WorldWideScience

Sample records for beam wastewater treatment

  1. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  2. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  3. Electron beam treatment of wastewater

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Shimizu, K.; Sugiyama, M.

    1991-01-01

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics so that it is hard to be treated by conventional activated sludge. By electron beam (EB) irradiation, any kinds of organics in water can be oxidized to biodegradable organic acids. We studied the treatment of supernatant by application of this effect. The direct irradiation of the original supernatant was found not to be so effective to decrease COD. In order to increase the irradiation effect, supernatant was pretreated biologically to decrease the biodegradable organics in it. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were decreased from 800 and 910 mg/L to 78 and 5 mg/L by this pretreatment, respectively. This pretreated supernatant was irradiated by EB of 2 MeV using a batch type reactor. The COD was gradually decreased with dose. In contrast, BOD was increased markedly, indicating increase in biodegradability. The irradiated sample water was treated biologically again. After the final biological treatment, COD was decreased below 30 mg/L in the case of 10 - 12 kGy irradiation. Finally, the initial COD of 800 mg/L was decreased below 30 mg/L by the combination of EB irradiation and biological treatment. The cost of irradiation for this process was evaluated preliminarily. (author)

  4. Electron beam wastewater treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Oikawa, H.; Somessari, E.S.R.; Silveira, C.G.; Costa, F.E.

    2001-01-01

    Experiments were performed at laboratory scale and at pilot plant scale to study the efficiency on using EB to remove and degrade toxic and refractory pollutants mainly from industrial origins. An upflow stream hydraulic system that governs the efficiency of the EB energy transferred to the stream was developed. Two different sources of samples were used to treat industrial effluents from a pharmaceutical chemical industry located in Sao Paulo and from a Governmental Wastewater Treatment Plant (WWTP) in Sao Paulo State, which receives the major quantity of industrial wastewater. Using samples from this WWTP, studies to combine EB irradiation process with conventional treatment were carried out with experimentation doses of 5 kGy, 10 kGy and 20 kGy and the irradiation effects were evaluated in the following parameters: COD, BOD, solids, TOC, THMs. PCE, TCE, BTX and concentration of organic acids by-products. Toxicity studies were also carried out for different sites and industrial activities showing significant removal of acute toxicity by increasing values of the EC-50 for most of the experiments. The economic aspects of this technology were evaluated and the estimated processing costs for some values of delivered doses and operation are reported here. (author)

  5. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  6. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  7. Electron Beam Treatment Plant for Textile Dyeing Wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Yuri; Choi, Jangseung; Ahn, Sangjun

    2006-01-01

    High positive effect of electron-beam treatment involved into the process of wastewater purification is now well established. The most effective for the purpose seem to be combine methods including both electron beam and any conventional treatment stages, i.e., under conditions when some synergistic effects can take place. Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m 2 with 13,000 employees in total. The production requires high consumption of water (90,000m 3 /day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment

  8. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  9. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2006-01-01

    A pilot plant for treating 1,000 m 3 of textile dyeing wastewater per day with electron beam has constructed and operated continuously in Daegu, Korea since 1998. This plant is combined with biological treatment system and it shows the reduction of chemical reagent consumption, and also the reduction in retention time with the increase in removal efficiencies of COD Cr and BOD 5 up to 30∼40%. Increase in biodegradability after radiation treatment of aqueous-organic systems is due to radiolytical conversions of non-biodegradable compounds. On the basis of data obtained from pilot plant operation, construction of actual industrial scale plant has started in 2003, and will be finished by 2005. This plant is located on the area of existing wastewater treatment facility (Daegu Dyeing Industrial Complex) and to have treatment capacity 10,000 m 3 of wastewater per day using one 1 MeV, 400 kW accelerator, and combined with existing bio- treatment facility. The overall construction cost and the operation cost in the radiation processing, when compared to other conventional and advanced oxidation techniques, are more cost-effective and convenient for wastewater treatment. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government. (author)

  10. Electron beam processing programme: Wastewater and sludge treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Vieira, J.M.

    1998-01-01

    The Institute for Energetic and Nuclear Research, working on environmental applications, has an extensive research programme using high energy electron beam in treating industrial wastewater and sludge. The experiments are being conducted in a pilot plant using an industrial electron beam 1.5MeV, 25mA, where the streams are presented to the scanned electron beam in counter flow. This pilot plant is designed to process approximately 3.0m 3 /h with an average dose 5kGy and the absorbed dose measurement is performed continuously by calorimetric system in real time. Combined biological and radiation treatment of domestic sewage and sludge were carried out to investigate disinfestation and removal of organic matter. The experiments showed that total and fecal coliforms were decreased by about 5 logs cycles with a 3.0kGy radiation dose in raw sewage and biological effluents, respectively. Concerning the industrial wastewater in the first stage of the programme, the irradiation was conducted using batch systems with samples originating from a Governmental Wastewater Treatment Plant. The data showed a significant color reduction effect when delivered dose was increased, and the opposite was noted for turbidity and total suspended solids. Other experiments were focused to process real industrial effluents from one of the most important chemical and pharmaceutical industries in Brazil. A special transport truck was used to transfer the liquid waste from the Industry to the Electron Beam Pilot Plant. Large quantities of liquid waste were irradiated with and without air addition with the doses from 2kGy to 20kGy. Such experiences performed in association with the Industry demonstrated that this technology has a great potential to be transferred and to contribute with a permanent cleanup alternative for hazardous wastes

  11. Development of an irradiation device for electron beam wastewater treatment

    International Nuclear Information System (INIS)

    Rela, Paulo Roberto

    2003-01-01

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  12. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  13. Purification and treatment of industrial wastewater by electron beam process: it's potential and effectiveness evaluation

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khomsaton Abu Bakar; Ting Teo Ming; Siti Aiasah Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Demand for water has grown dramatically globally. We have seen how acute is the demand for treated water in Malaysia during dry spell of late. Between 1900 and 1995, water consumption increased by over six times, globally, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industries, and the increasing use for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Electron beam treatment (E-Beam treatment) is a comparatively new method of wastewater purification. E-beam treatment is also an environment-friendly approach for the cleanup of contaminated groundwater and industrial wastewater. E-beam treatment treats multi-components waste streams and does not require any hazardous chemical additives nor does it create any secondary wastes. It uses fast formation of short-lived reactive particles, which are capable of efficient decomposition of pollutants inside wastewater. This paper highlights the practical treatment of wastewater using E-Beam method that gives essential conveniences and advantages of the followings: - strongest reducing and oxidizing agents; - universality and interchangeability of redox agents; - variety of paths for pollutant conversion; - process controllability; - wide choice of equipment and technological regimes; - compatibility with conventional methods. (Author)

  14. Utilization of the high energy electrons beams generated in accelerator for treatment of drinking water and wastewater

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-01-01

    Samples of drinking water and wastewater were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% of trihalomethanes (THM) in drinking water (concentration from 2.7μg/l to 45μg/l, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid wastewater. (author)

  15. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  16. Design of commercial dyeing wastewater treatment facility with e-beam (based on the results of pilot plant)

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Sung Myun; Kim, Jin-Kyu; Kim, Yuri; Yang, Mun Ho; Choi, J.S.; Ahn, S.J.; Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.

    2001-01-01

    A pilot plant for a large-scale test of dyeing facility wastewater (flow rate of 1,000m 3 per day from 80,000m 3 /day of total wastewater) was constructed and operated with the electron accelerator of 1MeV, 40kW. The accelerator was installed in February 1998 and the Tower Style Biological treatment facility (TSB) was also installed in October 1998. The wastewater is injected under the e-beam irradiation area through the nozzle type injector to obtain the adequate penetration depth. The speed of injection could be varied upon the dose and dose rate. Performance statistics are given

  17. Full scale electron beam systems for treatment of water, wastewater and medical waste

    International Nuclear Information System (INIS)

    Waite, T.D.; Kurucz, C.N.; Cooper, W.J.; Brown, D.

    1998-01-01

    High energy electron accelerators have been used in numerous applications for several decades. In the early 1980's several attempts to use electron accelerators for the disinfection of sludge proved that the technology could be used for that application. One such facility was designed, built and tested for one year at the Miami-Dade Virginia Key Wastewater Treatment Plant. The process successfully disinfected anaerobically digested sludge. However, due to changing local regulations the process was never implemented. Now this process may provide a viable alternative for the ultimate destruction of toxic and hazardous organic chemicals from water and sludges. When high energy electrons impact an aqueous solution, with or without particulate matter present, reactive transient species are formed. The three transient species of most interest are the aqueous electron, e - aq, hydrogen radical, H·, and the hydroxyl radical, ·OH. The relative concentration of these radicals in an irradiated solution of pure water is 44, 10 and 46%, respectively. The absolute concentration of the radicals is dose and water quality dependent, but is in excess of mM levels in potable, raw and secondary wastewater effluent at our facility. This paper describes the facilities at the Electron Beam Research Facility (EBRF) in Miami, FL. The accelerator is a 1.5 MeV, 50 mA insulated core transformer type. Several areas of research have been the focus of the studies with an interdisciplinary team of faculty and students in engineering and science. The areas included are, inactivation of bacteria in raw and chlorinated and unchlorinated secondary wastewater and the changes in biochemical oxygen demand and chemical oxygen demand in the raw and unchlorinated secondary wastewater. The removal of toxic chemicals has also been studied in some detail. These studies have been conducted both at the EBRF and using 60 Co gamma irradiation. To examine the effect of water quality on the destruction of the

  18. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Borrely, S.I.; Silva, B.L.

    1995-01-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV -25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m 3 /h was built. (author)

  19. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    Science.gov (United States)

    Sampa, M. H. O.; Borrely, S. I.; Silva, B. L.; Vieira, J. M.; Rela, P. R.; Calvo, W. A. P.; Nieto, R. C.; Duarte, C. L.; Perez, H. E. B.; Somessari, E. S.; Lugão, A. B.

    1995-09-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV-25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m3/h was built.

  20. The use of electron beam accelerator for the treatment of drinking water and wastewater in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Borrely, S.I.; Silva, B.L.

    1995-01-01

    Brazil started a research program using high-energy electrons from accelerators for treating drinking water and wastewater in 1991. The objective is to study the potential use of this technique for disinfection of domestic wastewater, chemical degradation of dyes, phenols, oils and greases in industrial wastewater and reduction of trihalomethanes (THM's) concentration in drinking water. An Electron Beam Accelerator, 1.5MeV - 25mA from Radiation Dynamics Inc., was used for all experiments. A pilot plant designed to treat up to 3m 3 /h was built. (author)

  1. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  2. Studies of toxic metals removal in industrial wastewater after electron-beam treatment

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2002-01-01

    The Advanced Oxidation Process, using electron-beam, have been studied by scientific community due to its capacity to mineralize the toxic organic compound from highly reactive radical's formation. The electron-beam treatment process has been adopted by several countries for organic compounds removal and to effluents and sewers biological degradation. In this work, studies of metals removal in the simulated aqueous solutions and in the actual industrial effluents were carried out, using electron-beam treatment. The effluents samples were collected at ETE/SABESP (Governmental Wastewater Treatment Plant) in Suzano, SP city. The sampling was outlined at three distinctive sites: Industrial Receiver Unit, Medium Bar, and Final Effluent. The effluents samples were irradiated using different irradiation doses (20, 50, 100, 200 and 500 kGy). The removal behavior of metals Ca, CI, S, P, K, Al, Fe, As, Ni, Cr, Zn, Si, Co, Mn, As, Se, Cd, Hg and Pb was verified. The elements determination was accomplished with the x-ray fluorescence (WD-XRFS) technique using Fundamental Parameters method and thin film samples. The elements Fe, Zn, Cr and Co presented a removal > 99% to 200 kGy of irradiation dose in industrial effluent. At the same dose, P, Al and Si presented a removal of 81.8%, 97.6% and 98.7%, respectively. Ca and S were removed more than 80% at 20 kGy and Na, CI and K did not presented any degree of removal. As, Se, Cd, Hg and Pb removal was studied in the simulated aqueous solutions and industrial effluents with scavengers addition (EDTA and HCOONa). The elements As and Hg presented a removal of 92% and 99%, respectively, with HCOONa, at 500 kGy irradiation dose. The Se presented a 96.5% removal at same irradiation dose without scavengers addition. The removal of Cd and Pb did not give a significant removal, once all of the assay were carried out in the oxidant medium. (author)

  3. Electron beam processing of wastewater in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khairul Zaman Dahlan; Ting Teo Ming; Khomsaton A. Bakar

    2006-01-01

    Electron beam processing technology started in Malaysia in 1991 when two accelerators were installed through JICA cooperation to perform medical product sterilization project. Since then several private companies have installed electron accelerators to develop in removing volatile organic materials and to demonstrate flue gas treatment. In this country report, effort on electron beam processing of wastewater or contaminated groundwater is presented: After de-coloration tests using gamma rays as function of radiation doses, electron beam treatment of textile industry wastewater as function of beam energy and current intensity as well as with combined treatment such as aeration or biological treatment to examine the effectiveness in color and BOD or COD change has been carried out and the main results are reported. Furthermore, the present technique was examined to apply in river water treatment for use as drinking water. Techno-economic feasibility study for recycling of industrial waste water using electron beam technology is now underway. (S. Ohno)

  4. Treatment of Synthetic Textile Wastewater by Combination of Coagulation/Flocculation Process and Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Fateme Anvari

    2014-06-01

    Full Text Available Introduction: Textile wastewaters from dyeing and finishing processes are heavily polluted with dyes, textile auxiliaries and chemicals and have a broad range of pH, high COD concentration and suspended particles. In this study, the efficiency of color and turbidity removal from synthetic textile wastewater samples were investigated by combined process of coagulation/ flocculation and electron beam irradiation. Materials and Methods: The experiments have been done on model dye solution samples which prepared from ten dyes that are supplied from Yazd Baff textile factory. Aluminum sulphate was employed to determine the optimum conditions for removal of turbidity by jar-test experiments. Then samples were irradiated by 10 MeV electron beam of Rhodotron TT200 accelerator at different doses of 1, 3 and 6 kGy. Absorption spectra of the samples were measured using UV-Vis spectrophotometer (Perkin Elmer, Lambda 25. The pH and turbidity values of the solutions were measured by a Metrohm 827 model pH meter and 2100AN turbidimeter (Hach company. Results: According to results, the degree of decoloration and turbidity removal of synthetic dye solutions increased dramatically when the alum concentration increased and reached to 64% and 90% respectively at 112 ppm. After irradiation, it is observed that absorbance at 540 nm decreased rapidly by increasing of radiation dose, because of macromolecules degradation and then decreased slowly and degree of decoloration reached to 95%. The amount of pH was decreased by irradiation and then changed very slowly or remained constant with increasing irradiation dose. Conclusion: The above results indicate that combination of coagulation/ flocculation and irradiation of 10 MeV electron beam is so effective for turbidity removal and decoloration. Coagulation process eliminates suspended particles from disperse dyes effectively, while destruction of soluble dye molecules happen by irradiation that increase decoloration

  5. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  6. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  7. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  8. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    need and importance of wastewater treatment and conven- tional methods of treatment. Currently the need is to develop low power consuming and yet effective techniques to handle complex wastes. As a result, new and ... ered as supplying energy to make an active oxidizable species of the pollutants. Generally speaking ...

  9. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hun; Nam, Ji Hyun; Shin, Ji Hye; Yun, Seo Yeon; Cho, Young Cheol; Oh, Kyoung hee [Chungbuk National University, Cheongju (Korea, Republic of)

    2011-04-15

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  10. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    International Nuclear Information System (INIS)

    Lee, Dong Hun; Nam, Ji Hyun; Shin, Ji Hye; Yun, Seo Yeon; Cho, Young Cheol; Oh, Kyoung hee

    2011-04-01

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  11. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    emissions and potential health impacts due to spreading of pathogens. Anyway, the use of treatment for micro-pollutants is increasing and a paradigm shift is ongoing — wastewater is more and more considered as a resource of, e.g. energy, nutrients and even polymers, in the innovations going on. The focus...... of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact...... categories are nowadays included more often. Application of LCA for comparing avoided against induced impacts, and hereby identifying trade-offs when introducing new technology, is increasingly used. A typical functional unit is the treatment of one cubic metre of wastewater which should be well defined...

  12. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  13. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  14. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 12. Techniques of Wastewater Treatment - Future Technologies. Amol A Kulkarni Mugdha ... Chemical Engineering Division, University Department of Chemical Technology, Nathalal Parik Marg, Matunga, Mumbai 400 019, India. Chemical ...

  15. Dairy wastewater treatment

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... organic sources into methane via anaerobic process. Whey is considered as highly pollutant effluent with res- pect to COD level (60-80 g/l) (Mc-Hugh et al., 2006;. Gannoun et al., 2008). There are number of biological treatment processes to treat dairy wastewater such as activated sludge system, anaerobic ...

  16. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    By now the reader must have got an idea about the importance of wastewater treatment. Today, biological method (aerobic) is the most widely used method because of its simplicity and relatively low cost but is less successful when the effluent contains highly toxic organic pollutants. It occupies a large space and this could.

  17. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  18. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    . Wastewater contains a variety of substances, including anthropogenic pollutants, residues of pharmaceuticals and personal care products (PPCPs), pathogenic microorganisms and parasites as well as antibiotic resistant bacteria that can be harmful for the environment as well as human health. Due...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... pattern with limited accessibility, particularly in the rural parts of the Arctic. For those reasons bucket toilets are still used in parts of the towns and in almost all settlements in Greenland. This particular toilet solution has been considered a problem for many years with respect to uncontrolled...

  19. Wastewater treatment and pollution control in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2006-01-01

    Present status of radiation facilities for Co-60 gamma ray irradiation and electron beam irradiation in Indonesia is first presented. Wastewater treatment is explained: kinds of waste, industrial, agricultural, municipal and nuclear. Each liquid wastewater containing various kinds of contaminants, radioactive or non-radioactive is differently treated by waste treatment industries. On-going project is use of electron beams in which combination with ozone to reduce chlorinated solvent, disinfected sludge from sewage treatment containing organic and inorganic components for soil fertilizer, and high color river water for water supplying. The cost factor and the effect of combined treatment are being examined. Other on-going projects are applications of electron beams for vulcanization of natural rubber latex and flue gas treatment by BATAN. (S. Ohno)

  20. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  1. Improving sewage wastewater characteristics using radiation treatment

    International Nuclear Information System (INIS)

    El-Motaium, R.A.; Sabry, A.; El-Ammari, M.F.

    2005-01-01

    Raw and treated sewage wastewater, collected from El-Gabal El-Asfar wastewater treatment plant (WWTP), irradiated and non-irradiated, were tested in order to determine the lethal radiation dose for total coliform and the effect of radiation on biological oxygen demand (BOD) and chemical oxygen demand (COD). Various gamma radiation and electron beam doses (0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 KGy) were used in this study. A negative relationship between the radiation dose and the total coliform population was recorded. The increase in the radiation dose was accompanied by a decrease in total coliform count. The lethal doses of gamma radiation for total coliform in raw and treated sewage wastewater were 1.5 and 1.0 KGy, respectively, whereas the lethal doses of the electron beam for total coliform in raw and treated sewage wastewater were 3.0 and 2.0 KGy, respectively. Gamma radiation resulted in a reduction of BOD and COD by about 70% whereas the electron beam resulted in 55% reduction in BOD and COD at a dose of 4 KGy. The different sources of radiation (gamma and electron beam) used in this study caused variations in the magnitude of total coliform elimination. At any radiation dose received, gamma radiation proved to be more efficient than electron beam in total coliform elimination

  2. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  3. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  4. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  5. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  6. Deployable Wastewater Treatment Technology Evaluation

    National Research Council Canada - National Science Library

    Coppola, Edward

    2002-01-01

    .... The goal of AFRL/MLQD is for the deployable wastewater treatment system to be integrated into a waste treatment system that will treat both solid and aqueous waste. The US Army (TARDEC) and the Air Force (AAC/WMO...

  7. Wastewater Treatment I. Instructor's Manual.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  8. Marine carbohydrates of wastewater treatment.

    Science.gov (United States)

    Sudha, Prasad N; Gomathi, Thandapani; Vinodhini, P Angelin; Nasreen, K

    2014-01-01

    Our natural heritage (rivers, seas, and oceans) has been exploited, mistreated, and contaminated because of industrialization, globalization, population growth, urbanization with increased wealth, and more extravagant lifestyles. The scenario gets worse when the effluents or contaminants are discharged directly. So wastewater treatment is a very important and necessary in nowadays to purify wastewater before it enters a body of natural water, or it is applied to the land, or it is reused. Various methods are available for treating wastewater but with many disadvantages. Recently, numerous approaches have been studied for the development of cheaper and more effective technologies, both to decrease the amount of wastewater produced and to improve the quality of the treated effluent. Biosorption is an emerging technology, which uses natural materials as adsorbents for wastewater treatment. Low-cost adsorbents of polysaccharide-based materials obtained from marine, such as chitin, chitosan, alginate, agar, and carrageenan, are acting as rescue for wastewater treatment. This chapter reviews the treatment of wastewater up to the present time using marine polysaccharides and its derivatives. Special attention is paid to the advantages of the natural adsorbents, which are a wonderful gift for human survival. © 2014 Elsevier Inc. All rights reserved.

  9. New Combined Electron-Beam Methods of Wastewater Purification

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.; Kartasheva, L.I.; Podzorova, E.A.; Chulkov, V.N.; Han, B.; Kim, D.K.

    1999-01-01

    The paper is a brief review of the results obtained with the participation of the authors from the study on combined electron-beam methods for purification of some wastewaters. The data on purification of wastewaters containing dyes or hydrogen peroxide and municipal wastewater in the aerosol flow are considered

  10. Treatment of wastewater having estrogen activity by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Taguchi, Mitsumasa; Ohtani, Yoshimi; Shimada, Yoshitaka; Hiratsuka, Hiroshi; Kojima, Takuji

    2007-01-01

    Decomposition of endocrine disrupting chemicals (EDCs) in wastewater was investigated by use of 60 Co γ-ray. Estrogen activities of wastewaters were estimated by the yeast two-hybrid assay based on human or medaka estrogen receptors. The dose required for the elimination of estrogen activity of wastewater below 1 ng dm -3 was about 200 Gy (J kg -1 ). The elimination dose of the estrogen activity depended on the amounts of total organic carbons in wastewater. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m -3

  11. Coal conversion wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Hrudey, S.E.; Fedorak, P.M. (University of Alberta, Edmonton, AB (Canada))

    1988-12-01

    Phenolic compounds are one of the major components of coal conversion wastewaters, and their deleterious impact on the environment, particularly in natural water systems, is well documented. Phenols, at higher concentrations, have been shown to inhibit the activity of anaerobic bacteria used to degrade organic compounds. This study examines combined treatment requirements for an authentic, high strength phenolic coal conversion wastewater using both batch and semi- continuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in situ addition of activated carbon during anaerobic treatment were also examined, and proved effective in removing phenol. 61 refs., 34 tabs., 30 figs., 7 append.

  12. Wastewater Treatment: The Natural Way

    Science.gov (United States)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  13. Sustainability of municipal wastewater treatment.

    NARCIS (Netherlands)

    Roeleveld, P.J.; Klapwijk, A.; Eggels, P.G.; Rulkens, W.H.; Starkenburg, van W.

