WorldWideScience

Sample records for beam welded superalloys

  1. Fundamental studies of electron beam welding of heat-resistant superalloys for nuclear plants, 5

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this paper, the mechanical properties of base metal, its electron beam and TIG weld joint of superalloys for nuclear plants were made clear and compared with each other. As a result, it has been clarified that electron beam weld joint is superior to TIG weld joint and nearly comparable to base metal. (author)

  2. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Osoba, L.O. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada); Ding, R.G. [Department of Metallurgy and Materials Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Ojo, O.A., E-mail: ojo@cc.umanitoba.ca [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)

    2012-03-15

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.

  3. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    International Nuclear Information System (INIS)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A.

    2012-01-01

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti–Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with the formation of γ–γ' eutectic in γ' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: ► A newly developed superalloy was welded by CO 2 laser beam joining technique. ► Electron microscopy characterization of the weld microstructure was performed. ► Identified interdendritic microconstituents consist of MC-type carbides. ► Modification of primary solidification path is used to explain cracking resistance.

  4. Fundamental studies on electron-beam welding of heat-resistant superalloys for nuclear plants: Report 4. Mechanical properties of welded joints

    International Nuclear Information System (INIS)

    Susei, S.; Shimizu, S.; Aota, T.

    1982-04-01

    In this report, electron-beam (EB) welded joints and TIG welded joints of various superalloys to be used for nuclear plants, such as Hastelloy-type, Inconel-type and Incoloy-type, are systematically evaluated in terms of tensile properties, low-cycle fatigue properties at elevated temperatures, creep and creep-rupture properties. It was fully confirmed as conclusion that the EB welded joints are superior to the TIG welded ones in mechanical properties, especially at high temperature. In the evaluation of creep properties, ductility is one of the most important criteria to represent the resistance against fracture due to creep deformation, and this criterion is very useful in evaluating the properties of welded joints. Therefore, the more comparable to the base metal the electron beam welded joint becomes in terms of ductility, the more resistant is it against fracture. From this point of view, the electron beam welded joint is considerably superior to the TIG welded joint [fr

  5. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  6. Fundamental studies on electron beam welding on heat resistant superalloys for nuclear plants, 6

    International Nuclear Information System (INIS)

    Susei, Syuzo; Shimizu, Sigeki; Nagai, Hiroyoshi; Aota, Toshikazu; Satoh, Keisuke

    1980-01-01

    In this report, base metal of superalloys for nuclear plants, its electron beam and TIG weld joints were compared with each other in the mechanical properties. Obtained conclusions are summarized as follows: 1) TIG weld joint is superior to electron beam weld joint and base metal in 0.2% proof stress irrespective of the material, and electron beam weld joint is also superior to base metal. There is an appreciable difference in tensile stress between base metal and weld joint regardless of the materials. Meanwhile, electron beam weld joint is superior to TIG weld joint in both elongation and reduction of area. 2) Electron beam weld joint has considerably higher low-cycle fatigue properties at elevated temperatures than TIG weld joint, and it is usually as high as base metal. 3) In the secondary creep rate, base metal of Hastelloy X (HAEM) has higher one than its weld joints. However, electron beam weld joint is nearly comparable to the base metal. 4) There is hardly any appreciable difference between base metal and weld joint in the creep rupture strength without distinction of the material. In the ductility, base metal is much superior and is followed by electron beam weld joint and TIG weld joint in the order of high ductility. However, electron beam weld joint is rather comparable to base metal. 5) In consideration of welded pipe with a circumferential joint, the weld joint should be evaluated in terms of secondary creep rate, elongation and rupture strength. As the weld joint of high creep rupture strength approaches the base metal in the secondary creep rate and the elongation, it seems to be more resistant against the fracture due to creep deformation. In this point of view, electron beam weld joint is far superior to TIG weld joint and nearly comparable to the base metal. (author)

  7. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  8. Shimmed electron beam welding process

    Science.gov (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  9. Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds

    International Nuclear Information System (INIS)

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1996-01-01

    CMSX-4 superalloy laser beam welds were investigated by transmission electron microscopy and atom probe field-ion microscopy (APFIM). The weld microstructure consisted of fine (10- to 50-nm) irregularly shaped γ' precipitates (0.65 to 0.75 volume fraction) within the γ matrix. APFIM compositions of the γ and γ' phases were found to be different from those in the base metal. Concentration profiles across the γ and γ' phases showed extensive variations of Cr, Co and Al concentrations as a function of distance within the γ phase. Calculated lattice misfits near the γ/γ' interface in the welds are positive values compared to the negative values for base metal. (orig.)

  10. Analysis of laser beam weldability of Inconel 738 superalloy

    International Nuclear Information System (INIS)

    Egbewande, A.T.; Buckson, R.A.; Ojo, O.A.

    2010-01-01

    The susceptibility of pre-weld heat treated laser beam welded IN 738 superalloy to heat affected zone (HAZ) cracking was studied. A pre-weld heat treatment that produced the minimal grain boundary liquation resulted in a higher level of cracking compared to those with more intergranular liquation. This deviation from the general expectation of influence of intergranular liquation extent on HAZ microfissuring is attributable to the reduction in the ability of the base alloy to accommodate welding tensile stress that accompanied a pre-weld heat treatment condition designed to minimize intergranular liquation. Furthermore, in contrast to what has been generally reported in other nickel-based superalloys, a decrease in laser welding speed resulted in increased HAZ cracking in the IN 738, which can be attributed to exacerbated process instability at lower welding speeds.

  11. Fundamental studies on electron beam welding on heat-resistant superalloys for nuclear plants, 2

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this report, the correlation was discussed between the susceptibility to weld cracking in electron beam welding of heat-resistant superalloys for nuclear plants and its characteristics of hot ductility. Trans-Varestraint and Varestraint tests. Obtained conclusions may be summarized as follows, using technical symbols which are given meanings in this report. 1) Such criteria obtained in the hot ductility test are herein employed to evaluate the susceptibility to microcracking as sub(ND) T sub(H), sub(ND) T sub(C), ΔT sub(H.C) (= sub(ND) T sub(H) - sub(ND) T sub(C)) and sub(B) T sub(R) (= T sub(L) - sub(ND) T sub(C)). Both with the decrease of sub(ND) T sub(H) and sub(ND) T sub(C) and with the increase of ΔT sub(H.C) and sub(B) T sub(R), superalloys are considered to become more susceptible to microcracking. Of these criteria, ΔT sub(H.C.) and sub(B) T sub(R) correlate best with q sub(CR) which is one of the effective criteria to evaluate the susceptibility to microcracking in the electron beam welding. 2) It is recognized that ΔT sub(H.C) and sub(B) T sub(R) in hot ductility test correlate well with sub(TV) T sub(R.5%) in Trans-Varestraint test and sub(V) C sub(m.1%) in the Varestraint test. 3) sub(TV) T sub(R.5%) in the Trans-Varestraint test and sub(V) C sub(m.1%) in the Varestraint test are respectively effective to evaluate the susceptibility to microcracking. Moreover, these criteria clearly correlate with q sub(CR). (auth.)

  12. Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys

    International Nuclear Information System (INIS)

    Ojo, O.A.; Wang, Y.L.; Chaturvedi, M.C.

    2008-01-01

    The weldability of directionally solidified nickel base superalloy TMS-75 and TMS-75+C was investigated by autogenous bead-on-plate electron beam welding. The analysis of microsegregation that occurred during solidification of the as-cast alloys indicated that while W and Re segregated into the γ dendrites of both the alloys, Ta, Hf and C were rejected into the interdendritic liquid in the TMS-75+C. Heat affected zone intergranular liquation cracking was observed in both the materials and was observed to be closely associated with liquated γ-γ' eutectic microconstituent. The TMS-75+C alloy, however, exhibited a reduced extent of HAZ cracking compared to TMS-75. Suppression of terminal solidification reaction involving non-invariant γ-γ' eutectic transformation due to modification of primary solidification path by carbon addition is suggested to be an important factor contributing to reduced susceptibility of TMS-75+C alloy to HAZ liquation cracking relative to the TMS-75 superalloy

  13. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  14. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    Science.gov (United States)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  15. Process of welding gamma prime-strengthened nickel-base superalloys

    Science.gov (United States)

    Speigel, Lyle B.; White, Raymond Alan; Murphy, John Thomas; Nowak, Daniel Anthony

    2003-11-25

    A process for welding superalloys, and particularly articles formed of gamma prime-strengthened nickel-base superalloys whose chemistries and/or microstructures differ. The process entails forming the faying surface of at least one of the articles to have a cladding layer of a filler material. The filler material may have a composition that is different from both of the articles, or the same as one of the articles. The cladding layer is machined to promote mating of the faying surfaces, after which the faying surfaces are mated and the articles welded together. After cooling, the welded assembly is free of thermally-induced cracks.

  16. Metallurgical joining of engine parts. Inertia welding of nickel superalloy HP compressor disks

    International Nuclear Information System (INIS)

    Ferte, J.P.

    1993-01-01

    The main part of this paper describes upside metallurgical and mechanical work done at SNECMA, on inertia welding of powder metallurgy nickel base superalloys ASTROLOY and N18, allowing appliance of this process to engine parts : Inertia welding of superalloys leads to deap microstructural changes in the H.A.Z. which have been, as well as upset, correlated to process parameters, weld geometry and base material microstructure; a full mechanical testing of welds shown properties equivalent to base material ones up to 650 C except for fatigue crack growth behavior under specific conditions (T>600 C-hold time at maximum load) which is drastically reduced for in weld plane propagation. A significant improvement of this later property has been done through post-welding heat treatment and optimization of welding parameters. Last part of this paper summarize the main teachings gained, on the complete welding procedure, from welding of scale one parts. (orig.)

  17. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Richards, N.L.; Chaturvedi, M.C.

    2004-01-01

    The weld fusion zone microstructure of a commercial aerospace superalloy IN 738 was examined. Elemental segregation induced interdendritic microconstituents were identified to include terminal solidification product M 3 B 2 and Ni 7 Zr 2 in association with γ-γ' eutectic constituent, which require proper consideration during the development of optimum post weld heat treatment

  18. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [GE Global Research, NIskayuna, NY (United States); Gupta, Vipul [GE Global Research, NIskayuna, NY (United States); Huang, Shenyan [GE Global Research, NIskayuna, NY (United States); Soare, Monica [GE Global Research, NIskayuna, NY (United States); Zhao, Pengyang [GE Global Research, NIskayuna, NY (United States); Wang, Yunzhi [GE Global Research, NIskayuna, NY (United States)

    2017-02-28

    The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and their long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.

  19. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  20. Welding Metallurgy of Nickel-Based Superalloys for Power Plant Construction

    Science.gov (United States)

    Tung, David C.

    Increasing the steam temperature and pressure in coal-fired power plants is a perpetual goal driven by the pursuit of increasing thermal cycle efficiency and reducing fuel consumption and emissions. The next target steam operating conditions, which are 760°C (1400°F) and 35 MPa (5000 psi) are known as Advanced Ultra Supercritical (AUSC), and can reduce CO2 emissions up to 13% but this cannot be achieved with traditional power plant construction materials. The use of precipitation-strengthened Nickel-based alloys (superalloys) is required for components which will experience the highest operating temperatures. The leading candidate superalloys for power plant construction are alloys 740H, 282, and 617. Superalloys have excellent elevated temperature properties due to careful microstructural design which is achieved through very specific heat treatments, often requiring solution annealing or homogenization at temperatures of 1100 °C or higher. A series of postweld heat treatments was investigated and it was found that homogenization steps before aging had no noticeable effect on weld metal microhardness, however; there were clear improvements in weld metal homogeneity. The full abstract can be viewed in the document itself.

  1. Strengthening mechanisms in an inertia friction welded nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tiley, J.S., E-mail: Jaimie.Tiley@us.af.mil [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); Mahaffey, D.W. [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); Alam, T.; Rojhirunsakool, T. [Department of Materials Engineering, University of North Texas, Denton, TX 76203 (United States); Senkov, O.; Parthasarthy, T. [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); UES, Inc., Dayton, OH 45433 (United States); Banerjee, R. [Department of Materials Engineering, University of North Texas, Denton, TX 76203 (United States)

    2016-04-26

    This research investigated the strengthening mechanisms associated with the as-welded microstructure developed during inertia friction welding of dissimilar superalloys LHSR and Mar-M247. The weld interface and heat affected regions of the sample were analyzed using hardness indentation techniques and subsequently characterized using SEM, TEM and advanced atom probe tomography. The yield strength of the welded joint was modeled to determine the impact of the gradients in the as-welded microstructure on strengthening mechanisms within the LSHR material. Characterization centered on formation of γ′, γ grain size and chemical segregation within the heat affected regions. Results indicate an increased hardness in the vicinity of the weld interface, resulting from the refined dispersion of γ′ and γ grains.

  2. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  3. Investigations on the structure – Property relationships of electron beam welded Inconel 625 and UNS 32205

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Sridhar, R.; Periwal, Saurabh; Oza, Smitkumar; Saxena, Vimal; Hidad, Preyas; Arivazhagan, N.

    2015-01-01

    Highlights: • Joining of dissimilar metals of Inconel 625 and UNS S32205 using electron beam welding. • Detailed structure – property relationship of dissimilar welds. • Improved metallurgical and tensile properties from the EB welding. - Abstract: The metallurgical and mechanical properties of electron beam welded Ni based superalloy Inconel 625 and UNS S32205 duplex stainless steel plates have been investigated in the present study. Interface microstructure studies divulged the absence of any grain coarsening effects or the formation of any secondary phases at the heat affected zone (HAZ) of the electron beam (EB) weldments. Tensile studies showed that the fracture occurred at the weld zone in all the trials and the average weld strength was reported to be 850 MPa. Segregation of Mo rich phases was witnessed at the inter-dendritic arms of the fusion zone. The study recommended the use of EB welding for joining these dissimilar metals by providing detailed structure – property relationships

  4. On Post-Weld Heat Treatment of a Single Crystal Nickel-Based Superalloy Joint by Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    T. J. Ma

    2015-09-01

    Full Text Available Three types of post-weld heat treatment (PWHT, i.e. solution treatment + primary aging + secondary aging (I, secondary aging (II, and primary aging + secondary aging (III, were applied to a single crystal nickel-based superalloy joint made with linear friction welding (LFW. The results show that the grains in the thermomechanically affected zone (TMAZ coarsen seriously and the primary γ' phase in the TMAZ precipitates unevenly after PWHT I. The primary γ' phase in the TMAZ and weld zone (WZ precipitates insufficiently and fine granular secondary γ' phase is observed in the matrix after PWHT II. After PWHT III, the primary γ' phase precipitates more sufficiently and evenly compared to PWHTs I and II. Moreover, the grains in the TMAZ have not coarsened seriously and fine granular secondary γ' phase is not found after PWHT III. PWHT III seems more suitable to the LFWed single crystal nickel-based superalloy joints when performing PWHT.

  5. Comparative Studies on Microstructure, Mechanical and Pitting Corrosion of Post Weld Heat Treated IN718 Superalloy GTA and EB Welds

    Science.gov (United States)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    In the present study, an attempt has been made to weld Inconel 718 nickel-base superalloy (IN718 alloy) using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Both the weldments were subjected to post-weld heat treatment condition as follows -980°C / 20 min followed by direct aging condition (DA) as 720°C/8 h/FC followed by 620°C/8 h/AC. The GTA and EB welds of IN718 alloy were compared in two conditions as-received and 980STA conditions. Welds were characterized to observe mechanical properties, pitting corrosion resistance by correlating with observed microstructures. The rate of higher cooling ranges, the fusion zone of EBW exhibited discrete and relative finer lave phases whereas the higher niobium existed laves with coarser structure were observed in GTAW. The significant dissolution of laves were observed at 980STA of EBW. Due to these effects, the EBW of IN718 alloy showed the higher mechanical properties than GTAW. The electrochemical potentiostatic etch test was carried out in 3.5wt% sodium chloride (NaCl) solution to study the pitting corrosion behaviour of the welds. Results of the present investigation established that mechanical properties and pitting corrosion behaviour are significantly better in post weld heat treated condition. The comparative studies showed that the better combination of mechanical properties and pitting corrosion resistance were obtained in 980STA condition of EBW than GTAW.

  6. Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Chen

    2018-05-01

    Full Text Available The main scope of this study investigated the occurrence of liquation cracking in the heat-affected zone (HAZ of IN738 superalloy weld, IN738 is widely used in gas turbine blades in land-based power plants. Microstructural examinations showed considerable amounts of γ’ uniformly precipitated in the γ matrix. Electron probe microanalysis (EPMA maps showed the γ-γ’ colonies were rich in Al and Ti, but lean in other alloy elements. Moreover, the metal carbides (MC, fine borides (M3B2 and M5B3, η-Ni3Ti, σ (Cr-Co and lamellar Ni7Zr2 intermetallic compounds could be found at the interdendritic boundaries. The fracture morphologies and the corresponding EPMA maps confirmed that the liquation cracking in the HAZ of the IN738 superalloy weld resulted from the presence of complex microconstituents at the interdendritic boundaries.

  7. Preparation of Inconel 740 superalloy by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); You, Qifan; Shi, Shuang; Li, Jiayan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Ye, Fei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Wei, Xin [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2016-08-15

    A novel method, namely electron beam smelting (EBS) technology was used to prepare the Inconel 740 superalloy. The microstructures, hardness and oxidation behavior were characterized and compared with the traditionally prepared Inconel 740 superalloy. The results imply that the solution treatment gives rise to the coarsening of γ′ precipitates, with further aging treatment, the γ′ precipitates with size of less than 30 nm are distributed dispersively in the matrix, leading to a decreasing of the lattice parameters and an increasing of the misfit. The γ′ precipitates result in shearing mechanism of weakly pair coupling. The EBS 740 superalloy produces better properties than that prepared in the traditional method in both precipitation strengthening effect and oxidation resistance. - Highlights: • Electron beam smelting, a new method, was used to prepare the Inconel 740 superalloy. • The EBS 740 shows higher strengthening effect than 740 made in traditional method. • The EBS 740 shows better oxidation resistance than traditional 740. • It shows application prospect of EBS technology in preparing Ni-base superalloys.

  8. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  9. Microstructural, mechanical and weldability assessments of the dissimilar welds between γ′- and γ″-strengthened nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

    2013-08-15

    Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. γ′-Strengthened nickel-base Alloy 500 and γ″-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of γ″-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type

  10. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  11. Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247

    Science.gov (United States)

    Mahaffey, D. W.; Senkov, O. N.; Shivpuri, R.; Semiatin, S. L.

    2016-08-01

    The effect of inertia friction welding process parameters on microstructure evolution, weld plane quality, and the tensile behavior of welds between dissimilar nickel-base superalloys was established. For this purpose, the fine-grain, powder metallurgy alloy LSHR was joined to coarse-grain cast Mar-M247 using a fixed level of initial kinetic energy, but different combinations of the flywheel moment of inertia and initial rotation speed. It was found that welds made with the largest moment of inertia resulted in a sound bond with the best microstructure and room-temperature tensile strength equal to or greater than that of the parent materials. A relationship between the moment of inertia and weld process efficiency was established. The post-weld tensile behavior was interpreted in the context of observed microstructure gradients and weld-line defects.

  12. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  13. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy

    International Nuclear Information System (INIS)

    Idowu, O.A.; Ojo, O.A.; Chaturvedi, M.C.

    2007-01-01

    The heat affected zones (HAZs) of low and high heat input laser welds of a newly developed superalloy, ATI Allvac 718Plus, were studied. Low heat input welds suffered significant HAZ grain boundary liquation cracking, while no cracking was observed in spite of a more extensive HAZ intergranular liquation in the higher heat input welds. Combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid were suggested to be the factors that contributed to the absence of cracking in the high heat input welds. Further, healing of some of the HAZ cracks in lower heat input welds by fusion zone interdendritic liquid occurred through liquid backfilling

  14. Studies on the Corrosion Resistance of Laser-Welded Inconel 600 and Inconel 625 Nickel-Based Superalloys

    Directory of Open Access Journals (Sweden)

    Łyczkowska K.

    2017-06-01

    Full Text Available The paper presents the results of the electrochemical corrosion tests of Inconel 600 and Inconel 625 laser-welded superalloys. The studies were conducted in order to assess the resistance to general and pitting corrosion in 3.5% NaCl solution. It was found that Inconel 600 possesses good corrosion resistance, however Inconel 625 is characterized by a greater resistance to general and also to pitting corrosion of the weld as well as the base metal.

  15. Effect of beam oscillation on borated stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    RajaKumar, Guttikonda [Tagore Engineering College, Chennai (India). Dept. of Mechanical Engineering; Ram, G.D. Janaki [Indian Institute of Technology (IIT), Chennai (India). Dept. of Metallurgical and Materials Engineering; Rao, S.R. Koteswara [SSN College of Engineering, Chennai (India). Mechanical Engineering

    2015-07-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  16. Effect of beam oscillation on borated stainless steel electron beam welds

    International Nuclear Information System (INIS)

    RajaKumar, Guttikonda; Ram, G.D. Janaki; Rao, S.R. Koteswara

    2015-01-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  17. Low heat input welding of nickel superalloy GTD-111 with Inconel 625 filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Athiroj, Athittaya; Wangyao, Panyawat; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkorn Univ., Bangkok (Thailand). Dept. of Metallurgical Engineering

    2018-03-01

    GTD-111 precipitation-strengthened nickel-based superalloy is widely used in blades of gas turbine engines which operate at high temperature and in a hot localized corrosion atmosphere. After long-term exposure to high temperature, γ' precipitate is known to exhibit catastrophic changes in size and distribution which cause deterioration of its properties and failure of the component. In this study, a damaged blade removed from a land-based gas turbine generator was subjected to nonpre-heat-treated GTAW and laser welding repair with various welding powers in the range of 135 to 295 J x mm{sup -1}, followed by post-weld heat treatment (PWHT) at 1473 K for 7200 s and strain aging at 1118 K for 86 400 s. Results show no significant relationship between welding powers, size and area fraction of the γ' precipitate in the fcc γ matrix in both GTAW and laser-welded specimens. The final γ' precipitate size and distribution depend mainly on PWHT parameters as γ' precipitates in all GTAW and laser welded specimens showed similar size and area fraction independently of the heat input from welding. Unmixed zones are observed in all laser welding specimens which may cause preferential weld corrosion during service. Microcrack occurrence due to welding and PWHT processes is also discussed.

  18. Micro-tensile strength of a welded turbine disc superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Oluwasegun, K.M.; Cooper, C.; Chiu, Y.L.; Jones, I.P. [School of Metallurgy and Materials, University of Birmingham, B15 2TT (United Kingdom); Li, H.Y., E-mail: h.y.li.1@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, B15 2TT (United Kingdom); Baxter, G. [Rolls-Royce plc., P.O. Box 31, Derby DE24 8BJ (United Kingdom)

    2014-02-24

    A micro-tensile testing system coupled with focussed ion beam (FIB) machining was used to characterise the micro-mechanical properties of the weld from a turbine disc alloy. The strength variations between the weld and the base alloy are rationalised via the microstructure obtained.

  19. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  20. Development of welding technology for improving the metallurgical and mechanical properties of 21st century nickel based superalloy 686

    Energy Technology Data Exchange (ETDEWEB)

    Arulmurugan, B. [School of Mechanical Engineering, VIT University, Vellore 632014 (India); KPR Institute of Engineering and Technology, Coimbatore (India); Manikandan, M., E-mail: mano.manikandan@gmail.com [School of Mechanical Engineering, VIT University, Vellore 632014 (India)

    2017-04-13

    Alloy 686 is a highly corrosion resistant 21st-Century Nickel based superalloy derived from Ni-Cr-Mo ternary system. The alloying elements chromium (Cr) and molybdenum (Mo) are added to improve the resistance to corrosion in the broad range of service environment. The presence of a higher percentage of alloying elements Cr and Mo lead to microsegregation and end up with hot cracking in the fusion zone of Nickel-based superalloys. However, there is scanty of information regarding the welding of alloy 686 with respect to the microsegregation of alloying elements. The present study investigates the possibility of bringing down the microsegregation to cut down the formation of secondary phases in the fusion zone. The weld joints were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed current gas tungsten arc welding (PCGTAW) with ERNiCrMo-10 filler and without filler wire (autogenous) mode. The microstructural properties of the weld joints were studied with optical and Scanning Electron Microscope (SEM). The joints fabricated by pulsed current (PC) technique shows refined microstructure, narrower weld bead and practically no heat affected zone (HAZ). Scanning Electron Microscope demonstrates the presence of secondary phases in the interdendritic regions of GTAW case. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying element. The results show that the segregation of Mo noticed in the interdendritic zone of GTAW both autogenous and filler wire. Tensile and Impact tests were done to evaluate the strength, ductility, and toughness of the weld joints. The results show that the PCGTA helps to obtain improved strength, ductility and toughness of the weld joints compared to their respective GTAW. Bend test did not lead to cracking irrespective of the type of welding adopted in the present study.

  1. The Microstructure and Gamma Prime Distributions in Inertia Friction Welded Joint of P/M Superalloy FGH96

    Science.gov (United States)

    Zhang, Chi; Shen, Wenfei; Zhang, Liwen; Xia, Yingnan; Li, Ruiqin

    2017-04-01

    A gamma prime ( γ') precipitation ( 35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ' distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ' in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ' precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ' resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ' precipitation.

  2. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  3. Effects of post-weld heat treatment on microstructure and mechanical properties of TLP bonded Inconel718 superalloy

    International Nuclear Information System (INIS)

    Cao, J.; Wang, Y.F.; Song, X.G.; Li, C.; Feng, J.C.

    2014-01-01

    Transient liquid phase bonding of Inconel718 superalloy was carried out using a commercial Ni–Cr–Si–B amorphous interlayer. The interfacial microstructure of Inconel718 joints was analyzed by a scanning electron microscope and a transmission electron microscope. In particular, the effects of post-weld heat treatment on the interfacial microstructure and joining properties of Inconel718 joints were investigated in detail. The results showed that the precipitation of second phases in joints induced by post-weld heat treatment were beneficial to the improvement of joint properties. A tensile strength of 1130 MPa with an elongation percentage of 7% was achieved for a sample bonded at 1050 °C/60 min+1180 °C/60 min followed by the post-weld heat treatment

  4. Welding by using doubly-deflected rotating electron beam

    International Nuclear Information System (INIS)

    Dabek, J.W.; Friedel, K.

    1997-01-01

    The paper presents the welding process by using double-deflected rotating electron beam, as a method to obtain good quality welds. It is shown possible variants of work of modified beam, principles of creation, process control and results of welding. Comparison of quality welds obtained by using traditional and modified electron beams is made too. (author). 11 refs, 8 figs

  5. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  6. Electron-beam welding of thorium-doped iridium alloy sheets

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.; Hudson, J.D.

    1979-04-01

    Modified iridium alloys containing 100 ppM Th were found to be very susceptible to hot-cracking during gas tungsten-arc and electron-beam welding. However, the electron-beam welding process showed greater promise of success in welding these alloys, in particular Ir--0.3% W doped with 200 ppM Th and 50 ppM Al. The weldability of this particular alloy was extremely sensitive to the welding parameters, such as beam focus condition and welding speed, and the resulting fusion zone structure. At low speed successful electron-beam welds were made over a narrow range of beam focus conditions. However, at high speeds successful welds can be made over an extended range of focus conditions. The fusion zone grain structure is a strong function of welding speed and focus condition, as well. In the welds that showed hot-cracking, a region of positive segregation of thorium was identified at the fusion boundary. This highly thorium-segregated region seems to act as a potential source for the nucleation of a liquation crack, which later grows as a centerline crack

  7. Design of automatic tracking system for electron beam welding

    International Nuclear Information System (INIS)

    He Chengdan; Chinese Academy of Space Technology, Lanzhou; Li Heqi; Li Chunxu; Ying Lei; Luo Yan

    2004-01-01

    The design and experimental process of an automatic tracking system applied to local vacuum electron beam welding are dealt with in this paper. When the annular parts of an exactitude apparatus were welded, the centre of rotation of the electron gun and the centre of the annular weld are usually not superposed because of the machining error, workpiece's setting error and so on. In this teaching process, a little bundle of electron beam is used to scan the weld groove, the amount of the secondary electrons reflected from the workpiece is different when the electron beam scans the both sides and the centre of the weld groove. The difference can indicate the position of the weld and then a computer will record the deviation between the electron beam spot and the centre of the weld groove. The computer will analyze the data and put the data into the storage software. During the welding process, the computer will modify the position of the electron gun based on the deviation to make the electron beam spot centered on the annular weld groove. (authors)

  8. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  9. The laser beam welding test of ODS fuel claddings

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2004-06-01

    As a alternative method of pressurized resistance welding being currently developed, integrity evaluations for a laser beam welding joint between a ODS cladding tube and a FMS end plug were conducted for the purpose of studying the applicability of the laser beam welding technique to the welding with the lower end plug. The laser beam welding causes blowholes in the welding zone, whose effect on the high cycle fatigue strength of the joint is essential because of the flow-induced vibration during irradiation. The rotary bending tests using specimens with laser beam welding between ODS cladding tubes and FMS end plugs were carried out to evaluate the fatigue strength of the welding joint containing blowholes. The fatigue limit of stress amplitude about 200 MPa from 10 6 -10 7 cycles suggested that the laser beam welding joint had enough strength against the flow-induced vibration. Sizing of blowholes in the welding zone by using a micro X ray CT technique estimated the rate of defect areas due to blowholes at 1-2%. It is likely that the fatigue strength remained nearly unaffected by blowholes because of the no correlation between the breach of the rotary bending test specimen and the rate of defect area. Based on results of tensile test, internal burst test, Charpy impact test and fatigue test of welded zone, including study of allowable criteria of blowholes in the inspection, it is concluded that the laser beam welding can be probably applied to the welding between the ODS cladding tube and the FMS lower end plug. (author)

  10. Numerical simulation of electron beam welding with beam oscillations

    Science.gov (United States)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  11. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  12. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  13. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  14. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  15. Application of local vacuum slide sealing electron beam welding procedure

    International Nuclear Information System (INIS)

    Sato, Shozo; Takano, Genta; Minami, Masaharu; Enami, Koji; Uchikawa, Takashi; Kuri, Shuhei

    1982-01-01

    Electron beam welding process is efficient and is superior in workmanship and its application to the welding of large plate structures is eagerly awaited. However, since electron beam welding is generally performed with the object of welding entirely put in a vacuum chamber, high welding cost becomes a problem. In response to this demand, two kinds of local vacuum slide sealing type electron beam welding machines have been developed. These welding machines are designed to perform welding with only the neighborhood of the weld line put in vacuum, one of which is for longitudinal joints and the other for circumferential joints. The welding machine for circumferential joints has been put to practical use for the welding of nucear fusion reactor vacuum vessels (outside diameter 3.5 m, inside diameter 1.7 m), showing that it is applicable to the welding of large structures. (author)

  16. Electron Beam Welding of Gear Wheels by Splitted Beam

    Directory of Open Access Journals (Sweden)

    Dřímal Daniel

    2014-06-01

    Full Text Available This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max..

  17. Some electron beam welding equipments for the nuclear industry

    International Nuclear Information System (INIS)

    Helm, H.; Rodier, R.; Sayegh, G.

    1978-01-01

    Results of various electron beam welding equipment developed for the nuclear industry obtained from a 100 kW electron beam machine to weld thick plates made of stainless steel and reactor steel, and from some equipment with local vacuum to weld pipes onto a pipe wall. (orig.) [de

  18. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  19. Hybrid welding of hollow section beams for a telescopic lifter

    Science.gov (United States)

    Jernstroem, Petteri

    2003-03-01

    Modern lifting equipment is normally constructed using hollow section beams in a telescopic arrangement. Telescopic lifters are used in a variety number of applications including e.g. construction and building maintenance. Also rescue sector is one large application field. It is very important in such applications to use a lightweight and stable beam construction, which gives a high degree of flexibility in working high and width. To ensure a high weld quality of hollow section beams, high efficiency and minimal distortion, a welding process with a high power density is needed. The alternatives, in practice, which fulfill these requirements, are laser welding and hybrid welding. In this paper, the use of hybrid welding process (combination of CO2 laser welding and GMAW) in welding of hollow section beam structure is presented. Compared to laser welding, hybrid welding allows wider joint tolerances, which enables joints to be prepared and fit-up less accurately, aving time and manufacturing costs. A prerequisite for quality and effective use of hybrid welding is, however, a complete understanding of the process and its capabilities, which must be taken into account during both product design and manufacture.

  20. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  1. Laser and electron beam welding of Ti-alloys: Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Cam, G; Santos, J.F. dos; Kocak, M [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1998-12-31

    The welding of titanium alloys must be conducted in completely inert or vacuum environments due to the strong affinity of titanium to oxygen. Residual stresses in titanium welds can greatly influence the performance of a fabricated aerospace component by degrading fatigue properties. Moreover, distortion can cause difficulties in the final assembly and operation of high-tolerance aerospace systems. Power beam welding processes, namely laser and electron beam welding, offer remarkable advantages over conventional fusion welding processes and have a great potential to produce full-penetration, single-pass autogenous welds with minimal component distortion due to low heat input and high reproducibility of joint quality. Moreover, electron beam welding process, which is conducted in a vacuum chamber, inherently provides better atmospheric protection. Although considerable progress has been made in welding of titanium alloys by power beam processes, there is still a lack of a complete set of mechanical properties data of these joints. Furthermore, the problem of solid-state cracking in fusion welding of {gamma}-TiAl intermetallic alloys due to their low ductility is still to be overcome. The purpose of this literature review is to outline the progress made in this area and to provide basic information for the Brite-Euram project entitled assessment of quality of power beam weld joints ``ASPOW``. (orig.) 31 refs.

  2. Electron beam welding of high-purity copper accelerator cells

    International Nuclear Information System (INIS)

    Delis, K.; Haas, H.; Schlebusch, P.; Sigismund, E.

    1986-01-01

    The operating conditions of accelerator cells require high thermal conductivity, low gas release in the ultrahigh vacuum, low content of low-melting metals and an extremely good surface quality. In order to meet these requirements, high-purity copper (OFHC, Grade 1, according to ASTM B 170-82 and extra specifications) is used as structural material. The prefabricated components of the accelerator cells (noses, jackets, flanges) are joined by electron beam welding, the weld seam being assessed on the basis of the same criteria as the base material. The welding procedures required depend, first, on the material and, secondly, on the geometries involved. Therefore experimental welds were made first on standardized specimens in order to study the behaviour of the material during electron beam welding and the influence of parameter variations. The welded joints of the cell design were planned on the basis of these results. Seam configuration, welding procedures and the parameters were optimized on components of original geometry. The experiments have shown that high-quality joints of this grade of copper can be produced by the electron beam welding process, if careful planning and preparation of the seams and adequate containment of the welding pool are assured. (orig.)

  3. Microstructure and Mechanical Properties of Laser Welded Joints of DZ125L and IN718 Nickel Base Superalloys

    Science.gov (United States)

    Liang, Taosha; Wang, Lei; Liu, Yang; Song, Xiu

    2018-05-01

    The microstructure and mechanical properties of the laser welded joint of DZ125L and IN718 nickel base superalloys were investigated. The results show that the fusion zone (FZ) mainly consists of fine dendrite structure with fine γ', Laves phases and MC carbides inhomogeneously distributed. The high welding temperature induces the partial dissolution of γ' in the heat-affected zone (HAZ) of DZ125L and liquation of grain boundaries in both of the HAZs. After post-weld heat treatment (PWHT), fine γ″ and γ' phases precipitate in the FZ, IN718 HAZ and IN718 base metal (BM), and fine γ' precipitate in the γ channel of the HAZ and BM of DZ125L. With tensile testing, the joints after PWHT show higher strengths than that of the weaker DZ125L alloy. Plastic deformation mainly concentrates in the weaker DZ125L and the joint finally fails in the DZ125L BM.

  4. Technology of electron beam welding for Zr-4 alloy spacer grid

    International Nuclear Information System (INIS)

    Pei Qiusheng; Wu Xueyi; Yang Qishun

    1989-10-01

    The welding technology for Zr-4 alloy spacer grid by using vacuum electron beam was studied. Through a series of welding technological experiments, metallographic examinations of seam structure and detecting tests for welding defect by X-ray defectoscopy, a good welding technology was selected to meet the requirements. The experimental results indicated that the Zr-4 alloy spacer grid welded by vacuum electron beam welding is feasible

  5. Innovative electron-beam welding of high-melting metals

    International Nuclear Information System (INIS)

    Behr, W.; Reisgen, U.

    2007-01-01

    Since its establishment as nuclear research plant Juelich in the year 1956, the research centre Juelich (FZJ) is concerned with the material processing of special metals. Among those are, above all, the high-melting refractory metals niobium, molybdenum and tungsten. Electron beam welding has always been considered to be an innovative special welding method; in the FZJ, electron beam welding has, moreover, always been adapted to the increasing demands made by research partners and involved manufacturing and design sectors. From the manual equipment technology right up to highly modern multi-beam technique, the technically feasible for fundamental research has, this way, always been realised. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  6. Two-process approach to electron beam welding control

    International Nuclear Information System (INIS)

    Lastovirya, V.N.

    1987-01-01

    The analysis and synthesis of multi-dimensional welding control systems, which require the usage of computers, should be conducted within the temporal range. From the general control theory point two approaches - one-process and two-process - are possible to electron beam welding. In case of two-process approach, subprocesses of heat source formation and direct metal melting are separated. Two-process approach leads to two-profile control system and provides the complete controlability of electron beam welding within the frameworks of systems with concentrated, as well as, with distributed parameters. Approach choice for the given problem solution is determined, first of all, by stability degree of heat source during welding

  7. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  8. Comparative estimation of the properties of heat resisting nickel alloy welded joints made by electron-beam and arc welding

    International Nuclear Information System (INIS)

    Morochko, V.P.; Sorokin, L.I.; Yakushin, B.F.; Moryakov, V.F.

