landau Damping: Beam Transfer Functions and diffusion mechanisms

    CERN Document Server

    Tambasco, Claudia; Boccardi, Andrea; Buffat, Xavier; Gasior, Marek; Lefevre, Thibaut; Levens, Tom; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Pieloni, Tatiana; Crouch, Matthew Paul; CERN. Geneva. ATS Department

    2017-01-01

    In the 2012, 2015 and 2016 run several instabilities were developing at flat-top, during and at the end of the betatron squeeze where beam-beam interactions are present. The tune spread in the beams is therefore modified by the beam-beam long-range interactions and by other sources of spread. Studies of the stability area computed by evaluating the dispersion integral for different tune spreads couldn’t explain the observed instabilities during the squeeze and stable beams. The size of the stability area given by the computed dispersion integral depends on the transverse tune spread but its shape is defined by the particle distribution in the beams. Therefore any change of the particle distribution can lead to a deterioration of the Landau stability area. The Beam Transfer Functions (BTF) are direct measurements of the Stability Diagrams (SD). They are sensitive to particle distributions and contain information about the transverse tune spread in the beams. In this note are summarized the results of the BTF...

  4. Control of beam halo-chaos by sample function

    Institute of Scientific and Technical Information of China (English)

    Bai Long; Zhang Rong; Weng Jia-Qiang; Luo Xiao-Shu; Fang Jin-Qing

    2006-01-01

    The K-V beam through an axisymmetric uniform-focusing channel is studied using the particle-core model. The beam halo-chaos is found, and a sample function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. We perform multiparticle simulation to control the halo by using the sample function controller. The numerical results show that our control method is effective. We also find that the radial ion density changes when the ion beam is in the channel: not only can the halo-chaos and its regeneration be eliminated by using the sample function control method, but also the density uniformity can be found at the beam's centre as long as an appropriate control method is chosen.

  5. Nonlinear Strain Measures, Shape Functions and Beam Elements for Dynamics of Flexible Beams

    Energy Technology Data Exchange (ETDEWEB)

    Sharf, I. [University of Victoria, Department of Mechanical Engineering (Canada)

    1999-05-15

    In this paper, we examine several aspects of the development of an explicit geometrically nonlinear beam element. These are: (i) linearization of the displacement field; (ii) the effect of a commonly adopted approximation for the nonlinear Lagrangian strain; and (iii) use of different-order shape functions for discretization. The issue of rigid-body check for a nonlinear beam element is also considered. An approximate check is introduced for an element based on an (approximate) intermediate strain measure. Several numerical examples are presented to support the analysis. The paper concludes with a discussion on the use of explicit nonlinear beam elements for multibody dynamics simulation.

  6. MD 382: Beam Transfer Function and diffusion mechanisms

    CERN Document Server

    Tambasco, Claudia; Buffat, Xavier; Crouch, Matthew; Pieloni, Tatiana; Boccardi, Andrea; Fuchsberger, Kajetan; Gasior, Marek; Kotzian, Gerd; Lefevre, Thibaut; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Giachino, Rossano; CERN. Geneva. ATS Department

    2016-01-01

    The Beam Transfer Function (BTF) measurements have been previously tested in the LHC during MD block 1 and 2. Different machine configurations (i.e. energy, beam intensity, emittance etc...) have been tested to determine a safe set-up (excitation amplitude) of the system to be completely transparent to the beam (no emittance blow-up neither losses). The aim of this experiment in MD block 3 was to characterize the Stability Diagram (SD) in the presence of diffusion mechanisms induced by excited resonances due to beam-beam long range and Landau octupole interplay. During the experiment, BTF measurements have been acquired at flat top for different settings of Landau octupole current, different chromaticity values and transverse feedback gains. In this note the description of the experiment is presented together with some preliminary results.

  7. MD 1856 - Landau Damping: Beam Transfer Functions and diffusion mechanisms

    CERN Document Server

    Tambasco, Claudia; Boccardi, Andrea; Buffat, Xavier; Gasior, Marek; Lefevre, Thibaut; Levens, Tom; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Pieloni, Tatiana; Crouch, Matthew Paul; CERN. Geneva. ATS Department

    2017-01-01

    In the 2012, 2015 and 2016 several instabilities were developing during the betatron squeeze where beam-beam interactions become stronger modifying the tune spread provided by the octupoles magnets. Studies of the stability area computed by evaluating the dispersion integral for different tune spread couldn’t explain the 2012 observed instabilities during the squeeze. The size of the stability area given by the computed dispersion integral depends on the transverse tune spread but its shape is defined by the particle distribution in the beams. Therefore any change of the particle distribution due to for instance a diffusion from excited resonances can lead to a deterioration of the Landau stability area. The Beam Transfer Functions (BTF) measurements are direct measurement of the Stability Diagrams (SD). They are sensitive to the particle distribution and contain information about the transverse tune spread in the beams. In this MD we wanted to verify the findings of MD 1407 and try to explain observed inst...

  8. Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA

    DEFF Research Database (Denmark)

    Leihne, Vibeke; Kirpekar, Finn; Vågbø, Cathrine B

    2011-01-01

    demonstrate, both by in vitro and in vivo studies, that the Arabidopsis thaliana methyltransferase AT1G31600, denoted by us AtTRM9, is responsible for the final step in mcm(5)U formation, thus representing a functional homologue of the Saccharomyces cerevisiae Trm9 protein. We also show that the enzymatic......(5)U- and mcm(5)Um-containing forms of the selenocysteine-specific tRNA(Sec) in mammals reflects an important regulatory process. The present study reveals a role in for several hitherto uncharacterized Arabidopsis proteins in the formation of modified wobble uridines.......Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm(5)U), 5-carbamoylmethyluridine (ncm(5)U) or derivatives thereof. Here, we...

  9. Betatron Function Parameterization of Beam Optics including Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Douglas; J. Kewisch; R.C. York

    1988-10-01

    Betatron function parameterization of symplectic matrices is of recognized utility in beam optical computations. The traditional ''beta functions'' beta, alpha, gamma,(=(1+alpha{sup 2})/beta) and psi (the betratron phase advance) provide an emittance-independent representation of the properties of a beam transport system. They thereby decouple the problem of ''matching'' injected beam envelope properties to the acceptance of a particular transport system from the details of producing a beam of a specific emittance. The definition and interpretation of these parameters becomes, however, more subtle when acceleration effects, especially adiabatic damping (with associated nonsymplecticity of the transfer matrix), are included. We present algorithms relating symplectic representations of beam optics to the more commonly encountered nonsymplectic (x, x', y, y') representation which exhibits adiabatic damping. Betatron function parameterizations are made in both representations. Self-consistent physical interpretations of the betatron functions are given and applications to a standard beam transport program are made.

  10. Beam transfer functions for relativistic proton bunches with beam–beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-03-21

    We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.

  11. The Fully-Differential Quark Beam Function at NNLO

    CERN Document Server

    Gaunt, Jonathan R

    2014-01-01

    We present the first calculation of a fully-unintegrated parton distribution (beam function) at next-to-next-to-leading order (NNLO). We obtain the fully-differential beam function for quark-initiated processes by matching it onto standard parton distribution functions (PDFs) at two loops. The fully-differential beam function is a universal ingredient in resummed predictions of observables probing both the virtuality as well as the transverse momentum of the incoming quark in addition to its usual longitudinal momentum fraction. For such double-differential observables our result is an important contribution to the resummation of large logarithms related to collinear initial-state radiation (ISR) through N3LL.

  12. Foot force models of crowd dynamics on a wobbly bridge

    CERN Document Server

    Belykh, Igor; Belykh, Vladamir

    2016-01-01

    Modern pedestrian and suspension bridges are designed using industry-standard packages, yet disastrous resonant vibrations are observed, necessitating multi-million dollar repairs. Recent examples include pedestrian induced vibrations during the openings of the Solf\\'erino Bridge in Paris in 1999 and the increased bouncing of the Squibb Park Bridge in Brooklyn in 2014. The most prominent example of an unstable lively bridge is the London Millennium Bridge which started wobbling as a result of pedestrian-bridge interactions. Pedestrian phase-locking due to footstep phase adjustment, is suspected to be the main cause of its large lateral vibrations; however, its role in the initiation of wobbling was debated. In this paper, we develop foot force models of pedestrians' response to bridge motion and detailed, yet analytically tractable models of crowd phase-locking. We use bio-mechanically inspired models of crowd lateral movement to investigate to what degree pedestrian synchrony must be present for a bridge to ...

  13. Foot force models of crowd dynamics on a wobbly bridge

    OpenAIRE

    Belykh, Igor; Jeter, Russell; Belykh, Vladamir

    2016-01-01

    Modern pedestrian and suspension bridges are designed using industry-standard packages, yet disastrous resonant vibrations are observed, necessitating multi-million dollar repairs. Recent examples include pedestrian induced vibrations during the openings of the Solf\\'erino Bridge in Paris in 1999 and the increased bouncing of the Squibb Park Bridge in Brooklyn in 2014. The most prominent example of an unstable lively bridge is the London Millennium Bridge which started wobbling as a result of...

  14. Transverse Schottky and beam transfer function measurements in space charge affected coasting ion beams

    Directory of Open Access Journals (Sweden)

    Stefan Paret

    2010-02-01

    Full Text Available Transverse Schottky spectra and beam transfer functions (BTFs of coasting ion beams were measured in the heavy ion synchrotron SIS-18 in order to study the impact of space charge on the transverse beam dynamics. The particle number in the beam was varied to investigate the intensity dependence of the space-charge effect. No cooling was applied to the beams throughout the experiment. The expected deformation of the Schottky spectra and BTFs is observed. An analytic model with linear space charge is employed to describe the deformed Schottky and BTF signals. In this model, the incoherent space-charge force and the coherent forces due to impedances are treated separately. Using the model, the space-charge induced tune shift is evaluated both from the position and the form of the signals. The data are well described by the model, only in the high-intensity BTFs deviations are observed. The stability diagrams are shifted according to the space-charge parameter obtained from the BTFs. In addition, the tune shift is estimated by virtue of measured beam profiles and particle numbers. The estimated tune shift is of the same order of magnitude but smaller than the measured one. Possible explanations for deviations between the measurements, the model, and the estimation are discussed.

  15. Large deflection of flexible tapered functionally graded beam

    Institute of Scientific and Technical Information of China (English)

    A.R.Davoodinik; G.H.Rahimi

    2011-01-01

    In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied.In order to derive the fully non-linear equations governing the non-linear deformation,a curvilinear coordinate system is introduced.A general non-linear second order differential equation that governs the shape of a deflected beam is derived based on the geometric nonlinearities,infinitesimal local displacements and local rotation concepts with remarkable physical properties of functionally graded materials.The solutions obtained from semi-analytical methods are numerically compared with the existing elliptic integral solution for the case of a flexible uniform cantilever functionally graded beam.The effects of taper ratio,inclined end load angle and material property gradient on large deflection of the beam are evaluated.The Adomian decomposition method will be useful toward the design of tapered functionally graded compliant mechanisms driven by smart actuators.

  16. Rapidity renormalized TMD soft and beam functions at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Luebbert, Thomas [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Oredsson, Joel [DESY, Hamburg (Germany). Theory Group; Lund Univ. (Sweden). Dept. of Astronomy and Theoretical Physics; Stahlhofen, Maximilian [DESY, Hamburg (Germany). Theory Group; Mainz Univ. (Germany). PRISMA Cluster of Excellence

    2016-03-15

    We compute the transverse momentum dependent (TMD) soft function for the production of a color-neutral final state at the LHC within the rapidity renormalization group (RRG) framework to next-to-next-to-leading order (NNLO). We use this result to extract the universal renormalized TMD beam functions (aka TMDPDFs) in the same scheme and at the same order from known results in another scheme. We derive recurrence relations for the logarithmic structure of the soft and beam functions, which we use to cross check our calculation. We also explicitly confirm the non-Abelian exponentiation of the TMD soft function in the RRG framework at two loops. Our results provide the ingredients for resummed predictions of p {sub perpendicular} {sub to} -differential cross sections at NNLL' in the RRG formalism. The RRG provides a systematic framework to resum large (rapidity) logarithms through (R)RG evolution and assess the associated perturbative uncertainties.

  17. Two-dimensional collective Hamiltonian for chiral and wobbling modes

    Science.gov (United States)

    Chen, Q. B.; Zhang, S. Q.; Zhao, P. W.; Jolos, R. V.; Meng, J.

    2016-10-01

    A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor (γ =-30∘ ) coupling to one h11 /2 proton particle and one h11 /2 neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobbling motion have been presented in the 2DCH.

  18. Two-dimensional thermoelasticity solution for functionally graded thick beams

    Institute of Scientific and Technical Information of China (English)

    Lü; Chaofeng

    2006-01-01

    [1]Suresh S,Mortensen A.Fundamentals of Functionally Graded Materials.London:IOM Communications,1998[2]Wetherhold R C,Seelman S,Wang J Z.The use of functionally graded materials to eliminate or control thermal deformation.Compos Sci Technol,1996,56:1099―1104[3]Almajid A,Taya M,Hudnut S.Analysis of out-of-plane displacement and stress field in a piezo-composite plate with functionally graded microstructure.Int J Solids Struct,2001,38:3377―3391[4]Wu X H,Chen C Q,Shen Y P,et al.A high order theory for functionally graded piezoelectric shells.Int J Solids Struct,2002,39:5325―5344[5]Ootao Y,Tanigawa Y.Three-dimensional transient piezothermo-elasticity in functional graded rectangular plate bonded to a piezoelectric plate.Int J Solids Struct,2000,37:4377―4401[6]Chen W Q,Ding H J.On free vibration of a functionally graded piezoelectric rectangular plate.Acta Mech,2002,153:207―216[7]Chen W Q,Bian Z G,Lv C F,et al.3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid.Int J Solids Struct,2004,41:947―964[8]Zhong Z,Shang E T.Exact analysis of simply supported functionally graded piezothermoelectric plates.J Intell Mater Syst Struct,2005,16:643―651[9]Sankar B V.An elasticity solution for functionally graded beams.Compos Sci Technol,2001,61:689―696[10]Sankar B V,Tzeng J T.Thermal stresses in functionally graded beams.AIAA J,2002,40:1228―1232[11]Zhu H,Sankar B V.A combined Fourier series-Galerkin method for the analysis of functionally graded beams.J Appl Mech-Trans ASME,2004,71:421―424[12]Chen W Q,Lv C F,Bian Z G.Elasticity solution for free vibration of laminated beams.Compos Struct,2003,62:75―82[13]Nagem R J,Williams J H.Dynamic analysis of large space structures using transfer matrices and joint coupling matrices.Mech Struct Mach,1989,17:349―371[14]Ding H J,Chen W Q,Zhang L C.Elasticity of Transversely Isotropic Materials.Dordrecht:Springer-Verlag,2006[15]Shu C.Differential Quadrature and Its

  19. Measurement of neutron excitation functions using wide energy neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gamboni, Thierry; Gasparro, Joel; Geerts, Wouter; Jaime, Ricardo; Lindahl, Patric; Oberstedt, Stephan [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Italy)

    2007-10-11

    A technique for measuring neutron excitation functions using wide energy neutron beams is explored. Samples are activated with a set of neutron fields, each covering a relatively wide energy interval and created using an ion accelerator and conventional nuclear reactions. Measured activities are determined using gamma-ray spectrometry and reduced to excitation curves using spectrum unfolding. The technique is demonstrated on the measurement of the excitation function curve up to 5.6 MeV for {sup 113}In(n,n'){sup 113}In{sup m} using the {sup 115}In(n,n'){sup 115}In{sup m} reaction as an internal standard.

  20. W(5): Wobbling Mode in the Framework of the X(5) Model

    CERN Document Server

    Bonatsos, D; Petrellis, D; Terziev, P A; Bonatsos, Dennis

    2004-01-01

    Using in the Bohr Hamiltonian the approximations leading to the Bohr and Mottelson description of wobbling motion in even nuclei, a W(5) model for wobbling bands, coexisting with a X(5) ground state band, is obtained. Separation of variables is achieved by assuming that the relevant potential has a sharp minimum at gamma_0, which is the only parameter entering in the spectra and B(E2) transition rates (up to overall scale factors). B(E2) transition rates exhibit the features expected in the wobbling case, while the spectrum for gamma_0=20 degrees is in good agreement with experimental data for Dy-156.

  1. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Lin, Y [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Chen, H [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Tsai, H [College of Medicine, Chang Gung University, Linkou, Taoyuan, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan (China); Healthy Aging Research Center, Chang Gung University, Linkou, Taoyuan, Taiwan (China)

    2015-06-15

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  2. Analysis of the wobbling effect in a lens-shaped body rotation

    Science.gov (United States)

    Kim, Minho

    2017-03-01

    We discuss the wobbling motion in a lens-shaped body rotation, focusing on the frequencies and the amplitude of nutation by filming the rotational motion and wobbling of the body. The friction coefficient of the surface is altered to examine its influence for two lenses with different curvature radii. MATLAB programs are developed to retrieve the Euler angles, which are graphed according to time. It is shown that the lens with a smaller curvature radius exhibits the wobbling effect in all cases, whereas the lens with a larger curvature radius shows such behaviour in limited circumstances. The study confirms that the friction coefficient has a negative linear correlation with the vertical axis declination amplitude with the R-squared value 0.878, showing that friction gives damping and causes smaller axis declination amplitudes. Negative linear correlation also exists with relation to the number of wobbles before the motion stops, where the R-squared value is 0.938, providing further evidence that friction and wobbling cause higher energy dissipation rates. The frequency of the wobbling motion only has a correlation with the curvature radius of the lens, showing no explicit correlation with the friction coefficient, with its R-squared value being 0.077. No losses of contact were observable in this motion. The overall process does not utilize particularly expensive apparatus and will be applicable for senior undergraduate students to experiment on and analyze the motion of a special situation regarding a rigid body that is both spinning and nutating.

  3. Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories

    Institute of Scientific and Technical Information of China (English)

    李世荣; 万泽青; 张静华

    2014-01-01

    The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma-tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen-cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.

  4. Beam spread functions calculated using Feynman path integrals

    Science.gov (United States)

    Kilgo, Paul; Tessendorf, Jerry

    2017-07-01

    A method of solving the radiative transfer equation using Feynman path integrals (FPIs) is discussed. The FPI approach is a mathematical framework for computing multiple scattering in participating media. Its numerical behavior is not well known, and techniques are being developed to solve the FPI approach numerically. A missing numerical technique is detailed and used to calculate beam spread functions (BSFs), a commonly studied experimental property of many types of media. The calculations are compared against measured BSFs of sea ice. Analysis shows differently-shaped BSFs, and suggests the width parameter of the calculated BSF's Gaussian fit approaches a value in the limit of the number of path segments. A projection is attempted, but suggests a larger number of path segments would not increase the width of the calculated BSF. The trial suggests the approach is numerically stable, but requires further testing to ensure scientific accuracy.

  5. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.;

    2014-01-01

    on the measurements performed during Jupiter observations. By stacking the data from Jupiter transits, the main beam profiles are measured down to -20 dB at 30 and 44 GHz, and down to -25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. To ensure...... can be reached by the Jupiter measurements themselves. The agreement between the simulated beams and the scanning beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget in the window...

  6. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.;

    2013-01-01

    on the measurements performed during Jupiter observations. By stacking the data from Jupiter transits, the main beam profiles are measured down to -20 dB at 30 and 44 GHz, and down to -25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. To ensure...... can be reached by the Jupiter measurements themselves. The agreement between the simulated beams and the scanning beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget in the window...

  7. Planck 2015 results. IV. Low Frequency Instrument beams and window functions

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down to -30 dB at 70 GHz. It has been confirmed that the agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer band shapes. The total uncertainties in the effective beam window functions are 0.7% and 1% at 30 and 44 GHz, respectively (at ℓ ≈ 600); and 0.5% at 70 GHz (at ℓ ≈ 1000).

  8. WOBBLING AND PRECESSING JETS FROM WARPED DISKS IN BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnezami, Somayeh [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Fendt, Christian, E-mail: nezami@mpia.de, E-mail: fendt@mpia.de [Max Planck Institute for Astronomy, Heidelberg (Germany)

    2015-12-01

    We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion–ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star–disk–jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 500 rotations of the inner disk, confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due by a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet bending outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indications of precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only ≃200 inner disk radii. This simulation shows a strong indication that we observe the onset of a jet precession caused by the wobbling of the jet-launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the jet axis to be about 4° after about 5000 dynamical time steps.

  9. Two-dimensional collective Hamiltonian for chiral and wobbling modes

    CERN Document Server

    Chen, Q B; Zhao, P W; Jolos, R V; Meng, J

    2016-01-01

    A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor ($\\gamma=-30^\\circ$) coupling to one $h_{11/2}$ proton particle and one $h_{11/2}$ neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobb...

  10. Optimization of Natural Frequencies and Sound Power of Beams Using Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Nabeel T. Alshabatat

    2014-01-01

    Full Text Available This paper presents a design method to optimize the material distribution of functionally graded beams with respect to some vibration and acoustic properties. The change of the material distribution through the beam length alters the stiffness and the mass of the beam. This can be used to alter a specific beam natural frequency. It can also be used to reduce the sound power radiated from the vibrating beam. Two novel volume fraction laws are used to describe the material volume distributions through the length of the FGM beam. The proposed method couples the finite element method (for the modal and harmonic analysis, Lumped Parameter Model (for calculating the power of sound radiation, and an optimization technique based on Genetic Algorithm. As a demonstration of this technique, the optimization procedure is applied to maximize the fundamental frequency of FGM cantilever and clamped beams and to minimize the sound radiation from vibrating clamped FGM beam at a specific frequency.

  11. Planck 2015 results. IV. Low Frequency Instrument beams and window functions

    CERN Document Server

    Ade, P A R; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Christensen, P R; Colombi, S; Colombo, L P L; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Juvela, M; Keihänen, E; Keskitalo, R; Kiiveri, K; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; Lindholm, V; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; Paci, F; Pagano, L; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Pierpaoli, E; Pietrobon, D; Pointecouteau, E; Polenta, G; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renzi, A; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vassallo, T; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30 and 44 GHz, and down to -30 dB at 70 GHz. The agreement between the simulated beams and the measured beams is confirmed to be better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are: 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error budget for the window functions is estimated fro...

  12. Mass asymmetry and tricyclic wobble motion assessment using automated launch video analysis

    Directory of Open Access Journals (Sweden)

    Ryan Decker

    2016-04-01

    Examination of the pitch and yaw histories clearly indicates that in addition to epicyclic motion's nutation and precession oscillations, an even faster wobble amplitude is present during each spin revolution, even though some of the amplitudes of the oscillation are smaller than 0.02 degree. The results are compared to a sequence of shots where little appreciable mass asymmetries were present, and only nutation and precession frequencies are predominantly apparent in the motion history results. Magnitudes of the wobble motion are estimated and compared to product of inertia measurements of the asymmetric projectiles.

  13. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    CERN Document Server

    Aghanim, N; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, L -Y; Christensen, P R; Church, S; Colombi, S; Colombo, L P L; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Gaier, T C; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jewell, J; Jones, W C; Juvela, M; Kangaslahti, P; Keihänen, E; Keskitalo, R; Kiiveri, K; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Lesgourgues, J; Liguori, M; Lilje, P B; Lindholm, V; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Naselsky, P; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Paci, F; Pagano, L; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Platania, P; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Ricciardi, S; Riller, T; Rocha, G; Rosset, C; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Zacchei, A; Zonca, A

    2014-01-01

    This paper presents the characterization of the in-flight beams, the beam window functions and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the data from multiple Jupiter transits, the main beam profiles are measured down to -20 dB at 30 and 44 GHz, and down to -25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approac...

  14. Free Vibration and Stability of Axially Functionally Graded Tapered Euler-Bernoulli Beams

    Directory of Open Access Journals (Sweden)

    Ahmad Shahba

    2011-01-01

    Full Text Available Structural analysis of axially functionally graded tapered Euler-Bernoulli beams is studied using finite element method. A beam element is proposed which takes advantage of the shape functions of homogeneous uniform beam elements. The effects of varying cross-sectional dimensions and mechanical properties of the functionally graded material are included in the evaluation of structural matrices. This method could be used for beam elements with any distributions of mass density and modulus of elasticity with arbitrarily varying cross-sectional area. Assuming polynomial distributions of modulus of elasticity and mass density, the competency of the element is examined in stability analysis, free longitudinal vibration and free transverse vibration of double tapered beams with different boundary conditions and the convergence rate of the element is then investigated.

  15. Planck 2015 results: IV. Low Frequency Instrument beams and window functions

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Ashdown, M.

    2016-01-01

    normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are measured down to -25 dB at 30...

  16. Green's functions of the forced vibration of Timoshenko beams with damping effect

    Science.gov (United States)

    Li, X. Y.; Zhao, X.; Li, Y. H.

    2014-03-01

    This paper is concerned with the dynamic solutions for forced vibrations of Timoshenko beams in a systematical manner. Damping effects on the vibrations of the beam are taken into consideration by introducing two characteristic parameters. Laplace transform method is applied in the present study and corresponding Green's functions are presented explicitly for beams with various boundaries. The present solutions can be readily reduced to those for others classical beam models by setting corresponding parameters to zero or infinite. Numerical calculations are performed to validate the present solutions and the effects of various important physical parameters are investigated.

  17. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    Science.gov (United States)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  18. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    2015-01-01

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine. W

  19. A VLBI Search for the Origin of Wobbling in Blazar Jet

    Science.gov (United States)

    Agudo, I.

    2009-08-01

    An increasing number of blazars have been reported to show jet wobbling (i.e., non-regular rotations of the structural position angle of their innermost jets in the plane of the sky with amplitudes between 20 deg. and 50 deg., and time scales between 2 yr. and 20 yr.). The physical origin for the observed jet wobbling is still poorly understood, but as this phenomenon is triggered in the innermost regions of the jets, it must be tied to fundamental properties of the inner regions of the accretion system. Thus, jet wobbling may be an interesting potential tool for supermassive black hole, accretion and jet launching studies. As part of a joint theoretical/numerical and observational effort to characterize the observational properties and differences between three possible scenarios we have started a long-term polarimetric phase-reference 43 GHz VLBA monitoring program to observe the jet structure and the absolute motion of the jet core of four of the blazars which have shown some of the clearest evidence of large amplitude jet wobbling: NRAO 150, OJ 287, 3C 273, and 3C 345 . Here we present this project and we argue about its suitability for future VSOP-2 observations.

  20. An electrostatic lower stator axial-gap polysilicon wobble motor part I: design and modeling

    NARCIS (Netherlands)

    Legtenberg, Rob; Berenschot, Erwin; Baar, van John; Elwenspoek, Miko

    1998-01-01

    This paper presents design issues and a theoretical model of electrostatically driven axial-gap polysilicon wobble motors. The motor design benefits from large axial rotor-to-stator overlap and large gear ratios, and motor designs with rotor radii of 50 and 100 ¿m are capable of generating torques i

  1. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    2015-01-01

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine. W

  2. Book Review: Precession, Nutation, and Wobble of the Earth

    Science.gov (United States)

    Sterken, Christiaan; Dehant, V.; Mathews, P. M.

    2016-10-01

    This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle

  3. Control of beam halo-chaos by Gauss function in the triangle periodic-focusing channel

    Institute of Scientific and Technical Information of China (English)

    Yu Hai-Jun; Bai Long; Weng Jia-Qiang; Luo Xiao-Shu; Fang Jin-Qing

    2008-01-01

    This paper studies the Kapchinsky-Vladimirsky (K-V) beam through a triangle periodic-focusing magnetic field by using the particle-core model. The beam halo-chaos is found, and an idea of Gauss function controller is proposed based on the strategy of controlling the halo-chaos. It performs multiparticle simulation to control the halo by using the Gauss function control method. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively, and that the radial particle density is uniform at the centre of the beam as long as the control method and appropriate parameter are chosen.

  4. Clustered Natural Frequencies in Multi-Span Beams with Constrained Characteristic Functions

    OpenAIRE

    Khodabakhsh Saeedi; Rama B. Bhat

    2011-01-01

    A study of the natural frequencies and mode shapes of a multi-span beam is carried out by introducing constrained beam characteristic functions. The conventional method used for the dynamic analysis of such a beam is to consider span-wise characteristic function solution and then to solve it by using compatibility conditions such as the continuity in the a slope and bending moment at the intermediate supports and boundary conditions at the ends. In the method proposed here, the matrix size is...

  5. Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions

    Science.gov (United States)

    Su, Zhu; Jin, Guoyong; Ye, Tiangui

    2016-06-01

    The paper presents a unified solution for free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary conditions within the framework of Timoshenko beam theory. The formulation is derived by means of the variational principle in conjunction with a modified Fourier series which consists of standard Fourier cosine series and supplemented functions. The mechanical and electrical properties of functionally graded piezoelectric materials (FGPMs) are assumed to vary continuously in the thickness direction and are estimated by Voigt’s rule of mixture. The convergence, accuracy and reliability of the present formulation are demonstrated by comparing the present solutions with those from the literature and finite element analysis. Numerous results for FGPM beams with different boundary conditions, geometrical parameters as well as material distributions are given. Moreover, forced vibration of the FGPM beams subjected to dynamic loads and general boundary conditions are also investigated.

  6. Electro-mechanical response of functionally graded beams with imperfectly integrated surface piezoelectric layers

    Institute of Scientific and Technical Information of China (English)

    YAN Wei; CHEN Weiqiu

    2006-01-01

    The time-dependent behavior of a simply-supported functionally graded beam bonded with piezoelectric sensors and actuators is studied using the state-space method. The creep behavior of bonding adhesives between piezoelectric layers and beam is characterized by a Kelvin-Voigt viscoelastic model, which is practical in a high temperature circumstance. Both the host elastic functionally graded beam and the piezoelectric layers are orthotropic and in a state of plane stress, with the former being inhomogeneous along the thickness direction. A laminate model is employed to approximate the host beam. Moreover, the coupling effect between the elastic deformation and electric field in piezoelectric layers is considered. Results indicate that the viscoelastic property of interfacial adhesives has a significant effect on the function of bonded actuators and sensors with time elapsing.

  7. On the Effect of Functionally Graded Materials on Resonances of Rotating Beams

    Directory of Open Access Journals (Sweden)

    Arnaldo J. Mazzei Jr.

    2012-01-01

    Full Text Available Radially rotating beams attached to a rigid stem occur in several important engineering applications. Some examples include helicopter blades, turbine blades and certain aerospace applications. In most studies the beams have been treated as homogeneous. Here, with a goal of system improvement, non-homogeneous beams made of functionally graded materials are explored. The effects on the natural frequencies of the system are investigated. Euler-Bernoulli theory, including an axial stiffening effect and variations of both Young's modulus and density, is employed. An assumed mode approach is utilized, with the modes taken to be beam characteristic orthogonal polynomials. Results are obtained via Rayleigh-Ritz method and are compared for both the homogeneous and non-homogeneous cases. It was found, for example, that allowing Young's modulus and density to vary by approximately 2.15 and 1.15 times, respectively, leads to an increase of 23% in the lowest bending rotating natural frequency of the beam.

  8. Transverse Vibration of Axially Moving Functionally Graded Materials Based on Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Suihan Sui

    2015-01-01

    Full Text Available The transverse free vibration of an axially moving beam made of functionally graded materials (FGM is investigated using a Timoshenko beam theory. Natural frequencies, vibration modes, and critical speeds of such axially moving systems are determined and discussed in detail. The material properties are assumed to vary continuously through the thickness of the beam according to a power law distribution. Hamilton’s principle is employed to derive the governing equation and a complex mode approach is utilized to obtain the transverse dynamical behaviors including the vibration modes and natural frequencies. Effects of the axially moving speed and the power-law exponent on the dynamic responses are examined. Some numerical examples are presented to reveal the differences of natural frequencies for Timoshenko beam model and Euler beam model. Moreover, the critical speed is determined numerically to indicate its variation with respect to the power-law exponent, axial initial stress, and length to thickness ratio.

  9. Derivation of an Efficient Non-Prismatic Thin Curved Beam Element Using Basic Displacement Functions

    Directory of Open Access Journals (Sweden)

    Ahmad Shahba

    2012-01-01

    Full Text Available The efficiency and accuracy of the elements proposed by the Finite Element Method (FEM considerably depend on the interpolating functions, namely shape functions, used to formulate the displacement field within an element. In this paper, a new insight is proposed for derivation of elements from a mechanical point of view. Special functions namely Basic Displacement Functions (BDFs are introduced which hold pure structural foundations. Following basic principles of structural mechanics, it is shown that exact shape functions for non-prismatic thin curved beams could be derived in terms of BDFs. Performing a limiting study, it is observed that the new curved beam element successfully becomes the straight Euler-Bernoulli beam element. Carrying out numerical examples, it is shown that the element provides exact static deformations. Finally efficiency of the method in free vibration analysis is verified through several examples. The results are in good agreement with those in the literature.

  10. Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Şeref Doğuşcan Akbaş

    2013-01-01

    Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.

  11. Behavior of the sandwich beam subjected to bending as a function of the core density

    Directory of Open Access Journals (Sweden)

    Nikolić Ružica R.

    2016-01-01

    Full Text Available The sandwich beam can be considered as the multi-layered structure with a symmetrical cross-section. In this paper is assumed that the structure is created by periodical repetition of a unit cell. The influence of its size on the beam’s static behavior in bending was analyzed. The variation of the unit cells number affects the size of the cell, so the static analysis was performed – the flexural stiffness and the beam’s deflection were determined as functions of the unit cells number. The two configurations of the sandwich beams were considered: the beam with the constant cross-section along its length and the beam with the periodically variable cross-section. The graphs of the beam’s flexural stiffness and deflection variations in terms of the unit cells number were obtained. It was concluded that after a certain number of the cells, the core’s density does not further influence the behavior of the sandwich beam, under the given loading conditions. The conclusion from comparison of the two configurations is that the sandwich beam with the variable cross-section behaves somewhat better than the beam with the constant cross-section. The FEM analysis has verified all the conclusions from the analytical solution about the sandwich beams behavior when subjected to bending.

  12. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Beam Maps and Window Functions

    Science.gov (United States)

    Hill, R.S.; Weiland, J.L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C.L.; Halpern, M.; Kogut, A.; Page, L.; hide

    2008-01-01

    Cosmology and other scientific results from the WMAP mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of approximately 2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of approximately 1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of approximately 2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly. errors in the measured disk temperature are approximately 0.5%.

  13. Analysis of infilled beams using method of initial functions and comparison with FEM

    Directory of Open Access Journals (Sweden)

    Rakesh Patel

    2014-09-01

    Full Text Available This paper presents a study carried out on reinforced concrete infilled beams. In reinforced concrete beams, less stressed concrete near neutral axis can be replaced by some light weight material like bricks to reduce the weight of the structure and also achieve the economy. Infilled zone is obtained with the help of stress block diagram, used for limit state design of reinforced concrete beams as per IS 456. Method of initial functions is used for the analysis of infilled reinforced concrete composite beams. The method of initial function (MIF is an analytical method of elasticity theory. The results obtained by MIF are compared with those predicting by Finite Element Method (FEM based software ANSYS, and it is observed that they are comparable.