    1997-01-01

    n this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to

  14. Imprinted Polymers in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  15. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  16. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    He, Shijun; Sun, Weihua; Wang, Jianlong; Chen, Lvjun; Zhang, Youxue; Yu, Jiang

    2016-01-01

    A textile and dyeing wastewater treatment plant is going to be upgraded due to the stringent discharge standards in Jiangsu province, China, and electron beam irradiation is considering to be used. In order to determine the suitable location of the electron accelerator in the process of wastewater treatment plant, the effects of electron beam (EB) irradiation on the biodegradability of various real wastewater samples collecting from the different stages of the wastewater treatment plant, the values of chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), and the ratio of BOD 5 and COD (BOD 5 /COD), were compared before and after EB irradiation. During EB irradiation process, color indices and absorbance at 254 nm wavelength (UV 254 ) of wastewater were also determined. The results showed that EB irradiation pre-treatment cannot improve the biodegradability of raw textile and dyeing wastewater, which contains a large amount of biodegradable organic matters. In contrast, as to the final effluent of biological treatment process, EB irradiation can enhance the biodegradability to 224%. Therefore, the promising way is to apply EB irradiation as a post-treatment of the conventional biological process. - Highlights: • Irradiation pre-treatment did not improve the raw textile wastewater biodegradability. • Irradiation can highly enhance the biodegradability of biological treated effluent. • EB irradiation can be used as a post-treatment after biological process.

  17. A study on the removal of color in dyeing wastewater using electron beam irradiation

    International Nuclear Information System (INIS)

    Choi, Jang-Seng; Ahn, Sang-Jun; Ryu, Seung-Han; Jun, Jang-Pyo; Choi, Chae-Gun; Han, Bum-Soo; Kim, Jin-Kyu; Kim, Yu-Ri

    2004-01-01

    In this research, experiments of electron beam irradiation have been carried out for the wastewater from different types of dye industry, and for the reactive dye, for the acid dye and for the disperse dye which are commercially widely used with respect to industrial dyeing process. At the electron beam irradiation dose of 2.34KGy, the efficiency of color removing was higher than that of usual chemical treatment for the reactive dye and for the acid dye. Wastewater from printing dye industry showed the highest measuring value of color among the wastewater from different types of dye industries, which are polyester, cotton T/C, printing, yarn dyeing, and nylon dye industry. Electron beam irradiation tests have been performed for the wastewater from different types of dye industries. Color removing rates by electron beam irradiation were higher than those by general chemical treatment for the wastewater from cotton T/C dye industry and from yarn dyeing industry, and whose dispersive dye contents are low. EA (electron beam irradiation + activated sludge) process and CA (chemical treatment + activated sludge) process have been tested for removing color and organic substance in wastewater from different types of dye industries. EA process showed better results in color removing rate for the wastewater from cotton T/C dye industry and yarn dyeing industry. However, CA process showed better results in color removing rate for the wastewater from polyester, printing, and nylon dye industry. CA process were predominant in COD Mn removal rates compare to EA process for the wastewater from different types of dye industries. However, both CA and EA processes showed less than 80mg/L of BOD 5 , which is the legal effluent guideline. (author)

  18. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  19. Electron beam irradiation and adsorption as possibilities for wastewater reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Higa, Marcela C.; Pinheiro, Alessandro; Morais, Aline V.; Fungaro, Denise A.

    2013-01-01

    The importance of water for life and for the industrial processes is forcing the development of combined technologies for wastewater improvement. The limitations of biological treatment for reducing micro-pollutants and the constant introduction of different chemical into environment make Ionizing Radiation a more interesting technique for pollutants abatement. Electron Accelerators are the main radiation source for cleaning waters purpose. Remazol Orange and Black B were decomposed by Electron Beam Irradiation. Another research consisted in reuse of burnt coal for cleaning wastewater and the Orange and Red dyes were adsorbed onto zeolitic material. Both color and toxicity were the main parameters to evaluate the efficacy of the process and also the recommended criteria which allow further industrial reuse. Real effluents were also treated by both technologies in batch scale. The radiation dose suggested for real effluents varied from 2.5kGy up to 5kGy. The characteristics of obtained zeolite will be presented. The removal of color and toxicity was enough to allow the industrial reuse of those products (wastewater). (author)

  20. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    emerging effluent treatment methods. What is an Effluent? Liquid, solid and gaseous waste materials are often generated during the manufacturing of almost all the chemical and other industrial products. .... mass during the effluent treatment to oxidise the biologically oxidizable pollutants and for their own sustenance.

  1. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  2. Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review

    Science.gov (United States)

    Hossain, Kaizar; Maruthi, Y. Avasn; Das, N. Lakshmana; Rawat, K. P.; Sarma, K. S. S.

    2018-03-01

    Remediation of wastewater, sludge and removal of objectionable substances from our environment using radiation technology is neglected. Hardly, a couple of decades ago, application of electron beam (EB) technology has gained attention for waste management. When wastewater is irradiated with electron beam, the beam can alter the physico-chemical properties of irradiated aqueous material and also transform wastewater chemicals due to the excitation or ionization of chemical molecules. Thus, chemical reactions may be capable of producing new compounds. The beam of electrons initiates primary reactions to induce the excitation or ionization of molecules at varied rates. This review paper will help to a budding researcher how to optimize the irradiation process to achieve high efficiency with low electron beam energy which is economically viable/feasible. Application of E-beam radiation for wastewater treatment may ensure future smart cities with sustainable water resources management.

  3. Radiation decontamination of municipal wastewaters in pilot plant, using electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, Trajano; Cueva, Ana Rosa; Munoz, Ricardo

    2001-01-01

    Full text: The design of a pilot plant for the treatment of municipal wastewaters with an electron accelerator is very important to study the effects of electron beam radiation on contaminated water in continuous flow. The pilot plant facility uses the Soviet linear electron accelerator ELU 6U, which operates on 8 MeV energy and a 5 kW power. The study consists of the optimization of decontamination and disinfection process of municipal wastewater with accelerated electrons, in continuous process, through the study of different variable effects of the irradiation process in the pilot plant on the physical-chemical and microbiological parameters of the wastewater flow rate, thickness and velocity of wastewater under the electron beam, inclination of the irradiation channel, aeration of the wastewater before and during the treatment process with the electron accelerator, ozone addition and double irradiation. The absorbed dose radiation by the wastewater was determined using a water calorimeter . The physical-chemical parameters of the wastewater studied were: pH, true color, apparent color, conductivity, solids content, chemical oxygen demand (COD) and biochemical oxygen demand (BODs), surfactants, phenols, oils and greases, nitrates, nitrites, nitrogen ammonia, cyanides, sulfides, sulfates, alkalinity, chromium, lead, cobalt, nicke and zinc. The microbiological parameters studied were: total microbial content, fecal coliforms, fungi and yeasts. Furthermore, all surviving microorganisms in the irradiated water were identified. (author)

  4. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  5. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during

  6. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  7. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  8. Technical note Biological treatment of industrial wastewater ...

    African Journals Online (AJOL)

    The biological treatment of wastewater from an aminoplastic resin-producing industry was studied in a pre-denitrification system. This study reports results on the removal of organic matter and nitrogen compounds from wastewater which contained high levels of formaldehyde and formic acid. The formaldehyde ...

  9. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  10. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  11. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  12. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  13. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Fernandez, R.; Olivares, S.

    2003-01-01

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  14. Treatment of Wastewater Containing Organic Pollutants by Ionizing Radiation

    International Nuclear Information System (INIS)

    Kimura, A.; Taguchi, M.; Maruyama, A.

    2012-01-01

    We have investigated the treatment of endocrine disrupting chemicals (EDCs) and halogented organic compounds (HOCs) in wastewater by ionizing radiation in the CRP. Three samples of the actual wastewater having estrogen activity were analyzed by the yeast two-hybrid assay, enzyme linked immunosorbent assay (ELISA) and total organic carbon (TOC) analysis. Treatment of the wastewater is required to decrease the estrogen activity to less than 1 ng / L; the lower limit concentration of appearance of endocrine disrupting property. Medaka estrogen activity (mEA) initially increased and then decreased by β-ray irradiation, indicating that decomposition products in the real wastewaters also have the estrogen activity. The doses required to decrease in mEA of samples 1 to 3 below 1 ng / L, D 1ng , were estimated to be 100, 200 and 150 Gy (J kg -1 ), respectively. Since the D 1ng of 17 β-stradiol (E2) at 500 ng/L (1.8 nmol/L) in pure water was estimated to be 5 Gy as mentioned in the previous CRP, the elimination of estrogen activity of real wastewater is considered to be interfered by organic impurities. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m -3 . (author)

  15. Liquid waste treatment plant with e-beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Jinkyu; Kim, Yuri

    2003-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the laboratory of EB-TECH Co., many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000 m 3 /day of wastewater from 80,000 m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for Pan Asia Paper Co. Cheongwon Mill, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. The method for the removal of heavy metals from wastewater and other technologies are developed with the joint works with Institute of Physical Chemistry (IPC) of Russian Academy of Sciences. (author)

  16. Application of reverse osmosis in radioactive wastewater treatment

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2012-01-01

    Considering the disadvantages of the conventional evaporation and ion exchange process for radioactive wastewater treatment, the reverse osmosis is used to treat the low level radioactive wastewater. The paper summarizes the research and application progress of the reverse osmosis in the radioactive wastewater treatment and indicates that the reverse osmosis in the radioactive wastewater treatment is very important. (authors)

  17. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  18. Treatment of coal gasification wastewaters: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Lee, D.D.; Singh, S.P.N.

    1987-03-01

    A bench-scale fluidized-bed bioreactor was operated for over 4 months to characterize the biooxidation of major organic pollutants in coal gasification wastewater obtained from the Morgantown Energy Technology Center. Monohydric phenol was degraded first, followed by more complex phenolics, including polycyclic aromatic hydrocarbons (PAHs). Organic components were assayed by methylene chloride extraction followed by gas chromatography. Genetic capability for degradation of naphthalene by the biofilm was identified by gene probe analysis. Further studies were conducted to determine if the existing biofilm could be enhanced for naphthalene degradation by supplemental inoculation with a microbial culture having good naphthalene-degrading capabilities. The biofilm response was monitored using gene probe techniques. An assessment of wastewater treatment technologies for coal conversion wastewaters was initiated. A bibliography was compiled, arrangements were initiated to collaborate with other investigators doing wastewater treatability studies, and a site visit was made to the Great Plains plant. 201 refs., 3 figs., 5 tabs.

  19. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  20. Treatment of coffee wastewater by gamma radiation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Consuegra, R.; Rapado, M.

    1998-01-01

    Radiation energy can be an important resource in the treatment of wastewaters from different industries both directly and in combination with other processes to improve economics. The aim of this study was to evaluate the effect of an ionizing radiation on coffee wastewater in order to decompose chemical organic refractory substances which cannot be degradated by biological treatment. One of the approaches employed in the survey was the chemical treatment followed by the irradiation of the samples since no nuclear changes of the coagulant solution or wastewater samples were expected. Irradiation is a high cost treatment although it has increased its applications nowadays. The method is safe, fast and effective and it does not generate any pollution

  1. Emergency Planning for Municipal Wastewater Treatment Facilities.

    Science.gov (United States)

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  2. Development of chemical flocculant for wastewater treatment

    International Nuclear Information System (INIS)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S.

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C ∼ -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 ∼ 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD

  3. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  4. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide......-arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  5. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  6. Wastewater Treatment for Pollution Control | Nzabuheraheza ...

    African Journals Online (AJOL)

    Performance of a Dynamic Roughing Filter (DRF) coupled with a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) in the treatment of a wastewater was studied in tropical conditions. The results show that in HSSFCW planted with Cyperus papyrus and Phragmites mauritianus in series, the removal rates of TDS, ...

  7. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  8. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  9. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    The Decentralised Wastewater Treatment System (DEWATS) can provide a potential sanitation solution to residents living in informal settlements with the effluent produced being used on agricultural land. This paper reports on a first step to assess the technical viability of this concept. To do so a pilot DEWATS plant was ...

  10. Constructed wetlands: A future alternative wastewater treatment ...

    African Journals Online (AJOL)

    Wastewater treatment will always pose problems if there are no new alternative technologies in place to replace the currently available technologies. More recently, it has been estimated that developing countries will run out of water by 2050. This is a course for concern not only to the communities but also a challenge to ...

  11. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  12. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  13. Wastewater treatment as an energy production plant

    Science.gov (United States)

    Samela, Daniel A.

    The objective of this research was to investigate the potential for net energy production at a Wastewater Treatment Plant (WWTP). Historically, wastewater treatment plants have been designed with the emphasis on process reliability and redundancy; efficient utilization of energy has not received equal consideration. With growing demands for energy and increased budgetary pressures in funding wastewater treatment plant costs, methods of reducing energy consumption and operating costs were explored in a new and novel direction pointed towards energy production rather than energy consumption. To estimate the potential for net energy production, a quantitative analysis was performed using a mathematical model which integrates the various unit operations to evaluate the overall plant energy balance. Secondary treatment performance analysis is included to ensure that the energy evaluation is consistent with plant treatment needs. Secondary treatment performance was conducted for activated sludge, trickling filters and RBCs. The equations for the mathematical model were developed independently for each unit operation by writing mass balance equations around the process units. The process units evaluated included those for preliminary treatment, primary treatment, secondary treatment, disinfection, and sludge treatment. Based on an analysis of both energy reduction and energy recovery methods, it was shown that net energy production at a secondary WWTP is possible utilizing technologies available today. Such technologies include those utilized for plant operations, as well as for energy recovery. The operation of fuel cells using digester gas represents one of the most significant new opportunities for energy recovery at wastewater facilities. The analysis predicts that a trickling filter WWTP utilizing commercial phosphoric acid fuel cells to recover energy from digester gas can provide for facility energy needs and have both electrical and thermal energy available for

  14. Advances in HTGR Wastewater Treatment System Design

    International Nuclear Information System (INIS)

    Li Junfeng; Qiu Yu; Wang Jianlong; Jia Fei

    2014-01-01

    The source terms of radioactive wastewater from HTR-PM were introduced. Concentration process should be used to reduce volume. A radioactive wastewater treatment system was designed by using Disc tubular reverse osmosis (DTRO) membrane system. The pretreatment system was simplify by using a cartridge filter. A three-stage membrane system was built. The operated characters to treat low and intermediate radioactive waste water were studied. A concentration rates of 25-50 is reached. The decontamination factor of the membrane system can reach 30-100. (author)

  15. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  16. Developing Anammox for mainstream municipal wastewater treatment

    OpenAIRE

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding area. Only across the EU, there are 16000 WWTPs that consume around 10000 GWh year-1 of electricity. Furthermore, the volume of wastewater treated in WWTPs in the EU is increasing with a rate of aroun...

  17. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  18. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  19. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  20. Simulation of wastewater treatment plant within integrated urban wastewater models.

    Science.gov (United States)

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.

  1. Discussion on Wastewater Treatment Process of Coal Chemical Industry

    Science.gov (United States)

    Zhao, Dongyan; Lun, Weijie; Wei, Junjie

    2017-12-01

    Coal chemical wastewater has such characteristics as high concentration of oil, ammonia nitrogen and COD. In this paper, treatment process of coal chemical industry is described mainly, such as pretreatment process, biochemical treatment process and polishing process. Through the recovery of phenol and ammonia and the treatment of wastewater from abroad, the new technology of wastewater treatment in coal chemical industry was expounded. Finally, The development of coal chemical wastewater treatment technology is prospected, and the pretreatment technology is emphasized. According to the diversification and utilization of water, zero discharge of coal chemical wastewater will be fulfilled.

  2. WASTEWATER

    African Journals Online (AJOL)

    ABSTRACT. The chemical degradation oflignin-rich kraft pulp wastewater was carried out by ozonation process followed by biological treatment using activated sludge. The effects of pH on the degradation of lignin and the production of organic acids were examined experimentally in the ozonolysis of wastewater.

  3. Biological treatment of winery wastewater: an overview.

    Science.gov (United States)

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  4. Solutions to microplastic pollution - removal of microplastics from wastewater effluent with advanced wastewater treatment technologies

    OpenAIRE

    Talvitie Julia; Mikola Anna; Koistinen Arto; Setälä Outi

    2017-01-01

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included m...

  5. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    user

    UASB), carbon footprint. INTRODUCTION. Domestic wastewater refers to the wastewater from toilet, bathroom and kitchen of household. Anaerobic treatment of organic material proceeds in the absence of oxygen and the presence of anaerobic ...

  6. Roong Aroon Wastewater Treatment Project

    OpenAIRE

    Tongthai Taotong; Kittinan Thanissaranon; Tanasit Tuangcharoentip; Montien Athiworakul

    2015-01-01

    We are the water treatment project team from Roong Aroon High School in Bangkok, Thailand. Our team consists of four grade 12 science major students, and every one of us has been studying and working on developing our school’s water treatment system. This article explains how the “Problem Based Learning” (PBL) process proceeds throughout our project.

  7. Treatment of kitchen wastewater using Eichhornia crassipes

    Science.gov (United States)

    Parwin, Rijwana; Karar Paul, Kakoli

    2018-03-01

    The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.

  8. Forward Osmosis in Wastewater Treatment Processes.

    Science.gov (United States)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  9. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  10. The impact of advanced wastewater treatment technologies and wastewater strength on the energy consumption of large wastewater treatment plants

    Science.gov (United States)

    Newell, Timothy

    Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the number of wastewater treatment plants (WWTPs) with advanced treatment over time. Accordingly, associated energy consumption has also increased. Concerns about lowering operating costs for WWTPs and reducing associated greenhouse gas generation present an incentive to investigate energy use in WWTPs. This research investigated the impact of wastewater strength and the introduction of advanced treatment technologies, to replace traditional technologies on energy use to treat wastewater in WWTPs. Major unit processes were designed for a 100 MGD plant and variables controlling energy were identified and used to compute energy consumption. Except for primary clarification and plate and frame press dewatering, energy consumption computed using fundamental equations are within values in the literature. Results show that energy consumption for dissolved air flotation thickeners, centrifuges, gravity thickeners, and aeration basins are heavily influence by wastewater strength. Secondary treatment and tertiary treatment require a significant amount of energy. Secondary treatment requires 104 times the energy of preliminary treatment, 17 times the energy of solids processing, and 2.5 times the energy of tertiary treatment. Secondary treatment requires 41 times the energy of preliminary treatment, and 7 times the energy of solids processing. The results of this research provide a means of estimating energy consumption in the design and operation phase of a WWTP. By using the fundamental equations and methodology presented, alternative technologies can be compared or targeted for future energy savings implementation. Limitations of the methodology include design assumptions having to be made carefully, as well as assumptions of motor and equipment efficiencies.

  11. Enhanced anaerobic biological treatment of phenolic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.

    1989-01-01

    The combined treatment requirements for a high strength phenolic wastewater were examined in batch and semicontinuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in-situ addition of activated carbon during anaerobic treatment were effective in removing phenol from a coal liquefaction wastewater from the H-coal process. The selective pH adjustment of high strength phenolic wastewater followed by diisopropyl ether extraction reduced the phenolic concentration to non-inhibitory levels, and removed non-phenolic inhibitory compounds. The weakly acid nature of phenol and substituted phenols allows for their selective removal by solvent extraction. Anaerobic bacteria were able to degrade phenol in the solvent extracted wastwater, however, the bacteria exhibited instability under semicontinuous feeding conditions. The addition of activated carbon to the stressed phenol-degrading cultures improved their ability to remove phenol from solution. Further investigation into the role activated carbon performed during anaerobic phenol treatment demonstrated its importance as a biological support, in addition to providing adsorptive capacity for organic (including inhibitory) compounds. The similar study of other support materials (ion exchange resins) which did not possess an adsorptive capacity for organic compounds supported these findings. Excellent agreement was demonstrated among physical evaluation methods, performance bioassays, radiolabelled cell adsorption studies, and scanning electron microscopy observations in judging the value of the materials as biological supports.

  12. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  13. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment......, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination...... and three advanced treatment methods; sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment is the most advantageous advanced treatment methods if the demands are restricted to pathogenic microorganisms. In terms...

  14. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment......, which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination...... and three advanced treatment methods: sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment are the most advantageous advanved treatment methods if the demands are restricted to pathogenic microorganisms. In terms...

  15. Treatment of acid mine wastewaters

    International Nuclear Information System (INIS)

    Hayward, D.; Barnard, R.

    1993-01-01

    Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis

  16. Present status on the use of electron accelerator for wastewater treatment in Korea

    International Nuclear Information System (INIS)

    Lee, Myun Joo; Han, Bum Soo; Choi, Jang Seung; Kang, Ho

    2006-01-01

    In the part 1, four major irradiation R and D works studied in field of wastewater treatment in Korea were introduced. Disinfection of total coli-forms in unchlorinated secondary effluent, removal of color in dyeing wastewater and feasibility test to control algal bloom used the electron beam as a radiation source. Treatment of groundwater polluted by TCE and PCE used gamma rays as a radiation source. Backgrounds and experimental results on each research topic were introduced. In the part 2, national on-going projects related to wastewater treatment using irradiation technology in Korea were introduced. With regarding these projects, EB treatment plant for textile dyeing wastewater was described based on the construction and evaluation of ecological stability. (author)

  17. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  18. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Directory of Open Access Journals (Sweden)

    Boguniewicz-Zabłocka Joanna

    2017-01-01

    Full Text Available During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions pollution removal occurs mostly with higher efficiency.

  19. Photocatalytic Treatment of a Synthetic Wastewater

    Science.gov (United States)

    Yerkinova, Azat; Balbayeva, Gaukhar; Inglezakis, Vassilis J.; Poulopoulos, Stavros G.

    2018-01-01

    This work aimed at investigating the photocatalytic treatment of a synthetic wastewater using UV light (254 nm, 6 W), TiO2 catalyst and H2O2 in a batch recycle annular photoreactor. The total volume of the solution was 250 mL while the irradiated volume in the annular photoreactor with 55.8 mL. Each experiment lasted 120 min and samples were sent for Total Carbon and HPLC analysis. The stock wastewater had initial total carbon 1118 mg L-1. The effect of the presence of phenol in the wastewater on total carbon (TC) removal was also studied. It was shown that the photocatalytic treatment was effective only when initial TC was decreased to 32 mg L-1, whereas the optimum TiO2 concentration was 0.5 g L-1, leading to a TC removal up to 56%. For the same initial carbon load, the optimum H2O2 concentration was found to be 67 mg L-1 resulting in 55% TC removal. Combining, however, TiO2 and H2O2 did not lead to better performance, as 51% TC removal was observed. In contrast, when initial carbon in the wastewater was partially substituted by phenol, the combination of catalyst and hydrogen peroxide was beneficial. Specifically, when 10 ppm of phenol were added keeping the same initial TC concentration, UV/TiO2 treatment resulted in 46% TC removal and 98% phenol conversion, whereas using additionally H2O2 led to 100% phenol conversion after 45 minutes and 81% TC removal.