    1977-01-01

    As compared to argon arc welding of refractory nickel alloys at 15 m/hour rate, electron beam welding decreases energy consumption per unit length (from 4300 to 2070 cal/cm), the weld area (from 108 to 24 mm 2 ), and the length of the thermal effect zone (from 0.9-1.8 to 0.4-0.8 mm). Electron beam welding also provides for better resistance to hot cracking in the weld metal and in the near-weld zone, as compared to automatic argon arc welding and manual welding with addition of the basic metal. However, this advantage is observed only at welding rates less than 45 m/hour. Electron beam welded joints of refractory nickel alloys with intermetallide reinforcement have higher strength, plasticity and impact strength, and lower scattering of these properties than arc welded joints

  9. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  10. Electron Beam Welding of Thick Copper Material

    International Nuclear Information System (INIS)

    Broemssen, Bernt von

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter

  11. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  12. Electron beam welding of dissimilar metals

    International Nuclear Information System (INIS)

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  13. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    Science.gov (United States)

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  14. Microstructure and mechanical properties of electron beam welded dissimilar steel to Fe–Al alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, Soumitra Kumar; Basiruddin Sk, Md.; Roy, Gour Gopal [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur (India); Srirangam, Prakash, E-mail: p.srirangam@warwick.ac.uk [Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-11-20

    Electron beam welding (EBW) technique was used to perform dissimilar joining of plain carbon steel to Fe–7%Al alloy under three different weld conditions such as with beam oscillation, without beam oscillation and at higher welding speed. The effect of weld parameters on the microstructure and mechanical properties of dissimilar joints was studied using optical microscopy, SEM, EBSD, hardness, tensile and erichsen cup tests. Microstructure results show that the application of beam oscillation resulted in uniform and homogeneous microstructure compared to without beam oscillations and higher welding speed. Further, it was observed that weld microstructure changes from equiaxed to columnar grains depending on the weld speed. High weld speed results in columnar grain structure in the weld joint. Erichsen cup test results show that the application of beam oscillation results in excellent formability as compared to high weld speed. Tensile test results show no significant difference in strength properties in all three weld conditions, but the ductility was found to be highest for joints obtained with the application of weld beam oscillation as compared to without beam oscillation and high weld speed. This study shows that the application of beam oscillations plays an important role in improving the weld quality and performance of EBW dissimilar steel to Fe–Al joints.

  15. Development of laser beam welding for the lip seal configuration

    International Nuclear Information System (INIS)

    Yadav, Ashish; Joshi, Jaydeep; Singh, Dhananjay Kumar; Natu, Harshad; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2015-01-01

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  16. Development of laser beam welding for the lip seal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashish, E-mail: ashish.yadav@iter-india.org [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Joshi, Jaydeep; Singh, Dhananjay Kumar [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Natu, Harshad [Magod Laser Machining Pvt. Ltd., KIADB Ind. Area, Jigani, Anekal Taluk, Bengaluru 560105 (India); Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India)

    2015-10-15

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  17. Electron beam welding of heat exchangers

    International Nuclear Information System (INIS)

    Chergov, I.V.; Jarinov, V.I.; Minine, V.A.

    1983-01-01

    For a long time neither qualitative, nor quantitative criteria have been available that would have allowed choosing the most suitable welding techniques from the three stated below: 1) electron gun rotates relative to stationary tube; 2) electron beam is magnetically deviated relative to stationary tube; 3) permanent deviation magnet is rotated mechanically relative to stationary tube and gun. To our experience, the 2nd technique is most promising when welding 16x1.5 diameter stainless tubes. The e-b welds are vulnerable to root defects. With welding done in a movable manner, the root defect area will be found to locate in the tube plate body and, hence, the weldment, as a whole, will not be impaired [fr

  18. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  19. Study on laser beam welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2012-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  20. Electron-beam fusion welding of beryllium

    International Nuclear Information System (INIS)

    Campbell, R.P.; Dixon, R.D.; Liby, A.L.

    1978-01-01

    Ingot-sheet beryllium (Be) having three different chemistries and three different thicknesses was fusion-welded by the electron-beam process. Several different preheats were used to obtain 100% penetration and crack-free welds. Cracking susceptability was found to be related to aluminum (Al) content; the higher Al-content material was most susceptable. However, adequate preheat allowed full penetration and crack-free welds to be made in all materials tested. The effect of a post-weld heat treatment on the mechanical properties of these compositions was also determined. The heat treatment produced no significant effect on the ultimate tensile strength. However, the yield strength was decreased and the ductility was increased. These changes are attributed to the formation of AlFeBe 4 and FeBe 11

  1. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the weld spacing was small enough, the original microstructures would be fragmented with the high heat input. - Abstract: China low activation martensitic (CLAM) steel has been chosen as the primary structural material in the designs of dual function lithium-lead (DFLL) blanket for fusion reactors, China helium cooled ceramic breeder (HCCB) test blanket module (TBM) for ITER and China fusion engineering test reactor (CFETR) blanket. The cooling components of the blankets are designed with high density cooling channels (HDCCs) to remove the high nuclear thermal effectively. Hence, the welding spacing among the channels are small. In this paper, the welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding (EBW). The weld spacing was designed to be 2 mm, 3 mm, 4 mm, 6 mm and 8 mm. The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). The PWHT is tempering at 740 °C for 120 min. The results showed that the grain size in the heat affected zone (HAZ) increased with the increasing weld spacing, and the joint with small weld spacing had a better performance after PWHT. This work would give useful guidance to improve the preparation of the cooling components of blanket.

  2. Characterization of an Additive Manufactured TiAl Alloy—Steel Joint Produced by Electron Beam Welding

    Directory of Open Access Journals (Sweden)

    Gloria Basile

    2018-01-01

    Full Text Available In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at % alloy part was produced by Electron Beam Melting (EBM. This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti3Al followed by Al3NiTi2 and AlNi2Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  3. Today's status of application of high power electron beam welding to heavy electric machinery

    International Nuclear Information System (INIS)

    Kita, Hisanao; Okuni, Tetsuo; Sejima, Itsuhiko.

    1980-01-01

    The progress in high energy welding is remarkable in recent years, and electron beam welding is now widely used in heavy industries. However, there are number of problems to be solved in the application of high power electron beam welding to ultra thick steel plates (over 100 mm). The following matters are described: the economy of high power electron beam welding; the development of the welding machines; the problems in the actual application; the instances of the welding in a high-pressure spherical gas tank, non-magnetic steel structures and high-precision welded structures; weldor training; etc. For the future rise in the capacities of heavy electric machinery, the high efficiency by high power electron beam welding will be useful. The current status is its applications to the high-precision welding of large structures with 6 m diameter and the high-quality welding of heavy structures with 160 mm thickness. (J.P.N.)

  4. On the Occurrence of Liquation During Linear Friction Welding of Ni-Based Superalloys

    Science.gov (United States)

    Masoumi, F.; Shahriari, D.; Jahazi, M.; Cormier, J.; Flipo, B. C. D.

    2017-06-01

    A combination of experimental and analytical methods was used to study the possible occurrence of liquation during LFW of the newly developed AD730TM Ni-based superalloy. LFWed joints were produced using a semi-industrial size facility and the interfaces of the joints as well as the ejected flash were examined using optical and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). Physical simulation of the LFW thermal cycle, using thermomechanical simulator Gleeble™ 3800, showed that incipient melting started from 1473 K (1200 °C). The analytical model, calibrated by experiments, predicted that the highest temperature of the interface was about 1523 K (1250 °C). The constitutive equations based on lattice and pipe diffusion models were developed to quantify the self-diffusivity of the elements and control the extent of liquation by considering the effect of LFW process parameters. Analytical results show that the application of compressive stresses during LFW results in 25 times increase in the diffusion of Ni atoms at the weld interface. Therefore, no presence of re-solidified phases, i.e., occurrence of liquation, was observed in the microstructure of the weld zone or the flash in the present study. Based on the obtained results, a methodology was developed for designing the optimum pressure above which no liquation, and hence cracking, will be observable.

  5. Electron beam welding using fusion and cold wire fill

    International Nuclear Information System (INIS)

    Kuncz, F.F.

    1977-01-01

    A straight-fusion (self-filler) welding technique generally poses no problem for electron beam welding. However, where control of penetration is a critical item and burn-through cannot be tolerated, this technique may not be satisfactory. To assure against beam-spike burn-through on a 1/4-inch deep weld joint, a low-power root-fusion pass, supplemented by numerous filler passes, was selected. However, this technique proved to have numerous problems. Voiding and porosity showed frequently in the first applications of this cold-wire filler process. Taper-out cratering, bead-edge undercutting, and spatter were also problems. These imperfections, however, were overcome. Employment of a circle generator provided the necessary heating of the joint walls to eliminate voids. The moving beam spot also provided a stirring action, lessening porosity. Taper-out cratering was eliminated by adjusting the timing of the current cutoff and wire-feed cutoff. Undercutting, bead height, and spatter were controlled by beam defocus

  6. Electron-beam welding of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, Marcel; de Bony, Yves

    1980-08-15

    The objective of this article is to describe the status of the application of electron-beam welding to aluminum alloys. These alloys are widely employed in the aeronautics, space and nuclear industries.

  7. Defect detectability of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Ueno, Souichi; Kobayashi, Noriyasu; Ochiai, Makoto; Kasuya, Takashi; Yuguchi, Yasuhiro

    2011-01-01

    We clarified defect detectability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding works of dissimilar metal welding (DMW) of reactor vessel nozzle. The underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in the grooves and welded surface grinding as a post treatment. Therefore groove and welded surface inspections are required in the underwater condition. The ECT is a major candidate as this inspection technique because a penetrant testing is difficult to perform in the underwater condition. Several kinds of experiments were curried out using a cross coil an ECT probe and ECT data acquisition system in order to demonstrate the ECT defect detectability. We used specimens, simulating groove and DMW materials at an RV nozzle, with electro-discharge machining (EDM) slits over it. Additionally, we performed a detection test for artificial stress corrosion cracking (SCC) defects. From these experimental results, we confirmed that an ECT was possible to detect EDM slits 0.3 mm or more in depth and artificial SCC defects 0.02 mm to 0.48 mm in depth on machined surface. Furthermore, the underwater ECT defect detectability is equivalent to that in air. We clarified an ECT is sufficiently usable as a surface inspection technique for underwater laser beam welding works. (author)

  8. Study on laser beam welding technology for nuclear power plants title

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2011-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  9. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  10. Measuring and recording system for electron beam welding parameters

    International Nuclear Information System (INIS)

    Lobanova, N.G.; Lifshits, M.L.; Efimov, I.I.

    1987-01-01

    The observation possibility during electron beam welding of circular articles with guaranteed clearance of welding bath leading front in joint gap and flare cloud over the bath by means of television monitor is considered. The composition and operation mode of television measuring system for metric characteristics of flare cloud and altitude of welding bath leading front in the clearance are described

  11. New technique of skin embedded wire double-sided laser beam welding

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin

    2017-06-01

    In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.

  12. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Martinez, D.I., E-mail: dorairma@yahoo.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Perez, A., E-mail: betinperez@hotmail.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Guajardo, H., E-mail: hguajardo@frisa.com [FRISA Aerospace, S.A. de C.V., Valentin G. Rivero No. 200, Col. Los Trevino, C.P. 66150, Santa Caterina N.L. (Mexico); Garza, A., E-mail: agarza@comimsa.com [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V. (COMIMSA), Ciencia y Tecnologia No.790, Saltillo 400, C.P. 25295 Saltillo Coah. (Mexico)

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  13. Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution

    International Nuclear Information System (INIS)

    Elmer, J.W.; Teruya, A.T.; Terrill, P.E.

    2000-01-01

    Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities

  14. Evaluation of a method to shield a welding electron beam from magnetic interference

    Science.gov (United States)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  15. Electron beam welding of heavy section 3Cr-1.5Mo alloy

    International Nuclear Information System (INIS)

    King, J.F.; David, S.A.; Nasreldin, A.

    1986-01-01

    Welding of thick section steels is a common practice in the fabrication of pressure vessels for energy systems. The fabrication cost is strongly influenced by the speed at which these large components can be welded. Conventional welding processes such as shielded metal arc (SMA) and submerged arc (SA) are time-consuming and expensive. Hence there is a great need to reduce welding time and the tonnage of weld metal deposited. Electron beam welding (EBW) is a process that potentially could be used to achieve dramatic reduction in the welding time and costs. The penetrating ability of the beam produces welds with high depth-to-width ratios at relatively high travel speeds, making it possible to weld thick sections with one or two passes without filler metals and other consumables. The paper describes a study that was undertaken to investigate the feasibility of using a high power electron beam welding machine to weld heavy section steel. The main emphasis of this work was concentrated on determining the mechanical properties of the resulting weldment, characterizing the microstructure of the various weldment regions, and comparing these results with those from other processes. One of the steels selected for the heavy section electron beam welding study was a new 3 Cr-1.5 Mo-0.1 V alloy. The steel was developed at the AMAX Materials Research Center by Wada and co-workers for high temperature, high pressure hydrogen service as a possible improved replacement for 2-1/4 Cr-1 Mo steels. The excellent strength and toughness of this steel make it a promising candidate for future pressure vessels such as those for coal gasifiers. The work was conducted on 102 mm (4 in.) thick plates of this material in the normalized-and-tempered condition

  16. Electron beam welding: study of process capabilities and limitations towards development of nuclear components

    International Nuclear Information System (INIS)

    Vadolia, Gautam; Singh, Kongkham Premjit

    2015-01-01

    Electron beam (EB) welding technology is an established and widely adopted technique in nuclear research and development area. Electron Beam welding is thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor @ BARC, Mumbai and Niobium Superconducting accelerator Cavitity @ BARC has adopted the EB welding technique as a fabrication route. The highly concentrated energy input of the electron beam has added the advantages over the conventional welding as being less HAZ and provided smooth and clean surface. EB Welding has also been used for the joining of various reactive and refractory materials. EB system as heat source has also been used for vacuum brazing application. The Welding Institute (TWI) has demonstrated that EBW is potentially suitable to produce high integrity joints in 50 mm pure copper. TWI has also examined 150 kV Reduced Pressure Electron Beam (RPEB) gun in welding 140 mm and 147 mm thickness Nuclear Reactor Pressure Vessel Steel (SA 508 grade). EBW in 10 mm thick SS316 plates were studied at IPR and results were encouraging. In this paper, the pros and cons and role of electron beam process will be studied to analyze the importance of electron beam welding in nuclear components fabrication. Importance of establishing the high precision Wire Electro Discharge Machining (WEDM) facility will also be discussed. (author)

  17. Microstructure of the Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting

    Science.gov (United States)

    Ramsperger, Markus; Singer, Robert F.; Körner, Carolin

    2016-03-01

    Powder bed-based additive manufacturing (AM) processes are characterized by very high-temperature gradients and solidification rates. These conditions lead to microstructures orders of magnitude smaller than in conventional casting processes. Especially in the field of high performance alloys, like nickel-base superalloys, this opens new opportunities for homogenization and alloy development. Nevertheless, the high susceptibility to cracking of precipitation-hardenable superalloys is a challenge for AM. In this study, electron beam-based AM is used to fabricate samples from gas-atomized pre-alloyed CMSX-4 powder. The influence of the processing strategy on crack formation is investigated. The samples are characterized by optical and SEM microscopy and analyzed by microprobe analysis. Differential scanning calorimetry is used to demonstrate the effect of the fine microstructure on characteristic temperatures. In addition, in situ heat treatment effects are investigated.

  18. Possibility of designing television control system for welded joint formation on electron beam welding

    International Nuclear Information System (INIS)

    Lifshits, M.L.; Lobanova, N.G.

    1987-01-01

    Regression equations (models), connecting seam characteristics: width and depth with the welding bath leading front in joint gap and seam width respectively - are obtained at electron beam welding of circular articles with guaranteed clearance with application of television control system. Dispersion analysis showed the models adequancy to the process in the range, where they were identified

  19. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  20. Microstructure evolution of electron beam welded Ti3Al-Nb joint

    International Nuclear Information System (INIS)

    Feng Jicai; Wu Huiqiang; He Jingshan; Zhang Bingang

    2005-01-01

    The microstructure evolution characterization in high containing Nb, low Al titanium aluminide alloy of electron beam welded joints was investigated by means of OM, SEM, XRD, TEM and microhardness analysis. The results indicated that the microstructure of the weld metal made with electron beam under the welding conditions employed in this work was predominantly metastable, retaining ordered β phase (namely B2 phase), and was independent of the welding parameters but independent of the size and the orientation of the weld solidification structures. As the heat input is decreased, the cellular structure zone is significantly reduced, and then the crystallizing morphology of fusion zone presented dendritically columnar structure. There existed grain growth coarsening in heat affected zone (HAZ) for insufficient polygonization. Both fusion zone (FZ) and the HAZ had higher microhardness than the base metal

  1. The fracture mechanics of steam turbine electron beam welded rotors

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1987-01-01

    Increased steam turbine unit ratings presupposes that steelmakers are capable of manufacturing larger and larger rotor components. However, there are few steelmakers in the world capable of manufacturing monobloc rotors for high rated turbines, which limits the choice of supplier. Most nuclear turbine rotors have a composite arrangement and are made either by shrinking discs on a shaft or using elements welded together. Those in favour of welding have applied a classical socalled ''submerged'' method using a filler metal. However welding can also be performed by using an Electron Beam in a vacuum room without a filler metal. This technique has many advantages: mechanical characteristics of the joint are identical to those of the base material after tempering without heat affected zones. Moreover, parts are only very slightly deformed during welding. Two steam turbine rotors have been produced in this way. This paper described the destructive tests carried out in the four Electron Beam (EB) welds (two on each rotor)

  2. Structure and properties of an aluminium alloy welded by electron beam

    International Nuclear Information System (INIS)

    Ruzimov, Sh.M.; Palvanov, S.R.; Pogrebnjak, A.D.

    2005-01-01

    Full text: In the given work the experimental results on research of influence of electronic beams on structure of an aluminum alloy are submitted. As a basis of samples the alloy Al-Mg-Zn-Cu by the additives Se-0.5 % and Nb-0.15 % is chosen. Samples from a cast aluminum alloy by thickness of 3 mm such as B-96 were welded with an electronic beam in three different modes at radius circle of a root of a welded seam of 5 mm. The welding was carried out by an alloy Amg 63 and Sv-1571 with application electron team welding joint of parts. The basic influence on the given process makes energy - allocation of an electronic beam. For research of phase structure used of X-ray beams (XRD), DRON-2 in copper K α - Cu measurement. For research of structure and morphology of a surface used optical microscope with increase 800-1500 times and electronic microscope with the microanalysis. On figures of optical microscopy the morphology of a seam sharply differs from morphology of an initial part. The microanalysis carried out with a place of a seam, has shown presence of the whole spectrum of elements, such as, Al; Zn; Na; Mg; Cu; and Mn. All measurements carried out in welding zone and in frontier zones that it was possible to carry out the comparative analysis. The element structure of these zones essentially differs in dependence of a condition of welding

  3. Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique

    Science.gov (United States)

    Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.

  4. Process parameters-weld bead geometry interactions and their influence on mechanical properties: A case of dissimilar aluminium alloy electron beam welds

    Directory of Open Access Journals (Sweden)

    P. Mastanaiah

    2018-04-01

    Full Text Available Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the load bearing capability of a weld joint, which in-turn decides the performance in real time service conditions. The present study introduces a novel approach of detecting a relationship between weld bead geometry and mechanical properties (e.g. tensile load for the purpose of catering the best the process could offer. The significance of the proposed approach is demonstrated by a case of dissimilar aluminium alloy (AA2219 and AA5083 electron beam welds. A mathematical model of tensile braking load as a function of geometrical attributes of weld bead geometry is presented. The results of investigation suggests the effective thickness of weld – a geometric parameter of weld bead has the most significant influence on tensile breaking load of dissimilar weld joint. The observations on bead geometry and the mechanical properties (microhardness, ultimate tensile load and face bend angle are correlated with detailed metallurgical analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate evaporation and segregation of alloying elements magnesium and copper respectively. The mechanical properties of weld joint are controlled by optimum bead geometry and HAZ softening in weaker AA5083 Al alloy. Keywords: Electron beam welding, AA2219, AA5083, Bead geometry, Tensile breaking load

  5. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    Science.gov (United States)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  6. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi

    Directory of Open Access Journals (Sweden)

    Balz Isabel

    2016-09-01

    Full Text Available Medical devices with small dimensions made of superelastic NiTi become more popular, but joining these parts remains challenging. Since laser welding was found to be an option, electron beam welding seems to be an interesting alternative as it provides additional advantages due to the precise beam positioning and the high vacuum. Superelasticity is influenced by microstructure and surface layer composition that are mainly affected by welding process and by heat treatment and therefore will be investigated in the present paper.

  7. Contribution to a research on electron beam welding of metals

    International Nuclear Information System (INIS)

    Stohr, J.

    1964-03-01

    The electron beam welding of metals is performed by the travelling of the focusing point along the junction of two pieces to be connected. Welding parameters are the electron gun power W, the value of the electron impact surface S, the welding speed s. From the beginning of our research in 1954, the preponderant part played by specific power W/s on the shape of the welded zone and the penetrating depth, became evident. A more methodical research has been undertaken in the laboratories of C.E.N. under the patronage of Professor CHAUDRON, in order to define in a better way the importance of the different welding parameters and to determine their influence on the metallurgical qualities of welded assemblies. This research induced us to define an electron gun adapted as well as possible to the performance of weldings, not only from the point of view of behaviour, especially during the passage from the atmospheric to a low pressure at 10 -5 Torr, necessary for the carrying out of a welding, but also from the point of view of adjustment conveniences of the different welding parameters, indispensable to the intended research work. The variations of welding parameters show that the shape of the molten zone turns from a circle segment to that of a very high triangle, which implies a continual change of the mode of heat transmission. Tests have been made, in order to confirm this way of looking, especially in order to achieve isotherms in dynamic operating and also the comparison of these isotherms with that recorded while using a method of argon arc welding. The thermal balance of energy supplied to the part, the necessary welding energy, and the energy loss (through conduction, radiation and evaporation) has also been established. These results proved that almost the whole of energy has been used for melting, that the different losses are negligible and that heat transmission can not occur by thermal conduction through the part during 'welding' time, when operating under

  8. Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness.

    Science.gov (United States)

    Angella, Giuliano; Barbieri, Giuseppe; Donnini, Riccardo; Montanari, Roberto; Richetta, Maria; Varone, Alessandra

    2017-09-05

    Electron Beam (EB) welding has been used to realize seams on 2 mm-thick plates of directionally solidified (DS) IN792 superalloy. The first part of this work evidenced the importance of pre-heating the workpiece to avoid the formation of long cracks in the seam. The comparison of different pre-heating temperatures (PHT) and pass speeds ( v ) allowed the identification of optimal process parameters, namely PHT = 300 °C and v = 2.5 m/min. The microstructural features of the melted zone (MZ); the heat affected zone (HAZ), and base material (BM) were investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD), and micro-hardness tests. In the as-welded condition; the structure of directionally oriented grains was completely lost in MZ. The γ' phase in MZ consisted of small (20-40 nm) round shaped particles and its total amount depended on both PHT and welding pass speed, whereas in HAZ, it was the same BM. Even if the amount of γ' phase in MZ was lower than that of the as-received material, the nanometric size of the particles induced an increase in hardness. EDS examinations did not show relevant composition changes in the γ' and γ phases. Post-welding heat treatments (PWHT) at 700 and 750 °C for two hours were performed on the best samples. After PWHTs, the amount of the ordered phase increased, and the effect was more pronounced at 750 °C, while the size of γ' particles in MZ remained almost the same. The hardness profiles measured across the joints showed an upward shift, but peak-valley height was a little lower, indicating more homogeneous features in the different zones.

  9. Study of residual stresses in CT test specimens welded by electron beam

    Science.gov (United States)

    Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.

    2018-03-01

    The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.

  10. Research on electron beam welding technology of steel HR-4

    International Nuclear Information System (INIS)

    Guo Peng; Guan Kai

    2001-01-01

    The electron beam weldability of HR- 4 steels (J75 and J90) is studied and the welding parameters needed for design and usage are presented. The assessment on the effect of mechanical properties by different processing order of welding and heat-treatment is made

  11. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    OpenAIRE

    Zita Iždinská; František Kolenič

    2009-01-01

    The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It w...

  12. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  13. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  14. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  15. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2009-04-01

    Full Text Available The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It was shown, that application of suitable postheat made possible to reduce the ferrite content in weld metal.

  16. Welding superalloy sheet for superconducting cable jackets

    International Nuclear Information System (INIS)

    Summers, L.T.; Strum, M.J.; Morris, J.W. Jr.

    1983-08-01

    Autogenous gas tungsten arc welds produced in A-286 exhibit significantly lower yield and ultimate tensile strengths than comparably heat-treated base metal. Deformation in the aged weld metal is highly localized and delineates the dendritic microstructure. The observed mechanical properties are caused by the formation of precipitate-free regions located at the dendrite cores. These regions form as the result of titanium segregation during weld pool solidification which yields dendrite cores sufficiently lean in titanium as to prevent nucleation of the hardening phase

  17. Method of beam welding metallic parts together and apparatus for doing same

    Science.gov (United States)

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  18. Evaluation of Electron Beam Welding Performance of AA6061-T6 Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Seo, Kyoung-Seok; Lee, Don-Bae; Park, Jong-Man; Lee, Yoon-Sang; Lee, Chong-Tak

    2014-01-01

    As one of the most commonly used heat-treatable aluminum alloys, AA6061-T6 aluminum alloy is available in a wide range of structural materials. Typically, it is used in structural members, auto-body sheet and many other applications. Generally, this alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW(Electron Beam Welding). However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the plate-type nuclear fuel fabrication and assembly, a fundamental electron beam welding experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the suitable welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the plate-type fuel assembly has been also studied by the weld penetrations of side plate to end fitting and fixing bar and weld inspections using computed tomography

  19. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  20. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  1. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    Science.gov (United States)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  2. Laser beam welding of titanium additive manufactured parts

    OpenAIRE

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the layered manufacturing process. This study shows that due to these deficiencies more energy per unit weld length is required to obtain a similar keyhole geometry for titanium AM parts. It is also demon...

  3. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    Day, S D; Wong, F G; Gordon, S R; Wong, L L; Rebak, R B

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  4. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  5. Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Shi, Shuang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Yang, Jenn-Ming [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wang, Yinong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Li, Jiayan; You, Qifan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2017-03-24

    Inconel 718 superalloy was fabricated by electron beam smelting (EBS) technique. The effect of solution heat treatment on the precipitation behavior and mechanical properties of EBS 718 superalloys were studied, the strengthening mechanisms were analyzed and related to the mechanical properties. The results indicate that the optimized microstructures can be acquired by means of EBS, which is attributed to the rapid cooling rate of approximately 280 ℃/min. The solution heat treatment shows a great impact on the microstructures, precipitation behavior and mechanical properties of EBS 718 superalloy. The γ'' phase shows an apt to precipitate at relatively lower solution temperatures followed by aging, while the γ' precipitates are prone to precipitate at higher temperatures. When solution treated at 1150 ℃, the γ' precipitates are dispersively distributed in the matrix with size and volume fraction of 8.43 nm and 21.66%, respectively, a Vickers hardness of approximately 489 HV{sub 0.1} is observed for the aged superalloy. The precipitation strengthening effect of EBS 718 superalloy could be elucidated by considering the interaction between the dislocations and γ''/γ' precipitates. The shearing of γ' is resisted by the coherency strengthening and formation of antiphase boundary (APB), which shows equal effect as weakly coupled dislocation (WCD) model. And for γ'', the strengthening effect is much more prominent with the primary strengthening mechanism of ordering. Moreover, it is interestingly found that the strengthening mechanism of stacking fault (SF) shearing coexists with APB shearing, and SF shearing plays a major role in strengthening of EBS 718 superalloy.

  6. Preliminary assessment of the fracture behavior of weld material in full-thickness clad beams

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.; Iskander, S.K.

    1994-10-01

    This report describes a testing program that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results form three specimens. The yield strength of the weld material was determined to be 36% higher than the yield strength of the base material. An irradiation-induced increase in yield strength of the weld material could result in a yield stress that exceeds the upper limit where code curves are valid. The high yield strength for prototypic weld material may have implications for RPV structural integrity assessments. Analyses of the test data are discussed, including comparisons of measured displacements with finite-element analysis results, applications of toughness estimation techniques, and interpretations of constraint conditions implied by stress-based constraint methodologies. Metallurgical conditions in the region of the cladding heat-affected zone are proposed as a possible explanation for the lower-bound fracture toughness measured with one of the shallow-crack clad beam specimens. Fracture toughness data from the three clad beam specimens are compared with other shallow- and deep-crack uniaxial beam and cruciform data generated previously from A 533 Grade B plate material

  7. Measuring penetration depth of electron beam welds. Final report

    International Nuclear Information System (INIS)

    Hill, J.W.; Collins, M.C.; Mentesana, C.P.; Watterson, C.E.

    1975-07-01

    The feasibility of evaluating electron beam welds using state-of-the-art techniques in the fields of holographic interferometry, micro-resistance measurements, and heat transfer was studied. The holographic study was aimed at evaluating weld defects by monitoring variations in weld strength under mechanical stress. The study, along with successful work at another facility, proved the feasibility of this approach for evaluating welds, but it did not assign any limitations to the technique. The micro-resistance study was aimed at evaluating weld defects by measuring the electrical resistance across the weld junction as a function of distance along the circumference. Experimentation showed this method, although sensitive, is limited by the same factors affecting other conventional nondestructive tests. Nevertheless, it was successful at distinguishing between various depths of penetration. It was also shown to be a sensitive thickness gage for thin-walled parts. The infrared study was aimed at evaluating weld defects by monitoring heat transfer through the weld under transient thermal conditions. Experimentation showed that this theoretically sound technique is not workable with the infrared equipment currently available at Bendix Kansas City. (U.S.)

  8. Application of electron beam welding to large size pressure vessels made of thick low alloy steel

    International Nuclear Information System (INIS)

    Kuri, S.; Yamamoto, M.; Aoki, S.; Kimura, M.; Nayama, M.; Takano, G.

    1993-01-01

    The authors describe the results of studies for application of the electron beam welding to the large size pressure vessels made of thick low alloy steel (ASME A533 Gr.B cl.2 and A533 Gr.A cl.1). Two major problems for applying the EBW, the poor toughness of weld metal and the equipment to weld huge pressure vessels are focused on. For the first problem, the effects of Ni content of weld metal, welding conditions and post weld heat treatment are investigated. For the second problem, an applicability of the local vacuum EBW to a large size pressure vessel made of thick plate is qualified by the construction of a 120 mm thick, 2350 mm outside diameter cylindrical model. The model was electron beam welded using local vacuum chamber and the performance of the weld joint is investigated. Based on these results, the electron beam welding has been applied to the production of a steam generator for a PWR. (author). 3 refs., 10 figs., 4 tabs

  9. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  10. Nanosize boride particles in heat-treated nickel base superalloys

    International Nuclear Information System (INIS)

    Zhang, H.R.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    Grain boundary microconstituents in aged nickel-based superalloys were studied by transmission electron microscopy techniques. A nanosized M 5 B 3 boride phase, possibly formed by intergranular solute desegregation-induced precipitation, was positively identified. The presence of these intergranular nanoborides provides reasonable clarification of a previously reported reduction of grain boundary liquation temperature during the weld heat affected zone thermal cycle

  11. Underwater cladding with laser beam and plasma arc welding

    International Nuclear Information System (INIS)

    White, R.A.; Fusaro, R.; Jones, M.G.; Solomon, H.D.; Milian-Rodriguez, R.R.

    1997-01-01

    Two welding processes, plasma arc (transferred arc) (PTA) and laser beam, were investigated to apply cladding to austenitic stainless steels and Inconel 600. These processes have long been used to apply cladding layers , but the novel feature being reported here is that these cladding layers were applied underwater, with a water pressure equivalent to 24 m (80 ft). Being able to apply the cladding underwater is very important for many applications, including the construction of off-shore oil platforms and the repair of nuclear reactors. In the latter case, being able to weld underwater eliminates the need for draining the reactor and removing the fuel. Welding underwater in reactors presents numerous challenges, but the ability to weld without having to drain the reactor and remove the fuel provides a huge cost savings. Welding underwater in reactors must be done remotely, but because of the radioactive corrosion products and neutron activation of the steels, remote welding would also be required even if the reactor is drained and the fuel removed. In fact, without the shielding of the water, the remote welding required if the reactor is drained might be even more difficult than that required with underwater welds. Furthermore, as shall be shown, the underwater welds that the authors have made were of high quality and exhibit compressive rather than tensile residual stresses

  12. Mechanical properties of weldings by electron beams on alloy 8090 (CP 271)

    International Nuclear Information System (INIS)

    Le Poac, P.; Nomine, A.M.; Miannay, D.

    1987-06-01

    Weldings by electron beams got on rings in alloy 8090 in the T4 and T6 state are mechanically tested in traction in the original state of welding or after a thermal processing of 12 hours at 210 0 C [fr

  13. Improving the properties of stainless steel electron-beam welds by laser treatment

    International Nuclear Information System (INIS)

    Wu Xueyi; Zhou Changchi

    1991-10-01

    For improving the properties of corrosion resistance of stainless steel, which is widely used in nuclear engineering, the technological test on rapid fusing and setting formed by using laser treatment in electron-beam welds on stainless steel was investigated and the analytical results of welding structure and properties were reported. The experimental results show that after laser treatment more finegrained structure in the surface of the welding centreline and welding heat-affected zone was observed. Segregation of chemical composition was reduced. Plasticity and corrosion resistance in the welding zone was increased. Intergranular corrosion of heat-affected zone was improved

  14. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  15. Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Balasubramanian, V.

    2012-04-01

    This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.

  16. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed {beta}-NiAl coatings for Hf-containing superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo [School of Materials Science and Engineering, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China)], E-mail: Guo.hongbo@buaa.edu.cn; Cui Yongjing; Peng Hui; Gong Shengkai [School of Materials Science and Engineering, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China)

    2010-04-15

    Oxide dispersed (OD) {beta}-NiAl coatings and OD-free {beta}-NiAl coatings were deposited onto a Hf-containing Ni-based superalloy by electron beam physical vapor deposition (EB-PVD). Excessive enrichment of Hf was found in the TGO on the OD-free coating due to outward diffusion of Hf from the superalloy, causing accelerated TGO thickening and spalling. The OD-coating effectively prevented Hf from outward diffusion. Only small amount of Hf diffused to the coating surface and improved the TGO adherence by virtue of the reactive element effect. The OD-coating exhibited an improved oxidation resistance as compared to the OD-free coating.

  17. Laser beam welding of titanium additive manufactured parts

    NARCIS (Netherlands)

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel

    2015-01-01

    In this paper the joinability of titanium Additive Manufactured (AM) parts is explored. Keyhole welding, using a pulsed laser beam, of conventionally produced parts is compared to AM parts. Metal AM parts are notorious for having remaining porosities and other non-isotropic properties due to the

  18. Residual stress reduction in beam welded joints by means of stress redistribution using defocused electron or laser beams; Eigenspannungsreduktion in strahlgeschweissten Naehten mittels Spannungsumlagerung durch den Einsatz defokussierter Elektronen- bzw. Laserstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Toelle, Florian

    2013-08-01

    Among the multiple advantages of beam welding processes the high longitudinal residual stresses in beam welds ranging till the local yield stress are one disadvantage. These high stresses can influence the service life of the welded components. The residual stresses in other welding processes exist in an equal high level but primarily in the transverse direction to the weld. To mitigate the high residual stresses a couple of methods were developed for these welding processes in the last decades. However these methods need large contact surfaces next to the welds for the installation of matched heating and cooling elements and other additional equipment. Furthermore, the previous developed stress mitigating processes offer a low efficiency for the small beam welds. The stress reduction by using the welding source after the welding process for a remote heat treatment of the welded components afford a flexible tool for the stress mitigation in beam welds. This method does not need any additional equipment and it is applicable for complex welding and component geometries. During this post welding heat treatment the material next to the weld is heated by the defocused electron or by the defocused laser beam, respectively, to temperatures of some hundreds degree Celsius. Hereby low plastic deformations in these regions are generated. While cooling down due to the thermal shrinkage the material between the weld and the heat treated region is compressed in longitudinal direction to the weld. This intermediate material zone constrained the shrinkage of the weld while cooling down from the melting temperature and leads to the high longitudinal residual stresses in the weld. In consequence of the compression of this intermediate zones by the heat treated zones the resistance to the shrinkage of the weld is lowered and the longitudinal stresses in the weld are reduced. In the process the quantity of the stress reduction is controlled by the selection of the process parameters

  19. Technical assistance to AECL: electron beam welding of thick-walled copper containers for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1984-01-01

    This report describes the results of Phase Two of the copper electron beam welding project for the final closure of copper containers for nuclear fuel waste disposal. It has been demonstrated that single pass, electron beam square butt welds (depth of weld penetration > 25 mm) can be made without preheat in both electrolytic tough-pitch copper and oxygen-free copper plates. The present results show that oxygen-free copper exhibits better weldability than the electrolytic tough-pitch copper in terms of weld penetration and vulnerability to weld defects such as gas porosity, erratic metal overflow and blow holes. The results of ultrasonic inspection studies of the welds are also discussed

  20. A comparative study of laser beam welding and laser-MIG hybrid welding of Ti-Al-Zr-Fe titanium alloy

    International Nuclear Information System (INIS)

    Li Ruifeng; Li Zhuguo; Zhu Yanyan; Rong Lei

    2011-01-01

    Research highlights: → Ti-Al-Zr-Fe titanium alloy sheets were welded by LBW and LAMIG methods. → LAMIG welded joints have better combination of strength and ductility. → LAMIG welding is proved to be feasible for the production of titanium sheet joints. - Abstract: Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.

  1. austenitic stainless steel by electron beam welding process

    African Journals Online (AJOL)

    user

    Electron beam welding (EBW) is a fusion joining process that produces a ... fabrication of engineering parts with low-distortion joints, although its application to large assemblies is often restricted by the ... speed, focal point location, focal spot size, etc. ... Experimental data were collected as per central composite design and ...

  2. Upgrade of laser and electron beam welding database

    CERN Document Server

    Furman, Magdalena

    2014-01-01

    The main purpose of this project was to fix existing issues and update the existing database holding parameters of laser-beam and electron-beam welding machines. Moreover, the database had to be extended to hold the data for the new machines that arrived recently at the workshop. As a solution - the database had to be migrated to Oracle framework, the new user interface (using APEX) had to be designed and implemented with the integration with the CERN web services (EDMS, Phonebook, JMT, CDD and EDH).

  3. Effect of gaussian beam on microstructural and mechanical properties of dissimilarlaser welding ofAA5083 and AA6061 alloys

    Science.gov (United States)

    Srinivas, B.; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study focuses on a sheet thickness of 4 mm using different laser power and welding rate by the laser beam welding (LBW) at a beam size180 μm. The observations on the weldments are showing that thermal conductivity of the materials plays a major role on microstructural changes. The as-welded mechanical properties were studied by correlation with its microstructures. Due to the steeper temperature gradient during the laser beam welding AA6061 was showing the greater variation compares with AA5083 side in the micro hardness studies.Also, the tensile strength of 241 MPa has been reported as highest with the welds made of laser powerat 3.5 kW and welding rate at 3.5 mmin-1.