  14. Exact cone beam reconstruction formulae for functions and their gradients for spherical and flat detectors

    Science.gov (United States)

    Louis, Alfred K.

    2016-11-01

    We derive unified inversion formulae for the cone beam transform similar to the Radon transform. Reinterpreting Grangeat’s formula we find a relation between the Radon transform of the gradient of the searched-for function and a quantity computable from cone beam data. This gives a uniqueness result for the cone beam transform of compactly supported functions under much weaker assumptions than the Tuy-Kirillov condition. Furthermore this relation leads to an exact formula for the direct calculation of derivatives of the density distribution; but here, similar to the classical Radon transform, complete Radon data are needed, hence the Tuy-Kirillov condition has to be imposed. Numerical experiments reported in Hahn B N et al (2013 Meas. Sci. Technol. 24 125601) indicate that these calculations are less corrupted by beam-hardening noise. Finally, we present flat detector versions for these results, which are mathematically less attractive but important for applications.

  15. Modulation Transfer Function of a Gaussian Beam Based on the Generalized Modified Atmospheric Spectrum

    Directory of Open Access Journals (Sweden)

    Chao Gao

    2016-01-01

    Full Text Available This paper investigates the modulation transfer function of a Gaussian beam propagating through a horizontal path in weak-fluctuation non-Kolmogorov turbulence. Mathematical expressions are obtained based on the generalized modified atmospheric spectrum, which includes the spectral power law value of non-Kolmogorov turbulence, the finite inner and outer scales of turbulence, and other optical parameters of the Gaussian beam. The numerical results indicate that the atmospheric turbulence would produce less negative effects on the wireless optical communication system with an increase in the inner scale of turbulence. Additionally, the increased outer scale of turbulence makes a Gaussian beam influenced more seriously by the atmospheric turbulence.

  16. Mass asymmetry and tricyclic wobble motion assessment using automated launch video analysis

    Institute of Scientific and Technical Information of China (English)

    Ryan DECKER; Joseph DONINI; William GARDNER; Jobin JOHN; Walter KOENIG

    2016-01-01

    This paper describes an approach to identify epicyclic and tricyclic motion during projectile flight caused by mass asymmetries in spin-stabilized projectiles. Flight video was captured following projectile launch of several M110A2E1 155 mm artillery projectiles. These videos were then analyzed using the automated flight video analysis method to attain their initial position and orientation histories. Examination of the pitch and yaw histories clearly indicates that in addition to epicyclic motion’s nutation and precession oscillations, an even faster wobble amplitude is present during each spin revolution, even though some of the amplitudes of the oscillation are smaller than 0.02 degree. The results are compared to a sequence of shots where little appreciable mass asymmetries were present, and only nutation and precession frequencies are predominantly apparent in the motion history results. Magnitudes of the wobble motion are estimated and compared to product of inertia measurements of the asymmetric projectiles.

  17. The Interaction of Functional and Dysfunctional Emotions during Balance Beam Performance

    Science.gov (United States)

    Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu

    2012-01-01

    The interaction between functional and dysfunctional emotions, as one of the major tenets of the Individual Zones of Optimal Functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report…

  18. The Interaction of Functional and Dysfunctional Emotions during Balance Beam Performance

    Science.gov (United States)

    Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu

    2012-01-01

    The interaction between functional and dysfunctional emotions, as one of the major tenets of the Individual Zones of Optimal Functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report…

  19. Absolute and Convective Ion Beam Instability Studied through Green's Function

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Michelsen, Poul; Hsuan, H. C. S.

    1974-01-01

    A Vlasov plasma with a double‐humped, unstable ion velocity distribution function is considered. A δ function in space is assumed as the initial perturbation and the plasma response to this perturbation is calculated, i.e., the Green's function for the problem is found. The response can be divide...... into two parts: a self‐similar, damped part of the form t−1h(x/t), and an unstable, exponentially growing part. The conditions for absolute and convective growth of the latter are discussed....

  20. A VLBI Search for the Origin of Wobbling in Blazar Jets

    CERN Document Server

    Agudo, I

    2008-01-01

    An increasing number of blazars have been reported to show jet wobbling (i.e., non-regular rotations of the structural position angle of their innermost jets in the plane of the sky with amplitudes between 20 deg. and 50 deg., and time scales between 2 yr. and 20 yr.). The physical origin for the observed jet wobbling is still poorly understood, but as this phenomenon is triggered in the innermost regions of the jets, it must be tied to fundamental properties of the inner regions of the accretion system. Thus, jet wobbling may be an interesting potential tool for supermassive black hole, accretion and jet launching studies. As part of a joint theoretical/numerical and observational effort to characterize the observational properties and differences between these three possible scenarios we have started a long-term polarimetric phase-reference 43 GHz VLBA monitoring program to observe the jet structure and the absolute motion of the jet core of four of the blazars which have shown some of the clearest evidence...

  1. New determination of period and quality factor of Chandler wobble, considering geophysical excitations

    Science.gov (United States)

    Vondrák, J.; Ron, C.; Chapanov, Ya.

    2017-03-01

    Polar motion consists of both free (Chandler wobble, with approximately 14-month period) and forced components. The latter are caused by different excitations of geophysical origin. Very long-periodic (or secular) part is most probably due to post-glacial rebound, shorter periodic part (with dominant annual period) are caused mainly by motions of the atmosphere and oceans. Recently it was also proposed that impulse-like excitations due to geomagnetic jerks might be responsible for rapid changes of the amplitude and phase of Chandler wobble. In order to precisely determine the parameters of the free part, it is necessary to consider all these influences. We use the IERS combined solution C04 together with ERA atmospheric/oceanic excitations in the interval 1974.0-2014.0, and also additional excitations due to nine geomagnetic jerks, registered during this interval, to determine the period and quality factor of Chandler wobble, free from these geophysical effects. We obtained solutions for three different time intervals: 1974.0-1994.0, 1994.0-2014.0, and 1974.0-2014.0. The estimated values of Q-factor are much smaller if GMJ excitations are used in addition to atmospheric and oceanic ones, and they are determined with higher accuracy. Our preferred values, valid for the whole interval 1974.0-2014.0, are P = 432.86 ± 0.04 days and Q = 35.0 ± 0.3 .

  2. Magnetosphere Magnetic Field Wobble Effects on the Dynamics of the Jovian Magnetosphere

    CERN Document Server

    Winglee, Robert M

    2016-01-01

    The Jovian magnetosphere is complicated by the multiple plasma sources and ion species present within it, as well as fast rotation with its dipole axis titled from its rotational axis. To date global models of Jovian have neglected the presence of the different ion species as well as the tilted nature of the dipole axis. This paper reports the results of the first multi-fluid global modeling of these effects in a single self-consistent study for processes occurring in the outer magnetosphere. In the inner magnetosphere the model densities are shown to be comparable to observed densities with much of the density variables due to the wobble. The wobble enables plasma to be transported to higher latitudes and then centrifugal acceleration leads to radial transport of the plasma. At the interface between the middle and outer magnetosphere, the wobble produces a sinusoidal modulation of the plasma properties, which yields at a fixed observing point two density peaks, each with the planetary period. However, becaus...

  3. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Energy Technology Data Exchange (ETDEWEB)

    Golian, Y.; Dorranian, D., E-mail: d.dorranian@gmail.com [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Aslaninejad, M., E-mail: m.aslaninejad@ipm.ir [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-15

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  4. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Science.gov (United States)

    Golian, Y.; Aslaninejad, M.; Dorranian, D.

    2016-01-01

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  5. Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load

    Science.gov (United States)

    Wang, Yuewu; Wu, Dafang

    2016-10-01

    Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.

  6. Closed-Form Solutions for Free Vibration Frequencies of Functionally Graded Euler-Bernoulli Beams

    Science.gov (United States)

    Chen, W. R.; Chang, H.

    2017-03-01

    The bending vibration of a functionally graded Euler-Bernoulli beam is investigated by the transformed-section method. The material properties of the functionally graded beam (FGB) are assumed to vary across its thickness according to a simple power law. Closed-form solutions for free vibration frequencies of FGBs with classical boundary conditions are derived. Some analytical results are compared with numerical results found in the published literature to verify the accuracy of the model presented, and a good agreement between them is observed.

  7. Truncation effects in computing free wobble/nutation modes explored using a simple Earth model

    Science.gov (United States)

    Seyed-Mahmoud, Behnam; Rochester, Michael G.; Rogers, Christopher M.

    2017-03-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincaré problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode (TOM) is found to excellent accuracy. The computed periods of the Chandler wobble (CW) and free core nutation (FCN) are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble (ICW) is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 ± 1 sd, as more terms are included, with no guarantee that its proximity to earlier values

  8. Truncation effects in computing free wobble/nutation modes explored using a simple Earth model

    Science.gov (United States)

    Seyed-Mahmoud, Behnam; Rochester, Michael G.; Rogers, Christopher M.

    2017-06-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincaré problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode is found to excellent accuracy. The computed periods of the Chandler wobble and free core nutation are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 ± 1 sd, as more terms are included, with no guarantee that its proximity to earlier values is other than fortuitous

  9. Fractional Fourier transform of flat-topped multi-Gaussian beams based on the Wigner distribution function

    Institute of Scientific and Technical Information of China (English)

    Wu Ping; Lü Bai-Da; Chen Tian-Lu

    2005-01-01

    By using the Wigner distribution function, the fractional Fourier transform (FRFT) of flat-topped multi-Gaussian (FTMG) beams is studied. Analytical expressions for the intensity distribution, beam width, far-field divergence angle,M2 factor and K parameter of FTMG beams are derived. The influence of fractional order on transformation properties of FTMG beams in the FRFT plane is illustrated with numerical examples.

  10. Thermoelastic buckling analysis of pre-twisted functionally graded beams with temperature-dependent material properties

    Science.gov (United States)

    Shenas, Amin Ghorbani; Malekzadeh, Parviz; Ziaee, Sima

    2017-04-01

    As a first endeavor, the thermal buckling behavior of pre-twisted functionally graded (FG) beams with temperature-dependent material properties is investigated. The governing stability equations are derived based on the third-order shear deformation theory (TSDT) in conjunction with the adjacent equilibrium state criterion under the von Kármán's nonlinear kinematic assumptions using the Chebyshev-Ritz method. The Chebyshev polynomials multiplied with some suitable boundary functions are used as the basis functions, which allow one to analyze the beams with different boundary conditions. The extracted system of nonlinear algebraic eigenvalue equations is solved iteratively to obtain the critical temperature rise. The convergence behavior together with accuracy of the solution method and the correctness of formulation are demonstrated through different examples. Then, the influences of the linear and nonlinear variation of the angle of twist along the beam axis, the value of twist angle, length-to-thickness ratio, thickness-to-width ratio, material gradient index and temperature dependence of material properties on the critical temperature rise of the pre-twisted FG beams under different boundary conditions are investigated. It is shown that the pre-twist angle increases the thermal buckling resistance of the pre-twisted FG beams, but the temperature dependence of material properties reduces it.

  11. Spatial Phase and Amplitude Structuring of Beams Using a Combination of Multiple Orthogonal Spatial Functions with Complex Coefficients

    CERN Document Server

    Xie, Guodong; Li, Long; Ren, Yongxiong; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Wang, Zhe; Willner, Asher J; Bao, Changjing; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Ashrafi, Solyman; Tur, Moshe; Willner, Alan E

    2016-01-01

    Analogous to time signals that can be composed of multiple frequency functions, we use uniquely structured orthogonal spatial modes to create different beam shapes. We tailor the spatial structure by judiciously choosing a weighted combination of multiple modal states within an orthogonal basis set, and we can tunably create beam phase and intensity "shapes" that are not otherwise readily achievable. As an example shape, we use a series of orbital-angular-momentum (OAM) functions with adjustable complex weights to create a reconfigurable spatial region of higher localized power as compared to traditional beam combining. We simulate a structured beam created by coherently combining several orthogonal OAM beams with different complex weights, and we achieve a >10X localized power density enhancement with 19 beams. Additionally, we can create unique shapes by passing a single beam through a specially designed phase and intensity mask that contains the combination of multiple OAM functions each with complex weigh...

  12. Analytical solution and semi-analytical solution for anisotropic functionally graded beam subject to arbitrary loading

    Institute of Scientific and Technical Information of China (English)

    HUANG DeJin; DING Haodiang; CHEN WeiQiu

    2009-01-01

    Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams sub-ject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress prob-lems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equa-tions satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.

  13. Analytical solution and semi-analytical solution for anisotropic functionally graded beam subject to arbitrary loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load,which can be expanded in terms of sinusoidal series.For plane stress problems,the stress function is assumed to consist of two parts,one being a product of a trigonometric function of the longitudinal coordinate(x) and an undetermined function of the thickness coordinate(y),and the other a linear polynomial of x with unknown coefficients depending on y.The governing equations satisfied by these y-dependent functions are derived.The expressions for stresses,resultant forces and displacements are then deduced,with integral constants determinable from the boundary conditions.While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness,the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness.The present analysis is applicable to beams with various boundary conditions at the two ends.Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters.

  14. Clustered Natural Frequencies in Multi-Span Beams with Constrained Characteristic Functions

    Directory of Open Access Journals (Sweden)

    Khodabakhsh Saeedi

    2011-01-01

    Full Text Available A study of the natural frequencies and mode shapes of a multi-span beam is carried out by introducing constrained beam characteristic functions. The conventional method used for the dynamic analysis of such a beam is to consider span-wise characteristic function solution and then to solve it by using compatibility conditions such as the continuity in the a slope and bending moment at the intermediate supports and boundary conditions at the ends. In the method proposed here, the matrix size is reduced and, if the support conditions are symmetric about the midpoint, the symmetry and anti-symmetry conditions at the midpoint can be conveniently exploited for computational economy. The natural frequencies occur in clusters, each one containing the number of natural frequencies equal to the number of spans. The results are presented and discussed.

  15. Large amplitude free vibration analysis of functionally graded beams using an homogenisation procedure

    Directory of Open Access Journals (Sweden)

    Benamar R.

    2012-07-01

    Full Text Available The purpose of the present paper is to show that the problem of geometrically non linear free vibrations of functionally graded (FG beams with immovable ends can be reduced to that of isotropic homogeneous beams with effective bending stiffness and axial stiffness parameters. The material properties of the functionally graded composites examined are assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the Euler-Bernouilli beam theory and the Von Kármán geometrical nonlinearity assumptions. An homogenization procedure is developed using the governing axial equation of the beam in which the axial inertia and damping are ignored. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results. The non-dimensional curvatures associated to the nonlinear fundamental mode are also given in the case of clamped-clamped FG beams.

  16. Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Univ. of Chicago, IL (United States)

    2017-03-01

    Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.

  17. On the Beam Functions Spectral Expansions for Fourth-Order Boundary Value Problems

    Science.gov (United States)

    Papanicolaou, N. C.; Christov, C. I.

    2007-10-01

    In this paper we develop further the Galerkin technique based on the so-called beam functions with application to nonlinear problems. We make use of the formulas expressing a product of two beam functions into a series with respect to the system. First we prove that the overall convergence rate for a fourth-order linear b.v.p is algebraic fifth order, provided that the derivatives of the sought function up to fifth order exist. It is then shown that the inclusion of a quadratic nonlinear term in the equation does not degrade the fifth-order convergence. We validate our findings on a model problem which possesses analytical solution in the linear case. The agreement between the beam-Galerkin solution and the analytical solution for the linear problem is better than 10-12 for 200 terms. We also show that the error introduced by the expansion of the nonlinear term is lesser than 10-9. The beam-Galerkin method outperforms finite differences due to its superior accuracy whilst its advantage over the Chebyshev-tau method is attributed to the smaller condition number of the matrices involved in the former.

  18. Analytical solution for functionally graded anisotropic cantilever beam subjected to linearly distributed load

    Institute of Scientific and Technical Information of China (English)

    HUANG De-jin; DING Hao-jiang; CHEN Wei-qiu

    2007-01-01

    The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation.The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.

  19. Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly distributed load is investigated, with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem, the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable, from which the stresses can be derived.The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.

  20. An Approximation to the Effective Beam Weighting Function for Scanning Meteorological Radars with an Axisymmetric Antenna Pattern

    National Research Council Canada - National Science Library

    Blahak, Ulrich

    2008-01-01

    ... a simple moving sum of single-beam weighting functions. Assuming a Gaussian shape of a single pulse, a simple and easy-to-use parameterization of the effective beam weighting function is arrived at, which depends only on the single beamwidth and the ratio of the single beamwidth to the rotational angular averaging interval. The derived relation ...

  1. Thermal Buckling and Free Vibration Analysis of Heated Functionally Graded Material Beams

    Directory of Open Access Journals (Sweden)

    Khalane Sanjay Anandrao

    2013-05-01

    Full Text Available The effect of temperature dependency of material properties on thermal buckling and free vibration of functionally graded material (FGM beams is studied. The FGM beam is assumed to be at a uniform through thickness temperature, above the ambient temperature. Finite element system of equations based on the first order shear deformation theory is developed. FGM beam with axially immovable ends having the classical boundary conditions is analysed. An exhaustive set of numerical results, in terms of buckling temperatures and frequencies, is presented, considering the temperature independent and temperature dependent material properties. The buckling temperature and fundamental frequency obtained using the temperature independent material properties is higher than that obtained by using the temperature dependent material properties, for all the material distributions, geometrical parameters in terms of length to thickness ratios and the boundary conditions considered. It is also observed that the frequencies of the FGM beam will reduce with the increase in temperature. This observation is applicable for the higher modes of vibration also. The necessity of considering the temperature dependency of material properties in determining thermal buckling and vibration characteristics of FGM beams is clearly demonstrated.Defence Science Journal, 2013, 63(3, pp.315-322, DOI:http://dx.doi.org/10.14429/dsj.63.2370

  2. An electrostatic lower stator axial-gap polysilicon wobble motor part I: design and modeling

    OpenAIRE

    Legtenberg, Rob; Berenschot, Erwin; Baar, van, J.J.; Elwenspoek, Miko

    1998-01-01

    This paper presents design issues and a theoretical model of electrostatically driven axial-gap polysilicon wobble motors. The motor design benefits from large axial rotor-to-stator overlap and large gear ratios, and motor designs with rotor radii of 50 and 100 ¿m are capable of generating torques in the nanoNewtonmeter range at high electrostatic fields. Because of the large gear ratio, smaller angular steps and lower rotational speed are obtained, compared to radial-gap motor designs. Aspec...

  3. Variable Chandler and Annual Wobbles in Earth's Polar Motion During 1900-2015

    Science.gov (United States)

    Wang, Guocheng; Liu, Lintao; Su, Xiaoqing; Liang, Xinghui; Yan, Haoming; Tu, Yi; Li, Zhonghua; Li, Wenping

    2016-11-01

    The Chandler wobble (CW) and annual wobble (AW) are the two main components of polar motion, which are difficult to separate because of their very close periods. In the light of Fourier dictionary and basis pursuit method, a Fourier basis pursuit (FBP) spectrum is developed, which can reduce spectral smearing and leakage caused by the finite length of the time series. Further, a band-pass filtering method based on FBP spectrum (FBPBPF), which can effectively suppress the edge effect, is proposed in this paper. The simulation test results show that the FBPBPF method can effectively suppress the edge effect caused by spectral smearing and leakage and that its reconstruction accuracy at the boundary is approximately three times higher than the Fourier transform band-pass filtering method, which is based on Hamming windowed FFT spectrum, in extracting quasi-harmonic signals. The FBPBPF method is then applied to Earth's polar motion data during 1900-2015. Through analyzing the amplitude and period variations of CW and AW, and calculating the eccentricity variation of the AW, we found that: (1) the amplitude of the CW is currently at a historic minimum level, and it is even possible to diminish further until a complete stop; and (2) the eccentricity of the AW has a gradually decreased fluctuation during the last 116 years.

  4. Experimental earth tidal models in considering nearly diurnal free wobble of the Earth's liquid core

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on the 28 series of the high precision and high minute sampling tidal gravity observations at 20 stations in Global Geodynamics Project (GGP) network, the resonant parameters of the Earth's nearly diurnal free wobble (including the eigenperiods, resonant strengths and quality factots) are precisely determined. The discrepancy of the eigenperiod between observed and theoretical values is studied, the important conclusion that the real dynamic ellipticity of the liquid core is about 5% larger than the one under the static equilibrium assumption is approved by using our gravity technique. The experimental Earth's tidal gravity models with considering the nearly diurnal free wobble of the Earth's liquid core are constructed in this study. The numerical results show that the difference among three experimental models is less than 0.1%, and the largest discrepancy compared to those widely used nowdays given by Dehant (1999) and Mathews (2001) is only about 0.4%. It can provide with the most recent real experimental tidal gravity models for the global study of the Earth's tides, geodesy and space techniques and so on.

  5. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Hasi, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025-7015 (United States); Oh, A. [The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2013-08-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge.

  6. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Science.gov (United States)

    Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.

    2017-09-01

    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.

  7. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Junkyu [Bio alpha., Co. Ltd., Gimhae (Korea, Republic of)

    2014-05-15

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He{sup +} ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He{sup +} ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft.

  8. Point spread function modeling and images restoration for cone-beam CT

    CERN Document Server

    Zhang, Hua; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection images restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection images restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasib...

  9. Efficient projection and backprojection scheme for spherically symmetric basis functions in divergent beam geometry.

    Science.gov (United States)

    Ziegler, Andy; Köhler, Thomas; Nielsen, Tim; Proksa, Roland

    2006-12-01

    In cone-beam transmission tomography the measurements are performed with a divergent beam of x-rays. The reconstruction with iterative methods is an approach that offers the possibility to reconstruct the corresponding images directly from these measurements. Another approach based on spherically symmetric basis functions (blobs) has been reported with results demonstrating a better image quality for iterative reconstruction algorithms. When combining the two approaches (i.e., using blobs in iterative cone-beam reconstruction of divergent rays) the problem of blob sampling without introducing aliasing must be addressed. One solution to this problem is to select a blob size large enough to ensure a sufficient sampling, but this prevents a high resolution reconstruction, which is not desired. Another solution is a heuristic low-pass filtering, which removes this aliasing, but neglects the different contributions of blobs to the absorption depending on the spatial position in the volume and, therefore, cannot achieve the best image quality. This article presents a model of sampling the blobs which is motivated by the beam geometry. It can be used for high resolution reconstruction and can be implementedefficiently.

  10. Fundamental Frequency Analysis of Sandwich Beams with Functionally Graded Face and Metallic Foam Core

    Directory of Open Access Journals (Sweden)

    Lin Mu

    2016-01-01

    Full Text Available This study is interested in assessing a way to analyze fundamental frequency of sandwich beams with functionally graded face sheet and homogeneous core. The face sheet, which is an exponentially graded material (EGM varying smoothly in the thickness direction only, is composed of a mixture of metal and ceramic. The core which is made of foam metal is homogeneous. The classical plate theory (CPT is used to analyze the face sheet and a higher-order theory (HOT is used to analyze the core of sandwich beams, in which both the transverse normal and shear strains of the core are considered. The extended Galerkin method is used to solve the governing equations to obtain the vibration equations of the sandwich beams suitable for numerical analysis. The fundamental frequency obtained by the theoretical model is validated by using the finite element code ABAQUS and comparison with earlier works. The influences of material and geometric properties on the fundamental frequency of the sandwich beams are analyzed.

  11. The effects of wobble board training on the eyes open and closed static balance ability of adolescents with down syndrome.

    Science.gov (United States)

    Park, Tae-Jin

    2014-04-01

    [Purpose] The aim of the present study was to examine the influence of wobble board training on static balance, with and without vision, of adolescents with Down syndrome (DS). [Subjects] Ten adolescents with DS were recruited for this study. [Methods] Participants performed quiet standing with their eyes open and closed, pre- and post-wobble board training. During quiet standing, the center of pressure (COP) data was recorded using a force plate. To assess the static balance ability of the participants, the 95% confidence ellipse area of COP was calculated. The paired t-test was used to compare the 95% confidence ellipse area of COP between the eyes open and closed conditions, and between pre- and post-training. [Results] Although there was no significant difference in the 95% confidence ellipse area of COP between with and without vision, the 95% confidence ellipse area of COP decreased significantly after wobble board training. [Conclusion] These findings suggest that wobble board training is an effective at improving the static balance ability of adolescents with DS.

  12. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam

    Science.gov (United States)

    Azimi, Majid; Mirjavadi, Seyed Sajad; Shafiei, Navvab; Hamouda, A. M. S.

    2017-01-01

    The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton's principle. The small-scale effect has been considered using the nonlocal Eringen's elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are cantilever type of boundary conditions. Presented numerical results are validated by comparing the obtained results with the published results in the literature. The influences of the nonlocal small-scale parameter, angular velocity, hub radius, FG index and also thermal effects on the frequencies of the FG nanobeams are investigated in detail.

  13. Finite Element Modeling and Free Vibration Analysis of Functionally Graded Nanocomposite Beams Reinforced by Randomly Oriented Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Benedict Thomas

    2013-12-01

    Full Text Available This article deals with the finite element modeling and free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs. Nanostructural materials can be used to alter mechanical, thermal and electrical properties of polymer-based composite materials, because of their superior properties and perfect atom arrangement. Timoshenko beam theory is used to evaluate dynamic characteristics of the beam. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. The equations of motion are derived by using Hamilton’s principle. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. Different SWCNTs distributions in the thickness direction are introduced to improve fundamental natural frequency and dynamic behavior of uniform functionally graded nanocomposite beam. Results are presented in tabular and graphical forms to show the effects of various material distributions, carbon nanotube orientations, shear deformation, slenderness ratios and boundary conditions on the dynamic behavior of the beam. The first five normalized mode shapes for functionally graded carbon nanotube reinforced composite (FG-CNTRC beams with different boundary conditions and different carbon nanotubes (CNTs orientation are presented. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam.

  14. The Arecibo Dual-Beam Survey The HI Mass Function of Galaxies

    CERN Document Server

    Schneider, S E; Schneider, Jessica L. Rosenberg & Stephen E.

    2002-01-01

    We use the HI-selected galaxy sample from the Arecibo Dual-Beam Survey (Rosenberg & Schneider 2000) to determine the shape of the HI mass function of galaxies in the local universe using both the step-wise maximum likelihood and the 1/V_tot methods. Our survey region spanned all 24 hours of right ascension at selected declinations between 8 and 29 degrees covering ~430 deg^2 of sky in the main beam. The survey is not as deep as some previous Arecibo surveys, but it has a larger total search volume and samples a much larger area of the sky. We conducted extensive tests on all aspects of the galaxy detection process, allowing us to empirically correct for our sensitivity limits, unlike the previous surveys. The mass function for the entire sample is quite steep, with a power-law slope of \\alpha ~ -1.5. We find indications that the slope of the HI mass function is flatter near the Virgo cluster, suggesting that evolutionary effects in high density environments may alter the shape of the HI mass function. The...

  15. Simulation on control of beam halo-chaos by power function in the hackle periodic-focusing channel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We also find that the radial particle density evolvement is of uniformity at the beam's centre as long as appropriate paramours are chosen.

  16. Broad-area and MOPA lasers with integrated grating components for beam shaping and novel functions

    Science.gov (United States)

    Suhara, Toshiaki; Uemukai, Masahiro; Shimada, Naoyuki; Larsson, Anders

    2003-07-01

    The work of the authors' group on monolithic integrated in-plane semiconductor lasers using grating components are reviewed and the recent development is reported. The grating components provide not only feedback for lasing but also novel functions such as output beam shaping and wavelength tuning. The design and fabrication of the grating components in semiconductor waveguide are outlined, and the area-selective quantum-well disordering by impurity-free vacancy diffusion is described as an effective technique to reduce the absorption loss in the passive waveguide. Then, device description, design, fabrication and experimental results of integrated master oscillator power amplifier (MOPA) lasers, high-power tunable extended-cavity lasers, and a broad-area angled-grating distributed Bragg reflector (DBR) lasers using InGaAs/AlGaAs GRIN-SCH-SQW structures are presented. All the lasers have integrated beam forming grating coupler, and allow implementation of compact and stable lensless modules that emit a collimated output beam.

  17. Spinning Dust Emission from Wobbling Grains: Important Physical Effects and Implications

    CERN Document Server

    Hoang, Thiem

    2012-01-01

    We review major progress on the modeling of electric dipole emission from rapidly spinning tiny dust grains, including polycyclic aromatic hydrocarbons (PAHs). We begin by summarizing the original model of spinning dust proposed by Draine and Lazarian and recent theoretical results improving the Draine and Lazarian model. The review is focused on important physical effects that were disregarded in earlier studies for the sake of simplicity and recently accounted for by us, including grain wobbling due to internal relaxation, impulsive excitation by single-ion collisions, the triaxiality of grain shape, charge fluctuations, and the turbulent nature of astrophysical environments. Implications of the spinning dust emission for constraining physical properties of tiny dust grains and environment conditions are discussed. We discuss the alignment of tiny dust grains and possibility of polarized spinning dust emission. Suggestions for constraining the alignment of tiny grains and polarization of spinning dust emiss...

  18. Stochastic Wobble of Accretion Discs and Jets from Turbulent Rocket Torques

    CERN Document Server

    Pettibone, Ryan

    2008-01-01

    Models of accretion discs and their associated outflows often incorporate assumptions of axisymmetry and symmetry across the disc plane. However, because discs are likely turbulent, these symmetries do not apply locally. The local asymmetry may induce local imbalances in outflow power across the disc mid-plane, which can in turn induce local tilting torques. Here we calculate the effect of the resulting stochastic torques on disc annuli. The torques induce a random walk of the vector perpendicular to the plane of each averaged annulus. This random walk is characterized by a radially dependent diffusion coefficient. We calculate the diffusion coefficient for small angle tilt and use it to obtain a radially dependent time scale for annular tilt and associated jet wobble. To be relevant, the tilt time scale must be less than the disc age, which favors binary accretion systems due to the prolonged mass supply. Accordingly, in crudely applying our results to blazars, young stellar objects and the binary engines of...

  19. The Chandler wobble as a trigger of the El Niño excitation

    Science.gov (United States)

    Serykh, Ilya; Sonechkin, Dmitry

    2014-05-01

    Using data of the Met Office Hadley Centre, time series of the near surface temperature and sea-surface pressure for the period 1875-2012 are processed to compute the Oceanic Niño Index (ONI) and the Equatorial Southern Oscillation Index (ESOI). Detailed spectra of the ONI and ESOI show peaks that exist throughout the year, but the most powerful in the boreal winter months. Peak periods are consist of 29, 43 and 58 months, which is roughly equivalent to 2, 3 and 4 periods of the well-known 14-month Chandler wobble of the Earth's pole motion. A plausible physical mechanism of the Chandler wobble influence on the El Niño excitation is presented. A computation of the global fields of the spectral energy at each of the periods afore-indicated admits to identify some distinctive features of the spatial structure of the most powerful disturbances during El Niño. Detailed spectra of the El Niño Modoki Index (EMI) computed for each month separately show differences between main oscillations of El Niño Modoki and classic El Niño. Besides, computations are made of cross-correlations and lead/lag interrelations between El Niño and some other processes in the global climate system for all afore-indicated periods. Some regions are identified for which the cross-correlations are essential, but the processes being considered either lead or lag El Niño. This finding admits to suppose that there exists an external force common for both, El Niño and other macroscale climatic processes.

  20. Analysis of the proximity function in electron-beam lithography on high-? superconducting thin-films

    Science.gov (United States)

    Gueorguiev, Y. M.; Vutova, K. G.; Mladenov, G. M.

    1996-07-01

    In this paper we approximate by the combination of double Gaussian and exponential functions the radial distributions of the absorbed electron energy density in a 125 nm PMMA resist layer on 0953-2048/9/7/009/img2 thin-film/substrate targets obtained by means of Monte Carlo simulation for a zero-width 0953-2048/9/7/009/img3-function and the following variables (i) the substrate material (0953-2048/9/7/009/img4 and MgO), (ii) the electron beam energy 0953-2048/9/7/009/img5 (25, 50 and 75 keV) and (iii) the 0953-2048/9/7/009/img2 film thickness d (0, 100, 200 and 300 nm). The values of the parameters of the analytical function are calculated using an original Monte Carlo technique. These values are presented in the form of 3D diagrams which show their dependences on beam energy and on high-temperature superconducting film thickness and can also be used for approximate determination of the parameters at different initial conditions.

  1. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents.

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-11-29

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  2. Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, A. V.; Pavlov, S. P.; Zhigalov, M. V.; Krysko, V. A.

    2017-09-01

    Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf's, Rosenstein's, Kantz's, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.

  3. A Modified Beam Propagation Method Based on the Galerkin Method with Hermite-Gauss Basis Functions

    Institute of Scientific and Technical Information of China (English)

    Xiao Jinbiao; Liu Xu; Cai Chun; Fan Hehong; Sun Xiaohan

    2006-01-01

    A beam propagation method based on the Galerkin method with Hermite-Gauss basis functions for studying optical field propagation in weakly guiding dielectric structures is described. The selected basis functions naturally satisfy the required boundary conditions at infinity so that the boundary truncation is avoided. The paraxial propagation equation is converted into a set of first-order ordinary differential equations,which are solved by means of standard numerical library routines. Besides, the calculation is efficient due to its small resulted matrix. The evolution of the injected field and its normalized power along the propagation distance in an asymmetric slab waveguide and directional coupler are presented, and the solutions are good agreement with those obtained by finite difference BPM, which tests the validity of the present approach.

  4. Optical recording in functional polymer nanocomposites by multi-beam interference holography

    Science.gov (United States)

    Zhuk, Dmitrij; Burunkova, Julia; Kalabin, Viacheslav; Csarnovics, Istvan; Kokenyesi, Sandor

    2017-05-01

    Our investigations relate to the development of new polymer nanocomposite materials and technologies for fabrication of photonic elements like gratings, integrated elements, photonic crystals. The goal of the present work was the development and application of the multi-beam interference method for one step, direct formation of 1-, 2- or even 3D photonic structures in functional acrylate nanocomposites, which contain SiO2 and Au nanoparticles and which are sensitized to blue and green laser illumination. The presence of gold nanoparticles and possibility to excite plasmonic effects can essentially influence the polymerization processes and the spatial redistribution of nanoparticles in the nanocomposite during the recording. This way surface and volume phase reliefs can be recorded. It is essential, that no additional treatments of the material after the recording are necessary and the elements possess high transparency, are stable after some relaxation time. New functionalities can be provided to the recorded structures if luminescent materials are added to such materials.

  5. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem

    2011-05-20

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  6. Effects of source and receiver locations in predicting room transfer functions by a phased beam tracing method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2012-01-01

    The accuracy of a phased beam tracing method in predicting transfer functions is investigated with a special focus on the positions of the source and receiver. Simulated transfer functions for various source-receiver pairs using the phased beam tracing method were compared with analytical Green......’s functions and boundary element solutions up to the Schroeder frequency in simple rectangular rooms with different aspect ratios and absorptions. Only specular reflections were assumed and diffraction was neglected. Three types of error definitions were used: average error level over a narrow band spectrum...