  20. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  1. Training Centers for Onsite Wastewater Treatment

    Science.gov (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  2. Coagulation in Treatment of Swine Slaughterhouse Wastewater

    Directory of Open Access Journals (Sweden)

    Ha Bui Manh

    2017-03-01

    Full Text Available In this study, wastewater taken from the Nam Phong swine slaughterhouse, Ho Chi Minh City, was used to evaluate the treatment efficiency of common coagulants, including Alum (Aluminum Sulfate - Al2(SO43.18H2O, Poly-Aluminum Chloride (PAC, and Ferrous Sulfate (FeSO4.7H2O, using a jar-test system. The experiments were conducted using the one-factor-at-a-time method to examine three variables which are pH, stirring speed, and coagulant dosage. The results showed that both Alum and PAC perform over 90% removal of colour, turbidity, COD, and total phosphorus (TP from slaughterhouse wastewater at pH 7 with a stirring speed of 75 revolutions per minute (RPM and average coagulant dosages of 450 mg/L for Alum and 550 mg/L for PAC. Meanwhile, under the appropriate conditions of pH equal to 10 and 75 RPM with a chemical dosage of 350 mg/L, COD and TP removal efficiencies by Ferrous Sulfate exceed 87%, but those of turbidity and colour only reach 25%. This finding could be a promising coagulation method as a pre-treatment for the swine slaughterhouse wastewater.

  3. AN OVERVIEW OF WASTEWATER TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Ionela Ramona SURDU

    2015-05-01

    Full Text Available Water-resource management key issues include the re-use of wastewater for drinkingwater supply or for industrial or agriculture purposes. In this context, the organic contaminants effects in sewage water entering theenvironment have gained more attention. The studies carried out for these contaminants varied widely, as a function of the substances: pesticides, pharmaceuticalsand diagnostic contrast products, personal care products,antibiotics and so on. Most of the wastewater treatment plants (WWTPs are not really designed totreat these type of compounds and an important part of emerging compounds may enter the aquatic environment via sewage effluents.This study gives an overview of the research concerning the technological steps that must be achieved in WWTP’s, in order to reduce at maximum theoccurrence oforganic substances in effluents.

  4. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment.

  5. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  6. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    In this study, Jambo tannery which is located in Busia District, (Uganda) with a daily processing capacity of 6.6 tonnes of hides and skin utilises 20 m3 of water to produce 17 m3 of wastewater/day. The generated wastewater is treated on site in the wastewater treatment plant whose performance was assessed. The main ...

  7. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  8. Characterization of DoD Installation Wastewater Treatment

    Science.gov (United States)

    2012-11-27

    D: Compilation of Data for On-Site Wastewater Treatment Facilities Installation ( WWTP name in parantheses when more than one plant per...Characterization of Wastewater Treatment in DoD D-2 Installation ( WWTP name in parantheses when more than one plant per installation) Treatment...Holloman AFB unknown L GOGO NM0029971 Characterization of Wastewater Treatment in DoD D-3 Installation ( WWTP name in parantheses when

  9. New treatment for uranium in wastewater

    International Nuclear Information System (INIS)

    Potts, M.E.; Hampshire, L.H.

    1993-01-01

    The design of an advanced wastewater treatment facility at the Fernald Environmental Management Project (FEMP) near Cincinnati, Ohio, focuses on minimizing discharge of uranium and other priority pollutant metals. The treatment facility will use chemical pretreatment to remove most dissolved and suspended solids, radionuclides, and priority pollutant metals. Ion exchange will be used to ensure that the concentration of uranium discharged to the environment is less than 1.0 μg/L. Designers have evaluated a potassium ferrate (iron VI) treatment procedure for uranium removal, focusing not only on the treatment's efficiency in removing uranium, but also on the volume of contaminated solids that are generated. When performance levels for removal of uranium, volume of contaminated solids generated, and overall costs of treatment and waste removal are considered, potassium ferrate technology compares favorably with conventional treatments. 2 tabs

  10. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    2011-01-01

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  11. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  12. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    Science.gov (United States)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  13. Biological and Irradiation Treatment of Mix Industrial Wastewater in Flood Mitigation Pond at Prai Industrial Zone

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Jamaliah Sharif; Selambakkanu, S.; Ming, T.M.; Natasha Isnin; Hasnul Nizam Osman; Khasmidatul Akma Mohd Khairul Azmi

    2014-01-01

    In this work, activated sludge process and E-Beam was used to treat mixed industrial waste water from mitigation pond A. The objectives of this study to analyze the effect of mix liquor volatile suspended solid (MLVSS) concentration on the properties of wastewater and duration of time taken to achieve steady stage condition for biological treatment. Besides that, effect of electron beam energy on the characteristic of wastewater after irradiation with electron beam machine EPS 3000 was studied as well. The result shows removal percentage of COD, suspended solid and color was linearly proportional with MLVSS. Maximum reduction values recorded for COD, suspended solid and color removal was 69.4, 73.0 and 43.7 % respectively with 3500 mg/l MLVSS at 48 h HRT. In irradiation treatment, significant reduction of COD was obtained with the increase of electron beam energy but the results for suspended solid and color was not favorable. (author)

  14. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  15. A Review on Advanced Treatment of Pharmaceutical Wastewater

    Science.gov (United States)

    Guo, Y.; Qi, P. S.; Liu, Y. Z.

    2017-05-01

    The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.

  16. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    Science.gov (United States)

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  17. Wastewater treatment in relation to marine disposal

    DEFF Research Database (Denmark)

    Harremoës, Poul

    2002-01-01

    , the water is not lost (non-consumptive uses); but it is heavily polluted. Water treatment can be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use. Marine discharge may violate quality required for use of the marine waters...... receiving the discharge. The EU has decided on regulation of wastewater treament by enforcing effluent standards. This is interpreted in relation to basic EU-principles and discussed with regard to an ethical framework of thinking. The conclusion is that basically different concepts are difficult...

  18. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  19. Environmental exergy analysis of wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Mora Bejarano, C.H.; Oliveira Junior, S. de [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Mecanica]. E-mail: carlos.bejarano@poli.usp.br; silvio.oliveira@poli.usp.br

    2006-12-15

    This work evaluates the environmental impact of Wastewater Treatment Plants (WTP) based on data generated by the exergy analysis, calculating and applying environmental impact indexes for two WTP located in the Metropolitan Area of Sao Paulo. The environmental impact of the waste water treatment plants was done by means of evaluating two environmental impact exergy based indexes: the environmental exergy efficiency and the total pollution rate (Rpol,t). The environmental exergy efficiency is defined as the ratio of the exergy of the useful effect of the WTP to the total exergy consumed by human and natural resources, including all the exergy inputs. That relation is an indication of the theoretical potential of future improvements of the process. Besides the environmental exergy efficiency, it is also used the total pollution rate, based on the definition done by Makarytchev (1997), as the ratio of the destroyed exergy associated to the process wastes to the exergy of the useful effect of the process. The analysis of the results shows that this method can be used to quantify and also optimise the environmental performance of Wastewater Treatment Plants. (author)

  20. About the use and treatment of reclaimed wastewater

    International Nuclear Information System (INIS)

    Marin Galvin, R.

    2009-01-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs

  1. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    OpenAIRE

    Alshabab Mary Shick; Andrianova Maria; Alsalloum Dergham

    2016-01-01

    Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times) dosages of reagents (acidifier, coagulant, flocculant) in several actual stages of treatment (acidificatio...

  2. DEVELOPMENT OF TECHNOLOGY OF MODERNIZATION OF BIOLOGICAL WASTEWATER TREATMENT PLANTS

    OpenAIRE

    Gogina Elena Sergeevna; Kulakov Artem Alekseevich

    2012-01-01

    This paper addresses the biological treatment of wastewater associated with removal of nitrogen. Results of laboratory experiments that involve nitrification and denitrification are also presented and analyzed in the paper. Discharges of inadequately treated and untreated wastewater have a negative impact on the aquatic ecosystem. The biological treatment of the wastewater that includes denitrification is strongly influenced by external factors. They need thorough research at t...

  3. A summary of studies on mine wastewater treatment

    International Nuclear Information System (INIS)

    Ma Yao; Hu Baoqun; Sun Zhanxue

    2006-01-01

    The composition of mine wastewater is complicated and is harmful to the environment. The mine wastewater treatment methods include mainly neutralization, constructed wetland and microorganism methods. The three methods are summarized, with focus on the microorganism method. The mechanisms, characteristics and influencing factors of the sulfate reducing bacteria and the iron oxidizing bacteria are described in detail. The treatment methods of uranium mine wastewater are presented. (authors)

  4. Pharmaceutical wastewater treatment: a physicochemical study

    International Nuclear Information System (INIS)

    Saleem, M.

    2007-01-01

    A physicochemical study for the treatment of pharmaceutical wastewater was performed. Objective of the laboratory investigation was to study the removal of color, Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), turbidity and phenol and bring them up to the allowable limits for reuse purposes. Efficiency of coagulation, flocculation, sedimentation, sand filtration followed by activated carbon adsorption was determined. It was found that tested coagulants (alum, ferric chloride, and ferrous sulphate) are not much effective and required high dosage for the removal; of TSS, BOD, COD and turbidity. Alum was found to be more effective among tested coagulants and reduce TSS, BOD, COD and turbidity 79.6%, 34.8, 48.6% and 69.2% respectively. Sand filtration further reduced the studied parameters 97.7%, 95.7%, 93.9% and 76.9% respectively. As the concentration of phenol in the studied pharmaceutical wastewater was 100 mg/l, granular activated carbon was used to remove phenol up to the allowable limit for reuse purpose. Activated carbon adsorption further reduces phenol, TDS, TSS, BOD, and COD up to 99.9%, 99.1%, 21.4%, 81.3% and 71.1% respectively. High removal of color observed after activated carbon adsorption. It was concluded that the suggested treatment scheme is suitable to bring the effluent quality up to the water quality standards. (author)

  5. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  6. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency...

  7. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  8. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    NARCIS (Netherlands)

    Basim, Y.; Farzadkia, M.; Jaafarzadeh, N.; Hendrickx, T.L.G.

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of

  9. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  10. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  11. Anaerobic treatment of textile dyeing wastewater.

    Science.gov (United States)

    Stern, S R; Szpyrkowicz, L; Rodighiero, I

    2003-01-01

    Aerobic treatment commonly applied to textile wastewater results in good or even excellent removal of organic load. This is not, however, accompanied by an equally good removal of colour. Traditional or advanced chemical methods of decolourisation are costly and not always reliable in justifying an interest in microbial decolourisation. Among several processes anaerobic methods seem most promising. In this paper, the results of a study conducted in two pilot-scale plants comprising anaerobic fixed bed biofilters of 15 L and 5 m3 operating as continuous reactors are presented, along with evaluation of the microbial kinetics. As is shown the process proved efficient in a long-term study with no stability problems of the biofilters. The six-month performance of the pilot plant confirmed also that the pre-treated wastewater could be applied in the operation of dyeing. For the majority of the colours applied in the factory no problems were encountered when the dyeing baths were prepared by substituting 90% of fresh water to the effluent treated by a sequence of activated sludge processes: anaerobic-aerobic.

  12. Methane emission during municipal wastewater treatment.

    Science.gov (United States)

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  14. The application of ionising radiation in industrial wastewater treatment technology

    International Nuclear Information System (INIS)

    Kos, L.; Perkowski, J.; Ledakowicz, S.

    2003-01-01

    An attempt was made to apply radiation techniques in the treatment of industrial wastewater from a dairy, brewery and sugar factory. For degradation of pollutants present in the wastewater, the following methods were used: irradiation, irradiation combined with aeration, ozonation, and combined irradiation and ozonation. For all three types of wastewater, the best method among these listed above appeared to be the method of irradiation combined with ozonation. Most degradable was the wastewater produced in sugar factories, and the least biodegradable appeared to be dairy wastewater. Depending on the dose of ozone and radiation, a maximum 60% reduction of COD was obtained. No effect of the wastewater aeration on its degradation by radiation was found. Changes in the content of mineral compounds were observed in none of the cases. The process of biological treatment of wastewater was carried out in a low-loaded, wetted bed. Pretreatment of the wastewater had no significant effect on the improvement of the biological step operation. Some effect was observed only in the case of the wastewater coming from a sugar factory. For medium concentrated wastewater from food industry, it is not economically justified to apply the pretreatment with the use of ionising radiation. (orig.)

  15. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant.

    Science.gov (United States)

    Zhao, Jian-Liang; Jiang, Yu-Xia; Yan, Bo; Wei, Chaohai; Zhang, Li-Juan; Ying, Guang-Guo

    2014-09-01

    Coking wastewater contributes approximately 5% of the total discharge volume of industrial wastewaters every year in China. The toxicity of coking wastewater to aquatic organisms is still unknown. The authors evaluated the toxicity of wastewater from different treatment stages in a coking wastewater treatment plant, South China, using 5 test species belonging to different trophic levels: luminous bacteria, green alga, a crustacean, duckweed, and zebrafish embryos. The raw influent displayed the highest toxicity to the test species, with toxic units ranging from 16.2 to 1176. The toxicity in the wastewater was then gradually removed by sequential primary treatment, biological fluidized-bed treatment, and secondary clarifier treatment. The toxic unit of the final effluent was reduced to 2.26 for the green alga (Pseudokirchneriella subcapitata) and to 0 for the other 4 organisms. Quantitative analysis of metals and polycyclic aromatic hydrocarbons (PAHs) and qualitative scanning by gas chromatography-mass spectrometry showed the presence of a variety of pollutants in the coking wastewaters. Multivariate statistical analysis revealed that the toxicity in the coking wastewater was correlated to the chemical oxygen demand, total nitrogen, ammonia nitrogen, volatile phenols, sulfide, metals (Cr, As, Sb, Hg, Pb, and Ni), and ΣPAHs. Based on the results, it is required to set a safety emission limit value for the discharge of coking wastewater to protect aquatic organisms in the receiving water bodies. © 2014 SETAC.

  16. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System

    OpenAIRE

    Kinidi, Lennevey; Salleh, Shanti

    2017-01-01

    It is noteworthy that ammoniacal nitrogen contamination in wastewater has reportedly posed a great threat to the environment. Although there are several conventional technologies being employed to remediate ammoniacal nitrogen contamination in wastewater, they are not sustainable and cost-effective. Along this line, the present study aims to highlight the significance of green chemistry characteristics of phytoremediation in nitrogen for wastewater treatment. Notably, ammoniacal nitrogen can ...

  17. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  18. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  19. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  20. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  1. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis.

    Science.gov (United States)

    Beier, S; Köster, S; Veltmann, K; Schröder, H; Pinnekamp, J

    2010-01-01

    Considerable concern exists regarding the appearance and effects of trace and ultra trace pollutants in the aquatic environment. In this context, it is necessary to identify relevant hot spot wastewater - such as hospital wastewater - and to implement specific wastewater treatment solutions. Membrane bioreactor (MBR) technology seems to be a suitable pre-treatment approach for the subsequent advanced treatment by high pressure membrane systems such as nanofiltration (NF) and reverse osmosis (RO). This paper is based upon investigations on the first full scale MBR for separate treatment of hospital wastewater in Germany. In this study an NF as well as an RO module for further treatment of the MBR filtrate were tested. The removal efficiencies were assessed using the following target compounds: bezafibrate, bisoprolol, carbamazepine, clarithromycin, ciprofloxacin, diclofenac, ibuprofen, metronidazole, moxifloxacin, telmisartan and tramadol. In summary, the results of this study confirmed that MBR technology followed by an advanced treatment for trace pollutant removal is an adequate approach for specific treatment of hot spot wastewater such as hospital wastewater. In particular, it was shown that - comparing the tested NF and RO - only (a two stage) RO is appropriate to remove pharmaceutical residues from hospital wastewater entirely. The recommended yield of the 2-stage RO is 70% which results in a retentate sidestream of 9%. Our investigations proved that RO is a very efficient treatment approach for elimination of trace pollutants.

  2. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    OpenAIRE

    Tong Zhang; Xiaoguang Wang; Xiwang Zhang

    2014-01-01

    The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs). We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In t...

  3. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  4. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... was devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long......-term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled...

  5. Wastewater treatment plants as a source of microbial pathogens in ...

    African Journals Online (AJOL)

    Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in ...

  6. Evaluation of microalgae production coupled with wastewater treatment

    DEFF Research Database (Denmark)

    De Francisci, Davide; Su, Yixi; Iital, Arvo

    2018-01-01

    In the present study the feasibility of microalgae production coupled with wastewater treatment was assessed. Continuous cultivation of Chlorella sorokiniana with wastewater was tested in lab-scale flat panel photobioreactors. Biomass productivity was determined for four dilution rates (4.32 d-1, 3...

  7. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  8. Antibiotic resistance plasmids in wastewater treatment plants and ...

    African Journals Online (AJOL)

    Antibiotic resistance plasmids found in wastewater treatment plants (WWTPs) may represent a threat to public health if they are readily disseminated into the environment and ultimately into pathogenic bacteria. The wastewater environments provide an ideal ecosystem for development and evolution of antibiotic resistance ...

  9. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  10. Carbapenem-resistant bacteria in a secondary wastewater treatment ...

    African Journals Online (AJOL)

    Bacterial resistance to carbapenems is an emerging problem of this century. A carbapenem-resistant bacterial population (CRBP) grown at 42°C was monitored in the influent and effluent of a secondary municipal wastewater treatment plant over 10 months. The municipal wastewater consisted of domestic, industrial, ...

  11. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  12. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    Science.gov (United States)

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  13. Environmental Management Tool for Treatment of Wastewater and ...

    African Journals Online (AJOL)

    Environmental Management Tool for Treatment of Wastewater and Re-use in Aquaculture and Agriculture: The use of Wetlands and other Bio-systems in ... by grabbing the wastewater samples three times a week seasonally in one year and data for model calibration was collected daily for a period of three months.

  14. Water footprint assessment for wastewater treatment: method, indicator, and application.

    Science.gov (United States)

    Shao, Ling; Chen, G Q

    2013-07-16

    The water footprint in terms of the sum of both direct and indirect water cost of wastewater treatment is for the first time accounted in this work. On the basis of the hybrid method as a combination of process analysis and input-output analysis, a detailed water footprint accounting procedure is provided to cover the supply chain of a wastewater treatment plant. A set of indices intending to reveal the efficiency as well as renewability of wastewater treatment systems are devised as parallels of corresponding indicators in net energy analysis for energy supply systems. A case study is carried out for the Beijing Space City wastewater treatment plant as a landmark project. The high WROI (water return on investment) and low WIWP (water investment in water purified) indicate a high efficiency and renewability of the case system, illustrating the fundamental function of wastewater treatment for water reuse. The increasing of the wastewater and sludge treatment rates are revealed in an urgent need to reduce the water footprint of China and to improve the performance of wastewater treatment.

  15. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  16. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    Wastewaters from olive mills and pulp and paper mill industries in Jordan have been characterized and treated using laboratory scale anaerobic and aerobic sequencing batch reactors, respectively. Nutrient requirements for these two industrial wastewaters were found to be less than what is usually reported in the literature ...

  17. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  18. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants

    OpenAIRE

    Shuai Shao; Hailin Mu; Fenglin Yang; Yun Zhang; Jinhua Li

    2016-01-01

    Municipal wastewater treatment plants consume much energy and manpower, are expensive to run, and generate sludge and treated wastewater whilst removing pollutants through specific treatment regimes. The sustainable development of the wastewater treatment industry is therefore challenging, and a comprehensive evaluation method is needed for assessing the sustainability of different wastewater treatment processes, for identifying the improvement potential of treatment plants, and for directing...

  19. Wastewater Treatment and Reuse: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-09-01

    Full Text Available This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Collectively, the Special Issue presents an evolution of technologies, from conventional through advanced, for reliable and sustainable wastewater treatment and reuse.

  20. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  2. Method for surface treatment by electron beams

    International Nuclear Information System (INIS)

    Panzer, S.; Doehler, H.; Bartel, R.; Ardenne, T. von.

    1985-01-01

    The invention has been aimed at simplifying the technology and saving energy in modifying surfaces with the aid of electron beams. The described beam-object geometry allows to abandon additional heat treatments. It can be used for surface hardening

  3. Waste treatment by microwave and electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Craciun, G.; Manaila, E.; Ighigeanu, D; Oproiu, C.; Iacob, N.; Togoe, I.; Margaritescu, I.

    2007-01-01

    Comparative results obtained by applying separate and combined (successive and simultaneous) electron beam (EB) and microwave (MW) irradiation to waste treatment, such as food residuals (minced beef, wheat bran and wheat flour) and sewage sludge performed from a food industry wastewater treatment station (vegetable oil plant), are presented. The research results demonstrated that the simultaneous EB and MW irradiation produces the biggest reduction of microorganisms. The tests also demonstrated that the irradiation time and the upper limit of required EB absorbed dose, which ensures a complete sterilization effect, could be reduced by a factor of two by an additional use of MW energy to EB irradiation

  4. Treatment of biomass gasification wastewaters using reverse osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Petty, S.E.; Eliason, S.D.; Laegreid, M.M.

    1981-09-01

    Reverse osmosis (RO) was evaluated as a treatment technology for the removal of organics from biomass gasification wastewaters (BGW) generated from an experimental biomass gasifier at Texas Tech University. Wastewaters were characteristically high in chemical oxygen demand (COD) with initial values ranging from 32,000 to 68,000 mg/1. Since RO is normally considered a complementary treatment technology, wastewaters were pretreated by biological or wet air oxidation (WAO) processes. One set of experiments were run using untreated wastewaters to compare membrane performance with those experiments using pretreated wastewaters. Experiments were run for 8 to 10 hrs using UOP's TFC-85 membrane operating at 700 psig and 18 to 20/sup 0/C. This membrane is similar to the NS-100, a membrane known for being effective in the separation of organics from solution. Separation of organics from solution was determined by COD removal. Removal percentages for biologically pretreated wastewaters averaged 98% except for one group of runs averaging 69% removal. This exception was probably due to the presence of milk solids in the feed. Use of RO on WAO pretreated wastewaters and unpretreated feeds resulted in 90% COD removal. Membrane degradation was observed when using full-strength and WAO pretreated feeds, but not when using feeds that had undergone biological pretreatment. Color removal was computed for the majority of experiments completed. Overall, 99 to 100% of the total color was removed from BGW feeds, values which coincide with those reported in the literature for other wastewaters.

  5. Capacity of textile filters for wastewater Treatment at changeable wastewater level – a hydraulic model

    OpenAIRE

    Marcin Spychała; Maciej Pawlak; Tadeusz Nawrot

    2016-01-01

    The aim of the study was to describe in a mathematical manner the hydraulic capacity of textile filters for wastewater treatment at changeable wastewater levels during a period between consecutive doses, taking into consideration the decisive factors for flow-conditions of filtering media. Highly changeable and slightly changeable flow-conditions tests were performed on reactors equipped with non-woven geo-textile filters. Hydraulic conductivity of filter material coupons was determined. The ...

  6. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  7. Bacteriophages-potential for application in wastewater treatment processes

    International Nuclear Information System (INIS)

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  8. Wastewater Treatment Plants, North America, 2010, Dun and Bradstreet

    Data.gov (United States)

    U.S. Environmental Protection Agency — D&B 20101220 Wastewater Treatment Plants Points for the United States, including Puerto Rico and the US Virgin Islands, Canada, and Mexico, Released Quarterly...

  9. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...