  4. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China); Li, Shaolin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Qi, Hongyu, E-mail: qhy@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China)

    2014-03-01

    The effect of microstructural characteristics on the fatigue properties of electron beam-welded joints of forged Ti–6Al–4V and its fracture behavior were investigated. Tensile tests and fatigue tests were conducted at room temperature in air atmosphere. The test data were analyzed in relation to microstructure, high-cycle fatigue properties, low-cycle fatigue properties, and fatigue crack propagation properties. The high-cycle fatigue test results indicated that the fatigue strength of the joint welded via electron beam welding was higher than that of the base metal because the former had a high yield strength and all high-cycle fatigue specimens were fractured in the base metal. Although the joint specimens had a lower low-cycle fatigue life than the base metal, they mainly ruptured at the fusion zone of the joint specimen and their crack initiation mechanism is load-dependent. The fatigue crack propagation test results show that the joint had a slower crack propagation rate than the base metal, which can be attributed to the larger grain in the fusion zone.

  5. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  6. Low cycle fatigue behavior of electron beam and friction welded joints of an α-β titanium alloy

    International Nuclear Information System (INIS)

    Mohandas, T.; Varma, V.K.; Banerjee, D.; Kutumbarao, V.V.

    1996-01-01

    Fusion welds in titanium alloys, with intermediate β stabilizing additions, show poor mechanical properties due to large fusion zone grain size coupled with a brittle plate martensitic microstructure and hydrogen induced microporosity. These problems, associated with fusion welding, have been reported to be overcome by friction welding. The alloy used in this study is a Soviet composition (VT9) of the α-β class with the nominal chemical composition Ti-6.5Al-3.3Mo-1.6Zr-0.3 Si (in weight percent), intended to be used as discs and blades in compressor stages of gas turbine engine where low cycle fatigue (LCF) loading is experienced. Electron beam welding of the alloy was largely unsuccessful for the reasons described above. Fatigue properties of such welds had large scatter due to the presence of microporosity. A continuous drive friction welding technique was investigated to overcome this problem These welds showed encouraging results in that microporosity, a problem in the electron beam welding, was not observed and the mechanical properties were at par or better than those of the base metal. This paper deals with the study of stress controlled LCF behavior of friction welds and electron beam welds of the α-β titanium alloy at ambient temperature and the results are compared with those of base metal

  7. Electron beam welding of flanges with tubular shafts of steel 40KhNMA

    International Nuclear Information System (INIS)

    Leskov, G.I.; Zhivaga, L.I.; Shipitsyn, B.N.; Savichev, R.V.

    1975-01-01

    The results are presented of elaborating the technological process for the electron beam welding of flanges with a tube of the 40KhNMA steel and of investigation into the quality of the welded joints. A welded piece has been fabricated conforming to the technology suggested observing the parameters worked-out in the following sequence: assembling the piece; pre-welding of the edges in some points; welding; high tempering; welds quality control; removal of the seam reinforcement inside of the tube and the weld root to the depth of 2 mm; quenching; tempering; welds quality control; finishing. The welds quality control consists in visual inspection, ultrasonic testing, magnetic flaw detection, as well as X-ray and metallographic analyses. The mechanical properties are studied on notched samples cut out of the welded joints. The test results have shown that the mechanical properties of the welded joints meet the requirements on the same level with the base metal

  8. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  9. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    International Nuclear Information System (INIS)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man

    2012-01-01

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  10. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  11. Application of CO2 laser beam weld for repair of fuel element of nuclear reactor 'YAYOI'

    International Nuclear Information System (INIS)

    Hashimoto, Mitsuo; Yanagi, Hideharu; Sukegawa, Toshio; Saito, Isao; Sasuga, Norihiko; Aizawa, Nagaaki; Miya, Kenzo

    1986-01-01

    The present studies are to develop CO 2 laser beam welding techniques in order to apply for repoint of nuclear reactor fuel of Fast Neutron Source Reactor YAYOI. For that purpos, many experiments were conduted to obtain various effects of laser welding variables with use of SUS 304 plates, pipes and simulated dumy fuels. These experiments provided us an optimal welding condition through metallurgical observations, non-destructive and mechanical tests. It was found that the laser welds exhibited properties equivalent to those of the base metal, in addition they provided us a favorable system than that of electron beam welds against a cladding of radioactive nuclear fuel in a hot cell. The present paper reports on the characteristics of laser welds, structural analysis of fuel element and a system design of remotely operated devices setting in a hot cell. (author)

  12. Electron Beam Welding of Duplex Steels with using Heat Treatment

    Science.gov (United States)

    Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman

    2010-01-01

    This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.

  13. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  14. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    International Nuclear Information System (INIS)

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs

  15. Laser welding of galvanized steel: analytical study in view of dual-beam solution

    International Nuclear Information System (INIS)

    Iqbal, S.; Gualini, M.M.S.

    2005-01-01

    In this paper, the solution of a new dual laser beam method to lap weld galvanized steel sheets is being discussed, modeled and analyzed. This method involves a pre-cursor beam and a higher-power actual beam used on the job in tandem, generated independently or otherwise split from the same source. The pre-cursor beam cuts a slot, thus making an exit path for the zinc vapours, while the second beam performs the needed welding. After giving detailed theoretical coverage and diverse mathematical simulations, the paper also presents and discusses some experimental results of the method. Along with this, a comparison is being made with some other methods proposed till today to solve this problem including some quantitative analysis. As presented, general view in industrial perspective supports this method to be easier to implement on the production lines along with yielding desired results. (author)

  16. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  17. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  18. High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Sukumaran, Arjun; Kumar, Vinod

    2018-05-01

    Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s-1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent `n' of the base metal and weldment was 0.519. Activation energy `Q' of base metal and EB weldments were 420 to 535 kJ mol-1 determined through isothermal tensile tests and 625 to 662 kJ mol-1 through jump-temperature tensile tests. Strain rate sensitivity `m' was low ( 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.

  19. Underwater laser beam welding technology for reactor vessel nozzles of PWRs

    International Nuclear Information System (INIS)

    Yoda, Masaki; Tamura, Masataka; Tamura, Masataka

    2010-01-01

    Toshiba has developed an underwater laser beam welding technology for the maintenance of reactor vessel nozzles of pressurized water reactors (PWRs), which eliminates the need for the drainage of water from the reactor vessel. The new welding system makes it possible to both reduce the work period and minimize the radiation exposure of workers compared with conventional technologies for welding in ambient air. We have confirmed the effectiveness of this technology through experiments in which stress corrosion cracking (SCC) was mitigated on the inner surfaces of nozzles. We are promoting its practical application in Japan and overseas in cooperation with Westinghouse Electric Company, a group company of Toshiba. (author)

  20. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  1. Focused Ion Beam Nanotomography of ruthenium-bearing nickel-base superalloys with focus on cast-microstructure and phase stability

    International Nuclear Information System (INIS)

    Cenanovic, Samir

    2012-01-01

    The influence of rhenium and ruthenium on the multi component system nickel-base superalloy is manifold and complex. An experimental nickel-base superalloy containing rhenium and ruthenium within defined contents, named Astra, was used to investigate the influences of these two elements on the alloy system. The last stage solidification of nickel-base superalloys after Bridgman casting and the high temperature phase stability of these alloys, could be explored with the aid of focused ion beam nanotomography. FIB-nt therefore was introduced and realized at the chair of General Materials Properties of the University Erlangen-Nuremberg. Cast Astra alloys are like other nickel-base superalloys morphologically very inhomogeneous and affected by segregation. In the interdendritic region different structures with huge γ' precipitates are formed. These inhomogeneities and remaining eutectics degrade the mechanical properties, witch makes an understanding of the subsiding processes at solidification of residual melt important for the casting process and the heat treatment. This is why the last stage solidification in the interdendritic region was analyzed. With the help of focused ion beam nanotomography, three different structures identified from 2-D sections could be assigned to one original 3-D structure. It was pointed out, that only the orientation of the plane of the 2-D cut influences the appearance in the 2-D section. The tomography information was used to explain the development during solidification and to create a model of last stage solidification. The interdendritic region is solidifying under the development of eutectic islands. The structure nucleates eutectically epitaxially at primary dendrite arms, with formation of fine γ/γ' precipitates. During solidification the γ' precipitates coarsen in a rod-like structure, and end up in large γ' precipitates. Simulations and other investigations could approve this model. First three

  2. Metallurgy and deformation of electron beam welded similar titanium alloys

    Science.gov (United States)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  3. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2005-01-01

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region

  4. Refined Analysis of Fatigue Crack Initiation Life of Beam-to-Column Welded Connections of Steel Frame under Strong Earthquake

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available This paper presents a refined analysis for evaluating low-cycle fatigue crack initiation life of welded beam-to-column connections of steel frame structures under strong earthquake excitation. To consider different length scales between typical beam and column components as well as a few crucial beam-to-column welded connections, a multiscale finite element (FE model having three different length scales is formulated. The model can accurately analyze the inelastic seismic response of a steel frame and then obtain in detail elastoplastic stress and strain field near the welded zone of the connections. It is found that the welded zone is subjected to multiaxial nonproportional loading during strong ground motion and the elastoplastic stress-strain field of the welded zone is three-dimensional. Then, using the correlation of the Fatemi-Socie (FS parameter versus fatigue life obtained by the experimental crack initiation fatigue data of the structural steel weldment subjected to multiaxial loading, the refined evaluation approach of fatigue crack initiation life is developed based on the equivalent plastic strain at fatigue critical position of beam end seams of crucial welded connections when the steel frame is subjected to the strong earthquake excitation.

  5. Investigation of hot cracking in deep penetration electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    Thorvaldson, W.G.

    1978-06-10

    A defect in a deep penetration electron beam weld of 304L stainless steel to 21-6-9 stainless steel has been identified as a centerline hot crack. The study discussed in this report was made to define and to eliminate the cause of cracking.

  6. Fracture toughness properties of similar and dissimilar electron beam welds

    International Nuclear Information System (INIS)

    Kocak, M.; Junghans, E.

    1994-01-01

    The weldability aspects, tensile and Crack Tip Opening Displacement (CTOD) toughness properties of 9Cr1MoNbV (P91) martensitic steel with austenitic 316L steel were evaluated for electron beam (EB) welds on 35 mm thick pates. The effects of mechanical heterogeneity (mis-matching) at the vicinity of the crack tip of dissimilar three point bend specimens on the CTOD fracture toughness values was also discussed. The CTOD tests were performed on similar and dissimilar EB welds of austenitic and tempered martensitic P91 steels at room temperature. Dilution of austenitic with martensitic steel resulted in predominantly martensitic EB weld metal, exhibiting rather high yield strength and hardness. Nevertheless, the weld metal produced high CTOD toughness values due to the beneficial effect of the lower strength austenitic steel part of the specimen in which crack deviation occured (mis-match effect). The coarse grained HAZ of the P91 steel side exhibits extremely poor CTOD toughness properties in the as-welded condition at room temperature. The CTOD values obtained are believed to be representing the intrinsic property of this zone since the distance of the crack tip to the weaker austenitic steel part of the SENB specimens was too large to cause an effective stress relaxation at the crack tip. Further post weld heat treatment at 750 C for two hours improved the CTOD toughness marginally. (orig.)

  7. Effect of post-weld heat treatments on strength and toughness behavior of T-250 maraging steel welded by laser beam

    International Nuclear Information System (INIS)

    Li, Kun; Shan, Jiguo; Wang, Chunxu; Tian, Zhiling

    2016-01-01

    This paper elucidates here the strength and toughness behavior of T-250 maraging steel welded by laser beam under different approaches of three post-weld heat treatments, i.e. aging (A), solutionizing+aging (SA) and homogenizing+solutionizing+aging (HSA). The microstructures of the weld metals with A and SA processes both comprised of finely dispersive Ni 3 (Ti, Mo) precipitates, small martensite lath and reverted austenite along the grain boundary. However, in the weld metal with HSA process, it exhibited the same Ni 3 (Ti, Mo) precipitate with the large martensite lath and the absence of reverted austenite. The ultimate tensile strength and static toughness of the welded joint with HSA process were 1350.6 MPa and 63.8 MJ m −3 , respectively. The static toughness has been remarkably improved from 71% to 91% of the applied parent metal compared with that of the welded joint with A process. The present study underscores that the Ni 3 (Ti, Mo) precipitate and martensite are significant to ensure the high strength of welded joints. Due to its inconsistent deformation with the matrix of martensite, the reverted austenite has a notable influence on the toughness of welded joints. It shows that the post-weld heat treatments of HSA process can influence the mechanical behavior of welded joints by eliminating the reverted austenite.

  8. Effect of post-weld heat treatments on strength and toughness behavior of T-250 maraging steel welded by laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [Laser Processing Research Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Shan, Jiguo, E-mail: shanjg@mail.tsinghua.edu.cn [Laser Processing Research Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Professing Technology, Ministry of Education, Tsinghua University, Beijing 100084 (China); Wang, Chunxu; Tian, Zhiling [Institute for Special Steel, Central Iron & Steel Research Institute, Beijing 100081 (China)

    2016-04-29

    This paper elucidates here the strength and toughness behavior of T-250 maraging steel welded by laser beam under different approaches of three post-weld heat treatments, i.e. aging (A), solutionizing+aging (SA) and homogenizing+solutionizing+aging (HSA). The microstructures of the weld metals with A and SA processes both comprised of finely dispersive Ni{sub 3}(Ti, Mo) precipitates, small martensite lath and reverted austenite along the grain boundary. However, in the weld metal with HSA process, it exhibited the same Ni{sub 3}(Ti, Mo) precipitate with the large martensite lath and the absence of reverted austenite. The ultimate tensile strength and static toughness of the welded joint with HSA process were 1350.6 MPa and 63.8 MJ m{sup −3}, respectively. The static toughness has been remarkably improved from 71% to 91% of the applied parent metal compared with that of the welded joint with A process. The present study underscores that the Ni{sub 3}(Ti, Mo) precipitate and martensite are significant to ensure the high strength of welded joints. Due to its inconsistent deformation with the matrix of martensite, the reverted austenite has a notable influence on the toughness of welded joints. It shows that the post-weld heat treatments of HSA process can influence the mechanical behavior of welded joints by eliminating the reverted austenite.

  9. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  10. Welding for fusion grade neutral beam components - requirements, challenges, experiences and learnings

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Patel, Hitesh; Yadav, Ashish; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2016-01-01

    Negative ion based Neutral Beam Injectors (NBI) are the integral part of large size fusion devices where Neutral Beams of Hydrogen/Deuterium atoms are injected into the fusion reactor to heat the plasma, drive a plasma current, provide fuel to the plasma and also help to diagnose the plasma through spectroscopic measurements. The presentation shares the experiences of handling, some of special welding activities applicable for fusion prototypes developments, experiments, methodology developed for the inspection/tests, criteria considered with the appropriate justifications. This also shares the view point of authors code should further be supplement and incorporate the fusion specific applications considering future needs. In addition, explorations to meet our future needs of welding with specific attention to indigenous developments have been described

  11. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  12. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  13. The Evolution of Cast Microstructures on the HAZ Liquation Cracking of Mar-M004 Weld

    Directory of Open Access Journals (Sweden)

    Yi-Hsin Cheng

    2018-01-01

    Full Text Available The causes of liquation cracking in the heat-affected zone (HAZ of a cast Mar-M004 superalloy weld were investigated. X-ray diffraction (XRD, electron probe microanalyzer (EPMA, and electron backscatter diffraction (EBSD were applied to identify the final microconstituents at the solidification boundaries of the cast alloy. Fine borides and lamellar eutectics were present in front of some γ-γ′ colonies, which were expected to be liquefied prematurely during welding. The metal carbide (MC enriched in Nb, Hf; M3B2 and M5B3 borides enriched in Cr and Mo; and lamellar Ni-Hf intermetallics were mainly responsible for the induced liquation cracking of the Mar-M004 weld, especially the MC carbides. Scanning electron microscope (SEM fractographs showed that the fracture features of those liquation cracks were associated with the interdendritic constituents in the cast superalloy.

  14. Joining of cemented carbides to steel by laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Barbatti, C.; Garcia, J.; Pyzalla, A. [Max-Planck-Institut fuer Eisenforschung GmbH, 40237 Duesseldorf (Germany); Liedl, G. [TU Wien, Institut fuer Umform- und Hochleistungslasertechnik (IFLT), 1040 Vienna (Austria)

    2007-11-15

    Welding of dissimilar materials such as steel and cemented carbides (hardmetals, cermets) is particularly challenging e.g. because mismatches in their thermal expansion coefficients and thermal conductivities result in residual stress formation and because of the formation of brittle intermetallic phases. Laser beam welding of cemented carbides to steel appears as an attractive complementary technique to conventional brazing processes due to its high precision, high process speed, low heat input and the option of welding without filler. Here a laser welding process including pre-heat treatment and post-heat treatment was applied successfully to joining as-sintered and nitrided hardmetals and cermets to low alloyed steel. The microstructure and mechanical properties of the welds are investigated by microscopy, X-ray diffraction, microhardness measurements, and bending tests. The results reveal that the three-step laser beam welding process produced crack-free and non-porous joints. Nitridation of the cemented carbides results in a significant reduction of the amount of brittle intermetallic phases. The mechanical properties of the joints are competitive to those of the conventional brazed steel-cemented carbide joints. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Das Schweissen von ungleichartigen Werkstoffen wie z. B. Staehlen mit Hartmetallen und Cermets stellt eine erhebliche Herausforderung dar, u. a. infolge der unterschiedlichen thermischen Ausdehnungskoeffizienten und Waermeleitfaehigkeiten, welche die Bildung von Eigenspannungen zur Folge haben, sowie aufgrund der Bildung sproeder intermetallischer Phasen. Das Laserstrahlschweissen von Hartmetallen/Cermets mit Stahl erscheint als attraktives komplementaeres Verfahren zum ueblicherweise verwendeten Loeten, da es die Herstellung von Verbindungen mit hoeherer Praezision, hoeherer Geschwindigkeit sowie geringerem Waermeeintrag erlaubt und die Verwendung eines Zusatzwerkstoffs nicht notwendig ist

  15. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel

    International Nuclear Information System (INIS)

    Magnabosco, I.; Ferro, P.; Bonollo, F.; Arnberg, L.

    2006-01-01

    The article presents a study of three different welded joints produced by electron beam welding dissimilar materials. The junctions were obtained between copper plates and three different austenitic stainless steel plates. Different welding parameters were used according to the different thicknesses of the samples. Morphological, microstructural and mechanical (micro-hardness test) analyses of the weld bead were carried out. The results showed complex heterogeneous fusion zone microstructures characterized both by rapid cooling and poor mixing of the materials which contain main elements which are mutually insoluble. Some defects such as porosity and microfissures were also found. They are mainly due to the process and geometry parameters

  16. Development of a high power electron beam welding gun with replaceable high voltage feed-through insulators

    Energy Technology Data Exchange (ETDEWEB)

    Saha, T.K; Mascarenhas, M.; Kandaswamy, E., E-mail: tanmay@barc.gov.in [Power Beam Equipment Design Section, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Ceramic to metal sealed feed-through insulators are commonly used in electron beam welding gun. The above feed-through insulators are susceptible to failure, as the brazing joints in them are not always very strong. Failure in one of these feed-through could render the complete gun unusable. This problem has already been faced in BARC, which led to the development of the electron gun with replaceable feed through insulators. A 24 kW Electron Beam Welding (EBW) gun with indigenous designed replaceable insulators is fabricated in BARC. Emphasis during the design of the gun had been to reduce the use of imported components to zero. This paper describes the design and fabrication of this gun and reports various simulations and tests performed. Beam trajectory of the gun is numerically computed and presented. Weld passes were carried out on stainless steel plates show satisfactory penetrations. (author)

  17. A reliability analysis framework with Monte Carlo simulation for weld structure of crane's beam

    Science.gov (United States)

    Wang, Kefei; Xu, Hongwei; Qu, Fuzheng; Wang, Xin; Shi, Yanjun

    2018-04-01

    The reliability of the crane product in engineering is the core competitiveness of the product. This paper used Monte Carlo method analyzed the reliability of the weld metal structure of the bridge crane whose limit state function is mathematical expression. Then we obtained the minimum reliable welding feet height value for the welds between cover plate and web plate on main beam in different coefficients of variation. This paper provides a new idea and reference for the growth of the inherent reliability of crane.

  18. Microstructural evolution of fusion zone in laser beam welds of pure titanium

    International Nuclear Information System (INIS)

    Liu, H.; Nakata, K.; Zhang, J.X.; Yamamoto, N.; Liao, J.

    2012-01-01

    Microstructural evolution of fusion zone in laser beam welds of pure titanium was studied by means of electron backscattering diffraction. The microstructural evolution is strongly affected by the β → α transformation mechanism dependent on the cooling rate during phase transformation. The long-range diffusional transformation mainly occurs in the fusion zone at the low cooling rate, and the massive transformation dominantly takes place at the high cooling rate. For this reason, the grain morphologies probably change from the granular-like to columnar-like grains with the cooling rate increasing. - Highlights: ► Microstructures of fusion zone in laser beam welds of pure titanium are studied. ► Increasing cooling rate changes grain morphology from granular to columnar one. ► Final microstructures depend on the β→α transformation mechanisms.

  19. Interactions Between Fibroblast Cells and Laser Beam Welded AISI 2205 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ceyhun KÖSE

    2018-05-01

    Full Text Available Because of their high mechanical strength, excellent corrosion resistance and good weldability, duplex stainless steels are mostly used in industries such as oil, chemistry, petrochemistry, food and occasionally used in medical industry. These properties have enabled us to use duplex stainless steels in biomedical applications recently. Accordingly, duplex stainless steel material can be highly important to examine the toxic effect on the cells. In this study, the effect of the AISI 2205 duplex stainless steels which are joined by CO2 laser beam welding on viability of L929 fibroblast cells has been studied in vitro for the first time. For this aim, the cells were kept in DMEM/F-12 (Thermofisher Scientific 31331-028 medium for 7 days. The viability study was experimentally studied using the MTT (Thiazolyl Blue Tetrazolium Bromide method for 7 days. The cell viability of the laser beam welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. According to the obtained results, it was revealed that laser beam welded and base metal AISI 2205 duplex stainless steel has been found suitable to study for biomedical applications. DOI: http://dx.doi.org/10.5755/j01.ms.24.2.18006

  20. Transmission Electron Microscopy of a CMSX-4 Ni-Base Superalloy Produced by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Alireza B. Parsa

    2016-10-01

    Full Text Available In this work, the microstructures of superalloy specimens produced using selective electron beam melting additive manufacturing were characterized. The materials were produced using a CMSX-4 powder. Two selective electron beam melting processing strategies, which result in higher and lower effective cooling rates, are described. Orientation imaging microscopy, scanning transmission electron microscopy and conventional high resolution transmission electron microscopy are used to investigate the microstructures. Our results suggest that selective electron beam melting processing results in near equilibrium microstructures, as far as γ′ volume fractions, the formation of small amounts of TCP phases and the partitioning behavior of the alloy elements are concerned. As expected, higher cooling rates result in smaller dendrite spacings, which are two orders of magnitude smaller than observed during conventional single crystal casting. During processing, columnar grains grow in <100> directions, which are rotated with respect to each other. There are coarse γ/γ′ microstructures in high angle boundary regions. Dislocation networks form low angle boundaries. A striking feature of the as processed selective electron beam melting specimens is their high dislocation density. From a fundamental point of view, this opens new possibilities for the investigation of elementary dislocation processes which accompany solidification.

  1. Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M. [University of British Columbia – Okanagan, School of Engineering, 3333 University Way, Kelowna, Canada V1V 1V7 (Canada); Levesque, J.-B. [Institut de recherche d' Hydro-Québec (IREQ), 1800 Lionel-Boulet Blvd., Varennes, Canada J3X 1S1 (Canada); Bichler, L., E-mail: lukas.bichler@ubc.ca [University of British Columbia – Okanagan, School of Engineering, 3333 University Way, Kelowna, Canada V1V 1V7 (Canada); Sediako, D. [Canadian Nuclear Laboratories, Building 459, Station 18, Chalk River, Canada K0J 1J0 (Canada); Gholipour, J.; Wanjara, P. [National Research Council of Canada, Aerospace 5145 Decelles Ave., Montreal, Canada H3T 2B2 (Canada)

    2017-04-13

    In this study, an analysis of elastic residual stress in Inconel{sup ®} 718 (IN 718) linear friction welds (LFWs) was carried out. In particular, the suitability of LFW for manufacturing and repair of aero engine components was emulated by joining virgin and in-service (extracted from a turbine disk) materials. The evolution in the residual strains and stresses in the heat-affected zone (HAZ), thermomechanically affected zone (TMAZ) and dynamically recrystallized zone (DRX) of the weld was characterized using the neutron diffraction and contour methods. The results provided insight into diverse challenges in quantitative analysis of residual stresses in welded IN 718 using diffraction techniques. Specifically, judicious selection of the beam width, height and stress-free lattice spacing were seen to be crucial to minimize measurement error and increase accuracy. Further, the contour method – a destructive technique relying on capturing the stress relaxation after electrical discharge machining – was used to characterize the residual stress distribution on two-dimensional plane sections of the welds. Both techniques suggested an increasing magnitude of residual stress originating from the base metal that reached a peak at the weld interface. Both methods indicated that the peak magnitude of residual stresses were below the yield stress of IN 718.

  2. Development of the electron beam welding of the aluminium alloy 6061-T6 for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Leblanc, Y.

    2013-01-01

    The aluminium alloy 6061-T6 has been selected for the construction of the Jules Horowitz's reactor vessel. This reactor vessel is pressurized and will be made through butt welding of ∼ 2 cm thick aluminium slabs. The electron beam welding process has been tested and qualified. It appears that this welding process allows: -) welding without pre-heating, -) vacuum welding, -) welding of 100% of the thickness in one passage, -) very low deforming welding process, -) very low density and very low volume of blow holes, -) weak ZAT (Thermal Affected Zones), and -) high reproducibility that permits automation. (A.C.)

  3. The Influence of Welding Parameters on the Nugget Formation of Resistance Spot Welding of Inconel 625 Sheets

    Science.gov (United States)

    Rezaei Ashtiani, Hamid Reza; Zarandooz, Roozbeh

    2015-09-01

    A 2D axisymmetric electro-thermo-mechanical finite element (FE) model is developed to investigate the effect of current intensity, welding time, and electrode tip diameter on temperature distributions and nugget size in resistance spot welding (RSW) process of Inconel 625 superalloy sheets using ABAQUS commercial software package. The coupled electro-thermal analysis and uncoupled thermal-mechanical analysis are used for modeling process. In order to improve accuracy of simulation, material properties including physical, thermal, and mechanical properties have been considered to be temperature dependent. The thickness and diameter of computed weld nuggets are compared with experimental results and good agreement is observed. So, FE model developed in this paper provides prediction of quality and shape of the weld nuggets and temperature distributions with variation of each process parameter, suitably. Utilizing this FE model assists in adjusting RSW parameters, so that expensive experimental process can be avoided. The results show that increasing welding time and current intensity lead to an increase in the nugget size and electrode indentation, whereas increasing electrode tip diameter decreases nugget size and electrode indentation.

  4. Feasibility study of electron beam welding of spent nuclear fuel canisters

    International Nuclear Information System (INIS)

    Sanderson, A.; Szluha, T.F.; Turner, J.L.; Leggatt, R.H.

    1983-04-01

    A thick walled copper container is presently the prime Swedish alternative for encapsulation of spent nuclear fuel. In order to demonstrate the feasibility of encapsulating high-level nuclear waste in copper containers, a study of electron beam welding of thick copper has been performed. Two copper qualities have been investigated, oxygen free high conductivity (OFHC) copper and phosphorous desoxydized high conductivity copper (PDO). The findings in this study are summarized below. In 100 mm thick copper penetration can be achived at power level of about 75 kW (typically 150 kV x 500 mA) at welding speed of 100 mm/min. The welds in OFHC copper made under these conditions are free from major defects during constant welding conditions. The welds in PDO copper show a microporosity level considerably higher than those in OFHC copper, but no major defects are produced in the welds in PDO copper. In the ending of the weld (ie the fade out) it is still not possible to completely eliminate root and cold-shut defects. A semi-full-scale lid weld has been performed successfully. Automatic ultrasonic C-scan has been shown to be useful in detecting and displaying defects, but some problems still remain with defect sizing. The different speciments of OFHS copper had different attenuation of the ultrasonic signal, forged copper showing a far lower attenuation than hot extruded copper, indicating that attention must be paid in choosing copper that allows accurate ultrasonic testing. Resiudal stresses in the welded zone has been measured and are found to lie in the range -32N/mm 2 to +36N/mm 2 . The peak stress was less than half the assumed value of the proof stress of the fused metal. (authors)

  5. Microstructural and Mechanical Characterization of Electron Beam Welded Joints of High Strength S960QL and Weldox 1300 Steel Grades

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2017-06-01

    Full Text Available The paper shows the results of metallographic examination and mechanical properties of electron beam welded joints of quenched and tempered S960QL and Weldox 1300 steel grades. The aim of this study was to examine the feasibility of producing good quality electron beam welded joints without filler material.

  6. Characterization of friction welding for IN713LC and AISI 4140 steel

    International Nuclear Information System (INIS)

    Yeom, J.T.; Park, N.K.; Park, J.H.; Lee, J.W.

    2004-01-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  7. Characterization of friction welding for IN713LC and AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, J.T.; Park, N.K. [Dept. of Materials Processing, Korea Inst. of Machinery and Materials, Kyungnam (Korea); Park, J.H.; Lee, J.W. [ENPACO Co., Changwon (Korea)

    2004-07-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  8. Welding of the VNZh7-3 alloy with the VT1-0 titanium by laser beam

    International Nuclear Information System (INIS)

    Baranov, M.S.; Voshchinskij, M.L.; Fedorov, P.M.; Shilov, I.F.; Zytner, G.D.

    1980-01-01

    Found is the principle possibility of the laser welding of dissimilar metals and the optimum welding mode as well with the testing of quality and strength indices of welded joints and with mode test on structural elements. The possibility of laser welding of the sintered VNZh 7-3 alloy with the VT1-0 titanium in argon is shown. Studied is the technique of forming of welded edge joint of the above dissimilar metals. Established is the optimum method of laser beam setting at an angle of 20 deg to the butt surface and with the shift by 1/3 of diameter of welded point in the titanium direction. Shear tests of elementary and natural samples have shown that real strength of welded joint exceeds the VT1-0 titanium strength. Macro- and microstructure of welded joints has layer-vortex alloy structure on the base of the VT1-0 titanium inclusion of tungsten grains that indicates the intensive mixing of metals during the welding

  9. Electron beam weld parameter set development and cavity cost

    International Nuclear Information System (INIS)

    John Brawley; John Mammossor; Larry Philips

    1997-01-01

    Various methods have recently been considered for use in the cost-effective manufacturing of large numbers of niobium cavities. A method commonly assumed to be too expensive is the joining of half cells by electron beam welding (EBW), as has been done with multipurpose EBW equipment for producing small numbers of cavities at accelerator laboratories. The authors have begun to investigate the advantages that would be available if a single-purpose, task-specific EBW processing tool were used to produce cavities in a high-volume commercial-industrial context. For such a tool and context they have sought to define an EBW parameter set that is cost-effective not only in terms of per-cavity production cost, but also in terms of the minimization of quench-producing weld defects. That is, they define cavity cost-effectiveness to include both production and performance costs. For such an EBW parameter set, they have developed a set of ideal characteristics, produced and tested samples and a complete cavity, studied the weld-defect question, and obtained industrial estimates of cavity high-volume production costs. The investigation in ongoing. This paper reports preliminary findings

  10. Residual stresses due to weld repairs, cladding and electron beam welds and effect of residual stresses on fracture behavior. Annual report, September 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Rybicki, E.F.

    1978-11-01

    The study is divided into three tasks. Task I is concerned with predicting and understanding the effects of residual stresses due to weld repairs of pressure vessels. Task II examines residual stresses due to an electron beam weld. Task III addresses the problem of residual stresses produced by weld cladding at a nozzle vessel intersection. The objective of Task I is to develop a computational model for predicting residual stress states due to a weld repair of pressure vessel and thereby gain an understanding of the mechanisms involved in the creation of the residual stresses. Experimental data from the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratories (ORNL) is used to validate the computational model. In Task II, the residual stress model is applied to the case of an electron beam weld of a compact tension freacture specimen. The results in the form of residual stresses near the weld are then used to explain unexpected fracture behavior which is observed in the testing of the specimen. For Task III, the residual stress model is applied to the cladding process used in nozzle regions of nuclear pressure vessels. The residual stresses obtained from this analysis are evaluated to determine their effect on the phenomena of under-clad cracking

  11. Dynamic analysis of I cross beam section dissimilar plate joined by TIG welding

    Science.gov (United States)

    Sani, M. S. M.; Nazri, N. A.; Rani, M. N. Abdul; Yunus, M. A.

    2018-04-01

    In this paper, finite element (FE) joint modelling technique for prediction of dynamic properties of sheet metal jointed by tungsten inert gas (TTG) will be presented. I cross section dissimilar flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by TTG are used. In order to find the most optimum set of TTG welding dissimilar plate, the finite element model with three types of joint modelling were engaged in this study; bar element (CBAR), beam element and spot weld element connector (CWELD). Experimental modal analysis (EMA) was carried out by impact hammer excitation on the dissimilar plates that welding by TTG method. Modal properties of FE model with joints were compared and validated with model testing. CWELD element was chosen to represent weld model for TTG joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, average percentage of error of the natural frequencies for CWELD model is improved significantly.

  12. Welding feasibility study of U-shape lips at ITER Port-Plug with new laser beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Behr, W., E-mail: w.behr@fz-juelich.de; Faidel, D.; Fischer, K.; Pap, M.; Offermanns, G.

    2013-10-15

    A “Cut and weld feasibility study of U shape lips” shown on June 2007 was initial of the following investigations. A new solution for Port Plug sealing at ITER was demanded and the experience in laser beam welding of the ZAT (Central Institute of Technology) in Jülich (Research Centre Jülich) offered an alternative solution. Up to now mechanically fixed sealing or sealing by TIG welding is used with typical benefits and problems, as heat input, shrinkage or limited room for tools. New disc-laser application for tight welding (leakage rate < 10{sup −9} mbar l/s) of the sealing lips is presented in the following. Both in the metallographic investigation and by means of leakage rate investigation the suitability of the selected procedure as seal alternative at the ITER Port Plug could be pointed out. The distance between two connections can be reduced to approx. 5 mm. The presented milling process for weld seam removal offers an option additionally to laser beam cutting. Final tests with a new disc-laser source offered additional benefits concerning seam quality, process stability and seam geometry. The distance between two connections will be reduced to less than 3 mm in next investigations. Construction unit near investigations and a demo part in original size underline finally the industrial suitability of the laser-welding-process for Port-Plug sealing at ITER.

  13. Study of welding characteristics of inconel 600 alloy using a continuous wave Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Song, Seong Wook; Yoo, Young Tae; Shin, Ho Jun

    2004-01-01

    Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power. Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser

  14. Laser and electron beam welding study on niobium based Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Kushwaha, R.P.; Tewari, R.; Dey, G.K.

    2016-01-01

    The refractory metal based alloys are most suitable for the structural applications in high temperature reactors envisaged to operate at temperature higher than 1000°C. The Nb-1Zr-0.1C (wt. %) is being considered for structural applications in the proposed Compact High Temperature Reactors (CHTR). The welding of this alloy is a difficult task due to its reactive nature and higher thermal conductivity. Laser and Electron Beam (EB) welds were produced on sheet of Nb-1Zr-0.1C alloy at various processing parameters and their effects on weld quality was studied by characterizing their optical and SEM micrographs and microhardness profile. The joining efficiency of both welding processes were also studied. The laser welds done in air with argon shielding showed higher hardness values compared to EB welds indicating need for adequate shielding. This study will help to find the optimized welding parameters to produce defect free welds of Nb-1Zr-0.1C alloy. (author)

  15. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  16. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure: application to solar cell interconnect welding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.E.; Ianno, N.J.; Ahmed, A.U.

    1985-01-01

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO/sub 2/ laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained. 18 references, 13 figures.

  17. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  18. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  19. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    Science.gov (United States)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  20. METHOD AND SYSTEM FOR LASER WELDING

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to laser welding of at least two adjacent, abutting or overlapping work pieces in a welding direction using multiple laser beams guided to a welding region, wherein at least two of the multiple laser beams are coupled into the welding region so as to form a melt and at least...

  1. Microstructure and mechanical performance of autogenously fibre laser beam welded Ti-6242 butt joints

    Energy Technology Data Exchange (ETDEWEB)

    Kashaev, Nikolai, E-mail: nikolai.kashaev@hzg.de; Pugachev, Dmitry; Ventzke, Volker; Fomin, Fedor; Burkhardt, Irmela; Enz, Josephin; Riekehr, Stefan

    2017-05-10

    This work deals with the effects of laser beam power, focus position and advance speed on the geometry, microstructure and mechanical properties such as the tensile strength and microhardness of autogenously fibre laser beam welded Ti-6Al-2Sn-4Zr-2Mo (denoted as Ti-6242) butt joints used for high temperature applications. The Ti-6242 sheet employed here is characterized by a globular (α+β) microstructure. Laser beam welded butt joints consisted of a martensitic fusion zone, inhomogeneous heat affected zones and equiaxed base materials. The microhardness increased from 330 HV 0.3 in base material to 430 HV 0.3 in fusion zone due to the martensitic transformation. Butt joints showed the base material level of strength in tensile test. The local increase in microhardness provided a shielding effect that protected the Ti-6242 butt joint against mechanical damage during the static tensile load test. The predicted critical total underfill depth that does not reduce the tensile strength of the weld was determined to be 25% of the specimen thickness. - Highlights: • Autogenous fibre LBW of Ti-6242 was successfully achieved. • Butt joints showed low levels of porosity and an appropriate seam geometry. • Base material level of strength achieved for tensile strength. • Predicted critical underfill depth is 25% of the specimen thickness.

  2. Some studies on weld bead geometries for laser spot welding process using finite element analysis

    International Nuclear Information System (INIS)

    Siva Shanmugam, N.; Buvanashekaran, G.; Sankaranarayanasamy, K.