  7. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  8. Vibration analysis of nonlocal beams made of functionally graded material in thermal environment

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-08-01

    In this paper, thermal vibration behavior of functionally graded (FG) nanobeams exposed to various kinds of thermo-mechanical loading including uniform, linear and non-linear temperature rise embedded in a two-parameter elastic foundation are investigated based on third-order shear deformation beam theory which considers the influence of shear deformation without the need to shear correction factors. Material properties of FG nanobeam are supposed to be temperature-dependent and vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predicts correctly the vibration responses of FG nanobeams. The influences of some parameters including gradient index, nonlocal parameter, mode number, foundation parameters and thermal loading on the thermo-mechanical vibration characteristics of the FG nanobeams are presented.

  9. Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs.

    Science.gov (United States)

    Biswas, R; Wahl, M C; Ban, C; Sundaralingam, M

    1997-04-18

    The crystal structure of the RNA duplex, r(GUAUGUA)dC, with a 3'-terminal deoxy C residue, has been determined at 1.38 A resolution. The r(GUAUGU) hexameric consensus sequence is present at the exon-intron junction in pre-mRNAs of yeast and higher eukaryotic organisms. The crystal belongs to the rhombohedral space group R3. The hexagonal unit cell dimensions are a = b = 39.71 A, c = 68.15 A and gamma = 120 degrees with one duplex in the asymmetric unit. The structure was solved using the molecular replacement method. The final model contains 332 atoms of the duplex and 67 solvent molecules. The R-factor is 17.6% (Rfree of 23.1%) for 4035 reflections with F > or = 1.5sigma(F) in the resolution range 10.0 to 1.38 A. The duplex is of the A-type with a pseudodyad relating the two strands. The RNA helix is slightly distorted, in spite of the presence of two adjacent G x U wobble base-pairs located at the center of the helix. The twist angle between the wobble pairs, 38.1 degrees, is above the average value and those between the wobble base-pairs and the flanking Watson-Crick base-pairs, 26.7 degrees and 26.3 degrees, respectively, are lower than the average values. The twist between the junction base-pairs are about 24 degrees. The G x U wobble pairs are bridged by water molecules and solvated in the grooves. G x U base-pairs are as stable as the Watson-Crick A x U pairs and only slightly less stable than the G x C pairs accounting for their frequent occurrence in RNA.

  10. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C.

  11. Geometric nonlinear free vibration of axially functionally graded non-uniform beams supported on elastic foundation

    Science.gov (United States)

    Lohar, Hareram; Mitra, Anirban; Sahoo, Sarmila

    2016-09-01

    In the present study non-linear free vibration analysis is performed on a tapered Axially Functionally Graded (AFG) beam resting on an elastic foundation with different boundary conditions. Firstly the static problem is carried out through an iterative scheme using a relaxation parameter and later on the subsequent dynamic problem is solved as a standard eigen value problem. Minimum potential energy principle is used for the formulation of the static problem whereas for the dynamic problem Hamilton's principle is utilized. The free vibrational frequencies are tabulated for different taper profile, taper parameter and foundation stiffness. The dynamic behaviour of the system is presented in the form of backbone curves in dimensionless frequency-amplitude plane.

  12. Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the concept of functionally graded concrete,UHTCC(ultrahigh toughness cementitious composites)material with excellent crack-controlling ability is strategically substituted for part of the concrete,which surrounds the main longitudinal reinforcement in a reinforced concrete member.Investigations on bending behavior of such a functionally graded composite beam crack-controlled by UHTCC(abbreviated as UHTCC-FGC beam)have been carried out.After establishing a theoretical cal-culation model,the paper discusses the results of four-point bending experiment on long composite beams without web reinforcement,and validates the theoretical formulae through experimental results of UHTCC-FGC beams with different thicknesses of UHTCC layer.Besides improving bearing capacity and saving steel reinforcements,the results indicate that UHTCC-FGC beams can also effectively control the deformation and enhance the ductility of members.At last,the optimal thickness of UHTCC layer in UHTCC-FGC beams has been confirmed,which can not only save materials and improve mechanical performance of members,but also be very effective in preventing corrosion-induced damage and enhancing the durability of members by controlling crack width below 0.05mm under service conditions.

  13. Ion and electron beam effects on kinetic Alfven wave with general loss-cone distribution function-kinetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Nidhi; Mishra, Ruchi; Varma, P; Tiwari, M S [Department of Physics and Electronics, Dr H S Gour University, Sagar (MP) 470003 (India)

    2008-02-15

    This work studies the effect of ion and electron beam on kinetic Alfven wave (KAW) with general loss-cone distribution function. The kinetic theory has been adopted to evaluate the dispersion relation and damping rate of the wave in the presence of loss-cone distribution indices J. The variations in wave frequency {omega} and damping rate with perpendicular wave number k{sub perpendicular}{rho}{sub i} (k{sub perpendicular} is perpendicular wave number and {rho}{sub i} is ion gyroradius) and parallel wave number k{sub parallel} are studied. It is found that the distribution index J and ion beam velocity enhance the wave frequency at lower k{sub perpendicular}{rho}{sub i}, whereas the electron beam velocity enhances the wave frequency at higher k{sub perpendicular}{rho}{sub i}. The calculated values of frequency correspond to the observed values in the range 0.1-4 Hz. Increase in damping rate due to higher distribution indices J and ion beam velocity is observed. The effect of electron beam is to reduce the damping rate at higher k{sub perpendicular}{rho}{sub i}. The plasma parameters appropriate to plasma sheet boundary layer are used. The results may explain the transfer of Poynting flux from the magnetosphere to the ionosphere. It is also found that in the presence of the loss-cone distribution function the ion beam becomes a sensitive parameter to reduce the Poynting flux of KAW propagating towards the ionosphere.

  14. Creep functions of dental ceramics measured in a beam-bending viscometer.

    Science.gov (United States)

    DeHoff, Paul H; Anusavice, Kenneth J

    2004-03-01

    To characterize the high temperature viscoelastic properties of several dental ceramics by the determination of creep functions based on mid-span deflections measured in a beam-bending viscometer (BBV). Six groups of beam specimens (58 x 5.5 x 2.5 mm) were made from the following materials: (1) IPS Empress2 body--a glass veneer ceramic (E2V); (2) an experimental glass veneer (EXV); (3) Vita VMK 68 feldspathic body porcelain--a low-expansion body porcelain (VB); (4) Will-Ceram feldspathic body porcelain--a high-expansion body porcelain (WCB); (5) Vita feldspathic opaque porcelain--a medium-expansion opaque porcelain (VO); and (6) Will-Ceram feldspathic opaque porcelain--a high-expansion opaque porcelain (WCO). Midpoint deflections for each specimen were measured in a BBV under isothermal conditions at furnace temperatures ranging from 450 to 675 degrees C. Non-linear regression and linear regression analyses were used to determine creep functions and shear viscosities, respectively, for each material at each temperature. The shear viscosities of each group of dental ceramics exhibited bilinear Arrhenius behavior with the slope ratios (x) ranging from 0.19 for WCB to 0.71 for EXV. At the higher temperature ranges, activation energies ranged from 363 kJ/mol for VO to 386 kJ/mol for E2V. The viscoelastic properties of dental ceramics at high temperatures are important factors in understanding how residual stresses develop in all-ceramic and metal-ceramic dental restorations.

  15. Static Analysis of Functionally Graded Piezoelectric Beams under Thermo-Electro-Mechanical Loads

    Directory of Open Access Journals (Sweden)

    Amin Komeili

    2011-01-01

    Full Text Available This paper presents the analysis of static bending of beams made of functionally graded piezoelectric materials (FGPMs under a combined thermo-electro-mechanical load. The Euler Bernoulli theory (EBT, first-order shear deformation theory (FSDT and third-order shear deformation theory (TSDT were employed to compare the accuracy and the reliability of each theory in applications. The material properties vary continuously through the thickness direction. The material compositions were selected from the PZT family. The governing equations were derived from Hamilton's principle and solved using the finite element method and Fourier series method. Cubic Hermit interpolation shape function was used for estimating the transverse deflection, and the linear interpolation function was used for the axial displacement and the shear rotation as well. Fourier series expansion, based on the boundary conditions, were employed to solve the governing equations analytically. The accuracy of the method was validated by comparing the results with the previous studies. Finite element results were compared with the analytical results presented in this paper. A comprehensive parametric study is conducted to show the influence of the voltage, shear deformation, material composition, end supports, and the slenderness ratio on the thermo-electro-mechanical characteristic.

  16. Microscopic nuclear structure models and methods : Chiral symmetry, Wobbling motion and $\\gamma-$bands

    CERN Document Server

    Sheikh, J A; Dar, W A; Jehangir, S; Ganai, P A

    2015-01-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $\\gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $\\gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $\\gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $\\gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $\\gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chira...

  17. The innermost regions of the jet in NRAO 150. Wobbling or internal rotation?

    CERN Document Server

    Molina, Sol N; Gómez, J L

    2013-01-01

    NRAO 150 is a very bright millimeter to radio quasar at redshift $z$=1.52 for which ultra-high-resolution VLBI monitoring has revealed a counter-clockwise jet-position-angle wobbling at an angular speed $\\sim11^{\\circ}$/yr in the innermost regions of the jet. In this paper we present new total and linearly polarized VLBA images at 43 GHz extending previous studies to cover the evolution of the jet in NRAO 150 between 2006 and early 2009. We propose a new scenario to explain the counter-clockwise rotation of the jet position angle based on a helical motion of the components in a jet viewed faced-on. This alternative scenario is compatible with the interpretation suggested in previous works once the indetermination of the absolute position of the self-calibrated VLBI images is taken into account. Fitting of the jet components motion to a simple internal rotation kinematical model shows that this scenario is a likely alternative explanation for the behavior of the innermost regions in the jet of NRAO 150.

  18. Ion-beam and microwave-stimulated functionalization and derivatization of carbon nanotubes

    Science.gov (United States)

    Makala, Raghuveer S.

    Derivatizing carbon nanotubes (CNTs) with other low-dimensional nanostructures is of widespread interest for creating CNT-based nanocomposites and devices. Conventional routes based on wet-chemical oxidation or hydrophobic adsorption do not allow premeditated control over the location or spatial extent of functionalization. Moreover, aggressive oxidative treatments and agitation in corrosive environments lead to CNT shortening, damage, and incorporation of excess impurity concentrations. Thus, it is imperative to explore and develop alternative functionalization methods to overcome these shortcomings. The work presented in this thesis outlines two such methodologies: one based on focused ion irradiation for siteselective functionalization and the other that employs microwave-stimulation for mild, yet rapid and homogenous CNT functionalization. The utility of 10 and 30 kcV Ga+ focused ion beams (FIB) to thin, slice, weld, and alter the structure and composition at precise locations along the CNT axis is presented. This strategy of harnessing ion-beam-induced defect generation and doping is attractive for modulating chemical and electrical properties along the CNT length, and fabricate CNT-based heterostructures and networks. A novel approach that utilizes focused ion irradiation to site-selectively derivatize preselected segments of CNTs with controlled micro-/nano-scale lateral spatial resolution is demonstrated. Irradiation followed by air-exposure results in functionalized CNT segments ranging from the nanoscopic to the macroscopic scale. The functional moieties are utilized to site-selectively anchor Au nanoparticles, fluorescent nanospheres, an amino acid---lysine, a charge-transfer metalloprotein---azurin, and a photoactive protein---bacteriorhodopsin by means of electrostatic or covalent interactions. This approach is versatile and can be extended to obtaining other molecular moieties and derivatives opening up possibilities for building new types of nano

  19. Control of Beam Halo-Chaos by Fraction Power-Law Function in Hackle Periodic-Focusing Channel

    Institute of Scientific and Technical Information of China (English)

    YU Hai-Jun; BAI Long; WENG Jia-Qiang; LUO Xiao-Shu; FANG Jin-Qing

    2008-01-01

    The Kapehinsky-Vladimirsky (K-V) beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and an idea of fraction power-law function controller is proposed based on the mechanism of halo formation and the strategy of controlling halo-chaos. The method is applied to the multi-particle simulation to control the halo. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively by using the fraction power-law function control method. At the same time, the radial particle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.

  20. Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores.

    Science.gov (United States)

    Freedman, Kevin J; Goyal, Gaurav; Ahn, Chi Won; Kim, Min Jun

    2017-05-10

    The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focused until a desired pore size is obtained. E-beam sculpting of graphene however is not just dependent on the ability to displace atoms but also the ability to hinder the migration of ad-atoms on the surface of graphene. Using relatively lower e-beam fluxes from a thermionic electron source, the C-atom knockout rate seems to be comparable to the rate of carbon ad-atom attraction and accumulation at the e-beam/graphene interface (i.e., Rknockout ≈ Raccumulation). Working at this unique regime has allowed the study of carbon ad-atom migration as well as the influence of various substrate materials on e-beam sculpting of graphene. We also show that this information was pivotal to fabricating functional graphene nanopores for studying DNA with increased spatial resolution which is attributed to atomically thin membranes.

  1. Two-Loop Beam and Soft Functions for Rapidity-Dependent Jet Vetoes

    CERN Document Server

    Gangal, Shireen; Stahlhofen, Maximilian; Tackmann, Frank J

    2016-01-01

    Jet vetoes play an important role in many analyses at the LHC. Traditionally, jet vetoes have been imposed using a restriction on the transverse momentum $p_{Tj}$ of jets. Alternatively, one can also consider jet observables for which $p_{Tj}$ is weighted by a smooth function of the jet rapidity $y_j$ that vanishes as $|y_j| \\to \\infty$. Such observables are useful as they provide a natural way to impose a tight veto on central jets but a looser one at forward rapidities. We consider two such rapidity-dependent jet veto observables, $\\mathcal{T}_{Bj}$ and $\\mathcal{T}_{Cj}$, and compute the required beam and dijet soft functions for the jet-vetoed color-singlet production cross section at two loops. At this order, clustering effects from the jet algorithm become important. The dominant contributions are computed fully analytically while corrections that are subleading in the limit of small jet radii are expressed in terms of finite numerical integrals. Our results enable the full NNLL' resummation and are an ...

  2. Validity of quadratic two-source spherical wave structure functions in analysis of beam propagation through generalized atmospheric turbulence

    Science.gov (United States)

    Chen, Chunyi; Yang, Huamin; Kavehrad, Mohsen; Tong, Shoufeng; Li, Yanfang

    2014-12-01

    Two distinct methods based on which two different quadratic-form expressions for the two-source spherical wave structure function (WSF) can be derived are reviewed. The validity of closed-form expressions for the beam-wave cross-spectral density function (CSDF) due to generalized atmospheric turbulence featuring an arbitrary spectral index ranging from 3 to 4, developed based on the quadratic two-source spherical WSFs, is examined in detail. New formulations for the conditions under which the said closed-form expressions for the beam-wave CSDF are strictly valid are developed and several novel interesting findings are elucidated. In particular, the closed-form beam-wave CSDF derived based on the small-separation asymptotic two-source spherical WSF can be considered a rigorous asymptotic solution under the strong-turbulence condition only when the separation distance between the two observation points is much smaller than the inner scale of turbulence; moreover it is also a rigorous asymptotic solution when a certain relation among the initial beam radius, initial transverse coherence width and inner scale holds, regardless of the turbulence strength and spectral index. On the other hand, the accuracy of the closed-form beam-wave CSDF derived based on the large-separation-approximation two-source spherical WSF depends on the spectral index, and a spectral index closer to 4 results in better accuracy.

  3. Free Transverse Vibration Analysis of Axially Functionally Graded Tapered Euler-Bernoulli Beams through Spline Finite Point Method

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-01-01

    Full Text Available A new model for the free transverse vibration of axially functionally graded (FG tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.

  4. Functional imaging with electron-beam computed tompgraphy; Funktionsuntersuchungen des Herzens mit der Elektronenstrahltomographie

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A.; Knez, A.; Haberl, R.; Steinbeck, G. [Medizinische Klinik 1, Klinikum Grosshadern, Muenchen Univ. (Germany); Becker, C.; Bruening, R.; Reiser, M. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Muenchen Univ. (Germany)

    1998-12-01

    Purpose: Electron-beam computed tomography (EBCT) enables examinations with a very short acquisition time of 50 ms and thus permits cardiac imaging without motion artifacts. Utilizing eight detector rings simultaneous image acquisition in up to eight levels and complete imaging of the whole heart is possible. In studies, functional imaging with EBCT was compared to our angiocardiography, echocardiography, radionuclide, ventriculography and magnetic resonance tomography. Results: A very high correlation between EBCT and direct determination of right and left ventricle (r=0.98 and r=0.99) was demonstrated. Compared to echocardiography, angiocardiography and radionuclide ventriculography, assessment of ventricular function was more precise and more reliable. Discussion: EBCT allows the exact and reliable determination of left and right ventricular function. Also precise assessment of myocardial mass is possible. However, the high radiation exposure and diagnostic effort have to be considered. (orig./AJ) [Deutsch] Zielsetzung: Die Elektronenstrahltomographie ermoeglicht Aufnahmen mit einer aeusserst kurzen Akquisitionszeit von 50 ms. Dadurch erfolgt die artefaktfreie Abbildung des Herzens. Zudem ist mit 2 Detektorringen die simultane Bildakquisition in bis zu 8 Schichten und damit die vollstaendige Abbildung des Herzens moeglich. Wir haben die EBCT mit Angiokardiographie, Echokardiographie, Radionuklidventrikulographie und Magnetresonanztomographie zur Beurteilung von Ventrikelgroesse, Pumpfunktion und Myokardmasse verglichen. Ergebnisse: Es zeigte sich eine sehr gute Korrelation der EBCT mit der direkten Bestimmung der rechten und linken Ventrikelgroesse (r=0,98 und r=0,99). Im Vergleich zu Echokardiographie, Angiokardiographie und Radionuklidventrikulographie ermoeglichte die EBCT eine genauere und zuverlaessigere Bestimmung der ventrikulaeren Funktion. Diskussion: Mit der EBCT kann die rechts- und linksventrikulaere Funktion exakt und zuverlaessig beurteilt werden

  5. Nonlinear Dynamic Analysis of Functionally Graded Timoshenko Beam fixed to a Rotating Hub

    Science.gov (United States)

    Panigrahi, B.; Pohit, G.

    2016-08-01

    The present work accounts centrifugal stiffening effect on the nonlinear vibration response of an FGM Timoshenko beam. Analysis is carried out for a cantilever beam fixed with a rotating hub. Material is assumed to have a gradation relation along the depth of the beam. Centrifugal force and axial displacement raised due to the rotating hub is incorporated in the strain energy equations. Subsequent to this, an iterative technique is employed to obtain amplitude dependent vibration response of a rotating Timoshenko beam while material follows a gradation relation along the beam depth. Main objective of the work is to obtain the effects of rotational speeds, hub radius, and different gradation relations on the linear as well as nonlinear frequencies and mode shapes.

  6. Steady state response of functionally graded nano-beams resting on viscous foundation to super-harmonic

    Directory of Open Access Journals (Sweden)

    Sima Ziaee

    2016-09-01

    Full Text Available This article attempts to investigate the effects of small scale parameter on steady state response of functionally graded nano-beams resting on a viscous foundation to super-harmonic excitation. A simple power-law distribution is used to model the variation of material property graded in the thickness direction. The dimensionless partial differential equation of motion is derived by using Euler-Bernoulli beam theory, von-Karman geometric nonlinearity and Eringen’s nonlocal elasticity theory. Using multiple scale method, one can find the governing equations of steady state response of functionally graded nano-beams excited by distributed harmonic force. The small scale parameter (e0a is changed between 0 and 2 to investigate the effects of small scale on steady state response of excited functionally graded nano-beams due to lack of information. The study of the effects of small scale parameter on backbone curves shows that an increase in the small scale parameter often decreases the dimensionless peak response although the type of loading can change the relationship between small scale parameter and the dimensionless peak response.

  7. Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Ultrahigh toughness cementitious composites (UHTCC) obviously show strain hardening property under tensile or bending loading. The failure pattern of the UHTCC components exhibits multiple fine cracks under uniaxial tensile loading with prominent tensile strain capacity in excess of 3%, with merely 60 μm average crack width even corresponding to the ultimate tensile strain state. The approach adopted is based on the concept of functionally-graded concrete, where part of the concrete, which surrounds the main longitudinal reinforcement in a RC (reinforced concrete) member, is strategically replaced with UHTCC with excellent crack-controlling ability. Investigations on bending behavior of functionally-graded composite beam crack controlled by UHTCC has been carried out, including theo- retical analysis, experimental research on long composite beams without web reinforcement, validation and comparison between experimental and theoretical results, and analysis on crack control. In addition to improving bearing capacity, the results indicate that functionally-graded composite beams using UHTCC has been found to be very effective in preventing corrosion-induced damage compared with RC beams. Therefore, durability and service life of the structure could be enhanced. This paper discusses the development of internal force and crack propagation during loading process, and presents analysis of the internal force in different stages, moment-curvature relationship from loading to damage and calculation of mid-span deflection and ductility index. In the end, the theoretical formulae have been validated by experimental results.

  8. Electrostatics Explains the Position-Dependent Effect of G⋅U Wobble Base Pairs on the Affinity of RNA Kissing Complexes.

    Science.gov (United States)

    Abi-Ghanem, Josephine; Rabin, Clémence; Porrini, Massimiliano; Dausse, Eric; Toulmé, Jean-Jacques; Gabelica, Valérie

    2017-07-31

    In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A static analysis of three-dimensional functionally graded beams through hierarchical one-dimensional finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Giunta, G.; Belouettar, S. [Centre de Recherche Public Henri Tudor, 29, av. John F. Kennedy, L-1855, Luxembourg-Kirchberg, Luxembourg (Belgium)

    2015-03-10

    In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigations show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.

  10. 用Timoshenko梁修正理论研究功能梯度材料梁的动力响应%Dynamic responses of a beam with functionally graded materials with Timoshenko beam correction theory

    Institute of Scientific and Technical Information of China (English)

    吴晓; 罗佑新

    2011-01-01

    The dynamic response of a beam with functionally graded materials was studied with Timoshenko beam correction theory. The neutral plane site of the beam with functionally graded materials was determined with the static equilibrium equations, and the vibration equations of the beam with functionally graded materials were established with Timoshenko beam correction theory, the expression for the natural frequencies of the beam with functionally graded materials and the analytical solution to forced vibration of the beam under the action of harmonic load were obtained. The effect of neutral plane site and gradient index on the dynamic responses of the beam were discussed, and Timoshenko beam correction theory was verified with finite element method. Analysis of examples indicated that the neutral plane site has larger influence on the dynamic responses of the beam with functionally graded materials.%采用Timoshenko梁修正理论研究了功能梯度材料梁的动力响应问题,利用静力方程确定了功能梯度材料梁的中性轴位置,在此基础上应用Timoshenko梁修正理论建立了功能梯度材料梁的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.分析了中性面位置、梯度指数等因素对功能梯度材料梁的动力响应的影响,并用有限元法验证Timoshenko梁修正理论.通过实例计算,得到了中性轴位置对功能梯度材料梁动力响应有较大影响.

  11. From Bessel beam to complex-source-point cylindrical wave-function

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2015-04-15

    This investigation shows that a scalar Bessel beam can be transformed into the non-paraxial complex-source-point cylindrical wave (CSPCW). High-order CSPCW solutions, termed here high-order quasi-Gaussian cylindrical beams, which exactly satisfy the Helmholtz equation, are derived analytically. Moreover, partial-derivatives of the high-order CSPCW solutions satisfy the Helmholtz equation. In addition, the CSPCW solutions satisfy the nonrelativistic Schrödinger equation within standard quantum mechanics, thus, the results can be used in the description of elementary particle/matter motion and related applications in quantum scattering theory. Furthermore, the analysis is extended to the case of vector beams in which the components of the electromagnetic (EM) field are obtained based on different polarizations of the magnetic and electric vector potentials, which exactly satisfy Maxwell’s vectorial equations and Lorenz’ gauge condition. An attractive feature of the high-order solutions is the rigorous description of strongly focused (or strongly divergent) cylindrical wave-fields without any approximations, nor the need for numerical methods. Possible applications are in beam-forming design using high-aperture or collimated cylindrical laser/electron quasi-Gaussian beams in imaging microscopy, particle manipulation, optical tweezers, and the study of the scattering, and radiation forces on objects. - Highlights: • Bessel beam is transformed into the non-paraxial cylindrical complex-source-point. • Exact high-order tightly focused solutions are derived without any approximations. • The exact solutions also satisfy the nonrelativistic Schrödinger equation. • Electromagnetic beams are obtained as solutions of Maxwell’s vectorial equations. • Applications are in laser/electron beam imaging, tweezers, and radiation force.

  12. Active vibration control of functionally graded beams with piezoelectric layers based on higher order shear deformation theory

    Science.gov (United States)

    Bendine, K.; Boukhoulda, F. B.; Nouari, M.; Satla, Z.

    2016-12-01

    This paper reports on a study of active vibration control of functionally graded beams with upper and lower surface-bonded piezoelectric layers. The model is based on higher-order shear deformation theory and implemented using the finite element method (FEM). The proprieties of the functionally graded beam (FGB) are graded along the thickness direction. The piezoelectric actuator provides a damping effect on the FGB by means of a velocity feedback control algorithm. A Matlab program has been developed for the FGB model and compared with ANSYS APDL. Using Newmark's method numerical solutions are obtained for the dynamic equations of FGB with piezoelectric layers. Numerical results show the effects of the constituent volume fraction and the influence the feedback control gain on the frequency and dynamic response of FGBs.

  13. Energy compensation of slow extracted beams with RF acceleration

    Science.gov (United States)

    Fujimoto, Tetsuya; Souda, Hikaru; Torikoshi, Masami; Kanai, Tatsuaki; Yamada, Satoru; Noda, Koji

    2016-03-01

    In a conventional carbon-ion radiotherapy facility, a carbon-ion beam is typically accelerated up to an optimum energy, slowly extracted from a synchrotron ring by a resonant slow extraction method, and ultimately delivered to a patient through a beam-delivery system. At Japan's Gunma University, a method employing slow-beam extraction along with beam-acceleration has been adopted. This method slightly alters the extracted-beam's energy owing to the acceleration component of the process, which subsequently results in a residual-range variation of approximately 2 mm in water-equivalent length. However, this range variation does not disturb a distal dose distribution with broad-beam methods such as the single beam-wobbling method. With the pencil-beam 3D scanning method, however, such a range variation disturbs a distal dose distribution because the variation is comparable to slice thickness. Therefore, for pencil-beam 3D scanning, an energy compensation method for a slow extracted beam is proposed in this paper. This method can compensate for the aforementioned energy variances by controlling net energy losses through a rotatable energy absorber set fixed between the synchrotron exit channel and the isocenter. Experimental results demonstrate that beam energies can be maintained constant, as originally hypothesized. Moreover, energy-absorber positions were found to be significantly enhanced by optimizing beam optics for reducing beam-size growth by implementation of the multiple-scattering effect option.

  14. Ion beam treatment of functional layers in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wendi

    2013-10-01

    In silicon thin-film solar cells, transparent conductive layers have to fulfill the following requirements: high conductivity as effective contact, high transparency to transmit the light into the cell, and a textured surface which provides light scattering. Magnetron sputtered and wet-chemically textured aluminum doped zinc oxide (ZnO:Al) films are widely used as the transparent conductor. The technological goal of this dissertation is to develop an alternative to the wet etching process for light trapping in the thin silicon absorber layers through modification of the glass/ZnO:Al or ZnO:Al/Si interfaces by ion beam treatment. The study focuses on the textured growth of ZnO:Al films on ion beam pretreated glass substrates, and the preparation and application of textured glass for light trapping. The technological aspects such as the etch rates of the glass substrate and ZnO:Al films with different ion beam configurations were studied. The experimental etch rates are compared with simulated and theoretically predicted values. With regard to the ion beam treatment of glass substrate, the influence of the ion pretreated glass on the growth of ZnO:Al films was investigated. The ZnO:Al films grown on ion beam pretreated glass substrates exhibit self-textured morphology with surface roughness of 40 nm while remaining highly conductive. Silicon thin-film solar cells prepared on the as-grown rough ZnO:Al films show that this front contact can provide excellent light trapping effect. The highest initial efficiencies for amorphous single junction solar cells on as-grown rough ZnO:Al films was 9.4%. The as-grown rough morphology was attributed to large conical ZnO:Al grains initiated from the ion pretreated glass surface. It was found that the roughness of the as-grown rough ZnO:Al film is proportional to the number of O dangling bonds created by ion beam treatment on the glass substrate. A growth model was proposed to explain the growth mechanism of ZnO:Al films on Zn- and

  15. Imperative function of electron beams in low-energy plasma focus device

    Indian Academy of Sciences (India)

    M Z Khan; L K Lim; S L Yap; C S Wong

    2015-12-01

    A 2.2 kJ plasma focus device was analysed as an electron beam and an X-ray source that operates with argon gas refilled at a specific pressure. Time-resolved X-ray signals were observed using an array of PIN diode detectors, and the electron beam energy was detected using a scintillator-assisted photomultiplier tube. The resultant X-rays were investigated by plasma focus discharge for pressures ranging from 1.5 mbar to 2.0 mbar. This range corresponded to the significant values of X-ray yields and electron beam energies from the argon plasma. The electron temperature of argon plasma at an optimum pressure range was achieved by an indirect method using five-channel BPX65 PIN diodes of aluminum foils with different thicknesses. X-ray yield, electron beam energy, and electron temperature of argon plasma were achieved at 1.5–2.0 mbar because of the strong bombardment of the energetic electron beam.

  16. Exact analytical solution of shear-induced flexural vibration of functionally graded piezoelectric beam

    Science.gov (United States)

    Sharma, Pankaj; Parashar, Sandeep Kumar

    2016-05-01

    The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d15 effect. In piezoelectric actuators, the potential use of d15 effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d31 and d33. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton`s principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.

  17. Development of a compact thermal lithium atom beam source for measurements of electron velocity distribution function anisotropy in electron cyclotron resonance plasmas.

    Science.gov (United States)

    Nishioka, T; Shikama, T; Nagamizo, S; Fujii, K; Zushi, H; Uchida, M; Iwamae, A; Tanaka, H; Maekawa, T; Hasuo, M

    2013-07-01

    The anisotropy of the electron velocity distribution function (EVDF) in plasmas can be deduced from the polarization of emissions induced by anisotropic electron-impact excitation. In this paper, we develop a compact thermal lithium atom beam source for spatially resolved measurements of the EVDF anisotropy in electron cyclotron resonance (ECR) plasmas. The beam system is designed such that the ejected beam has a slab shape, and the beam direction is variable. The divergence and flux of the beam are evaluated by experiments and calculations. The developed beam system is installed in an ECR plasma device with a cusp magnetic field, and the LiI 2s-2p emission (670.8 nm) is observed in low-pressure helium plasma. The two-dimensional distributions of the degree and direction of the polarization in the LiI emission are measured by a polarization imaging system. The evaluated polarization distribution suggests the spatial variation of the EVDF anisotropy.

  18. Analysis of delayed convergence in the three-noded Timoshenko beam element using the function space approach

    Indian Academy of Sciences (India)

    Somenath Mukherjee; Gangan Prathap

    2002-10-01

    Despite satisfying only completeness and continuity requirements, elements often perform erroneously in a certain class of problems, called the locking situations, where they display spurious stress oscillations and enhanced stiffness properties. The function space approach that effectively substantiates the postulates of the field consistency paradigm is an efficient tool to reveal the fundamental cause of locking phenomena, and propose methods to eliminate this pathological problem. In this paper, we review the delayed convergence behaviour of three-noded Timoshenko beam elements using the rigorous function space approach. Explicit, closed form algebraic results for the element strains, stresses and errors have been derived using this method. The performance of the field-inconsistent three-noded Timoshenko beam element is compared with that of the field-inconsistent twonoded beam element. It is demonstrated that while the field-inconsistent two-noded linear element is prone to shear locking, the field-inconsistent three-noded element is not very vulnerable to this pathological problem, despite the resulting shear oscillations.

  19. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry

    Science.gov (United States)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2017-02-01

    The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector’s size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector’s electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.

  20. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection.

    Science.gov (United States)

    Gutser, R; Wimmer, C; Fantz, U

    2011-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  1. Complex rotation with internal dissipation. Applications to cosmic-dust alignment and to wobbling comets and asteroids

    CERN Document Server

    Efroimsky, M; Sidorenko, V; Efroimsky, Michael; Sidorenko, Vladislav

    2002-01-01

    Neutron stars, asteroids, comets, cosmic-dust granules, spacecraft, as well as whatever other freely spinning body dissipate energy when they rotate about any axis different from principal. We discuss the internal-dissipation-caused relaxation of a freely precessing rotator towards its minimal-energy mode (mode that corresponds to the spin about the maximal-inertia axis). While the body nutates at some rate, the internal stresses and strains within the body oscillate at frequencies both higher and lower than this rate. The internal dissipation takes place mostly the second and higher harmonics. We discuss the application of our findings to asteroids. Regarding the comets, estimates show that the currently available angular resolution of spacecraft-based instruments makes it possible to observe wobble damping within year- or maybe even month-long spans of time. We also discuss cosmic-dust astrophysics; in particular, the role played by precession damping in the dust alignment. We show that this damping provide...