  10. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Possibilities of implementing nitrogen removal at Swedish wastewater treatment plants

    International Nuclear Information System (INIS)

    Hultman, Bengt; Plaza, Elzbieta; Tendaj-Xavier, Marta

    1987-01-01

    Problems related to eutrophication and oxygen consumption have been considered as the major factors in deterioration of the water quality in Swedish lakes, rivers and coastal areas. Technical solutions to reduce oxygen-consuming materials and eutrophication have up to now been directed towards the removal of biochemical oxygen demand (BOD) and phosphorus. Thus, biological and chemical treatment of municipal wastewater is usually prescribed, and at present about 90% of the municipal wastewater from Swedish urban areas is treated both biologically and chemically. Most plants are designed for post-precipitation, although the treatment plants may now be operated in a modified way, for example, with the use of preprecipitation, two-point precipitation or recirculation of chemical sludges. Hultman and Moore (1982) have presented an overview of Swedish practice in municipal wastewater treatment. Although Swedish treatment of municipal wastewater concentrates on the removal of biochemical oxygen demand and phosphorus, the environmental and operational effects of nitrogen have been discussed for many years

  12. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  13. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  14. Study on decolorization of dyeing wastewater by electrochemical treatment

    Science.gov (United States)

    Chen, Jianjun; Xiaohui, Wang; Hao, Wu; Qi, Jiang

    2018-02-01

    In view of the decolorization of dyeing wastewater, three different kinds of simulated dyeing wastewater were treated by electrochemical method. The effects of current density, initial pH, electrolyte concentration and initial concentration of dye on the treatment effect were investigated, and the decolorization mechanism and color reversion were studied. The experimental results show that the decolorization rate of the three kinds of dyeing wastewater is more than 90% after 60min treatment. And the decolorization process is mainly chromogenic groups gradually destroyed, the dye molecules are gradually degraded. Moreover, in the natural conditions, aeration conditions, heating conditions, almost no phenomenon of color reversion occured.

  15. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  16. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena...

  17. Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems.

    Science.gov (United States)

    Schaider, Laurel A; Rodgers, Kathryn M; Rudel, Ruthann A

    2017-07-05

    Onsite wastewater treatment systems, such as septic systems, serve 20% of U.S. households and are common in areas not served by wastewater treatment plants (WWTPs) globally. They can be sources of nutrients and pathogen pollution and have been linked to health effects in communities where they contaminate drinking water. However, few studies have evaluated their ability to remove organic wastewater compounds (OWCs) such as pharmaceuticals, hormones, and detergents. We synthesized results from 20 studies of 45 OWCs in conventional drainfield-based and alternative onsite wastewater treatment systems to characterize concentrations and removal. For comparison, we synthesized 31 studies of these same OWCs in activated sludge WWTPs. OWC concentrations and removal in drainfields varied widely and depended on wastewater sources and compound-specific removal processes, primarily sorption and biotransformation. Compared to drainfields, alternative systems had similar median and higher maximum concentrations, reflecting a wider range of system designs and redox conditions. OWC concentrations and removal in drainfields were generally similar to those in conventional WWTPs. Persistent OWCs in groundwater and surface water can indicate the overall extent of septic system impact, while the presence of well-removed OWCs, such as caffeine and acetaminophen, may indicate discharges of poorly treated wastewater from failing or outdated septic systems.

  18. The carbon-sequestration potential of municipal wastewater treatment.

    Science.gov (United States)

    Rosso, Diego; Stenstrom, Michael K

    2008-02-01

    The lack of proper wastewater treatment results in production of CO(2) and CH(4) without the opportunity for carbon sequestration and energy recovery, with deleterious effects for global warming. Without extending wastewater treatment to all urban areas worldwide, CO(2) and CH(4) emissions associated with wastewater discharges could reach the equivalent of 1.91 x 10(5) t(CO2)d(-1) in 2025, with even more dramatic impact in the short-term. The carbon sequestration benefits of wastewater treatment have enormous potential, which adds an energy conservation incentive to upgrading existing facilities to complete wastewater treatment. The potential greenhouse gases discharges which can be converted to a net equivalent CO(2) credit can be as large as 1.91 x 10(5) t(CO2)d(-1) in 2025 by 2025. Biomass sequestration and biogas conversion energy recovery are the two main strategies for carbon sequestration and emission offset, respectively. The greatest potential for improvement is outside Europe and North America, which have largely completed treatment plant construction. Europe and North America can partially offset their CO(2) emissions and receive benefits through the carbon emission trading system, as established by the Kyoto protocol, by extending existing technologies or subsidizing wastewater treatment plant construction in urban areas lacking treatment. This strategy can help mitigate global warming, in addition to providing a sustainable solution for extending the health, environmental, and humanitarian benefits of proper sanitation.

  19. Evaluation of sequencing batch reactor performance for petrochemical wastewater treatment

    OpenAIRE

    Mina Salari; Seyed Ahmad Ataei; Fereshteh Bakhtiyari

    2017-01-01

    Sequencing batch reactor (SBR) technology has found many applications in industrial wastewater treatment in recent years. The aim of this study was to determine the optimal time for a cycle of the sequencing batch reactor (SBR) and evaluate the performance of a SBR for petrochemical wastewater treatment in that cycle time. The reactor was operated with a suspended biomass configuration under aerobic conditions. Carbon removal and operating parameters such as pH, temperature and dissolved oxyg...

  20. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  1. Wastewater Treatment and Reuse: Past, Present, and Future

    OpenAIRE

    Andreas N. Angelakis; Shane A. Snyder

    2015-01-01

    This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Colle...

  2. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    OpenAIRE

    John R. White; Marco A. Belmont; Chris D. Metcalfe

    2006-01-01

    Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the ...

  3. Micro-electrolysis technology for industrial wastewater treatment.

    Science.gov (United States)

    Jin, Yi-Zhong; Zhang, Yue-Feng; Li, Wei

    2003-05-01

    Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical, dye-printing and papermaking plants. Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis. For the use of micro-electrolysis in treatment of dye-printing wastewater, the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater; more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater.

  4. Parametric study of a dyeing wastewater treatment by modified sericite.

    Science.gov (United States)

    Choi, Hee-Jeong; Kim, Kyu Han

    2016-10-01

    The aim of this study was to investigate color, suspended solids (SS), chemical oxygen demand (COD) and biological oxygen demand (BOD) removal using modified sericite with magnesium (Mg-Sericite) flocculants in dyeing wastewater. Mg-Sericite flocculants successfully removed >95% of color, SS. COD and BOD in dyeing wastewater at the following optimal conditions: Mg-Sericite dosage of 40 mg/L, pH of 11, Mg/Sericite ratio of 1.5, settling time of 20 min, mixing time of 10 min and mixing rate of 100 rpm. The bioflocculant, Mg-Sericite, can be a promising flocculants due to its high efficiency and low dose requirements in dyeing wastewater treatment. In addition, Mg-Sericite does not contaminate treated wastewater, which can be recycled to reduce not only the cost and the demand for water but also the extra operational costs for reusing wastewater.

  5. EB treatment of wastewater and progress of on-going project in China

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2006-01-01

    Electron beam processing has been widely used in China in the fields of radiation crosslinking cables and wires, heat shrinkable material, foam materials, irradiated latex and polymers, sterilization, removal SOx and NOx of flue gas, chemical industry, industrial CT, electron instrument, and so on. However, EB treatment of wastewater is mostly under study in laboratory. The manufacture of electron accelerators has also become a comparatively independent industry in China. (author)

  6. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    J. Kalka

    2012-01-01

    Full Text Available Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms.

  7. Treatment of heavy-metal wastewater by vacuum membrane distillation: effect of wastewater properties

    Science.gov (United States)

    Ji, Zhongguang

    2018-01-01

    Heavy metal wastewater is a common byproduct in heavy metal industries. Membrane distillation is considered as promising technology to treat such wastewater. The treatment of heavy metal wastewater by vacuum membrane distillation (VMD) was conducted in this work. The effects of pH, calcium and EDTA on VMD performance were investigated. VMD process showed a good acid resistance as the solution pH above 0. When the solution pH was 0, the permeate conductivity was below 40μS·cm-1. Calcium and EDTA were found to have influence on VMD performance to some extent. VMD process was proved to be suitable for heavy metal wastewater as long as the impurity content was in control of a certain degree.

  8. Wastewater Treatment After Improved Scourings of Raw Wool

    Directory of Open Access Journals (Sweden)

    Pernar, E.

    2007-11-01

    Full Text Available Textile industry processes need high amounts of water for wet treatment of textiles. Therefore, high amounts of wastewater also appear containing different inorganic and organic substances depending on the used materials and processes. Raw wool is contaminated with wool wax, suint, skin flakes, dirt, sand, vegetable matter, urine and various microorganisms. The methods for raw wool scouring and cleaning today often in use are: scouring in the suint, scouring with soaps or tenside in alkaline, extraction by organic solvents and freezing. The different methods for wastewater purification after scouring in use are: settling/floculation, biological treatment, adsorptionand catalytic oxidation. In this work, wastewater treatments after improved raw wool scouring with enzymes and EDTA have been investigated. Isothermal adsorption on zeolite A, active carbon and a natural and H+ type of bentonite for removal of the obtained wastewater impurities was used. The results were determined by means of different physical-chemical test methods.

  9. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  10. Sustainable operation of a biological wastewater treatment plant

    Science.gov (United States)

    Trikoilidou, E.; Samiotis, G.; Bellos, D.; Amanatidou, E.

    2016-11-01

    The sustainable operation of a biological wastewater treatment plant is significantly linked to its removal efficiency, cost of sludge management, energy consumption and monitoring cost. The biological treatment offers high organic removal efficiency, it also entails significant sludge production, which contains active (live) and inactive (dead) microorganisms and must be treated prior to final disposal, in order to prevent adverse impact on public health and environment. The efficiency of the activated sludge treatment process is correlated to an efficient solid-liquid separation, which is strongly depended on the biomass settling properties. The most commonly encountered settling problems in a wastewater treatment plant, which are usually associated with operating conditions and specific microorganisms growth, are sludge bulking, floating sludge, pin point flocs and straggler flocs. Sustainable management of sludge and less energy consumption are the two principal aspects that determine the operational cost of wastewater treatment plants. Sludge treatment and management accumulate more than 50% of the operating cost. Aerobic wastewater treatment plants have high energy requirements for covering the needs of aeration and recirculations. In order to ensure wastewater treatment plants’ effective operation, a large number of physicochemical parameters have to be monitored, thus further increasing the operational cost. As the operational parameters are linked to microbial population, a practical way of wastewater treatment plants’ controlling is the microscopic examination of sludge, which is proved to be an important tool for evaluating plants’ performance and assessing possible problems and symptoms. This study presents a biological wastewater treatment plant with almost zero biomass production, less energy consumption and a practical way for operation control through microbial manipulation and microscopic examination.

  11. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  12. Digital image processing and analysis for activated sludge wastewater treatment.

    Science.gov (United States)

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  13. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  14. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    OpenAIRE

    Szeląg Bartosz; Barbusiński Krzysztof; Studziński Jan; Bartkiewicz Lidia

    2017-01-01

    In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quali...

  15. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  16. Forward osmosis for application in wastewater treatment: a review.

    Science.gov (United States)

    Lutchmiah, Kerusha; Verliefde, A R D; Roest, K; Rietveld, L C; Cornelissen, E R

    2014-07-01

    Research in the field of Forward Osmosis (FO) membrane technology has grown significantly over the last 10 years, but its application in the scope of wastewater treatment has been slower. Drinking water is becoming an increasingly marginal resource. Substituting drinking water for alternate water sources, specifically for use in industrial processes, may alleviate the global water stress. FO has the potential to sustainably treat wastewater sources and produce high quality water. FO relies on the osmotic pressure difference across the membrane to extract clean water from the feed, however the FO step is still mostly perceived as a "pre-treatment" process. To prompt FO-wastewater feasibility, the focus lies with new membrane developments, draw solutions to enhance wastewater treatment and energy recovery, and operating conditions. Optimisation of these parameters are essential to mitigate fouling, decrease concentration polarisation and increase FO performance; issues all closely related to one another. This review attempts to define the steps still required for FO to reach full-scale potential in wastewater treatment and water reclamation by discussing current novelties, bottlenecks and future perspectives of FO technology in the wastewater sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of time on dyeing wastewater treatment

    Science.gov (United States)

    Ye, Tingjin; Chen, Xin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The preparation of carboxymethylchitosan wrapping fly-ash adsorbent using high temperature activated fly ash and sodium carboxymethyl chitosan (CWF), as with the iron-carbon micro-electrolysis process simulation and actual printing and dyeing wastewater. The effects of mixing time and static time on decolorization ratio, COD removing rate and turbidness removing rate were investigated. The experimental results show that the wastewater stirring times on the decolorization rate and COD removal rate and turbidity removal rate influence, with increasing of the stirring time, three showed a downward trend, and reached the peak at 10 min time; wastewater time on the decolorization ratio and COD removing efficiency and turbidness removing rate influence, along with standing time increase, three who declined and reached the maximum in 30min time.

  18. Biologically Degradable Adsorbents in Treatment of Coloured Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2018-03-01

    Full Text Available In this research, the adsorption capacity of biodegradable wastes such as peels of lemon, orange, mandarin, avocado, apples, banana and over-matured banana in the treatment of coloured wastewaters polluted with direct dye and with pigment screen printing ink was studied. Their adsorption capacity was compared with already established adsorbents such as activated carbon, zeolite, alumina and chitosan. The efficiency of the adsorption treatment was evaluated by a spectrophotometric measurement of colour removal of the wastewater. In both coloured wastewaters, dried banana and dried ground lemon peel proved to be excellent biodegradable adsorbents, which were even more effective than commercially used activated carbon. The dried ground orange, mandarin and apple peels also showed adsorption abilities in the coloured wastewaters. In the water contaminated with dye, the equally high level of discoloration obtained with lemon peel and dried banana was also reached with chitosan and alumina.

  19. Tofu wastewater treatment using vetiver grass ( Vetiveria zizanioides) and zeliac

    Science.gov (United States)

    Seroja, Romi; Effendi, Hefni; Hariyadi, Sigid

    2018-03-01

    Tofu production is a domestic industry, that most of it has no appropriate wastewater treatment facilities. Wastewater of tofu contains high organic matter which can decrease the water quality. This study aimed to analyze capability of Vetiveria zizanioides, L and zeliac in treating tofu wastewater industry. Zeliac is a new adsorbent, which consists of zeolite, activated carbon, limestone, rice husk ash and cement. Response surface methodology was applied to analyze the data, using central composite design with two factors, i.e., time (3, 9, and 15 days) and waste concentration (20, 40, and 60%). The optimum treatment occurred at the time of 15 days and 38.41% of tofu wastewater concentration decreasing up to 76% of COD, 71.78% of BOD, and 75.28% of TSS.

  20. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  1. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  2. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    Science.gov (United States)

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  4. The effects of physicochemical wastewater treatment operations on forward osmosis

    OpenAIRE

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; La Cour Jansen, Jes; Jönsson, Karin

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin...

  5. Pulsed reactor modelling for catalytic micropollutant treatment in wastewater

    OpenAIRE

    Juarros Bertolín, Helena Georgina

    2011-01-01

    This study stems from the problem of the presence of micropollutants (including phenolic compounds such as Bisphenol A, Nonylphenol and Triclosan) in urban and industrial wastewaters. Systems used in the wastewater treatment plants are inefficient in removing these micropollutants that are harmful for the environment. In an ongoing project, laccases, a group of enzymes, are used to efficiently catalyse the degradation of phenolic micropollutants. In this master thesis, it is proposed...

  6. Gamma radiation induced effects on slaughterhouse wastewater treatment

    International Nuclear Information System (INIS)

    Melo, Rita; Cabo Verde, Sandra; Branco, Joaquim; Botelho, M. Luisa

    2008-01-01

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h -1 . A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment

  7. Production of bio-electricity during wastewater treatment using a ...

    African Journals Online (AJOL)

    Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell. ... water treatment with production of sustainable energy. The power ... it is possible to generate electricity using bacteria while accomplishing waste water treatment in process based on microbial fuel cell technologies.

  8. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Using this model, it was demonstrated that water quality standards can be met at all monitoring points at a minimum cost by simultaneously optimising treatment levels at each treatment plant. Keywords: instream water quality, mixed integer optimisation, wastewater treatment levels, Streeter-Phelps.

  9. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Lennevey Kinidi

    2017-01-01

    Full Text Available It is noteworthy that ammoniacal nitrogen contamination in wastewater has reportedly posed a great threat to the environment. Although there are several conventional technologies being employed to remediate ammoniacal nitrogen contamination in wastewater, they are not sustainable and cost-effective. Along this line, the present study aims to highlight the significance of green chemistry characteristics of phytoremediation in nitrogen for wastewater treatment. Notably, ammoniacal nitrogen can be found in many types of sources and it brings harmful effects to the environment. Hence, the present study also reviews the phytoremediation of nitrogen and describes its green chemistry characteristics. Additionally, the different types of wastewater contaminants and their effects on phytoremediation and the phytoremediation consideration in wastewater treatment application and sustainable waste management of harvested aquatic macrophytes were reviewed. Finally, the present study explicates the future perspectives of phytoremediation. Based on the reviews, it can be concluded that green chemistry characteristics of phytoremediation in nitrogen have proved that it is sustainable and cost-effective in relation to other existing ammoniacal nitrogen remediation technologies. Therefore, it can be deduced that a cheaper and more environmental friendly ammoniacal nitrogen technology can be achieved with the utilization of phytoremediation in wastewater treatment.

  10. Treatment of textile wastewater using a natural flocculant.

    Science.gov (United States)

    Aboulhassan, M A; Souabi, S; Yaacoubi, A; Baudu, M

    2005-06-01

    The physicochemical treatment of wastewater is of substantial interest, especially when conventional treatments by biological processes are not amenable. Among the current chemical processes used for industrial wastewater treatment, coagulation-flocculation has received a large attention for high pollutant removal efficiency. This paper summarizes the results of a textile wastewater treatment process aimed at the destruction of colour by coagulation-flocculation process and using an organic natural flocculant: tannic substances. Jar-test experiments were carried out in order to determine the optimum conditions for the removal of organic matter and color. Treatment with studied flocculent (Polysep3000) proved to be effective in a wide pH range (pH 90%) and corresponding low volume of settled sludge.

  11. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  12. Wastewater Treatment with Ammonia Recovery System

    OpenAIRE

    M. Örvös; T. Balázs; K. F. Both

    2008-01-01

    From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

  13. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  14. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    Science.gov (United States)

    Lopez-Vazquez, C M; Kubare, M; Saroj, D P; Chikamba, C; Schwarz, J; Daims, H; Brdjanovic, D

    2014-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification-two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.

  15. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  16. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  17. Treatment of Medical Wastewater by Moving Bed Bioreactor System

    Directory of Open Access Journals (Sweden)

    Yaser Ibrahim Jasem

    2018-05-01

    Full Text Available The hospital wastewater is considered as a complex mixture, populated with microbial and a variety of toxic substances. The performance of EEC USA moving bed biofilm reactor (MBBR with polyethylene media as biofilm support carrier, packaged wastewater treatment plant with a capacity of 250 m3/day was evaluated for treating the wastewater from Al- Batul hospital of Baquba city in Iraq in terms of the organic matter and suspended solid removal, along with nitrification and microbial growth for medical wastewater. The test results showed that the average removal efficiency of biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and total suspended solid (TSS were 79.5%, 74.5%, and 78%, respectively. The system offers good nitrification with the efficiency of 79%. The system shows a weak formation of biomass on carriers, only 1.93 g TSS/m2 of media, corresponding to 32% of the suspended biomass in the reactor.

  18. Treatment of coking wastewater by using manganese and magnesium ores.

    Science.gov (United States)

    Chen, Tianhu; Huang, Xiaoming; Pan, Min; Jin, Song; Peng, Suchuan; Fallgren, Paul H

    2009-09-15

    This study investigated a wastewater treatment technique based on natural minerals. A two-step process using manganese (Mn) and magnesium (Mg) containing ores were tested to remove typical contaminants from coking wastewater. Under acidic conditions, a reactor packed with Mn ore demonstrated strong oxidizing capability and destroyed volatile phenols, chemical oxygen demand (COD)(,) and sulfide from the coking wastewater. The effluent was further treated by using Mg ore to remove ammonium-nitrogen and phosphate in the form of magnesium ammonium phosphate (struvite) precipitates. When pH of the wastewater was adjusted to 1.2, the removal efficiencies for COD, volatile phenol and sulfide reached 70%, 99% and 100%, respectively. During the second step of precipitation, up to 94% of ammonium was removed from the aqueous phase, and precipitated in the form of struvite with phosphorus. The struvite crystals showed a needle-like structure. X-ray diffraction and transmission electron microscopy were used to characterize the crystallized products.

  19. Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater

    Directory of Open Access Journals (Sweden)

    Al-Gheethi AA

    2017-01-01

    Full Text Available Laundry wastewater has simple characteristics in which the detergents compounds are the main constitutes. But these compounds have adverse effects on the aquatic organisms in the natural water bodies which received these wastes without treatment. Few studies were conducted on these wastes because it represent a small part of the total wastewater generated from different human activities. Moreover, the coagulation process for laundry wastewater might be effective to remove of detergents compounds. Therefore, in the present study, the efficiency of coagulation process by using chemical (ferrous sulphate and natural coagulants (Moringa oleifera seeds were investigated. The raw laundry wastewater samples were collected from laundromat located at Taman Universiti, Parit Raja. The characteristics of these wastes were determined and then the wastewater was subjected for the treatment process consisted of three units including aeration, coagulation and sedimentation process. The chemical and natural coagulants were used with four dosage (30, 60, 90 and 120 mg L−1 and the coagulation process was carried out at room temperature (25±2ºC for one hour. The results revealed that the laundry wastewater have high concentrations of turbidity (57.8-68.1 NTU and Chemical Oxygen Demand (COD (423-450 mg L−1 with pH value between 7.96 and 8.37. M. oleifera seeds exhibited high efficiency for removal of turbidity (83.63% with 120 mg L−1 of dosage, while 30 mg L−1 of FeSO4 was the best for removal of COD (54.18%. However, both parameters still more than Standard B for wastewater disposal suggesting the need to increase the period of coagulation process with M. oleifera seeds or to subject of the treated effluents for a secondary coagulation process with natural coagulant products to improve the characteristics of laundry wastewater without a secondary products as that generated with the chemical coagulants.

  20. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants

    NARCIS (Netherlands)

    Mels, A.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainability

    Most of the currently applied municipal wastewater treatment plants in The Netherlands are

  1. Anaerobic wastewater treatment of high salinity wastewaters: impact on bioactivity and biomass retention

    NARCIS (Netherlands)

    Ismail, S.

    2013-01-01

    Anaerobic sludge bed reactor systems like the upflow anaerobic sludge blanket (UASB) and expended granular sludge bed (EGSB) reactors are currently the mostly applied high-rate reactor systems for anaerobic wastewater treatment. The success of both systems has changed the world conception of

  2. Can municipal wastewater treatment systems be carbon neutral?

    Science.gov (United States)

    Mo, Weiwei; Zhang, Qiong

    2012-12-15

    Municipal wastewater treatment has emerged as one of the largest resource consumers in the US. As a result, the goal of municipal wastewater systems has extended from protecting receiving water and human health to improving the system sustainability. This study used the embodied energy and the associated carbon footprint to measure the resource consumption and recovery in wastewater systems. Three resource recovery methods were specifically investigated: onsite energy generation through combined heat and power systems, nutrient recycling through biosolids land application, and water reuse for residential irrigation. The embodied energy and the associated carbon footprint were estimated through an input-output based hybrid energy analysis method and carbon emission factors. A wastewater treatment plant in Tampa, Florida was studied to investigate the possibility of carbon neutrality of wastewater treatment systems. It was shown that the integrated resource (energy, nutrient and water) recovery has the potential to offset all the direct operational energy; however, it is not able to offset the total embodied energy of the treatment plant to achieve carbon neutrality. Among the three resource recovery methods, water reuse has the highest potential of offsetting carbon footprint, while nutrient recycling has the lowest. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Solar photocatalytic treatment of synthetic municipal wastewater.