    2012-01-01

    Highlights: → In this study, a 2 kW Nd:YAG laser welding system is used to conduct laser spot welding trials. → The size and shape of the laser spot weld is predicted using finite element simulation. → The heat input is assumed to be a three-dimensional conical Gaussian heat source. → The result highlights the effect of beam incident angle on laser spot welds. → The achieved results of numerical simulation are almost identical with a real weldment. -- Abstract: Nd:YAG laser beam welding is a high power density welding process which has the capability to focus the beam to a very small spot diameter of about 0.4 mm. It has favorable characteristics namely, low heat input, narrow heat affected zone and lower distortions, as compared to conventional welding processes. In this study, finite element method (FEM) is applied for predicting the weld bead geometry i.e. bead length (BL), bead width (BW) and depth of penetration (DP) in laser spot welding of AISI 304 stainless steel sheet of thickness 2.5 mm. The input parameters of laser spot welding such as beam power, incident angle of the beam and beam exposure time are varied for conducting experimental trials and numerical simulations. Temperature-dependent thermal properties of AISI 304 stainless steel, the effect of latent heat of fusion, and the convective and radiative aspects of boundary conditions are considered while developing the finite element model. The heat input to the developed model is assumed to be a three-dimensional conical Gaussian heat source. Finite-element simulations of laser spot welding were carried out by using Ansys Parametric Design Language (APDL) available in finite-element code, ANSYS. The results of the numerical analysis provide the shape of the weld beads for different ranges of laser input parameters that are subsequently compared with the results obtained through experimentation and it is found that they are in good agreement.

  3. An analysis of electron beam welds in a dual coolant liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.; Kernforschungszentrum Karlsruhe GmbH

    1994-10-01

    Numerical simulation of electron beam welding of blanket segments was performed using non-linear finite element code ABAQUS. The thermal and stress fields were assumed uncoupled, while preserving the temperature dependency of all material parameters. The martensite-austenite and austenite-martensite transformations were taken into account through volume shrinking/expansion effects, which is consistent with available data. The distributions of post welding residual stress in a complex geometry of the first wall are obtained. Also, the effects of preheating and post-welding heat treatment were addressed. Time dependent temperature and stress-strain fields obtained provide good insight into the welding process. They may be used directly to support reliability and life-time studies of blanket structures. On the other hand, they provide useful hints about the feasibility of the geometrical configurations as proposed by different design concepts. (orig.) [de

  4. Metallurgical examination of powder metallurgy uranium alloy welds

    International Nuclear Information System (INIS)

    Morrison, A.G.M.; Dobbins, A.G.; Holbert, R.K.; Doughty, M.W.

    1986-01-01

    Inertia welding provided a successful technique for joining full density, powder metallurgy uranium-6 wt pct niobium alloy. Initial joining attempts concentrated on the electron beam method, but this method failed to produce a sound weld. The electron beam welds and the inertia welds were evaluated by radiography and metallography. Electron beam welds were attempted on powder metallurgy plates which contained various levels of oxygen and nitrogen. All welds were porous. Sixteen inertia welds were made and all welds were radiographically sound. The tensile properties of the joints were found to be equivalent to the p/m base metal properties

  5. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    Padmanaban, G.; Balasubramanian, V.

    2011-01-01

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  6. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  7. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    Science.gov (United States)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  8. Welding device for nuclear fuel rods

    International Nuclear Information System (INIS)

    Kurosawa, Satoru; Tsuboi, Hajime; Kidooka, Masayasu.

    1985-01-01

    Purpose: To enable high quality welding with no dropping of small tungsten particles to the weld portion. Constitution: An opening capable of inserting a cladding tube is disposed to the side wall of a welding chamber and a laser beam introducing window is disposed to another side wall in perpendicular to said side wall. Further, a laser beam generation device is disposed to the outside of the welding chamber for concentrating the laser beams by way of the laser beam introducing window to the weld portion between the cladding tube and an end plug. Upon welding the end plug, opening end of the cladding tube is inserted through the side wall opening into the chamber. Then, the inside of the chamber is evacuated and replaced with an inert gas through conduits to establish a super atmospheric pressure state. Then, the end plug is forced to the opening end of the cladding tube by means of an end plug enforcing mechanism and laser beams are concentrated to the joining portion between the end plug and cladding tube to conduct welding while rotating the cladding tube. (Kawakami, Y.)

  9. Laser beam welding of high strength aluminium-lithium alloys; Laserstrahlschweissen von hochfesten Aluminium-Lithium Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Enz, Josephin

    2012-07-01

    The present development in aircraft industry determined by the demand for a higher cost-effectiveness. Laser beam welding is one of the most promising joining technologies for the application in the aircraft industry through the considerable reduction of the production costs. Furthermore the weight of an aircraft structure can be reduced by the use of light and high strength aluminium alloys. This paper deals with the development of a process for the laser beam welding of a skin-stringer-joint where the Al-Li-alloy AA2196 is used as stringer material and the Al-Li-alloy AA2198 is used as skin and stringer material. By the use of design of experiments the optimal welding process parameters for different material combinations were determined which will be used for the welding of a 5-stringer panel. Therefore the weld seams of the joints were tested for irregularities and microstructural characteristics. In addition several mechanical tests were performed, which define the quality of the welded joint. Furthermore the influence of the oxide layer and the welding preparation on the welding performance was investigated. (orig.) [German] Die derzeitigen Entwicklungen im Flugzeugbau werden durch die allgemeine Forderung nach einer Steigerung der Wirtschaftlichkeit bestimmt. Das Laserstrahlschweissen ist dabei eines der vielversprechendsten Fuegeverfahren fuer die Anwendung im Flugzeugbau durch das die Herstellungskosten deutlich reduziert werden koennen. Zudem kann durch die Verwendung von leichten und hochfesten Aluminium-Legierungen das Gewicht einer Flugzeugstruktur zusaetzlich reduziert werden. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Prozesses zum Laserstrahlschweissen einer Skin-Stringer-Verbindung aus den Aluminium-Lithium-Legierungen AA2196 (als Stringer-Werkstoff) und AA2198 (als Skin- und Stringer-Werkstoff). Unter Verwendung der statistischen Versuchsplanung wurden die optimalen Einstellungen der Schweissprozessparameter fuer die

  10. Microstructural characterization of laser and electron beam (EB) welds of Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Tewari, R.; Dey, G.K.; Samajdar, I.

    2015-01-01

    Nb-1wt%Zr-0.1wt%C alloy is being considered for the structural applications in proposed Compact High Temperature Reactor (CHTR) on account of its excellent combination of high temperature properties. The applications of this alloy calls for welding, which is a difficult task due to its reactive nature, higher thermal conductivity and melting point. The high energy density techniques like laser and electron beam were employed to produce the welds on sheets of Nb-alloy at various processing parameters in bead-on-plate and square butt joint configurations. The weld joints produced were characterized by studying their optical, Scanning Electron Microscopy (SEM) and Electron Back Scattering Diffraction (EBSD) micro-graphs. The SEM micrograph of EB fusion zone along with the heat affected zone (HAZ) and the base region were studied and abrupt changes in the grain morphology were found in each zone. The fusion zone shows larger grains indicating the rapid grain growth after solidification, whereas the HAZ shows relatively smaller size of the grains but still much larger than the base zone. The SEM micrograph of central part of the same butt weld shows clear grain boundaries with a large variation in the grain size (45-82 micrometer) in the weld region. The heat affected zone (HAZ) and base metal showed fine carbide precipitates along the grain boundaries, whereas carbides were found dissolved in the weld zone. The EBSD micrograph of electron beam fusion zone describing the grain orientation in the weld region are described. The micro-hardness profile across the width of welds was also studied. The detailed results of all these studies are described in this paper. (author)

  11. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  12. Solid-state resistance upset welding: A process with unique advantages for advanced materials

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1993-01-01

    Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded

  13. Focused Ion Beam Nanotomography of ruthenium-bearing nickel-base superalloys with focus on cast-microstructure and phase stability; Focused Ion Beam Nanotomographie von rutheniumhaltigen Nickelbasis-Superlegierungen mit Fokus auf Gussgefuege und Phasenstabilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Cenanovic, Samir

    2012-12-03

    The influence of rhenium and ruthenium on the multi component system nickel-base superalloy is manifold and complex. An experimental nickel-base superalloy containing rhenium and ruthenium within defined contents, named Astra, was used to investigate the influences of these two elements on the alloy system. The last stage solidification of nickel-base superalloys after Bridgman casting and the high temperature phase stability of these alloys, could be explored with the aid of focused ion beam nanotomography. FIB-nt therefore was introduced and realized at the chair of General Materials Properties of the University Erlangen-Nuremberg. Cast Astra alloys are like other nickel-base superalloys morphologically very inhomogeneous and affected by segregation. In the interdendritic region different structures with huge γ' precipitates are formed. These inhomogeneities and remaining eutectics degrade the mechanical properties, witch makes an understanding of the subsiding processes at solidification of residual melt important for the casting process and the heat treatment. This is why the last stage solidification in the interdendritic region was analyzed. With the help of focused ion beam nanotomography, three different structures identified from 2-D sections could be assigned to one original 3-D structure. It was pointed out, that only the orientation of the plane of the 2-D cut influences the appearance in the 2-D section. The tomography information was used to explain the development during solidification and to create a model of last stage solidification. The interdendritic region is solidifying under the development of eutectic islands. The structure nucleates eutectically epitaxially at primary dendrite arms, with formation of fine γ/γ' precipitates. During solidification the γ' precipitates coarsen in a rod-like structure, and end up in large γ' precipitates. Simulations and other investigations could approve this model. First three

  14. Evaluating the Properties of Dissimilar Metal Welding Between Inconel 625 and 316L Stainless Steel by Applying Different Welding Methods and Consumables

    Science.gov (United States)

    Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza

    2018-04-01

    The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.

  15. Structural behaviour of a welded superalloy cylinder with internal pressure in a high temperature environment

    International Nuclear Information System (INIS)

    Udoguchi, T.; Nakanishi, T.

    1981-01-01

    Steady and cyclic creep tests with internal pressure were performed at temperatures of 800 to 1000 0 C on Hastelloy X cylinders with and without a circumferential Tungsten Inert Gas (TIG) welding technique. The creep rupture strength of the TIG welded cylinders was much lower than that of the non-welded cylinders whilst creep rupture strength reduction by the TIG technique was not observed in uniaxial creep tests. The reason for the low creep strength of welded cylinders is discussed and it is noted that the creep ductility of weld metal plays an essentially important role. In order to improve the creep strength of the TIG welded cylinder, various welding procedures with assorted weld metals were investigated. Some improvements were obtained by using welding techniques which had either Incoloy 800 or a modified Hastelloy X material as the filler metal. (U.K.)

  16. Numerical model of the plasma formation at electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The Department for Applied Physics, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784 Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora, 1309 Sofia (Bulgaria)

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  17. Attachment of lead wires to thin film thermocouples mounted on high temperature materials using the parallel gap welding process

    Science.gov (United States)

    Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.

    1990-01-01

    Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.

  18. Forming mechanism and avoiding measures of blue-ring on electronic beam welding sample after water corrosion

    International Nuclear Information System (INIS)

    Ren Defang; Luo Xiandian; Tong Shenxiu; Guo Xulin; Peng Haiqing

    2001-01-01

    After water corrosion in compliance with ASTM G2, the blue ring appears on the nuclear fuel rod samples of AFA 2G welded by using a Big Chamber Electron Beam Welder made in Russia. The characteristics, appearance, chemical composition, microstructure of b lue ring a nd some condition test are described. The mechanism of forming blue ring may be depicted as following: welding metal vapor and the splash produced by secondary and scatter electrons on metal clamp and gun body deposit in the area between HAZ and substrate because of the water cooling down effects on the clamp; these deposits, after water corrosion, appears as blue ring on the fuel rod surface. Avoiding measure is that the side of the clamp closing to weld seal is chamfered, while making the welding chamber cleaner

  19. Quantitative characterization of the microstructure of an electron-beam welded medium strength Al-Zn-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A., E-mail: alexis.deschamps@simap.grenoble-inp.fr [SIMAP, INPGrenoble-CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France); Ringeval, S.; Texier, G. [SIMAP, INPGrenoble-CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France) and CEA, centre de Valduc, SEMP, LECM, 21120 Is-Sur-Tille (France); Delfaut-Durut, L. [CEA, centre de Valduc, SEMP, LECM, 21120 Is-Sur-Tille (France)

    2009-08-20

    The microstructure of an electron beam weld of a medium strength Al-4.5%Zn-1%Mg (wt.%) alloy has been characterized in terms of solute element distribution, grain structure and fine-scale precipitates after a T6 post-welding heat treatment. It is found that the weld nugget consists of small grains, whose size (1-50 {mu}m) is heterogeneously distributed. The nugget composition is unaffected in Mg but depleted of 20% in Zn in the first run zone. This is shown to affect the fine-scale precipitate microstructure, which has been mapped in the weld cross-section using Small-Angle X-ray Scattering. It is shown that the nugget exhibits a precipitate size only slightly different from that of the base material after the post-welding heat treatment, and that the difference in volume fraction, much more significant, can be understood from the magnitude of the solute depletion. The relative precipitate sizes and volume fractions in the weld nugget and base material enable to understand effectively the corresponding microhardness levels.

  20. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  1. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    International Nuclear Information System (INIS)

    Laakkonen, M.

    2013-12-01

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  2. Residual stress measurement of electron beam welded copper plates using prism hole drilling method

    Energy Technology Data Exchange (ETDEWEB)

    Laakkonen, M. [Stresstech Oy, Jyvaeskylae (Finland)

    2013-12-15

    Eleven electron beam (EB) welded copper plates were measured in this investigation with Prism hole drilling equipment made by Stresstech Oy. All samples contained a linear weld in their center. Two different sets of plates were measured in this investigation. The first set included five samples (X436, X437, X438, X439 and X440) which were welded using four different welding speeds. Samples X439 and X440 were welded with the same speed but X440 is the only sample of the set that received a cosmetic pass. The second set received heat treatments at four different temperatures. Samples X456 and X458 were annealed at the same temperature but sample X456 received a cosmetic pass while X458 did not. Samples X455 and X457 were both annealed at a different temperature, with (X455) or without (X457) the cosmetic pass. Two areas were machined from the samples. About five millimeters was machined from the surfaces on the both of areas. Machined surfaces located on the top surfaces. The measurement points on the top surface are located on the weld and 20 mm and 120 mm from the weld on machined areas. Lower surface measurements are located -20 mm, 20 mm and 120 mm from the weld. All measurements were about 122 mm from the edges perpendicular to the weld. The top surfaces of all samples were machined in two areas across the weld. About 5 mm were removed. Stress measurements on the top surfaces were performed in these two areas, on the weld and 20 mm and 120 mm away from the weld. Stresses were also measured on the back sides, at -20 mm, 20 mm and 120 mm distance from the weld. All measurement locations were about 122mm from the sample edges. Most of the measurements give tensile strengths from 0 MPa to 30 MPa. Stresses parallel to the weld were slightly higher than weld stresses in transverse direction. The machined surfaces have residual stress values above 30 MPa near the surface. (orig.)

  3. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  4. Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding

    International Nuclear Information System (INIS)

    Liu, Chuan; Zhang, Jianxun; Wu, Bing; Gong, Shuili

    2012-01-01

    Highlights: → After less materials removal from the top, stresses on the bottom remain unchanged. → The transverse stress within the weld decreases significantly with material removal. → Local material removal does not influence the longitudinal stress significantly. -- Abstract: The stress modification after material removal from a 50 mm thick titanium alloy plate jointed by electron beam welding (EBW) was investigated through the finite element method (FEM). The welding experiment and milling process were carried out to experimentally determine the stresses induced by EBW and their modification after local material removal. The modification of as-welded stresses due to the local material removal method and the whole layer removal method was discussed with the finite element analysis. Investigated results showed that with less materials removal from the top, the stresses on the bottom surface remain almost unchanged; after material removal from the top and bottom part, the transverse stress on the newly-formed surface decreases significantly as compared to the as-welded stresses at the same locations; however, the stress modification only occurs at the material removal region in the case of local region removal method; the longitudinal stress decreases with the whole layer removal method while remains almost unchanged with the local region removal method.

  5. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  6. Prediction of residual stresses and distortions due to laser beam welding of butt joints in pressure vessels

    International Nuclear Information System (INIS)

    Moraitis, G.A.; Labeas, G.N.

    2009-01-01

    A two-level three-dimensional Finite Element (FE) model has been developed to predict keyhole formation and thermo-mechanical response during Laser Beam Welding (LBW) of steel and aluminium pressure vessel or pipe butt-joints. A very detailed and localized (level-1) non-linear three-dimensional transient thermal model is initially developed, which simulates the mechanisms of keyhole formation, calculates the temperature distribution in the local weld area and predicts the keyhole size and shape. Subsequently, using a laser beam heat source model based on keyhole assumptions, a global (level-2) thermo-mechanical analysis of the LBW butt-joint is performed, from which the joint residual stresses and distortions are calculated. All the major physical phenomena associated to LBW, such as laser heat input via radiation, heat losses through convection and radiation, as well as latent heat are accounted for in the numerical model. Material properties and particularly enthalpy, which is very important due to significant material phase changes, are introduced as temperature-dependent functions. The main advantages of the developed model are its efficiency, flexibility and applicability to a wide range of LBW problems (e.g. welding for pressure vessel or pipework construction, welding of automotive, marine or aircraft components, etc). The model efficiency arises from the two-scale approach applied. Minimal or no experimental data are required for the keyhole size and shape computation by the level-1 model, while the thermo-mechanical response calculation by the level-2 model requires only process and material data. Therefore, it becomes possible to efficiently apply the developed simulation model to different material types and varying welding parameters (i.e. welding speed, heat source power, joint geometry, etc.) in order to control residual stresses and distortions within the welded structure

  7. Effect of trace solute hydrogen on the fatigue life of electron beam welded Ti-6Al-4V alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com; Ji, Longbo

    2017-01-27

    This paper describes an experimental hydrogenating treatment on a Ti-6Al-4V fatigue specimen containing an electron beam welding joint. The effect of trace solute hydrogen on the microstructures and fatigue behavior of welded Ti-6Al-4V alloy joints was investigated using an optical microscope, X-ray diffractometer, scanning electron microscope, transmission electron microscope and other methodologies. The results demonstrated that no hydride formed in the hydrogenated weld joint at a hydrogen concentration of less than 0.140 wt%. Internal hydrogen, which was present in the alloy in the form of solid solution atoms, caused lattice distortion in the β phase. The fatigue properties of the Ti-6Al-4V weld joint hydrogenated with trace solute hydrogen decreased significantly. The solute hydrogen led to an increase in the brittleness of the hydrogenated weld joint. The dislocation densities in the secondary α and β phase were higher. Fatigue cracks nucleated at the α/β interfaces. The effect of solute hydrogen accelerated the separation of the persistent slip bands, which decreased the threshold required for fatigue crack growth. Solute hydrogen also accelerated the fatigue crack growth rate. These two factors contributed to the degradation of the fatigue life in the electron beam welded Ti-6Al-4V alloy joints.

  8. An Experimental Evaluation of Electron Beam Welded Thixoformed 7075 Aluminum Alloy Plate Material

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2017-12-01

    Full Text Available Two plates of thixoformed 7075 aluminum alloy were joined using Electron Beam Welding (EBW. A post-welding-heat treatment (PWHT was performed within the semi-solid temperature range of this alloy at three temperatures, 610, 617 and 628 °C, for 3 min. The microstructural evolution and mechanical properties of EB welded plates, as well as the heat-treated specimens, were investigated in the Base Metal (BM, Heat Affected Zone (HAZ, and Fusion Zone (FZ, using optical microscopy, Scanning Electron Microscopy (SEM, EDX (Energy Dispersive X-ray Analysis, and Vickers hardness test. Results indicated that after EBW, the grain size substantially decreased from 67 µm in both BM and HAZ to 7 µm in the FZ, and a hardness increment was observed in the FZ as compared to the BM and HAZ. Furthermore, the PWHT led to grain coarsening throughout the material, along with a further increase in hardness in the FZ.

  9. Electron beam deflection control system of a welding and surface modification installation

    Science.gov (United States)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  10. Effect of shroud material on the spherical aberration in electromagnetic focusing lens used in electron beam welding machines

    International Nuclear Information System (INIS)

    Saha, Srijit Kumar; Gupta, Sachin; Kandaswamy, E.

    2015-01-01

    Beam Power density on the target (typically 10"5 -10"6 W/cm"2 ) plays a major role in attaining good weld quality in electron beam welding. Spherical aberration in the electromagnetic focusing lenses places a limitation in attaining the required power density on the target. Conventionally, iron or low carbon steel core are being used as a shroud material in the electromagnetic lenses. The practical difficulty faced in the long term performance of these lenses has initiated a systematic study for various shroud materials and the effect on spherical aberration limited spot size. The particle trajectories were simulated with different magnetic materials, using commercial software. The spherical aberration was found to be the lowest in the air core lens. The possibility of using an aircore electromagnetic focusing lens in electron beam machines is discussed in this paper. The beam power density is limited by various factors such as spherical aberration, space charge aberrations, gun alignment and power source parameters. (author)

  11. Electron beam welding in the fabrication of thick-walled large-size pipes of C-Mn steels. Final report; Elektronenstrahlschweissen bei der Fertigung von dickwandigen Grossrohren aus C-Mn-Staehlen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Woeste, K

    2001-11-01

    This research project investigates electron beam welding as a method of fabrication of large-size pipes with longitudinal welds. The effects of the welding speed on the mechanical and technological properties of the weld are investigated. From the economic view, electron beam welding is much more favourable than submerged-arc welding. [German] Dieses Forschungsprojekt soll dazu beitragen, das Elektronenstrahlschweissen als Fertigungsverfahren fuer laengsnahtgeschweisste Grossrohre zu qualifizieren. Dabei wird der Einfluss der Schweissgeschwindigkeit auf die mechanisch-technologischen Eigenschaften der Schweissung untersucht. Im Wirtschaftlichkeitsvergleich schneidet Elektronenstrahlschweissverfahren gegenueber dem Unterpulverschweissverfahren eindeutig besser ab.

  12. Analysis of the crystallographic signature of electron beam welds in Cu: implications for variations in etching characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Trimby, Patrick (Oxford Instruments Nordiska AB, Lidingoe (Sweden))

    2009-06-15

    The proposed design for the long term disposal of radioactive waste in Sweden involves the use of corrosion-resistant copper containers. The manufacture of these containers involves the welding of forged lids onto fabricated copper tubes; however, it has been reported (SKB report TR-02-07) that the grain sizes obtained in the lids and bottoms is much coarser than in the side walls (the tubes). The electro beam welding (EBW) of the lids onto the tubes also produces significant grain coarsening, as well as the growth of intermetallic phases at grain boundaries (SKB report TR-06-01). One of the fundamental questions regarding the suitability of these containers concerns the distribution and nature of corrosion at the lid-wall interface. Previous studies have focused on the possibility of grain boundary corrosion, and have concluded that the boundary corrosion is limited and is not likely to adversely affect the properties of the containers. However, differences in the corrosion/etching characteristics between the lid, the wall and the weld areas are observed. The cylinder wall shows reduced boundary etching compared to the weld area and the cylinder lid. This preliminary study investigates whether these differences can be explained by the crystallographic characteristics of the copper in these regions. A single sample, taken from an electron beam welded canister lid, was analysed using electron backscattered diffraction: a summary of the results from this study and some preliminary conclusions are presented in this report

  13. Electron-beam welding of the grill flanges of the FTU additional heating system

    International Nuclear Information System (INIS)

    Cucchiaro, A.; Marra, A.

    1994-10-01

    The research and development program of the fusion sector of ENEA (Italian Agency for New Technologies, Energy and Environment) Frascati center is mainly based on experiments on the Frascati Tokamak Upgrade (FTU) machine. The FTU is a medium-high magnetic field (8 T) tokamak with a radio-frequency (RF) additional heating system (8 MW, 8 GHz) that can heat the plasma to temperatures of fusionistic interest. The RF power is coupled to the plasma by a coupling structure consisting of three grills, each formed of an array of waveguides welded at the terminal flanges by an electron-beam technique. This solution allows highly accurate dimensions and optimum clean-surface conditions of the welded copper joints

  14. Advantages of fibre lasers in 3D metal cutting and welding applications supported by a 'beam in motion (BIM)' beam delivery system

    Science.gov (United States)

    Scheller, Torsten; Bastick, André; Griebel, Martin

    2012-03-01

    Modern laser technology is continuously opening up new fields of applications. Driven by the development of increasingly efficient laser sources, the new technology is successfully entering classical applications such as 3D cutting and welding of metals. Especially in light weight applications in the automotive industry laser manufacturing is key. Only by this technology the reduction of welding widths could be realised as well as the efficient machining of aluminium and the abrasion free machining of hardened steel. The paper compares the operation of different laser types in metal machining regarding wavelength, laser power, laser brilliance, process speed and welding depth to give an estimation for best use of single mode or multi mode lasers in this field of application. The experimental results will be presented by samples of applied parts. In addition a correlation between the process and the achieved mechanical properties will be made. For this application JENOPTIK Automatisierungstechnik GmbH is using the BIM beam control system in its machines, which is the first one to realize a fully integrated combination of beam control and robot. The wide performance and wavelength range of the laser radiation which can be transmitted opens up diverse possibilities of application and makes BIM a universal tool.

  15. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Tran Hung Tra

    2016-12-01

    Full Text Available A hybrid element has been fabricated by friction welding, joining two superalloys Inconel 718 and Mar-M247. The high cycle fatigue behavior of this welded element was investigated at 500 °C and 700 °C. The fabrication could obtain excellent fatigue strength in which the fracture is located in the base metal Mar-M247 side and takes place outside the welded zone. The behavior of the joint under loadings is discussed through a simulation by the numerical finite element method.

  16. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    International Nuclear Information System (INIS)

    Welty, R.K.; Reid, R.D.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds

  17. Investigations on Microstructure and Corrosion behavior of Superalloy 686 weldments by Electrochemical Corrosion Technique

    Science.gov (United States)

    Arulmurugan, B.; Manikandan, M.

    2018-02-01

    In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.

  18. Tensile properties of four types of austenitic stainless steel welded joints

    International Nuclear Information System (INIS)

    Balladon, P.

    1990-01-01

    In the field of an LMFBR research programme on austenitic stainless steel welds in a Shared Cost Action Safety, Research Area 8, coordinated by JRC-Ispra, four cooperating laboratories (ECN, IKE/MPA, the Welding Institute and UNIREC) have been involved in the fabrication and extensive characterization of welded joints made from one plate of ICL 167 stainless steel. The materials included parent metal, four vacuum electron beam welds, one non vacuum electron beam weld, one submerged arc weld, one gas metal arc weld and one manual metal arc weld. This report summarizes the 106 tensile tests performed at room temperature and 550 0 C, including the influence of strain rate, specimen orientation and welding procedure. Main results are that electron beam welds have tensile properties close to those of parent metal with higher values of yield strength in longitudinal orientation and lower values of total elongation in transverse orientation but with a similar reduction of area, that filler metal welds own the highest values of yield strength and lowest values of ductility. Most of the welds properties are higher than the minimum specified for parent metal, except for some values of total elongation, mainly in transverse orientation. In view of using electron beam welding for production of components used in LMFBR, results obtained show that tensile properties of electron beam welds compare well to those of classical welds. (author)

  19. The Low Pressure Gas Effects On The Potency Of An Electron Beam On Ceramic Fabric Materials For Space Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.; Fragomeni, James M.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This investigation was undertaken to evaluate if molten metal or electron beam impingement could damage or burn through the fabric of the astronauts Extravehicular Mobility Unit (EMU) during electron beam welding exercises performed in space. An 8 kilovolt electron beam with a current in the neighborhood of 100 milliamps from the Ukrainian space welding "Universal Hand Tool" burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The burnthrough time was on the order of 8 seconds at standoff distances between UHT and cloth ranging from 6 to 24 inches. At both closer (2") and farther (48") standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.

  20. Toughness study of an under matched welded joint: application to the mechanical integrity of the electron beam welded joint of 6016-T6 aluminium alloy

    International Nuclear Information System (INIS)

    Rekik, Wissal

    2016-01-01

    For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of under matched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an under matched welded joint. The methodology proposed is applied to an electron beam welded joint on al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multi material approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone. (author) [fr

  1. Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA 6056-T4

    International Nuclear Information System (INIS)

    Zain-ul-abdein, Muhammad; Nelias, Daniel; Jullien, Jean-Francois; Deloison, Dominique

    2010-01-01

    Laser beam welding has recently found its application in the fabrication of aircraft structures where fuselage panels, made of thin sheets of AA 6056-T4 (an aluminium alloy), are welded with stiffeners of the same material in a T-joint configuration. The present work simulates laser beam welding induced residual stresses and distortions using industrially employed thermal and mechanical boundary conditions. Various measurements performed on small-scale welded test specimens provide a database of experimental results that serves as a benchmark for qualification of the simulation results. The welding simulation is performed with the commercial finite element software Abaqus and a Fortran programme encoding a conical heat source with Gaussian volumetric distribution of flux. A sequentially coupled temperature-displacement analysis is undertaken to simulate the weld pool geometry, transient temperature and displacement fields. The material is assumed to follow an elasto-plastic law with isotropic hardening behaviour (von Mises plasticity model). A comparison between the experimental and simulation results shows a good agreement. Finally, the residual stress and strain states in a T-joint are predicted.

  2. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Das, C.R., E-mail: chitta@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Albert, S.K. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar (India); Mastanaiah, P. [Defense Research and Development Laboratory, Hyderabad (India); Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Murthy, C.V.S. [Defense Research and Development Laboratory, Hyderabad (India); Kumar, E. Rajendra [Institute for Plasma Research, Gandhinagar (India)

    2014-11-15

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition.

  3. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    International Nuclear Information System (INIS)

    Das, C.R.; Albert, S.K.; Sam, Shiju; Mastanaiah, P.; Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T.; Murthy, C.V.S.; Kumar, E. Rajendra

    2014-01-01

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition

  4. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  5. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  6. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-10-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  7. The metallurgy of superalloys part 2

    International Nuclear Information System (INIS)

    Abdelazim, M.E.; Hammad, F.H.

    1990-01-01

    This is part II of the report titled 'the metallurgy of superalloys'. It deals with the effect of heat treatment and operating conditions (thermal exposure and environment) on the mechanical properties of superalloys. The heat treatment is important in the development of superalloys through that it controls type, amount, size shape and distribution of the precipitate and the grain size of the matrix. The thermal exposure leads to reduction in the amount of the primary carbides and to precipitation of secondary carbides. Also it leads to the agglomeration and coarsening of gamma or the transformation of gamma phase to phase. The environment may lead to the internal oxidation, carburization, decarburization or sulphidization of the superalloys which may result in the degradation of their mechanical properties. This part gives also an example of applications of superalloys in the field of nuclear reactors especially high temperature-gas cooled reactors. Joined with this part a table which contains the major superalloys including its chemical analysis, creep rupture strength and some of its applications. 1 tab

  8. The metallurgy of superalloys part 1

    International Nuclear Information System (INIS)

    Abdelazim, M.E.; Hammad, F.H.

    1990-01-01

    This is part I of the report titled 'the metallurgy of superalloys'. In this part the structure, phases and systems of superalloys are reviewed. The role of alloying elements in the design of superalloys and the mechanical properties of superalloys are also reviewed. Superalloys are important in high temperature technology, especially above 700 degree c. They are 'super' mainly because their creep and stress rupture resistances are very high. Superalloys are based on an austenitic matrix including secondary phases, mainly gamma precipitates, inter and intragranular carbides mainly M 23 C 6 and M 6 C. They are classified into three systems, Ni-base, Fe-Ni base and Ce-base alloys. Different alloying elements mainly Cr, Mo, Al, Ti are added to increase the strength either by solid solution hardening (Cr, Mo, Al), precipitation hardening (A 1, Ti to produce gamma) or by dispersion hardening (Cr, Mo to form M 23 C 6 and M 6 C carbides) and to increase the oxidation resistance (Cr, Al). 3 tab., 2 fig

  9. Effects of Energy Density and Shielding Medium on Performance of Laser Beam Welding (LBW) Joints on SAF2205 Duplex Stainless Steel

    Science.gov (United States)

    Zhang, W. W.; Cong, S.; Luo, S. B.; Fang, J. H.

    2018-05-01

    The corrosion resistance performance of SAF2205 duplex stainless steel depends on the amount of ferrite to austenite transformation, but the ferrite content after power beam welding is always excessively high. To obtain laser beam welding joints with better mechanical and corrosion resistance performance, the effects of the energy density and shielding medium on the austenite content, hardness distribution, and shear strength were investigated. The results showed that ferrite to austenite transformation was realized with increase in the energy density. When the energy density was increased from 120 J/mm to 200 J/mm, the austenite content of the welding joint changed from 2.6% to 38.5%. Addition of nitrogen gas to the shielding medium could promote formation of austenite. When the shielding medium contained 50% and 100% nitrogen gas, the austenite content of the welding joint was 42.7% and 47.2%, respectively. The hardness and shear strength were significantly improved by increase in the energy density. However, the shielding medium had less effect on the mechanical performance. Use of the optimal welding process parameters resulted in peak hardness of 375 HV and average shear strength of 670 MPa.

  10. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments

    International Nuclear Information System (INIS)

    Bala Srinivasan, P.; Sharkawy, S.W.; Dietzel, W.

    2004-01-01

    Supermartensitic stainless steel (SMSS) grades are gaining popularity as an alternate material to duplex and super duplex stainless steels for applications in oil and gas industries. The weldability of these steels, though reported to be better when compared to conventional martensitic stainless steels, so far has been addressed with duplex stainless steel electrodes/fillers. This work addresses the stress-cracking behaviour of weldments of a high-grade supermartensitic stainless steel (11% Cr, 6.5% Ni and 2% Mo) in the presence of hydrogen. Welds were produced with matching consumables, using electron beam welding (EBW) process. Weldments were subjected to slow strain rate tests in 0.1 M NaOH solution, with introduction of hydrogen into the specimens by means of potentiostatic cathodic polarisation at a potential of -1200 mV versus Ag/AgCl electrode. Reference tests were performed in air for comparison, and the results suggest that both the SMSS base material and the EB weld metal are susceptible to embrittlement under the conditions of hydrogen charging

  11. Finite element simulation of the welding process and structural behaviour of welded components

    International Nuclear Information System (INIS)

    Locci, J.M.; Rouvray, A. de; Barbe, B.; Poirier, J.

    1977-01-01

    In the field of inelastic analysis of nuclear metal structures, the computation of residual stresses in welds, and their effects on the strength of welded components is of major importance. This paper presents an experimentally checked finite element simulation with the general nonlinear program PAM NEP-D, of the electron beam welding of two thick hemispherical shells, and the behaviour of the welded sphere under various additional thermomechanical sollicitations. (Auth.)

  12. Characterization of electron beam welded Zircaloy-4

    International Nuclear Information System (INIS)

    Anishetty, Sharath; Manna, I.; Majumdar, J. Dutta

    2015-01-01

    Zirconium (Zr) alloys are the backbone materials for thermal reactors because of their low neutron absorption cross section and in addition have suitable properties like high temperature mechanical and corrosion properties. For various structural applications, different Zirconium based alloys are used. Zircaloy-4 (Zr-4) is most commonly used as channel boxes in boiling water reactors (BWRs), intermediate grid applications in pressurized water reactors (PWRs) and in fuel cladding. Zircaloy cladding acts as a barrier between the radioactive fuel and exterior coolants. Therefore, the structural integrity of the cladding tube is extremely important in the safe operation of reactors. Efforts are being made to produce Zircaloy-4 products with better mechanical properties. Different routes of processing are involved like forging, pilgering and extrusion are developed over years in fabricating components to improve in-reactor performance. In this study, microstructure and hardness properties of electron beam welded Zr-4 was evaluated

  13. Perspectives of special welding methods. 1

    International Nuclear Information System (INIS)

    Herden, G.; Buness, G.; Wiesner, P.

    1976-01-01

    Laser, electron, ion, and light beam welding as well as plasma arc welding are considered to be special fusion welding methods. The stage of development and possible future applications of these methods are described. (author)

  14. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments

    International Nuclear Information System (INIS)

    Lee, H T; Wu, J L

    2009-01-01

    This study investigates the correlation between the thermal cycles experienced by Alloy 690 weldments fabricated using gas tungsten arc welding (GTAW) and laser beam welding (LBW) processes, and their corresponding corrosion resistance properties. The corrosion resistance of the weldments is evaluated using a U-bend stress corrosion test in which the specimens are immersed in a boiling, acid solution for 240 h. The experimental results reveal that the LBW inputs significantly less heat to the weldment than the GTAW, and therefore yields a far faster cooling rate. Moreover, the corrosion tests show that in the GTAW specimen, intergranular corrosion (IGC) occurs in both the fusion zone (FZ) and the heat affected zone (HAZ). By contrast, the LBW specimen shows no obvious signs of IGC.

  15. Probability of defect detection of Posiva's electron beam weld

    International Nuclear Information System (INIS)

    Kanzler, D.; Mueller, C.; Pitkaenen, J.

    2013-12-01

    The report 'Probability of Defect Detection of Posiva's electron beam weld' describes POD curves of four NDT methods radiographic testing, ultrasonic testing, eddy current testing and visual testing. POD-curves are based on the artificial defects in reference blocks. The results are devoted to the demonstration of suitability of the methods for EB weld testing. Report describes methodology and procedure applied by BAM. Report creates a link from the assessment of the reliability and inspection performance to the risk assessment process of the canister final disposal project. Report ensures the confirmation of the basic quality of the NDT methods and their capability to describe the quality of the EB-weld. The probability of detection curves are determined based on the MIL-1823 standard and it's reliability guidelines. The MIL-1823 standard was developed for the determination of integrity of gas turbine engines for the US military. In the POD-process there are determined as a key parameter for the defect detectability the a90/95 magnitudes, i.e. the size measure a of the defect, for which the lower 95 % confidence band crosses the 90 % POD level. By this way can be confirmed that defects with a size of a90/95 will be detected with 90 % probability. In case the experiment will be repeated 5 % might fall outside this confidence limit. (orig.)

  16. Residual stress measurements in a ferritic steel/In625 superalloy dissimilar metal weldment using neutron diffraction and deep-hole drilling

    International Nuclear Information System (INIS)

    Skouras, A.; Paradowska, A.; Peel, M.J.; Flewitt, P.E.J.; Pavier, M.J.