  2. Erectile function following brachytherapy, external beam radiotherapy, or radical prostatectomy in prostate cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Putora, P.M.; Buchauer, K.; Plasswilm, L. [Kantonsspital St. Gallen, Department of Radiation Oncology, St. Gallen (Switzerland); Engeler, D.; Schmid, H.P. [Kantonsspital St. Gallen, Department of Urology, St. Gallen (Switzerland); Haile, S.R.; Graf, N. [Kantonsspital St. Gallen, Clinical Trials Unit, St. Gallen (Switzerland)

    2016-03-15

    For localized prostate cancer, treatment options include external beam radiotherapy (EBRT), radical prostatectomy (RP), and brachytherapy (BT). Erectile dysfunction (ED) is a common side-effect. Our aim was to evaluate penile erectile function (EF) before and after BT, EBRT, or RP using a validated self-administered quality-of-life survey from a prospective registry. Analysis included 478 patients undergoing RP (n = 252), EBRT (n = 91), and BT (n = 135) with at least 1 year of follow-up and EF documented using IIEF-5 scores at baseline, 6 weeks, 6 months, 1 year, and annually thereafter. Differences among treatments were most pronounced among patients with no or mild initial ED (IIEF-5 ≥ 17). Overall, corrected for baseline EF and age, BT was associated with higher IIEF-5 scores than RP (+ 7.8 IIEF-5 score) or EBRT (+ 3.1 IIEF-5 score). EBRT was associated with better IIEF-5 scores than RP (+ 4.7 IIEF-5 score). In patients undergoing EBRT or RP with bilateral nerve sparing (NS), recovery of EF was observed and during follow-up, the differences to BT were not statistically significant. Overall age had a negative impact on EF preservation (corrected for baseline IIEF). In our series, EF was adversely affected by each treatment modality. Considered overall, BT provided the best EF preservation in comparison to EBRT or RP. (orig.) [German] Die externe Radiotherapie (EBRT), die radikale Prostatektomie (RP) sowie die Brachytherapie (BT) stellen Behandlungsoptionen fuer das lokalisierte Prostatakarzinom dar. Die erektile Dysfunktion (ED) ist eine haeufige Nebenwirkung dieser Therapien. Unser Ziel war es, die penile erektile Funktion (EF) vor und nach BT, EBRT und RP mit Hilfe eines validierten, vom Patienten ausgefuellten Lebensqualitaetsfragebogens aus einer prospektiven Datenbank zu beurteilen. Mit einer minimalen Nachbeobachtungszeit von einem Jahr wurden 478 Patienten analysiert, die eine RP (n = 252), EBRT (n = 91) oder BT (n = 135) erhalten hatten und deren EF mit

  3. How many tautomerization pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches?

    Science.gov (United States)

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-01-01

    In this study, we have theoretically demonstrated the intrinsic ability of the wobble G·T(w)/G*·T*(w)/G·T(w1)/G·T(w2) and Watson-Crick-like G*·T(WC) DNA base mispairs to interconvert into each other via the DPT tautomerization. We have established that among all these transitions, only one single G·T(w) ↔ G*·T(WC) pathway is eligible from a biological perspective. It involves short-lived intermediate - the G·T*(WC) base mispair - and is governed by the planar, highly stable, and zwitterionic [Formula: see text] transition state stabilized by the participation of the unique pattern of the five intermolecular O6(+)H⋯O4(-), O6(+)H⋯N3(-), N1(+)H⋯N3(-), N1(+)H⋯O2(-), and N2(+)H⋯O2(-) H-bonds. This non-dissociative G·T(w) ↔ G*·T(WC) tautomerization occurs without opening of the pair: Bases within mispair remain connected by 14 different patterns of the specific intermolecular interactions that successively change each other along the IRC. Novel kinetically controlled mechanism of the thermodynamically non-equilibrium spontaneous point GT/TG incorporation errors has been suggested. The mutagenic effect of the analogues of the nucleotide bases, in particular 5-bromouracil, can be attributed to the decreasing of the barrier of the acquisition by the wobble pair containing these compounds of the enzymatically competent Watson-Crick's geometry via the intrapair mutagenic tautomerization directly in the essentially hydrophobic recognition pocket of the replication DNA-polymerase machinery. Proposed approaches are able to explain experimental data, namely growth of the rate of the spontaneous point incorporation errors during DNA biosynthesis with increasing temperature.

  4. Search for Anisotropic Light Propagation as a Function of Laser Beam Alignment Relative to the Earth's Velocity Vector

    Directory of Open Access Journals (Sweden)

    Navia C. E.

    2007-01-01

    Full Text Available A laser diffraction experiment was conducted to study light propagation in air. The experiment is easy to reproduce and it is based on simple optical principles. Two optical sensors (segmented photo-diodes are used for measuring the position of diffracted light spots with a precision better than 0.1 μ m. The goal is to look for signals of anisotropic light propagation as function of the laser beam alignment to the Earth’s motion (solar barycenter motion obtained by COBE. Two raster search techniques have been used. First, a laser beam fixed in the laboratory frame scans in space due to Earth’s rotation. Second, a laser beam mounted on a turntable system scans actively in space by turning the table. The results obtained with both methods show that the course of light rays are affected by the motion of the Earth, and a predominant first order quantity with a Δ c/c = − β (1 + 2 a cos θ signature with ˉ a = − 0.393 ± 0.032 describes well the experimental results. This result differs in amount of 21% from the Special Relativity Theory prediction and that supplies the value of a = − 1 2 (isotropy.

  5. Elementary Green function as an integral superposition of Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates

    Science.gov (United States)

    Červený, Vlastislav; Pšenčík, Ivan

    2017-08-01

    Integral superposition of Gaussian beams is a useful generalization of the standard ray theory. It removes some of the deficiencies of the ray theory like its failure to describe properly behaviour of waves in caustic regions. It also leads to a more efficient computation of seismic wavefields since it does not require the time-consuming two-point ray tracing. We present the formula for a high-frequency elementary Green function expressed in terms of the integral superposition of Gaussian beams for inhomogeneous, isotropic or anisotropic, layered structures, based on the dynamic ray tracing (DRT) in Cartesian coordinates. For the evaluation of the superposition formula, it is sufficient to solve the DRT in Cartesian coordinates just for the point-source initial conditions. Moreover, instead of seeking 3 × 3 paraxial matrices in Cartesian coordinates, it is sufficient to seek just 3 × 2 parts of these matrices. The presented formulae can be used for the computation of the elementary Green function corresponding to an arbitrary direct, multiply reflected/transmitted, unconverted or converted, independently propagating elementary wave of any of the three modes, P, S1 and S2. Receivers distributed along or in a vicinity of a target surface may be situated at an arbitrary part of the medium, including ray-theory shadow regions. The elementary Green function formula can be used as a basis for the computation of wavefields generated by various types of point sources (explosive, moment tensor).

  6. A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency

    Institute of Scientific and Technical Information of China (English)

    Ye Jia-Sheng; Wang Jin-Ze; Huang Qing-Li; Dong Bi-Zhen; Zhang Yan; Yang Guo-Zhen

    2013-01-01

    In this paper,a novel method is proposed and employed to design a single diffractive optical element (DOE) for implementing spectrum-splitting and beam-concentration (SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modem photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.

  7. A single diffractive optical element for implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency

    CERN Document Server

    Ye, Jia-Sheng; Huang, Qing-Li; Dong, Bi-Zhen; Zhang, Yan; Yang, Guo-Zhen

    2013-01-01

    In this paper, a novel method is proposed, and employed to design a single diffractive optical element (DOE) for implementing spectrum-splitting and beam-concentration (SSBC) functions simultaneously. We develop an optimization algorithm, through which the SSBC DOE can be optimized within an arbitrary thickness range, according to the limitations of modern photolithography technology. Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency. It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.

  8. Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces. Part 1: Mathematical modeling.

    Science.gov (United States)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2014-07-01

    Ion beam figuring (IBF) is established for the final precision figuring of high-performance optical components, where the figuring accuracy is guaranteed by the stability of the removal function and the solution accuracy of the dwell time. In this deterministic method, the figuring process can be represented by a two-dimensional (2D) convolution operation of a constant removal function and the dwell time. However, we have found that the current 2D convolution operation cannot factually describe the IBF process of curved surfaces, which neglects the influences of the projection distortion and the workpiece geometry on the removal function. Consequently, the current 2D convolution algorithm would influence the solution accuracy for the dwell time and reduce the convergence of the figuring process. In this part, based on the material removal characteristics of IBF, a mathematical model of the removal function is developed theoretically and verified experimentally. Research results show that the removal function during IBF of a curved surface is actually a dynamic function in the 2D convolution algorithm. The mathematical modeling of the dynamic removal function provides theoretical foundations for our proposed new algorithm in the next part, and final verification experiments indicate that this algorithm can effectively improve the accuracy of the dwell time solution for the IBF of curved surfaces.

  9. Absolute calibration and beam reconstruction of MITO (a ground-based instrument in the millimetric region)

    CERN Document Server

    Savini, G; Battistelli, E S; De Petris, M; Lamagna, L; Luzzi, G; Palladino, E

    2003-01-01

    An efficient sky data reconstruction derives from a precise characterization of the observing instrument. Here we describe the reconstruction of performances of a single-pixel 4-band photometer installed at MITO (Millimeter and Infrared Testagrigia Observatory) focal plane. The strategy of differential sky observations at millimeter wavelengths, by scanning the field of view at constant elevation wobbling the subreflector, induces a good knowledge of beam profile and beam-throw amplitude, allowing efficient data recovery. The problems that arise estimating the detectors throughput by drift scanning on planets are shown. Atmospheric transmission, monitored by skydip technique, is considered for deriving final responsivities for the 4 channels using planets as primary calibrators.

  10. Impact of different beam directions on intensity-modulated radiation therapy dose delivered to functioning lung tissue identified using single-photon emission computed tomography.

    Science.gov (United States)

    Tian, Qin; Zhang, Fucheng; Wang, Yanming; Qu, Weiqiang

    2014-01-01

    To use different beam arrangements and numbers to plan intensity-modulated radiation therapy (IMRT) and investigate their effects on low and high radiation doses delivered to the functional lung, in order to reduce radiation-induced lung damage. Ten patients with stage I-III non-small cell lung carcinoma (NSCLC) underwent IMRT. Beam arrangements were selected on the basis of orientation and dose-volume histograms to create SPECT-guided IMRT plans that spared the functional lung and maintained target coverage. Four different plans, including CT-7, SPECT-7, SPECT-4, SPECT-5 with different beam arrangements, were used. The differences of conformity index (CI), heterogeneity index (HI) between the plans were analyzed, by using a paired t-test. The seven-beam SPECT (SPECT-7) plan reduced the volume of the functional lung irradiated with at least 20 Gy (FV20) and 30 Gy (FV30) by 26.02% ±15.45% and 14.41% ±16.66%, respectively, as compared to the seven-beam computed tomography (CT-7) plan. The CI significantly differed between the SPECT-7 and SPECT-4 plans and between the SPECT-5 and SPECT-4 plans, but not between the SPECT-5 and SPECT-7 plans. The CIs in the SPECT-5 and SPECT-7 plans were better than that in the SPECT-4 plan. The heterogeneity index significantly differed among the three SPECT plans and was best in the SPECT-7 plan. The incorporation of SPECT images into IMRT planning for NSCLC greatly affected beam angles and number of beams. Fewer beams and modified beam angles achieved similar or better IMRT quality. The low-dose volumes were lower in SPECT-4.

  11. Excitation functions of (nat)Zn(p,x) nuclear reactions with proton beam energy below 18 MeV.

    Science.gov (United States)

    Asad, Ali H; Chan, Sun; Morandeau, Laurence; Cryer, David; Smith, Suzanne V; Price, Roger I

    2014-12-01

    We measured the excitation functions of (nat)Zn (p,x) reactions up to 17.6MeV, using the stacked-foils activation technique. High-purity natural zinc (and copper) foils were irradiated with proton beams generated by an 18MeV isochronous cyclotron. Activated foils were measured using high-purity Ge gamma spectroscopy to quantify the radionuclides (61)Cu, (66)Ga, (67)Ga, and (65)Zn produced from the reactions. Thick-target integral yields were also deduced from the measured excitation functions of the produced radioisotopes. These results were compared with the published literature and were found to be in good agreement with most reports, particularly those most recently compiled.

  12. Beaconless adaptive-optics technique for HEL beam control

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  13. Dependence of alanine gel dosimeter response as a function of photon clinical beams dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleber Feijo, E-mail: cleber.feijo@famesp.com.br [Faculdade Metodo de Sao Paulo (FAMESP), SP (Brazil); Campos, Leticia Lucente, E-mail: Icrodri@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-11-01

    Gel dosimetry is a new area developed by Gore, it is ery useful for application in radiotherapy because using NMR imaging as evaluation technique is possible to evaluate three dimensional absorbed dose distribution. The measure technique is based on difference of ferrous (Fe{sup 2+}) and ferric (Fe{sup 3+}) ) ions concentration that can be measured also by spectrophotometry technique. The Alanine gel dosimeter was developed at IPEN. The alanine is an amino acid and tissue equivalent material that presents significant improvement on previous alanine dosimetry systems. The addition of Alanine increases the production of ferric ions in the solution. This work aims to study the dose rate dependence of photon clinical beams radiation on the alanine gel dosimeter optical response, as well as the response repeatability and gel production reproducibility, since this property is very important for characterization and standardization of any dosimeter. (author)

  14. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Science.gov (United States)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  15. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  16. Feature extraction of micro-motion frequency and the maximum wobble angle in a small range of missile warhead based on micro-Doppler effect

    Science.gov (United States)

    Li, M.; Jiang, Y. S.

    2014-11-01

    Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.

  17. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control.

    Science.gov (United States)

    Geng, Chao; Luo, Wen; Tan, Yi; Liu, Hongmei; Mu, Jinbo; Li, Xinyang

    2013-10-21

    A novel approach of tip/tilt control by using divergence cost function in stochastic parallel gradient descent (SPGD) algorithm for coherent beam combining (CBC) is proposed and demonstrated experimentally in a seven-channel 2-W fiber amplifier array with both phase-locking and tip/tilt control, for the first time to our best knowledge. Compared with the conventional power-in-the-bucket (PIB) cost function for SPGD optimization, the tip/tilt control using divergence cost function ensures wider correction range, automatic switching control of program, and freedom of camera's intensity-saturation. Homemade piezoelectric-ring phase-modulator (PZT PM) and adaptive fiber-optics collimator (AFOC) are developed to correct piston- and tip/tilt-type aberrations, respectively. The PIB cost function is employed for phase-locking via maximization of SPGD optimization, while the divergence cost function is used for tip/tilt control via minimization. An average of 432-μrad of divergence metrics in open loop has decreased to 89-μrad when tip/tilt control implemented. In CBC, the power in the full width at half maximum (FWHM) of the main lobe increases by 32 times, and the phase residual error is less than λ/15.

  18. Isotopic Composition of Boron Secondary Ions as a Function of Ion-Beam Fluence.

    Science.gov (United States)

    Baumel, Laurie Michelle

    The experiment performed in this work isolates and examines the effects of mass on the composition of the sputtered flux from a multi-component target. Chemical complexities are minimized by measuring sputtered ions from a target consisting only of two isotopes of one element. In this case, chemical effects as well as inter-atomic potentials are assumed to be identical for all constituents moving within the target, thus simplifying the target kinematics. Since any non-stoichiometry in the sputtered material should be caused only by the effects of mass on the kinetics in the target, measuring the sputtered material and comparing various analytical predictions with the experimental results leads to a better understanding of mass effects in these targets. 100-keV argon and neon were used to sputter an elemental target comprising the two naturally occurring isotopes of boron. The resulting secondary ions were examined with an electrostatic quadrupole mass analyzer. At low beam fluences (~1 times 20^{15} ions/cm ^2) a light-isotope secondary ion enhancement is observed relative to the steady-state secondary ion yields collected at higher beam fluences ( ~5 times 10 ^{17} ions/cm^2 ). The steady-state ion yields are representative of the bulk composition of the target. The enhancement (46.1perthous for Ne^+ irradiation and 51.8perthous for Ar^+ irradiation) is large compared to the predictions of analytical theories and is determined to be independent of variations in surface potential, chemical effects, and surface impurities. This effect is consistent with an explanation based on an energy and momentum asymmetry in the collision cascade. The asymmetry was caused by an extra collision mechanism which allowed light particles to backscatter 180^circ (towards the target surface) from underlying heavier target particles whereas the reverse process can not occur. When irradiated with projectiles heavier than the target constituents, the heavier target particles had a higher

  19. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    Science.gov (United States)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-09-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions.

  20. High-fidelity functional and structural whole-brain imaging with Bessel-beam light-sheet microscopy (Conference Presentation)

    Science.gov (United States)

    Müllenbroich, Marie Caroline; Silvestri, Ludovico; Turrini, Lapo; Di Giovanna, Antonino Paolo; Alterini, Tommaso; Gheisari, Ali; Ricci, Pietro; Sacconi, Leonardo; Vanzi, Francesco; Pavone, Francesco S.

    2017-02-01

    Light-sheet microscopy (LSM) has proven a useful tool in neuroscience and is particularly well suited to image the entire brain with high frame rates at single cell resolution. On the one hand, LSM is employed in combination with tissue clearing methods like CLARITY which allows for the reconstruction of neuronal or vascular anatomy over cm-sized samples. On the other hand, LSM has been paired with intrinsically transparent samples for real-time recording of neuronal activity with single cell resolution across the entire brain, using calcium indicators like GCaMP6. Despite its intrinsic advantages in terms of high imaging speed and reduced photobleaching, LSM is very sensitive to residual opaque objects present in the sample, which cause dark horizontal stripes in the collected images. In the best case, these artefacts obscure the features of interest in structural imaging; in the worst case, dynamic shadowing introduced by red blood cells significantly alters the fluorescence signal variations related to neuronal activity. We show how the use of Bessel beams in LSM can dramatically reduce such artefacts even in conventional one-sided illumination schemes, thanks to their "self-healing" properties. On the functional side, Bessel-beam LSM allows recording neuronal activity traces without any disturbing flickering caused by the movement of red blood cells. On the structural side, our proposed method is capable of obtaining anatomical information across the entire volume of whole mouse brains allowing tracing blood vessels and neuronal projections also in poorly cleared specimens.

  1. Determining the resolution limits of electron-beam lithography: direct measurement of the point-spread function.

    Science.gov (United States)

    Manfrinato, Vitor R; Wen, Jianguo; Zhang, Lihua; Yang, Yujia; Hobbs, Richard G; Baker, Bowen; Su, Dong; Zakharov, Dmitri; Zaluzec, Nestor J; Miller, Dean J; Stach, Eric A; Berggren, Karl K

    2014-08-13

    One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread function (PSF). During EBL exposure, the processes of electron scattering, phonon, photon, plasmon, and electron emission in the resist are combined, which complicates the analysis of the EBL PSF. Here, we show the measurement of delocalized energy transfer in EBL exposure by using chromatic aberration-corrected energy-filtered transmission electron microscopy (EFTEM) at the sub-10 nm scale. We have defined the role of spot size, electron scattering, secondary electrons, and volume plasmons in the lithographic PSF by performing EFTEM, momentum-resolved electron energy loss spectroscopy (EELS), sub-10 nm EBL, and Monte Carlo simulations. We expect that these results will enable alternative ways to improve the resolution limit of EBL. Furthermore, our approach to study the resolution limits of EBL may be applied to other lithographic techniques where electrons also play a key role in resist exposure, such as ion-beam-, X-ray-, and extreme-ultraviolet lithography.

  2. O⁶-carboxymethylguanine in DNA forms a sequence context-dependent wobble base-pair structure with thymine.

    Science.gov (United States)

    Zhang, Fang; Tsunoda, Masaru; Kikuchi, Yuji; Wilkinson, Oliver; Millington, Christopher L; Margison, Geoffrey P; Williams, David M; Takénaka, Akio

    2014-06-01

    N-Nitrosation of glycine and its derivatives generates potent alkylating agents that can lead to the formation of O(6)-carboxymethylguanine (O(6)-CMG) in DNA. O(6)-CMG has been identified in DNA derived from human colon tissue and its occurrence has been linked to diets high in red and processed meats, implying an association with the induction of colorectal cancer. By analogy to O(6)-methylguanine, O(6)-CMG is expected to be mutagenic, inducing G-to-A mutations that may be the molecular basis of increased cancer risk. Previously, the crystal structure of the DNA dodecamer d(CGCG[O(6)-CMG]ATTCGCG) has been reported, in which O(6)-CMG forms a Watson-Crick-type pair with thymine similar to the canonical A:T pair. In order to further investigate the versatility of O(6)-CMG in base-pair formation, the structure of the DNA dodecamer d(CGC[O(6)-CMG]AATTTGCG) containing O(6)-CMG at a different position has been determined by X-ray crystallography using four crystal forms obtained under conditions containing different solvent ions (Sr(2+), Ba(2+), Mg(2+), K(+) or Na(+)) with and without Hoechst 33258. The most striking finding is that the pairing modes of O(6)-CMG with T are quite different from those previously reported. In the present dodecamer, the T bases are displaced (wobbled) into the major groove to form a hydrogen bond between the thymine N(3) N-H and the carboxyl group of O(6)-CMG. In addition, a water molecule is bridged through two hydrogen bonds between the thymine O(2) atom and the 2-amino group of O(6)-CMG to stabilize the pairing. These interaction modes commonly occur in the four crystal forms, regardless of the differences in crystallization conditions. The previous and the present results show that O(6)-CMG can form a base pair with T in two alternative modes: the Watson-Crick type and a high-wobble type, the nature of which may depend on the DNA-sequence context.

  3. Measurement of Wigner function via atomic beam deflection in Raman- Nath regime

    CERN Document Server

    Khosa, A H; Khosa, Ashfaq Hussain

    2002-01-01

    We propose a method for the reconstruction of photon statistics and hence the Wigner function of a quantized cavity field. The method is based on the measurement of momentum distribution of two level atoms after atom- field interaction in Raman-Nath regime. We reconstruct the photon statistics of the cavity field both the cases of resonant and off- resonant atom field interaction.. For the measurement of Wigner function we propose to displace the photon statistics of the cavity field. We successfully reconstruct the Wigner function of the Schrodinger-cat state in a straightforward manner by employing the proposed method without much mathematical manipulation of the experimental data.

  4. Buckling of Functionally Graded Nanobeams Based on the Nonlocal New First-Order Shear Deformation Beam Theory

    Directory of Open Access Journals (Sweden)

    Houari M.S.A.

    2014-04-01

    Full Text Available In this work, the size-dependent buckling behavior of functionally graded (FG nanobeams is investigated on the basis of the nonlocal continuum model. The material properties of FG nanobeams are assumed to vary through the thickness according to the power law. In addition, Poisson’s ratio is assumed constant in the current model. The nanobeams is modelled according to the new first order shear beam theory with small deformation and the equilibrium equations are derived using the Hamilton’s principle. The Naviertype solution is developed for simply-supported boundary conditions, and exact formulas are proposed for the buckling load. The effects of nonlocal parameter, aspect ratio, various material compositions on the stability responses of the FG nanobeams are discussed.

  5. A new function for the optimal placement of piezoelectric plates to control multimode vibrations of a rotating beam

    Directory of Open Access Journals (Sweden)

    F. Botta

    2013-10-01

    Full Text Available Damping of vibrations is often required to improve both the performances and the integrity of engiengineering structures, e.g. gas turbine blades. In [24] some of the authors have proposed a new function to control the multimode vibrations of a fixed beam. In this article this methodology has been extended to a rotating cantileverbeam. To develop an effective control strategy, and optimize the placement of the active piezoelectric elements in terms of vibrations amplitude reduction, a procedure has been developed and a new analytical solution has been proproposed. The results obtained have been corroborated by comparison with the results from a multi-physics finite elements package (COMSOL and data from other models available in the literature.

  6. Total heart volume as a function of clinical and anthropometric parameters in a population of external beam radiation therapy patients

    Science.gov (United States)

    Nadège Ilembe Badouna, Audrey; Veres, Cristina; Haddy, Nadia; Bidault, François; Lefkopoulos, Dimitri; Chavaudra, Jean; Bridier, André; de Vathaire, Florent; Diallo, Ibrahima

    2012-01-01

    The aim of this paper was to determine anthropometric parameters leading to the least uncertain estimate of heart size when connecting a computational phantom to an external beam radiation therapy (EBRT) patient. From computed tomography images, we segmented the heart and calculated its total volume (THV) in a population of 270 EBRT patients of both sexes, aged 0.7-83 years. Our data were fitted using logistic growth functions. The patient age, height, weight, body mass index and body surface area (BSA) were used as explanatory variables. For both genders, good fits were obtained with both weight (R2 = 0.89 for males and 0.83 for females) and BSA (R2 = 0.90 for males and 0.84 for females). These results demonstrate that, among anthropometric parameters, weight plays an important role in predicting THV. These findings should be taken into account when assigning a computational phantom to a patient.

  7. Evaluation and characterization of parallel plate microchamber's functionalities in small beam dosimetry.

    Science.gov (United States)

    Lee, Heung-Rae; Pankuch, Mike; Chu, James C; Spokas, John J

    2002-11-01

    A parallel plate microchamber (PPMC) has been designed to specifically address the problems of small beam dosimetry. The chamber's extremely small volume and tissue equivalency theoretically make it possible for the chamber to perform an ideal measurement for small field dosimetry. Results show the PPMC to be a simple and reproducible detector for the measurements of total scattering factors, percentage depth doses, and off-axis ratios. Even with its unique geometry, the PPMC requires a correction factor when measuring total scatter factors of fields smaller than 2.5 cm in diameter. Results obtained with the PPMC for fields greater than 2.5 cm diameter closely match those of alternative measurement modalities. The exceptionally small volume of the chamber increases the effect of radiation-induced cable currents. With careful experimental technique, this problem can be resolved. Monte Carlo simulations of a Sun Nuclear QED low build-up diode were done to show that no correction factor is needed for the diode in measuring total scatter factors of small fields. However, the scattering factors measured with the PPMC should be corrected for cone fields smaller than 2.5 cm in diameter. With the correction factor, the scattering factor obtained with the PPMC matches that with the QED diode within 0.7%. The percent depth dose data taken with the PPMC for a 40 x 40 cm2 field closely matches that taken with the PTW chamber with the largest deviation being approximately 1.2% at a depth of 30 cm. For a measurement of the off-axis ratio with stereotactic cones of diameter 1.25 and 4.0 cm, the data obtained with the PPMC have a good agreement (less than 0.5% difference) with the film measurement.

  8. Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function

    Science.gov (United States)

    Talebi, Nahid

    2017-10-01

    Investigating the interaction of electron beams with materials and light has been a field of research for more than a century. The field was advanced theoretically by the rise of quantum mechanics and technically by the introduction of electron microscopes and accelerators. It is possible nowadays to uncover a multitude of information from electron-induced excitations in matter by means of advanced techniques like holography, tomography, and, most recently, photon-induced near-field electron microscopy. The question is whether the interaction can be controlled in an even, more efficient way in order to unravel important questions like modal decomposition of the electron-induced polarization by performing experiments with better spatial, temporal, and energy resolutions. This review discusses recent advances in controlling electron and light interactions at the nanoscale. Theoretical and numerical aspects of the interaction of electrons with nanostructures and metamaterials will be discussed with the aim of understanding the mechanisms of radiation in the interaction of electrons with even more sophisticated structures. Based on these mechanisms of radiation, state-of-the art and novel electron-driven few-photon sources will be discussed. Applications of such sources to gain an understanding of quantum optical effects and also to perform spectral interferometry with electron microscopes will be covered. In an inverse approach, as in the case of the inverse Smith–Purcell effect, laser-induced excitations of nanostructures can cause electron beams traveling in the near-field of such structures to accelerate, provided a synchronization criterion is satisfied. This effect is the basis for linear dielectric and metallic electron accelerators. Moreover, acceleration is accompanied by bunching of the electrons. When single electrons are considered, an efficient design of nanostructures can lead to the shaping of the electron wave function travelling adjacent to them, for

  9. Erratic Jet Wobbling in the BL Lacertae Object OJ287 Revealed by Sixteen Years of 7mm VLBA Observations

    CERN Document Server

    Agudo, Ivan; Jorstad, Svetlana G; Gomez, Jose L; Perucho, Manel; Piner, B Glenn; Rioja, Maria; Dodson, Richard

    2011-01-01

    We present the results from an ultra-high-resolution 7mm Very Long Baseline Array (VLBA) study of the relativistic jet in the BL Lacertae object OJ287 from 1995 to 2011 containing 136 total intensity images. Analysis of the image sequence reveals a sharp jet-position-angle swing by >100 deg. during [2004,2006], as viewed in the plane of the sky, that we interpret as the crossing of the jet from one side of the line of sight to the other during a softer and longer term swing of the inner jet. Modulating such long term swing, our images also show for the first time a prominent erratic wobbling behavior of the innermost ~0.4mas of the jet with fluctuations in position angle of up to ~40 deg. over time scales ~2yr. This is accompanied by highly superluminal motions along non-radial trajectories, which reflect the remarkable non-ballistic nature of the jet plasma on these scales. The erratic nature and short time scales of the observed behavior rules out scenarios such as binary black hole systems, accretion disk ...

  10. DPT tautomerisation of the wobble guanine·thymine DNA base mispair is not mutagenic: QM and QTAIM arguments.

    Science.gov (United States)

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2015-01-01

    We have shown for the first time, connecting QM methods with QTAIM analysis and using the methodology of the sweeps of the energetical, electron-topological and geometrical parameters, that the tautomerisation of the wobble guanine·thymine (wG·T) DNA base mispair into the wG(*)·T(*) base mispair induced by the double proton transfer (DPT), which undergoes a concerted asynchronous pathway, is not mutagenic. The wG·T → wG(*)·T(*) DPT tautomerisation does not result in the transition of the G base into its mutagenic tautomeric form G(*) able to mispair with the T base within the Watson-Crick base pairing scheme. This observation is explained by the so-called quantum protection of the wG·T DNA base mispair from its mutagenic tautomerisation - the dynamical non-stability of the tautomerised wG(*)·T(*) base mispair and significantly negative value of the Gibbs free energy of activation for the reverse reaction of the wG·T → wG(*)·T(*) DPT tautomerisation.

  11. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  12. Mathematical modeling and application of removal functions during deterministic ion beam figuring of optical surfaces. Part 2: application.

    Science.gov (United States)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2014-07-01

    Ion beam figuring (IBF) is established for the final precision figuring of optical components. In this deterministic method, the figuring process is represented by a two-dimensional (2D) convolution operation of a constant removal function and the dwell time, where the figuring precision is guaranteed by the stability of the removal function as well as the solution accuracy of the dwell time. However, the current 2D convolution equation cannot factually reflect the IBF process of curved surfaces, which neglects the influence of the projection distortion and the workpiece geometry. Consequently, the current convolution algorithm for the IBF process would influence the solution accuracy for the dwell time and reduce the convergence of the figuring process. In this part, we propose an improved algorithm based on the mathematical modeling of the dynamic removal function in Part A, which provides a more accurate dwell time for IBF of a curved surface. Additionally, simulation analysis and figuring experiments are carried out to verify the feasibility of our proposed algorithm. The final experimental results indicate that the figuring precision and efficiency can be simultaneously improved by this method.

  13. Sexual function after external-beam radiotherapy for prostate cancer: What do we know?

    NARCIS (Netherlands)

    L. Incrocci (Luca)

    2006-01-01

    textabstractQuality of life in general and sexual functioning in particular have become very important in cancer patients. Due to modern surgical techniques, improved quality of drugs for chemotherapy and very modern radiation techniques, more patients can be successfully treated without largely com

  14. Derivation of equations to define inflection point and its analysis in flattening filter free photon beams based on the principle of polynomial function

    Directory of Open Access Journals (Sweden)

    KR Muralidhar

    2015-03-01

    Full Text Available Purpose: The objective of this work is to (1 present a mechanism for calculating inflection points on profiles at various depths and field sizes, and (2 study the doses at the inflection points for various field sizes at depth of maximum dose (Dmax for flattening filter free (FFF photon beam profiles. Methods: Graphical representation was done on percentage of dose versus inflection points. Also, using the polynomial function, the author formulated equations for calculating spot-on inflection point on the profiles for both the 6MV and 10 MV energies for different field sizes at various depths. Results: In a 10 MV FFF radiation beam, the dose at inflection point of the profile decreases as the field size increases. However, in 6MV FFF radiation beam, the dose at the inflection point initially increases with an increase in the field size up to 10 ×10 cm2 and decreases after 10 ×10 cm2. The polynomial function was fitted for both the 6 MV and 10 MV FFF beams for all field sizes and depths. Conclusion: Polynomial function is one of the easiest ways of identifying the inflection point in FFF beam for various field sizes and depths. Graphical representation of dose versus inflection point for both FFF energies was derived.

  15. Stability analysis of axially moving Timoshenko beam made of functionally graded material%轴向运动功能梯度Timoshenko梁稳定性分析

    Institute of Scientific and Technical Information of China (English)

    赵凤群; 王忠民; 路小平

    2014-01-01

    由Hamilton原理建立轴向运动功能梯度Timoshenko梁运动微分方程组,通过引入新未知函数,将方程组化为该函数的四阶偏微分方程。用WDQ(Wavelet Differential Guadreture)法获得简支FGM(Functional Graded Material) Timoshenko梁特征方程及复频率与轴向运动速度变化关系。分析梁随轴向运动速度变化的失稳形式,并与均质材料梁进行比较。分析梯度指标、梁长高比对FGM Timoshenko梁动力稳定性影响。%The governing differential equations of axially moving Timoshenko beam made of functionally graded material were presented based on the Hamilton principle.A single fourth-order partial differential equation was derived by introducing a new unknown function.For simply supported functional graded material (FGM)Timoshenko beam,the characteristic equation was obtained by using wavelet differential guadreture (WDQ)method,and the relation of the first three orders of complex frequencies of the beam with axial movement speed was provided.The instability form of the FGM Timoshenko beam at different axial movement speeds was analyzed in detail,and the results was compared with that of homogeneous material beam.The effects of length-to-height ratio and gradient index on the stability of FGM Timoshenko beam were discussed.

  16. Controlled fabrication of advanced functional structures on the nanoscale by means of electron beam-induced processing

    Science.gov (United States)

    Schmidt, Sebastian W.; Foucher, Johann; Penzkofer, Christian; Irmer, Bernd

    2013-05-01

    The controlled deposition of materials by means of electron beam induced processing (EBIP) is a well-established patterning method, which allows for the fabrication of nanostructures with high spatial resolution in a highly precise and flexible manner. Applications range from the production of ultrathin coatings and nanoscaled conductivity probes to super sharp atomic force microscopy (AFM) tips, to name but a few. The latter are typically deposited at the very end of silicon or silicon-nitride tips, which are fabricated with MEMS technologies. EBIP therefore provides the unique ability to converge MEMS to NEMS in a highly controllable way, and thus represents an encouraging opportunity to refine or even develop further MEMS-based features with advanced functionality and applicability. In this paper, we will present and discuss exemplary application solutions, where we successfully applied EBIP to overcome dimensional and/or functional limitations. We therefore show the fabrication stability and accuracy of "T-like-shaped" AFM tips made from high density, diamond-like carbon (HDC/DLC) for the investigation of undercut structures on the base of CDR30-EBD tips. Such aggressive CD-AFM tip dimensions are mandatory to fulfill ITRS requirements for the inspection of sub-28nm nodes, but are unattainable with state-of-art Si-based MEMS technologies today. In addition to that, we demonstrate the ability of EBIP to realize field enhancement in sensor applications and the fabrication of cold field emitters (CFE). For example: applying the EBIP approach allows for the production of CFEs, which are characterized by considerably enhanced imaging resolution compared to standard thermal field emitters and stable operation properties at room temperature without the need for periodic cathode flashing - unlike typical CFEs. Based on these examples, we outline the strong capabilities of the EBIP approach to further downscale functional structures in order to meet future demands in the

  17. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  18. 功能梯度Timoshenko梁的静力弯曲分析%Static bending analysis of functionally graded Timoshenko beam

    Institute of Scientific and Technical Information of China (English)

    付俊强; 龚云

    2011-01-01

    Based on Timoshenko beam deformation theory, the governing equations for the problem were built up. The authors studied the similarities of governing equations between the homogeneous beam and the non - uniform beam, and then the problem of functional gradient materials beam bending was to solve bending of uniform beam and to calculate similarity coefficient of product. Through theoretical derivation and analysis of the similarity, we found that the bending solutions of functional gradient Timoshenko beam is proportional to uniform materials Timoshenko beam with the same size, boundary conditions and load conditions, This proportional factor was determined entirely by nature inhomogeneous parameter of materialconstants.%基于Timoshenko梁变形理论,建立功能梯度材料梁在均布载荷作用下的弯曲控制方程,寻找均匀梁和非均匀梁的控制方程的相似性,将功能梯度材料梁的弯曲求解转化为均匀梁的弯曲求解与相似转换系数的计算.通过理论推导和相似性分析证明,功能梯度Timoshenko梁的弯曲解与同样尺寸、边界条件和载荷条件下的均匀材料Timoshenko梁的弯曲解成正比,这个比例常数完全由材料的非均性质参数确定.