    Science.gov (United States)

    Kositzi, M; Poulios, I; Malato, S; Caceres, J; Campos, A

    2004-03-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJL(-1) the synergetic effect of 0.2 gL(-1)TiO(2) P-25 with hydrogen peroxide (H(2)O(2)) and Na(2)S(2)O(8) leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO(2)/oxidant system. An accumulation energy of 20 kJL(-1) leads to 80% reduction of the organic content. The presence of oxalate in the Fe(3+)/H(2)O(2) system leads to an additional improvement of the photocatalytic efficiency.

  4. Research advances in treatment technology of radioactive wastewater

    International Nuclear Information System (INIS)

    Li Xiaoyan; Zhang Ye

    2010-01-01

    Traditional treatment technologies on radioactive wastewater such as flocculating sedimentation, ion exchange, evaporation concentration and adsorption method at home and abroad are reviewed, and the latest research progress such as membrane method, biological treatment, magnetic-molecules method, inert curing method and permeable reactive (zero-valent iron) barriers technology are introduced. (authors)

  5. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    de Niet, Arie; van de Vrugt, Noëlle Maria; Korving, Hans; Boucherie, Richardus J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can

  6. A Primer on Wastewater Treatment, July 1976 Edition.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This general information pamphlet is concerned with the types of wastewater treatment systems, the need for further treatment, and advanced methods of treating waste. Current methods are described, illustrated and evaluated. Pollution problems from oxygen-demanding wastes, disease-causing agents, plant nutrients, synthetic chemicals, inorganic…

  7. Techniques of WasteWater Treatment-Introduction to Effluent ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 11. Techniques of WasteWater Treatment - Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni Mugdha Deshpande A B Pandit. General Article Volume 5 Issue 11 November 2000 pp 56-68 ...

  8. Electrochemical treatment of tannery wastewater using DSA electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Carla Regina [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14049-901 Ribeirao Preto, SP (Brazil); Botta, Clarice M.R.; Espindola, Evaldo L.G. [Nucleo de Estudos em Ecossistemas Aquaticos, Centro de Recursos Hidricos e Ecologia Aplicada, Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, CP 292, CEP 13560-970 Sao Carlos, SP (Brazil); Olivi, Paulo [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14049-901 Ribeirao Preto, SP (Brazil)], E-mail: olivip@ffclrp.usp.br

    2008-05-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity.

  9. Economy of precipitating agent application in municipal wastewater treatment facilities

    Science.gov (United States)

    Neis, U.; Geppert, B.; Hahn, H. H.; Gleisberg, D.

    1983-01-01

    Purification by precipitation in this study is not considered primarily as a means of phosphate removal but as a method for reduction of suspended solids BOD and COD. A dynamic calculation procedure is used to allow for exact determination of time dependent variation of costs. The results show that costs of wastewater treatment by precipitation may equal those of conventional primary clarification and secondary biological treatment, especially with low-cost iron-II-salts in simultaneous precipitation and in larger plants ( 20,000 PF). Cost advantages may be accrued in smaller plants by using the more expensive trivalent salts in pre-precipitation as compared to conventional low-load biological treatment. This is due mainly to better effluent quality and, consequently, lower wastewater fees (Wastewater Discharge Act). If the precipitant is dosed temporarily only during periods of highest pollution the savings can be about 5 to 10%.

  10. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  11. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  12. Electrochemical treatment of tannery wastewater using DSA electrodes

    International Nuclear Information System (INIS)

    Costa, Carla Regina; Botta, Clarice M.R.; Espindola, Evaldo L.G.; Olivi, Paulo

    2008-01-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity

  13. Optimizing potassium ferrate for textile wastewater treatment by RSM

    Directory of Open Access Journals (Sweden)

    Maryam Moradnia

    2016-08-01

    Full Text Available Background: Application of potassium ferrate is a chemical oxidation approach used for water and wastewater treatment. The aim of this study is to apply central composite design (CCD and response surface methodology (RSM to optimize potassium ferrate consumption in the treatment of wastewater from carpet industries. Methods: Samples in this experimental study were collected from wastewater, originating from a carpet factory. Wastewater sampling was carried out monthly for a period of two seasons. Ferrate oxidation experiments were conducted by means of a conventional jar-test apparatus. The time and speed for mixing were set with an automatic controller. Parameters of study were measured based on given methodologies in Standard method for examining water and wastewater. CCD and RSM were applied to optimize the operating variables including potassium ferrate dosage and pH. Results: Results showed that potassium ferrate concentration (A, pH (B, their interactions (AB and quadratic effects (A2 and B2 were significant in the removal of COD, turbidity, color and TSS from carpet industries effluents. At an optimum point (COD: 160 mg/L of potassium ferrate and pH 4, turbidity: 165 mg/L of potassium ferrate and pH 4, color and TSS: pH 4.5 and 150 mg/L of potassium ferrate removal efficiencies for COD, turbidity, color and TSS were 86, 86, 87 and 89%, respectively. Conclusion: Potassium ferrate has a significant impact on pollutants decomposition and the removal of color from wastewater produced in carpet industries. This process can be employed for the pretreatment or post treatment of wastewaters containing refractory organic pollutants. CCD and RSM are suitable tools for experimental design.

  14. Salicylic-acid-mediated enhanced biological treatment of wastewater.

    Science.gov (United States)

    Khardenavis, Anshuman A; Kapley, Atya; Purohit, Hemant J

    2010-03-01

    Activated sludge represents a microbial community which is responsible for reduction in pollution load from wastewaters and whose performance depends upon the composition and the expression of degradative capacity. In the present study, the role of salicylic acid (SA) has been evaluated for acclimatization of activated sludge collected from a combined effluent treatment plant followed by analysis of the physiological performance and microbial community of the sludge. The biodegradative capacity of the acclimatized activated sludge was further evaluated for improvement in efficiency of chemical oxygen demand (COD) removal from wastewater samples collected from industries manufacturing bulk drugs and dyes and dye intermediates (wastewater 1) and from dye industry (wastewater 2). An increase in COD removal efficiency from 50% to 58% and from 78% to 82% was observed for wastewater 1 and wastewater 2, respectively. Microbial community analysis data showed selective enrichment and change in composition due to acclimatization by SA, with 50% of the clones showing sequence homology to unidentified and uncultured bacteria. This was demonstrated by analysis of partial 16S rDNA sequence data generated from dominating clones representing the metagenome which also showed the appearance of a unique population of clones after acclimatization, which was distinct from those obtained before acclimatization and clustered away from the dominating population.

  15. Optimizing the selection of small-town wastewater treatment processes

    Science.gov (United States)

    Huang, Jianping; Zhang, Siqi

    2018-04-01

    Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.

  16. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  17. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyi, E-mail: yangxiaoyi@buaa.edu.cn [Department of Thermal Energy Engineering, BeiHang University, Beijing 100191 (China)

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  18. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    Yang Xiaoyi

    2009-01-01

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  19. Addressing social aspects associated with wastewater treatment facilities

    International Nuclear Information System (INIS)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia

    2016-01-01

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  20. Performance of Wastewater Treatment Plants in Gaza Strip Potential use of Wastewater and Sludge in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Shomar, B.H.; Mueller, G.; Yahya, A.

    2003-07-01

    Twelve elements (Ag, Al, As, Cd, Ca, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were analyzed in 120 composite samples of influent and effluent wastewater; the results revealed that domestic wastewater influent contains considerable amounts of heavy metals and the partially functional treatment plants of Gaza are able to remove 40-70% of most metals during the treatment process. Heavy metals in 31 industrial wastewater effluents are within the ranges of international standards. All industries of Gaza are light, despite that they have no treatment facilities, their effluents are being discharged to municipal sewerage system and the existing treatment plants are capable to absorb the industrial effluents with no significant impact on treatment bioprocesses. Thirty parameters were determined in 35 sludge samples; P, AOX, C, S, CaCO{sub 3}, Mg, Ca, Na, K, Li, Cu, Zn, Ni, Pb, Mn, Fe, Cr, Co, Cd, As, Hg, Ti, Se, Br, Rb, Th, Sr, Y, U, and Zr. Although there are no treatment facilities for sludge within the treatment plants, the results indicated that sludge in general is clean of heavy metals. Zinc and AOX only showed anomalous concentrations; more than 85% of sludge samples showed that averages of zinc and AOX are 2000 mg/kg and 550 mg Cl/kg, respectively, which exceed the standards of all industrial countries for sludge to be used in land application. (author)

  1. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    OpenAIRE

    Kalka, J.

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate ...

  2. Treatment of wastewater from service areas at motorways

    Directory of Open Access Journals (Sweden)

    Makowska Małgorzata

    2016-12-01

    Full Text Available This paper deals with wastewater treatment systems placed in motorway service areas (MSAs. In the years 2008-2009 eight of such facilities installed on the stretch of the A2 motorway between Poznań and Nowy Tomyśl were examined and analyzed. The system consists of a septic tank, a submerged aerated biofilter and an outflow filter. The volume of traffic on the highway was analyzed, the amount of water use was measured and peak factors were calculated. On this basis it was concluded that the inflows to the wastewater treatment systems in many cases exceeded the nominal design values.

  3. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, Sten Bay; Sin, Gürkan

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able...... to respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  4. Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology

    Science.gov (United States)

    Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.

    2017-06-01

    Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.

  5. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  6. Polymeric polyelectrolytes obtained from renewable sources for biodiesel wastewater treatment by dual-flocculation

    OpenAIRE

    E. A. M. Ribeiro; G. Rodrigues Filho; N. S. Rozeno; J. M. B. A. Nogueira; M. A. Resende; J. P. Thompson Junior; J. G. Vieira; S. C. Canobre; F. A. Amaral

    2017-01-01

    Biodiesel wastewater generally contains high levels of oils, soaps and glycerol residues. This needs wastewater treatment. In this study, the biodiesel wastewater treatment was tested (industrial wastewater (EFID) and laboratory wastewater (EFLB) from biodiesel) by performing flocculation and dual-flocculation with renewable polymers. Tannin and cationic hemicellulose (CH) were used as cationic flocculant, and cellulose acetate sulfate (CAS) was used as an anionic flocculant. Polyacrylamide (...

  7. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2011-01-01

    Highlights: · The work focused on hazardous wastewater (antibiotic wastewater) treatment. · Complete degradation of the antibiotics achieved by the treatment process. · The SBR performance was found to be very sensitive to BOD 5 /COD ratio below 0.40. · Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio). The SBR performance was found to be very sensitive to BOD 5 /COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe 2+ dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H 2 O 2 /COD molar ratio 2, H 2 O 2 /Fe 2+ molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  8. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  9. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  10. Virus Reduction during Advanced Bardenpho and Conventional Wastewater Treatment Processes.

    Science.gov (United States)

    Schmitz, Bradley W; Kitajima, Masaaki; Campillo, Maria E; Gerba, Charles P; Pepper, Ian L

    2016-09-06

    The present study investigated wastewater treatment for the removal of 11 different virus types (pepper mild mottle virus; Aichi virus; genogroup I, II, and IV noroviruses; enterovirus; sapovirus; group-A rotavirus; adenovirus; and JC and BK polyomaviruses) by two wastewater treatment facilities utilizing advanced Bardenpho technology and compared the results with conventional treatment processes. To our knowledge, this is the first study comparing full-scale treatment processes that all received sewage influent from the same region. The incidence of viruses in wastewater was assessed with respect to absolute abundance, occurrence, and reduction in monthly samples collected throughout a 12 month period in southern Arizona. Samples were concentrated via an electronegative filter method and quantified using TaqMan-based quantitative polymerase chain reaction (qPCR). Results suggest that Plant D, utilizing an advanced Bardenpho process as secondary treatment, effectively reduced pathogenic viruses better than facilities using conventional processes. However, the absence of cell-culture assays did not allow an accurate assessment of infective viruses. On the basis of these data, the Aichi virus is suggested as a conservative viral marker for adequate wastewater treatment, as it most often showed the best correlation coefficients to viral pathogens, was always detected at higher concentrations, and may overestimate the potential virus risk.

  11. Incentives in the water chain: wastewater treatment and reuse in developing countries

    NARCIS (Netherlands)

    Gengenbach, M.F.

    2010-01-01

    The proper management of wastewater and its reuse is crucial in order to reduce hazards and maintain a variety of benefits. The merits of improvements in wastewater management are particularly high where effective wastewater treatment is not in place and completely untreated wastewater is reused.

  12. Disinfection of Water and Wastewater Using Gamma Irradiation in Isfahan Water and Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Hassan Hashemi

    2011-01-01

    Full Text Available To investigate the effect of gamma irradiation on the disinfection of water and wastewater, water samples were collected from raw and filtered water and wastewater samples were taken from the effluent of the secondary sedimentation, polished effluent (1-day retention time, and also from filtered (rapid sand filter effluent. The samples were irradiated with gamma collimated beam in a batch system using a Co-60 therapeutic gamma radiation machine with a radioactive source emission rate of 405.38CGy/min at different doses of 20-160 Gy and 80-240 Gy, respectively. The samples were analyzed before and after irradiation for total and fecal coliforms. It was observed that nearly 100% reduction was achieved in total and fecal coliforms in water samples treated with a dose of 160 Gy. Depending on effluent quality, disinfection efficiencies achieved using 240 Gy gamma irradiation for inactivation of total coliforms in wastewater samples were 83, 64, and 56 percent for filtered, clarified, and secondary effluents, respectively. The same values were nearly 81, 58, and 46 percent, respectively, for inactivation of fecal coliforms. At lower doses of 120-240Gy, the coliform bacteria were successfully inactivated. It was concluded that a linear correlation holds between the dose delivered and the inactivation of microorganisms, so that inactivation increases with increasing irradiation time.

  13. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  14. Treatment Plans for Antiproton Beams

    DEFF Research Database (Denmark)

    Holzscheiter, Michael; Bassler, Niels; Herrmann, Rochus

    from these measurements were used to benchmark the FLUKA Monte Carlo code, which then has been used for calculations of physical dose inside and outside of the primary antiproton beam. From clonogenic survival studies on the different cell lines mentioned above we have determined biological effective...

  15. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    Science.gov (United States)

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  16. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    Science.gov (United States)

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  17. Evaluation of sequencing batch reactor performance for petrochemical wastewater treatment

    Directory of Open Access Journals (Sweden)

    Mina Salari

    2017-09-01

    Full Text Available Sequencing batch reactor (SBR technology has found many applications in industrial wastewater treatment in recent years. The aim of this study was to determine the optimal time for a cycle of the sequencing batch reactor (SBR and evaluate the performance of a SBR for petrochemical wastewater treatment in that cycle time. The reactor was operated with a suspended biomass configuration under aerobic conditions. Carbon removal and operating parameters such as pH, temperature and dissolved oxygen (DO were monitored during the wastewater treatment. The SBR was run at different cycle times and amongst the cycle times tested, the best performance was obtained with a 7 h cycle time composed of a fill time of 15min, reaction of 6 h, settling of 30 min, and withdrawal of 15 min. The SBR with the determined cycle time was used to study the treatment of wastewater with various organic loading rates (12.88 gr COD/L.d, 18.02 gr COD/L.d and 31.39 gr COD/L.d. The SBR performance was evaluated by chemical oxygen demand (COD, total solids (TS total suspended solids (TSS removal efficiencies. During the shock loading tests, the maximum COD, TS and TSS removal efficiencies were 84%, 67% and 92%, respectively.

  18. Sludge Reduction by Lumbriculus Variegatus in Ahvaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Tim Hendrickx

    2012-08-01

    Full Text Available Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensivehealth hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm.The effects of changes in dissolved oxygen (DO concentration up to 3 mg/L (run 1 and up to 6 mg/L (run 2 were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. Theaverage sludge reductions were obtained as 33% (run 2 and 32% (run 1 in worm reactor,and 16% (run 1 and 12% (run 2 in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blankconditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  19. Assessment of dairy wastewater treatment and its potential for ...

    African Journals Online (AJOL)

    The extent of pollution of dairy wastewater treated in a septic tank and its potential for biogas production was investigated. Performance of the existing treatment system was assessed through characterization of both raw and treated effluents. From the analysis parameters likeChemical Oxygen Demand (COD), Biochemical ...

  20. Treatment of dairy wastewater in UASB reactors inoculated with ...

    African Journals Online (AJOL)

    This work assesses the possibility of using flocculent sludge in UASB reactors applied to the treatment of dairy wastewater and studies the effect of hydraulic retention time (6, 8, 12 and 16 h) on the performance of the reactors. The results show that the performance of flocculent sludge is similar to what has been reported in ...

  1. The impact of inadequate wastewater treatment on the receiving ...

    African Journals Online (AJOL)

    The impact of inadequate wastewater treatment on the receiving water bodies – Case study: Buffalo City and Nkokonbe Municipalities of the Eastern Cape ... into their respective receiving water bodies (Tembisa Dam, the Nahoon and Eastern Beach which are part of the Indian Ocean; the Tyume River and the Kat River).

  2. A performance indicators system for urban wastewater treatment plants.

    Science.gov (United States)

    Quadros, Sílvia; João Rosa, Maria; Alegre, Helena; Silva, Catarina

    2010-01-01

    A performance assessment system (PAS) is an important instrument to provide a cost-effective and sustainable management of wastewater treatment plants (WWTPs). Despite the fact that many PASs have been developed in recent years, important aspects of WWTP evaluation have not yet been considered. This paper presents the framework and the overall performance indicators of a PAS developed for urban WWTPs.

  3. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  4. The impact of inadequate wastewater treatment on the receiving ...

    African Journals Online (AJOL)

    7950 = Water SA (on-line). 687. The impact of inadequate wastewater treatment on the receiving water bodies – Case study: Buffalo City and. Nkokonbe Municipalities of the Eastern Cape Province. MNB Momba1*, AN Osode2 and M Sibewu1.

  5. Foraging at wastewater treatment works increases the potential for ...

    African Journals Online (AJOL)

    Wastewater treatment works (WWTWs) are known to provide profitable foraging areas for insectivorous bats in Europe and the New World because of their association with high abundance of pollution-tolerant midges (Diptera). However, bats that feed on these insects may also accumulate metal pollutants such as cadmium ...

  6. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...... for the systematic analysis and development of plantwide design of WWTPs using mathematical optimization and statistical methods such as sensitivity and uncertainty analyses....

  7. Domestic wastewater treatment with a vertical completely drained ...

    African Journals Online (AJOL)

    STORAGESEVER

    2007-11-07

    Nov 7, 2007 ... A pilot scale constructed wetland planted with Amaranthus hybridus was developed for domestic wastewater treatment. The reactor system was composed of rectangular beds realized in cement. Each bed was filled from the bottom to the top with 0.1 m of gravel (15/25 mm) and 0.30 m of a white sand.

  8. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the

  9. Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications

    NARCIS (Netherlands)

    Jeison, D.A.

    2007-01-01

    Biomass retention is a necessary feature for the successful application of anaerobic digestion for wastewater treatment. Biofilms and granule formation are the traditional way to achieve such retention, enabling reactor operation at high biomass concentrations, and therefore at high organic loading

  10. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    The use of fungal biomass as a lipase biocatalyst represents an attractive approach for the treatments of oil wastewater as well as for the production of biodiesel from oil and residual ... In this work, 20 filamentous fungi were isolated from the grease trap scum of a restaurant at the Federal University of Espírito Santo, Brazil.

  11. Treatment of grain distillation wastewaters in an upflow anaerobic ...

    African Journals Online (AJOL)

    In operation of the full-scale upflow anaerobic sludge bed (UASB) system at the Stellenbosch Farmers' Winery (SFW) Wellington distillery, a problem encountered in the treatment of grain distillation wastewater was the accumulation of a floating scum layer. On occasion this was so severe that it forced shutdown of the UASB ...

  12. Behavior of natural radionuclides in wastewater treatment plants

    International Nuclear Information System (INIS)

    Camacho, A.; Montaña, M.; Vallés, I.; Devesa, R.; Céspedes-Sánchez, R.; Serrano, I.; Blázquez, S.; Barjola, V.

    2012-01-01

    56 samples, including influent, primary effluent, secondary effluent and final effluent wastewater from two Spanish municipal wastewater treatment plants (WWTPs), were analyzed to assess both the occurrence and behavior of natural radioactivity during 12 sampling campaigns carried out over the period 2007–2010. Influent and final effluent wastewaters were sampled by taking into account the hydraulic residence time within the WWTP. A wide range of gross alpha activities (15–129 mBq/L) and gross beta activities (477–983 mBq/L) in liquid samples were obtained. A correlation analysis between radioactivity in liquid samples and the performance characteristics of the WWTPs was performed. The results in liquid samples showed that gross beta activities were not influenced by treatment in the studied WWTPs. However, gross alpha activities behave differently and an increase was detected in the effluent values compared with influent wastewater. This behavior was due to the increase in the total dissolved uranium produced during secondary treatment. The results indicate that the radiological characteristics of the effluents do not present a significant radiological risk and make them suitable for future applications. - Highlights: ► Liquids from WWTPs were analyzed to know the behavior of natural radionuclides. ► Gross beta activities were not influenced by treatment in the studied WWTPs. ► Increase in gross alpha activity was observed due to uranium desorption/solubilisation. ► Correlation between gross alpha activity and the chemical oxygen demand was found

  13. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-05-04

    May 4, 2016 ... The use of fungal biomass as a lipase biocatalyst represents an attractive approach for the treatments of oil wastewater as well as for the production of biodiesel from oil and residual grease, due to its greater stability, possibility of reuse, and lower cost. In this work, 20 filamentous fungi were isolated.

  14. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the impact of effluent and sludge discharges of an abattoir wastewater treatment plant (WWTP) on the operation of a municipal aerated pond WWTP. Experiments were carried out in Cervera WWTP, located in northeastern Spain, which comprises four ponds operating in series.

  15. Public and Private Management of Wastewater Treatment: A Comparative Study.

    Science.gov (United States)

    O'Toole, Laurence J., Jr.

    1991-01-01

    The costs and performance of contract management of municipal wastewater treatment facilities are considered, using information from a nationwide empirical examination of evidence from individual plants, municipalities, and regulatory agencies. The broad issues arising in the evaluation are outlined as the specifics are discussed. (SLD)

  16. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    Instream water quality management encompasses field monitoring and utilisation of mathematical models. These models can be coupled with optimisation techniques to determine more efficient water quality management alternatives. Among these activities, wastewater treatment plays a crucial role. In this work, a ...

  17. Optimal design of wastewater treatment plant using adaptive ...

    African Journals Online (AJOL)

    From this work, it has been found that artificial intelligence based optimization techniques such as adaptive simulated annealing is found to be suitable for the optimal design of wastewater treatment plant. Journal of Applied Sciences and Environmental Management Vol. 9(1) 2005: 107-113. AJOL African Journals Online.

  18. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    user

    Full Length Research Paper. Modeling Jambo wastewater treatment system to predict water re-use options. Kyeyune Simonpeter and Mulamba Peter*. Department of Agricultural and Bio-Systems Engineering, Makerere University, P.O. Box 7062, Kampala, Uganda. Received 22 August, 2012; Accepted 29 December, 2014.

  19. efficiency of wastewater treatment by a mixture of sludge

    African Journals Online (AJOL)

    H. Khaldi

    2017-09-01

    Sep 1, 2017 ... Microalgae used in this study are from the High Rate Algae Pond (HRAP) which is part of. Integrated algae pond system (IAPS) for wastewater treatment constructed at the Rhodes. University Environmental Biotechnology Experimental Field Station, Grahamstown, reveals a diversity of micro flora and fauna ...