    2013-01-01

    This paper reports the use of non-invasive and semi-invasive techniques to measure the residual stresses in a large dissimilar weldment. This took the form of a butt weld between two sections of a P92 steel pipe, joined using an In625 welding consumable. Residual stress measurements have been carried out on the 30 mm thick welded pipe using the deep-hole drilling technique to characterise the through wall section residual stress distribution for the weld metal, HAZ and parent material. In addition, neutron diffraction measurements have been carried out within the weld zone. Diffraction patterns presented a high intensity and sharp peaks for the base P92 steel material. However measurements in the weld superalloy material were proven problematic as very weak diffraction patterns were observed. A thorough examination of the weld material suggested that the likely cause of this phenomenon was texture in the weld material created during the solidification phase of the welding procedure. This paper discusses the challenges in the execution and interpretation of the neutron diffraction results and demonstrates that realistic measurements of residual stresses can be achieved, in complex dissimilar metal weldments. Highlights: ► One of the few papers to measure residual stresses on dissimilar metal welds. ► Paper managed to provide realistic measurements of residual stresses using the DHD and ND technique. ► Results of this study have demonstrated the effect of texture during the ND measurements.

  17. Comparison of creep rupture behavior of tungsten inert gas and electron beam welded grade 91 steel

    International Nuclear Information System (INIS)

    Dey, H.C.; Vanaja, J.; Laha, K.; Bhaduri, A.K.; Albert, S.K.; Roy, G.G.

    2016-01-01

    Creep rupture behavior of Grade 91 steel weld joints fabricated by multi-pass tungsten inert gas (TIG) and electron beam welding (EBW) processes has been studied and compared with base metal. Cross-weld creep specimens were fabricated from the X-ray radiography qualified and post weld heat treated (760°C/4 h) weld joints. Creep testing of weld joints and base metal was carried out at 650°C over a stress range of 40°120 MPa. Creep life of EBW joint is comparable to base metal; whereas multi-pass TIG joint have shown significant drop in creep life tested for the same stress level. Both types of weld joints show Type IV cracking for all the stress levels. The steady state creep rate of multi-pass TIG is found to be fifteen times than that of EBW joint for stress level of 80 MPa, which may be attributed to over tempering, more re-austenization, and fine grain structure of inter-critical and fine grain heat affected zone regions of the TIG joint. In contrast, single-pass and rapid weld thermal cycles associated with EBW process causes minimum phase transformation in the corresponding regions of heat affected zone. Microstructure studies on creep tested specimens shows creep cavities formed at the primary austenite grain boundaries nucleated on coarse carbide precipitates. The hardness measured across the weld on creep tested specimens shows significant drop in hardness in the inter-critical and fine grain heat affected zone regions of multi-pass TIG (176 VHN) in comparison to 192 VHN in the corresponding locations in EBW joint. (author)

  18. Strength Evaluation of Heat Affected Zone in Electron Beam Welded ARAA for HCCR TBM in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. S.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Lee, D. W. [KAERI, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been developed for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, called advanced reduced activation alloy (ARAA), has also been developed for a structural material of the HCCR TBM. One case of limited optimized electron beam (EB) welding conditions was selected based on previous work, and the weldability of an EB weld was evaluated for TBM fabrication. The micro-hardness was measured from the base to the weld region, and the microstructures were also observed. A small punch (SP) test considering the HAZ was carried out at room and high (550 .deg. C) temperatures. The empirical mechanical properties of HAZ in the EB weld were evaluated, and the fracture behavior was investigated after the SP test. The SP results show that the estimated yield and tensile strength of the HAZ were higher than the base metal at both temperatures. Korean RAFM steel, ARAA, was developed as a TBM structural material. Using one of the program alloys in ARAA (F206), one case of a limited optimized EB welding condition was selected based on previous works, and the weldability of an EB weld using the SP test was evaluated for TBM fabrication at room and high (550 .deg. C) temperatures. From a micro-Vickers hardness evaluation, the HAZ gave the highest values compared with the other regions. The irregular grain boundaries in the HAZ were observed, but its width was narrower than the TIG weld from the previous results. The optimized welding methods such as the TIG, EB, and laser weld, and the welding procedure considering the PWHT are being established, and the weldability evaluation is also progressing according to the development of the ARAA for the fusion material application in Korea.

  19. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1977-01-01

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  20. Welding of iridium heat source capsule components

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    Interplanetary spacecraft have long used radioisotope thermoelectric generators (RTG) to produce power for instrumentation. These RTG produce electrical energy from the heat generated through the radioactive decay of plutonium-238. The plutonium is present as a ceramic pellet of plutonium oxide. The pellet is encapsulated in a containment shell of iridium. Iridium is the material of choice for these capsules because of its compatibility with the plutonium dioxide. The high-energy beam welding (electron beam and laser) processes used in the fabrication of the capsules has not been published. These welding procedures were originally developed at the Mound Laboratories and have been adapted for use at the Oak Ridge Y-12 Plant. The work involves joining of thin material in small sizes to exacting tolerances. There are four different electron beam welds on each capsule, with one procedure being used in three locations. There is also a laser weld used to seal the edges of a sintered frit assembly. An additional electron beam weld is also performed to seal each of the iridium blanks in a stainless steel waster sheet prior to forming. In the transfer of these welding procedures from one facility to another, a number of modifications were necessary. These modifications are discussed in detail, as well as the inherent problems in making welds in material which is only 0.005 in. thick. In summary, the paper discusses the welding of thin components of iridium using the high energy beam processes. While the peculiarities of iridium are pertinent to the discussion, much of the information is of general interest to the users of these processes. This is especially true of applications involving thin materials and high-precision assemblies

  1. Microstructural Characterization and Mechanical Properties of Electron Beam Welded Joint of High Strength Steel Grade S690QL

    Directory of Open Access Journals (Sweden)

    Błacha S.

    2016-06-01

    Full Text Available In the paper the results of metallographic examination and mechanical properties of electron beam welded joint of quenched and tempered steel grade S690QL are presented. Metallographic examination revealed that the concentrated electron beam significantly affect the changes of microstructure in the steel. Parent material as a delivered condition (quenched and tempered had a bainitic-martensitic microstructure at hardness about 290 HV0.5. After welding, the microstructure of heat affected zone is composed mainly of martensite (in the vicinity of the fusion line of hardness 420 HV0.5. It should be noted, however, that the microstructure of steel in the heat affected zone varies with the distance from the fusion line. The observed microstructural changes were in accordance with the CCT-S transformation diagram for the examined steel.

  2. Application of e-beam welding in W/Cu divertor project for EAST

    International Nuclear Information System (INIS)

    Wang, Wanjing; Li, Qiang; Zhao, Sixiang; Xu, Yue; Wei, Ran; Cao, Lei; Yao, Damao; Qin, Sigui; Peng, Lingjian; Shi, Yingli; Pan, Ningjie; Liu, Guohui; Li, Hui; Luo, Guang-Nan

    2015-01-01

    Highlights: • To develop the actively cooled W/Cu components, we have to meet the application of EBW. • In this work, the microstructure of the fusion zone and the mechanical properties of Cu−Cu and Cu−Ni joint welded by EBW have been investigated. • In the practice of quality control, it was found that under present standard the helium leak detection is unreliable. Thus the UT has been introduced and the premier results have shown it's effective. • In addition, the control of configuration tolerance has also been investigated. And a solidified welding procedure with jigs was established before the batch production. - Abstract: In the development of EAST actively cooled W/Cu components, the ITER-grade CuCrZr has been chosen as the heat sink material for its good thermomechanics properties. To realize the seal joint of the heat sink, a large number of electron beam welding (EBW) of CuCrZr/CuCrZr or CuCrZr/Inconel625 has been carried out. In the quality control of the W/Cu components, the helium leak detection at thermal condition has been performed on the entire components before delivery. However, in the operation of EAST device some micro leak on the components was detected indicating that the helium leak detection under present standard was unreliable for the quality control. Therefore, the ultrasonic non-destructive testing technique was introduced to exclude the defects. In addition, the welding shrinkage and bending has also been investigated to meet the required tight tolerances for plasma-facing components in vacuum vessel.

  3. Application of e-beam welding in W/Cu divertor project for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wanjing, E-mail: wjwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Li, Qiang; Zhao, Sixiang; Xu, Yue; Wei, Ran; Cao, Lei; Yao, Damao [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Qin, Sigui; Peng, Lingjian; Shi, Yingli; Pan, Ningjie; Liu, Guohui [Advanced Technology and Materials Company - AT& M, Beijing (China); Li, Hui [Beijing Zhongke Electric Co. Ltd., Beijing (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China)

    2015-10-15

    Highlights: • To develop the actively cooled W/Cu components, we have to meet the application of EBW. • In this work, the microstructure of the fusion zone and the mechanical properties of Cu−Cu and Cu−Ni joint welded by EBW have been investigated. • In the practice of quality control, it was found that under present standard the helium leak detection is unreliable. Thus the UT has been introduced and the premier results have shown it's effective. • In addition, the control of configuration tolerance has also been investigated. And a solidified welding procedure with jigs was established before the batch production. - Abstract: In the development of EAST actively cooled W/Cu components, the ITER-grade CuCrZr has been chosen as the heat sink material for its good thermomechanics properties. To realize the seal joint of the heat sink, a large number of electron beam welding (EBW) of CuCrZr/CuCrZr or CuCrZr/Inconel625 has been carried out. In the quality control of the W/Cu components, the helium leak detection at thermal condition has been performed on the entire components before delivery. However, in the operation of EAST device some micro leak on the components was detected indicating that the helium leak detection under present standard was unreliable for the quality control. Therefore, the ultrasonic non-destructive testing technique was introduced to exclude the defects. In addition, the welding shrinkage and bending has also been investigated to meet the required tight tolerances for plasma-facing components in vacuum vessel.

  4. Electron-beam-welded segmental heat pipes of AlMgSi 1 for the thermal model of the satellite Aeros-A

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, H.; Lasar, H.

    1974-07-01

    For the purposes of tests with the thermal model of the German aeronomy satellite Aeros-A, a heat pipe system of optimized weight was developed in order to transport thermal energy from the solar cells of the cylindrical satellite to the conical bottom. Because of stringent requirements on the fabrication process, electron beam welding is used for bonding. The welding process is described and preliminary test results are given. (LEW)

  5. Effects of B4C Addition on the Laser Beam Welding Characteristics of Al/SiC MMCs Produced By P/M

    Directory of Open Access Journals (Sweden)

    Serdar KARAOĞLU

    2011-01-01

    Full Text Available Fusion weldability characteristics of metal matrix composites (MMC produced by powder metallurgy (P/M are usually insufficient due to unwanted micro-structural changes that occur during welding. This study aims to investigate the effects of B4C addition as reinforcement on the weld quality of Al/SiC MMCs. After the production of Al/SiC MMCs by P/M with or without the addition of B4C, laser beam welding (LBW characteristics of the materials were investigated by focusing on the integrity of the welds. Optical microscopy (OM, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX were utilized for the characterization of the welds. Results show that Al/SiC MMCs produced by P/M can not be easily welded by LBW, but weldability characteristics of the material can be improved by the addition of B4C.

  6. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  7. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  8. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  9. Developments in welding and joining methods of metallic materials

    International Nuclear Information System (INIS)

    Pilarczyk, J.

    2007-01-01

    The impact of the welding technology on the economy development. The welding and joining methods review. The particular role of the laser welding and its interesting applications: with filler metal, twin spot laser welding, hybrid welding process, remote welding. The fiber lasers. The high intensity electron beams applications for surface modification. The TIG welding with the use of the active flux. Friction welding, friction stir welding and friction linear welding. (author)

  10. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  11. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  12. Feedback control of laser welding based on frequency analysis of light emissions and adaptive beam shaping

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2012-01-01

    Roč. 39, NOV (2012), s. 784-791 ISSN 1875-3892. [LANE 2012. Laser Assisted Net Shape Engineering /7./ International Conference on Photonic Technologies. Fürth, 12.11.2012-15.12.2012] Institutional support: RVO:68081731 Keywords : laser welding * feedback control * frequency analysis * adaptive beam shaping Subject RIV: BH - Optics, Masers, Lasers

  13. Scaling of spiking and humping in keyhole welding

    Energy Technology Data Exchange (ETDEWEB)

    Wei, P S; Chuang, K C [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); DebRoy, T [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Ku, J S, E-mail: pswei@mail.nsysu.edu.tw, E-mail: cielo.zhuang@gmail.com, E-mail: rtd1@psu.edu, E-mail: jsku@mail.nsysu.edu.tw [Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

    2011-06-22

    Spiking, rippling and humping seriously reduce the strength of welds. The effects of beam focusing, volatile alloying element concentration and welding velocity on spiking, coarse rippling and humping in keyhole mode electron-beam welding are examined through scale analysis. Although these defects have been studied in the past, the mechanisms for their formation are not fully understood. This work relates the average amplitudes of spikes to fusion zone depth for the welding of Al 6061, SS 304 and carbon steel, and Al 5083. The scale analysis introduces welding and melting efficiencies and an appropriate power distribution to account for the focusing effects, and the energy which is reflected and escapes through the keyhole opening to the surroundings. The frequency of humping and spiking can also be predicted from the scale analysis. The analysis also reveals the interrelation between coarse rippling and humping. The data and the mechanistic findings reported in this study are useful for understanding and preventing spiking and humping during keyhole mode electron and laser beam welding.

  14. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  15. Expert systems for superalloy studies

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES).

  16. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang

    2018-03-01

    The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.

  17. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  18. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  19. Heat Source - Materials Interactions during Fusion Welding.

    Science.gov (United States)

    1982-04-30

    the capabilities of ultrasonic weld pool measurement, and to address questions of applications to active pool size control. -- mom- 44 TIG welding ...preparation. The fraction of absorbed power increases dramatically upon formation of a keyhole . As a result, welds made with sharply beveled edge...laser end electron beam welding processes characteristically produce a deel,, narrow weld bead. This bead is formed by a keyhole mode of operation in

  20. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture

    International Nuclear Information System (INIS)

    Song, Yanli; Hua, Lin; Chu, Dongning; Lan, Jian

    2012-01-01

    Highlights: ► Relationship between Vickers hardness and material parameters was quantitatively built. ► Inhomogeneous weld properties were determined by hardness test combined the rule of mixture. ► Instrumented indentation tests verified these calculated properties of welds. ► Deviations between the calculated and experimental results were limited to 8.0%. -- Abstract: A novel approach has been proposed to characterize the inhomogeneous mechanical properties of weld materials by using the micro-Vickers hardness test combined with the rule of mixture. This proposed method has introduced the influences of the inhomogeneous properties of weld materials by considering the variations in plastic behaviour across the weld cross-section. The inhomogeneous properties of laser welding beams for tailor welded blanks (TWBs), which were three different types of combinations of DX56D and DP600 automotive steel sheets, were extracted by using this proposed method. The instrumented indentation tests were conducted to verify the measured inhomogeneous properties of weld materials. The fact that the calculated true stress–strain curves agreed well with the experimental ones has confirmed the reliability and accuracy of the proposed method.

  1. The effect of CO{sub 2} laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Köse, Ceyhun, E-mail: ceyhun.kose@gop.edu.tr [Faculty of Natural Sciences and Engineering, Department of Mechanical Engineering, Gaziosmanpaşa University, Tokat (Turkey); Kaçar, Ramazan, E-mail: rkacar@karabuk.edu.tr [Faculty of Technology Department of Manufacturing Engineering, Karabuk University, Karabuk 78050 (Turkey); Zorba, Aslı Pınar, E-mail: aslipinarzorba@gmail.com [Graduate School of Natural and Applied Sciences, Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Bağırova, Melahat, E-mail: mbagir@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Allahverdiyev, Adil M., E-mail: adil@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey)

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO{sub 2} laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and

  2. Microstructural tomography of a Ni{sub 70}Cr{sub 20}Al{sub 10} superalloy using focused ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uchic, M.D. [Materials and Manufacturing Directorate, Air Force Research Laboratory, AFRL/RXLM, Wright-Patterson Air Force Base, OH 45433-7817 (United States); De Graef, M., E-mail: degraef@cmu.edu [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Wheeler, R. [UES Inc., Dayton, OH 45432 (United States); Dimiduk, D.M. [Materials and Manufacturing Directorate, Air Force Research Laboratory, AFRL/RXLM, Wright-Patterson Air Force Base, OH 45433-7817 (United States)

    2009-09-15

    A focused ion beam (FIB) microscope has been used to simultaneously depth profile and image the {gamma}-{gamma}{sup '} microstructure of a nickel base superalloy using normal incidence milling in order to characterize the precipitate microstructure in three dimensions (3D). The normal incidence milling rates of the {gamma} and {gamma}{sup '} phases in this alloy are closely matched when the orientation of the depth-profiled surface is near <001>, which allows for uniform material removal to depths up to a couple of microns. Depth-profiling experiments consisted of automated ion milling and collection of ion-generated secondary-electron images at specified intervals, and was demonstrated for a voxel resolution of roughly 15x15x16nm{sup 3}. Image-processing software was used for automated processing of the 2D image sequence to render the {gamma} precipitate structure in 3D.

  3. Numerical Simulation Of The Laser Welding

    Directory of Open Access Journals (Sweden)

    Aleksander Siwek

    2008-01-01

    Full Text Available The model takes into consideration thermophysical and metallurgical properties of theremelting steel, laser beam parameters and boundary conditions of the process. As a resultof heating the material, in the area of laser beam operation a weld pool is being created,whose shape and size depends on convection caused by the Marangoni force. The directionof the liquid stream depends on the temperature gradient on the surface and on the chemicalcomposition as well. The model created allows to predict the weld pool shape depending onmaterial properties, beam parameters, and boundary conditions of the sample.

  4. Soft Computing Methods in Design of Superalloys

    Science.gov (United States)

    Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.

    1996-01-01

    Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.

  5. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  6. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  7. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  8. Superalloy applications in the nuclear field

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Padilha, A.F.

    1984-01-01

    The process conditions in the areas of nuclear fuel processing, fabrication, utilization, reprocessing and disposal are severe, demanding therefore the use of materials with high temperature mechanical strength and corrosion resistance. A number of refractory metal containing superalloys have found application in the diferrent areas of the nuclear field. The main aspects of the microstructure, strengthening mechanisms and corrosion resistance of 3 superalloys, namely Incoloy 825, Inconel 718 and Hastelloy C have been discussed. The role of the refractory metal elements in influencing the mechanical strength and corrosion resistance of superalloys has been emphasised. (Author) [pt

  9. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    Science.gov (United States)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  10. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints

    International Nuclear Information System (INIS)

    Zhang, Bing-Gang; Zhao, Jian; Li, Xiao-Peng; Chen, Guo-Qing

    2015-01-01

    The electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with or without copper filler wire was studied in detail. The temperature fields and magnitude and distribution of stress fields in the joints during the welding process were numerically simulated using finite element method. The temperature cycles and residual stresses were also experimentally measured by thermometric and hole-drilling methods, respectively. The accuracy of the modeling procedure was verified by the good agreement between the calculated results and experimental data. The temperature distribution in the joint was found to be asymmetric along the center of weld. In particular, the temperature in the copper alloy plate is much higher than that in the 304 SS plate owing to the great difference in thermal conductivity between the two materials. The peak three-dimensional residual stresses all appeared at the interface between the copper and steel in the two different joints. Furthermore, the weld was subjected to tensile stress. The longitudinal residual stress, generally the most harmful to the integrity of the structure among the stress components in EBW with filler wire (EBFW), was 53 MPa lower than that of autogenous EBW (AEBW), and the through-thickness residual stress was 12 MPa lower. The transverse residual stress of EBFW was 44 MPa higher than that of AEBW. However, analysis of the von Mises stress showed that the EBFW process effectively reduced the extent of the high residual stress region in the weld location and the magnitude of the residual stresses in the copper side compared with those of the AEBW joint. - Highlights: • Copper and steel was welded by electron beam welding with copper filler wire. • The copper wire fed into gap can reduce the peak value of residual stress. • The peak value of longitudinal stress can be reduced 53 MPa by the filler wire. • The range of nov Mises stress in the weld could be reduced by the wire

  11. Introduction to superalloys

    International Nuclear Information System (INIS)

    Li-Chenggong

    1995-01-01

    Throughout history, humans have developed mechanical devices to satisfy their needs, Jet aircraft was thrust into public awareness with the 1937 flight of Hans Von Ohains turbine engine Heinkel in Germany and an independent development, the 1939 flight of Whittle's engine in England. Since that time, progress in jet propulsion and industrial gas turbines has been a growing engineering technology of immense importance. This opened a new era of engineering material called superalloy. Superalloy is an alloy developed for elevated temperature service usually based on group VIIA elements, where relatively severe mechanical stressing is encountered, and where high surface stability is frequently required. The title of the speech is T he Effect of a Changing Environment on the requirements of Engine Materials . In this speech, the author emphasized that may changes in the business environment have occurred in recent years, the aircraft engine business is rapidly changing from a military focus to a commercial one, speed to market will assume greater importance in the engine industry, and greater attention to customer value will be required to remain competitive etc. However the superalloys will continue to be developed in the future. (author) 14 figs

  12. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    Science.gov (United States)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  13. Welding parameter optimization of alloy material by friction stir welding using Taguchi approach and design of experiments

    Science.gov (United States)

    Karwande, Amit H.; Rao, Seeram Srinivasa

    2018-04-01

    Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.

  14. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  15. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  16. Global and local characteristics of an autogenous single pass electron beam weld in thick gage UNS S41500 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarafan, S., E-mail: Sheida.Sarafan.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada); National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Wanjara, P., E-mail: priti.wanjara@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Gholipour, J., E-mail: Javad.gholipour@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Champliaud, H., E-mail: henri.champliaud@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada)

    2016-06-01

    Electron beam welding of UNS S41500, a low carbon martensitic stainless steel utilized in hydroelectric turbine manufacturing, was investigated by applying a single pass autogenous process to penetrate a section thickness of 72 mm without preheating. In the as-welded and post-weld heat treated conditions, the evolution in microhardness and microstructure across the weldments, as well as the global and local tensile properties, were evaluated. In the as-welded condition, assessment of the microhardness and the associated microstructure across the welds led to the identification of six regions, including the fusion zone, four heat affected zones and the base metal; each of these regions consisted of different phase constituents, such as tempered martensite, untempered martensite, delta ferrite and retained austenite. Post-weld heat treatment, undertaken to temper the untempered martensite in the as-welded microstructure, was effective in homogenizing the hardness across the weldment. The mechanical response of the welds, determined through tensile testing at room temperature with an automated non-contact three-dimensional deformation measurement system, indicated that the global tensile properties in the as-welded and post-weld heat treated conditions met the acceptance criteria in the ASME Section IX standard. Also, evaluation of the local tensile properties in the fusion and heat affected zones of the as-welded samples allowed a more comprehensive understanding of the strength and ductility associated with the different microstructures in the “composite” nature of the weldment. Fractographic analysis demonstrated dimpled features on the tensile fracture surfaces and failure was associated with debonding between the martensitic matrix and the secondary phases (such as delta ferrite and retained austenite) that resulted in the formation, growth and coalescence of voids into a macroscale crack.

  17. A quantitative evaluation of the L.B.W. efficiency on AISI 304 bead on plates welded under different focusing and tilted laser beam conditions

    Science.gov (United States)

    Daurelio, Giuseppe; Ludovico, Antonio D.; Lugara, M. P.; De Filippis, L. A. C.; Spera, A. M.; Rocco, S.

    2005-03-01

    The aim of this search is to evaluate the WE (Welding Efficiency) of each beads versus the different positions of the laser beam optical focus (positive or negative or zero values) respect to the work-piece surface and also versus different laser beam incidence angles (80° and 70°) by using two laser power levels (2 and 2.5 KW) and two welding speeds (3 and 6 m/min). The WE values have been reported on two DA.LU. method plots and the relate evaluations regarding the same ones as well as the recorded best parameters have been evidenced.

  18. Fusion welding of thin metal foils

    International Nuclear Information System (INIS)

    Casey, H.

    1975-01-01

    Aspects of fusion welding of thin metal foils are reviewed and the current techniques employed at LASL to join foils are described. Techniques for fusion welding approximately 0.025-mm-thick foils of copper, aluminum, and stainless steels have been developed using both electron beam and laser welding equipment. These techniques, together with the related aspects of joint design, tooling and fixturing, joint preparation, and modifications to the commercially available welding equipment, are included in the review. (auth)

  19. Effect of PWHT on Microstructure, Mechanical and Corrosion Behaviour of Gas Tungsten Arc Welds of IN718 Superalloys

    Science.gov (United States)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work aims to improve corrosion resistance and mechanical behavior of the welds with suitable post weld heat treatment i.e. direct aging and solutionizing treatments (980STA, 1080STA). Gas tungsten arc welding (GTAW) has been performed on Inconel 718 (IN718) nickel based super alloy plates with 3mm thickness. The structural –property relationship of the post weld heat treated samples is judged by correlating the microstructural changes with observed mechanical behavior and pitting corrosion resistance of the welds As-recevied, direct aging (DA), 980STA,1080STA were studied. Welds were characterized for microstructure changes with scanning electron microscopy (SEM) and optical microscopy (OM).Vickers micro- hardness tester was used to measure the hardness of the weldments. Potential-dynamic polarization testing was carried out to study the pitting corrosion resistance in 3.5%NaCl (Sodium chloride) solution at 30°C.Results of the present study established that post weld heat treatments resulted in promoting the element segregation diffusion and resolve them from brittle laves particles in the matrix. Increased precipitation of strengthening phases lead to a significant increase in fusion zone hardness of 1080STA post weld heat treated condition compared to as welded, direct aged, 980STA conditions. Due to significant changes in the microstructural behavior of 1080STA condition resulted in superior pitting corrosion resistance than 980STA, direct aged and as- recevied conditions of IN718 GTA welds

  20. Heat affected zone microfissuring in a laser beam welded directionally solidified Ni3Al-base alloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Ding, R.G.; Chaturvedi, M.C.

    2006-01-01

    The laser beam weld heat affected zone (HAZ) microstructure of a newly developed aerospace alloy, IC 6, was examined. HAZ microfissuring was observed and found to be associated with grain boundary liquation facilitated by subsolidus eutectic-type transformation of the alloy's major phase, γ' precipitates, and interfacial melting of M 6 C-type carbide and (Mo 2 Ni)B 2 -type boride particles

  1. Three-dimensional chemical analysis of laser-welded NiTi–stainless steel wires using a dual-beam FIB

    International Nuclear Information System (INIS)

    Burdet, P.; Vannod, J.; Hessler-Wyser, A.; Rappaz, M.; Cantoni, M.

    2013-01-01

    The biomedical industry has an increasing demand for processes to join dissimilar metals, such as laser welding of NiTi and stainless steel wires. A region of the weld close to the NiTi interface, which previously was shown to be prone to cracking, was further analyzed by energy dispersive spectrometry (EDS) extended in the third dimension using a focused ion beam. As the spatial resolution of EDS analysis is not precise enough to resolve the finest parts of the microstructure, a new segmentation method that uses in addition secondary-electron images of higher spatial resolution was developed. Applying these tools, it is shown that this region of the weld close to the NiTi interface does not comprise a homogeneous intermetallic layer, but is rather constituted by a succession of different intermetallics, the composition of which can be directly correlated with the solidification path in the ternary Fe–Ni–Ti Gibbs simplex

  2. Electron beam generated in low pressure noble gas atmosphere – Compact device construction and applications

    International Nuclear Information System (INIS)

    Zawada, A.; Konarski, P.

    2013-01-01

    During the process of low vacuum electron beam welding the energy of electrons is lower than the energy of electrons in the classical electron beam welding equipment. The classical electron beam welding can not always be used to weld of small work-piece details. Sometimes it’s impossible to reduce the electron beam energy because of poor focusing in the conventional electron beam welding machines. Low vacuum electron beam welding technique is well suitable to several niche products, such as thermocouples or aluminium seals. It also allows to treat the surface of dielectric materials, which is not possible using classical electron beam welding technique. The costs of low vacuum electron beam welding process are very low. (authors)

  3. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Science.gov (United States)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  4. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials

    International Nuclear Information System (INIS)

    Velu, M.; Bhat, Sunil

    2013-01-01

    Highlights: ► Optical and scanning electron microscopy show defect free weld interfaces. ► Energy dispersive spectroscopy shows low dilution level of the weld by Fe. ► XRD studies show no brittle intermetallic phases in the weld interfaces. ► Weld interfaces did not fail during tensile, transverse bending and impact tests. ► The joint exhibits superior strength properties than that of bronze filler. - Abstract: The paper presents metallurgical and mechanical examinations of joints between dissimilar metals viz. copper (UNSC11000) and alloy steel (En31) obtained by Shielded Metal Arc Welding (SMAW) using two different filler materials, bronze and nickel-base super alloy. The weld bead of the joint with bronze-filler displayed porosity, while that with nickel-filler did not. In tension tests, the weldments with bronze-filler fractured in the centre of the weld, while those with nickel-filler fractured in the heat affected zone (HAZ) of copper. Since the latter exhibited higher strength than the former, all the major tests were undertaken over the joints with nickel-filler alone. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) indicated corrugated weld interfaces and favorable elemental diffusions across them. X-ray diffraction (XRD) studies around the weld interfaces did not reveal any detrimental intermetallic compounds. Transverse bending tests showed that flexural strengths of the weldments were higher than the tensile strengths. Transverse side bend tests confirmed good ductility of the joints. Shear strength of the weld-interface (Cu–Ni or Ni–steel) was higher than the yield strength of weaker metal. Microhardness and Charpy impact values were measured at all the important zones across the weldment

  5. Welding with high power fiber lasers - A preliminary study

    International Nuclear Information System (INIS)

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  6. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    Science.gov (United States)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  7. Mechanical properties of similar and dissimilar weldments of RAFMS and AISI 316L (N) SS prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.K., E-mail: shaju@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Das, C.R. [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute of Plasma Research, Gandhi Nagar (India); Mastanaiah, P.; Patel, M. [Defence Research and Development Laboratory, Hyderabad (India); Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603 102 (India); Murthy, C.V.S. [Defence Research and Development Laboratory, Hyderabad (India); Kumar, Rajendra [Institute of Plasma Research, Gandhi Nagar (India)

    2014-10-15

    Highlights: • Increase of W content in RAFM steel can result in retention of delta ferrite in the EB weld of the steel. • Presence of delta ferrite seems to affect the ductile brittle transition temperature of the weld metal. • There is improper mixing of the two base metals in the fusion zone dissimilar welds of RAFM steel and austenitic stainless steel made by EB welding. - Abstract: Effect of weld metal composition on microstructure and toughness of weld metal is studied in this paper. Weld joints of reduced activation ferritic/martensitic (RAFM) steel containing 1.0 and 1.4 wt.% W were prepared using electron beam welding (EBW) process. Dissimilar weld joints between 1.0 wt.% W RAFM steel and AISI 316L (N) SS were also prepared using EBW process. The effect of post weld heat treatment (PWHT) temperatures on microstructure and mechanical properties was also studied. Microstructural observation reveals delta–ferrite in 1.4 wt.% W containing weld metal, which is absent in 1.0 wt.% W weld metal. In the case of the dissimilar weld metal, microstructure shows presence of lath martensite and retained austenite. Austenite was stable even after PWHT and its presence is attributed to high nickel (5–6 wt.%) content in the dissimilar weld metal. Hardness of RAFM steel weld metal was found to be 270–290 VHN after PWHT at 750 °C for 2 h. Impact toughness of both 1.0 and 1.4 wt.% W RAFM steel is high (>250 J) at ambient temperature. However, after PWHT, variation of toughness with temperature is more drastic for 1.4 wt.% W RAFM steel weld metal than the other. As a result, ductile brittle transition temperature (DBTT) for the 1.4 wt.% steel weld metal is close to 0 °C while that of the 1.0 wt.% W steel is close to that of the base metal (∼−80 °C)

  8. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  9. Enhancement of mechanical properties and failure mechanism of electron beam welded 300M ultrahigh strength steel joints

    International Nuclear Information System (INIS)

    Zhang, Guodong; Yang, Xinqi; He, Xinlong; Li, Jinwei; Hu, Haichao

    2013-01-01

    Highlights: ► Normalizing at 970 °C plus quenching and tempering cannot refine the columnar grains. ► Ductility and toughness of conventional quenched and tempered joint are very low. ► An optimum combination of strength and ductility was obtained for the welded joints. ► Intergranular cracked columnar dendritic grains were found on the fracture surface. -- Abstract: In this study, four post-weld heat treatment (PWHT) schedules were selected to enhance the mechanical properties of electron beam welded 300M ultrahigh strength steel joints. The microstructure, mechanical properties and fractography of specimens under the four post-weld heat treatment (PWHT) conditions were investigated and also compared with the base metal (BM) specimens treated by conventional quenching and tempering (QT). Results of macro and microstructures indicate that all of the four PWHT procedures did not eliminate the coarse columnar dendritic grains in weld metal (WM). Whereas, the morphology of the weld centerline and the boundaries of the columnar dendritic grains in WM of weld joint specimens subjected to the PWHT procedure of normalizing at 970 °C for 1 h followed by conventional quenching and tempering (W-N2QT) are indistinct. The width of martensite lath in WM of W-N2QT is narrower than that of specimens subjected to other PWHT procedures. Experimental results indicate that the ductility and toughness of conventional quenched and tempered joints are very low compared with the BM specimens treated by conventional QT. However, the strength and impact toughness of the W-N2QT specimens are superior to those of the BM specimen treated by conventional QT, and the ductility is only slightly inferior to that of the latter.

  10. Results of the Electron-Beam Button Melting of very clean Ni-base superalloys for the identification of nonmetallic inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Hauner, F.; Stephan, H.; Stumpp, H.

    1986-02-01

    The reliability of components made of high strength materials is substantially influenced by their cleanliness. For example, the ductility, the fatigue-characteristics and the stress resistance of high strength alloys can be improved by increasing the cleanliness along with decreasing the inclusion size to below 25 ..mu..m. For the analysis of such high clean alloys with decreasing size of nonmetallic inclusions, the metallographic texting methods become troublesome and inexact for a dependable quality control. The Electron-Beam Button Melt Test offers a possibility for the examination and qualification of the small amounts of different inclusions in the high clean materials. During a process-controlled melting procedure, inclusions of high density sink to the bottom of a water-cooled copper crucible. Low density inclusions float to the pool surface and are concentrated in the upper center of the button by means of a controlled solidification of the melting pool. For the utilization of the process in the production quality control, development and research, we have developed the Electron-Beam Button Melting Furnace ES 1/07/30 B. In this paper we will present results of the application of the ES1/07/30 B. In this paper we will present results of the application of the ES 1/07/30 B to the EB-Button melting of the Ni-Base Superalloys IN718 and Astroloy. (orig.).

  11. Microstructural Characterization of a Polycrystalline Nickel-Based Superalloy Processed via Tungsten-Intert-Gas-Shaped Metal Deposition

    Science.gov (United States)

    Clark, Daniel; Bache, Martin R.; Whittaker, Mark T.

    2010-12-01

    Recent trials have produced tungsten-inert-gas (TIG)-welded structures of a suitable scale to allow an evaluation of the technique as an economic and commercial process for the manufacture of complex aeroengine components. The employment of TIG welding is shown to have specific advantages over alternative techniques based on metal inert gas (MIG) systems. Investigations using the nickel-based superalloy 718 have shown that TIG induces a smaller weld pool with less compositional segregation. In addition, because the TIG process involves a pulsed power source, a faster cooling rate is achieved, although this rate, in turn, compromises the deposition rate. The microstructures produced by the two techniques differ significantly, with TIG showing an absence of the detrimental delta and Laves phases typically produced by extended periods at a high temperature using MIG. Instead, an anisotropic dendritic microstructure was evident with a preferred orientation relative to the axis of epitaxy. Niobium was segregated to the interdendritic regions. A fine-scale porosity was evident within the microstructure with a maximum diameter of approximately 5 μm. This porosity often was found in clusters and usually was associated with the interdendritic regions. Subsequent postdeposition heat treatment was shown to have no effect on preexisting porosity and to have a minimal effect on the microstructure.

  12. Fusion welding studies using laser on Ti-SS dissimilar combination

    Science.gov (United States)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  13. Modelling and simulation of superalloys. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)

    2014-07-01

    Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.

  14. Method for laser welding a fin and a tube

    Science.gov (United States)

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  15. Empirical modeling of high-intensity electron beam interaction with materials

    Science.gov (United States)

    Koleva, E.; Tsonevska, Ts; Mladenov, G.

    2018-03-01

    The paper proposes an empirical modeling approach to the prediction followed by optimization of the exact shape of the cross-section of a welded seam, as obtained by electron beam welding. The approach takes into account the electron beam welding process parameters, namely, electron beam power, welding speed, and distances from the magnetic lens of the electron gun to the focus position of the beam and to the surface of the samples treated. The results are verified by comparison with experimental results for type 1H18NT stainless steel samples. The ranges considered of the beam power and the welding speed are 4.2 – 8.4 kW and 3.333 – 13.333 mm/s, respectively.

  16. Ductile fracture of two-phase welds under 77K

    International Nuclear Information System (INIS)

    Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel', A.V.

    1984-01-01

    The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters σsub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulaing the part of the basic metal in joint content

  17. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal

    Science.gov (United States)

    Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan

    2016-02-01

    Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  18. Study on microstructure and mechanical properties of Al–Mg–Mn–Er alloy joints welded by TIG and laser beam

    International Nuclear Information System (INIS)

    Yang, Dongxia; Li, Xiaoyan; He, Dingyong; Huang, Hui; Zhang, Liang

    2012-01-01

    Highlights: ► The microstructural characterization of the TIG and laser welded Al–Mg–Mn–Er alloy is studied. ► Transition zone and HAZ are found to disappear near the fusion boundaries in LBW joint. ► Primary Al 3 Er in LBW weld provides more nucleation sites and lead to the grain refinement. ► The evaporation of alloying element Mg in TIG and LBW joints is investigated. ► Reasons for high strength of LBW joint are fine-grain strengthening and solution strengthening. -- Abstract: Al-4.7Mg-0.7Mn-0.3Er alloy plates were welded by laser beam welding (LBW) and tungsten inert gas (TIG). Mechanical properties and microstructures of both welded joints were analyzed. The results showed that the tensile strength of LBW joint was 315 MPa, which was approximately 10% higher than that of TIG welded joint. This was attributed to the fine grains, dispersed primary Al 3 Er phase and low Mg evaporation in LBW weld. Equiaxed grains with average size of 30 μm were obtained in the fusion zone, which were much smaller than that of 90 μm in the fusion zone of TIG joint, due to the low heat input during LBW process. Moreover, finer primary Al 3 Er particles were uniformly distributed in the LBW joints, which resulted in a substantial increase of nucleation rate in LBW welds. In addition, it was also found that Mg concentrations in the fusion zones, in both TIG and LBW joints, were lower than that of the base one tested by EPMA. The burning loss rates of Mg in TIG and LBW joints were 36% and 22%, respectively.