  19. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  20. ERRATIC JET WOBBLING IN THE BL LACERTAE OBJECT OJ287 REVEALED BY SIXTEEN YEARS OF 7 mm VLBA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Agudo, Ivan; Gomez, Jose L. [Instituto de Astrofisica de Andalucia, CSIC, Apartado 3004, 18080 Granada (Spain); Marscher, Alan P.; Jorstad, Svetlana G. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Perucho, Manel [Departament d' Astronomia i Astrofisica, Universitat de Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain); Piner, B. Glenn [Department of Physics and Astronomy, Whittier College, 13406 East Philadelphia Street, Whittier, CA 90608 (United States); Rioja, Maria [Observatorio Astronomico Nacional, Apdo. 112, E-28803 Alcala de Henares, Madrid (Spain); Dodson, Richard, E-mail: iagudo@iaa.es [ICRAR/University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2012-03-01

    We present the results from an ultra-high-resolution 7 mm Very Long Baseline Array study of the relativistic jet in the BL Lacertae object OJ287 from 1995 to 2011 containing 136 total intensity images. Analysis of the image sequence reveals a sharp jet-position-angle swing by >100 Degree-Sign during [2004,2006], as viewed in the plane of the sky, which we interpret as the crossing of the jet from one side of the line of sight to the other during a softer- and longer-term swing of the inner jet. Modulating such long-term swing, our images also show for the first time a prominent erratic wobbling behavior of the innermost {approx}0.4 mas of the jet with fluctuations in position angle of up to {approx}40 Degree-Sign over timescales {approx}2 yr. This is accompanied by highly superluminal motions along non-radial trajectories, which reflect the remarkable non-ballistic nature of the jet plasma on these scales. The erratic nature and short timescales of the observed behavior rule out scenarios such as binary black hole systems, accretion disk precession, and interaction with the ambient medium as possible origins of the phenomenon on the scales probed by our observations, although such processes may cause longer-term modulation of the jet direction. We propose that variable asymmetric injection of the jet flow, perhaps related to turbulence in the accretion disk, coupled with hydrodynamic instabilities leads to the non-ballistic dynamics that causes the observed non-periodic changes in the direction of the inner jet.

  1. High Heat Flux Testing of B4C/Cu and SiC/Cu Functionally Graded Materials Simulated by Laser and Electron Beam

    Institute of Scientific and Technical Information of China (English)

    刘翔; 谌继明; 张斧; 许增裕; 葛昌纯; 李江涛

    2002-01-01

    B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.

  2. Bending and Free Vibration Analysis of Nonlocal Functionally Graded Nanocomposite Timoshenko Beam Model Rreinforced by SWBNNT Based on Modified Coupled Stress Theory

    Directory of Open Access Journals (Sweden)

    M. Mohammadimehr

    2013-12-01

    Full Text Available In this article, the bending and free vibration analysis of functionally graded (FG nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechanical properties of FG boron nitride nanotube-reinforced composites are assumed to be graded in the thickness direction and estimated through the micro-mechanical approach. The governing equations of motion are obtained using Hamilton’s principle based on Timoshenko beam theory. The Navier's type solution is implemented to solve the equations that satisfy the simply supported boundary conditions. Furthermore, the influences of the slenderness ratio, length of nanocomposite beam, material length scale parameter, nonlocal parameter, power law index, axial wave number, and Winkler and Pasternak coefficients on the natural frequency of nanocomposite beam are investigated. Also, the effect of material length scale parameter on the dimensionless deflection of FG nanocomposite beam is studied.

  3. Dual-beam ELF wave generation as a function of power, frequency, modulation waveform, and receiver location

    Science.gov (United States)

    Agrawal, D.; Moore, R. C.

    2012-12-01

    Dual-beam ELF wave generation experiments performed at the High-frequency Active Auroral Research Program (HAARP) HF transmitter are used to investigate the dependence of the generated ELF wave magnitude on HF power, HF frequency, modulation waveform, and receiver location. During the experiments, two HF beams transmit simultaneously: one amplitude modulated (AM) HF beam modulates the conductivity of the lower ionosphere at ELF frequencies while a second HF beam broadcasts a continuous waveform (CW) signal, modifying the efficiency of ELF conductivity modulation and thereby the efficiency of ELF wave generation. We report experimental results for different ambient ionospheric conditions, and we interpret the observations in the context of a newly developed dual-beam HF heating model. A comparison between model predictions and experimental observations indicates that the theoretical model includes the essential physics involved in multifrequency HF heating of the lower ionosphere. In addition to the HF transmission parameters mentioned above, the model is used to predict the dependence of ELF wave magnitude on the polarization of the CW beam and on the modulation frequency of the modulated beam. We consider how these effects vary with ambientD-region electron density and electron temperature.

  4. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles

    Science.gov (United States)

    Poppinga, D.; Meyners, J.; Delfs, B.; Muru, A.; Harder, D.; Poppe, B.; Looe, HK

    2015-12-01

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with

  5. Dynamical Model for an Interharmonic Property of a Piezoelectric Bimorph Cantilever Beam with Self-Sensing Function

    OpenAIRE

    Ting Zhang; Ying Pan; Lijie Cao

    2016-01-01

    A piezoelectric bimorph cantilevered beam is analyzed dynamically by a longitudinal and transverse coupling theory. When a sinusoidal voltage is applied on the actuating layer of the bimorph, the output voltage of the sensing layer appears as interharmonic component signal. The interharmonic frequency is noninteger harmonic frequency of the applied voltage. A dynamic model is proposed to describe the interharmonic property of the piezoelectric bimorph beam. Through some simulations and experi...

  6. Enzymatic 2'-O-methylation of the wobble nucleoside of eukaryotic tRNAPhe: specificity depends on structural elements outside the anticodon loop.

    Science.gov (United States)

    Droogmans, L; Haumont, E; de Henau, S; Grosjean, H

    1986-05-01

    We have investigated the specificity of the enzyme tRNA (wobble guanosine 2'-O-)methyltransferase which catalyses the maturation of guanosine-34 of eukaryotic tRNAPhe to the 2'-O-methyl derivative Gm-34. This study was done by micro-injection into Xenopus laevis oocytes of restructured yeast tRNAPhe in which the anticodon GmAA and the 3' adjacent nucleotide 'Y' were substituted by various tetranucleotides. The results indicate that the enzyme is cytoplasmic; the chemical nature of the bases of the anticodon and its 3' adjacent nucleotide is not critical for the methylation of G-34; the size of the anticodon loop is however important; structural features beyond the anticodon loop are involved in the specific recognition of the tRNA by the enzyme since Escherichia coli tRNAPhe and four chimeric yeast tRNAs carrying the GAA anticodon are not substrates; unexpectedly, the 2'-O-methylation is not restricted to G-34 since C-34, U-34 and A-34 in restructured yeast tRNAPhe also became methylated. It seems probable that the tRNA (wobble guanosine 2'-O-)methyltransferase is not specific for the type of nucleotide-34 in eukaryotic tRNAPhe; however the existence in the oocyte of several methylation enzymes specific for each nucleotide-34 has not yet been ruled out.

  7. Assessing joint space and condylar position in the people with normal function of temporomandibular joint with cone-beam computed tomography

    OpenAIRE

    Zahra Dalili; Nasim Khaki; Seyed Javad Kia; Fatemeh Salamat

    2012-01-01

    Background: The optimal position of the condyle in glenoid fossa is a fundamental question in dentistry. There is no quantitative standard for the optimal position of mandibular condyle in the glenoid fossa in our population. The purpose of this study is to assess the position of the condyle by cone beam computed tomography (CBCT) images in patient with normal function of temporomandibular joint (TMJ). Materials and Methods: In this cross-sectional study, CBCT images of 40 class I skeleta...

  8. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  9. Wobbly Corner: Magnetism

    Science.gov (United States)

    Corbett, Lisa; Maklad, Rania; Dunne, Mick; Grace, Pierre

    2014-01-01

    During a final seminar with BA year 4 science specialist trainee teachers, the authors posed a question about the difficulties associated with understanding magnetism. The ensuing discussion focused on a number of concerns commonly identified by students, which may also be of interest to classroom teachers teaching magnetism. Issues raised…

  10. Dynamical Model for an Interharmonic Property of a Piezoelectric Bimorph Cantilever Beam with Self-Sensing Function

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2016-01-01

    Full Text Available A piezoelectric bimorph cantilevered beam is analyzed dynamically by a longitudinal and transverse coupling theory. When a sinusoidal voltage is applied on the actuating layer of the bimorph, the output voltage of the sensing layer appears as interharmonic component signal. The interharmonic frequency is noninteger harmonic frequency of the applied voltage. A dynamic model is proposed to describe the interharmonic property of the piezoelectric bimorph beam. Through some simulations and experiments, the theoretical model is verified effectively to express the nonlinear characteristic. Furthermore, when the piezoelectric bimorph resonance happens, some interharmonic response at low frequency will modulate with the resonance response.

  11. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  12. Noncoaxial Bessel-Gauss beams.

    Science.gov (United States)

    Huang, Chaohong; Zheng, Yishu; Li, Hanqing

    2016-04-01

    We proposed a new family of noncoaxial Gauss-truncated Bessel beams through multiplying conventional symmetrical Bessel beams by a noncoaxial Gauss function. These beams can also be regarded as the exponential-truncated version of Bessel-Gauss beams since they can be transformed into the product of Bessel-Gauss beams and an exponential window function along a certain Cartesian axis. The closed-form solutions of the angular spectra and paraxial propagation of these beams were derived. These beams have asymmetrical intensity distributions and carry the same orbit angular momentum per photon as the corresponding Bessel-Gauss beams. While propagating along the z axis, the mth (m≠0) noncoaxial Bessel-Gauss beams rotate their intensity distributions and the mth-order vortex at the beam center has a transverse shift along the direction perpendicular to the offset axis. Depending on the product of the transverse scalar factor of the Bessel beams and the offset between the Gaussian window function and the center of the Bessel beams, the noncoaxial Bessel-Gauss beams can produce unit vortices with opposite signs in pairs during propagation.

  13. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2015-03-15

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter

  14. Effect of low-temperature ethylene oxide and electron beam sterilization on the in vitro and in vivo function of reconstituted extracellular matrix-derived scaffolds.

    Science.gov (United States)

    Proffen, Benedikt L; Perrone, Gabriel S; Fleming, Braden C; Sieker, Jakob T; Kramer, Joshua; Hawes, Michael L; Murray, Martha M

    2015-10-01

    Reconstituted extracellular matrix (ECM)-derived scaffolds are commonly utilized in preclinical tissue engineering studies as delivery vehicles for cells and growth factors. Translation into clinical use requires identifying a sterilization method that effectively removes bacteria but does not harm scaffold function. To determine effectiveness of sterilization and impact on ECM scaffold integrity and function, low-temperature ethylene oxide and 15 kGy electron beam irradiation techniques were evaluated. Scaffold sterility was assessed in accordance to United States Pharmacopeia Chapter 71. Scaffold matrix degradation was determined in vitro using enzymatic resistance tests and gel electrophoresis. Scaffold mechanics including elastic modulus, yield stress and collapse modulus were tested. Lastly, 14 Yorkshire pigs underwent ACL transection and bio-enhanced ACL repair using sterilized scaffolds. Histologic response of ligament, synovium, and lymph nodes was compared at 4, 6, and 8 weeks. Ethylene oxide as well as electron beam irradiation yielded sterile scaffolds. Scaffold resistance to enzymatic digestion and protein integrity slightly decreased after electron beam irradiation while ethylene oxide altered scaffold matrix. Scaffold elastic modulus and yield stress were increased after electron beam treatment, while collapse modulus was increased after ethylene oxide treatment. No significant changes in ACL dimensions, in vivo scaffold resorption rate, or histologic response of synovium, ligament, and lymph nodes with either terminal sterilization technique were detectable. In conclusion, this study identifies two methods to terminally sterilize an ECM scaffold. In vitro scaffold properties were slightly changed without significantly influencing the biologic responses of the surrounding tissues in vivo. This is a critical step toward translating new tissue engineering strategies to clinical trials. © The Author(s) 2015.

  15. Effect of antioxidants on thiobarbituric acid reactive substances, psychrotrophic bacteria and functional properties of mechanically deboned chicken meat irradiated with Cobalto-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Pomarico Neto, Walter, E-mail: hgomes@cnen.gov.br, E-mail: pbrito@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: abrusqui@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Mourao, Gerson Barreto; Orlando, Eduardo Adilson; Miyagusku, Luciana, E-mail: marciamh@ital.sp.gov.br, E-mail: eduardo.orlando@ital.sp.gov.br [Instituto de Tecnologia dos Alimentos (ITAL), Campinas, SP (Brazil)

    2013-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 (Sodium Polyphosphate and Sodium Ascorbate and Antioxidant 2 (Rosemary Extract and α-Tocopherol. The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (C), with antioxidant A1 and non-irradiated (A1), with antioxidant A2 and non-irradiated (A2) without antioxidant and irradiated in Cobalt-60 source (Co), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). The samples was conditioned in a transparent, low density frozen overnight at a temperature of -18 ± 1 deg C in a chamber, and irradiated in this state with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy/h) and electron beam (7.86 kGy/s). After this process, the samples were evaluated during the refrigeration period (2 ± 1 deg C) for 11 days for the following analysis: total psychrotrophic bacteria count and thiobarbituric acid reactive substances (TBARS) and the analysis of functional properties were performed after the irradiation process. The use of the combination of rosemary antioxidant and α-tocopherol were able to significantly decrease TBARS values caused by the irradiation of samples in MDCM cobalt-60 sources and electron beam, and show a synergetic effect to processing with ionizing radiation to reduce of psychrotrophic bacteria count. The use of irradiation processing of MDCM did not negatively affect the functional properties studied. (author)

  16. Polyetheretherketone (PEEK) surface functionalization by low-energy ion-beam irradiation under a reactive O2 environment and its effect on the PEEK/copper adhesives.

    Science.gov (United States)

    Kim, Sehyun; Lee, Ki-Jun; Seo, Yongsok

    2004-01-06

    A low-energy Ar+ ion beam was used to modify the surface of a polyetheretherketone (PEEK) film. The modification reaction proceeded with or without oxygen gas injected during the irradiation. The surface functional groups of the modified PEEK were confirmed with X-ray photoelectron spectroscopy as increasing various oxygen-containing functional groups. The concentration of the functional groups varied rapidly with the irradiation time, reached a maximum value, and then slowly decreased. The surface morphology of PEEK was substantially changed by ion-beam irradiation. Surface smoothening occurred so that the surface roughness reached almost constant value after some irradiation time. The incorporation of functional groups on the PEEK surface and the surface topology change had opposite effects on the adhesion strength between PEEK and copper. Dominance of the former was evident because the lap-shear strength initially increased with the irradiation. The special surface features significantly enhanced the adhesion strength between the evaporated copper layer and the modified PEEK surface. However, the decrease in the surface roughness with a long time irradiation implies a decrease in adhesion strength due to a smaller contact area, and the shear strength due to topology change also slowly decreased after a long time irradiation.

  17. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence.

  18. Green's function and Bloch theory for the analysis of the dynamic response of a periodically supported beam to a moving load

    Science.gov (United States)

    Lassoued, R.; Lecheheb, M.; Bonnet, G.

    2012-08-01

    This paper describes an analytical method for the wave field induced by a moving load on a periodically supported beam. The Green's function for an Euler beam without support is evaluated by using the direct integration. Afterwards, it introduces the supports into the model established by using the superposition principle which states that the response from all the sleeper points and from the external point force add up linearly to give a total response. The periodicity of the supports is described by Bloch's theorem. The homogeneous system thus obtained represents a linear differential equation which governs rail response. It is initially solved in the homogeneous case, and it admits a no null solution if its determinant is null, this permits the establishment the dispersion equation to Bloch waves and wave bands. The Bloch waves and dispersion curves contain all the physics of the dynamic problem and the wave field induced by a dynamic load applied to the system is finally obtained by decomposition into Bloch waves, similarly to the usual decomposition into dynamic modes on a finite structure. The method is applied to obtain the field induced by a load moving at constant velocity on a thin beam supported by periodic elastic supports.

  19. Human tRNALys3UUU Is Pre-Structured by Natural Modifications for Cognate and Wobble Codon Binding through Keto-Enol Tautomerism

    Energy Technology Data Exchange (ETDEWEB)

    Vendeix, Franck A.P.; Murphy, IV, Frank V.; Cantara, William A.; Leszczy,; #324; ska, Gra; #380; yna,; Gustilo, Estella M.; Sproat, Brian; Malkiewicz, Andrzej; Agris, Paul F. [Cornell; (NCSU); (Poland); (Integrated DNA); (SUNYA)

    2013-09-27

    Human tRNALys3UUU (htRNALys3UUU) decodes the lysine codons AAA and AAG during translation and also plays a crucial role as the primer for HIV-1 (human immunodeficiency virus type 1) reverse transcription. The posttranscriptional modifications 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A37), and pseudouridine (Ψ39) in the tRNA's anticodon domain are critical for ribosomal binding and HIV-1 reverse transcription. To understand the importance of modified nucleoside contributions, we determined the structure and function of this tRNA's anticodon stem and loop (ASL) domain with these modifications at positions 34, 37, and 39, respectively (hASLLys3UUU-mcm5s2U34;ms2t6A3739). Ribosome binding assays in vitro revealed that the hASLLys3UUU-mcm5s2U34;ms2t6A3739 bound AAA and AAG codons, whereas binding of the unmodified ASLLys3UUU was barely detectable. The UV hyperchromicity, the circular dichroism, and the structural analyses indicated that Ψ39 enhanced the thermodynamic stability of the ASL through base stacking while ms2t6A37 restrained the anticodon to adopt an open loop conformation that is required for ribosomal binding. The NMR-restrained molecular-dynamics-derived solution structure revealed that the modifications provided an open, ordered loop for codon binding. The crystal structures of the hASLLys3UUU-mcm5s2U34;ms2t6A3739 bound to the 30S ribosomal subunit with each codon in the A site showed that the

  20. Analysis of the variation of the attenuation curve in function of the radiation field size for k Vp X-ray beams using the MCNP-5C code

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)

  1. Comparative study between cold plasma and hot plasma with ion beam and loss-cone distribution function by particle aspect approach

    Science.gov (United States)

    Patel, Soniya; Varma, P.; Tiwari, M. S.

    2011-03-01

    The electromagnetic ion-cyclotron (EMIC) instabilities with isotropic ion beam and general loss-cone distribution of cold and hot core plasmas are discussed. The growth rate, parallel and perpendicular resonance energies of the electromagnetic ion-cyclotron waves in a low β (ratio of plasma pressure to magnetic pressure), homogeneous plasma have been obtained using the dispersion relation for cold and hot plasmas. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by isotropic ion beam. It is assumed that resonant particles and ion beam participate in energy exchange with the wave whereas non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in cold and hot plasmas by the energy conservation method with a general loss-cone distribution function. The thermal anisotropy of the core plasma acts as a source of free energy for EMIC wave and enhances the growth rate. It is noted that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of up flowing ion beam and steep loss-cone distribution in the anisotropic magnetosphere. The effect of the steep loss-cone distribution is to enhance the growth rate of the EMIC wave. The heating of ions perpendicular and parallel to the magnetic field is discussed along with EMIC wave emission in the auroral acceleration region. The results are interpreted for the space plasma parameters appropriate to the auroral acceleration region of the earth's magnetoplasma.

  2. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available ? per photon, and may be found as beams expressed in several basis functions, including Laguerre-Gaussian (LGpl) beams1, Bessel-Gaussian beams3 and Airy beams4 to name but a few. LG0l are otherwise known as vortex beams and LG0l beams are routinely... are represented by ?petals? and we show that through a full modal decomposition, the ?petal? fields are a superposition of two LG0l modes. Keywords: Vortex beams, SLM, Laguerre-Gaussian beams, Porro-prism resonator, Petals. 1. INTRODUCTION It is well...

  3. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Guerra, Jose L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Department of Medicine, Universitat Autonoma de Barcelona, Barcelona (Spain); Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhuang Yan; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eapen, George [Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  4. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  5. Measurement and simulation of the response function of time of flight enhanced diagnostics neutron spectrometer for beam ion studies at EAST tokamak

    Science.gov (United States)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.; Du, T. F.; Hu, Z. M.; Ge, L. J.; Zhang, Y. M.; Sun, J. Q.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Pu, N.; Lin, S. Y.; Wan, B. N.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.

    2016-11-01

    The 2.5 MeV TOFED (Time-Of-Flight Enhanced Diagnostics) neutron spectrometer with a double-ring structure has been installed at Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas. This work describes the response function of the TOFED spectrometer, which is evaluated for the fully assembled instrument in its final layout. Results from Monte Carlo simulations and dedicated experiments with pulsed light sources are presented and used to determine properties of light transport from the scintillator. A GEANT4 model of the TOFED spectrometer was developed to calculate the instrument response matrix. The simulated TOFED response function was successfully benchmarked against measurements of the time-of-flight spectra for quasi-monoenergetic neutrons in the energy range of 1-4 MeV. The results are discussed in relation to the capability of TOFED to perform beam ion studies on EAST.

  6. Neutrino beam line optics study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming-Jen

    1996-09-01

    A study was done to understand the beam line optics from the beginning of Switchyard all the way to the end of Neutrino beam line. All available SWIC data were taken to get the beam centroid and width to be used in the analysis. The beam emittance and lattice function at the beginning of beam line can also be inferred from the study. The result indicated that the normalized 95% emittance to be around 15 {pi}-mm-mr for the vertical plane and about 28 {pi}-mm-mr for the horizontal plane.

  7. Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    This manuscript proposes a new design of phased array antenna for future fifth generation (5G) cellular communications. The proposed phased array antenna is designed on a low-cost N9000 PTFE substrate with overall size of 60×120×0.8 mm3. It consists of eight 28-GHz Vivaldi antenna elements used...... to form a linear phased array in the edge region (top-side) on a mobile phone PCB. The simulated results show that the antenna has the reflection coefficient (S11) less than -10 dB in the frequency range of 27.4 to 28.6 GHz. The proposed phased array antenna has good gain, efficiency, and 3D beam steering...

  8. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  9. Beam-Beam Effects in the Ring-Ring Version of eRHIC

    CERN Document Server

    Shi, Jack; Wang, Dong; Wang, Fuhua

    2005-01-01

    The eRHIC is a proposed electron ring at the RHIC that will provide collisions between a polarized 5-10 GeV electron beam and an ion beam from one of the RHIC rings. In order to achieve proposed high luminosity, large bunch current and small beta-functions at the IP has to be employed. Such measures result in large beam-beam parameters, 0.029 and 0.08 for the electron beam and 0.0065 and 0.0033 for the proton beam in the horizontal and vertical plane, respectively, in the current ZDR design. The beam-beam effect especially the coherent beam-beam effect is therefore one of important issues to the eRHIC. Moreover, the proposed configuration of unequal circumferences of the electron and proton rings could further enhance the coherent beam-beam effect. The beam-beam effect of eRHIC has therefore been studied with a self-consistent beam-beam simulation by using the particle-in-cell method. Beam-beam limits of the electron and proton beam were examined as thresholds of the onset of coherent beam-beam instability. F...

  10. 密度功能梯度压电悬臂梁的解析解%Analytical solutions to density functionally graded piezoelectric cantilever beams

    Institute of Scientific and Technical Information of China (English)

    江爱民; 丁皓江

    2008-01-01

    得到了用三个调和位移函数表达的材料特征值互不相同情况下平面压电介质通解,同时推导出压电平面有体力问题的特别解.然后,利用试凑法和叠加法研究了一系列压电梁问题解析解,包括:压电悬臂梁体力分别随z或x呈指数函数或多项式形式变化,并通过数值计算结果分析了压电材料的不均匀性的影响.%The general solution of the two-dimensional piezoelectric media expressed with three harmonic displacement functions was first given in the case of distinct eigenvalues. Then, the expressions of specific solutions of piezoelectric plane problems with body force were derived. Finally, a series of beam problems was solved by the trial-and-error method, including cantilever beam with body forces varying exponentially only in the z direction or depending only on x coordinate and expressed by x polynomial. Numerical examples were given and discussed to show the significant influence of material inhomogeneity, and adopting certain value of in-homogeneity parameters λ, Cn can optimize the mechanical-electric responses.

  11. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J.

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  12. Pr and F co-doped SnO₂ transparent conductive films with high work function deposited by ion-assisted electron beam evaporation.

    Science.gov (United States)

    Wu, Shaohang; Li, Yantao; Luo, Jinsong; Lin, Jie; Fan, Yi; Gan, Zhihong; Liu, Xingyuan

    2014-02-24

    A transparent conductive oxide (TCO) Pr and F co-doped SnO2 (PFTO) film is prepared by ion-assisted electron beam deposition. An optimized PFTO film shows a high average visible optical transmittance of 83.6% and a minimum electrical resistivity of 3.7 × 10(-3) Ω·cm corresponding to a carrier density of 1.298 × 10(20) cm(-3) and Hall mobility of 12.99 cm(2)/V⋅s. This PFTO film shows a high work function of 5.147 eV and favorable surface morphology with an average roughness of 1.45 nm. Praseodymium fluoride is found to be an effective material to dope F into SnO2 that can simplify the fabrication process of SnO2-based TCO films.

  13. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs.

    Directory of Open Access Journals (Sweden)

    Nikita E Chavarria

    Full Text Available While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6 and ubiquitin-related modifier-1 (Urm1 are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii that is essential for maintaining cellular pools of thiolated tRNA(LysUUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1. Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNA(LysUUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.

  14. Post-transcriptional modification of the wobble nucleotide in anticodon-substituted yeast tRNAArgII after microinjection into Xenopus laevis oocytes.

    Science.gov (United States)

    Fournier, M; Haumont, E; de Henau, S; Gangloff, J; Grosjean, H

    1983-02-11

    An enzymatic procedure for the replacement of the ICG anticodon of yeast tRNAArgII by NCG trinucleotide (N = A, C, G or U) is described. Partial digestion with S1-nuclease and T1-RNAase provides fragments which, when annealed together, form an "anticodon-deprived" yeast tRNAArgII. A novel anticodon, phosphorylated with (32P) label on its 5' terminal residue, is then inserted using T4-RNA ligase. Such "anticodon-substituted" yeast tRNAArgII are microinjected into the cytoplasm of Xenopus laevis oocytes and shown to be able to interact with the anticodon maturation enzymes under in vivo conditions. Our results indicate that when adenosine occurs in the wobble position (A34) in yeast tRNAArgII it is efficiently modified into inosine (I34) while uridine (U34) is transformed into two uridine derivatives, one of which is probably mcm5U. In contrast, when a cytosine (C34) or guanosine (G34) occurs, they are not modified. These results are at variance with those obtained previously under similar conditions with anticodon derivatives of yeast tRNAAsp harbouring A, C, G or U as the first anticodon nucleotide. In this case, guanosine and uridine were modified while adenosine and cytosine were not.

  15. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  16. Generalized functions and calculus operators of Mathematica applied to evaluation of influence lines and envelopes of statically indeterminate beams

    OpenAIRE

    Walentyński, Ryszard

    2015-01-01

    W pracy przedstawiono metodę analityczną znalezienia funkcji linii wpływu w belkach statycznie niewyznaczalnych. Są przedstawione rozwiązania równania czwartego rzędu z występowaniem po prawej stronie drugiej i trzeciej pochodnej delty Diraca. Wykazano, że ich rozwiązaniem są linie wpływu momentów i sił poprzecznych. Ponadto, dzięki Mathematica, postać analityczna funkcji obwiedni mogą być wyznaczone. The paper presents an analytical method of finding functions of influence lines of static...

  17. The variation of HVL with focal spot to chamber distance as a function of beam quality for the Pantak Therapax 150 X-ray unit and the implications on dose to water determination using the IPEMB code of practice.

    Science.gov (United States)

    Baines, John; Sim, Lucy

    2014-09-01

    Using a Pantak Therapax SXT 150 system HVL values for clinical beams generated with filters 4-8, were determined as a function of FCD (30-130 cm). Aluminium absorbers were placed midway between the focus and chamber with collimation to define both narrow and broad beam geometries. For filters 4-7 with broad beam geometry the HVL initially decreases as the FCD is increased from 30 cm and then increases as the FCD approaches 130 cm. In contrast filter 8 exhibits a reduction in HVL with increasing FCD attributed to the decreasing influence of absorber scatter. With narrow beam geometry the HVL of filter 4 increases as the FCD is increased. For other filters the HVL variation is similar to that for the broader beam albeit that for a given FCD the HVL is smaller, a consequence of reduced absorber scatter. Monte Carlo BEAMnrc simulations of filter 4-8 beams demonstrated a quality dependent air attenuation effect associated with an increase in HVL for lower quality beams with increasing FCD. Thus for the beams investigated in this work the variation of HVL with FCD can be interpreted in terms of the competing influences of absorber scatter, which tends to decrease the measured HVL, and a quality dependent in air attenuation that tends to increase the HVL with increasing FCD. In terms of an absorbed dose determination it is shown that changes of HVL with FCD resulted in variations of D w,z = 0 < ±0.5 %.

  18. Effect of postoperative brachytherapy and external beam radiotherapy on functional outcomes of immediate facial nerve repair after radical parotidectomy.

    Science.gov (United States)

    Hontanilla, Bernardo; Qiu, Shan-Shan; Marré, Diego

    2014-01-01

    There is much controversy regarding the effect of radiotherapy on facial nerve regeneration. However, the effect of brachytherapy has not been studied. Fifty-three patients underwent total parotidectomy of which 13 were radical with immediate facial nerve repair with sural nerve grafts. Six patients (group 1) did not receive adjuvant treatment whereas 7 patients (group 2) received postoperative brachytherapy plus radiotherapy. Functional outcomes were compared using Facial Clima. Mean percentage of blink recovery was 92.6 ± 4.2 for group 1 and 90.7 ± 5.2 for group 2 (p = .37). Mean percentage of commissural excursion restoration was 78.1 ± 3.5 for group 1 and 74.9 ± 5.9 for group 2 (p = .17). Mean time from surgery to first movement was 5.7 ± 0.9 months for group 1 and 6.3 ± 0.5 months for group 2 (p = .15). Brachytherapy plus radiotherapy does not affect the functional outcomes of immediate facial nerve repair with nerve grafts. Copyright © 2013 Wiley Periodicals, Inc.

  19. IORT and external beam irradiation (EBI) in clinical stage I-II NSCLC patients with severely compromised pulmonary function: an 52-patient single-institutional experience

    Energy Technology Data Exchange (ETDEWEB)

    Jakse, G.; Kapp, K.S.; Geyer, E.; Oechs, A. [Dept. of Therapeutic Radiology and Oncology, Dept. of Surgery, Medical Univ. of Graz (Austria); Maier, A.; Gabor, S.; Juettner, F.M. [Div. of Thoracic and Hyperbaric Surgery, Medical Univ. of Graz (Austria)

    2007-12-15

    In limited stage NSCLC surgery offers the best chance for cure. However, patients who would not tolerate a radical surgical procedure such as lobectomy on the basis of severely compromised pulmonary function or cardio respiratory impairment are also poor candidates for radical external beam irradiation. These patients may benefit from alternative procedures that allow maximum sparing of adjacent lung tissue such as brachytherapy, stereotactic radiotherapy or IORT. There is clear evidence that loco-regional control in lung cancer is dose related, but neighboring normal tissues such as ipsilateral or collateral lung, heart, spinal cord are limiting factors for delivering doses necessary to eradicate the primary or loco-regional metastases. The rational of IORT, builds on the observation that only patients in whom local control has been achieved had a prolonged survival. IORT permits to selectively deliver high single doses to the tumor or the tumor bed with maximum sparing of adjacent normal tissue and has been applied with curative and palliative intent in a variety of tumors. Experience with IORT in lung cancer is still very limited. The current study evaluates the outcome of combined IORT and EBI in a highly selected cohort of patients with clinical stage I-II NSCLC who were fit to undergo thoracotomy and lymph node sampling but unable to undergo lobectomy or conventional high dose EBI due to severely compromised pulmonary function. (orig.)

  20. Controlling Beam Halo-Chaos

    Institute of Scientific and Technical Information of China (English)

    方锦清; 罗晓曙; 陈关荣; 翁甲强

    2001-01-01

    Beam halo-chaos is essentially a complex spatiotemporal chaotic motion in a periodic-focusing channel of a highpower linear proton accelerator. The controllability condition for beam halo-chaos is analysed qualitatively. A special nonlinear control method, i.e. the wavelet-based function feedback, is proposed for controlling beam halochaos. Particle-in-cell simulations are used to explore the nature of halo-chaos formation, which has shown that the beam hMo-chaos is suppressed effectively after using nonlinear control for the proton beam with an initial full Gaussian distribution. The halo intensity factor Hav is reduced from 14%o to zero, and the other statistical physical quantities of beam halo-chaos are more than doubly reduced. The potential applications of such nonlinear control in experiments are briefly pointed out.

  1. Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence.

    Science.gov (United States)

    Haumont, E; Fournier, M; de Henau, S; Grosjean, H

    1984-03-26

    We have investigated the specificity of the tRNA modifying enzyme that transforms the adenosine at position 34 (wobble position) into inosine in the anticodon of several tRNAs. For this purpose, we have constructed sixteen recombinants of yeast tRNAAsp harboring an AXY anticodon (where X or Y was one of the four nucleotides A, G, C or U). This was done by enzymatic manipulations in vitro of the yeast tRNAAsp, involving specific hydrolysis with S1-nuclease and RNAase A, phosphorylation with T4-polynucleotide kinase and ligation with T4-RNA ligase: it allowed us to replace the normal anticodon GUC by trinucleotides AXY and to introduce simultaneously a 32P-labelled phosphate group between the uridine at position 33 and the newly inserted adenosine at position 34. Each of these 32P-labelled AXY "anticodon-substituted" yeast tRNAAsp were microinjected into the cytoplasm of Xenopus laevis oocytes and assayed for their capacity to act as substrates for the A34 to I34 transforming enzyme. Our results indicate that: 1/ A34 in yeast tRNAAsp harboring the arginine anticodon ACG or an AXY anticodon with a purine at position 35 but with A, G or C but not U at position 36 were efficiently modified into I34; 2/ all yeast tRNAAsp harboring an AXY anticodon with a pyrimidine at position 35 (except ACG) or uridine at position 36 were not modified at all. This demonstrates a strong dependence on the anticodon sequence for the A34 to I34 transformation in yeast tRNAAsp by the putative cytoplasmic adenosine deaminase of Xenopus laevis oocytes.