  20. Surface adsorption technique for the treatment of textile wastewaters ...

    African Journals Online (AJOL)

    Reductions in color and pH variation of the effluent were monitored through absorbance and pH measurements throughout the process. Concentration levels of Ni2+ in the wastewater ranged ... for treated samples to be employed for domestic purposes. Key Words: Effluents Treatment, Nickel, Chromium, Surface adsorption ...

  1. Efficiency of wastewater treatment by a mixture of sludge and ...

    African Journals Online (AJOL)

    A combined system using the microalgae from South Africa and the sewage sludge from Algeria has been tested, in order to study the efficiency of wastewater treatment by mixtures of microalgae / activated sludge, five bioreactors were installed with different inoculation rates (microalgae / activated sludge) B1: 100% algae, ...

  2. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    Science.gov (United States)

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  3. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  4. Current status of radiation treatment of water and wastewater

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1997-01-01

    This is a brief review of the current status of radiation treatment of surface water, groundwater, wastewaters, and sewage sludges. Sources of ionizing radiation, and combination radiation methods for purification are described in some detail. Special attention is paid to pilot and industrial facilities. (author)

  5. Treatment and valorization of olive mill wastewaters

    Directory of Open Access Journals (Sweden)

    Nabila Slimani Alaoui

    2016-04-01

    Full Text Available This study aims to evaluate the effectiveness of the physicochemical process with lime and ferric chloride in removing the pollution generated by the olive mill wastewaters (OMW .The characterization of the samples has shown that they are acidic, with a black color and a strong organic load due to the presence of phenolic compounds. The combination of the lime and the ferric chloride allows the removal of 87% of the total suspended solid (TSs, 58% of chemical oxygen demand (COD and 75% of Phenolic compounds. After purification the treated OMW were valorised as wash water or used for irrigation of green spaces and the generated sludge were dried and used to combustion. 

  6. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant.

    Science.gov (United States)

    Ma, Ke; Qin, Zhe; Zhao, Zhongqing; Zhao, Chunxia; Liang, Shuxuan

    2016-09-01

    The toxicity of water-receiving bodies, the effluent and other treatment stages in wastewater treatment plants has recently been of interest to the public due to the lack of a regulated toxicity-based index for wastewater discharge in China. This study aimed to evaluate the conventional pollution parameters and toxicities of wastewaters collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant through dehydrogenase activity (DHA) and bioluminescent bacteria (Vibrio qinghaiensis) tests. The results of an analysis of conventional parameters indicated that the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3N), and total phosphorus (TP) were largely removed after various treatments. However, the TN, NH3N and COD still exceeded the regulated standards. The tested pharmaceutical park effluents were mainly polluted with organic pollutants and nitrogenous. The toxicity test results indicated that the toxicities could be markedly reduced after treatment, with the toxicities of two out of the six effluent samples at different treatment stages being greater than the influent toxicity. Spearman's rank correlation coefficients indicated a significantly positive correlation between the toxicity values obtained using the DHA and Vibrio qinghaiensis tests. Compared with the DHA measurement, the Vibrio qinghaiensis test was faster and more sensitive. Meanwhile, the toxicity indicators were significantly and positively correlated with the TSS, TN, TP and COD concentrations. These results may aid the understanding of the toxicity of pharmaceutical industrial park wastewaters and toxicity removal using the treatment techniques that are currently utilized in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Rita [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal)], E-mail: ritamelo@itn.pt; Cabo Verde, Sandra [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal); Branco, Joaquim [Departamento de Quimica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal); Botelho, M. Luisa [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal)

    2008-01-15

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h{sup -1}. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  8. Application of the SCADA system in wastewater treatment plants.

    Science.gov (United States)

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  9. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  10. Treatment of radioactive wastewater using direct contact membrane distillation.

    Science.gov (United States)

    Liu, Haiyang; Wang, Jianlong

    2013-10-15

    Direct contact membrane distillation (DCMD) was used to treat low level radioactive wastewater (LLRW). The dusty gas model (DGM) was used to analyze the mass transfer mechanism and calculate the permeate flux. The operating parameters such as feed temperature, feed velocity and feed concentration were studied. The experimental results showed that DCMD process can separate almost all Cs(+), Sr(2+) and Co(2+) from wastewater. The permeate flux decreased linearly when NaNO3 concentration increased from 1.0 to 200 g/L. The permeate flux remained about 60% of its initial flux even when NaNO3 concentration in feed solution was as high as 200 g/L. The dusty gas model can be successfully applied to estimate the mass transfer, and the experimental permeate flux values fitted well with that calculated by DGM. DCMD is a promising separation process for low level radioactive wastewater treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... control or removal of pollutants in wastewater introduced into the treatment works by industrial users...

  12. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  13. Future wastewater solutions: removal of pharmaceuticals in conventional wastewater treatment plants

    DEFF Research Database (Denmark)

    Jensen, Thomas

    with regards to discharge of pharmaceuticals in wastewater effluents. Nonetheless, the challenge of the growing number of ambulant treatments and increasing consumption of pharmaceuticals at home has not been addressed so far. Already now more than 95% of pharmaceutical consumption happens at home. Moreover......Residues of pharmaceuticals, personal care products and industrial chemicals find their way into the environment mainly through incomplete removal in the conventional urban wastewater treatment plants (WWTPs) and appear as micro-pollutants at pg L-1 to μg L-1 concentrations. WWTPs were designed...... an innovation project have been setup to test and analyses for micro-pollutants within two WWTP. Fors A/S provides effluent samples from their two biggest WWTPs, while Aarhus University performs the analyses of micro-pollutants in the effluents by means of advanced analytical techniques. The analyses target...

  14. Energy Data Management Manual for the Wastewater Treatment Sector

    Energy Technology Data Exchange (ETDEWEB)

    Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States); De Fontaine, Andre [Dept. of Energy (DOE), Washington DC (United States)

    2017-12-01

    Energy efficiency has become a higher priority within the wastewater treatment sector, with facility operators and state and local governments ramping up efforts to reduce energy costs and improve environmental performance. Across the country, municipal wastewater treatment plants are estimated to consume more than 30 terawatt hours per year of electricity, which equates to about $2 billion in annual electric costs. Electricity alone can constitute 25% to 40% of a wastewater treatment plant’s annual operating budget and make up a significant portion of a given municipality’s total energy bill. These energy needs are expected to grow over time, driven by population growth and increasingly stringent water quality requirements. The purpose of this document is to describe the benefits of energy data management, explain how it can help drive savings when linked to a strong energy management program, and provide clear, step-by-step guidance to wastewater treatment plants on how to appropriately track energy performance. It covers the basics of energy data management and related concepts and describes different options for key steps, recognizing that a single approach may not work for all agencies. Wherever possible, the document calls out simpler, less time-intensive approaches to help smaller plants with more limited resources measure and track energy performance. Reviews of key, publicly available energy-tracking tools are provided to help organizations select a tool that makes the most sense for them. Finally, this document describes additional steps wastewater treatment plant operators can take to build on their energy data management systems and further accelerate energy savings.

  15. Electrochemical and/or microbiological treatment of pyrolysis wastewater.

    Science.gov (United States)

    Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L

    2017-10-01

    Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    Science.gov (United States)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  17. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    Science.gov (United States)

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  18. Wastewater treatment in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Casu, Stefania; Crispino, Nedda A; Farina, Roberto; Mattioli, Davide; Ferraris, Marco; Spagni, Alessandro

    2012-01-01

    Although most membrane bioreactors are used under aerobic conditions, over the last few years there has been increased interest in their application for anaerobic processes. This paper presents the results obtained when a bench-scale submerged anaerobic membrane bioreactor was used for the treatment of wastewaters generated in the agro-food industry. The reactor was fed with synthetic wastewater consisting of cheese whey and sucrose, and volumetric organic loading rates (OLRs) ranging from 1.5 to 13 kgCOD/(m(3)*d) were applied. Under the operating conditions studied, the maximum applicable OLR was between 6 and 10 gCOD/(g*L), which fell within the ranges of the high-rate anaerobic wastewater treatment systems, while high concentrations of volatile fatty acids were produced at higher OLR rates. With an OLR of 1.5-10 gCOD/(g*L), the reactor showed 94% COD removal, whereas this value dropped to 33% with the highest applied OLR of 13 gCOD/(g*L). The study therefore confirms that membrane bioreactors can be used for anaerobic wastewater treatment.

  19. Application of Fe-based metallic glasses in wastewater treatment

    International Nuclear Information System (INIS)

    Lin Bao; Bian Xiufang; Wang Pan; Luo Guanping

    2012-01-01

    Highlights: ► We found the Fe-based metallic glasses have potential application in wastewater treatment. ► The corrosion on the surface of Fe-based metallic glasses is related to the application. ► We set a new theory to explain the process of degredation organic metters with Fe-based metallic glasses. - Abstract: This work pioneered the use of the Fe 78 Si 9 B 13 metallic glass ribbons in wastewater treatment. Fe 78 Si 9 B 13 metallic glass was employed to remediate wastewater contaminated with a mixture of organic dyes. The removal rate of chemical oxygen demand (COD) with Fe 78 Si 9 B 13 metallic glass and metallic Fe 0 was up to 23 ± 0.93% in 30 min and 21 ± 0.67% with in 45 min, respectively. The dosage of Fe-based metallic glass was only 1/25 of that of metallic Fe 0 to obtain equivalent effects. The mechanism of wastewater treatment through Fe-based metallic glasses is discussed.

  20. Treatment of Wastewater by Ozone Produced in Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Rita Bhatta

    2015-01-01

    Full Text Available There is rapid diminishing of water resources in many countries due to, for example, population growth and constant reduction in fresh water supply. The sewage wastewater, industrial effluents, and municipal wastewater are directly and indiscriminately discharged into rivers and lakes and thus primarily cause water pollution in Nepal. This has increased the water crisis and also causes environmental deterioration. Therefore, the need for the development of an effective, cheap, and environmentally friendly process for the treatment of wastewater before discharging into aquatic environment has emerged. Treatment by ozone produced from dielectric barrier discharge is one of the emerging technologies for such application. The ozonation process is more effective for disinfection and degradation of organic pollutants from water. The current study describes the treatment of wastewater of selected site within Kathmandu. Results on various physicochemical and microbial parameters of the inlet and outlet samples are discussed. Our results showed slight increase in pH, decrease in chemical oxygen demand, and significant increase in dissolved oxygen after ozonation. Importantly, ozonation caused total reduction of fecal coliform.

  1. Analysis of the aerotanks efficiency in wastewater treatment system

    Directory of Open Access Journals (Sweden)

    Z. R. Shamsutdinova

    2016-01-01

    Full Text Available Тhe problem of wastewater treatment is discussed and the ways of its solution are offered in the given work. We consider the biological method based on the biochemical and physiological laws of self-purification of rivers and other bodies of water. The biological method is promising in wastewater treatment system due to its destructive, because as a result of a partial or complete destruction of the contaminants in the waste water. The intensity and effectiveness of this treatment are investigated in the article. The efficiency of wastewater treatment depends on the degree of maintaining the bacteria in state of physiological activity. For this application cases are compared processes with one, two or more stepwise of purification with differentiated water and sludge movement also structural units for biological purification schemes and the processes that accompany different types of purification. We analyze efficiency in aeration tanks with minimum and maximum regeneration zone. We found that the biological treatment with the maximum regeneration zone is more effective for chemical oxygen demand and oxidation rate higher than mode with the minimum regeneration zone. To solve the problem of efficient wastewater treatment is offered technological scheme of arrangement of aeration with variation of the angle of mixing activated sludge flows from the waste water. This flowsheet complete biological treatment is a complex of sewage treatment plants, which are located in such a way that the liquid waste passing them one after the other, is subject to mechanical, biological treatment and disinfection before lowering it into the reservoir.

  2. Wastewater Sludge Stabilization Using Lime A Case Study of West Ahwaz Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mehdi Farzadkia

    2009-01-01

    Full Text Available Lime stabilization is a chemical method used for wastewater sludge stabilization. It is capable of decreasing large quantities of pathogens and of preventing microbial degradation of sludge organic materials. The main objective of the present experimental research was to investigate stabilization of the sludge from west Ahwaz wastewater treatment plant by lime addition and to control if the microbial quality of this sludge conforms to the USEPA standards for sludge reuse and safe disposal. The study was carried out on a pilot scale in 5 stages over a period of 12 months (July 2005 to June 2006 at west Ahwaz wastewater treatment plant laboratory using raw sludge. For the purposes of this study, a 30-liter reactor was commissioned and loaded with sludge and appropriate quantities of hydrated lime were added based on the solid waste percent. The parameters used to determine stabilization efficiency were pH, Total Coliform, Fecal Coliform, and parasite eggs. The results showed that lime addition at a ratio of 265g Ca(OH2/kg. ds was the optimum level for sludge stabilization in westAhwazwastewater treatment plant, which is acceptable from both economic and technical viewpoints. The method is capable of achieving class B but never satisfied class A of USEPA standards.

  3. Positive examples of wastewater treatment effectiveness in ‘Natron-Hayat’ Maglaj factory

    OpenAIRE

    Bušatlić Ilhan; Botonjić Šefkija; Halilović Azra; Bušatlić Nadira; Karić Amna

    2017-01-01

    In the paper are described the basic characteristics of wastewaters in the cellulose and paper factory ‘Natron-Hayat’ Maglaj. Particular emphasis is placed on the description of the technological process of wastewater treatment at the ‘Natron-Hayat’ Maglaj factory which is represented in the paper by a technological scheme and represents one of the more complex systems for wastewater treatment. In the experimental part, the results of the efficiency of the wastewater treatment system at the ‘...

  4. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Fateme Barancheshme

    2018-01-01

    Full Text Available The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB and antibiotic resistant genes (ARGs in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs. It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1 study innovative strategies in large scale and over a long time to reach an actual evaluation, (2 develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3 consider operating and environmental factors that affect the

  5. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    OpenAIRE

    Lopez-Vazquez, CM; Kubare, M; Saroj, DP; Chikamba, C; Schwarz, J; Daims, H; Brdjanovic, D

    2013-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biologic...

  6. Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica

    NARCIS (Netherlands)

    Causanilles, A.; Ruepert, C.; Ibáñez, M.; Emke, E.; Hernández, F.; de Voogt, P.

    2017-01-01

    Chemical analysis of raw wastewater in order to assess the presence of biological markers entering a wastewater treatment plant can provide objective information about the health and lifestyle of the population connected to the sewer system. This work was performed in a tropical country of Central

  7. A critical review on textile wastewater treatments: Possible approaches.

    Science.gov (United States)

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The effects of physicochemical wastewater treatment operations on forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside TM FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO performance was evaluated in terms of the water flux, water flux decline and solute rejections of biochemical oxygen demand, and total and soluble phosphorus. The obtained results were compared with the results of FO after only mechanical pretreatment. The FO permeates satisfied the Swedish discharge demands for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment.

  9. Kinetic coefficients for the biological treatment of tannery wastewater

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Determination of kinetic coefficients for a particular wastewater is imperative for the rational design of biological treatment-facilities. The present study was undertaken with the objective of finding out kinetic coefficients for tannery wastewater. A bench-scale model of aerated lagoon, consisting of an aeration tank and final clarifier, was use to conduct the studies. The model was operated continuously for 96 days, by varying the detention times from 3 to 9 days. Influent for the aerated lagoon was settled tannery wastewater. Biochemical oxygen demand (BOD) of the influent and effluent and the mixed-liquor suspended solids (MLSS) of aeration tank were determined at various detention-times so as to generate data for kinetic coefficients. The kinetic coefficients k, Ks, Y and Ed were found to be 3.125 day/sup -1/, 488 mg/L, 0.64 and 0.035 day/sup -1/ respectively. Overall rate-constant of BOD, removal 'K' was also determined and was found to be 1.43 day/sup -1/. Kinetic coefficients were determined, at mean reactor-temperature of 30.2 degree C. These coefficients may be utilized for the design of biological-treatment facilities for tannery wastewater. (author)

  10. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg.

    Science.gov (United States)

    Ajonina, Caroline; Buzie, Christopher; Rubiandini, Rafi Herfini; Otterpohl, Ralf

    2015-01-01

    Microbial pathogens are among the major health problems associated with water and wastewater. Classical indicators of fecal contamination include total coliforms, Escherichia coli, and Clostridium perfringens. These fecal indicators were monitored in order to obtain information regarding their evolution during wastewater treatment processes. Helminth eggs survive for a long duration in the environment and have a high potential for waterborne transmission, making them reliable contaminant indicators. A large quantity of helminth eggs was detected in the wastewater samples using the Bailanger method. Eggs were found in the influent and effluent with average concentration ranging from 11 to 50 eggs/L. Both E. coli and total coliforms concentrations were significantly 1- to 3-fold higher in influent than in effluent. The average concentrations of E. coli ranged from 2.5×10(3) to 4.4×10(5) colony-forming units (CFU)/100 ml. Concentrations of total coliforms ranged from 3.6×10(3) to 7.9×10(5) CFU/100 ml. Clostridium perfringens was also detected in influent and effluent of wastewater treatment plants (WWTP) at average concentrations ranging from 5.4×10(2) to 9.1×10(2) most probable number (MPN)/100 ml. Significant Spearman rank correlations were found between helminth eggs and microbial indicators (total coliform, E. coli, and C. perfringens) in the WWTP. There is therefore need for additional microbial pathogen monitoring in the WWTP to minimize public health risk.

  11. Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay.

    Science.gov (United States)

    Filho, Jorge Luiz da Paixão; Tonetti, Adriano Luiz; Guimarães, Martha Tavanielli; Silva, Dailto

    2017-04-01

    For the 2014 World Cup and the 2016 Olympic Games, Brazil has expanded its airport infrastructure. This will lead to an increase in wastewater generation from aircrafts. This wastewater is traditionally taken from the aircrafts and disposed in the public sewage collection system. However, this residual water may have a different composition than the usual sanitary sewage. Therefore, it is important to study an alternative to treat this kind of wastewater. Thus, the objective of this study was to characterize and analyze the treatment of wastewater from airplane toilets through chemical precipitation for the removal of ammonia in the form of struvite. The airplanes' effluent showed a composition similar to human urine with pH 8.9, ammonia nitrogen 4,215 mg L -1 , phosphorus 430 mg L -1 and a very high acute toxicity (Vibrio fischeri). The best treatment for struvite formation was with pH 9.0 and molar ratio Mg:NH 4 :PO 4 equal to 1.5:1.0:1.0. In this case, the removal of ammonia and phosphorus achieved 97.0% and 95.3%, respectively. After this procedure, the toxicity by Vibrio fischeri decreased.

  12. Post treatment of antibiotic wastewater by adsorption on activated carbon

    Science.gov (United States)

    Mullai, P.; Rajesh, V.

    2018-02-01

    The most common method of treating industrial wastewater involves biomethanation in anaerobic digesters. This biological treatment process is ineffective in color removal and it requires post-treatment methods. The color is the first contaminant in wastewater which affects the water bodies in several ways. As the anaerobically digested antibiotic wastewater was found with color, an attempt was made to remove color using granulated activated carbon as an adsorbent. Experiments were carried out in batch reactors to find out the color removal efficiency of the wastewater at four different dosages such as 25, 50, 75 and 100 mg of adsorbent material at each of the four different initial concentrations of effluent like 1956, 1450, 1251 and 1040 mg COD/L. The steady state values of color removal efficiencies were 96.6, 97.64, 98.64 and 99.63%, respectively, using 100 mg of activated carbon under shaking condition at the end of the 120th min. The effect of contact time on the percentage of color removal was also studied. It was observed that the adsorption of effluent obtained equilibrium at 120 minutes. The equilibrium data fitted well with the Langmuir and Freundlich isotherms.

  13. Toxicological assessment of hospital wastewater in different treatment processes.

    Science.gov (United States)

    Hamjinda, Nutta Sangnarin; Chiemchaisri, Wilai; Watanabe, Toru; Honda, Ryo; Chiemchaisri, Chart

    2018-03-01

    This study surveyed the hospital wastewater characters focusing on antibiotic contamination in seven hospitals in Bangkok. It detected 19 antibiotics of which the high-frequent detection were quinolones such as ofloxacin + levofloxacin, norfloxacin, ciprofloxacin including sulfamethoxazole. Norfloxacin and ciprofloxacin appeared the highest concentrations of 12.11 and 9.60 μg/L, respectively. Most antibiotic concentrations in the wastewaters of the studied hospitals gave a good correlation (r 2  = 0.77-0.99) to the amount of usage. In this study, batch acute toxicity tests were performed to assess the toxicity of hospital wastewater on mixed liquor, freshwater algae (Chlorella vulgaris and Scenedesmus quadricauda), and microcrustacean (Moina macrocopa). The hospital wastewaters could inhibit the mixed liquor growth and gave similar toxic levels among test species: algae and microcrustacean (9.81-13.63 and 2.62-3.09 TU, respectively). The conventional activated sludge (CAS) and rotating biological contactor (RBC) could remove fluoroquinolones and tetracycline via biomass adsorption. After treatment, most of treatment could reduce the toxicity. Nevertheless, the effluent gave slight toxicity on some test species which might be caused from chlorination and a common toxicant (NH 3 -N).

  14. Application of Ionizing Radiation on the Cork Wastewater Treatment

    International Nuclear Information System (INIS)

    Melo, R.; Madureira, J.; Verde, S. Cabo; Nunes, I.; Santos, P.M.P.; Silva, T.; Leal, J.P.; Botelho, M.L.

    2012-01-01

    In the framework of the CRP on “Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants” Portuguese team is been developed studies on the implementation of ionizing radiation technology as a complementary treatment for industrial effluents and increase the added value of these wastewaters. Based on these assumptions, preliminary studies of the gamma radiation effects on the antioxidant compounds present in cork cooking water were carried out. Radiation studies were performed by using radiation between 20 and 50 kGy at 0.4 kGy/h and 2.4 kGy/h. The radiation effects on organic matter content were evaluated by Chemical Oxygen Demand (COD). The antioxidant activity was measured by Ferric Reducing Power (FRAP) assay. The total phenolic content was studied by Folin-Ciocalteau method. Results point out that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. By the other hand, the radiolytic degradation by ionizing radiation of gallic acid and esculetin as models for recalcitrants were studied. The objective of this study was to find out if radiolytic degradation, followed by microbial degradation could increase the treatment efficiency. A natural cork wastewater bacterium was selected from the irradiated wastewater at 9 kGy. The applied methodology was based on the evaluation of growth kinetics of the selected bacteria by turbidimetry and colony forming units, in minimal salt medium with non-irradiated and irradiated phenolic as substrate. The overall obtained results highlights the potential of this technology for increase the add value of cork waters and raised some issues to explain by new methodological setup on biodegradation studies. (author)

  15. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  16. Treatment Planning for Ion Beam Therapy

    Science.gov (United States)

    Jäkel, Oliver

    The special aspects of treatment planning for ion beams are outlined in this chapter, starting with positioning and immobilization of the patient, describing imaging and segmentation, definition of treatment parameters, dose calculation and optimization, and, finally, plan assessment, verification, and quality assurance.

  17. Treatment optimisation using external beam radiation in ...

    African Journals Online (AJOL)

    The majority of patients with gynaecological cancers present with advanced stages in which external beam radiation forms a major component of the treatment. These patients undergo simulation for treatment planning prior to radiation. Currently the lower extent of the disease is evaluated by vaginal examination and ...