  19. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Octav P., E-mail: octav.ciuca@manchester.ac.uk [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Carter, Richard M. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom); Prangnell, Philip B. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Hand, Duncan P. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom)

    2016-10-15

    Precision welded joints, produced between fused silica glass and aluminium by a newly-developed picosecond-pulse laser technique, have been analysed for the first time using a full range of electron microscopy methods. The welds were produced as lap joints by focusing a 1.2 μm diameter laser beam through the transparent glass top sheet, slightly below the surface of the metal bottom sheet. Despite the extremely short interaction time, extensive reaction was observed in the weld zone, which involved the formation of nanocrystalline silicon and at least two transitional alumina phases, γ- and δ-Al{sub 2}O{sub 3}. The weld formation process was found to be complex and involved: the formation of a constrained plasma cavity at the joint interface, non-linear absorption in the glass, and the creation of multiple secondary keyholes in the metal substrate by beam scattering. The joint area was found to expand outside of the main interaction volume, as the energy absorbed into the low conductivity and higher melting point silica glass sheet melted the aluminium surface across a wider contact area. The reasons for the appearance of nanocrystalline Si and transitional alumina reaction products within the welds are discussed. - Highlights: •Pulsed laser welding of dissimilar materials causes extensive chemical reactivity. •Metastable Al{sub 2}O{sub 3} phases form due to laser-induced highly-transient thermal regime. •Fused silica is reduced by Al to form nanocrystalline Si. •Mechanism of joint formation is discussed.

  20. Advanced cutting, welding and inspection methods for vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L. E-mail: jonesl@ipp.mgg.de; Alfile, J.-P.; Aubert, Ph.; Punshon, C.; Daenner, W.; Kujanpaeae, V.; Maisonnier, D.; Serre, M.; Schreck, G.; Wykes, M

    2000-11-01

    ITER requires a 316 l stainless steel, double-skinned vacuum vessel (VV), each shell being 60 mm thick. EFDA (European Fusion Development Agreement) is investigating methods to be used for performing welding and NDT during VV assembly and also cutting and re-welding for remote sector replacement, including the development of an Intersector Welding Robot (IWR) [Jones et al. This conference]. To reduce the welding time, distortions and residual stresses of conventional welding, previous work concentrated on CO{sub 2} laser welding and cutting processes [Jones et al. Proc. Symp. Fusion Technol., Marseilles, 1998]. NdYAG laser now provides the focus for welding of the rearside root and for completing the weld for overhead positions with multipass filling. Electron beam (E-beam) welding with local vacuum offers a single-pass for most of the weld depth except for overhead positions. Plasma cutting has shown the capability to contain the backside dross and preliminary work with NdYAG laser cutting has shown good results. Automated ultrasonic inspection of assembly welds will be improved by the use of a phased array probe system that can focus the beam for accurate flaw location and sizing. This paper describes the recent results of process investigations in this R and D programme, involving five European sites and forming part of the overall VV/blanket research effort [W. Daenner et al. This conference].

  1. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    Science.gov (United States)

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  2. The characteristics of welded joints for air conditioning application

    Science.gov (United States)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  3. Forging Oxide-Dispersion-Strengthened Superalloys

    Science.gov (United States)

    Harf, F. H.; Glasgow, T. K.; Moracz, D. J.; Austin, C. M.

    1986-01-01

    Cladding of mild steel prevents surface cracking when alloy contacts die. Continual need for improvements in properties of alloys capable of withstanding elevated temperatures. Accomplished by using oxide-dispersion-strengthed superalloys such as Inconel Alloy MA 6000. Elevated tensile properties of forged alloy equal those of hot-rolled MA 6000 bar. Stress-rupture properties somewhat lower than those of bar stock but, at 1,100 degrees C, exceed those of strongest commercial single crystal, directionally solidified and conventionally cast superalloys.

  4. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    Science.gov (United States)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  5. Structural Performance of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe

    2017-02-01

    The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.

  6. Corrosion resistance of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban

    2007-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  7. Corrosion resistance of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban [Corrosion and Metals Research Institute, Sto ckholm (Sweden)

    2007-03-15

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  8. Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel

    Science.gov (United States)

    Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan

    2018-01-01

    In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.

  9. Welding process automation in power machine building

    International Nuclear Information System (INIS)

    Mel'bard, S.N.; Shakhnov, A.F.; Shergov, I.V.

    1977-01-01

    The level of welding automation operations in power engineering and ways of its enhancement are highlighted. Used as the examples of comlex automation are an apparatus for the horizontal welding of turbine rotors, remotely controlled automatic machine for welding ring joint of large-sized vessels, equipment for the electron-beam welding of steam turbine assemblies of alloyed steels. The prospects of industrial robots are noted. The importance of the complex automation of technological process, including stocking, assemblying, transportation and auxiliary operations, is emphasized

  10. Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification

    Science.gov (United States)

    Babu, S. S.; Raghavan, N.; Raplee, J.; Foster, S. J.; Frederick, C.; Haines, M.; Dinwiddie, R.; Kirka, M. K.; Plotkowski, A.; Lee, Y.; Dehoff, R. R.

    2018-06-01

    Innovative designs for turbines can be achieved by advances in nickel-based superalloys and manufacturing methods, including the adoption of additive manufacturing. In this regard, selective electron beam melting (SEBM) and selective laser melting (SLM) of nickel-based superalloys do provide distinct advantages. Furthermore, the direct energy deposition (DED) processes can be used for repair and reclamation of nickel alloy components. The current paper explores opportunities for innovation and qualification challenges with respect to deployment of AM as a disruptive manufacturing technology. In the first part of the paper, fundamental correlations of processing parameters to defect tendency and microstructure evolution will be explored using DED process. In the second part of the paper, opportunities for innovation in terms of site-specific control of microstructure during processing will be discussed. In the third part of the paper, challenges in qualification of AM parts for service will be discussed and potential methods to alleviate these issues through in situ process monitoring, and big data analytics are proposed.

  11. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  12. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  13. Recent progress of welding technology applied for nuclear components

    International Nuclear Information System (INIS)

    Kobayashi, T.; Hoshino, T.; Koide, H.; Yamamoto, T.; Takahashi, T.; Hashimoto, T.

    2005-01-01

    More than 30 years have been passed since the first nuclear power plant was in operation. Various needs for welding technology have been emerged and the technology has been developed. This paper first describes the key technologies in BWR power plants and then introduces ones in PWR power plants. Welding techniques are introduced in detail. Applications of arc welding, gas tungsten arc welding, electroslag welding, electron beam welding are explained. In order to avoid stress corrosion cracking, water jet and laser peening techniques are used. (author)

  14. A high-throughput search for new ternary superalloys

    Science.gov (United States)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  15. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  16. Remote welding and cutting techniques for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ishide, T.; Oda, Y.; Nagaoka, E.; Ue, K.; Kamei, H.

    1995-01-01

    Experimental investigation of the YAG laser cutting/welding and plasma gouging techniques has been conducted to examine their suitability for remote maintenance systems in future fusion experimental reactors. Using a hybrid beam coupling system, two laser beams of 500W and 740W powers were successfully combined to provide a 1,240W beam power. The combined laser was transmitted through the optical fiber for cutting and welding. The transmission loss for the beams is in the range of 13% to 14%, which is low. As for plasma gouging, the shallow gouging made a groove measuring 10 mm in width and 4 mm in depth on the stainless steel plates at a traversing speed of 75 cm/min, while the deep gouging made a groove of 12 mm in width and 7.5 mm in depth at a traversing speed of 50 cm/min. In addition, it was found that the shallow gouging did not leave byproducts from the material, providing a clean surface. Based on the findings, it is shown that the YAG laser cutting/welding and plasma gouging techniques can be us3ed for remote welding and cutting in future fusion experimental reactors

  17. Remote welding and cutting techniques for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ishide, T.; Oda, Y.; Nagaoka, E.; Ue, K.; Kamei, H. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan)

    1995-12-31

    Experimental investigation of the YAG laser cutting/welding and plasma gouging techniques has been conducted to examine their suitability for remote maintenance systems in future fusion experimental reactors. Using a hybrid beam coupling system, two laser beams of 500W and 740W powers were successfully combined to provide a 1,240W beam power. The combined laser was transmitted through the optical fiber for cutting and welding. The transmission loss for the beams is in the range of 13% to 14%, which is low. As for plasma gouging, the shallow gouging made a groove measuring 10 mm in width and 4 mm in depth on the stainless steel plates at a traversing speed of 75 cm/min, while the deep gouging made a groove of 12 mm in width and 7.5 mm in depth at a traversing speed of 50 cm/min. In addition, it was found that the shallow gouging did not leave byproducts from the material, providing a clean surface. Based on the findings, it is shown that the YAG laser cutting/welding and plasma gouging techniques can be us3ed for remote welding and cutting in future fusion experimental reactors.

  18. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  19. Welding techniques development of CLAM steel for Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)], E-mail: lcj@ipp.ac.cn; Huang Qunying; Wu Qingsheng; Liu Shaojun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Lei Yucheng [Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Muroga, Takeo; Nagasaka, Takuya [National Institute for Fusion Science, Toki, Jifu, 509-5292 (Japan); Zhang Jianxun [Xi' an Jiaotong University, Xi' an, Shanxi, 710049 (China); Li Jinglong [Northwestern Polytechnical University, Xi' an, Shanxi, 710072 (China)

    2009-06-15

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  20. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  1. Report Summarizing the Effort Required to Initiate Welding of Irradiated Materials within the Welding Cubicle

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Greg [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Sutton, Benjamin J. [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Tatman, Jonathan K. [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Vance, Mark Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Allen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clark, Scarlett R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Jian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gibson, Brian T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    The advanced welding facility within a hot cell at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory (ORNL), which has been jointly funded by the U.S. Department of Energy (DOE), Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program and the Welding and Repair Technology Center, is in the final phase of development. Research and development activities in this facility will involve direct testing of advanced welding technologies on irradiated materials in order to address the primary technical challenge of helium induced cracking that can arise when conventional fusion welding techniques are utilized on neutron irradiated stainless steels and nickel-base alloys. This report details the effort that has been required since the beginning of fiscal year 2017 to initiate welding research and development activities on irradiated materials within the hot cell cubicle, which houses welding sub-systems that include laser beam welding (LBW) and friction stir welding (FSW) and provides material containment within the hot cell.

  2. Aspects of welding of zircaloy thin tube to end plugin the experimental welding facility of fuel element fabrication laboratory

    International Nuclear Information System (INIS)

    Shafy, M.; El-Hakim, E.

    1997-01-01

    The work was achieved within the scope of developing egyptian nuclear fuel fabrication laboratory in inshas. It showed the results of developing a welding facility for performing a qualified zircaloy-2 and 4 thin tubes to end weld joints. The welding chamber design was developed to get qualified weld for both PWR and CANDU fuel rod configurations. Experimental works for optimizing the welding parameters of tungsten inert gas (TIG) welding and electron beam (EB) welding processes were achieved. The ld penetration deeper than the wall tube thickness can be obtained for qualified end plug weld joints. It recommended to use steel compensating block for radiographic inspection of end plug weld joints. The predominate defects that can be expected in end plug weld joints, are lack of penetration and cavity. The microstructure of the fusion zone and heat affected zones are Widmanstaetten structure and its grain size is drastically sensible to the heat generation and removal of arc welding. 16 figs

  3. Recent trends in superalloys research for critical aero-engine components

    Energy Technology Data Exchange (ETDEWEB)

    Remy, Luc [Mine ParisTech, CNRS UMR 7633, 91 - Evry (France). Centre des Materiaux; Guedou, Jean-Yves [Snecma Safran Group, Moissy-Cramayel (France). Materials and Processes Dept.

    2010-07-01

    This paper is a brief survey of common research activity on superalloys for aero-engines between Snecma and Mines ParisTech Centre des Materiaux during recent years. First in disks applications, the development of new powder metallurgy superalloys is shown. Then grain boundary engineering is investigated in a wrought superalloy. Secondly, design oriented research on single crystals blades is shown: a damage model for low cycle fatigue is used for life prediction when cracks initiated at casting pores. The methodology developed for assessing coating life is illustrated for thermal barrier coating deposited on AMI single crystal superalloy. (orig.)

  4. Electron beam welding of copper lids. Status report up to 2001-12-31

    International Nuclear Information System (INIS)

    Claesson, Soeren; Ronneteg, Ulf

    2003-10-01

    The report describes a summary of achieved results from 21 lid welds and numerous test block welds, performed at SKB Canister Laboratory in Oskarshamn for the period 1999-02-12 to 2001-12-31. Good weld quality has been achieved and some welds fulfilled the preliminary interpretation criteria, but the weld process need to be further developed before process qualification. Many different parameter settings have been tested and the influence on the weld profile has been mapped and documented. Deformations of the canister after welding have been measured and found to be very small. The preliminary inspection methods of the weld quality works satisfactory for the need of the development of the weld process. The welding machine is a new design developed for welding of thick copper in reduced pressure and performs well, but suffers from teething problems, which has delayed the work with development of the weld process. The welding system needs to be further developed and improved to work more reliably in a production plant

  5. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel

    International Nuclear Information System (INIS)

    Mortezaie, A.; Shamanian, M.

    2014-01-01

    In the present study, dissimilar welding between Inconel 718 nickel-base superalloy and 310S austenitic stainless steel using gas tungsten arc welding process was performed to determine the relationship between the microstructure of the welds and the resultant mechanical and corrosion properties. For this purpose, three filler metals including Inconel 625, Inconel 82 and 310 stainless steel were used. Microstructural observations showed that weld microstructures for all filler metals were fully austenitic. In tension tests, welds produced by Inconel 625 and 310 filler metals displayed the highest and the lowest ultimate tensile strength, respectively. The results of Charpy impact tests indicated that the maximum fracture energy was related to Inconel 82 weld metal. According to the potentiodynamic polarization test results, Inconel 82 exhibited the highest corrosion resistance among all tested filler metals. Finally, it was concluded that for the dissimilar welding between Inconel 718 and 310S, Inconel 82 filler metal offers the optimum properties at room temperature. - Highlights: • Three filler metals including Inconel 625, Inconel 82 and 310 SS were used. • A columnar to equiaxed dendritic structure was seen for IN-625 weld metal. • A granular austenitic microstructure obtained for Inconel 82 weld metal. • Microstructure of 310 weld metal includes solidification cracks along SSGB. • IN-82 weld metal showed the highest corrosion potential

  6. 76 FR 8773 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1090 (Review)] Superalloy Degassed Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five-year... revocation of the antidumping duty order on superalloy degassed chromium from Japan would be likely to lead...

  7. The Mechanical Properties of Candidate Superalloys for a Hybrid Turbine Disk

    Science.gov (United States)

    Gabb, Timothy P.; MacKay, Rebecca A.; Draper, Susan L.; Sudbrack, Chantal K.; Nathal, Michael V.

    2013-01-01

    The mechanical properties of several cast blade superalloys and one powder metallurgy disk superalloy were assessed for potential use in a dual alloy hybrid disk concept of joined dissimilar bore and web materials. Grain size was varied for each superalloy class. Tensile, creep, fatigue, and notch fatigue tests were performed at 704 to 815 degC. Typical microstructures and failure modes were determined. Preferred materials were then selected for future study as the bore and rim alloys in this hybrid disk concept. Powder metallurgy superalloy LSHR at 15 micron grain size and single crystal superalloy LDS-1101+Hf were selected for further study, and future work is recommended to develop the hybrid disk concept.

  8. Effect of technological procedures on the crack resistance of nickel alloy welded joints under heat treatment

    International Nuclear Information System (INIS)

    Bagdasarov, Yu.S.; Sorokin, L.I.; Yakushin, B.F.; Moryashchev, S.F.

    1983-01-01

    Comparison of the efficiency of some technological procedures directed to the increase of crack resistance of KhN50MBKTYUR (EhP99) alloy welded joints under heat treatment was conducted. Welded joints were manufactured by the methods of electron beam welding, laser welding, automatic argon-arc welding. The latter was conducted by conventional technology as well as with electromagnetic mixing of liquid metal of welding bath, with compulsory cooling of weld matal, with pulse arc. It is shown that the high fracture resistance of welded joints, manufactured by electron beam and laser welding is achieved by combination of high mechanical properties of heat affected zone metal and reduced elastic potential energy margin of residual welding stresses (as compared to argon-arc welding)

  9. Four examples of non-ferrous metal electron beam welding

    International Nuclear Information System (INIS)

    Sommeria, J.

    1989-01-01

    The welding of superconducting cavity resonators made of niobium for particle accelerators is described. Then the welding of four plates in zircaloy 2 containing the fuel of the Orphee reactor is presented. The two other examples concern power transistor and motor support for planes. 9 figs [fr

  10. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on superalloy degassed chromium from Japan. SUMMARY... order on superalloy degassed chromium from Japan would be likely to lead to continuation or recurrence...

  11. Studies on Fusion Welding of High Nitrogen Stainless Steel: Microstructure, Mechanical and corrosion Behaviour

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    An attempt has been made in the present investigation to weld high nitrogen steel of 5mm thick plates using various process i.e., shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and autogenous electron beam welding (EBW) process. Present work is aimed at studying the microstructural changes and its effects on mechanical properties and corrosion resistance. Microstructure is characterized by optical, scanning electron microscopy and electron back scattered diffraction technique. Vickers hardness, tensile properties, impact toughness and face bend ductility testing of the welds was carried out. Pitting corrosion resistance of welds was determined using potentio-dynamic polarization testing in 3.5%NaCl solution. Results of the present investigation established that SMA welds made using Cr-Mn-N electrode were observed to have a austenite dendritic grain structure in the weld metal and is having poor mechanical properties but good corrosion resistance. GTA welds made using 18Ni (MDN 250) filler wire were observed to have a reverted austenite in martensite matrix of the weld metal and formation of unmixed zone at the fusion boundary which resulted in better mechanical properties and poor corrosion resistance. Fine grains and uniform distribution of delta ferrite in the austenite matrix and narrow width of weld zone are observed in autogeneous electron beam welds. A good combination of mechanical properties and corrosion resistance was achieved for electron beam welds of high nitrogen steel when compared to SMA and GTA welds.

  12. Evaluation of laser welding techniques for hydrogen transmission. Final report, September 1977-November 1979

    Energy Technology Data Exchange (ETDEWEB)

    Mucci, J

    1980-05-01

    This program was established to determine the feasibility of laser beam welding as a fabrication method for hydrogen transmission and is a precursor in the effort to systematically provide the technological base necessary for large-scale, economic pipeline transmission of fuel for a hydrogen energy system. The study contributes to the technology base by establishing the effect of conventional weld processes and laser beam welding on the mechanical properties of two classes of steels in an air and high pressure gaseous hydrogen environment. Screening evaluation of the tensile, low-cycle fatigue and fracture toughness properties and metallurgical analyses provide the basis for concluding that laser beam welding of AISI 304L stainless steel and ASTM A106B carbon steel can produce weldments of comparable quality to those produced by gas-tungsten arc and electron beam welding and is at least equally compatible with 13.8 MPa (2000 psig) gaseous hydrogen environment.

  13. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    Science.gov (United States)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  14. Changes in the properties of superalloys by long term heating

    International Nuclear Information System (INIS)

    Susukida, H.; Tsuji, I.; Kawai, H.

    1976-01-01

    A laboratory study was conducted in order to determine the effect of long term heating (max. 10000h at 850 0 and 950 0 C) on the microstructure, tensile properties, hardness and stress rupture properties of four kinds of superalloys. These superalloys are two kinds of solid solution hardened Ni-base superalloys Hastelloy X and Inconel 617 and two kinds of dispersion strengthened Ni-base superalloys TD-Ni and TD-NiCr. The result of the study can be summarized as follows: (1) Solid solution hardened superalloys: Many precipitates were observed in the grains and on the grain boundaries after 100 hours of heating, and the precipitates became coarse-grained by over 1000 hours of heating. This tendency was remarkable when they were heated at 950 0 C. With the change of their microstructure, their mechanical properties also changed, particularly their tensile ductility decreased remarkably. (2) Dispersion strengthened superalloys: Their microstructure and mechanical properties were almost unchanged by long term heating. (3) The authors proposed ''solid solution hardening value'' in order to grasp quantitatively the solid solution hardening which has been discussed by the content of each element hitherto. (auth.)

  15. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  16. Hot cracking characteristic of welding using Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Ro, Kyoung Bo; Yoo, Young Tae; Oh, Yong Seak; Shin, Ho Jun; Kim, Ji Hwan

    2003-01-01

    The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. The major process parameters studied in the present laser welding experiment were position of focus, travel speed and laser power

  17. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  18. Determination of Focal Laws for Ultrasonic Phased Array Testing of Dissimilar Metal Welds

    International Nuclear Information System (INIS)

    Jing, Ye; Kim, Hak Joon; Song, Sung Jin; Song, Myung Ho; Kang, Suk Chull; Kang, Sung Sik; Kim, Kyung Cho

    2008-01-01

    Inspection of dissimilar metal welds using phased array ultrasound is not easy at all, because crystalline structure of dissimilar metal welds cause deviation and splitting of the ultrasonic beams. Thus, in order to have focusing and/or steering phased array beams in dissimilar metal welds, proper time delays should be determined by ray tracing. In this paper, we proposed an effective approach to solve this difficult problem. Specifically, we modify the Oglivy's model parameters to describe the crystalline structure of real dissimilar metal welds in a fabricated specimen. And then, we calculate the proper time delay and incident angle of linear phased array transducer in the anisotropic and inhomogeneous material for focusing and/or steering phased array ultrasonic beams on the desired position

  19. Fatigue studies of superalloys in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Masaki

    1985-01-01

    In the past 15 years, several national projects were advanced to develop high temperature machinery, such as high temperature gas-cooled reactors, gas turbines and fusion reactors. Before, the studies on the strength of superalloys were rarely carried out, however, by the above research works, superalloys are in rapid progress. Because these machinery are subjected to temperature cycles and vibration stress, the fatigue failure is the main concern in the safety analysis of the components. The purpose of this paper is to summarize the present status of the fatigue research on the alloys for high temperature use in Japan. The superalloys used for gas turbine and HTGR components are listed, and the materials tested were mostly the alloys of nickel base, cobalt base or iron base. In the above national projects, the main purpose was to clarify the high temperature properties including fatigue properties, to develop the method of forecasting the life span and to develop better materials. As the topics about the fatigue research on superalloys, the development of the method for forecasting the life span, the effect of directional solidification, coating and HIP process on the fatigue strength of gas turbine materials, the effect of helium and aging on the fatigue strength of HTGR materials, the fatigue strength of weldment of HTGR materials and others are reported. (Kako, I.)

  20. Welding of heat-resistant 20% Cr-5% Al steels

    International Nuclear Information System (INIS)

    Tusek, J.; Arbi, D.; Kosmac, A.; Nartnik, U.

    2002-01-01

    The paper treats welding of heat-resistant ferritic stainless steels alloyed with approximately 20% Cr and 5% Al. The major part of the paper is dedicated to welding of 20% Cr-5% Al steel with 3 mm in thickness. Welding was carried out with five different welding processes, i. e., manual metal-arc, MIG, TIG, plasma arc, and laser beam welding processes, using a filler material and using no filler material, respectively. The welded joints obtained were subjected to mechanical tests and the analysis of microstructure in the weld metal and the transition zone. The investigations conducted showed that heat-resistant ferritic stainless 20% Cr-5% Al steel can be welded with fusion welding processes using a Ni-based filler material. (orig.)

  1. Microstructural Characterization of Thermomechanical and Heat-Affected Zones of an Inertia Friction Welded Astroloy

    Science.gov (United States)

    Oluwasegun, K. M.; Olawale, J. O.; Ige, O. O.; Shittu, M. D.; Adeleke, A. A.; Malomo, B. O.

    2014-08-01

    The behaviour of γ' phase to thermal and mechanical effects during rapid heating of Astroloy, a powder metallurgy nickel-based superalloy has been investigated. The thermo-mechanical-affected zone (TMAZ) and heat-affected zone (HAZ) microstructures of an inertia friction welded (IFW) Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual IFW specimens showed that γ' particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favored and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the center of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  2. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    Science.gov (United States)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  3. Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model

    International Nuclear Information System (INIS)

    Rai, R; DebRoy, T

    2006-01-01

    Tailoring of weld attributes based on scientific principles remains an important goal in welding research. The current generation of unidirectional laser keyhole models cannot determine sets of welding variables that can lead to a particular weld attribute such as specific weld geometry. Here we show how a computational heat transfer model of keyhole mode laser welding can be restructured for systematic tailoring of weld attributes based on scientific principles. Furthermore, the model presented here can calculate multiple sets of laser welding variables, i.e. laser power, welding speed and beam defocus, with each set leading to the same weld pool geometry. Many sets of welding variables were obtained via a global search using a real number-based genetic algorithm, which was combined with a numerical heat transfer model of keyhole laser welding. The reliability of the numerical heat transfer calculations was significantly improved by optimizing values of the uncertain input parameters from a limited volume of experimental data. The computational procedure was applied to the keyhole mode laser welding of the 5182 Al-Mg alloy to calculate various sets of welding variables to achieve a specified weld geometry. The calculated welding parameter sets showed wide variations of the values of welding parameters, but each set resulted in a similar fusion zone geometry. The effectiveness of the computational procedure was examined by comparing the computed weld geometry for each set of welding parameters with the corresponding experimental geometry. The results provide hope that systematic tailoring of weld attributes via multiple pathways, each representing alternative welding parameter sets, is attainable based on scientific principles

  4. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  5. Refurbishment of damaged tools using the combination of GTAW and laser beam welding

    Directory of Open Access Journals (Sweden)

    J. Tušek

    2014-10-01

    Full Text Available This paper presents the use of two welding processes for the refurbishment of damaged industrial tools. In the first part the problem is presented followed by the comparison of GTAW and laser welding in terms of repair welding of damaged tools. The macrosections of the welds show the difference between both welding processes in repairing of damaged tools. At the conclusion the main findings are presented. In many cases it is useful to use both welding processes in order to achieve better weld quality and to make welding more economical. The order of the technology used depends on the tool material, the use of the tool and the tool damage.

  6. Control of spiking in partial penetration of electron beam welds. Final report, 1 October 1969--1 October 1976

    International Nuclear Information System (INIS)

    1976-01-01

    An investigation of the penetration mechanism of high energy density electron beams and an evaluation of electron beam deflection as a method of penetration control are presented. A discussion of electron beam mechanics including several penetration theories is presented in the introduction and background. Slur radiographs made using a pinhole x-ray camera are evaluated to determine velocity and acceleration of the point of beam impingement. Methods of cavity closure are discussed with possible causes of surface sealing of the beam cavity. A method of penetration, after the cavity has closed, based on the curves relating velocity and acceleration to penetration distance is considered. An estimate of cavity pressure is made from the maximum acceleration of the beam-metal interface. A system using an x-ray detector coupled with a beam deflecting device is detailed and evaluated. As this is the first attempt at penetration control by beam deflection the investigation seeks only to determine the feasibility of the idea without attempting a thorough analysis of range of abilities or quality of welds made by such devices. Based on several specimens which are presented beam deflection appears capable of controlling penetration depth. It is hoped that the ideas presented here will inspire future research along these lines

  7. Nanoscale Origins of the Size Effect in the Compression Response of Single Crystal Ni-Base Superalloy Micro-Pillars

    Directory of Open Access Journals (Sweden)

    Siqi Ying

    2018-04-01

    Full Text Available Nickel superalloys play a pivotal role in enabling power-generation devices on land, sea, and in the air. They derive their strength from coherent cuboidal precipitates of the ordered γ’ phase that is different from the γ matrix in composition, structure and properties. In order to reveal the correlation between elemental distribution, dislocation glide and the plastic deformation of micro- and nano-sized volumes of a nickel superalloy, a combined in situ nanoindentation compression study was carried out with a scanning electron microscope (SEM on micro- and nano-pillars fabricated by focused ion beam (FIB milling of Ni-base superalloy CMSX4. The observed mechanical response (hardening followed by softening was correlated with the progression of crystal slip that was revealed using FIB nano-tomography and energy-dispersive spectroscopy (EDS elemental mapping. A hypothesis was put forward that the dependence of material strength on the size of the sample (micropillar diameter is correlated with the characteristic dimension of the structural units (γ’ precipitates. By proposing two new dislocation-based models, the results were found to be described well by a new parameter-free Hall–Petch equation.

  8. Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy

    Science.gov (United States)

    Liu, Jing; Gao, Xiao-Long; Zhang, Lin-Jie; Zhang, Jian-Xun

    2015-01-01

    The aim of this investigation was to evaluate the effect of microstructure heterogeneity on the tensile and low cycle fatigue properties of electron beam welded (EBW) Ti6Al4V sheets. To achieve this goal, the tensile and low cycle fatigue property in the EBW joints and base metal (BM) specimens is compared. During the tensile testing, digital image correlation technology was used to measure the plastic strain field evolution within the specimens. The experimental results showed that the tensile ductility and low cycle fatigue strength of EBW joints are lower than that of BM specimens, mainly because of the effect of microstructure heterogeneity of the welded joint. Moreover, the EBW joints exhibit the cyclic hardening behavior during low fatigue process, while BM specimens exhibit the cyclic softening behavior. Compared with the BM specimens with uniform microstructure, the heterogeneity of microstructure in the EBW joint is found to decrease the mechanical properties of welded joint.

  9. High temperature deformation mechanisms of L12-containing Co-based superalloys

    Science.gov (United States)

    Titus, Michael Shaw

    Ni-based superalloys have been used as the structural material of choice for high temperature applications in gas turbine engines since the 1940s, but their operating temperature is becoming limited by their melting temperature (Tm =1300degrees C). Despite decades of research, no viable alternatives to Ni-based superalloys have been discovered and developed. However, in 2006, a ternary gamma' phase was discovered in the Co-Al-W system that enabled a new class of Co-based superalloys to be developed. These new Co-based superalloys possess a gamma-gamma' microstructure that is nearly identical to Ni-based superalloys, which enables these superalloys to achieve extraordinary high temperature mechanical properties. Furthermore, Co-based alloys possess the added benefit of exhibiting a melting temperature of at least 100degrees C higher than commercial Ni-based superalloys. Superalloys used as the structural materials in high pressure turbine blades must withstand large thermomechanical stresses imparted from the rotating disk and hot, corrosive gases present. These stresses induce time-dependent plastic deformation, which is commonly known as creep, and new superalloys must possess adequate creep resistance over a broad range of temperature in order to be used as the structural materials for high pressure turbine blades. For these reasons, this research focuses on quantifying high temperature creep properties of new gamma'-containing Co-based superalloys and identifying the high temperature creep deformation mechanisms. The high temperature creep properties of new Co- and CoNi-based alloys were found to be comparable to Ni-based superalloys with respect to minimum creep rates and creep-rupture lives at 900degrees C up to the solvus temperature of the gamma' phase. Co-based alloys exhibited a propensity for extended superlattice stacking fault formation in the gamma' precipitates resulting from dislocation shearing events. When Ni was added to the Co-based compositions

  10. Electron-microscopic investigations of dispersion-strengthened superalloys

    International Nuclear Information System (INIS)

    Schroeder, J.H.; Arzt, E.

    1988-01-01

    Oxide dispersion strengthened (ODS) superalloys possess a high creep strength up to temperatures above 1000 0 C. This is due to a fine dispersion of incoherent Y 2 O 3 particles in connection with a highly elongated grain structure. To investigate the production and properties of ODS alloys, the grain structure was studied and the shape and distribution of dispersoids were characterized after each of the various production steps. Because the interactions between lattice dislocations and dispersoids control the deformation behaviour at high temperatures, the dislocation-dispersoid configurations in crept specimens have been studied by a TEM stereo technique and under weak-beam conditions. It was possible to detect strain fields around the dispersoids using TEM. The results lead to an improved understanding of dispersion strengthening at high temperatures and provide guidelines for the optimum use of this strengthening mechanism. (orig.) [de

  11. Weldability of the superalloys Haynes 188 and Hastelloy X by Nd:YAG

    Directory of Open Access Journals (Sweden)

    Graneix Jérémie

    2014-01-01

    Full Text Available The requirements for welded aircraft parts have become increasingly severe, especially in terms of the reproducibility of the geometry and metallurgical grade of the weld bead. Laser welding is a viable method of assembly to meet these new demands, because of automation, to replace the manual TIG welding process. The purpose of this study is to determine the weldability of Hastelloy X and Haynes 188 alloys by the butt welding process with a Nd:YAG laser. To identify the influential parameters of the welding process (laser power, feed rate, focal diameter and flow of gas while streamlining testing, an experimental design was established with the CORICO software using the graphic correlation method. The position of the focal point was fixed at 1/3 of the thickness of the sheet. The gas flow rate and the power of the beam have a major effect on the mechanical properties and geometry of the weld. The strength of the weld is comparable to that of the base metal. However, there is a significant decrease in the elongation at break of approximately 30%. The first observations of the cross section of the weld by scanning electron microscopy coupled with EBSD analysis show a molten zone presenting dendritic large grains compared to the equiaxed grains of the base metals without a heat affected zone.

  12. Finite element analysis of spot laser of steel welding temperature history

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2009-01-01

    Full Text Available Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

  13. Deviation of longitudinal and shear waves in austenitic stainless steel weld metal

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1980-01-01

    One of the difficulties associated with the ultrasonic inspection of stainless steel weld metal is the deviation of the ultrasonic beams. This can lead to errors in determining both the location and size of reflectors. The present paper compares experimental and theoretical data related to beam steering for longitudinal and shear waves in a sample of 308 SS weld metal. Agreement between predicted and measured beam deviations is generally good. Reasons for discrepancies are discussed

  14. Pulsed Nd-YAG laser welding of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Suresh Varma, P.V.; Gupta, Amit; Amit, K.; Bhatt, R.B.; Afzal, Mohd.; Panakkal, J.P.; Kamath, H.S.

    2009-02-01

    End plug welding of Prototype Fast Breeder Reactor (PFBR) fuel elements involves welding of fully Austenitic Stainless Steel (ASS) of grade D9 clad tube with 316M end plug. Pulsed Gas Tungsten Arc Welding (GTAW) is being used for the production of PFBR fuel elements at Advanced Fuel Fabrication Facility (AFFF). GTAW is an established process for end plug welding and hence adopted by many countries. GTAW has got certain limitations like heat input, arc gap sensitivity and certain sporadic defects like tungsten inclusion. Experiments have been carried out at AFFF to use Laser Beam Welding (LBW) technique as LBW offers a number of advantages over the former process. This report mainly deals with the optimization of laser parameters for welding of PFBR fuel elements. To facilitate pulsed Nd-YAG laser spot welding, parameters like peak power, pulse duration, pulse energy, frequency and defocusing of laser beam on to the work piece have been optimized. On the basis of penetration requirement laser welding parameters have been optimized. (author)

  15. Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds

    Science.gov (United States)

    Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.

    2017-04-01

    Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.

  16. Plasma ARC Welding of High-Performance-Ship Materials

    Science.gov (United States)

    1979-05-01

    welding (EBW) and laser beam welding (LBW). Figure 2 shows examples of PAW keyhole welds using a square butt joint with and without filler metal additions...produced by some manufacturers has reliability problems. f) Existing equipment for initiating and closing out the keyhole is not totally satisfactory and...system for establishing and closing out keyhole craters is necessary. Work is being done by several Investigators, but it is not known L whether any system

  17. Development and prevention of porosity in the fusion welding of thick titanium alloys

    International Nuclear Information System (INIS)

    Kulikov, F.R.; Redchits, V.V.; Khokhlov, V.V.

    1975-01-01

    This article describes the results of experimental investigations of the mechanics of formation of porosity in electron-beam welding, single-pass and multipass welding in argon with a consumable and non-consumable electrode, and also in the electroslag welding of alloys VT14 and VT22 from 10 to 60mm thick. It was established that nuclei of gas phase form at the moment of fusion of the edges of the parts being welded, the end surfaces of which have machining defects. The weld metal porosity can be prevented by: careful machining of the faying surfaces of the parts to be welded immediately before welding; the use of welding conditions ensuring long pool existence time, sufficient for hydrogen bubbles to float up and escape; intensification of the weld pool degassing process by using fluxes based on metal fluorides and chlorides, applied to the ends of the root part of the faying edges, and on the filler wire; reduction of the gas pressure in the beam channel by making gas-escape paths

  18. Welding of a powder metallurgy uranium alloy

    International Nuclear Information System (INIS)

    Holbert, R.K.; Doughty, M.W.; Alexander-Morrison, G.M.

    1989-01-01

    The interest at the Oak Ridge Y-12 Plant in powder metallurgy (P/M) uranium parts is due to the potential cost savings in the fabrication of the material, to achieving a more homogeneous product, and to the reduction of uranium scrap. The joining of P/M uranium-6 wt-% niobium (U-6Nb) alloys by the electron beam (EB) welding process results in weld porosity. Varying the EB welding parameters did not eliminate the porosity. Reducing the oxygen and nitrogen content in this P/M uranium material did minimize the weld porosity, but this step made the techniques of producing the material more difficult. Therefore, joining wrought and P/M U-6Nb rods with the inertia welding technique is considered. Since no gases will be evolved with the solid-state welding process and the weld area will be compacted, porosity should not be a problem in the inertia welding of uranium alloys. The welds that are evaluated are wrought-to-wrought, wrought-to-P/M, and P/M-to-P/M U-6Nb samples

  19. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  20. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  1. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-01-01

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  2. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    weld pool has been evaluated in case of high power CO2 laser beam welding. The ... The experiments based on twin or triple spot interaction geometry have also ... while the other one is between the liquid and the solid states of the metal.