  2. Damage evolution in an electron beam physical vapor deposited thermal barrier coating as a function of cycle temperature and time

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Swetha [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Xie, Liangde [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Jordan, Eric H. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269 (United States)]. E-mail: jordan@engr.uconn.edu; Gell, Maurice [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Murphy, K.S. [Howmet Research Corporation, Howmet Castings, Whitehall, MI 49461 (United States)

    2005-02-25

    Failure of thermal barrier coatings (TBCs) deposited on a single-crystal superalloy with a grit-blasted platinum modified nickel aluminide [{beta}-(Ni, Pt) Al] bond coat has been studied as a function of thermal cycling temperature and time. One-hour cyclic furnace tests were conducted at 1100 deg. C, 1121 deg. C and 1151 deg. C, and 24-h tests were run at 1121 deg. C. It was found that all the samples tested in the 1-h cycle failed in the TBC, near the TBC/TGO interface, due to progressive cracking beginning at {approx}20% life fraction. In contrast, the 24-h cyclic test samples failed at the TGO/bond coat interface. Thus, a life prediction for this TBC will ultimately require the use of two independent damage mechanisms and failure will be predicted on the basis of whichever occurs first during the TBC cyclic life. A single-valued relation was found between the rumpling amplitudes and the oxide thickness, independent of temperature and cycle time, consistent with oxidation being rate controlling.

  3. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  4. Beam Synchronous Timing Systems

    CERN Document Server

    Peters, A

    2003-01-01

    For many beam diagnostics purposes beam synchronous timing systems are needed in addition to the timing systems supplied by the control systems of the different accelerators. The demands and techniques of different accelerator facilities will be discussed along the following aspects: Bunch and macro pulse synchronous timing systems Solutions for different time scales from ps to ms Coupling to the RF and control systems of the different accelerators Electronics for the beam synchronous timing systems: parameters, techniques, controlling Use of industrial products for bunch synchronous timing systems, e.g. function generators Distribution of the timing signals: electronically via cables, optically via fibres or wireless Coupling to and use of timing standards: IRIG-B, GPS, ? The participants should present and describe solutions from their facilities with some transparencies as a starting point for the discussion.

  5. The Modification of Polymer Surfaces and the Fabrication of Submicron- Scale Functionalized Structures by Deep-UV and Electron Beam Lithography

    Science.gov (United States)

    1993-06-10

    to the polymer via photogenerated or electron beam generated, highly reactive nitrene intermediates derived from the PFPA. Using this technique we...electron beam generated, highly reactive nitrene intermediates derived from the PFPA. Using this technique we demonstrate that well- defined surface...PFPAs in hydrocarbon solvents efficiently produce CH insertion products via highly reactive nitrene intermediates.13-1 Taking advantage of the

  6. Asymmetric Bessel-Gauss beams.

    Science.gov (United States)

    Kotlyar, V V; Kovalev, A A; Skidanov, R V; Soifer, V A

    2014-09-01

    We propose a three-parameter family of asymmetric Bessel-Gauss (aBG) beams with integer and fractional orbital angular momentum (OAM). The aBG beams are described by the product of a Gaussian function by the nth-order Bessel function of the first kind of complex argument, having finite energy. The aBG beam's asymmetry degree depends on a real parameter c≥0: at c=0, the aBG beam is coincident with a conventional radially symmetric Bessel-Gauss (BG) beam; with increasing c, the aBG beam acquires a semicrescent shape, then becoming elongated along the y axis and shifting along the x axis for c≫1. In the initial plane, the intensity distribution of the aBG beams has a countable number of isolated optical nulls on the x axis, which result in optical vortices with unit topological charge and opposite signs on the different sides of the origin. As the aBG beam propagates, the vortex centers undergo a nonuniform rotation with the entire beam about the optical axis (c≫1), making a π/4 turn at the Rayleigh range and another π/4 turn after traveling the remaining distance. At different values of the c parameter, the optical nulls of the transverse intensity distribution change their position, thus changing the OAM that the beam carries. An isolated optical null on the optical axis generates an optical vortex with topological charge n. A vortex laser beam shaped as a rotating semicrescent has been generated using a spatial light modulator.

  7. A Schrdinger formulation research for light beam propagation

    Institute of Scientific and Technical Information of China (English)

    刘承宜; 郭弘; 胡巍; 邓锡铭

    2000-01-01

    The wave equation of light beam propagation was written in the form of an axial-coordinate-dependent Schrodinger equation, and the expectation value of a dynamical variable, the trial function of variational approach and the ABCD law were discussed by use of quantum mechanics approach. In view of the evolution equations of expectation values of dynamical variables in the framework of quantum mechanics, the definition of a potential function representing the beam propagation stability and its universal formula with the quality factor, the universal formula of beam width and curvature radius for a paraxial beam and cylindrically symmetric non-paraxial beam, the general formula of second derivative of beam width with respect to the axial coordinate of beam for a paraxial beam, and the general criteria of the conservation of beam quality factor and the existence of a potential well of a potential function for a paraxial beam, were given or derived, respectively. Starting with the same trial function, the co

  8. TU-F-17A-09: Four-Dimensional Cone Beam CT Ventilation Imaging Can Detect Interfraction Lung Function Variations for Locally Advanced Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, J; Keall, P [Radiation Physics Laboratory, University of Sydney, Sydney NSW 2006 Australia (Australia); Hugo, G; Weiss, E; Williamson, J [Department of Radiation Oncology, Virginia Commonwealth University, Richmond VA (United States)

    2014-06-15

    Purpose: Four-dimensional cone beam CT ventilation imaging (4D-CBCT VI) is a novel functional lung imaging modality requiring validation. We hypothesize that 4D-CBCT VI satisfies a necessary condition for validity: that intrafraction variations (e.g. due to poor 4D-CBCT image quality) are substantially different to interfraction variations (e.g. due to changes in underlying function). We perform the first comparison of intrafraction (pre/post fraction) and interfraction (week-to-week) 4D-CBCT VIs for locally advanced non small cell lung cancer (LA NSCLC) patients undergoing radiation therapy. Methods: A total of 215 4D-CBCT scans were acquired for 19 LA NSCLC patients over 4-6 weeks of radiation therapy, including 75 pairs of pre-/post-fraction scans on the same day. 4D-CBCT VIs were obtained by applying state-of-the-art, B-spline deformable image registration to obtain the Jacobian determinant of deformation between the end-exhale and end-inhale phases. All VIs were deformably registered to the corresponding first day scan, normalized between the 10th and 90th percentile values and cropped to the ipsilateral lung only. Intrafraction variations were assessed by computing the mean and standard deviation of voxel-wise differences between all same-day pairs of pre-/post-fraction VIs. Interfraction differences were computed between first-day VIs and treatment weeks 2, 4 and 6 for all 19 patients. We tested the hypothesis by comparing cumulative distribution functions (CDFs) of intrafraction and interfraction ventilation differences using two-sided Kolmogorov-Smirnov goodness-of-fit tests. Results: The (mean ± std. dev.) of intrafraction differences was (−0.007 ± 0.079). Interfraction differences for weeks 2, 4 and 6 were (−0.035 ± 0.103), (−0.006 ± 0.094) and (−0.019 ± 0.127) respectively. For week 2, the changes in CDFs for intrafraction and interfraction differences approached statistical significance (p=0.099). Conclusion: We have shown that 4D-CBCT VI

  9. Introduction to beam diagnostics and instrumentation for circular accelerators

    Science.gov (United States)

    Billing, M.

    1992-07-01

    This paper provides a basic overview of beam diagnostics and instrumentation for circular accelerators and storage rings. It addresses the techniques for measuring important accelerator parameters, such as betatron tunes, betatron functions, dispersion functions, beam position, beam size, and damping times. The instrumentation section contains a general description of beam position monitors, beam kickers, and general signal processing techniques. Some examples of actual accelerator measurements are included.

  10. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  11. A Refined Zigzag Beam Theory for Composite and Sandwich Beams

    Science.gov (United States)

    Tessler, Alexander; Sciuva, Marco Di; Gherlone, Marco

    2009-01-01

    A new refined theory for laminated composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse-shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are derived and the improved modelling capability of the new zigzag beam theory is demonstrated. In particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed and compared with corresponding results obtained from elasticity solutions, two other zigzag theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined zigzag theory presented herein over similar existing theories. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate estimates of structural response needed to design an important class of high-performance aerospace structures.

  12. Weak-strong Beam-beam Simulations for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Banfi, Danilo [Ecole Polytechnique, Lausanne; Barranco, Javier [Ecole Polytechnique, Lausanne; Pieloni, Tatiana [CERN; Valishev, Alexander [Fermilab

    2014-07-01

    In this paper we present dynamic aperture studies for possible High Luminosity LHC optics in the presence of beam-beam interactions, crab crossing schemes and magnets multipolar errors. Possible operational scenarios of luminosity leveling by transverse offset and betatron function are also studied and the impact on the beams stability is discussed.

  13. Analytical estimation of the beam-beam interaction limited dynamic apertures and lifetimes in e{sup +}e{sup -} circular colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J

    2000-12-01

    Physically speaking, the delta function like beam-beam nonlinear forces at interaction points (IPs) act as a sum of delta function nonlinear multipoles. By applying the general theory established in ref. [1], in this paper we investigate analytically the beam-beam interaction limited dynamic apertures and the corresponding beam lifetimes for both the round and the flat beams. Relations between the beam-beam limited beam lifetimes and the beam-beam tune shifts are established, which show clearly why experimentally one has always a maximum beam-beam tune shift, {zeta}{sub y,max}, around 0.045 for e{sup +}e{sup -} circular colliders, and why one can use round beams to double this value approximately. Comparisons with some machine parameters are given. Finally, we discuss the mechanism of the luminosity reduction due to a definite collision crossing angle. (author)

  14. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  15. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  16. The output factor correction as function of the photon beam field size - direct measurement and calculation from the lateral dose response functions of gas-filled and solid detectors.

    Science.gov (United States)

    Poppinga, Daniela; Delfs, Björn; Meyners, Jutta; Harder, Dietrich; Poppe, Björn; Looe, Hui Khee

    2017-08-28

    The first aim of this study has been to extend the systematic experimental study of the field size dependence of the output factor correction for three micro-ionization chambers (PTW 31014, PTW 31022 and IBA Razor chamber), two silicon diodes (PTW 60017 and IBA Razor Diode) and the synthetic diamond detector microDiamond (PTW 60019) in a 6 MV photon beam down to an effective field side length of 2.6mm, and to summarize the present knowledge of this factor by treating it as a function of the dosimetric field size. In order to vary the dosimetric field size over this large range, output factors measurements were performed at source-to-surface distances of 60cm and 90cm. Since the output factors obtained with the organic scintillation detector Exradin W1 (Standard Imaging, Middleton, USA) at all field sizes closely agreed with those measured by EBT3 radiochromic films (ISP Corp, Wayne, USA), the scintillation detector served as the reference detector. The measured output correction factors reflect the influences of the volume averaging and density effects upon the uncorrected output factor values. In case of the microDiamond detector these opposing influences result in output factor correction values less than 1 for moderately small field sizes and larger than 1 for very small field sizes. Our results agree with most of the published experimental as well as Monte-Carlo simulated data within detector-specific limits of uncertainty. The dosimetric field side length has been identified as a reliable determinant of the output factor correction, and typical functional curve shapes of the field-size dependent output factor correction vs. dosimetric field side length have been associated with gas-filled, silicon diode and synthetic diamond detectors. The second aim of this study has been a novel, semi-empirical approach to calculate the field-size dependent output correction factors of small photon detectors by convolving film measured true dose profile data with measured

  17. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  18. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  19. Control of beam halo-chaos using real Morlet wavelet function in a periodic-focusing channel%周期聚焦磁场中束晕-混沌的实Morlet小波函数控制

    Institute of Scientific and Technical Information of China (English)

    余海军; 白龙; 翁甲强; 罗晓曙; 方锦清

    2008-01-01

    基于束晕-混沌的非线性控制策略,对周期性聚焦磁场中初始分布满足K-V分布的粒子束进行模拟研究,提出了控制其束晕-混沌的实Morlet小波函数控制器,并给出具体的实施方案.数值模拟研究表明,在适当的参数条件下,运用这种方法不仅可以消除束晕及其再生现象,达到对束晕-混沌的有效控制,而且可以控制束流到均匀分布.%The Kapchinsky-Vladimirsky (K-V) beam through an axisymmetric periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a real Morlet wavelet function controller is proposed based on the mechanism of halo formation and the strategy of controlling halo-chaos. The method is applied to the multi-particle simulation to control the halo. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively by using the real Morlet wavelet function control method. At the same time, the radial particle density is uniform at the center of the beam as long as the control method and appropriate parameter are chosen.

  20. The logarithmic beam position monitor

    Science.gov (United States)

    Medvedko, Evgeny A.; Smith, Stephen R.

    2000-11-01

    Modern logarithmic amplifiers offer wide dynamic range, high bandwidth, good logarithmic conformance, and low cost making them attractive for beam position measurements. A log-ratio beam position monitor has been designed and built at SLAC for use at the PEP-II B-Factory. An integrated circuit logarithmic amplifier from Analog Devices, the AD8307, recovers the envelope of the 476 MHz harmonic of the beam signal. A log BPM board with two logarithmic and one differential amplifier performs the basic function of forming an output voltage proportional to the difference of the logarithms of the signal amplitudes on opposite electrodes. This voltage is approximately linear with beam position. For this application, we have limited the video bandwidth of the log amps to 50 kHz in order to remove fill pattern dependence. The log BPM board has an interface for testing and simulating beam offsets. The log BPMs were developed for a PEP-II ring protection chassis. Here the log BPMs function to identify dangerous orbit excursions. These excursions are signaled to a system, which can dump the beam. Two such chassis serve to protect the PEP-II rings.

  1. A polarized beams project at ISAC

    CERN Document Server

    Levy, C D P; Jayamanna, K; Kiefl, R; Kuo, T; Olivo, M; Wight, G W; Yuan, D; Zelenski, A N

    2002-01-01

    A polarizer beam line at the radioactive beams facility ISAC at TRIUMF is nearly complete. Initially for sup 8 Li sup + ions for beta-NMR studies in condensed matter, it can in principle supply three or more experiments simultaneously, and the technique used is practicable with all alkali-metal ion beams. An atomic beam, created with over 90% efficiency by passing the initial unpolarized 30 keV beam through a sodium vapor jet target, will be polarized by colinear optical pumping. A novel feature is that the atomic beam is reionized with demonstrated high efficiency in a helium gas target. The emittance growth through the helium cell has been measured for stable sup 7 Li sup + beam on a test stand and found to be small. We report these measurements as a function of helium flow rates. A preliminary polarized sup 8 Li sup + run is planned for May, 2000.

  2. Libera Electron Beam Position Processor

    CERN Document Server

    Ursic, Rok

    2005-01-01

    Libera is a product family delivering unprecedented possibilities for either building powerful single station solutions or architecting complex feedback systems in the field of accelerator instrumentation and controls. This paper presents functionality and field performance of its first member, the electron beam position processor. It offers superior performance with multiple measurement channels delivering simultaneously position measurements in digital format with MHz kHz and Hz bandwidths. This all-in-one product, facilitating pulsed and CW measurements, is much more than simply a high performance beam position measuring device delivering micrometer level reproducibility with sub-micrometer resolution. Rich connectivity options and innate processing power make it a powerful feedback building block. By interconnecting multiple Libera electron beam position processors one can build a low-latency high throughput orbit feedback system without adding additional hardware. Libera electron beam position processor ...

  3. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  4. Tevatron End-of-Run Beam Physics Experiments

    CERN Document Server

    Valishev, A; Miyamoto, R; White, S; Schmidt, F; Qiang, J

    2012-01-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beambeam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  5. Transverse beam feedback system for PLS storage ring

    CERN Document Server

    Huang, J Y; Kim, D T; Kang, H S; Hwang, W H; Nam, S H

    2001-01-01

    As the stored beam current increases over 240 mA, transverse coupled-beam instability limits higher beam current in Pohang Light Source. A bunch by bunch transverse feedback system has been developed to cure these beam instabilities. It consists of beam oscillation detectors, betatron phase adjuster, power amplifiers and a stripline kicker. Design of each circuit and its functions are described with simple trigonometric equations. The result of the beam test has shown more than 30 dB damping of the beam oscillation in the full bandwidth of the system.

  6. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  7. VIBRATION OF ELASTICALLY SUPPORTED TIMOSHENKO BEAM

    Directory of Open Access Journals (Sweden)

    Traian MAZILU

    2013-05-01

    Full Text Available This paper deals with the response of a Timoshenko beam elastically supported onWinkler foundation due to two harmonic forces. Such problem could be interesting to study thedynamic of the sleepers of the track. The Green’s function method has been applied to determinethe frequency-response of the beam considering both symmetrical and anti-symmetrical excitationmodes. The influence of the foundation on the vibration behavior of the beam is pointed out

  8. VIBRATION OF ELASTICALLY SUPPORTED TIMOSHENKO BEAM

    OpenAIRE

    2013-01-01

    This paper deals with the response of a Timoshenko beam elastically supported onWinkler foundation due to two harmonic forces. Such problem could be interesting to study thedynamic of the sleepers of the track. The Green’s function method has been applied to determinethe frequency-response of the beam considering both symmetrical and anti-symmetrical excitationmodes. The influence of the foundation on the vibration behavior of the beam is pointed out

  9. Beam Instrument Development System

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  10. Beam Stop for Electron Accelerator Beam Characterisation

    Science.gov (United States)

    Roach, Greg; Sharp, Vic; Tickner, James; Uher, Josef

    2009-08-01

    Electron linear accelerator applications involving the generation of hard X-rays frequently require accurate knowledge of the electron beam parameters. We developed a beam stop device which houses a tungsten Bremsstrahlung target and enables the electron beam current, energy and position to be monitored. The beam stop consisted of four plates. The first was a removable aluminium (Al) transmission plate. Then followed the tungsten target. Behind the target there were four Al quadrant plates for beam position measurement. The last plate was a thick Al back-stop block. Currents from the four quadrants and the back-stop were measured and the beam lateral position, energy and current were calculated. The beam stop device was optimised using Monte-Carlo simulation, manufactured (including custom-made electronics and software) in our laboratory and tested at the ARPANSA (Australian Radiation Protection and Nuclear Safety Agency) linear accelerator in Melbourne. The electron beam energy was determined with a precision of 60 keV at beam energies between 11 and 21 MeV and the lateral beam position was controlled with a precision of 200 mum. The relative changes of the beam current were monitored as well.

  11. Results on intense beam focusing and neutralization from the neutralized beam experiment

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.K.; Yu, S.S.; Eylon, S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; Waldron, W.L.; Vanecek, D.L.; Welch, D.R.; Rose, D.V.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Sharp, W.M.

    2003-10-31

    We have demonstrated experimental techniques to provide active neutralization for space-charge dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. We present measurements of current transmission, beam spot size as a function of axial position, beam energy and plasma source conditions. Detailed comparisons with theory are also presented.

  12. OBSERVATION OF LONG-RANGE BEAM-BEAM EFFECT IN RHIC AND PLANS FOR COMPENSATION.

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER, W.; CALAGA, R.; DORDA, U.; DOUTCHOUK, J.-P.; ZIMMERMANN, F.; RANJBAR, V.; SEN, T.; SHI, J.; QIANG, J.; KABEL, A.

    2006-06-23

    At large distances the electromagnetic field of a wire is the same as the field produced by a bunch. Such a long-range beam-beam wire compensator was proposed for the LHC, and single beam tests with wire compensators were successfully done in the SPS. RHIC offers the possibility to test the compensation scheme with colliding beams. We report on measurements of beam losses as a function of transverse separation in RHIC at 100 GeV, and comparisons with simulations. We present a design for a long-range wire compensator in RHIC.

  13. Electron beam control for barely separated beams

    Science.gov (United States)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  14. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  15. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  16. Measurements of the modulation transfer function, normalized noise power spectrum and detective quantum efficiency for two flat panel detectors: a fluoroscopic and a cone beam computer tomography flat panel detectors.

    Science.gov (United States)

    Benítez, Ricardo Betancourt; Ning, Ruola; Conover, David; Liu, Shaohua

    2009-01-01

    The physical performance of two Flat Panel Detectors has been evaluated. The first Flat Panel Detector is for Fluoroscopic applications, Varian PaxScan 2520, and the second is for Cone Beam Computer Tomography applications, Varian PaxScan 4030CB. First, the spectrum of the X-ray source was measured. Second, the linearity of the detectors was investigated by using an ionization chamber and the average ADU values of the detectors. Third, the temporal resolution was characterized by evaluating their image lag. Fourth, their spatial resolution was characterized by the pre-sampling Modulation Transfer Function. Fifth, the Normalized Noise Power Spectrum was calculated for various exposures levels. Finally, the Detective Quantum Efficiency was obtained as a function of spatial frequency and entrance exposure. The results illustrate that the physical performance in Detective Quantum Efficiency and Normalized Noise Power Spectrum of the Cone Beam Computer Tomography detector is superior to that of the fluoroscopic detector whereas the latter detector has a higher spatial resolution as demonstrated by larger values of its Modulation Transfer Function at large spatial frequencies.

  17. Evaluation of parotid function using dynamic parotid scintigraphy in nasopharyngeal carcinoma patients treated with external beam radiation therapy%腮腺动态显像评价鼻咽癌放疗对腮腺功能的影响

    Institute of Scientific and Technical Information of China (English)

    何小江; 黄劲雄; 俞浩; 吴华

    2008-01-01

    Objective To evaluation of the parotid function using dynamic parotid scintigraphy in nasopharyngeal carcinoma patients treated with external beam radiation therapy. Methods Twenty-one nasopharyngeal carcinoma patients were included into this study. Dynamic parotid scintigraphy was performed before and after external beam radiation therapy. Semi-qnantitative parameters of parotid (uptake index, excretion rate and excretion index) was used to evaluate the changes of parotid function. Results UI, ER and El of parotid were decreased markedly after external beam radiation therapy, t is 56.65, 41.34, 30.69 respectively, P<0.001. The uptake and excretion function of the parotid were all impaired, which correlated with the dry mouth symptom of the patients. Conclusion Dynamic parotid scintigraphy can play a key role in the evaluation of parotid function in nasopharyngeal carcinoma patients treated with external beam radiation therapy.%目的 探讨腮腺动态显像评价鼻咽癌放疗对腮腺功能影响的价值.方法 21例鼻咽癌患者分别于放疗前、后行放射性核素腮腺动态显像,计算腮腺摄取指数(UI)、酸刺激后的分泌率(ER)、分泌指数(EI)等半定量指标以评价放疗前后腮腺功能的变化.结果 放疗后与放疗前比较,所有患者UI、ER、EI均显著下降,t值分别为56.65、41.34、30.69, P<0.001,腮腺摄取与分泌功能均明显受损.与患者临床口干症状相符.结论 腮腺动态显像是一种评价鼻咽癌放疗对腮腺功能的影响的有用方法,具有临床应用价值.

  18. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  19. ISR beam scrapers

    CERN Multimedia

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  20. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  1. Correlation singularities in partially coherent electromagnetic beams

    NARCIS (Netherlands)

    Raghunathan, S.B.; Schouten, H.F.; Visser, T.D.

    2012-01-01

    We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially coherent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to be a closed string. These coherence singularities have implications for

  2. Focused Ion Beam Technology for Optoelectronic Devices

    Science.gov (United States)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  3. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  4. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  5. Accelerated iterative beam angle selection in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, Mark, E-mail: m.bangert@dkfz.de [Department of Medical Physics in Radiation Oncology, German Cancer Research Center—DKFZ, Im Neuenheimer Feld 280, Heidelberg D-69120 (Germany); Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2016-03-15

    Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could

  6. Beam Measurements in Storage Rings

    Science.gov (United States)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  7. The clinical case for proton beam therapy

    Directory of Open Access Journals (Sweden)

    Foote Robert L

    2012-10-01

    Full Text Available Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.

  8. Design of Extended Depth-of-Focus Laser Beams Using Orthogonal Beam Expansions

    Directory of Open Access Journals (Sweden)

    Leonard Bergstein

    2005-06-01

    Full Text Available Laser beams with extended depth of focus have many practical applications, such as scanning printed bar codes. Previous work has concentrated on synthesizing such beams by approximating the nondiffracting Bessel beam solution to the wave equation. In this paper, we introduce an alternate novel synthesis method that is based on maintaining a minimum MTF value (contrast over the largest possible distance. To achieve this, the coefficients of an orthogonal beam expansion are sequentially optimized to this criterion. One of the main advantages of this method is that it can be easily generalized to noncircularly symmetrical beams by the appropriate choice of the beam expansion basis functions. This approach is found to be very useful for applications that involve scanning of the laser beam.

  9. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  10. Analytical beam-width characteristics of distorted cat-eye reflected beam

    Science.gov (United States)

    Zhao, Yanzhong; Shan, Congmiao; Zheng, Yonghui; Zhang, Laixian; Sun, Huayan

    2015-02-01

    The analytical expression of beam-width of distorted cat-eye reflected beam under far-field condition is deduced using the approximate three-dimensional analytical formula for oblique detection laser beam passing through cat-eye optical lens with center shelter, and using the definition of second order moment, Gamma function and integral functions. The laws the variation of divergence angle and astigmatism degree of the reflected light with incident angle, focal shift, aperture size, and center shelter ratio are established by numerical calculation, and physical analysis. The study revealed that the cat-eye reflected beam is like a beam transmitted and collimated by the target optical lens, and has the same characteristics as that of Gaussian beam. A proper choice of positive focal shift would result in a divergence angle smaller than that of no focal shift. The astigmatism is mainly caused by incidence angle.

  11. Statics of Thin-Walled Pretwisted Beams

    DEFF Research Database (Denmark)

    Krenk, Steen; Gunneskov, O.

    1981-01-01

    The displacement and strain fields of thin-walled pretwisted beams are prescribed in terms of generalized displacements for extension, bending, torsion and warping. Differential equations and boundary conditions are obtained from the elastic potential energy functional without assuming coincidenc...

  12. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  13. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  14. Edible flowers of Viola tricolor L. as a new functional food: antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation.

    Science.gov (United States)

    Koike, Amanda; Barreira, João C M; Barros, Lillian; Santos-Buelga, Celestino; Villavicencio, Anna L C H; Ferreira, Isabel C F R

    2015-07-15

    Edible flowers are used in food preparations, being also recognized for their beneficial effects on human health. Nevertheless, these species are highly perishable, and irradiation treatment might be applied to ensure food quality and increase their shelf life. Viola tricolor L. is a typical edible flower, with multiple applications and biological properties, mainly provided by the flavonoid content. In the present work, the phenolic compounds were analyzed by HPLC-DAD-ESI/MS, and the antioxidant activity was evaluated using biochemical assays. Linear discriminant analyses (LDA) were performed in order to compare the results obtained with flowers submitted to different irradiation doses and technologies (cobalt-60 and electron-beam). In general, irradiated samples (mostly with 1 kGy) showed the highest phenolic content and antioxidant activity. Furthermore, the significant differences observed in the LDA allow determination of which dose and/or technology is suitable to obtain flowers with higher antioxidant potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Generation of nondiffracting Bessel beam using digital micromirror device.

    Science.gov (United States)

    Gong, Lei; Ren, Yu-Xuan; Xue, Guo-Sheng; Wang, Qian-Chang; Zhou, Jin-Hua; Zhong, Min-Cheng; Wang, Zi-Qiang; Li, Yin-Mei

    2013-07-01

    We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.

  16. Beam-Beam Experience at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl LF

    2002-11-11

    KEKB has achieved the peak luminosity of 4.1 x 10{sup 33} cm{sup -2} sec{sup -1} and the present capability for delivering integrated luminosity is 224 pb{sup -1}/day. This paper describes (1) the recent performance and the problems of KEKB and (2) the comparison of beam-beam simulations with experiments at KEKB.

  17. T10 Beam Studies & Beam Simulation

    CERN Document Server

    Bergmann, Michael Georges; Van Dijk, Maarten; CERN. Geneva. EN Department

    2017-01-01

    In order to test detector components before their installation in actual experiments, one uses test beams in which one can control particle typ, momentum and size to high degree. For this project the focus of a secondary beam at T10 in the East Area at CERN was analysed using an AZALEA telescope from DESY.

  18. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  19. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  20. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  1. BEAM PIPE IS INSTALLED

    CERN Multimedia

    The installation of the central section of the beam pipe into the heart of the  CMS was completed by 23 April. All the beam pipe elements have been successfully vacuum-tested and the bakeout started.  

  2. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  3. Vortices in Gaussian beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available . Gaussian beams with vortex dipoles CSIR National Laser Centre – p.2/30 Gaussian beam notation Gaussian beam in normalised coordinates: g(u, v, t) = exp ( −u 2 + v2 1− it ) u = xω0 v = yω0 t = zρ ρ = piω20 λ ω0 — 1/e2 beam waist radius; ρ— Rayleigh range ω ω...(z) 0 x z Rayleigh range Beam waist ρ ρ Rayleigh range CSIR National Laser Centre – p.3/30 Gaussian beam Gaussian beam in terms of amplitude and phase g(u, v, t) = exp ( −u 2 + v2 1 + t2 ) exp ( − it(u 2 + v2) 1 + t2 ) Normalised beam radius: √ 1 + t2...

  4. Propagation of ultrashort pulsed beams in dispersive media

    Institute of Scientific and Technical Information of China (English)

    刘志军; 吕百达

    2003-01-01

    Starting from the Rayleigh diffraction integral, the propagation equation of ultrashort pulsed beams in dispersive media is derived without making the paraxial approximation and slowly varying envelope approximation (SVEA). The spatiotemporal properties of ultrashort pulsed beams in dispersive media, such as spectrum redshifting, narrowing and pulse distortion are illustrated with pulsed Gaussian beams. It is stressed that the "antibeam" behaviour of ultrashort pulsed beams can be avoided, if a suitable truncation function is chosen.

  5. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  6. n_TOF New target commissioning and beam characterization

    CERN Multimedia

    Igashira, M

    A full characterization of the neutron beam and experimental conditions for measurement with the new spallation target installed at the n_TOF facility is proposed. In a first step, the behavior the target assembly under the proton beam irradiation will be investigated, in order to complete the target commissioning. Subsequently the neutron beam parameters required to analyze the physics measurements, i.e. neutron fluence, beam profile, energy resolution function and beam related backgrounds as a function of the neutron energy, will be determined.

  7. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  8. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  9. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  10. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  11. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling | Office of Cancer Genomics

    Science.gov (United States)

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.

  12. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  13. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  14. Simulation of transition radiation based beam imaging from tilted targets

    Science.gov (United States)

    Sukhikh, L. G.; Kube, G.; Potylitsyn, A. P.

    2017-03-01

    Transverse beam profile diagnostics in linear electron accelerators is usually based on direct imaging of a beam spot via visible transition radiation. In this case the fundamental resolution limit is determined by radiation diffraction in the optical system. A method to measure beam sizes beyond the diffraction limit is to perform imaging dominated by a single-particle function (SPF), i.e. when the recorded image is dominated not by the transverse beam profile but by the image function of a point source (single electron). Knowledge of the SPF for an experimental setup allows one to extract the transverse beam size from an SPF dominated image. This paper presents an approach that allows one to calculate two-dimensional SPF dominated beam images, taking into account the target inclination angle and the depth-of-field effect. In conclusion, a simple fit function for beam size determination in the case under consideration is proposed and its applicability is tested under various conditions.

  15. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  16. Coherent beam-beam effects observation and mitigation at the RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    White S.; Fischer, W.; Luo, Y.

    2012-05-20

    In polarized proton operation in RHIC coherent beam-beam modes are routinely observed with beam transfer function measurements in the vertical plane. With the existence of coherent modes a larger space is required in the tune diagram than without them and stable conditions can be compromised for operation with high intensity beams as foreseen for future luminosity upgrades. We report on experiments and simulations carried out to understand the existence of coherent modes in the vertical plane and their absence in the horizontal plane, and investigate possible mitigation strategies.

  17. ALICE Injected Beam Accidents

    CERN Document Server

    Appleby, R B

    2009-01-01

    The ALICE (point 2) interaction region is sensitive to beam orbit errors arising from magnet setting errors on injection. In this report, beam accident scenarios under injection for ALICE are described, focusing on ultra- fast error injection scenarios for the interaction straight correctors and dipoles. Beam 1 and beam 2 accident scenarios are considered, where the errors can lead to beam orbits striking the ALICE vacuum chamber or elements of the machine. The required thresholds for magnet current interlocks are calculated to avoid machine and detector risk.

  18. LHCb Injected Beam Accidents

    CERN Document Server

    Appleby, R B

    2009-01-01

    The LHCb (point 8) interaction region is sensitive to beam orbit errors arising from magnet setting errors on injection. In this report, beam accident scenarios under injection for LHCb are described, focusing on ultra- fast error injection scenarios for the interaction straight correctors and dipoles. Beam 1 and beam 2 accident scenarios are considered, where the errors can lead to beam orbits striking the LHCb vacuum chamber or elements of the machine. The required thresholds for magnet current interlocks are calculated to avoid machine and detector risk.

  19. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2003-01-01

    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  20. BEAM MANIPULATION WITH AN RF DIPOLE.

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.

    1999-03-29

    Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, we have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function.

  1. Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator

    CERN Document Server

    Fraser, M A; Jones, R M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering...

  2. Optimization of beam geometry for focusing through turbulence

    Science.gov (United States)

    Charnotskii, Mikhail; Baker, Gary

    2016-09-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called Long- Term (LT) statistic allows for a relatively simple theoretical description. The LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The Short-Term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thorough as the LT spread. We use a Markov approximation-based theoretical model for the ST beam irradiance that is valid for the wide range of turbulent conditions. Additional approximations are invoked to allow introduction of the isoplanatic ST Point Spread Function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. Adjustments of the initial beam width and focal distance make it possible to increase the contribution of the LT beam spread that is attributed to the beam wander and minimize the ST beam size at the observation plane for any given turbulence level. Analytical calculations of the optimal beam geometry are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence. We present the results of direct numerical simulation of beam wave propagation that confirm the existence of the optimal beam geometry.

  3. Beam ion confinement on NSTX-U

    Science.gov (United States)

    Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.

    2016-10-01

    A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good beam ion confinement is essential to achieve the anticipated improvements in performance. In the planned beam ion confinement experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses from six neutral beam sources will be injected into center-stack limited L-mode plasmas to characterize the beam ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the beam ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The tangential and vertical Fast-Ion D-Alpha (FIDA) diagnostics and multi-view Solid State Neutral Particle Analyzer (SSNPA) arrays will be used to measure beam ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Beam ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental data and comparisons with classical predictions from NUBEAM modeling will be presented. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  4. Refractive beam shapers for focused laser beams

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  5. Disruption effects on the beam size measurement

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-06-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D{sub y} is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10{sup 10} particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 {mu}m horizontally and 0.55 {mu}m vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H{sub D} of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit.