  18. New framework for standardized notation in wastewater treatment modelling

    DEFF Research Database (Denmark)

    Corominas, L.; Rieger, L.; Takacs, I.

    2010-01-01

    Many unit process models are available in the field of wastewater treatment. All of these models use their own notation, causing problems for documentation, implementation and connection of different models (using different sets of state variables). The main goal of this paper is to propose a new...... is a framework that can be used in whole plant modelling, which consists of different fields such as activated sludge, anaerobic digestion, sidestream treatment, membrane bioreactors, metabolic approaches, fate of micropollutants and biofilm processes. The main objective of this consensus building paper...... is to establish a consistent set of rules that can be applied to existing and most importantly, future models. Applying the proposed notation should make it easier for everyone active in the wastewater treatment field to read, write and review documents describing modelling projects....

  19. Wastewater Treatment Optimization for Fish Migration Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2014-01-01

    Full Text Available Certain types of fish migrate between the sea and fresh water to spawn. In order for them to swim without any breathing problem, river should contain enough oxygen. If fish is passing along the river in municipal area, it needs sufficient dissolved oxygen level which is influenced by dumped amount of wastewater into the river. If existing treatment methods such as settling and biological oxidation are not enough, we have to consider additional treatment methods such as microscreening filtration and nitrification. This study constructed a wastewater treatment optimization model for migratory fish, which considers three costs (filtration cost, nitrification cost, and irrigation cost and two environmental constraints (minimal dissolved oxygen level and maximal nitrate-nitrogen concentration. Results show that the metaheuristic technique such as harmony search could find good solutions robustly while calculus-based technique such as generalized reduced gradient method was trapped in local optima or even divergent.

  20. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    Directory of Open Access Journals (Sweden)

    John R. White

    2006-01-01

    Full Text Available Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the soil. We review relevant laboratory research on these various mechanisms and provide data on the few studies that have examined wetland removal. There is a need to document the degree to which various pharmaceutical compounds are removed in full-scale treatment wetlands, as there is a paucity of data on overall pharmaceutical removal rates.

  1. Large area radiation source for water and wastewater treatment

    Science.gov (United States)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  2. Anaerobic methanogenic treatment of phenolic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Fedorak, P.M.; Hrudey, S.E.

    1982-09-01

    Batch culture experiments using domestic anaerobic sewage sludge were carried out with a variety of aromatic compounds to determine whether methanogenic fermentations of these substrates could be established. Of the 11 phenolics tested, only phenol and p-cresol were fermented to methane. The acclimation time for the degradation of these two substrates increased as their concentrations increased. In batch cultures, phenol or p-cresol were not degraded when their concentrations were greater than 500 and 400 mg/l respectively, although at higher concentrations, the methanogenic fermentations of non-phenolic substrates were not inhibited. Thus the phenolic-degrading bacteria are more susceptible to inhibition by the toxic substrates than are the methane bacteria. Four dimethylphenol isomers inhibited methane fermentation at 500 but not at 300 mg/l. Maximum degradation rates for phenol and p-cresol were found to be 42 and 52 mg/l/d respectively. Draw-and-feed cultures were established on these substrates, and the phenol-degrading culture showed a substrate removal efficiency of over 99.8%. The reactor, operated with a hydraulic retention time of 25 d and a solids retention time approaching infinity, received a nutrient solution containing 500 mg/l phenol. Preliminary batch cultures inoculated with oil sands tailings pond sludge indicate that microorganisms may exist therein, which are capable of anaerobically degrading o- and m-cresol, 2,5- and 3,5-dimethylphenol, and 3,4-dihydroxytoluene. Overall, these findings indicate that the anaerobic methanogenic degradation of phenolic wastewaters is biochemically feasible. 110 refs., 18 figs., 11 tabs.

  3. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  4. Winery and distillery wastewater treatment by anaerobic digestion.

    Science.gov (United States)

    Moletta, R

    2005-01-01

    Anaerobic digestion is widely used for wastewater treatment, especially in the food industries. Generally after the anaerobic treatment there is an aerobic post-treatment in order to return the treated water to nature. Several technologies are applied for winery wastewater treatment. They are using free cells or flocs (anaerobic contact digesters, anaerobic sequencing batch reactors and anaerobic lagoons), anaerobic granules (Upflow Anaerobic Sludge Blanket--UASB), or biofilms on fixed support (anaerobic filter) or on mobile support as with the fluidised bed. Some technologies include two strategies, e.g. a sludge bed with anaerobic filter as in the hybrid digester. With winery wastewaters (as for vinasses from distilleries) the removal yield for anaerobic digestion is very high, up to 90-95% COD removal. The organic loads are between 5 and 15 kgCOD/m3 of digester/day. The biogas production is between 400 and 600 L per kg COD removed with 60 to 70% methane content. For anaerobic and aerobic post-treatment of vinasses in the Cognac region, REVICO company has 99.7% COD removal and the cost is 0.52 Euro/m3 of vinasses.

  5. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  6. Removal of Selected Endocrine Disrupting Chemicals During On-Site Wastewater Treatment Using A Constructed Wetland

    Science.gov (United States)

    Significant research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants. These plants have been show...

  7. Energy and nutrient recovery for munipal wastewater treatment : how to design a feasible plant layout?

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2016-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for

  8. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    Science.gov (United States)

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  9. Evaluation of on-site wastewater treatment systems

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a program designed to conduct a third-party group evaluation of wastewater denitrification technologies appropriate for low-flow systems, partially funded by a grant from the Pennsylvania Department of Environmental Protection (PADEP). The objective of this program is to verify the performance of products that provide nutrient reduction in wastewater from a variety of sources, including domestic wastewater, agricultural runoff, or other waste streams. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the potential energy savings of using nutrient reducing technologies scaled to treat low flows - larger than an individual septic tank but smaller than that of a conventional wastewater treatment plant - will be assessed. The energy savings realized by reduced construction and equipment transport costs alone could make low-flow nutrient reduction technologies viable options for rural communities, small farms, and other low-flow settings. The evaluation is being funded in part by PADEP, which is sponsoring this evaluation due to its interest in developing low-cost wastewater treatment technologies for Pennsylvania's rural communities. However, the evaluation is national in scope, and participants will come from all areas of the country. The presentation will include a description of the process for establishing the testing protocol, testing results from various nutrient reducing technologies, and obstacles encountered and lessons learned during the process. (author)

  10. Nitrification in Water and Wastewater Treatment

    Science.gov (United States)

    This chapter discusses available information on the occurrence of nitrification in water treatment plants and its potential impact on distribution system water quality. Nitrification as part of the water treatment process can occur whenever ammonia is present in or added to the s...

  11. Solid waste electron beam treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1998-01-01

    The possible applications of electron accelerators for solid waste treatment are discussed in the report. The elaborated technologies allow to recycle of materials (e.g. cellulosic materials in municipal waste), improve their hygienic standards (agricultural usage of sludge from municipal waste water treatment) and reduce harmful to environment chemical usage (cellulose degradation). These are environment friendly advanced technologies which meets demands waste recycling. (author)

  12. Wastewater Treatment of Stone Cutting Industries by Coagulation Process

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2013-09-01

    Full Text Available Background & Aims of the Study: The wastewater created as a result of stone cutting industries enters some pools for re-consumption so that its suspended solids settle by gravity. By taking to account the high volume of water and sludge, treatment of wastewater and removal of sludge cause many problems for stone cutting units. The objective of this study was to determine the quality of wastewater and to investigate the effects of coagulants on suspended solids removal efficiency from wastewater of some stone cutting industries (Qom, Iran. Materials & Methods: In this experimental study, the effects of different doses of coagulants including Alum, poly aluminum chloride, Polymer, Ferric chloride (Fecl3 and Lime on Turbidity, “total suspended solids” (TSS and “total solids” (TS removal were investigated by Jar Test. Removal efficiency of different coagulates was estimated. Results: The results indicated that lime in dose 100 PPM is the best coagulant for turbidity removal and the highest efficiency for TS removal is related to using Alum in dose 100 PPM. Conclusions: Considering the findings of this study, it can be concluded that using coagulants causes reduction in settling time and speeds up the return of water to the consumption cycle of stone cutting factories, and also increases turbidity removal efficiency.

  13. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  14. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Georg Neugebauer

    2015-09-01

    Full Text Available Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy can ideally be applied for heating in mixed-function areas, which very likely have a continuous heat demand and allow for an increased amount of full-load hours compared to most single-use areas. For the Austrian case, it is demonstrated that the proposed methodology leads to feasible results and that the suggested technology might reduce up to 17% of the Austrian global warming potential of room heating. The method is transferrable to other countries as the input data and calculation formula are made available. A broad application of wastewater energy with regard to spatial structures and spatial development potentials can lead to (1 increasing energy efficiency by using a maximum of waste heat and (2 a significant reduction of (fossil energy consumption which results in a considerable reduction of the global warming potential of the heat supply (GWP if electricity from renewables is used for the operation of heat pumps.

  15. Continuous Enzymatic Prehydrolysis Treatment of High-Fat Wastewater

    Directory of Open Access Journals (Sweden)

    Rodrigo Augusto Franco de Oliveira Zawadzki

    2013-01-01

    Full Text Available A lipolytic fermented solid was produced by solid-state fermentation of Rhizopus microsporus CPQBA 312-07 DRM on a mixture of sugarcane bagasse and sunflower seed meal and used, in a packed-bed bioreactor, to pretreat a high-fat wastewater from a meat and sausage processing factory located in São José dos Pinhais, State of Paraná, Brazil. With a hydraulic residence time of 24 h, this pretreatment not only reduced the wastewater’s oil and grease content by up to 96 %, but also increased its 5-day biochemical oxygen demand to chemical oxygen demand (BOD5/COD ratio. This ratio was only 0.19 in the raw wastewater, indicating poor biodegradability, but increased to 0.55 in the pretreated wastewater, indicating that it had a sufficiently high biodegradability to be sent to a traditional anaerobic digestion or activated sludge process. After 96 days of operation of the packed bed, a microbiological analysis showed that R. microsporus was still present and viable in the fermented solid. Our work shows that a continuous packed-bed bioreactor containing fermented solid produced by R. microsporus has good potential for the treatment of high-fat wastewater.

  16. Toxicity Evaluation of Wastewater Treatment Plant Effluents Using Daphnia magna

    Directory of Open Access Journals (Sweden)

    H Movahedian, B Bina, GH Asghari

    2005-04-01

    Full Text Available Toxicity evaluation is an important parameter in wastewater quality monitoring as it provides the complete response of test organisms to all compounds in wastewater. The water flea Daphnia magna straus is the most commonly used zooplankton in toxicological tests. The objective of this study was to evaluate the acute toxicity of effluents from different units of Isfahan Wastewater Treatment Plant (IWTP. The samples were taken from four different physical and biological units. The acute toxicity tests were determined using Daphnia magna. The immobility of Daphnia was determined after 48h. Toxicity results showed that 48h-LC50 and ATU values for raw wastewater were 30% (v/v and 3.33, respectively. It was also found that LC50 values after 48 h for preliminary, primary, and secondary effluents were 32%, 52% and 85% (v/v, respectively. The ATU values for these effluents were 3.1, 1.9, and 1.8, correspondingly. The efficiency levels of preliminary, primary, and secondary units for removal of toxicity were found as 6%, 38.9% and 8%, in that order. Overall, the present investigation indicated that toxicity removal by up to 50% might be achieved in IWPT. Based on the obtained results and regarding the improvement of water quality standards, coupled with public expectations in Iran, it is necessary to consider more stringent water quality policies for regular monitoring and toxicity assessment.

  17. Constrained treatment planning using sequential beam selection

    International Nuclear Information System (INIS)

    Woudstra, E.; Storchi, P.R.M.

    2000-01-01

    In this paper an algorithm is described for automated treatment plan generation. The algorithm aims at delivery of the prescribed dose to the target volume without violation of constraints for target, organs at risk and the surrounding normal tissue. Pre-calculated dose distributions for all candidate orientations are used as input. Treatment beams are selected in a sequential way. A score function designed for beam selection is used for the simultaneous selection of beam orientations and weights. In order to determine the optimum choice for the orientation and the corresponding weight of each new beam, the score function is first redefined to account for the dose distribution of the previously selected beams. Addition of more beams to the plan is stopped when the target dose is reached or when no additional dose can be delivered without violating a constraint. In the latter case the score function is modified by importance factor changes to enforce better sparing of the organ with the limiting constraint and the algorithm is run again. (author)

  18. Fate and Effect of Dissolved Silicon within Wastewater Treatment Effluent.

    Science.gov (United States)

    Maguire, Timothy J; Fulweiler, Robinson W

    2017-07-05

    In large rivers, the ratios of silicon (Si)/nitrogen (N)/phosphorus (P) have changed dramatically as anthropogenic additions of N or P are not matched by Si. Wastewater effluent is a recognized source of N and P to coastal environments. Few previous studies, however, have examined the Si load of a large wastewater plant's effluent or the molar ratios of Si/N and Si/P in effluent. We examine the annual flux of dissolved silicon (DSi) carried by effluent from the second largest treatment plant by flow in the United States (Deer Island Treatment Plant, DITP, Boston, MA). We compare treatment plant nutrient fluxes to local urban river nutrient fluxes and trace the impact of the DITP DSi loading on receiving waters. Estimates (±95% confidence interval) of treated effluent (67 800 ± 1500 kmol DSi year -1 ) compared to untreated (69 500 kmol DSi year -1 ) indicate that the process of sewage treatment at DITP likely does not remove DSi. DITP effluent was Si-limited and this Si-limitation is reflected in the receiving waters (Massachusetts Bay). However, Si-limitation appears only in the area immediately surrounding the effluent discharge. We use these results to explain phytoplankton patterns in Massachusetts Bay and to provide the first estimate of DSi loading (3.6 Gmol SiO 2 year -1 ) from wastewater effluent across the US.

  19. Study on the Development of Household Wastewater Treatment Unit

    Directory of Open Access Journals (Sweden)

    Ali Hadi Ghawi

    2018-03-01

    Full Text Available The cities of Iraq in general and the city of Al Diwaniyah in particular are characterized by the fact that the majority of households use septic tank to dispose of sewage, leading to contamination of ground and surface water and a disturbance to the environment. The objective of this study is to protect the water and soil sources from the risk of pollution, eliminate the process of perfusion and thus, reduce costs, maintain public health, as well as design and implement the proposed purification unit for domestic wastewater treatment. A domestic wastewater treatment unit has been improved to meet the standard specifications for the quality of the effluent wastewater. In this study, a compact non-electric sewage treatment unit was improved and implemented. Treatment is based on an effective modern biological purification process. Experimental verification and analysis of results were performed to demonstrate the improvement of physical and chemical parameters. The performance of the septic tanks-bioreactor gave satisfactory results. The removal efficiencies of Total Biochemical Oxygen Demand (BOD, Total Chemical Oxygen Demand (COD, NH4-N, Total Nitrogen and Total Suspended Solid (TSS were 96.9%, 84.6%, 78.8%, 79.9% and 95.3%, respectively.

  20. General Vision of Phytoremediation Treatment for Sludge Derived of Wastewater

    Directory of Open Access Journals (Sweden)

    Yanneth Parra Martínez

    2011-04-01

    Full Text Available Wastewater coming from industrial processes requires special treatment either physical and/or biological. Their resulting problem is the sludge being produced, whose components are mainly inorganic with some organic content, and in the most unfavorable case, with the inclusion of toxic contents, i.e. heavy metals. In certain industries, the problem has to do with the accumulation of sludge in containers, before being disposed of in an appropriate way. However, sludge disposal by other non-environmentalist industries is carried out directly to the sewer or even, to water bodies. For developing this project, the water and soil pollution scope was taken into account, together with the poor disposal of sludge generated from wastewater treatment plants; hence, sludge with high heavy metal content and other pollutants coming from three wastewater treatment plants were characterized and treated: the first one, coming from an automobile industry; the second one, from a dairy industry (sludge with organic and fat content; and a third group coming from a municipality. When comparing the results of these analysis with the Colombian standards ( Decree 1594 of 1984, a higher pollution content was found. Therefore, a phytoremediation treatment was achieved with two species of microphytes. During the development of this process, pollutant migration was observed from the sludge toward one of the parts of the microphyte. Effectiveness of the process was tested for the removal of pollutants of sanitary interest: for example, cyanide, phenols, zinc, and nickel.

  1. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  2. ANAEROBIC-AEROBIC TREATMENT OF TEXTILE WASTEWATER IN A SEQUENCING BATCH REACTOR

    OpenAIRE

    IBTISSAM KANBOUCHI; SALAH SOUABI; ABDESSADEK CHTAINI; MOULAY ABDELAZIZ ABOULHASSAN

    2014-01-01

    In this work, the treatment of synthetic textile wastewater using sequential batch reactor (SBR) was studied. This in order to predict the effectiveness of biological treatment on wastewater containing dyes while minimizing the aeration cost. Laboratory tests were performed on synthetic wastewater containing filtered urban wastewater (source of bacteria) and dyes solutions. This promotes the biomass development in the mixture, capable of degrading organic matter properly. The results indicate...

  3. A review on the electrochemical treatment of the salty organic wastewater

    Science.gov (United States)

    Du, Xianjun

    2015-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, and recent years, there are growing interests in electrochemical treatment of the salty organic wastewater. The aim of this paper is to mainly present the source of the salty organic wastewater, the mechanism of direct and indirect oxidation process, and the research advances of electrochemical technologies in the salty organic wastewater by literature reports review.

  4. Using AHP for Selecting the Best Wastewater Treatment Process

    Directory of Open Access Journals (Sweden)

    AbdolReza Karimi

    2011-01-01

    Full Text Available In this paper, Analytical Hierarchy Process (AHP method that is based on expert knowledge is used for the selection of the optimal anaerobic wastewater treatment process in industrial estates. This method can be applied for complicated multi-criteria decision making to obtain reasonable results. The different anaerobic processes employed in Iranian industrial estates consist of UASB, UAFB, ABR, Contact process, and Anaerobic Lagoons. Based on the general conditions in wastewater treatment plants in industrial estates and on expert judgments and using technical, economic, environmental, and administrative criteria, the processes are weighted and the results obtained are assessed using the Expert Choice Software. Finally, the five processes investigated are ranked as 1 to 5 in a descending order of UAFB, ABR, UASB, Anaerobic Lagoon, and Contact Process. Sensitivity analysis showing the effects of input parameters on changes in the results was applied for technical, economic, environmental, and administrative criteria.

  5. Combined coagulation flocculation pre treatment unit for municipal wastewater

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Ismail

    2012-10-01

    Full Text Available The potentials of using the hydraulic technique in combined unit for municipal wastewater treatment were studied. A combined unit in which processes of coagulation, flocculation and sedimentation, has been designed utilizing hydraulic mixing instead of mechanical mixing. A jar test treatability study has been conducted to locate the optimum dose of the coagulants to be used. Alum, ferrous sulfate, ferric sulfate, a mixture of ferric and ferrous sulfates, and mixture of lime and ferrous sulfate were all tested. A pilot unit was constructed in the existing wastewater treatment plant at El Mansoura governorate located in north Egypt. The optimum dose of coagulants used in the combined unit gives removal efficiencies for COD, BOD, and total phosphorous as 65%, 55%, and 83%, respectively.

  6. Treatment of the textile wastewater by combined electrocoagulation.

    Science.gov (United States)

    Can, O T; Kobya, M; Demirbas, E; Bayramoglu, M

    2006-01-01

    Electrocoagulation (EC) due to some advantages over chemical coagulation is becoming a popular process to be used for wastewater treatment. The aim of this paper is to investigate the effect of initial addition of a chemical coagulant such as polyaluminum chloride (PAC) or alum on the COD removal efficiency of EC treatment of textile wastewaters. The two salts exhibited the same performance in chemical coagulation, but in the combined electrocoagulation (CEC), PAC was found to significantly enhance the COD removal rate and efficiency, depending on the amount of the total aluminum supplied, by initial addition and electrochemical generation. A comparative operating cost analysis was also given and it was found that with the same operating cost per mass of COD removed, CEC performance was 80%, in contrast to 23% with EC, in 5 min of operation.

  7. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    Michael Horsfall

    followed by starch (0.9456 OD), Sucrose (0.9095 OD) and lactose (0.8407 OD). The pH change in culture medium after 72 h treatment was found to be 6.0 in glucose, starch, lactose sources and 5.8 in sucrose carbon source. The phosphate removal was observed to be maximum of 68 % in synthetic phosphate wastewater ...

  8. A performance indicators system for urban wastewater treatment plants

    OpenAIRE

    Quadros, S.; Rosa, M. J.; Alegre, H.; Silva, C.

    2009-01-01

    The use of performance assessment systems (PAS) is an important tool to provide a cost-effective and sustainable management of wastewater treatment plants (WWTP). Despite many PAS have been developed in recent years, important aspects of WWTP evaluation are not yet considered. This paper presents the framework and the overall performance indicators of a PAS developed for urban WWTP. 8 8p DHA/NES 2009 11-13 Março 2009

  9. Simulation of pulp mill wastewater recycling after tertiary treatment.

    Science.gov (United States)

    Fontanier, V; Albet, J; Baig, S; Molinier, J

    2005-12-01

    The aim of this work is to study the possibilities of effluent recycling in a bleached Kraft pulp mill, for a better water management. To avoid problems associated with effluent recycling (corrosion, odors, loss in pulp and paper quality), wastewaters have to be treated before recycling. This study is particularly focused on organic matter removal. Several treatments are applied on a biological secondary effluent: adsorption on activated carbon, coagulation with ferric chloride or alum sulfate, precipitation with lime, ozonation and catalytic ozonation. These techniques are compared in terms of COD (Chemical Oxygen Demand) removal. Catalytic ozonation is finally chosen as the most effective solution to achieve 50% of COD removal in the effluent. The characteristics of the effluent treated according to this technique are then used to simulate the impact of its reuse in the process for pulp production. The study is focused on the changes in these parameters in the various stages of bleaching and final washing when water is replaced by the wastewater treated or directly issued from the wastewater treatment plant. The simulation demonstrates the need of a tertiary treatment to eliminate COD in order to avoid possible reactant overconsumption and decrease in pulp brightness. Chloride and sulfate ions which could cause corrosion should also be removed.

  10. Perspectives on modelling micropollutants in wastewater treatment plants

    DEFF Research Database (Denmark)

    Clouzot, Ludiwine; Cloutier, Frédéric; Vanrolleghem, Peter A.

    2013-01-01

    Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact o......) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters.......Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact...... on the receiving waters. This paper provides an overview of such models, and discusses the impact of regulation, engineering practice and research on model development. A review of the current status of MP models reveals that a single model cannot represent the wide range of MPs that are present in wastewaters...

  11. Research trends in electrochemical technology for water and wastewater treatment

    Science.gov (United States)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2017-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  12. A Modified Bio-Ecological Process for Rural Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Abbasi

    2017-01-01

    Full Text Available Limited water resources and ensuring access to clean water are critical environmental challenges, especially for the developing world. In particular, rural domestic wastewater has become a significant source for the pollution of freshwater bodies. A modified bio-ecological A2O-wetland system for rural wastewater treatment consisting of a biological unit (anaerobic baffled reactor, anoxic tank and oxic unit, A2O and an ecological unit (horizontal flow constructed wetland was developed, and key performance indicators were identified. The bio-ecological treatment system showed high removal efficiency for pollutants, successfully achieving 91%, 85%, 78%, and 92% removal efficiencies for chemical oxygen demand (COD, ammonium (NH4–N, total nitrogen (TN, and total phosphorus (TP, respectively. The concentrations of pollutants in the effluent from the system were lower than the Class 1 A regulated values of the Chinese National Standard GB18918-2002. The system offered high removal efficiency, simple operation, and low energy consumption. The A2O-wetland is a good alternative for rural wastewater treatment systems.