  3. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  4. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Chamanfar, A., E-mail: achamanfar@gmail.com [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Jahazi, M. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada); Bonakdar, A.; Morin, E. [Siemens Canada Limited, 9545 Côte-de-Liesse, Dorval, Québec, Canada H9P 1A5 (Canada); Firoozrai, A. [Département de Génie Mécanique, École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3 (Canada)

    2015-08-26

    Electron beam welding (EBW) of shrouds in Inconel-713LC low pressure gas turbine blades was associated with cracking in fusion zone (FZ) and heat affected zone (HAZ) leading to a high scrap rate in manufacturing of gas turbine blades. In this study, in order to develop a detailed map of cracks and understand the root cause of cracking, a comprehensive microstructural and numerical analysis was performed. The elemental mapping in scanning electron microscope (SEM)-energy dispersive spectral analysis revealed segregation of alloying elements in the cracked area of FZ and HAZ. In other words, one of the cracking mechanisms in FZ and HAZ was found to be segregation induced liquation and subsequent cracking due to thermal and mechanical tensile stresses generated during EBW. Cracking in FZ also occurred because of low strength of the solidifying weld metal as well as solidification contraction. As well, γ′ dissolution and reprecipitation in HAZ leading to decreased ductility and generation of contraction stresses was another mechanism for cracking in HAZ. The numerical model was capable to predict the cracking location as well as cracking orientation with respect to the weld line.

  5. Helium and its effects on the creep-fatigue behaviour of electron beam welds in the steel AISI-316-L

    International Nuclear Information System (INIS)

    Paulus, M.

    1992-12-01

    Within the scope of R and D work for materials development for the NET fusion experiment (Next European Torus) and the International Thermonuclear Experimental Reactor (ITER), the task reported was to examine electron beam welds in the austenitic stainless steel AISI 316 L (NET reference material) for their fatigue behaviour under creep load, and the effects of helium implantation on there mechanical properties. (orig.) [de

  6. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  7. Nd-YAG laser welding of bare and galvanised steels

    International Nuclear Information System (INIS)

    Kennedy, S.C.; Norris, I.M.

    1989-01-01

    Until recently, one of the problems that has held back the introduction of lasers into car body fabrication has been the difficulty of integrating the lasers with robots. Nd-YAG laser beams can be transmitted through fibre optics which, as well as being considerably easier to manipulate than a mirror system, can be mounted on more lightweight accurate robots. Although previously only available at low powers, recent developments in Nd-YAG laser technology mean that lasers of up to 1kW average power will soon be available, coupled to a fibre optic beam delivery system. The increasing usage of zinc coated steels in vehicle bodies has led to welding problems using conventional resistance welding as well as CO 2 laser welding. The use of Nd-YAG lasers may be able to overcome these problems. This paper outlines work carried out at The Welding Institute on a prototype Lumonics 800W pulsed Nd-YAG laser to investigate its welding characteristics on bare and zinc coated car body steels

  8. Development and evaluation of SUS 304H — IN 617 welds for advanced ultra supercritical boiler applications

    International Nuclear Information System (INIS)

    Pavan, A.H.V.; Vikrant, K.S.N.; Ravibharath, R.; Singh, Kulvir

    2015-01-01

    At moderately high temperature sections of Advanced Ultra Super Critical (AUSC) boilers, welding of superalloys to austenitic steels is inevitable owing to economic aspects of boiler. Welding of SUS 304H and Inconel 617 (IN 617) was attempted using IN 617 filler material employing conventional Gas Tungsten Arc Welding (GTAW) process and the procedure was successfully established along with optimized welding parameters. Microstructural characterization was carried out to identify various zones on either side of the fusion boundaries. Unmixed Zone and Heat Affected Zone (HAZ) were observed towards SUS 304H fusion boundary while no distinct HAZ was observed towards IN 617 fusion boundary. Micro-hardness profiling indicated decrease in hardness at the HAZ towards SUS 304H fusion boundary. Mechanical properties evaluation at both ambient and elevated temperatures was carried out and data obtained was compared with those of base metals. The tensile strength of the cross weld specimens at high temperatures were observed to be marginally lower than that of IN 617 but significantly more than that of SUS 304H, hence, tolerable. Stress-rupture properties of the cross-weld specimens as tested in this study were found to be intermediate to the base metals’ data, thus, suitable for AUSC power plants' boiler applications. Hence, this work gives an insight into welding procedure establishment, microstructural development, variation of mechanical properties at elevated temperatures and stress-rupture properties of the dissimilar metal welds at elevated temperatures. - Highlights: • Procedure establishment & parameters optimization for fabricating defect-free welds. • Characterization of various zones formed during welding. • Mechanical properties evaluation and comparison with those of base metals. • Influence of various zones formed during welding on mechanical properties inferred. • Understanding long term behavior of welds at elevated temperatures

  9. Development and evaluation of SUS 304H — IN 617 welds for advanced ultra supercritical boiler applications

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, A.H.V., E-mail: pavanahv@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India); Vikrant, K.S.N., E-mail: vikrant@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India); Ravibharath, R., E-mail: rrbharath@bhelrnd.co.in [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirapalli 620 014 (India); Singh, Kulvir, E-mail: kulvir@bhelrnd.co.in [Metallurgy Department, Corporate R& D Division, Bharat Heavy Electricals Limited, Vikasnagar, Hyderabad 500 093 (India)

    2015-08-26

    At moderately high temperature sections of Advanced Ultra Super Critical (AUSC) boilers, welding of superalloys to austenitic steels is inevitable owing to economic aspects of boiler. Welding of SUS 304H and Inconel 617 (IN 617) was attempted using IN 617 filler material employing conventional Gas Tungsten Arc Welding (GTAW) process and the procedure was successfully established along with optimized welding parameters. Microstructural characterization was carried out to identify various zones on either side of the fusion boundaries. Unmixed Zone and Heat Affected Zone (HAZ) were observed towards SUS 304H fusion boundary while no distinct HAZ was observed towards IN 617 fusion boundary. Micro-hardness profiling indicated decrease in hardness at the HAZ towards SUS 304H fusion boundary. Mechanical properties evaluation at both ambient and elevated temperatures was carried out and data obtained was compared with those of base metals. The tensile strength of the cross weld specimens at high temperatures were observed to be marginally lower than that of IN 617 but significantly more than that of SUS 304H, hence, tolerable. Stress-rupture properties of the cross-weld specimens as tested in this study were found to be intermediate to the base metals’ data, thus, suitable for AUSC power plants' boiler applications. Hence, this work gives an insight into welding procedure establishment, microstructural development, variation of mechanical properties at elevated temperatures and stress-rupture properties of the dissimilar metal welds at elevated temperatures. - Highlights: • Procedure establishment & parameters optimization for fabricating defect-free welds. • Characterization of various zones formed during welding. • Mechanical properties evaluation and comparison with those of base metals. • Influence of various zones formed during welding on mechanical properties inferred. • Understanding long term behavior of welds at elevated temperatures.

  10. Superalloy Lattice Block Developed for Use in Lightweight, High-Temperature Structures

    Science.gov (United States)

    Hebsur, Mohan G.; Whittenberger, J. Daniel; Krause, David L.

    2003-01-01

    Successful development of advanced gas turbine engines for aircraft will require lightweight, high-temperature components. Currently titanium-aluminum- (TiAl) based alloys are envisioned for such applications because of their lower density (4 g/cm3) in comparison to superalloys (8.5 g/cm3), which have been utilized for hot turbine engine parts for over 50 years. However, a recently developed concept (lattice block) by JAMCORP, Inc., of Willmington, Massachusetts, would allow lightweight, high-temperature structures to be directly fabricated from superalloys and, thus, take advantage of their well-known, characterized properties. In its simplest state, lattice block is composed of thin ligaments arranged in a three dimensional triangulated trusslike configuration that forms a structurally rigid panel. Because lattice block can be fabricated by casting, correctly sized hardware is produced with little or no machining; thus very low cost manufacturing is possible. Together, the NASA Glenn Research Center and JAMCORP have extended their lattice block methodology for lower melting materials, such as Al alloys, to demonstrate that investment casting of superalloy lattice block is possible. This effort required advances in lattice block pattern design and assembly, higher temperature mold materials and mold fabrication technology, and foundry practice suitable for superalloys (ref. 1). Lattice block panels have been cast from two different Ni-base superalloys: IN 718, which is the most commonly utilized superalloy and retains its strength up to 650 C; and MAR M247, which possesses excellent mechanical properties to at least 1100 C. In addition to the open-cell lattice block geometry, same-sized lattice block panels containing a thin (1-mm-thick) solid face on one side have also been cast from both superalloys. The elevated-temperature mechanical properties of the open cell and face-sheeted superalloy lattice block panels are currently being examined, and the

  11. High temperature oxidation and corrosion behavior of Ni-base superalloy in He environment

    International Nuclear Information System (INIS)

    Lee, Gyoeng Geun; Park, Ji Yeon; Jung, Su jin

    2010-11-01

    Ni-base superalloy is considered as a IHX (Intermediate Heat Exchanger) material for VHTR (Very High Temperature Gas-Cooled Reactor). The helium environment in VHTR contains small amounts of impure gases, which cause oxidation, carburization, and decarburization. In this report, we conducted the literature survey about the high temperature behavior of Ni-base superalloys in air and He environments. The basic information of Ni-base superalloy and the basic metal-oxidation theory were briefly stated. The He effect on the corrosion of Ni-base superalloy was also summarized. This works would provide a brief suggestion for the next research topic for the application of Ni-base superalloy to VHTR

  12. High temperature properties of polycrystalline γ"'-strengthened cobalt-base superalloys

    International Nuclear Information System (INIS)

    Bauer, Alexander

    2016-01-01

    The recent discovery of a stable γ"'-phase in Co-based superalloys opened up a pathway for the development of a new high temperature material class, which is similar in microstructure and properties to the modern γ"'-hardened Ni-based superalloys. In this work, the first attempt was done to check the influence of several for Ni-based superalloys typical alloying elements on the properties of the new Co-based superalloys. It became clear that the basic characteristics of the first experimental alloys are similar to those of the γ"'-hardened Ni-based alloys. The results of the multinary experimental alloys show that, based on the insight gained so far, targeted alloy development is possible. These materials have the potential to be used as disc materials in turbines.

  13. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    Science.gov (United States)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2014-01-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  14. Development of high productivity pipeline girth welding

    International Nuclear Information System (INIS)

    Yapp, David; Liratzis, Theocharis

    2010-01-01

    The trend for increased oil and gas consumption implies a growth of long-distance pipeline installations. Welding is a critical factor in the installation of pipelines, both onshore and offshore, and the rate at which the pipeline can be laid is generally determined by the speed of welding. This has resulted in substantial developments in pipeline welding techniques. Arc welding is still the dominant process used in practice, and forge welding processes have had limited successful application to date, in spite of large investments in process development. Power beam processes have also been investigated in detail and the latest laser systems now show promise for practical application. In recent years the use of high strength steels has substantially reduced the cost of pipeline installation, with X70 and X80 being commonly used. This use of high strength pipeline produced by thermomechanical processing has also been researched. They must all meet three requirments, high productivity, satisfactory weld properties, and weld quality

  15. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  16. Analysis of the effect of the Electron-Beam welding sequence for a fixed manufacturing route using finite element simulations applied to ITER vacuum vessel manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Menéndez, Cristina, E-mail: cristina@natec-ingenieros.com [Numerical Analysis Technologies, S.L. Marqués de San Esteban No. 52, 33206 Gijón (Spain); Rodríguez, Eduardo [Department of Mechanical Engineering, University of Oviedo, Campus de Gijón, 33203 Gijón (Spain); Ottolini, Marco [Ansaldo Nucleare S.p.A., Corso Perrone 25, 16152 Genova (Italy); Caixas, Joan [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Guirao, Julio [Numerical Analysis Technologies, S.L. Marqués de San Esteban No. 52, 33206 Gijón (Spain)

    2016-03-15

    Highlights: • The simulation methodology employed in this paper is able to adapt inside a complex manufacturing route. • The effect of the sequence is lower in a highly constrained assembly than in a lowly constrained one. • The most relevant influence on the distortions is the jigs design, instead of the welding sequence. • The welding distortion analysis should be used as a guidance to design and improve the manufacturing strategy. - Abstract: The ITER Vacuum Vessel Sectors have very tight tolerances and high density of welding. Therefore, prediction and reduction of welding distortion are critical to allow the final assembly with the other Vacuum Vessel Sectors without the production of a full scale prototype. In this paper, the effect of the welding sequence in the distortions inside a fixed manufacturing route and in a highly constrained assembly is studied in the poloidal segment named inboard (PS1). This is one of the four poloidal segments (PS) assembled for the sector. Moreover, some restrictions and limitations in the welding sequence related to the manufacturing process are explained. The results obtained show that the effect of the sequence is lower in a highly constrained assembly than in a low constrained one. A prototype manufactured by AMW consortium (PS1 mock-up) is used in order to validate the finite element method welding simulation employed. The obtained results confirmed that for Electron-Beam welds, both the welding simulation and the mock-up show a low value of distortions.

  17. Solid state impact welding of BMG and copper by vaporizing foil actuator welding

    Energy Technology Data Exchange (ETDEWEB)

    Vivek, Anupam, E-mail: vivek.4@osu.edu [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Presley, Michael [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Flores, Katharine M. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Hutchinson, Nicholas H.; Daehn, Glenn S. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)

    2015-05-14

    The objective of this study was to create impact welds between a Zr-based Bulk Metallic Glass (BMG) and copper at a laboratory scale and subsequently investigate the relationship between interfacial structure and mechanical properties. Vaporizing Foil Actuator (VFA) has recently been demonstrated as a versatile tool for metalworking applications: impact welding of dissimilar materials being one of them. Its implementation for welding is termed as VFA Welding or VFAW. With 8 kJ input energy into an aluminum foil actuator, a 0.5 mm thick Cu110 alloy sheet was launched toward a BMG target resulting in an impact at a velocity of nearly 600 m/s. For this experiment, the welded interface was straight with a few BMG fragments embedded in the copper sheet in some regions. Hardness tests across the interface showed increase in strength on the copper side. Instrumented peel test resulted in failure in the parent copper sheet. A slower impact velocity during a separate experiment resulted in a weld, which had wavy regions along the interface and in peel failure again happened in the parent copper sheet. Some through-thickness cracks were observed in the BMG plate and there was some spall damage in the copper flyers. TEM electron diffraction on a sample, cut out from the wavy weld interface region using a focused ion beam, showed that devitrification of the BMG was completely avoided in this welding process.

  18. Application of laser cladding to the aeroengine component. Koku engine buhin eno laser nikumori yosetsu no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Morita, A [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1991-08-01

    Keeping the pace with recent development and application of laser cladding, hard-facing is used more frequently on turbine blades made of superalloys used in aeroengines. This paper explains the basic principles and features of laser hard-facing technique, welding parameters, and examples of practical use. Examples of practical use include application to turbine blades used in ALF502R-5 turbo fan engines for commuter aircraft and high-pressure turbine blades used in RB211 turbo fan engines for large passenger aircraft. In the former engine, improvement of abrasion resistance was intended at the shroud section where blades are in contact with each other, for which inconel was used as the base material and CO-group alloy as the welding material. The welding used a powder supply system with a laser generator oscillating CO{sub 2} at 5 kW and employing a beam collecting mirror plus scanner to attain a beam covering wider width. Faces with higher performance were obtained than by the conventional TIG welding, and the finishing time was decreased largely. 2 refs., 9 figs., 3 tabs.

  19. Study of Laser Welding of HCT600X Dual Phase Steels

    Directory of Open Access Journals (Sweden)

    Švec Pavol

    2014-12-01

    Full Text Available The effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.

  20. Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint

    International Nuclear Information System (INIS)

    Tao, Junhui; Hu, Shubing; Ji, Longbo

    2016-01-01

    In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases and a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.

  1. Effect of processing on microstructure and physical properties of three nickel-based superalloys with different hardening mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Strondl, Annika; Frommeyer, Georg [Department of Materials Technology, Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Strasse 1, D-40237 Duesseldorf (Germany); Klement, Uta [Department of Materials and Manufacturing Technology, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Milenkovic, Srdjan; Schneider, Andre

    2012-07-15

    The nickel-based superalloys Inconel alloy 600, Udimet alloy 720, and Inconel alloy 718 were produced by electron beam melting (EBM), casting, and directional solidification (DS). The distance between dendrites and the size of the precipitates indicated the difference in solidification rates between the three processes. In this study, the solidification rate was fastest with EBM, closely followed by casting, whereas it was much slower with DS. In the directional solidified materials the <100> direction was the fastest and thus, preferred growth direction. The EBM samples show a sharp (001)[100] texture in the building direction and in the two scanning directions of the electron beam. Macrosegregation was observed in some cast and directionally solidified samples, but not in the EBM samples. The melting temperatures are in good agreement with literature and the narrow melting interval of IN600 compare to UD720 and IN718 might reduce the risk of incipient melting during EBM processing. Porosity was observed in the EBM samples and the reasons are discussed. However, EBM seems to be a feasible process route to produce nickel-based superalloys with well-defined texture, no macrosegregation and a rapidly solidified microstructure. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Increasing productivity by improved arc and beam welding technologies

    International Nuclear Information System (INIS)

    Dilthey, Ulrich; Stein, Lars

    2005-01-01

    In the early sixties, GMA welding methods were introduced into industrial manufacturing and they have been consequently developed further ever since. Recent advances do not only refer to power-source technology but also improved wire feed systems and new consumables such as filler materials and shielding gases. Great efforts have been made to increase deposition rates, and with this efficiency and welding speeds, by extending the frontiers of known processes and by developing new ones

  3. Multiple Reflections and Fresnel Absorption of Gaussian Laser Beam in an Actual 3D Keyhole during Deep-Penetration Laser Welding

    Directory of Open Access Journals (Sweden)

    Xiangzhong Jin

    2012-01-01

    Full Text Available In deep penetration laser welding, a keyhole is formed in the material. Based on an experimentally obtained bending keyhole from low- and medium-speed laser penetration welding of glass, the keyhole profiles in both the symmetric plane are determined by polynomial fitting. Then, a 3D bending keyhole is reconstructed under the assumption of circular cross-section of the keyhole at each keyhole depth. In this paper, the behavior of focused Gaussian laser beam in the keyhole is analyzed by tracing a ray of light using Gaussian optics theory, the Fresnel absorption and multiple reflections in the keyhole are systematically studied, and the laser intensities absorbed on the keyhole walls are calculated. Finally, the formation mechanism of the keyhole is deduced.

  4. Joining Pipe with the Hybrid Laser-GMAW Process: Weld Test Results and Cost Analysis

    Science.gov (United States)

    2006-06-01

    GMAW head separations an additional gas nozzle directed N2 gas at the laser keyhole for plasma suppression and supplemental shielding. Experiments were...beam weld and GMA weld taking place simultaneously in close prox- i m i t y. It has been noted in the literature that hy- brid often refers to laser ...near the beginning and end of the weld. Laser beam keyhole instability may be the cause. Ongoing investigations are being undertaken to determine the

  5. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding

    Science.gov (United States)

    Hemmer, H.; Grong, Ø.; Klokkehaug, S.

    2000-03-01

    In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.

  6. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  7. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  8. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  9. Quality status display for a vibration welding process

    Science.gov (United States)

    Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn

    2017-11-28

    A method includes receiving, during a vibration welding process, a set of sensory signals from a collection of sensors positioned with respect to a work piece during formation of a weld on or within the work piece. The method also includes receiving control signals from a welding controller during the process, with the control signals causing the welding horn to vibrate at a calibrated frequency, and processing the received sensory and control signals using a host machine. Additionally, the method includes displaying a predicted weld quality status on a surface of the work piece using a status projector. The method may include identifying and display a quality status of a suspect weld. The laser projector may project a laser beam directly onto or immediately adjacent to the suspect welds, e.g., as a red, green, blue laser or a gas laser having a switched color filter.

  10. Electron-beam-induced welding of 3D nano-objects from beneath

    International Nuclear Information System (INIS)

    Moskalenko, A V; Burbridge, D J; Viau, G; Gordeev, S N

    2007-01-01

    Exposure of a sample to the electron beam in a scanning electron microscope (SEM) results in the growth of a film of amorphous carbon due to decomposition of hydrocarbon molecules, which are always present in small quantities in the SEM chamber. This growth is induced mainly by secondary electrons backscattered by atoms of both the sample and substrate. We show that, because the secondary electrons are spread beyond the exposed area, this deposit can be grown in areas of geometric shadow and therefore can be used for bonding of different complex 3D nano-objects to a substrate. This is demonstrated by welding 100 nm Fe-Co-Ni nanoparticles to the surface of 2D graphite. The tip of an atomic force microscope was used to probe the mechanical properties of the formed nanostructures. We observed that, for layers thicker than 25 nm, the nanoparticle is bonded so strongly that it is easier to break the particle than to separate it from the substrate

  11. Residual stress characterization of welds using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Pineault, J.A.; Brauss, M.E.

    1996-01-01

    Neglect of residual stresses created during processes lead to stress corrosion cracking, distortion, fatigue cracking, premature failures in components, and instances of over design. Automated residual stress mapping and truly portable equipment have now made the characterization of residual stresses using x-ray diffraction (XRI) practical. The nondestructive nature of the x-ray diffraction technique has made the tile residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. This paper illustrates the importance of residual stress characterization in welds and presents examples where x-ray diffraction techniques were applied in the characterization of various kinds of welds. arc welds, TIG welds, resistance welds, laser welds and electron beam welds. Numerous techniques are available to help manage potentially harmfull residual stresses created during the welding process thus, the effects of a few example post weld processes such as grinding, heat treating and shot peening are also addressed

  12. A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate

    International Nuclear Information System (INIS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2013-01-01

    This paper reports on a study aiming at comparing properties of the Ti6Al4V titanium alloy joints between pulsed Nd:YAG laser welding and traditional fusion welding. To achieve the research purpose, Ti6Al4V titanium alloy plates with a thickness of 0.8 mm were welded using pulsed Nd:YAG laser beam welding (LBW) and gas tungsten arc welding (TIG), respectively. Residual distortions, weld geometry, microstructure and mechanical properties of the joints produced with LBW and TIG welding were compared. During the tensile test, with the aid of a high speed infrared camera, evolution of the plastic strain within tensile specimens corresponding to LBW and TIG welding were recorded and analyzed. Compared with the TIG, the welded joint by LBW has the characters of small overall residual distortion, fine microstructure, narrow heat-affected zone (HAZ), high Vickers hardness. LBW welding method can produce joints with higher strength and ductility. It can be concluded that Pulsed Nd:YAG laser welding is much more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG welding.

  13. Electron beam welding of heavy thicknesses with a 200 KW gun

    International Nuclear Information System (INIS)

    Binard, J.; Ducrot, A.

    1986-09-01

    In this report, we describe our 200 kW gun, 100 m 3 vacuum chamber E B welding equipment, implemented since 1985 to increase the process development in the heavy mechanics; to score the goal, we study the influence of parameters as: welding positions, chemical analysis of the material and workpiece thickness. Simultaneously, we carry out welding tests of branch pipes or nozzles on tubes and shells. Some results are shown and good mechanical properties are obtained on thicknesses up to 300 mm

  14. Modeling aluminum-lithium alloy welding characteristics

    Science.gov (United States)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  15. Hybrid laser arc welding: State-of-art review

    Science.gov (United States)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  16. Weld defects analysis of 60 mm thick SS316L mock-ups of TIG and EB welds by ultrasonic inspection for fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    The present paper reports the weld quality inspections carried with 60 mm thick AISI welds of SS316L. The high thickness steel plates requirement is due to the specific applications in case of advanced fusion reactor structural components like vacuum vessel and others. Different kind welds are proposed for the thick plate joints like Tungsten Inert Gas (TIG) welding, Electron beam welding as per stringent conditions (like very low distortions and residual stresses) for the vacuum vessel fabrication. Mock-ups of laboratory scale welds are fabricated by TIG (multi-pass) and EB (double pass) process techniques and different weld quality inspections are carried by different NDT tests. The welds are examined with Liquid penetrant examination to check sub surface cracks/discontinuities towards the defects observation

  17. A new method to butt weld pipes with laser at different angles

    International Nuclear Information System (INIS)

    Gualini, M.M.S.

    1999-01-01

    Laser butt welding of pipes at different angles may be cumbersome and may require very expensive tooling. The pipe size may not allow using the laser for large volume throughputs. We propose a rotary optical head composed by an adjustable focus lens system and two reflecting mirrors. The laser beam is bent at 90 deg. C. so that weld can be performed inwards outwards. The optic head design compensates the rotary backlash and vibrations, like a penta prism thus ensuring a perfect follow up of the weld track. The optic head can be inclined at 45 deg. C. to laser butt weld pipe each other at 90 deg. C. In this case the laser beam focus position is computer controlled in order to keep the focus point always on the elliptical weld profile. The paper covers theoretical and practical aspects of the proposed device. (author)

  18. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen

    2015-01-01

    We report here a constitutive model for predicting long-term creep strain evolution in’ strengthened Ni-base superalloys. Dislocation climb-bypassing’, typical in intermediate’ volume fraction (~20%) alloys, is considered as the primary deformation mechanism. Dislocation shearing’ to anti-phase boundary (APB) faults and diffusional creep are also considered for high-stress and high-temperature low-stress conditions, respectively. Additional damage mechanism is taken into account for rapid increase in tertiary creep strain. The model has been applied to Alloy 282, and calibrated in a temperature range of 1375-1450°F, and stress range of 15-45ksi. The model parameters and a MATLAB code are provided. This report is prepared by Monica Soare and Chen Shen at GE Global Research. Technical discussions with Dr. Vito Cedro are greatly appreciated. This work was supported by DOE program DE-FE0005859

  19. Design of reinforcement welding machine within steel framework for marine engineering

    Science.gov (United States)

    Wang, Gang; Wu, Jin

    2017-04-01

    In this project, a design scheme that reinforcement welding machine is added within the steel framework is proposed according to the double-side welding technology for box-beam structure in marine engineering. Then the design and development of circuit and transmission mechanism for new welding equipment are completed as well with one sample machine being made. Moreover, the trial running is finished finally. Main technical parameters of the equipment are: the working stroke: ≥1500mm, the welding speed: 8˜15cm/min and the welding sheet thickness: ≥20mm.

  20. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  1. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  2. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  3. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  4. Development of remote pipe welding tool for divertor cassettes in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takao, E-mail: hayashi.takao@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Naka (Japan); Sakurai, Shinji; Sakasai, Akira; Shibanuma, Kiyoshi [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Naka (Japan); Kono, Wataru; Ohnawa, Toshio; Matsukage, Takeshi [Toshiba Corporation, Yokohama, Kanagawa (Japan)

    2015-12-15

    Highlights: • Remote pipe welding tool accessing from inside of the pipe has been newly developed. • Cooling pipe with a jut on the edge expands the acceptable welding gap up to 0.5 mm. • Positioning accuracy of the laser beam is realized to be less than ±0.1 mm. • We have achieved robust welding for an angular misalignment of 0.5°. - Abstract: Remote pipe welding tool accessing from inside of the pipe has been newly developed for JT-60SA. Remote handling (RH) system is necessary for the maintenance and repair of the divertor cassette in JT-60SA. Because the space around the cooling pipe connected with the divertor cassette is very limited, the cooling pipe is to be remotely cut and welded from inside for the maintenance. A laser welding method was employed to perform circumferential welding by rotating the focusing mirror inside the pipe. However, the grooves of connection pipes are not precisely aligned for welding. The most critical issue is therefore to develop a reliable welding tool for pipe connection without a defect such as undercut weld due to a gap caused by angular and axial misalignments of grooves. In addition, an angular misalignment between two pipes due to inclination of pipe has to be taken into account for the positioning of the laser beam during welding. In this paper, the followings are proposed to solve the above issues: (1) Cooling pipe connected with the divertor is machined to have a jut on the edge so as to expand the acceptable welding gap up to 0.5 mm by filling the gap with welded jut. (2) Positioning accuracy of the laser beam for reliable welding is realized to be less than ±0.1 mm along the circumferential target for welding by a position control mechanism provided in the tool even in the case of up to angular misalignment of 0.5° between connection pipes. Based on the above proposals, we have achieved robust welding for a large gap up to 0.5 mm as well as the maximum angular misalignment of 0.5° between connection pipes

  5. Comparison of welding induced residual stresses austenitic and ferritic steel weld joints

    International Nuclear Information System (INIS)

    Rajkumar, K.V.; Arun Kumar, S.; Mahadevan, S.; Manojkumar, R.; Rao, B. Purna Chandra; Albert, Shaju K.; Murugan, S.

    2015-01-01

    X-ray diffraction (XRD) is a well established technique for measurement of residual stresses in components and is being widely used. In XRD technique, the distance between the crystallographic planes (d spacing) is measured from peak position (2è) at various ø angles, where ø is the angle between the normal to the sample and the bisector of the incident and diffracted beam. From the slope of sin2ø vs. d spacing plot, the residual stresses are arrived by assuming a plane stress model. Welding induced residual stresses is of high importance as it is a major cause of failure in components. Surface compressive stresses improve the fatigue strength, whereas tensile residual stresses tend to decrease the fatigue strength. The present study compares the residual stresses that develop in 3 mm thick SS 316 and P91 TIG weld joints using the XRD technique. This study is aimed at understanding the influence of shrinkage during cooling and the effect of phase transformation induced volume changes on residual stress development in these two steels. While the first effect is predominant in the SS 316 weld, both the effects are present in the P91 welds. Stress measurements on SS 316 and P91 were carried out using Cr Kâ (λ-2.0840 Å) and Cr Ká (λ-2.2896 Å) radiations respectively. Typical 'M' type stress profile was observed across the weld centre line in both the welds. The variation and similarities between the longitudinal stress profiles observed in these two weld joints would be discussed. (author)

  6. Rafting in single crystal nickel-base superalloys – An overview

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Page 1 ... aircraft engines as well as land-based power generation applications. Microstruc- ture and high temperature mechanical properties are the major factors controlling the performance of SX ... Single crystal (SX) superalloys are a group of nickel-base superalloys. They exhibit superior high temperatur mechanical ...

  7. Erosion–corrosion behaviour of Ni-based superalloy Superni-75 in ...

    Indian Academy of Sciences (India)

    microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro ... gas turbines and they have designated this alloy as superalloy Superni-75. ... The nickel-based superalloy Superni-75 (19·5Cr-3Fe-0·3Ti-0·1C- Balance Ni) was ...

  8. Development of a Refractory High Entropy Superalloy (Postprint)

    Science.gov (United States)

    2016-03-17

    hardened with HfC precipitates [2], Co-Re- or Co-Al-W-based alloys [3] or two-phase ( FCC + L12) refractory superalloys based on platinum group metals...Ni-based superalloys consisting of cuboids with the ordered L12 structure embedded in an FCC solid-solution matrix. Based on this microstructural...and 5). A comparison of the average atomic radii with the measured lattice parameters allows us to conclude that the disordered BCC phase forming

  9. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  10. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  11. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    Science.gov (United States)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  12. Welding uranium with a multikilowatt, continuous-wave, carbon dioxide laser welder

    International Nuclear Information System (INIS)

    Turner, P.W.; Townsend, A.B.

    1977-01-01

    A 15-kilowatt, continuous-wave carbon dioxide laser was contracted to make partial-penetration welds in 6.35-and 12.7-mm-thick wrought depleted uranium plates. Welding power and speed ranged from 2.3 to 12.9 kilowatts and from 21 to 127 millimeters per second, respectively. Results show that depth-to-width ratios of at least unity are feasible. The overall characteristics of the process indicate it can produce welds resembling those made by the electron-beam welding process

  13. Critical element development of standard components for pipe welding/cutting by CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-11-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor(ITER), an internal access is inevitable for welding/cutting of cooling pipes of in-vessel components, because of spatial constraint due to a narrow port opening space. An internal-access pipe welding/cutting equipment is being developed in JAERI. Internal access is to approach through inside a pipe to a welding/cutting position, to use 10kW CO{sub 2} laser beam, and to be applicable to both welding and cutting with using a same processing head. A welding/cutting processing head with 10kW CO{sub 2} laser beam has been fabricated and the basic feasibility has been successfully demonstrated for studies of the internal-access pipe welding/cutting concept using 100-A stainless steel pipe with a thickness of 6.3mm. In this study, the optimum focal point of laser beam, laser power and traveling speed of the head have been investigated together with an adjusting mechanism of a relative distance between the head and the pipe wall. In addition, the radiation resistance of critical elements such as optical lens has been investigated. (author).

  14. Creep properties of heat-resistant superalloys for nuclear plants in helium

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Satoh, Keisuke; Honda, Yoshio; Matsuda, Shozo; Murase, Hirokazu

    1979-01-01

    Creep properties of candidate superalloys for VHTR components in a helium environment at both temperatures of 800 0 C and 900 0 C were compared with those of the same alloys in the atmospheric condition, and the superalloys were contrasted with each other from the viewpoint of high temperature structural design. At 800 0 C, no significant effect of a helium environment on creep properties of the superalloys is observed. At 900 0 C, however, creep strength of Inconel 617, Incoloy 800 and Incoloy 807 in the helium environment decrease more than in the atmospheric environment. In Hastelloy X and Inconel 625, there is no significant difference between creep strengths in helium and those in the atmospheric condition. Concerning So and St values in helium at 900 0 C, Inconel 617 and Hastelloy X are clearly superior to other superalloys. (author)

  15. Gas Shielding Technology for Welding and Brazing

    Science.gov (United States)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  16. Development of Wrought Superalloy in China

    Directory of Open Access Journals (Sweden)

    DU Jinhui

    2016-06-01

    Full Text Available Wrought superalloy development in China was reviewed in recent ten years. The achievement of basic research and development of industrial manufacture technologies were systematically described from the aspects of new alloys, new technologies of hot deformation. New alloys include: new disc materials 718Plus, GH4720Li and GH4065 alloy, combustion chamber alloy GH3230, and GH4706 alloy for gas turbine engines. New technologies include: ERS-CDS new technology of easy segregation materials, multi upsetting-drawing for improving the microstructure uniformity of bars, slow cooling and multi-cycle thermomechanical treatment for increasing hot plasticity of hard-to-work alloys. Finally, the further development of wrought superalloys was prospected.

  17. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  18. Flaw preparations for HSST program vessel fracture mechanics testing: mechanical-cyclic pumping and electron-beam weld-hydrogen-charge cracking schemes

    International Nuclear Information System (INIS)

    Holz, P.P.

    1980-06-01

    The purpose of the document is to present schemes for flaw preparations in heavy section steel. The ability of investigators to grow representative sharp cracks of known size, location, and orientation is basic to representative field testing to determine data for potential flaw propagation, fracture behavior, and margin against fracture for high-pressure-, high-temperature-service steel vessels subjected to increasing pressurization and/or thermal shock. Gaging for analytical stress and strain procedures and ultrasonic and acoustic emission instrumentation can then be applied to monitor the vessel during testing and to study crack growth. This report presents flaw preparations for HSST fracture mechanics testing. Cracks were grown by two techniques: (1) a mechanical method wherein a premachined notch was sharpened by pressurization and (2) a method combining electron-beam welds and hydrogen charging to crack the chill zone of a rapidly placed autogenous weld. The mechanical method produces a naturally occurring growth shape controlled primarily by the shape of the machined notch; the welding-electrochemical method produces flaws of uniform depth from the surface of a wall or machined notch. Theories, details, discussions, and procedures are covered for both of the flaw-growing schemes

  19. Process and installation for welding nuclear fuel assembly grids

    International Nuclear Information System (INIS)

    Vere, B.; Mathevon, P.

    1985-01-01

    The invention proposes a process to weld two sets of perpendicular plates of which the end parts are made integral with a belt piece; the grid is held in a support frame with access openings to the points to be welded on the two faces and on the grid sides; the frame is moved on a mobile table by means of an orientation system along the perpendicular direction of an electron beam welding equipment; each joint to be welded is presented, rotating the frame through 90 deg about an axis and repeating the operation, and rotating the frame about a perpendicular axis and repeating the operation until all the joints on each side of the grid have been welded [fr

  20. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding

    Directory of Open Access Journals (Sweden)

    Jinle Zeng

    2018-01-01

    Full Text Available Multi-layer/multi-pass welding (MLMPW technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  1. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding.

    Science.gov (United States)

    Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu

    2018-01-05

    Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  2. Overview on the welding technologies of CLAM steel and the DFLL TBM fabrication

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    2016-12-01

    Full Text Available Dual Functional Lithium Lead (DFLL blanket was proposed for its advantages of high energy exchange efficiency and on-line tritium extraction, and it was selected as the candidate test blanket module (TBM for China Fusion Engineering Test Reactor (CFETR and the blanket for Fusion Design Study (FDS series fusion reactors. Considering the influence of high energy fusion neutron irradiation and high heat flux thermal load on the blanket, China Low Activation Martensitic (CLAM steel was selected as the structural material for DFLL blanket. The structure of the blanket and the cooling internal components were pretty complicated. Meanwhile, high precision and reliability were required in the blanket fabrication. Therefore, several welding techniques, such as hot isostatic pressing diffusion bonding, tungsten inner gas welding, electron beam welding and laser beam welding were developed for the fabrication of cooling internals and the assembly of the blanket. In this work, the weldability on CLAM steel by different welding methods and the properties of as-welded and post-weld heat-treated joints were investigated. Meanwhile, the welding schemes and the assembly strategy for TBM fabrication were raised. Many tests and research efforts on scheme feasibility, process standardization, component qualification and blanket assembly were reviewed.

  3. Intelligent monitoring of YAG laser welding on steam generator tubes

    International Nuclear Information System (INIS)

    Hosaka, Shigetaka; Nagura, Yasumi; Ishide, Takashi; Nagashima, Tadashi; Akaba, Takashi

    1992-01-01

    The 'KASHIKOKI' intelligent device for monitoring the YAG laser welding of steam generator tubes is described in this paper. The 'KASHIKOKI', it monitors the series of six channels, for example, the reflected laser beam and the welding speed, etc. It learns the normal criteria and the anomalous criteria of welding, and discriminates between normal and anomalous welding using the learned criteria, and distinguishes the anomaly into several types. As the results of evaluation test, the degree of correspondence between this device and an expert is about 90%. This paper describes the new methods the multi-variate analysis model for discriminating between normal and anomalous welding, and a neural network model for distinguishing the types of anomaly. (author)

  4. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    International Nuclear Information System (INIS)

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-01

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  5. Pore formation during C.W.Nd: YAG laser welding of aluminum alloys for automotive applications

    International Nuclear Information System (INIS)

    Pastor, M.; Zhao, H.; DebRoy, T.