  6. Generation of Nondiffracting Electron Bessel Beams

    Directory of Open Access Journals (Sweden)

    Vincenzo Grillo

    2014-01-01

    Full Text Available Almost 30 years ago, Durnin discovered that an optical beam with a transverse intensity profile in the form of a Bessel function of the first order is immune to the effects of diffraction. Unlike most laser beams, which spread upon propagation, the transverse distribution of these Bessel beams remains constant. Electrons also obey a wave equation (the Schrödinger equation, and therefore Bessel beams also exist for electron waves. We generate an electron Bessel beam by diffracting electrons from a nanoscale phase hologram. The hologram imposes a conical phase structure on the electron wave-packet spectrum, thus transforming it into a conical superposition of infinite plane waves, that is, a Bessel beam. We verify experimentally that these beams can propagate for 0.6 m without measurable spreading and can also reconstruct their intensity distributions after being partially obstructed by an obstacle. Finally, we show by numerical calculations that the performance of an electron microscope can be increased dramatically through use of these beams.

  7. Diffraction analysis of beams for barcode scanning

    Science.gov (United States)

    Eastman, Jay M.; Quinn, Anna M.

    1991-02-01

    Laser based bar code scanners utilize large f/# beams to attain a large depth of focus. The intensity cross-section of the laser beam is generally not uniform but is frequently approximated by a Gaussian intensity profile. In the case of laser diodes the beam cross-section is a two dimensional distribution. It is well known that the focusing properties of large f/# Gaussian beams differ from the predictions of ray tracing techniques. Consequently analytic modeling of laser based bar code scanning systems requires techniques based on diffraction rather than on ray tracing in order to obtain agreement between theory and practice. The line spread function of the focused laser beam is generally the parameter of interest due to the one-dimensional nature of the bar code symbol. Some bar code scanners utilize an anamorphic optical system to produce a beam that that maintains an elliptical cross-section over an extended depth of focus. This elliptical beam shape is used to average over voids and other printing defects that occur in real world symbols. Since the scanner must operate over the maximum possible depth of field the beam emergent from the scanner must be analyzed in both its near field and far field regions in order to properly model the performance of the scanner.

  8. Assessing joint space and condylar position in the people with normal function of temporomandibular joint with cone-beam computed tomography

    Directory of Open Access Journals (Sweden)

    Zahra Dalili

    2012-01-01

    Conclusion: The assessment of joint spaces in right and left sides should be done independently. Overall, the measured joint spaces except Sjs are not different in two sexes. The data from this study could be a useful and comparable reference for the clinical assessment of condylar position in patients with normal functional joints.

  9. Marginal phase correction of truncated Bessel beams

    Science.gov (United States)

    Sedukhin

    2000-06-01

    Approximate analytic expressions are obtained for evaluating the axial intensity and the central-lobe diameter of J0 Bessel beams transmitted through a finite-aperture phase filter. A reasonable quality factor governing the axial-intensity behavior of a phase-undistorted truncated Bessel beam is found to be the inverse square root of the Fresnel number defined, for a given aperture, from the axial point of geometrical shadow. Additional drastic reduction of axial-intensity oscillations is accomplished by using marginal phase correction of the beam instead of the well-known amplitude apodization. A procedure for analytically calculating an optimal monotonic slowly varying correction phase function is described.

  10. Shaped beam scattering by an anisotropic particle

    Science.gov (United States)

    Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang

    2017-03-01

    An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.

  11. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    Science.gov (United States)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji

  12. An MCNPX2.7.0 study of Bragg peak degradation owing to density heterogeneity patterns for a CGMH therapeutic proton beam

    Science.gov (United States)

    Chao, Tsi-Chian; Tsai, Yi-Chun; Chen, Shih-Kuan; Wu, Shu-Wei; Tung, Chuan-Jong; Hong, Ji-Hong; Wang, Chun-Chieh; Lee, Chung-Chi

    2017-08-01

    The purpose of this study was to investigate the density heterogeneity pattern as a factor affecting Bragg peak degradation, including shifts in Bragg peak depth (ZBP), distal range (R80 and R20), and distal fall-off (R80-R20) using Monte Carlo N-Particles, eXtension (MCNPX). Density heterogeneities of different patterns with increasing complexity were placed downstream of commissioned proton beams at the Proton and Radiation Therapy Centre of Chang Gung Memorial Hospital, including one 150 MeV wobbling broad beam (10×10 cm2) and one 150 MeV proton pencil beam (FWHM of cross-plane=2.449 cm, FWHM of in-plane=2.256 cm). MCNPX 2.7.0 was used to model the transport and interactions of protons and secondary particles in density heterogeneity patterns and water using its repeated structure geometry. Different heterogeneity patterns were inserted into a 21×21×20 cm3 phantom. Mesh tally was used to track the dose distribution when the proton beam passed through the different density heterogeneity patterns. The results show that different heterogeneity patterns do cause different Bragg peak degradations owing to multiple Coulomb scattering (MCS) occurring in the density heterogeneities. A trend of increasing R20 and R80-R20 with increasing geometry complexity was observed. This means that Bragg peak degradation is mainly caused by the changes to the proton spectrum owing to MCS in the density heterogeneities. In contrast, R80 did not change considerably with different heterogeneity patterns, which indicated that the energy spectrum has only minimum effects on R80. Bragg peak degradation can occur both for a broad proton beam and a pencil beam, but is less significant for the broad beam.

  13. Boundary controllability for a nonlinear beam equation

    Directory of Open Access Journals (Sweden)

    Xiao-Min Cao

    2015-09-01

    Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.

  14. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  15. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  16. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  17. Hyperon beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.S.

    1996-03-01

    This report reviews the present status and recent results in hyperon physics concentrating on results from high energy hyperon beam experiments performed at Fermilab over the past several years. The report focuses on hyperon production polarization, precision hyperon magnetic moment measurements and radiative decay studies. Modern charged hyperon beam experiments are characterized by {approx}100m long apparatus and hyperon beams with {gamma}{sub Y}{approx}100 and hyperon fluxes in the 1-100 kHz range.

  18. The MECO muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, M. [Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697--4575 (United States)

    1998-08-01

    The muon beam required by MECO, a muon conversion experiment, has been studied and simulated using GEANT3. The beam selects low energy, negative muons sufficient to perform a measurement of muon conversion to a level of 10{sup {minus}16} by relying on a graded magnetic solenoidal field and a curved transport solenoid equipped with collimators. Some details of the beam and simulation are discussed. {copyright} {ital 1998 American Institute of Physics.}

  19. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  20. A piecewise continuous Timoshenko beam model for the dynamic analysis of tapered beam-like structures

    Science.gov (United States)

    Shen, Ji Yao; Abu-Saba, Elias G.; Mcginley, William M.; Sharpe, Lonnie, Jr.; Taylor, Lawrence W., Jr.

    1992-01-01

    Distributed parameter modeling offers a viable alternative to the finite element approach for modeling large flexible space structures. The introduction of the transfer matrix method into the continuum modeling process provides a very useful tool to facilitate the distributed parameter model applied to some more complex configurations. A uniform Timoshenko beam model for the estimation of the dynamic properties of beam-like structures has given comparable results. But many aeronautical and aerospace structures are comprised of non-uniform sections or sectional properties, such as aircraft wings and satellite antennas. This paper proposes a piecewise continuous Timoshenko beam model which is used for the dynamic analysis of tapered beam-like structures. A tapered beam is divided into several segments of uniform beam elements. Instead of arbitrarily assumed shape functions used in finite element analysis, the closed-form solution of the Timoshenko beam equation is used. Application of the transfer matrix method relates all the elements as a whole. By corresponding boundary conditions and compatible conditions a characteristic equation for the global tapered beam has been developed, from which natural frequencies can be derived. A computer simulation is shown in this paper, and compared with the results obtained from the finite element analysis. While piecewise continuous Timoshenko beam model decreases the number of elements significantly; comparable results to the finite element method are obtained.

  1. Beam Instrumentation and Diagnostics

    CERN Document Server

    Strehl, Peter

    2006-01-01

    This treatise covers all aspects of the design and the daily operations of a beam diagnostic system for a large particle accelerator. A very interdisciplinary field, it involves contributions from physicists, electrical and mechanical engineers and computer experts alike so as to satisfy the ever-increasing demands for beam parameter variability for a vast range of operation modi and particles. The author draws upon 40 years of research and work, most of them spent as the head of the beam diagnostics group at GSI. He has illustrated the more theoretical aspects with many real-life examples that will provide beam instrumentation designers with ideas and tools for their work.

  2. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  3. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  4. ALFA beam halo

    CERN Document Server

    Komarek, Tomas

    2014-01-01

    This note serves as a final report about CERN Summer Student Programme 2014 project. The beam halo is an undesired phenomenon for physics analyses on particle accelerators. It surrounds the beam core and constitutes an important part of background for signal measurements on some detectors, eg. in the forward region. In this study, the data from the ALFA detector were used, specifically from the run 191373 ($\\beta^*=90\\unit{m}$) and the run 213268 ($\\beta^*=1\\unit{km}$). Using the ROOT framework, a software for beam halo events selection was created and beam halo properties were examined. In the run 213268, excessive beam halo is suspected to be the reason for multiple beam scrapings that occurred. A kinematic reconstruction of beam halo particles is attempted in order to understand beam halo properties in the interaction point. Some further simulations are employed to find constraints for beam halo particles in order to survive in the accelerator for a longer time/many revolutions. This work represents a st...

  5. (Pulsed electron beam precharger)

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  6. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  7. Phase Pupil Filter with Cosine Function for Sharper Focus of Radially Polarized Beam%余弦型相位光瞳滤波器缩小径向偏振光焦斑

    Institute of Scientific and Technical Information of China (English)

    郭玲; 李劲松

    2012-01-01

    基于矢量衍射理论,研究了连续型相位光瞳滤波器对径向偏振光束在焦点区域成像效果的影响.设计了一种余弦函数形式的连续相位型光瞳滤波器,实现了缩小径向偏振光束的横向焦斑.利用Matlab优化工具箱,以超分辨性能参数G为优化目标,以斯特雷尔比S为约束条件,对余弦函数形式的连续相位型光瞳滤波器进行优化并给出了几组优化结果.优化结果表明所设计的余弦函数形式的连续相位型光瞳滤波器在数值孔径为0.8时对于缩小径向偏振光横向焦斑有明显的效果.关于此种连续相位光瞳滤波器的计算结果,对实际中制作相位光瞳滤波器有一定参考价值.%Based on vectorial diffraction theory, optical imaging system with continuous phase optical pupil filter for radially polarized beam is investigated. A continuous phase filter with cosine function is proposed and a sharper focus of radially polarized beam is obtained. This kind of filter is optimized with Matlab optimization toolbox and the aim of optimization is to reduce the superresolution parameter G with the Strehl ratio S as a constraint. Some examples of optimization are given. The optimization results show that there is a significant improvement on sharper focus by using this continuous phase filter with cosine function when the numerical aperture is 0.8. The numerical results about the continuous phase filter with cosine function will also help the manufacturing of actual devices.

  8. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    CERN Document Server

    Kurennoy, S S

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters [1]. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device.

  9. A viscoelastic orthotropic Timoshenko beam subjected to general transverse loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2008-12-01

    Full Text Available The investigation of lateral vibrations of a simply supported thin beam is the aim of this work. The analytical solution of the problem is derived based on the approximate Timoshenko beam theory for a general continuous loading acting on the upper beam face over the whole beam width and perpendicular to the beam axis. The material of the beam studied is assumed linear orthotropic viscoelastic. The generalized standard viscoelastic solid is chosen for representing of viscoelastic beam behaviour. Final system of partial integro-differential equations is solved by the standard method of integral transforms and resulting relations describing beam deflection, slope of the beam and corresponding stress and strain components are presented. Moreover, the derivation of final functions of beam deflection and slope of the beam for a specific impulse loading is presented and analytical results are compared with results obtained using numerical simulation in 2D (FEM. This confrontation shows very good agreement between results obtained. Furthermore, it was shown that the measure of agreement depends not only on the beam geometry.

  10. High-gradient two-beam electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  11. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  12. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  13. Linearizing Intra-Train Beam-Beam Deflection Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; /SLAC

    2006-02-22

    Beam-beam deflection feedback acting within the crossing time of a single bunch train may be needed to keep linear collider beams colliding at high luminosity. In a short-pulse machine such as the Next Linear Collider (NLC) this feedback must converge quickly to be useful. The non-linear nature of beam-beam deflection vs. beam-beam offset in these machines precludes obtaining both rapid convergence and a stable steady-state lock to beam offsets with a linear feedback algorithm. We show that a simply realizable programmable non-linear amplifier in the feedback loop can linearize the feedback loop, approximately compensating the beam-beam deflection non-linearity. Performance of a prototype non-linear amplifier is shown. Improvement of convergence and stability of the beam-beam feedback loop is simulated.

  14. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophon...

  15. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  16. Muon Beam at the Fermilab Test Beam Area

    CERN Document Server

    Denisov, Dmitri; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  17. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    The use of glass as a load carrying material in structural elements is rarely seen even though glass is a popular material for many architects. This is owed to the unreliable and low tensile strength, which is due to surface flaws and high brittleness of the material. These properties lead...... to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  18. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  19. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  20. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  1. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  2. Oncological results, functional outcomes and health-related quality-of-life in men who received a radical prostatectomy or external beam radiation therapy for localized prostate cancer: a study on long-term patient outcome with risk stratification

    Institute of Scientific and Technical Information of China (English)

    Itsuhiro Takizawa; Noboru Hara; Tsutomu Nishiyama; Masaaki Kaneko; Tatsuhiko Hoshii; Emiko Tsuchida; Kota Takahashi

    2009-01-01

    Health-related quality-of-life (HRQOL) after a radical prostatectomy (RP) or external beam radiation therapy (EBRT) has not been studied in conjunction with oncological outcomes in relation to disease risk stratification. Moreover, the long-term outcomes of these treatment approaches have not been studied. We retrospectively analyzed ontological outcomes between consecutive patients receiving RP (n=86) and EBRT (n=76) for localized prostate cancer. HRQOL and functional outcomes could be assessed in 62 RP (79%) and 54 EBRT (79%) patients over a 3-year follow-up period (median: 41 months) using the Medical Outcomes Study Short Form-36 (SF-36) and the University of California Los Angeles Prostate Cancer Index (UCLA PCI). The 5-year biochemical progression-free survival did not differ between the RP and EBRT groups for low-risk (74.6% vs. 75.0%, P=0.931) and intermediate-risk (61.3% vs. 71.1%, P=0.691) patients. For high-risk patients, progression-free survival was lower in the RP group (45.1%) than in the EBRT group (79.7%) (P=0.002). The general HRQOL was comparable between the two groups. Regarding functional outcomes, the RP group reported lower scores on urinary function and less urinary bother and sexual bother than the EBRT group (P<0.001, P<0.05 and P<0.001, respectively). With risk stratification, the low-and intermediate-risk patients in the RP group reported poorer urinary function than patients in the EBRT group (P<0.001 for each). The sexual function of the high-risk patients in the EBRT group was better than that of the same risk RP patients (P<0.001). Biochemical recurrence was not associated with the UCLA PCI score in either group. In conclusion, low- to intermediate-risk patients treated with an RP may report relatively decreased urinary function during long-term follow-up. The patient's HRQOL after treatment did not depend on biochemical recurrence.

  3. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  4. Development of beam current control system in RF-knockout slow extraction

    Science.gov (United States)

    Mizushima, K.; Sato, S.; Shirai, T.; Furukawa, T.; Katagiri, K.; Takeshita, E.; Iwata, Y.; Himukai, T.; Noda, K.

    2011-12-01

    A raster scanning method has been developed for cancer therapy at NIRS-HIMAC. This method requires a high-accuracy beam current control and fast beam-on/off switching. We have developed a feedback control system of the beam current with the RF-knockout slow extraction method. The system has allowed a stable response to beam-on/off switching using a feedback control delay function with a beam-current ripple of 7%.

  5. Development of beam current control system in RF-knockout slow extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mizushima, K., E-mail: mizshima@nirs.go.jp [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Sato, S.; Shirai, T.; Furukawa, T.; Katagiri, K.; Takeshita, E.; Iwata, Y.; Himukai, T.; Noda, K. [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2011-12-15

    A raster scanning method has been developed for cancer therapy at NIRS-HIMAC. This method requires a high-accuracy beam current control and fast beam-on/off switching. We have developed a feedback control system of the beam current with the RF-knockout slow extraction method. The system has allowed a stable response to beam-on/off switching using a feedback control delay function with a beam-current ripple of 7%.

  6. EFFECT OF SPACE CHARGE ON STABILITY OF BEAM DISTRIBUTION IN THE SNS RING.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV, A.V.; WEI, J.; GLUCKSTERN, R.L.

    2001-06-18

    In the Spallation Neutron Source (SNS) ring, multi-turn injection is employed to obtain a large transverse beam size which significantly reduces the space-charge tune shift of the accumulated beam. Careful choice of the painting scheme and bump function is required to obtain the desired beam profile together with low beam loss. In this paper we examine, both analytically and numerically, the effect of the space charge on the beam profile during multi-turn injection painting.

  7. FOCUSING AND ACCELERATION OF BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.; ZADOROZHNY,V.

    2000-04-07

    A new approach to solving the kinetic equation for the beam distribution function, (very useful from the practical point of view), is discussed, in which the authors also obtain a complement to the Skrinsky's condition for the self-focused bunched beam. This problem belongs to the theory of nonlinear systems in which both regular and chaotic motion is possible. The kinetic approach, based on Vlasov-Poisson equations, are used to investigate the focusing and acceleration of bunched beam. Special attention is given to the studies of stability in a bunched beam by means of the two norm, which may be used to describe t!he motion of high-energy particles.

  8. Tailoring Accelerating Beams in Phase Space

    CERN Document Server

    Wen, Yuanhui; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-01-01

    An appropriate design of wavefront will enable light fields propagating along arbitrary trajectories thus forming accelerating beams in free space. Previous ways of designing such accelerating beams mainly rely on caustic methods, which start from diffraction integrals and only deal with two-dimensional fields. Here we introduce a new perspective to construct accelerating beams in phase space by designing the corresponding Wigner distribution function (WDF). We find such a WDF-based method is capable of providing both the initial field distribution and the angular spectrum in need by projecting the WDF into the real space and the Fourier space respectively. Moreover, this approach applies to the construction of both two- and three-dimensional fields, greatly generalizing previous caustic methods. It may therefore open up a new route to construct highly-tailored accelerating beams and facilitate applications ranging from particle manipulation and trapping to optical routing as well as material processing.

  9. Single Bessel tractor-beam tweezers

    CERN Document Server

    Mitri, F G

    2014-01-01

    The tractor behavior of a zero-order Bessel acoustic beam acting on a fluid sphere, and emanating from a finite circular aperture (as opposed to waves of infinite extent) is demonstrated theoretically. Conditions for an attractive force acting in opposite direction of the radiating waves, determined by the choice of the beam's half-cone angle, the size of the radiator, and its distance from a fluid sphere, are established and discussed. Numerical predictions for the radiation force function, which is the radiation force per unit energy density and cross-sectional surface, are provided using a partial-wave expansion method stemming from the acoustic scattering. The results suggest a simple and reliable analysis for the design of Bessel beam acoustical tweezers and tractor beam devices.

  10. Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator

    Directory of Open Access Journals (Sweden)

    M. A. Fraser

    2011-02-01

    Full Text Available The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wave resonator and the asymmetry of the rf defocusing forces in the solenoid focusing channel. A racetrack shaped beam port aperture was shown to improve the symmetry of the fields in the high-β quarter-wave resonator and reduce the loss of acceptance under the offset used to compensate the steering force. The methods used to compensate the beam steering are described and an optimization routine written to minimize the steering effect when all cavities of a given family are offset by the same amount, taking into account the different velocity profiles across the range of mass-to-charge states accepted. The assumptions made in the routine were shown to be adequate and the results well correlated with the beam quality simulated in multiparticle beam dynamics simulations. The specification of the design tolerances is outlined based on studies of the sensitivity of the beam to misalignment and errors, with particular

  11. Multi-Beam Optical Tweezers

    OpenAIRE

    Glückstad, Jesper; Eriksen, Rene Lynge; Hanson, Steen Grüner

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of ...

  12. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  13. Rapid cycling medical synchrotron and beam delivery system

    Science.gov (United States)

    Peggs, Stephen G [Port Jefferson, NY; Brennan, J Michael [East Northport, NY; Tuozzolo, Joseph E [Sayville, NY; Zaltsman, Alexander [Commack, NY

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  14. Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Marius [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, SK-812 19 Bratislava, Slovak Republic (Slovakia); Forschungs- und Technologietransfer GmbH (Fotec), Viktor-Kaplan 2, A-2700 Wiener Neustadt (Austria)]. E-mail: marius.pavlovic@stuba.sk; Griesmayer, Erich [Forschungs- und Technologietransfer GmbH (Fotec), Viktor-Kaplan 2, A-2700 Wiener Neustadt (Austria); Seemann, Rolf [Forschungs- und Technologietransfer GmbH (Fotec), Viktor-Kaplan 2, A-2700 Wiener Neustadt (Austria)

    2005-06-11

    A beam-transport study of an isocentric gantry for ion therapy is presented. The gantry is designed with the number of quadrupoles down to the theoretical minimum, which is the feature published for the first time in this paper. This feature has been achieved without compromising the ion-optical functions of the beam-transport system that is capable of handling non-symmetric beams (beams with different emittances in vertical and horizontal plane), pencil-beam scanning, double-achromatic optics and beam-size control. Ion-optical properties of the beam-transport system are described, discussed and illustrated by computer simulations performed by the TRANSPORT-code.

  15. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.

    Science.gov (United States)

    Yanch, J C; Harling, O K

    1993-08-01

    A series of studies of "ideal" beams has been carried out using Monte Carlo simulation with the goal of providing guidance for the design of epithermal beams for boron neutron capture therapy (BNCT). An "ideal" beam is defined as a monoenergetic, photon-free source of neutrons with user-specified size, shape and angular dependence of neutron current. The dosimetric behavior of monoenergetic neutron beams in an elliptical phantom composed of brain-equivalent material has been assessed as a function of beam diameter and neutron emission angle (beam angle), and the results are reported here. The simulation study indicates that substantial differences exist in the dosimetric behavior of small and large neutron beams (with respect to the phantom) as a function of the extent of beam collimation. With a small beam, dose uniformity increases as the beam becomes more isotropic (less collimated); the opposite is seen with large beams. The penetration of thermal neutrons is enhanced as the neutron emission angle is increased with a small beam; again the opposite trend is seen with large beams. When beam size is small, the dose delivered per neutron is very dependent on the extent of beam collimation; this does not appear to be the case with a larger beam. These trends in dose behavior are presented graphically and discussed in terms of their effect on several figures of merit, the advantage depth, the advantage ratio, and the advantage depth-dose rate. Tables giving quick summaries of these results are provided.

  16. Beam-Beam effects at the CMS BRIL van-der-Meer scans

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is devoted to the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS Experiment at CERN. The project is engaged in operating and developing new detectors, compatible with the high luminosity experimental environments at the LHC. BRIL operates several detectors based on different physical principles and technologies. The detectors are calibrated using van-der-Meer scans to measure the luminosity that is a fundamental quantity of the LHC beam. In van-der-Meer scans the count rate in a detector is measured as a function of the distance between beams in the plane perpendicular to beam direction, to extract the underlying beam overlap area. The goal of the van-der-Meer scans is to obtain the calibration constant for each luminometer to be used at calibration then in physics data taking runs. The note presents the overview of beam-beam effects at the van-der-Meer scan and the corresponding corrections that sh...

  17. The effect of object shape and laser beam shape on lidar system resolution

    Science.gov (United States)

    Cheng, Hongchang; Wang, Jingyi; Ke, Jun

    2016-06-01

    In a LIDAR system, a pulsed laser beam is propagated to a scene, and then reflected back by objects. Ideally if the beam diameter and the pulse width are close to zero, then the reflected beam in time domain is similar to a delta function, which can accurately locate an object's position. However, in a practical system, the beam has finite size. Therefore, even if the pulse width is small, an object shape will make the reflected beam stretched along the time axis, then affect system resolution. In this paper, we assume the beam with Gaussian shape. The beam can be formulated as a delta function convolved with a shape function, such as a rectangular function, in time domain. Then the reflected beam can be defined as a system response function convolved with the shape function. We use symmetric objects to analyze the reflected beam. Corn, sphere, and cylinder objects are used to find a LIDAR system's response function. The case for large beam size is discussed. We assume the beam shape is similar to a plane wave. With this assumption, we get the simplified LIDAR system response functions for the three kinds of objects. Then we use tiny spheres to emulate an arbitrary object, and study its effect to the returned beam.

  18. Correlation Functions and Spin

    CERN Document Server

    Tyc, T

    2000-01-01

    The k-electron correlation function of a free chaotic electron beam is derived with the spin degree of freedom taken into account. It is shown that it can be expressed with the help of correlation functions for a polarized electron beam of all orders up to k and the degree of spin polarization. The form of the correlation function suggests that if the electron beam is not highly polarized, observing multi-particle correlations should be difficult. The result can be applied also to chaotic photon beams, the degree of spin polarization being replaced by the degree of polarization.

  19. Multi-Beam Optical Tweezers

    DEFF Research Database (Denmark)

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular...... orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having...

  20. Beam Purification by Photodetachment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [ORNL; Beene, James R [ORNL; Havener, Charles C [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Andersson, P. [University of Gothenburg, Sweden; Lindahl, A. O. [University of Gothenburg, Sweden; Hanstorp, D. [University of Gothenburg, Sweden; Forstner, Dr. Oliver [University of Vienna, Austria; Gottwald, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

    2012-01-01

    Ion beam purity is of crucial importance to many basic and applied studies. Selective photodetachment has been proposed to suppress unwanted species in negative ion beams while preserving the intensity of the species of interest. A highly efficient technique based on photodetachment in a gas-filled radio frequency quadrupole ion cooler has been demonstrated. In off-line experiments with stable ions, up to 104 times suppression of the isobar contaminants in a number of interesting radioactive negative ion beams has been demonstrated. For selected species, this technique promises experimental possibilities in studies on exotic nuclei, accelerator mass spectrometry, and fundamental properties of negative atomic and molecular ions.

  1. Beam instrumentation performance overview

    CERN Document Server

    Sapinski, M

    2012-01-01

    The 2011 run has proven that LHC can operate safely and stably with higher bunch intensity and smaller transverse emittance than foreseen in the Technical Design Report. In this presentation the performance of the Beam Position Monitoring (BPM) system is discussed. The improvements to the system, those made during the last year and those expected to be done for 2012 run are presented. The status of the three types of devices measuring the transverse beam emittance, wire scanners (BWS), synchrotron radiation monitors (BSRT) and beam gas ionization monitors (BGI), are shown. The control room applications are reviewed and a set of improvements proposed by the operation team is presented.

  2. A Schr(o)idinger formulation research for light beam propagation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The wave equation of light beam propagation was written in the form of an axial-coordinate-dependent Schrdinger equation, and the expectation value of a dynamical variable, the trial function of variational approach and the ABCD law were discussed by use of quantum mechanics approach. In view of the evolution equations of expectation values of dynamical variables in the framework of quantum mechanics, the definition of a potential function representing the beam propagation stability and its universal formula with the quality factor, the universal formula of beam width and curvature radius for a paraxial beam and cylindrically symmetric non-paraxial beam, the general formula of second derivative of beam width with respect to the axial coordinate of beam for a paraxial beam, and the general criteria of the conservation of beam quality factor and the existence of a potential well of a potential function for a paraxial beam, were given or derived, respectively. Starting with the same trial function, the comparative research of our formulation with variational approach was done, which gave some further insight into the physical nature of a beam propagation parameters. The ABCD law of non-paraxial beam was discussed in terms of the definition of the non-paraxial expectation value of a dynamical variable for the first time. The applications to the media of constant second derivative of beam width with respect to the axial coordinate of a beam, square law media and the media of constant refractive index in the momentum representation were discussed, respectively.

  3. General description of circularly symmetric Bessel beams of arbitrary order

    Science.gov (United States)

    Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Mädler, Lutz

    2016-11-01

    A general description of circularly symmetric Bessel beams of arbitrary order is derived in this paper. This is achieved by analyzing the relationship between different descriptions of polarized Bessel beams obtained using different approaches. It is shown that a class of circularly symmetric Davis Bessel beams derived using the Hertz vector potentials possesses the same general functional dependence as the aplanatic Bessel beams generated using the angular spectrum representation (ASR). This result bridges the gap between different descriptions of Bessel beams and leads to a general description of circularly symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams are merely the two simplest cases of an infinite number of possible circularly symmetric Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the energy density and the Poynting vector are displayed for Bessel beams in both paraxial and nonparaxial cases. The results presented in this paper provide a fresh perspective on the description of Bessel beams and cast some insights into the light scattering and light-matter interactions problems in practice.

  4. Generation of a Dark Hollow Beam inside a Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; LU Xuan-Hui; CHEN Xu-Min; HE Sai-Ling

    2004-01-01

    @@ A new method is introduced to generate a hollow beam inside a cavity. Using a matrix eigenvalue method, the laser resonator with optical diffraction elements is theoretically analysed and simulated. The hollow beam can be obtained theoretically by controlling the parameters of the diffraction functions. After designed the diffraction components in the cavity, a hollow beam of good quality is realized experimentally using a YAG solid state laser.

  5. Optimal Constrained Layer Damping of Beams: Experimental and Numerical Studies

    Directory of Open Access Journals (Sweden)

    J.-L. Marcelin

    1995-01-01

    Full Text Available This article deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. The design variables are the dimensions and locations of the viscoelastic layers and the objective function is the maximum damping factor. The discrete design variable optimization problem is solved using a genetic algorithm. Numerical results for minimum and maximum damping are compared to experimental results. This is done for a various number of materials and beams.

  6. Natural frequency of beams with embedded piezoelectric sensors and actuators

    OpenAIRE

    Della, Christian N.; Shu, Dongwei

    2007-01-01

    A mathematical model is developed to study the natural frequency of beams with embedded piezoelectric sensors and actuators. The piezoelectric sensors/actuators in a non-piezoelectric matrix (host beam) are analyzed as two inhomogeneity problems by using Eshelby’s equivalent inclusion method. The natural frequency of the beam is determined from the variational principle in Rayleigh quotient form, which is expressed as functions of the elastic strain energy and dielectric energy of the piezoel...

  7. Stability Analysis of Nonlinear Vibrations of a Deploying Flexible Beam

    Institute of Scientific and Technical Information of China (English)

    JunfengLI; ZhaolinWANG

    1996-01-01

    Consider a rigid-flexible coupled system which consists of a central rigid body deploying a flexible appendage,The appendage is modeled as a finite deflection beam having linear constitutive equations.By taking the energy integral as Lyapunov function,it is proved that nonlinear transverse vibrations of the beam undergoing uniform extension or retrieval are stable when there are not controlling moment in the central rigid body and driving force on the beam,according to the partial stablity theorem.

  8. Beam Optics Measurements Through Turn by Turn Beam Position Data in the SLS

    CERN Document Server

    Zisopoulos, P; Streun, A; Ziemann, v

    2013-01-01

    Refined Fourier analysis of turn-by-turn (TBT) transverse position data measurements can be used for determining several beam properties of a ring, such as transverse tunes, optics functions, phases, chromatic properties and coupling. In particular, the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm is used to analyse TBT data from the Swiss Light Source (SLS) storage ring in order to estimate on and off-momentum beam characteristics. Of particular interest is the potential of using the full position information within one turn in order to measure beam optics properties.

  9. Determination of beam-position dependent transfer functions of LCR-G gravimeters by means of moving mass calibration device in the Mátyáshegy Gravity and Geodynamical Observatory, Budapest

    Science.gov (United States)

    Koppán, András; Kis, Márta; Merényi, László; Papp, Gábor; Benedek, Judit; Meurers, Bruno

    2017-04-01

    In this presentation authors propose a method for the determination of transfer characteristics and fine calibration of LCR relative gravimeters used for earth-tide recordings, by means of the moving-mass gravimeter calibration device of Budapest-Mátyáshegy Gravity and Geodynamical Observatory. Beam-position dependent transfer functions of four relative LCR G type gravimeters were determined and compared. In order to make these instruments applicable for observatory tidal recordings, there is a need for examining the unique characteristics of equipments and adequately correcting these inherent distorting effects. Thus, the sensitivity for the tilting, temporal changes of scale factors and beam-position dependent transfer characteristics are necessary to be determined for observatory use of these instruments. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. Magnetic experiments were also carried out on the pillar of the calibration device as well, in order to analyse the magnetic effect of the moving stainless steel-mass. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. The calibration process is aided by intelligent controller electronics. A PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The

  10. Functional

    Directory of Open Access Journals (Sweden)

    Fedoua Gandia

    2014-07-01

    Full Text Available The study was carried out to investigate the effects of inhaled Mg alone and associated with F in the treatment of bronchial hyperresponsiveness. 43 male Wistar rats were randomly divided into four groups and exposed to inhaled NaCl 0.9%, MeCh, MgSO4 and MgF2. Pulmonary changes were assessed by means of functional tests and quantitative histological examination of lungs and trachea. Results revealed that delivery of inhaled Mg associated with F led to a significant decrease of total lung resistance better than inhaled Mg alone (p < 0.05. Histological examinations illustrated that inhaled Mg associated with F markedly suppressed muscular hypertrophy (p = 0.034 and bronchoconstriction (p = 0.006 in MeCh treated rats better than inhaled Mg alone. No histological changes were found in the trachea. This study showed that inhaled Mg associated with F attenuated the main principle of the central components of changes in MeCh provoked experimental asthma better than inhaled Mg alone, potentially providing a new therapeutic approach against asthma.

  11. Metaoptics for Spectral and Spatial Beam Manipulation

    Science.gov (United States)

    Raghu Srimathi, Indumathi

    Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool

  12. LEDA beam diagnostics instrumentation: Beam position monitors

    Science.gov (United States)

    Barr, D.; Day, L.; Gilpatrick, J. D.; Kasemir, K.-U.; Martinez, D.; Power, J. F.; Shurter, R.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  13. Leda Beam Diagnostics Instrumentation Beam Position Monitors

    CERN Document Server

    Barr, D

    2000-01-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  14. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy field. First year report. Development of the process for creation of new functional materials using electron beam excited plasma; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy bun'ya. Denshi beam reiki plasma wo mochiita shinkino zairyo sosei process no kaihatsu (dai 1 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development of manufacturing technology was proceeded with for a high speed nitriding system using electron beam excited plasma device which realizes high dissociation for nitrogen molecules and controls the plasma state. By the device, the following are aimed at: high quality/high speed nitriding, formation of super-hard cubic system boron nitride (c-BN) and carbon nitride (CN) films on the surface of tools, and formation of TiO{sub 2} thin films with high infrared reflectance and environmental purification photocatalyst function. TiO{sub 2} thin films are assumed to be applied to window glass by making use of the high performance heat mirror function as well as the environmental purification function. Studies were made in the following 6 fields: 1)development of small electron beam excitation plasma source; 2) development of high speed nitrided container; 3) establishment of technology for real-time monitoring of radicals and ions; 4) design/trial manufacture of a device to form super-hard nitrided thin films; 5) development of heat mirror film formation device; 6) establishment of a method to evaluate effects of photocatalyst. (NEDO)

  15. HIRENASD Beam FEM

    Data.gov (United States)

    National Aeronautics and Space Administration — This contains attempts to create BEAM FEM model. I have started a Blog to discuss this... please put your comments there and I will attempt to keep everything...

  16. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Esophageal Cancer Treatment Head and Neck Cancer Treatment Lung Cancer Treatment Prostate Cancer Treatment Brain Tumor Treatment Why is ... Radiation Oncology) Breast Cancer Treatment Esophageal Cancer Treatment Lung Cancer Treatment Images related to External Beam Therapy (EBT) Sponsored ...

  17. Final focus test beam

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  18. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  19. Optical solenoid beams

    National Research Council Canada - National Science Library

    Lee, Sang-Hyuk; Roichman, Yohai; Grier, David G

    2010-01-01

    We introduce optical solenoid beams, diffractionless solutions of the Helmholtz equation whose diffraction-limited in-plane intensity peak spirals around the optical axis, and whose wavefronts carry...

  20. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  1. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  2. Measurement Error Effects of Beam Parameters Determined by Beam Profiles

    CERN Document Server

    Jang, Ji-Ho; Jeon, Dong-O

    2015-01-01

    A conventional method to determine beam parameters is using the profile measurements and converting them into the values of twiss parameters and beam emittance at a specified position. The beam information can be used to improve transverse beam matching between two different beam lines or accelerating structures. This work is related with the measurement error effects of the beam parameters and the optimal number of profile monitors in a section between MEBT (medium energy beam transport) and QWR (quarter wave resonator) of RAON linear accelerator.

  3. SPIDER beam dump as diagnostic of the particle beam

    Science.gov (United States)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  4. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  5. LHCb: Beam Pipe portrait

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector: it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  6. LHCb: Beam Pipe

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector:it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  7. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  8. Beam Spot Measurement on a 400 keV Electron Accelerator

    DEFF Research Database (Denmark)

    Miller, Arne

    1979-01-01

    A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function.......A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function....

  9. Beam tests of the 12 MHz RFQ RIB injector for ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-05-06

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged {sup 132}Xe and {sup 84}Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations.

  10. Flexural Free Vibrations of Multistep Nonuniform Beams

    Directory of Open Access Journals (Sweden)

    Guojin Tan

    2016-01-01

    Full Text Available This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step beam with moment of inertia and mass per unit length varying as I(x=α11+βxr+4 and m(x=α21+βxr was studied. By using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic equation of four-order differential equation with constant coefficients, two kinds of modal shape functions are obtained, and the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated frequencies and modal shapes are in good agreement with the finite element method (FEM, which demonstrates the solutions of present method are exact ones.

  11. Beam-smoothing investigation on Heaven I

    Science.gov (United States)

    Xiang, Yi-huai; Gao, Zhi-xing; Tong, Xiao-hui; Dai, Hui; Tang, Xiu-zhang; Shan, Yu-sheng

    2007-01-01

    Directly driven targets for inertial confinement fusion (ICF) require laser beams with extremely smooth irradiance profiles to prevent hydrodynamic instabilities that destroy the spherical symmetry of the target during implosion. Such instabilities can break up and mix together the target's wall and fuel material, preventing it from reaching the density and temperature required for fusion ignition. 1,2 Measurements in the equation of state (EOS) experiments require laser beams with flat-roofed profiles to generate uniform shockwave 3. Some method for beam smooth, is thus needed. A technique called echelon-free induced spatial incoherence (EFISI) is proposed for producing smooth target beam profiles with large KrF lasers. The idea is basically an image projection technique that projects the desired time-averaged spatial profile onto the target via the laser system, using partially coherent broadband lighe. Utilize the technique, we developing beam- smoothing investigation on "Heaven I". At China Institute of Atomic Energy , a new angular multiplexing providing with beam-smoothing function has been developed, the total energy is 158J, the stability of energy is 4%, the pulse duration is 25ns, the effective diameter of focusing spot is 400um, and the ununiformity is about 1.6%, the power density on the target is about 3.7×10 12W/cm2. At present, the system have provided steady and smooth laser irradiation for EOS experiments.

  12. Dynamic behaviour of a rotating cracked beam

    Science.gov (United States)

    Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil

    2016-09-01

    This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.

  13. Electron vortices: Beams with orbital angular momentum

    Science.gov (United States)

    Lloyd, S. M.; Babiker, M.; Thirunavukkarasu, G.; Yuan, J.

    2017-07-01

    The recent prediction and subsequent creation of electron vortex beams in a number of laboratories occurred after almost 20 years had elapsed since the recognition of the physical significance and potential for applications of the orbital angular momentum carried by optical vortex beams. A rapid growth in interest in electron vortex beams followed, with swift theoretical and experimental developments. Much of the rapid progress can be attributed in part to the clear similarities between electron optics and photonics arising from the functional equivalence between the Helmholtz equations governing the free-space propagation of optical beams and the time-independent Schrödinger equation governing freely propagating electron vortex beams. There are, however, key differences in the properties of the two kinds of vortex beams. This review is primarily concerned with the electron type, with specific emphasis on the distinguishing vortex features: notably the spin, electric charge, current and magnetic moment, the spatial distribution, and the associated electric and magnetic fields. The physical consequences and potential applications of such properties are pointed out and analyzed, including nanoparticle manipulation and the mechanisms of orbital angular momentum transfer in the electron vortex interaction with matter.

  14. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  15. Beam and experiments: summary

    Energy Technology Data Exchange (ETDEWEB)

    Blondel, A.; Bueno, A.; Campanelli, M.; Cervera, A.; Cline, D.B.; Collot, J.; Jong, M. de; Donini, A.; Dydak, F. E-mail: friedrich.dydak@cern.ch; Edgecock, R.; Gavela, M.B.; Gomez-Cadenas, J.J.; Gonzalez-Garcia, M.C.; Gruber, P.; Harris, D.A.; Hernandez, P.; Kuno, Y.; Litchfield, P.J.; McFarland, K.; Mena, O.; Migliozzi, P.; Palladino, V.; Panman, J.; Papadopoulos, I.M.; Para, A.; Pena-Garay, C.; Perez, P.; Rigolin, S.; Romanino, A.; Rubbia, A.; Strolin, P.; Wojcicki, S

    2000-08-21

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour mixing. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. Most importantly, the neutrino factory is the only known way to generate a high-intensity beam of electron neutrinos of high energy. The neutrino beam from a neutrino factory, in particular the electron-neutrino beam, enables the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it.

  16. Propagation of a Laguerre-Gaussian correlated Schell-model beam in strongly nonlocal nonlinear media

    Science.gov (United States)

    Qiu, Yunli; Chen, Zhaoxi; He, Yingji

    2017-04-01

    Analytical expressions for the cross-spectral density function and the second-order moments of the Wigner distribution function of a Laguerre-Gaussian correlated Schell-model (LGCSM) beam propagating in strongly nonlocal nonlinear media are derived. The propagation properties, such as beam irradiance, beam width, the spectral degree of coherence and the propagation factor of a LGCSM beam inside the media are investigated in detail. The effect of the beam parameters and the input power on the evolution properties of a LGCSM is illustrated numerically. It is found that the beam width varies periodically or keeps invariant for a certain proper input power. And both the beam irradiance and the spectral degree of coherence of the LGCSM beam change periodically with the propagation distance for the arbitrary input power which however has no influence on the propagation factor. The coherent length and the mode order mainly affect the evolution speed of the LGCSM beam in strongly nonlocal nonlinear media.

  17. Beam-beam effects under the influence of external noise

    CERN Document Server

    Ohmi, K.

    2014-01-01

    Fast external noise, which gives fluctuation into the beam orbit, is discussed in connection with beam-beam effects. Phase noise from crab cavities and detection devices (position monitor) and kicker noise from the bunch by bunch feedback system are the sources. Beam-beam collisions with fast orbit fluctuations with turn by turn or multi-turn correlations, cause emittance growth and luminosity degradation. We discuss the tolerance of the noise amplitude for LHC and HL-LHC.

  18. Observation of Beam-beam Deflections with LHC Orbit Data

    CERN Document Server

    Kozanecki, W; Wenninger, J

    2013-01-01

    The LHC luminosity is calibrated in dedicated fills with van der Meer scans (vdM) of the beams that are performed repeatedly in both planes. During vdM scans the relative separation of the two LHC beams is scanned in a range of ±6 sigma , where sigma is the single beam size, probing the beam-beam deflection over a relatively large range. Orbit data logged parasitically during those scans were analysed and the beam-beam deflections at the IP being scanned could be reconstructed from orbit fits in the LHC arcs surrounding the IP. Despite the small size of the kicks (≤ 1μrad) the coherent beam-beam deflections are clearly resolved. The beam parameters that are extracted from the fit to the beam-beam deflection data were compared to luminosity data fits and they were found to be in good agreement. The closed orbit shift due to the beam-beam kick is also clearly observed in the beam position interpolation at the collision point.

  19. Beam Trail Tracking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab; Carmichael, Linden Ralph [Fermilab; Neswold, Richard [Fermilab; Yuan, Zongwei [Fermilab

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  20. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  1. Beam spoiling a reflector antenna with conducting shim.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2012-12-01

    A horn-fed dish reflector antenna has characteristics including beam pattern that are a function of its mechanical form. The beam pattern can be altered by changing the mechanical configuration of the antenna. One way to do this is with a reflecting insert or shim added to the face of the original dish.

  2. Analytical approach to quasiperiodic beam Coulomb field modeling

    Science.gov (United States)

    Rubtsova, I. D.

    2016-09-01

    The paper is devoted to modeling of space charge field of quasiperiodic axial- symmetric beam. Particle beam is simulated by charged disks. Two analytical Coulomb field expressions are presented, namely, Fourier-Bessel series and trigonometric polynomial. Both expressions permit the integral representation. It provides the possibility of integro-differential beam dynamics description. Consequently, when beam dynamics optimization problem is considered, it is possible to derive the analytical formula for quality functional gradient and to apply directed optimization methods. In addition, the paper presents the method of testing of space charge simulation code.

  3. Electron Beam Lifetime in SPEAR3: Measurement and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, J.; Huang, X.; Lee, M.; Lui, P.; /SLAC; Sayyar-Rodsari, B.; /Pavilon Tech., Austin

    2007-12-19

    In this paper we report on electron beam lifetime measurements as a function of scraper position, RF voltage and bunch fill pattern in SPEAR3. We then outline development of an empirical, macroscopic model using the beam-loss rate equation. By identifying the dependence of loss coefficients on accelerator and beam parameters, a numerically-integrating simulator can be constructed to compute beam decay with time. In a companion paper, the simulator is used to train a parametric, non-linear dynamics model for the system [1].

  4. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...

  5. Review of nondiffracting Bessel beams

    Science.gov (United States)

    Lapointe, Michael R.

    1991-01-01

    The theory of nondiffracting beam propagation and experimental evidence for nearly-nondiffractive Bessel beam propagation are reviewed. The experimental results are reinterpreted using simple optics formulas, which show that the observed propagation distances are characteristic of the optical systems used to generate the beams and do not depend upon the initial beam profiles. A set of simple experiments are described which support this interpretation. It is concluded that nondiffracting Bessel beam propagation has not yet been experimentally demonstrated.

  6. First Experiences of Beam Presence Detection Based on Dedicated Beam Position Monitors

    CERN Document Server

    Jalal, A; Gasior, M; Todd, B

    2011-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BP...

  7. A non-invasive beam profile monitor for charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Tzoganis, Vasilis, E-mail: vasileios.tzoganis@cockcroft.ac.uk [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); RIKEN Nishina Centre, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Welsch, Carsten P. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2014-05-19

    Non-interceptive beam profile monitors are highly desirable in almost all particle accelerators. Such techniques are especially valuable in applications where real time monitoring of the beam properties is required while beam preservation and minimal influence on the vacuum are of the greatest importance. This applies to many kinds of accelerators such as high energy machines where the normal diagnostics cannot withstand the beam's power, medical machines where treatment time is valuable and cannot be allocated to diagnostics and also low energy, low intensity accelerators where the beam's properties are difficult to measure. This paper presents the design of a gas-jet based beam profile monitor which was developed and commissioned at the Cockcroft Institute and can operate in a very large background pressure range from 10{sup −7} down to below 10{sup −11} millibars. The functioning principle of the monitor is described and the first experimental results obtained using a 5 keV electron beam are discussed.

  8. Development of ion/proton beam equipment for industrial uses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho; Lee, J. H.; Cho, Y. S.; Joo, P. K.; Kang, S. S.; Song, W. S.; Kim, H. J.; Chang, G. H.; Bang, S. W

    1999-12-01

    KAERI has possessed design and fabrication technologies of various ion sources including Duoplasmatron and DuoPiGatron developed by R and D projects of the long-term nuclear technology development program. In order to industrialize ion beam equipments utilizing these ion sources, a technology transfer project for a technology transfer project for a domestic firm has been performed. Under this project, engineers of the firm have been trained through classroom lectures of ion beam principles and OJT, an ion/proton beam equipment (DEMO equipment) has been designed, assembled and commissioned jointly with the engineers. Quality of the ion sources has been quantified, and technologies for ion beam equipment construction, functional test and application research have been developed. The DEMO equipment, which consists of an ion source, power supplies, vacuum, cooling and target systems, has been fabricated and tested to secure stability and reliability for industrial uses. Various characteristic tests including high voltage insulation, beam extraction, beam current measuring, etc. have been performed. This DEMO can be utilized for ion sources development as well as ion beam process development for various industrial products. Engineers of the firm have been trained for the industrialization of ion beam equipment and joined in beam application technology development to create industrial needs of beam equipment. (author)

  9. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  10. A distortional semi-discretized thin-walled beam element

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2013-01-01

    Due to the increased consumption of thin-walled structural elements there has been increasing focus and need for more detailed calculations as well as development of new approaches. In this paper a thin-walled beam element including distortion of the cross section is formulated. The formulation...... is based on a generalized beam theory (GBT), in which the classic Vlasov beam theory for analysis of open and closed thin-walled cross sections is generalized by including distortional displacements. The beam element formulation utilizes a semi-discretization approach in which the cross section...... is discretized into wall elements and the analytical solutions of the related GBT beam equations are used as displacement functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In three related papers the authors have recently presented the semi-discretization approach...

  11. Using Stable Distributions to Characterize Proton Pencil Beams

    CERN Document Server

    Heuvel, Frank Van den; Schreuder, Niek; George, Ben

    2016-01-01

    Purpose: To introduce and evaluate the use of stable distributions as a means of describing the behavior of charged particle pencil beams in a medium, with specific emphasis on proton beam scanning (PBS). Methods: The proton pencil beams of a clinically commissioned proton treatment facility are replicated in a Monte Carlo simulation system (FLUKA). For each available energy the beam deposition in water medium is characterized by the dose deposition. Using an alpha--stable distribution methodology each beam with a nominal energy $E$ is characterized by the lateral spread at depth $z$: $S(z;\\alpha,\\gamma,E)$ and a total energy deposition $I_D(z)$. The beams are then described as a function of the variation of the parameters at depth. Finally, an implementation in a freely available open source dose calculation suite (matRad, DKFZ, Heidelberg, Germany) is proposed. Results: Quantitatively, the fit of the stable distributions, compared to those implemented in standard treatment planning systems, are equivalent. ...

  12. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection

    Directory of Open Access Journals (Sweden)

    Dong Luo

    2016-12-01

    Full Text Available In this study, tapered polymer fiber sensors (TPFSs have been employed to detect the vibration of a reinforced concrete beam (RC beam. The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM system in civil engineering.

  13. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    Science.gov (United States)

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  14. High intensity ion beams in rf undulator linac

    Directory of Open Access Journals (Sweden)

    E. S. Masunov

    2008-07-01

    Full Text Available The possibility of using a radio frequency undulator field to accelerate a high intensity ion beam in a linac is discussed. Such an accelerator can be realized using the periodical interdigital H-type resonator structure. The accelerating force is produced by an electric field which is a combination of two or more spatial harmonics, none of them being synchronous with the ion beam. The value of this force is proportional to the squared charge. The equations of motion in Hamiltonian form are derived by means of smooth approximation. The analysis of the 3D effective potential function allows finding the conditions of the beam focusing and acceleration. Two ways to increase ion beam intensity are considered: (i to enlarge beam cross section; (ii to neutralize the beam space charge by accelerating ions with opposite charge signs within the same bunch. The basic results are confirmed by a numerical simulation.

  15. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  16. Three-dimensional nonparaxial accelerating beams from the transverse Whittaker integral

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Wang, Zhiguo; Zhang, Yanpeng

    2014-01-01

    We investigate three-dimensional nonparaxial linear accelerating beams arising from the transverse Whittaker integral. They include different Mathieu, Weber, and Fresnel beams, among other. These beams accelerate along a semicircular trajectory, with almost invariant nondiffracting shapes. The transverse patterns of accelerating beams are determined by their angular spectra, which are constructed from the Mathieu functions, Weber functions, and Fresnel integrals. Our results not only enrich the understanding of multidimensional nonparaxial accelerating beams, but also display their real applicative potential -- owing to the usefulness of Mathieu and Weber functions, and Fresnel integrals in describing a wealth of wave phenomena in nature.

  17. Beam Time Accounting

    CERN Document Server

    Seitova, Diana

    2016-01-01

    ISOLDE is one of the leading research facilities in the field of nuclear physics. A proton beam with an energy 1.4 GeV coming from the Proton Synchrotron Booster (PSB) hits one of the targets at ISOLDE and produces Radioactive Ion Beams (RIBs). Then, the RIBs of interest is selected and delivered to the different experimental stations. In order to deliver the beam to the certain experimental station, the positions of the devices along the beamline should satisfy certain conditions. The purpose of this project is to define the conditions for the beam to pass through the different beamlines and to store the data about device’s status for later analysis and statistics, so it would be possible to know when the beam was used for different experiments. The data with the settings of the different devices is saved in the Timber database and the first steps for making virtual devices to compile the status of the beamlines were completed.

  18. Bringing up beams

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, commissioning began on CERN’s newest linear accelerator: Linac4. As the replacement machine for Linac2, Linac4 will take a negative hydrogen ion beam to a staggering 160 MeV. We check in to see how the Linac4 team is preparing its machine for its new role as the first link in the accelerator chain.   The Linac4 3 MeV beam line, with the ion source in the back, the RFQ in the middle and the chopping line in the front. On 14 November, members of the Linac4 collaboration and the CERN Operations Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved and marked the start of one of the most critical commissioning phases for the new accelerator. At the start of the Linac4 beam line sits the CERN-made Radio Frequency Quadrupole (RFQ). This vital piece of machinery takes the beam from 45 keV to 3 MeV in ju...

  19. Paul Collier : Balancing beams

    CERN Multimedia

    2009-01-01

    As former head of AB Operations, Paul Collier and his group were in the ‘cockpit’ for the LHC’s maiden voyage - piloting the first beam around the ring. But now, as Head of the Beams Department, he will need his feet firmly on the ground in order to balance all the beam activities at CERN. "As Department Head, I’ll have less direct contact with the machines," Collier says with a hint of regret. "I’ll still obviously be very involved, but they won’t actually let me loose in front of the keyboard anymore!" As the new Head of the BE Department, Collier will be in charge of nearly 400 people, and will oversee all the beam activities, including the preparations for the longest period of beam operation in the history of CERN. In the new organization, the BE, TE and EN Departments have been grouped together in the Accelerator and Technology Sector. "‘Partnership’ is a key word for the three departments," says Collier. "The n...

  20. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  1. A better beam quality

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Progress has been made on two fronts, providing physics data and preparing for higher intensities. Over the Whitsun weekend of May 22 to 24, 5 fills for physics provided almost 30 hours of stable colliding beams, all with bunch intensities around 2x1010 protons and at a β* of 2m. The first three of these fills were with 6 bunches per beam, giving 3 pairs of collisions in all experiments. For the other two fills, the number of bunches per beam was increased to 13, giving 8 pairs of colliding bunches, and for the first time luminosities were pushed above 1029 cm-2s-1, 2 orders of magnitude higher than first collisions in March. In between and after these physics fills, nominal bunches of 1011 protons were successfully ramped and brought into collision in ATLAS and CMS for the first time (not in stable beam conditions and without squeeze). Event rates seen by the experiments were in the expected range for these conditions. In the middle of this work, a short fill with beams of 7 nominal bunches was ...

  2. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  3. Tevatron Beam Position Monitor Upgrade

    CERN Document Server

    Wolbers, Stephen; Barker, B; Bledsoe, S; Boes, T; Bowden, Mark; Cancelo, Gugstavo I; Dürling, G; Forster, B; Haynes, B; Hendricks, B; Kasza, T; Kutschke, Robert K; Mahlum, R; Martens, Michael A; Mengel, M; Olsen, M; Pavlicek, V; Pham, T; Piccoli, Luciano; Steimel, Jim; Treptow, K; Votava, Margaret; Webber, Robert C; West, B; Zhang, D

    2005-01-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980s, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.

  4. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  5. LINEAR FREE VIBRATIONS OF FGCNTRC H-H BEAMS USING SLENDER BEAM THEORY

    Directory of Open Access Journals (Sweden)

    KRISHNA CHAITANYA VULCHI

    2013-09-01

    Full Text Available This thesis investigates the linear free vibrations of functionally graded Carbon Nano-tube reinforced Composite (FG-CNTRC beams using Slender (Euler-Bernoulli’s beam theory. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction and estimated through the rule of mixture. The Ritz method is employed to derive the governing Eigen value equation which is then solved by a direct iterative method to obtain the linear frequencies of FG-CNTRC beams with H-H Supports. A detailed parametric study is conducted to study the influences of Nanotube volume fraction, vibration amplitude, and slenderness ratio on the linear free vibration characteristics of FG-CNTRC beams.

  6. Beam-beam studies for FCC-hh

    CERN Document Server

    Barranco Garcia, Javier; Buffat, Xavier; Furuseth, Sondre Vik

    2017-01-01

    The Future Circular Collider hadron-hadron (FCC-hh) design study is currently exploring different IR design possibilities including round and flat optics or different crossing schemes. The present study intends to evaluate each scenario from the beam-beam effects point of view. In particular the single particle long term stability to maximize beam lifetimes and luminosity reach is used to quantify the differences. The impact of strong head on interactions on the beam quality and lifetime is addressed by means of GPU accelerated simulations code featuring a weak-strong 6-dimensional beam-beam interaction.

  7. Six-dimensional beam-beam kick including coupled motion

    Directory of Open Access Journals (Sweden)

    L. H. A. Leunissen

    2000-12-01

    Full Text Available The six-dimensional beam-beam interaction as developed in 1992 by Hirata, Moshammer, and Ruggiero has been extended to include linear coupled motion and an arbitrary crossing plane. The technique of symplectic mapping in the six-dimensional phase space, called synchrobeam mapping, is applied to investigate the beam-beam kick within a solenoid. A linear beam-beam model including coupling is discussed in detail, also in the framework of a six-dimensional symplectic dispersion formalism.

  8. Transverse Beam Matching Application for SNS

    CERN Document Server

    Chu, Chungming; Jeon Dong Oh; Plum, Michael

    2005-01-01

    An automated transverse beam matching application has been developed for the Spallation Neutron Source (SNS) beam transport lines. The application is written within the XAL Java framework and the matching algorithm is based on the simplex optimization method. Other functionalities, such as emittance calculated from profile monitor measurements (adopted from a LANL Fortran code), profile monitor display, and XAL on-line model calculation, are also provided by the application. Test results obtained during the SNS warm linac commissioning will be reported. A comparison between the emittances obtained from this application and an independent Trace-3D routine will also be shown.

  9. Rainbow correlation imaging with macroscopic twin beam

    Science.gov (United States)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  10. Epithermal neutron beam interference with cardiac pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H., E-mail: hanna.koivunoro@helsinki.fi [Department of Physics, P.O.B. 64, FI-00014 University of Helsinki (Finland)] [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland)] [Boneca Corporation, Finland, Filnland (Finland); Seren, T. [VTT Technical Research Centre of Finland (Finland); Hyvoenen, H. [Boneca Corporation, Finland, Filnland (Finland); Kotiluoto, P. [VTT Technical Research Centre of Finland (Finland); Iivonen, P. [St. Jude Medical (Finland); Auterinen, I. [VTT Technical Research Centre of Finland (Finland); Seppaelae, T.; Kankaanranta, L. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Pakarinen, S. [Department of Cardiology, Helsinki University Central Hospital (Finland); Tenhunen, M. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Savolainen, S. [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland)

    2011-12-15

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  11. Perturbing microwave beams by plasma density fluctuations

    Directory of Open Access Journals (Sweden)

    Köhn Alf

    2017-01-01

    Full Text Available The propagation of microwaves across a turbulent plasma density layer is investigated with full-wave simulations. To properly represent a fusion edge-plasma, drift-wave turbulence is considered based on the Hasegawa-Wakatani model. Scattering and broadening of a microwave beam whose amplitude distribution is of Gaussian shape is studied in detail as a function of certain turbulence properties. Parameters leading to the strongest deterioration of the microwave beam are identified and implications for existing experiments are given.

  12. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  13. Light Beam Generation

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method and a system for synthesizing a set of controllable light beams by provision of a system for synthesizing a set of light beams, comprising a spatially modulated light source for generation of electromagnetic radiation with a set of replicas of a predetermined......(x-xs, y-ys), a Fourier transforming lens for Fourier transforming the electromagnetic radiation, a first spatial light modulator for phase shifting the Fourier transformed electromagnetic radiation with the phase -F(u, v) of S*, S* is the complex conjugate of the Fourier transformed symbol s, a Fourier...... transforming lens for Inverse Fourier transforming the spatially modulated radiation, whereby a set of light beams are formed propagating through the inverse Fourier plane (x', y') at desired positions (x's, y's), and a controller for controlling the position of a replica of the symbol, s, for movement...

  14. Beam characteristics of energy-matched flattening filter free beams

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  15. Active control of flexural vibrations in beams

    Science.gov (United States)

    Gerhold, Carl H.; Rocha, Rodney

    1989-01-01

    An analytical model of the feedback control system which estimates the voltage generated by the piezoelectric sensor as a function of the dynamic stress at the sensor location and the force exerted by the driver piezoelectric as a function of signal gain is developed. The analytical results are compared to measured results for a cantilever beam excited to vibrate in its first natural mode. The estimated increase in the first mode damping factor is in good agreement with the measured results.

  16. Ion beam profiling from the interaction with a freestanding 2D layer

    Directory of Open Access Journals (Sweden)

    Ivan Shorubalko

    2017-03-01

    Full Text Available Recent years have seen a great potential of the focused ion beam (FIB technology for the nanometer-scale patterning of a freestanding two-dimensional (2D layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does.

  17. Active Beam Spectroscopy

    Science.gov (United States)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  18. Dealing with megawatt beams

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; /Fermilab

    2010-08-01

    The next generation of accelerators for MegaWatt proton, electron and heavy-ion beams puts unprecedented requirements on the accuracy of particle production predictions, the capability and reliability of the codes used in planning new accelerator facilities and experiments, the design of machine, target and collimation systems, detectors and radiation shielding and minimization of their impact on environment. Recent advances in code developments are described for the critical modules related to these challenges. Examples are given for the most demanding areas: targets, collimators, beam absorbers, radiation shielding, induced radioactivity and radiation damage.

  19. Quantized beam shifts

    CERN Document Server

    Kort-Kamp, W J M; Dalvit, D A R

    2015-01-01

    We predict quantized Imbert-Fedorov, Goos-H\\"anchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant $\\alpha$, while the Goos- H\\"anchen ones in multiples of $\\alpha^2$. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  20. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R

    1980-01-01

    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  1. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  2. Merged neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Osterwalder, Andreas [Ecole Polytechnique Federale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne (Switzerland)

    2015-12-15

    A detailed description of a merged beam apparatus for the study of low energy molecular scattering is given. This review is intended to guide any scientist who plans to construct a similar experiment, and to provide some inspiration in describing the approach we chose to our goal. In our experiment a supersonic expansion of paramagnetic particles is merged with one of polar molecules. A magnetic and an electric multipole guide are used to bend the two beams onto the same axis. We here describe in detail how the apparatus is designed, characterised, and operated. (orig.)

  3. GTK beam test 2017

    CERN Document Server

    Vostinic, Snezana

    2017-01-01

    The GTK is in operation at NA62 since 2014 and is among the few silicon pixel detectors performing 4D tracking. This summer, a beam test was conducted to study the phenomena determining the detector time resolution. The project described here contributed to the beam test preparation, data taking and data analyses. One of the main goals of the test was to understand the weight field contribution to the detector time resolution. This field is distorting the signal pulse shape at the edge of the pixel. Hence, to study this effect, the position of the hits inside the pixel has to be determined. An external telescope was therefore used for this purpose.

  4. Wobbling Ancient Binaries - Here Be Planets?

    CERN Document Server

    Horner, Jonathan; Hinse, Tobias; Marshall, Jonathan; Mustill, Alex

    2014-01-01

    In the last few years, a number of planets have been proposed to orbit several post main-sequence binary star systems on the basis of observed variations in the timing of eclipses between the binary components. A common feature of these planet candidates is that the best-fit orbits are often highly eccentric, such that the multiple planet systems proposed regularly feature mutually crossing orbits - a scenario that almost always leads to unstable planetary systems. In this work, we present the results of dynamical studies of all multiple-planet systems proposed to orbit these highly evolved binary stars, finding that most do not stand up to dynamical scrutiny. In one of the potentially stable cases (the NN Serpentis 2-planet system), we consider the evolution of the binary star system, and show that it is highly unlikely that planets could survive from the main sequence to obtain their current orbits - again casting doubt on the proposed planets. We conclude by considering alternative explanations for the obs...

  5. Wobbly Spin Reveals Mercury's Molten Core

    Institute of Scientific and Technical Information of China (English)

    Randolph; E.Schmid; 刘人恺

    2007-01-01

    有生活经验的读者都知道,将鸡蛋在平滑的表面上旋转,能长时间转动的是熟鸡蛋,摇摇晃晃转不了几圈的则是生鸡蛋。这一厨房窍门竟被天文学家用来确定水星的内核是否为“水”。

  6. Wobbly walker evolves into soccer star

    NARCIS (Netherlands)

    Verdult, E.

    2012-01-01

    Seventeen years ago, a graduate student of the Faculty of Mechanical, Maritime and Materials Engineering built the first Delft walking robot. Not a walking computer with heavy motors, but an energy-efficient autonomous robot. That quest into human walking has developed into the Delft Biorobotics Lab

  7. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    Science.gov (United States)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  8. Low Emittance Electron Beam Studies

    Energy Technology Data Exchange (ETDEWEB)

    Tikhoplav, Rodion [Univ. of Rochester, NY (United States)

    2006-01-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*01 mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  9. Characteristics of beam collision timing and position at the KEK B-factory

    Science.gov (United States)

    Kichimi, H.

    2010-11-01

    Using the Belle detector we study the characteristics of beam collisions at the KEKB 3.5 GeV e+ and 8 GeV e- asymmetric energy collider. We investigate the collision timing tIP and its z-coordinate along the beam axis zIP as a function of the position of the colliding bunch in a beam train. The various tIP and zIP behaviors observed by Belle are attributed to beam loading effects in the radio frequency cavities that accelerate the beams with a beam abort gap. We also discuss the prospects for the Super-KEKB collider.

  10. Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere.

    Science.gov (United States)

    Zhou, Guoquan; Chu, Xiuxiang

    2010-01-18

    The propagation of a Lorentz-Gauss beam in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and the Hermite-Gaussian expansion of a Lorentz function, analytical formulae for the average intensity and the effective beam size of a Lorentz-Gauss beam are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a Lorentz-Gauss beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a Lorentz-Gauss beam in turbulent atmosphere are also discussed in detail.

  11. Dynamic Responses of Supported Beams with Intermediate Supports Under Moving Loads

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2012-01-01

    Full Text Available In this paper, a new beam shape function configuration method for determining transient responses of a finite Euler-Bernoulli beam with two intermediate supports excited by moving pressure wave loads is developed. To clarify this method, this beam structure is excited by the moving sinusoidal loads as an example. Transient responses of this beam structure are investigated and verified by the traditional finite element method. This method can be used to solve transient response problems of moving pressure loads exciting the beam structure with intermediate support. Actually it can be extended to solve other complicated beam structure problems.

  12. Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam

    Science.gov (United States)

    F, Boufalah; L, Dalil-Essakali; H, Nebdi; A, Belafhal

    2016-06-01

    The propagation characteristics of the Pearcey-Gaussian (PG) beam in turbulent atmosphere are investigated in this paper. The Pearcey beam is a new kind of paraxial beam, based on the Pearcey function of catastrophe theory, which describes diffraction about a cusp caustic. By using the extended Huygens-Fresnel integral formula in the paraxial approximation and the Rytov theory, an analytical expression of axial intensity for the considered beam family is derived. Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors, including incident beam parameters and turbulence strengths.

  13. LHC Damper Beam commissioning in 2010

    CERN Document Server

    Höfle, W; Schokker, M; Valuch, D

    2011-01-01

    The LHC transverse dampers were commissioned in 2010 with beam and their use at injection energy of 450 GeV, during the ramp and in collisions at 3.5 TeV for Physics has become part of the standard operations pro- cedure. The system proved important to limit emittance blow-up at injection and to maintain smaller than nominal emittances throughout the accelerating cycle. We describe the commissioning of the system step-by-step as done in 2010 and summarize its performance as achieved for pro- ton as well as ion beams in 2010. Although its principle function is to keep transverse oscillations under control, the system has also been used as an exciter for abort gap clean- ing and tune measurement. The dedicated beam position measurement system with its low noise properties provides additional possibilities for diagnostics.

  14. Effects of Transverse Beam Size in Beam Position Monitors

    CERN Document Server

    Kurennoy, S S

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  15. Effects of transverse beam size in beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  16. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    Energy Technology Data Exchange (ETDEWEB)

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  17. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  18. Suppression of space charge induced beam halo in nonlinear focusing channel

    Science.gov (United States)

    Batygin, Yuri K.; Scheinker, Alexander; Kurennoy, Sergey; Li, Chao

    2016-04-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  19. Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel

    CERN Document Server

    Batygin, Yuri K; Kurennoy, Sergey; Li, Chao

    2016-01-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  20. Design aspects related to the reliability of the control architecture of the LHC beam dump kicker systems

    CERN Document Server

    Carlier, E; Bobbio, P; Gräwer, G; Marchand, A; Uythoven, J; Verhagen, H

    2003-01-01

    The LHC beam dump extraction kicker system consists per ring of 15 magnets and their pulse generators. Their task is to extract the beams on request, over the whole operational beam energy range and synchronously with the beam abort gap. This operation must be fail-safe to avoid damage to accelerator equipment by undesired beam losses. The control system of the LHC beam dump kickers will be based on a modular architecture composed of different subsystems, each with a specific function like slow control, beam energy tracking, beam abort gap synchronisation, fast pulse signal monitoring and post-mortem data acquisition. Depending on the required functionality, the subsystems will be based either on passive fault-tolerant redundant hardware solutions or on active fail-safe hardware and software solutions. In addition, for the most critical subsystems like the beam energy tracking and the beam abort gap synchronisation, two redundant solutions based on different technologies will be implemented in order to preven...