    2000-01-01

    Pore formation is an important concern in laser welding of automotive aluminum alloys. This paper investigates the influence of the laser beam defocusing on pore formation during continuous wave Nd:YAG laser welding of aluminum automotive alloys 5182 and 5754. It was found that the instability of the keyhole during welding was a dominant cause of pore formation while hydrogen rejection played an insignificant role. The defocusing of the laser beam greatly affected the stability of the keyhole. Finally, the mechanism of the collapse of the keyhole and pore formation is proposed. (Author) 45 refs

  6. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIPR) or underwater laser beam welding

    International Nuclear Information System (INIS)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze; Badlani, Manu

    2009-01-01

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP R) , depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development

  7. CFRP-Strengthening and Long-Term Performance of Fatigue Critical Welds of a Steel Box Girder

    Directory of Open Access Journals (Sweden)

    Roland E. Koller

    2014-02-01

    Full Text Available Empa’s research efforts in the 1990s provided evidence that a considerable increase of the fatigue strength of welded aluminum beams can be achieved by externally bonding pultruded carbon fiber reinforced polymer (CFRP laminates using rubber-toughened epoxies over the fatigue-weak welding zone on their tensile flange. The reinforcing effect obtained is determined by the stiffness of the unidirectional CFRP laminate which has twice the elastic modulus of aluminum. One can therefore easily follow that an unstressed CFRP laminate reinforcement of welded beams made of steel will not lead to a substantial increase in fatigue strength of the steel structure. This consideration led to the idea of prestressing an external reinforcement of the welded zone. The present investigation describes experimental studies to identify the adhesive system suitable for achieving high creep and fatigue strength of the prestressed CFRP patch. Experimental results (Wöhler-fields of shear-lap-specimens and welded steel beams reinforced with prestressed CFRP laminates are presented. The paper concludes by presenting a field application, the reinforcement of a steel pendulum by adhesively bonded prestressed CFRP laminates to the tensile flanges of the welded box girder. Inspections carried out periodically on this structure revealed neither prestress losses nor crack initiation after nine years of service.

  8. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  9. Fatigue of superalloys and intermetallics

    International Nuclear Information System (INIS)

    Stoloff, N.S.

    1993-01-01

    The fatigue behavior of intermetallic alloys and their composites is contrasted to that of nickel-base superalloys. The roles of microstructure and slip planarity are emphasized. Obstacles to use of intermetallics under cyclic loading conditions are described and future research directions are suggested

  10. Analysis and validation of laser spot weld-induced distortion

    Energy Technology Data Exchange (ETDEWEB)

    Knorovsky, G.A.; Kanouff, M.P.; Maccallum, D.O.; Fuerschbach, P.W.

    1999-12-09

    Laser spot welding is an ideal process for joining small parts with tight tolerances on weld size, location, and distortion, particularly those with near-by heat sensitive features. It is also key to understanding the overlapping laser spot seam welding process. Rather than attempting to simulate the laser beam-to-part coupling (particularly if a keyhole occurs), it was measured by calorimetry. This data was then used to calculate the thermal and structural response of a laser spot welded SS304 disk using the finite element method. Five combinations of process parameter values were studied. Calculations were compared to experimental data for temperature and distortion profiles measured by thermocouples and surface profiling. Results are discussed in terms of experimental and modeling factors. The authors then suggest appropriate parameters for laser spot welding.

  11. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  12. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  13. Modeling and design of energy concentrating laser weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.O. [Los Alamos National Lab., NM (United States); Sklar, E. [OptiCad Corp., Santa Fe, NM (United States)

    1997-04-01

    The application of lasers for welding and joining has increased steadily over the past decade with the advent of high powered industrial laser systems. Attributes such as high energy density and precise focusing allow high speed processing of precision assemblies. Other characteristics of the process such as poor coupling of energy due to highly reflective materials and instabilities associated with deep penetration keyhole mode welding remain as process limitations and challenges to be overcome. Reflective loss of laser energy impinging on metal surfaces can in some cases exceed ninety five percent, thus making the process extremely inefficient. Enhanced coupling of the laser beam can occur when high energy densities approach the vaporization point of the materials and form a keyhole feature which can trap laser energy and enhance melting and process efficiency. The extreme temperature, pressure and fluid flow dynamics of the keyhole make control of the process difficult in this melting regime. The authors design and model weld joints which through reflective propagation and concentration of the laser beam energy significantly enhance the melting process and weld morphology. A three dimensional computer based geometric optical model is used to describe the key laser parameters and joint geometry. Ray tracing is used to compute the location and intensity of energy absorption within the weld joint. Comparison with experimentation shows good correlation of energy concentration within the model to actual weld profiles. The effect of energy concentration within various joint geometry is described. This method for extending the design of the laser system to include the weld joint allows the evaluation and selection of laser parameters such as lens and focal position for process optimization. The design of narrow gap joints which function as energy concentrators is described. The enhanced laser welding of aluminum without keyhole formation has been demonstrated.

  14. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanhui; Ning, Yongquan, E-mail: ningke521@163.com; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-06-05

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s{sup −1} with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s{sup −1} with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s

  15. Characterization of hot deformation behavior and processing map of FGH4096–GH4133B dual alloys

    International Nuclear Information System (INIS)

    Liu, Yanhui; Ning, Yongquan; Nan, Yang; Liang, Houquan; Li, Yuzhi; Zhao, Zhanglong

    2015-01-01

    Highlights: • Hot deformation behavior of dual superalloys FGH4096–GH4133B was investigated. • Power dissipation maps built at different strains exhibit a continuous dynamic course. • Processing map approach was adopted to optimize hot forging process for dual superalloys. • Microstructure evolution at different deformation temperature and strain rate of dual superalloys was researched. - Abstract: The dual superalloys FGH4096–GH4133B were joined by the electron beam welding. Isothermal compression tests were carried out on electron beam weldments FGH4096–GH4133B alloys at the temperatures of 1020–1140 °C (the nominal γ′-transus temperature is about 1080 °C) and strain rates of 0.001–1.0 s −1 with the height reduction of 50%. The results showed that the true stress–true strain curves are greatly affected by deformation temperature and strain rate. There is an intrinsic and necessary connection between the flow stress and thermal–dynamic behavior, which can be indicated by the true stress–true strain curves. The power dissipation maps at different strains exhibit that true strain has a great effect on processing maps. Processing maps under different strains were constructed for evaluation of the flow instability regime and optimization of processing parameters. When the true strain is 0.69, the optimum processing condition is around 1090−1130 °C/0.1−1.0 s −1 with the peak efficiency of 0.58. The dynamic recrystallization mechanism and microstructure evolution in the welding seam of the studied dual-alloys have been discussed. High temperature and low strain rate are instrumental to dynamic recrystallization. The size of dynamically recrystallized grain decreased with the increase of strain rate and increased with the increase of deformation temperature. Based on the established combine processing map and microstructures, hot deformation process should be carried out under the condition of 1100−1120 °C/0.3−1.0 s −1 with

  16. Zinc-induced embrittlement in nickel-base superalloys by simulation and experiment

    Science.gov (United States)

    Otis, Richard; Waje, Mahesh; Lindwall, Greta; Jefferson, Tiffany; Lange, Jeremy; Liu, Zi-Kui

    2017-09-01

    The high cost of Re has driven interest in processes for recovering Re from scrap superalloy parts. In this work thermodynamic modelling is used to study Zn-induced embrittlement of a superalloy and to direct experiments. Treating superalloy powder with Zn vapour reduces the average particle size after milling from approximately ?m to 0.5-10 ?m, vs. ?m for untreated powder. Simulations predict the required treatment time to increase with temperature. Agreement between predictions and experiments suggests that an embrittling liquid forms in less than an hour of Zn vapour treatment between 950-1000 ?C and partial pressures of Zn between 14-34 kPa (2-5 psi).

  17. Two-dimensional modeling of conduction-mode laser welding

    International Nuclear Information System (INIS)

    Russo, A.J.

    1984-01-01

    WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon

  18. Mechanism of formation and methods of removing magnetic blowing in welding

    International Nuclear Information System (INIS)

    Korol'kov, P.

    1998-01-01

    All welding processes using the electric arc or electron beams are characterised by the detrimental effect of magnetic fields: the electrons of the welding arc are subjected to the effect of the magnetic force distorting their trajectory. In most cases, the arc is deflected along the area of preparation for welding but, in this case, a natural magnetic field forms around the are and, consequently, arc in his unstable and, under severe conditions, the arc breaks up. The effect of the magnetic field of the welding are depends not only on its strength but also the shape and the depth of the area of preparation for welding, the specific pass in welding and arc voltage. Thus, the effect of the magnetic fields is the strongest in the deep and narrow areas of preparation for welding. In most cases, this effect is stronger in welding the weld root, and in subsequent passes the magnetic flux is shunted by the deposited metal. (author)

  19. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao

    2017-08-01

    In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.

  20. Development of laser welding techniques for vanadium alloys

    International Nuclear Information System (INIS)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-01-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO 2 laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m 3 /s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to ∼180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000 degrees C for 1 h in vacuum reduced the DBTT to <-25 degrees C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study

  1. Microstructure evolution and fracture behaviour for electron beam ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of microstructural characteristics on fracture behaviour mechanism for electron beam welding of ... petrochemical plants and surgical implants (Messler 1981;. Jinkeun ... viding a scientific basis for welded structure design, manu-.

  2. Microstructure Evolution of Electron Beam Physical Vapour Deposited Ni-23.5Cr-2.66Co-1.44Al Superalloy Sheet During Annealing at 600 °C

    Directory of Open Access Journals (Sweden)

    Li Mingwei

    2013-02-01

    Full Text Available Microstructure evolution of electron beam physical vapour deposited (EB-PVD Ni‑23.5Cr‑2.66Co‑1.44Al superalloy sheet during annealing at 600 °C was investigated. The results showed that the as-deposited alloy was composed of only g phase. After annealing at 600 °C, the locations of diffraction peaks were still the same. The (220 diffraction peak of the deposition side increased with annealing time. The sheet on deposited side had a tendency toward forming (220 texture during post-annealing. No obvious texture was observed at as-deposited and annealed sheet at 600 °C in substrate side. The count and size of "voids" decreased with time. The size of grains increased obviously with annealing time. The ultimate tensile strength of EB-PVD Ni-23.5Cr-2.66Co-1.44Al alloy sheet increased from 641 MPa to 829 MPa after annealing at 600 °C for 30 hours.

  3. Aspectos metalúrgicos de revestimentos dissimilares com a superliga à base de níquel inconel 625 Metallurgical aspects of dissimilar weld overlays of inconel 625 nickel based superalloys

    Directory of Open Access Journals (Sweden)

    Cleiton Carvalho Silva

    2012-09-01

    Full Text Available Prolongar a vida útil e aumentar a confiabilidade de equipamentos e tubulações de plantas de produção e processamento de petróleo é uma busca constante no setor de petróleo e gás. Tais aspectos dependem essencialmente do uso de ligas resistentes à corrosão. Neste contexto, a soldagem de revestimento com superligas à base de níquel tem sido uma alternativa interessante, pois confere aos equipamentos uma alta resistência à corrosão com um custo inferior, se comparado à fabricação de componentes ou tubulações maciças com superligas. Assim, o objetivo do presente trabalho foi investigar o comportamento metalúrgico de revestimento de superliga à base de níquel do tipo Inconel 625 depositados pelo processo TIG com alimentação de arame frio. As soldagens foram realizadas em uma bancada robotizada, empregando uma fonte eletrônica de soldagem com sistema de aquisição de dados para o monitoramento dos sinais de corrente e tensão. A caracterização microestrutural foi realizada através das técnicas de microscopia eletrônica de varredura (MEV e transmissão (MET, espectroscopia de energia dispersiva de raios-X (EDS. Os resultados mostraram que a microestrutura do metal de solda foi constituída por uma matriz γ com fases secundárias ricas em Nb. Foi encontrada a formação de precipitados complexos de carbonetos/nitretos de Ti e Nb.To extend the life and reliability of pipes and equipment in oil & gas production and processing settings is a continuous demand. These aspects are essentially dependent on corrosion resistant alloys used. In this context, the weld overlay with Ni-based superalloys is a great interesting alternative, since improve the corrosion resistance without increase the cost of manufacture when compared to massive equipment. Thus, the objective of this study was to evaluate the metallurgical aspects of Inconel 625 weld overlays deposited by GTAW cold wire feed process. The welds were performed using a

  4. Welding of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Elahi, M.

    2010-01-01

    Recently, many bulk metallic glass (BMG) materials with high specific strength, hardness and superior corrosion resistance have been developed and the maximum thickness of some Zr-based BMGs have reached several tenths of millimeters. Nevertheless, homogeneous glassy BMGs are not thick enough to be used for structural applications. In order to extend the engineering applications of BMG materials, BMG welding technologies needed to be developed. Specifically, the welding technologies of dissimilar materials such as BMG materials to crystalline alloys are to be developed. The functional use of the specific properties of each material in dissimilar material combination provides flexible design possibilities for products. In this project electron beam welding is employed to join BMG with BMG of different composition as well as with different crystalline materials (i.e. Hastealoy C-276, Inconel-625 and pure Ti metal). Defects free weld joint was achieved in BMG-BMG welding. Some cracks were produced in melt zone of BMG-Ti and BMG-Hastealoy C-276 welding while at joint they fuse properly with BMG. Inconel-625 could not properly weld with BMG. In all cases, hardness of melt zone was found to be higher than the base metals and the heat affected zone (HAZ). (author)

  5. An automated system for studying the power distribution of electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Filarowski, C.A.

    1994-12-01

    Precise welds with an electron beam welder are difficult to reproduce because the factors effecting the electron beam current density distribution are not easily controlled. One method for measuring the power density distribution in EB welds uses computer tomography to reconstruct an image of the current density distribution. This technique uses many separate pieces of hardware and software packages to obtain the data and then reconstruct it consequently, transferring this technology between different machines and operators is difficult. Consolidating all of the hardware and software into one machine to execute the same tasks will allow for real-time measurement of the EB power density distribution and will provide a facilitated means for transferring various welding procedure between different machines and operators, thereby enhancing reproducibility of electron beam welds.

  6. Disk Laser Welding of Car Body Zinc Coated Steel Sheets / Spawanie Laserem Dyskowym Blach Ze Stali Karoseryjnej Ocynkowanej

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2015-12-01

    Full Text Available Autogenous laser welding of 0.8 mm thick butt joints of car body electro-galvanized steel sheet DC04 was investigated. The Yb:YAG disk laser TruDisk 3302 with the beam spot diameter of 200 μm was used. The effect of laser welding parameters and technological conditions on weld shape, penetration depth, process stability, microstructure and mechanical performance was determined. It was found that the laser beam spot focused on the top surface of a butt joint tends to pass through the gap, especially in the low range of heat input and high welding speed. All test welds were welded at a keyhole mode, and the weld metal was free of porosity. Thus, the keyhole laser welding of zinc coated steel sheets in butt configuration provides excellent conditions to escape for zinc vapours, with no risk of porosity. Microstructure, microhardness and mechanical performance of the butt joints depend on laser welding conditions thus cooling rate and cooling times. The shortest cooling time t8/5 was calculated for 0.29 s.

  7. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    Science.gov (United States)

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  8. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E., E-mail: vtp@igcar.gov.in

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  9. Contribution to a research on electron beam welding of metals; Contribution a l'etude de la soudure des metaux par faisceau d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-03-15

    The electron beam welding of metals is performed by the travelling of the focusing point along the junction of two pieces to be connected. Welding parameters are the electron gun power W, the value of the electron impact surface S, the welding speed s. From the beginning of our research in 1954, the preponderant part played by specific power W/s on the shape of the welded zone and the penetrating depth, became evident. A more methodical research has been undertaken in the laboratories of C.E.N. under the patronage of Professor CHAUDRON, in order to define in a better way the importance of the different welding parameters and to determine their influence on the metallurgical qualities of welded assemblies. This research induced us to define an electron gun adapted as well as possible to the performance of weldings, not only from the point of view of behaviour, especially during the passage from the atmospheric to a low pressure at 10{sup -5} Torr, necessary for the carrying out of a welding, but also from the point of view of adjustment conveniences of the different welding parameters, indispensable to the intended research work. The variations of welding parameters show that the shape of the molten zone turns from a circle segment to that of a very high triangle, which implies a continual change of the mode of heat transmission. Tests have been made, in order to confirm this way of looking, especially in order to achieve isotherms in dynamic operating and also the comparison of these isotherms with that recorded while using a method of argon arc welding. The thermal balance of energy supplied to the part, the necessary welding energy, and the energy loss (through conduction, radiation and evaporation) has also been established. These results proved that almost the whole of energy has been used for melting, that the different losses are negligible and that heat transmission can not occur by thermal conduction through the part during 'welding' time, when operating

  10. Superalloy applications in the fast breeder reactor

    International Nuclear Information System (INIS)

    Powell, R.W.

    1976-01-01

    The economics of the LMFBR are dependent on the breeding of new fuel in the reactor core and this can be improved by the use of advanced alloys as core structural components. The environment of the core makes superalloys a natural choice for these components, but phenomena related directly to neutron irradiation necessitate extensive testing. Consequently, commercially-available superalloys, together with a number of developmental alloys are being tested in existing LMFBR's and by simulation techniques to determine the best alloy for use in the LMFBR core. It presently appears that such materials will indeed be capable of the performance required, and will greatly facilitate the commercial realization of the fast breeder reactor

  11. Elucidation of Metallic Plume and Spatter Characteristics Based on SVM During High-Power Disk Laser Welding

    International Nuclear Information System (INIS)

    Gao Xiangdong; Liu Guiqian

    2015-01-01

    During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality. (plasma technology)

  12. Predicting the morphologies of {\\gamma}' precipitates in cobalt-based superalloys

    OpenAIRE

    Jokisaari, Andrea M.; Naghavi, Shahab S.; Wolverton, Chris; Voorhees, Peter W.; Heinonen, Olle G.

    2017-01-01

    Cobalt-based alloys with {\\gamma}/{\\gamma}' microstructures have the potential to become the next generation of superalloys, but alloy compositions and processing steps must be optimized to improve coarsening, creep, and rafting behavior. While these behaviors are different than in nickel-based superalloys, alloy development can be accelerated by understanding the thermodynamic factors influencing microstructure evolution. In this work, we develop a phase field model informed by first-princip...

  13. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  14. High temperature oxidation characteristics of developed Ni-Cr-W superalloys in air

    International Nuclear Information System (INIS)

    Suzuki, Tomio; Shindo, Masami

    1996-11-01

    For expanding utilization of the Ni-Cr-W superalloy, which has been developed as one of new high temperature structural materials used in the advanced High Temperature Gas-cooled Reactors (HTGRs), in various engineering fields including the structural material for heat utilization system, the oxidation behavior of this alloy in air as one of high oxidizing environments becomes one of key factors. The oxidation tests for the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition and five kinds of experimental Ni-Cr-W alloys with different Cr/W ratio were carried out at high temperatures in the air compared with Hastelloy XR. The conclusions were obtained as follows. (1) The oxidation resistance of the industrial scale heat of Ni-Cr-W superalloy with the optimized chemical composition was superior to that of Hastelloy XR. (2) The most excellent oxidation resistance was obtained in an alloy with 19% Cr of the industrial scale heat of Ni-Cr-W superalloy. (author)

  15. Evaluation of weld joints properties of 60mm thick AISI 316L for fusion reactor vacuum vessel by TIG and EB welding processes

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kutner

    2016-01-01

    The present paper is focussed on the NDT examination procedures, evaluated mechanical properties; microstructure details investigated on the different welding process of Multipass TIG process (64 passes) and electron beam welding (two pass) of the AISI SS316LN plates. The characterization of mechanical properties (Tensile, Bend, Hardness and Impact) and detailed microstructure analysis have been discussed in this paper. Mechanical properties in both conditions shown higher joint efficiencies. Bend tests shown the good quality of weld and ductility behavior of the joining process. Hardening is observed in both the samples for welded zone and HAZ compared to base metal. Impact fracture results revealed the poor toughness properties for the WZ compared to HAZ and BM samples in both the cases

  16. Thermomechanical fatigue in single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF is a mechanism of deformation which is growing in importance due to the efficiency of modern cooling systems and the manner in which turbines and associated turbomachinery are now being operated. Unfortunately, at the present time, relatively little research has been carried out particularly on TMF of single crystal (SX superalloys, probably because the testing is significantly more challenging than the more standard creep and low cycle fatigue (LCF cases; the scarcity and relative expense of the material are additional factors. In this paper, the authors summarise their experiences on the TMF testing of SX superalloys, built up over several years. Emphasis is placed upon describing: (i the nature of the testing method, the challenges involved in ensuring that an given testing methodology is representative of engine conditions (ii the behaviour of a typical Re-containing second generation alloy such as CMSX-4, and its differing performance in out-of-phase/in-phase loading and crystallographic orientation and (iii the differences in behaviour displayed by the Re-containing alloys and new Re-free variants such as STAL15. It is demonstrated that the Re-containing superalloys are prone to different degradation mechanisms involving for example microtwinning, TCP precipitation and recrystallisation. The performance of STAL15 is not too inferior to alloys such as CMSX-4, suggesting that creep resistance itself does not correlate strongly with resistance to TMF. The implications for alloy design efforts are discussed.

  17. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  18. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  19. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    Science.gov (United States)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  20. Qualification of final closure for disposal container I - applicability of TIG and EBW for overpack welding

    International Nuclear Information System (INIS)

    Asano, H.; Kawahara, K.; Ishii, J.; Shige, T.

    2002-01-01

    Regarding the final sealing technique of the overpack using carbon steel, one of the candidate materials for the disposal container in the geological disposal of high-level radioactive waste in Japan, welding tests were conducted using TIG (GTAW), a typical arc welding process, and electron beam welding (EBW), a high-energy beam welding process. The purpose of the tests was to evaluate the applicability, the scope of the applications and the conditions for the application of the existing techniques; while also examining the welding conditions and the weld quality. Regarding TIG, the optimum welding conditions (the conditions pertaining to the welding procedures and the groove geometry) were checked by using a specimen with a plate thickness of 50 mm, and then circumferential welding tests were conducted for cylindrical specimens with a groove depth of 100 mm and 150 mm. Radiographic testing showed that there was no significant weld defect in the weld and that the welding characteristics were satisfactory. The results of the test of the mechanical properties of the joint were also satisfactory. Measurement of the temperature distribution and the residual stress distribution at the time of the welding was conducted for an evaluation of the residual stress caused by the welding, and an appropriate residual stress analysis method was developed, which confirmed the generation of tensile stress along the circumferential direction of the weld. Then it was pointed out that a necessity of further consideration of how to reduce the stress and to examine the influence that residual stress has on corrosion property. The goal in the EBW test was to achieve a one-pass full penetration welding process for 190 mm while conducting a partial penetration welding test for a welding depth of 80 mm. Subsequent radiographic testing confirmed that there was no significant weld defect. (orig.)

  1. Manufacture and characterization of austenitic steel welded joints. Joint final report - Vol. 1

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-07-01

    This report describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the weldings. Five different welding methods have been produced and characterized in comparison to the parent material. The reference material was an AISI 316L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in a second volume. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material

  2. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    Science.gov (United States)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction

  3. Laser patterning and welding of transparent polymers for microfluidic device fabrication

    Science.gov (United States)

    Pfleging, W.; Baldus, O.

    2006-02-01

    CO II-laser-assisted micro-patterning of polymethylmethacrylate (PMMA) or cyclo-olefin copolymer (COC) has a great potential for the rapid manufacturing of polymeric devices including cutting and structuring. Channel widths of about 50 μm as well as large area patterning of reservoir structures or drilling of vias are established. For this purpose a high quality laser beam is necessary as well as an appropriate beam forming system. In combination with laser transmission welding a fast fabrication of two- and three-dimensional micro-fluidic devices was possible. Welding as well as multilayer welding of transparent polymers was investigated for different polymers such as PMMA, polyvinylidene fluoride (PVDF), COC, and polystyrene (PS). The laser transmission welding process is performed with a high-power diode laser (wavelength 940 nm). An absorption layer with a thickness of several nanometers is deposited onto the polymer surfaces. The welding process has been established for the welding of polymeric parts containing microchannels, if the width of the channels is equal or larger than 100μm. For smaller feature sizes the absorption layer is structured by UV-laser radiation in order to get a highly localized welding seam, e.g., for the limitation of thermal penetration and thermal damaging of functional features such as channels, thin walls or temperature-sensitive substances often contained in micro-fluidic devices. This process strategy was investigated for the welding of capillary electrophoresis chips and capillary blood separation chips, including channel widths of 100 μm and 30 μm. Analysis of the thickness of the absorption layer was carried out with optical transmission spectroscopy.

  4. Research on 16Mo3 (16M Steel Pipes Overlaid with Haynes Nicro625 Alloy Using MIG (131 Method / Badania Rur Ze Stali 16Mo3 (16M Napawanych Metodą MIG (131 Stopem Haynes Nicro625

    Directory of Open Access Journals (Sweden)

    Golański G.

    2015-12-01

    Full Text Available The paper presents the research on the microstructure and mechanical properties of a pipe made of 16Mo3 steel, overlaid with superalloy based on Haynes NiCro625 nickel. The overlay weld was overlaid using the MIG (131 method. The performed macro - and microscopic tests have shown the correct structure of the overlay weld without any welding unconformities. The examined overlay weld was characterized by a dendritic structure of the primary crystals accumulating towards the heat removal. It has been proved that the content of iron in the surface zone does not exceed 7%, and the steel-superalloy joint shows the highest properties in comparison with the materials joined.

  5. Electron Gun for Computer-controlled Welding of Small Components

    Czech Academy of Sciences Publication Activity Database

    Dupák, Jan; Vlček, Ivan; Zobač, Martin

    2001-01-01

    Roč. 62, 2-3 (2001), s. 159-164 ISSN 0042-207X R&D Projects: GA AV ČR IBS2065015 Institutional research plan: CEZ:AV0Z2065902 Keywords : Electron beam-welding machine * Electron gun * Computer- control led beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.541, year: 2001

  6. A new method in prediction of TCP phases formation in superalloys

    International Nuclear Information System (INIS)

    Mousavi Anijdan, S.H.; Bahrami, A.

    2005-01-01

    The purpose of this investigation is to develop a model for prediction of topologically closed-packed (TCP) phases formation in superalloys. In this study, artificial neural networks (ANN), using several different network architectures, were used to investigate the complex relationships between TCP phases and chemical composition of superalloys. In order to develop an optimum ANN structure, more than 200 experimental data were used to train and test the neural network. The results of this investigation shows that a multilayer perceptron (MLP) form of the neural networks with one hidden layer and 10 nodes in the hidden layer has the lowest mean absolute error (MAE) and can be accurately used to predict the electron-hole number (N v ) and TCP phases formation in superalloys

  7. A Comparison of the Plastic Flow Response of a Powder Metallurgy Nickel Base Superalloy (Postprint)

    Science.gov (United States)

    2017-04-01

    AFRL-RX-WP-JA-2017-0225 A COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) S.L...COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT...behavior at hot-working temperatures and strain rates of the powder- metallurgy superalloy LSHR was determined under nominally-isothermal and transient

  8. Reduction method for residual stress of welded joint using random vibration

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Nishimura, Tadashi; Hiroi, Tetsumaro

    2005-01-01

    Welded joints are used for construction of many structures. Residual stress is induced near the bead caused by locally given heat. Tensile residual stress on the surface may reduce fatigue strength. In this paper, a new method for reduction of residual stress using vibration during welding is proposed. As vibrational load, random vibration, white noise and filtered white noise are used. Two thin plates are butt-welded. Residual stress is measured with a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. It is concluded that tensile residual stress near the bead is reduced by using random vibration during welding

  9. Mechanical properties of TIG and EB weld joints of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takanori, E-mail: hirose.takanori@jaea.go.jp; Sakasegawa, Hideo; Nakajima, Motoki; Tanigawa, Hiroyasu

    2015-10-15

    Highlights: • Narrow groove TIG minimized volume of F82H weld. • Mechanical properties of TIG and EB welds of F82H have been characterized. • Post weld heat treatment successfully moderate the toughness of weld metal without softening the base metal. - Abstract: This work investigates mechanical properties of weld joints of a reduced activation ferritic/martensitic steel, F82H and effects of post weld heat treatment on the welds. Vickers hardness, tensile and Charpy impact tests were conducted on F82H weld joints prepared using tungsten-inert-gas and electron beam after various heat treatments. Although narrow groove tungsten-inert-gas welding reduced volume of weld bead, significant embrittlement was observed in a heat affected zone transformed due to heat input. Post weld heat treatment above 993 K successfully moderated the brittle transformed region. The hardness of the brittle region strongly depends on the heat treatment temperature. Meanwhile, strength of base metal was slightly reduced by the treatment at temperature ranging from 993 to 1053 K. Moreover, softening due to double welding was observed only in the weld metal, but negligible in base metal.

  10. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  11. σ and η Phase formation in advanced polycrystalline Ni-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, Stoichko, E-mail: santonov@hawk.iit.edu [Illinois Institute of Technology, 10 W. 32nd Street, Chicago, IL 60616 (United States); Huo, Jiajie; Feng, Qiang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Isheim, Dieter; Seidman, David N. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (United States); Northwestern University Center for Atom Probe Tomography (NUCAPT), 2220 Campus Drive, Evanston, IL 60208 (United States); Helmink, Randolph C.; Sun, Eugene [Rolls-Royce Corporation, 450 S. Meridian Street, Indianapolis, IN 46225 (United States); Tin, Sammy [Illinois Institute of Technology, 10 W. 32nd Street, Chicago, IL 60616 (United States)

    2017-02-27

    In polycrystalline Ni-base superalloys, grain boundary precipitation of secondary phases can be significant due to the effects they pose on the mechanical properties. As new alloying concepts for polycrystalline Ni-base superalloys are being developed to extend their temperature capability, the effect of increasing levels of Nb alloying additions on long term phase stability and the formation of topologically close packed (TCP) phases needs to be studied. Elevated levels of Nb can result in increased matrix supersaturation and promote the precipitation of secondary phases. Long term thermal exposures on two experimental powder processed Ni-base superalloys containing various levels of Nb were completed to assess the stability and precipitation of TCP phases. It was found that additions of Nb promoted the precipitation of η-Ni{sub 6}AlNb along the grain boundaries in powder processed, polycrystalline Ni-base superalloys, while reduced Nb levels favored the precipitation of blocky Cr and Mo – rich σ phase precipitates along the grain boundary. Evaluation of the thermodynamic stability of these two phases in both alloys using Thermo-calc showed that while σ phase predictions are fairly accurate, predictions of the η phase are limited.

  12. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling

    International Nuclear Information System (INIS)

    Panwisawas, Chinnapat; Perumal, Bama; Ward, R. Mark; Turner, Nathanael; Turner, Richard P.; Brooks, Jeffery W.; Basoalto, Hector C.

    2017-01-01

    High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.

  13. Characterization of electromagnetic pulse welding joints for advanced steels (ODS) welding applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    Advanced fusion reactors structural materials (like in case of TBM and, first wall components) have several operation challenges due to the demanding high temperature exposure conditions (∼800°C) and low neutron radiation effects. The present paper reports the preliminary case studies carried out on steel and copper EMP joints and their properties characterization towards establishing this technology for ODS alloys. The EMP joints in form of tubes are fabricated and tested (typical process parameters ∼ Voltage 25 kV, Current ∼600-800 kA, Max. energy ∼ 50 kJ, and 50 sec duty cycle as major process parameters). The weld joints are further characterized by X-ray radiography and found that there were no measureable defects/discontinuities across the weld interface. This indicates the good process of joining and acceptable. Characterization studies like microstructure, interface grain orientation features, deformation, hardness has been carried out. SEM studies also carried to check the interface status and some interesting features of discontinuities are observed which are not exclusively revealed by radiography tests. Hardness survey also revealed that there is no much variation in the both parent materials as well at weld zone indicating the no hardening affects like in arc/beam weld process. EMP joining has potential features for the joining requirements of ODS kind typical metallurgical requirements

  14. A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qian [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Di, Hong-Shuang, E-mail: hongshuangdi_ral@126.com [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Li, Jun-Chen [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Wu, Bao-Qiang [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Material and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2016-07-04

    The differences in microstructure and mechanical properties of laser beam welded (LBW) and gas metal arc welded (GMAW) joints of 800 MPa grade Nb-Ti-Mo microalloyed C-Mn steel of 5 mm thickness were studied. The study suggested that the microstructure in welded seam (WS) of GMAW was acicular ferrite and fine grained ferrite, whereas lath martensite (LM) was obtained in WS of LBW, where inclusions were finer and did not act as nucleation sites for acicular ferrite. The microstructure of coarse-grained HAZ (CGHAZ) obtained using the two welding methods was LM and granular bainite (GB), respectively. The original austenite grain size in CGHAZ of LBW was 1/3 of GMAW. The microstructure of fine-grained HAZ and mixed-grained HAZ using the two welding methods was ferrite and M-A constituents, while that of LBW was significantly fine. The hardness of LBW welded joints was higher than the base metal (BM), which was the initiation site for tensile fracture. The tensile fracture location of GMAW welded joints was in WS. The impact toughness of LBW welded joints was excellent and the impact absorption energy was similar to BM.

  15. Precipitation in Powder Metallurgy, Nickel Base Superalloys: Review of Modeling Approach and Formulation of Engineering (Postprint)

    Science.gov (United States)

    2016-12-01

    AFRL-RX-WP-JA-2016-0333 PRECIPITATION IN POWDER- METALLURGY , NICKEL-BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF...PRECIPITATION IN POWDER- METALLURGY , NICKEL- BASE SUPERALLOYS: REVIEW OF MODELING APPROACH AND FORMULATION OF ENGINEERING (POSTPRINT) 5a...and kinetic parameters required for the modeling of γ′ precipitation in powder- metallurgy (PM), nickel-base superalloys are summarized. These

  16. Surface alloying of nickel based superalloys by laser

    International Nuclear Information System (INIS)

    Rodriguez, G.P.; Garcia, I.; Damborenea, J.J. de

    1998-01-01

    Ni based superalloys present a high oxidation resistance at high temperature as well as good mechanical properties. But new technology developments force to research in this materials to improve their properties at high temperature. In this work, two Ni based superalloys (Nimonic 80A and Inconel 600) were surface alloyed with aluminium using a high power laser. SEM and EDX were used to study the microstructure of the obtained coatings. Alloyed specimens were tested at 1.273 K between 24 and 250 h. Results showed the generation of a protective and continuous coating of alumina on the laser treated specimens surface that can improve oxidation resistance. (Author) 8 refs

  17. Numerical estimation of temperature field in a laser welded butt joint made of dissimilar materials

    Directory of Open Access Journals (Sweden)

    Saternus Zbigniew

    2018-01-01

    Full Text Available The paper concerns numerical analysis of thermal phenomena occurring in the butt welding of two different materials by a laser beam welding. The temperature distribution for the welded butt-joint is obtained on the basis of numerical simulations performed in the ABAQUS program. Numerical analysis takes into account the thermophysical properties of welded plate made of two different materials. Temperature distribution in analysed joints is obtained on the basis of numerical simulation in Abaqus/Standard solver, which allowed the determination of the geometry of laser welded butt-joint.

  18. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2011-01-01

    Research highlights: → Beneficial effects of FRW, GTAW and EBW joints of dissimilar AISI 304 and AISI 4140 materials. → Comparative study of FRW, GTAW and EBW joints on mechanical properties. → SEM/EDAX, XRD analysis on dissimilar AISI 304 and AISI 4140 materials. -- Abstract: This paper presents the investigations carried out to study the microstructure and mechanical properties of AISI 304 stainless steel and AISI 4140 low alloy steel joints by Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW) and Friction Welding (FRW). For each of the weldments, detailed analysis was conducted on the phase composition, microstructure characteristics and mechanical properties. The results of the analysis shows that the joint made by EBW has the highest tensile strength (681 MPa) than the joint made by GTAW (635 Mpa) and FRW (494 Mpa). From the fractographs, it could be observed that the ductility of the EBW and GTA weldment were higher with an elongation of 32% and 25% respectively when compared with friction weldment (19%). Moreover, the impact strength of weldment made by GTAW is higher compared to EBW and FRW.

  19. Welding state of art for Eurofer 97 application to Tritium Blanket Module for ITER Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, P. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/DIR), 91 - Gif sur Yvette (France); Janin, F. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DPC/SCP/Gerailp), 91 - Gif sur Yvette (France)

    2007-07-01

    Full text of publication follows: Eurofer weldability must be established for data base assessment and TBM manufacturing support. Electron Beam, Hybrid (Laser combined with MIG/MAG), Laser and Narrow Gap TIG processes have been carried out on Eurofer samples from 0.5 mm to 40 mm. Electron Beam produces very narrow fusion zone width, in the range of 3 to 4 mm, that yields brittle joints with (5-ferrite. This process is considered only for low penetration depth (cooling plates). The other processes produce similar results, with attenuation or enhanced effects, depending on cooling rates and weld penetration depth. Pre- and post-heating have been applied on hybrid and laser welds. High hardness values, increasing brittleness and softening effects in the Heat Affected Zone are observed for each welding configuration that could signal creep problems. The Fusion Zones are typically composed of martensite laths, with small grain sizes. In the Heat Affected Zones, martensite grains are observed with M23C6 carbide precipitation. Delta ferrite has been observed only in Electron Beam welds, due to very high cooling rate during the solidification phase, related to strong enhanced weld shape. Eurofer filler wire with optimized chemical composition is developed for producing welds with good properties. To restore properties after welding, PWHT seems is necessary and several treatments including one at 750 deg. C for 2 hours have been performed. Also tries is a re-austenisation treatment of 10 h at 1050 deg. C. affecting order to improve results, pre- and post-heating has been applied. The heating produced by the resistive heater was too low, and new welding tests are planned at higher temperatures (400 deg. C). However, the pre- and post-heating at higher temperatures will complicate manufacturing of TBM clamping For penetration depths below 10 mm, laser process is the reference method and TIG second. Distortion level performed by laser process is acceptable for manufacturing

  20. NASA/ORNL/AFRL Project Work on EBM LSHR: Additive Manufacturing of High-Temperature Gamma-Prime Strengthened Ni-Based Superalloys

    Science.gov (United States)

    Sudbrack, Chantal K.; Kirka, Michael M.; Dehoff, Ryan R.; Carter, Robert W.; Semiatin, Sheldon L.; Gabb, Timothy P.

    2016-01-01

    Powder-bed fabrication of aerospace alloys may revolutionize production by eliminating the need for extensive machining and expensive tooling. Heated-bed electron-beam melting (EBM) offers advantages over non-heated laser additive manufacturing (AM) methods, including lower residual stress, reduced risk of contamination, slower cooling rates, and faster build times. NASA Glenn Research Center has joint project work with Oak Ridge National Lab and the Air Force Research Laboratory to explore the feasibility of fabricating advanced Ni-based gamma-prime superalloys with EBM AM.