  13. Microbial contamination of the air at the wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2012-01-01

    Full Text Available Wastewater treatment plants (WWTPs primarily serve to protect the environment. Their task is to clean waste water from the agglomerations. On the other hand wastewater treatment plants can also negatively affect the environment in their neighbourhood. These include emissions of odour and microorganisms. This article discusses the microbial contamination of the air, called bioaerosols in selected wastewater treatment plant for 18 000 p.e. From results of the work is evident that the largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic fungi. The number of psychrophilic bacteria ranged from 14 to 12 000 CFU/m3 (colony forming units in 1 m3, the number of mesophilic bacteria varied in the range from 20 to 18 500 CFU/m3 and the fungi from 25 to 32 000 CFU/m3 in the air. The amount of actinomycetes ranged from 1 to 1 030 CFU/m3 and faecal coliform bacteria from 0 to 2 500 CFU/m3. Furthermore, it was confirmed that the highest air contamination was around the activation tank, area for dewatered sludge and around the building of mechanical cleaning, depending on the season. The density of studied microorganisms correlated with air temperature.

  14. Treatment of uranium contaminated wastewater – a review

    International Nuclear Information System (INIS)

    Dulama, M.; Iordache, M.; Deneanu, N.

    2013-01-01

    The paper presents a study of the treatment techniques used for uranium recovery from aqueous solutions, such as: precipitation, ion exchange processes, sorption processes, solvent extractions, separation by liquid membrane, nanofiltration and reverse osmosis. The necessary elements for rigorous treatment experiments that can be used to define innovative procedure for uranium contaminated wastewater treatment are described in this review. The published data were summarized and the areas for further research were identified in order to be able to propose an environmental friendly technology in the field of uranium production and recovery cycle. (authors)

  15. Design of a low-cost, compact SRF accelerator for flue gas and wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222439. The proposed project consists of the design of a novel superconducting continuous-wave accelerator capable of providing a beam current of ~1 A at an energy of 1-2 MeV for the treatment of flue gases and wastewater streams. The novel approach consists on studying the feasibility of using a single-cell Nb cavity coated with a thin Nb3Sn layer of the inner surface and conductively cooled by to 4.2 K by cryocoolers inside a compact cryomodule. The proposed study will include beam transport simulations, thermal and mechanical engineering analysis of the cryomodule and a cost analysis for both the fabrications costs and the operational and maintenance costs of such accelerator. The outcome of the project will be a report summarizing the analysis and results from the design study.

  16. Radiological Risk Assessment for King County Wastewater Treatment Division

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or

  17. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China.

    Science.gov (United States)

    Zhang, Ying; Sun, Qing; Zhou, Jiti; Masunaga, Shigeki; Ma, Fang

    2015-09-01

    The toxicity of municipal wastewater to the receiving water bodies is still unknown, due to the lack of regulated toxicity based index for wastewater discharge in China. Our study aims at gaining insight into the acute toxic effects of local municipal wastewater on alga, Scenedesmus obliquus. Four endpoints, i.e. cell density, chlorophyll-A concentration, superoxide dismutase (SOD) activity and cell membrane integrity, of alga were analyzed to characterize the acute toxicity effects of wastewater from municipal wastewater treatment plants (WWTPs) with different treatment techniques: sequencing batch reactor (SBR), Linpor and conventional activated sludge. Influent and effluent from each treatment stage in these three WWTPs were sampled and evaluated for their acute toxicity. Our results showed that all three techniques can completely affect the algal chlorophyll-A synthesis stimulation effects of influent; the algal cell growth stimulation effect was only completely removed by the secondary treatment process in conventional activated sludge technique; toxic effects on cell membrane integrity of two influents from WWTPs with SBR and conventional activated sludge techniques were completely removed; the acute toxicity on SOD activity was partially reduced in SBR and conventional activated sludge techniques while not significantly reduced by Linpor system. As to the disinfection unit, NaClO disinfection enhanced wastewater toxicity dramatically while UV radiation had no remarkable influence on wastewater toxicity. Our results illustrated that SOD activity and chlorophyll-A synthesis were relatively sensitive to municipal wastewater toxicity. Our results would aid to understand the acute toxicity of municipal wastewater, as well as the toxicity removal by currently utilized treatment techniques in China. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    Science.gov (United States)

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving

  19. Carbon and energy footprint of electrochemical vinegar wastewater treatment

    Science.gov (United States)

    Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer

    2017-11-01

    Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.

  20. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    The European Water Framework Directive addresses the issue of pollution from urban waste water and is thereby changing the scope of sewage treatment. As part of this process, the Neptune project (EU, FP6) focuses on developing new and upgrading existing technologies of waste water and sludge trea...

  1. Passive treatment of wastewater and contaminated groundwater

    Science.gov (United States)

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2007-11-06

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  2. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... for sludge intended for use in agriculture, and the quality criteria for the aquatic environment. Proposals for general guidelines have been calculated using a simple mass balance model combined with water quality criteria and the Danish limit values for use of sludge in agriculture....

  3. Nanoparticles in Constanta-North Wastewater Treatment Plant

    Science.gov (United States)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  4. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  5. Treatment planning with ion beams

    International Nuclear Information System (INIS)

    Foss, M.H.

    1985-01-01

    Ions have higher linear energy transfer (LET) near the end of their range and lower LET away from the end of their range. Mixing radiations of different LET complicates treatment planning because radiation kills cells in two statistically independent ways. In some cases, cells are killed by a single-particle, which causes a linear decrease in log survival at low dosage. When the linear decrease is subtracted from the log survival curve, the remaining curve has zero slope at zero dosage. This curve is the log survival curve for cells that are killed only by two or more particles. These two mechanisms are statistically independent. To calculate survival, these two kinds of doses must be accumulated separately. The effect of each accumulated dosage must be read from its survival curve, and the logarithms of the two effects added to get the log survival. Treatment plans for doses of protons, He 3 ions, and He 4 ions suggest that these ions will be useful therapeutic modalities

  6. Wastewater Treatment by a Prototype Slow Rate Land Treatment System,

    Science.gov (United States)

    1981-08-01

    depths. tion. The forage grass was cut to a height of 7.5 Soils were air -dried and passed through a cm with a sickle bar mower. At each cutting 2-mm...wastewater loading rates the’ tiater Polluion (onrol fderation vol 5ii, p 86-94 uto15 cm/wk Overall P removals were equal Barnes, S.F. (19751 ltagei

  7. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  8. Response surface optimization of electrochemical treatment of textile dye wastewater

    International Nuclear Information System (INIS)

    Koerbahti, Bahadir K.

    2007-01-01

    The electrochemical treatment of textile dye wastewater containing Levafix Blue CA, Levafix Red CA and Levafix Yellow CA reactive dyes was studied on iron electrodes in the presence of NaCl electrolyte in a batch electrochemical reactor. The wastewater was synthetically prepared in relatively high dye concentrations between 400 mg/L and 2000 mg/L. The electrochemical treatment of textile dye wastewater was optimized using response surface methodology (RSM), where current density and electrolyte concentration were to be minimized while dye removal and turbidity removal were maximized at 28 deg. C reaction temperature. Optimized conditions under specified cost driven constraints were obtained for the highest desirability at 6.7 mA/cm 2 , 5.9 mA/cm 2 and 5.4 mA/cm 2 current density and 3.1 g/L, 2.5 g/L and 2.8 g/L NaCl concentration for Levafix Blue CA, Levafix Red CA and Levafix Yellow CA reactive textile dyes, respectively

  9. Microbial ecology of denitrification in biological wastewater treatment.

    Science.gov (United States)

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  11. Treatment of radioactive wastewater using direct contact membrane distillation

    International Nuclear Information System (INIS)

    Liu, Haiyang; Wang, Jianlong

    2013-01-01

    Highlights: • DCMD process can separate almost all Cs + , Sr 2+ , Co 2+ from liquid wastes. • The permeate flux decreased linearly when NaNO 3 concentration increased. • DGM could be used to estimate the mass transfer. • DCMD is a promising separation process for LLRW treatment. -- Abstract: Direct contact membrane distillation (DCMD) was used to treat low level radioactive wastewater (LLRW). The dusty gas model (DGM) was used to analyze the mass transfer mechanism and calculate the permeate flux. The operating parameters such as feed temperature, feed velocity and feed concentration were studied. The experimental results showed that DCMD process can separate almost all Cs + , Sr 2+ and Co 2+ from wastewater. The permeate flux decreased linearly when NaNO 3 concentration increased from 1.0 to 200 g/L. The permeate flux remained about 60% of its initial flux even when NaNO 3 concentration in feed solution was as high as 200 g/L. The dusty gas model can be successfully applied to estimate the mass transfer, and the experimental permeate flux values fitted well with that calculated by DGM. DCMD is a promising separation process for low level radioactive wastewater treatment

  12. Photocatalysis as a tertiary treatment for petroleum refinery wastewaters

    Directory of Open Access Journals (Sweden)

    F. V. Santos

    2006-12-01

    Full Text Available Photocatalysis has been used as tertiary treatment for petroleum refinery wastewaters to comply with the regulatory discharge limits and to oxidize persistent compounds that had not been oxidized in the biological treatment. The wastewater is generated by the refinery and directly discharged into the Guanabara Bay (Rio de Janeiro. Although BOD removal is high, a residual and persistent COD, besides a somewhat high phenol content remains. Three photocatalysts were tested - TiO2 (Aldrich, ZnO (Aldrich, and TiO2 (P25, Degussa - the third being the most active. The optimized conditions obtained with an experimental design were 3.0 g L-1 TiO2 and pH 6.3. The use of hydrogen peroxide (H2O2 showed no beneficial effect. Removal of 93% of phenols, 63% of dissolved organic carbon (DOC, and more than 50% of oil and grease (OG were achieved in the photocatalytic process, improving the quality of the treated wastewater.

  13. Tracking influent inorganic suspended solids through wastewater treatment plants.

    Science.gov (United States)

    Ekama, G A; Wentzel, M C; Sötemann, S W

    2006-01-01

    From an experimental and theoretical investigation of the continuity of influent inorganic suspended solids (ISS) along the links connecting the primary settling tank (PST), fully aerobic or N removal activated sludge (AS) and anaerobic and aerobic sludge digestion unit operations, it was found that the influent wastewater (fixed) ISS concentration is conserved through primary sludge anaerobic digestion, activated sludge and aerobic digestion unit operations. However, the measured ISS flux at different stages through a series of wastewater treatment plant (WWTP) unit operations is not equal to the influent ISS flux, because the ordinary heterotrophic organisms (OHO) biomass contributes to the ISS flux by differing amounts depending on the active fraction of the VSS solids at that stage.

  14. Biological Treatment of tannery wastewater using activated sludge process

    International Nuclear Information System (INIS)

    Haydar, S.; Aziz, J.A.

    2007-01-01

    A study was conducted to evaluate the feasibility of Activated Sludge Process (ASP) for the treatment of tannery wastewater and to develop a simple design criteria under local conditions. A bench scale model comprising of an aeration tank and final clarifier was used for this purpose. The model was operated continuously for 267 days. Settled tannery wastewater was used as influent to the aeration tank. Five days Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) of the influent and effluent were measured to find process efficiency at various mixed liquor volatile suspended solids (MLVSS) and hydraulic detention time. The results of the study demonstrated that an efficiency of above 90% and 80% for BOD5 and COD, respectively could be obtained if the ASP is operated at an MLVSS concentration of 3500 mg/L keeping an aeration time of 12 hours. (author)

  15. Modeling of biobasins of an oil refinery wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    RADOSTIN K. KUTSAROV

    2015-04-01

    Full Text Available The biobasins of the largest wastewater treatment plant (WWTP on the Balkans has been examined. Samples were taken four times from the inlet and outlet flow. The concentration of the total hydrocarbons, benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene and styrene in the wastewater has been obtained by gas chromatography. The average experimental concentrations were used when the mass balance was made. The results indicate that about 60% of pollutants are emitted in the air, about 22% are assimilated through biodegradation, and nearly 18% leave WWTP with the purified water. The measured concentrations were also modeled by Water 9.3 program. Comparison between the measured amounts of pollution concentrations and those forecasted by the Water 9.3 program has been made.

  16. Wastewater treatment with Moringa oleifera seed extract: Impact on turbidity and sedimentation of Cryptosporidium parvum oocysts

    DEFF Research Database (Denmark)

    Petersen, Heidi H.; Woolsey, Ian; Dalsgaard, Anders

    produced from seeds of the Moringa oleifera tree (MO) in reducing Cryptosporidium parvum oocysts and turbidity in wastewater. To a total of 5 x 12 glass jars containing 500 ml wastewater samples from a Danish treatment plant, 1.2 x 106 ± 1.2 x 105 oocysts L-1 were added. To half of the wastewater samples 8...

  17. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  18. Radioactive and hazardous wastewater treatment and sludge stabilization by filtration

    International Nuclear Information System (INIS)

    Martin, H.L.; Pickett, J.B.; Langton, C.A.

    1991-01-01

    Concentrated effluents from batch discharges of spent process solutions are mixed with filter cake from treatment of the dilute effluents and stored in a large tank at the optimum high pH for hydroxide precipitation of heavy metals. Supernate is decanted from the storage tanks and mixed with the dilute effluents before treatment. A filtration and stabilization process has been developed to treat and stored sludge as well as the concentrated wastewater slurry as it is generated. A 94% waste volume reduction over conventional technology can be achieved. Furthermore, leachate from the solidified waste filter cake meets the EPA land disposal restrictions

  19. Utilization of high energy electron beam in the treatment of drinking and waste water

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-08-01

    Samples of drinking water and waste water were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% tri halomethanes (THM) in drinking water (concentration from 2.7 μg/1 to 45μg/1, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid waste water. (author)

  20. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  1. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  2. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater

    Science.gov (United States)

    2017-01-01

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10–30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO2/IrO2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO2/IrO2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine). PMID:28538093

  3. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  4. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  5. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  6. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    Science.gov (United States)

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2018-01-01

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  7. COMPARATIVE STUDY OF TERTIARY WASTEWATER TREATMENT BY COMPUTER SIMULATION

    Directory of Open Access Journals (Sweden)

    Stefania Iordache

    2010-01-01

    Full Text Available The aim of this work is to asses conditions for implementation of a Biological Nutrient Removal (BNR process in theWastewater Treatment Plant (WWTP of Moreni city (Romania. In order to meet the more increased environmentalregulations, the wastewater treatment plant that was studied, must update the actual treatment process and have tomodernize it. A comparative study was undertaken of the quality of effluents that could be obtained by implementationof biological nutrient removal process like A2/O (Anaerobic/Anoxic/Oxic and VIP (Virginia Plant Initiative aswastewater tertiary treatments. In order to asses the efficiency of the proposed treatment schemata based on the datamonitored at the studied WWTP, it were realized computer models of biological nutrient removal configurations basedon A2/O and VIP process. Computer simulation was realized using a well-known simulator, BioWin by EnviroSimAssociates Ltd. The simulation process allowed to obtain some data that can be used in design of a tertiary treatmentstage at Moreni WWTP, in order to increase the efficiency in operation.

  8. Study on Olive Oil Wastewater Treatment: Nanotechnology Impact

    Directory of Open Access Journals (Sweden)

    Nika Gholamzadeh

    2016-11-01

    Full Text Available The olive mill wastewater (OMW is generated from olive oil extraction in olive mills. It contains a very high organic load and considerable quantities of phytotoxicity compounds. Comprehensive articles with different methods have been published about the treatment of OMW. This paper reviews the recent reports on the variety methods of OMW treatment. Biological process, containing aerobic pre-treatment by using different cultures and anaerobic co-digestion with other sewage and also added external nutrient with optimum ratio attracted much attention in the treatment of OMW. However, advanced oxidation process (AOP due to the high oxidation potential which causes destruction of organic pollutants, toxic and chlorinated compounds have been considered. Furthermore, membrane technologies consist of microfiltration, ultrafiltration and especially nanofiltrationin wastewater treatment are growing in recent years. They offer high efficiency and mediocre investments owing to novel membrane materials, membrane design technics, module figures and improvement of the skills. In addition, fouling reduces the membrane performances in time, which is a main problem of cost efficiency.

  9. Application of Ozone MBBR Process in Refinery Wastewater Treatment

    Science.gov (United States)

    Lin, Wang

    2018-01-01

    Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.

  10. Mechanism for sludge acidification in aerobic treatment of coking wastewater

    International Nuclear Information System (INIS)

    Chao, Y.-M.; Tseng, I.-C.; Chang, J.-S.

    2006-01-01

    This work was undertaken to investigate the cause of sludge acidification that led to disruption of the activated sludge process treating coking wastewater from a steel-making plant in Taiwan. An activated sludge reactor (ASR) with a working volume of 80 L was used as a model system to simulate the behavior of the real wastewater treatment process. Parameters that may cause acidification or inactivation of the sludge (NH 3 , SCN - , S 2 O 3 2- and CN - ) were studied individually to examine for their effects on the performance of the ASR. The results show that high loading of NH 3 , SCN - and CN - did not lead to pH decrease, while the ASR attained 85% COD removal and nearly 100% SCN degradation. In contrast, when the wastewater was supplemented with ca. 1000 mg/L of S 2 O 3 2- , the pH dropped to nearly 4.0 in 2 days and the COD and SCN removal yields were significantly lower (at 50 and 0-20%, respectively). Thus, overloading of S 2 O 3 2- was apparently a key factor causing sludge acidification. The results suggest that to ensure a normal functioning of the activated sludge, the influent S 2 O 3 2- concentration should be closely monitored and that the pH control of the ASR is indispensable when the S 2 O 3 2- loading is in excess

  11. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    Science.gov (United States)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  12. Forecasting Wastewater Treatment Results with an ANFIS Intelligent System

    Directory of Open Access Journals (Sweden)

    M. Mahshidnia

    2016-10-01

    Full Text Available Wastewaters caused by industrial and manufacturing production containing pollutants which beside degradation and depletion of natural resources, impose excessive pressure on the Earth's ecosystems and exacerbate water shortages. One of the pollutants is a toxic substance named Malachite Green (MG. Wastewater treatment means to obtain usable water by separating contaminants of contaminated water. One of its main purposes is the recovery and re-use of wastewater for a variety of uses including agriculture and aquaculture, especially in arid and semi-arid countries, as well as providing environmental protection. The main purpose of the present study was to investigate MG separation efficiency by nano composite materials. Poly-aniline was covered on Wheat Husk Ash in order to prepare this type of nano composite. The material was analyzed by X-ray radiation and scanned by an electron microscope. The level of separation depends on the initial value of wheat husk ash and poly-aniline and the initial concentration of MG and the intensity of ultraviolet radiation and radiation time. The effect of these parameters was investigated and optimum operating conditions were obtained. An adaptive neural fuzzy intelligent system was used to forecast the results of the MG separation process. The comparison between the results forecasted by the designed model and experimental data strengthens the validity of the process.

  13. Evaluation of microalgae production coupled with wastewater treatment

    DEFF Research Database (Denmark)

    De Francisci, Davide; Su, Yixi; Iital, Arvo

    2018-01-01

    that potentially more than 70% of revenue was from the production of pigments, i.e. chlorophyllin (59.6%), lutein (8.9%) and β-carotene (5.0%) while reduction in discharging costs of the treated wastewaters could account for 19.6% of the revenue. Due to the low yield of FAME and the low market price of biodiesel......In the present study the feasibility of microalgae production coupled with wastewater treatment was assessed. Continuous cultivation of Chlorella sorokiniana with wastewater was tested in lab-scale flat panel photobioreactors. Biomass productivity was determined for four dilution rates (4.32 d-1, 3.......6 d-1, 1.8 d-1 and 0.72 d-1). The productivity peak was 1.524 g l-1d-1 at the dilution rate of 2.41 d-1. Nitrogen and phosphorus removals were found to be inversely proportional to dilution rates, while COD removal was found to be 50% at all the tested conditions. The biomass obtained at the highest...

  14. Costs and water quality effects of wastewater treatment plant centralization

    Energy Technology Data Exchange (ETDEWEB)

    Macal, C.M.; Broomfield, B.J.

    1980-01-01

    The costs and water quality impacts of two regional configurations of municipal wastewater treatment plants in Northeastern Illinois are compared. In one configuration, several small treatment plants are consolidated into a smaller number of regional facilities. In the other, the smaller plants continue to operate. Costs for modifying the plants to obtain various levels of pollutant removal are estimated using a simulation model that considers the type of equipment existing at the plants and the costs of modifying that equipment to obtain a range of effluent levels for various pollutants. A dynamic water-quality/hydrology simulation model is used to determine the water quality effects of the various treatment technologies and pollutant levels. Cost and water quality data are combined and the cost-effectiveness of the two treatment configurations is compared. The regionalized treatment-plant configuration is found to be the more cost-effective.

  15. Pharmaceutical wastewater treatment by internal micro-electrolysis--coagulation, biological treatment and activated carbon adsorption.

    Science.gov (United States)

    Wang, Kangle; Liu, Suiqing; Zhang, Qiang; He, Yiliang

    2009-12-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro-electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro-electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was the main body of the whole process which took an unparalleled role in removing COD (chemical oxygen demand). Activated carbon adsorption was adopted as the post-treatment process to further remove the remaining non-biodegradable particles. Results showed that the removal rates of COD and S2- (sulphide ion) by pretreatment were 66.9% and 98.9%, respectively, and the biodegradability, as measured by the ratio of biodegradable COD to initial COD, of the wastewater was greatly improved from 0.16 +/- 0.02 to 0.41 +/- 0.02. The overall removal rate of COD in the wastewater achieved by this combined treatment process was up to 96%, and the effluent COD met the Chinese tertiary discharge standard (GB 8978-1996).

  16. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  17. Wastewater treatment in a hybrid activated sludge baffled reactor

    International Nuclear Information System (INIS)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-01-01

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 ± 2% of the total COD and 98 ± 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 ± 11 mg COD/L and 43 ± 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 ± 3 and 6 ± 3% for the CAS reactor, respectively. Approximately 90 ± 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 ± 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m -3 day -1 . The result for the CAS reactor was 60 ± 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank

  18. Wastewater treatment in a hybrid activated sludge baffled reactor.

    Science.gov (United States)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98+/-2% of the total COD and 98+/-2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593+/-11 mg COD/L and 43+/-5 mg N/L, respectively, at a HRT of 10 h. These results were 93+/-3 and 6+/-3% for the CAS reactor, respectively. Approximately 90+/-7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654+/-16 mg COD/L at a 3h HRT, and in the organic loading rate (OLR) of 5.36kgCOD m(-3) day(-1). The result for the CAS reactor was 60+/-3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  19. Acrylic acid removal from synthetic wastewater and industrial wastewater using Ralstonia solanacearum and Acidovorax avenae isolated from a wastewater treatment system manufactured with polyacrylonitrile fiber.

    Science.gov (United States)

    Wang, C C; Lee, C M; Wu, A S

    2009-01-01

    Ralstonia solanacearum and Acidovorax avenae were isolated from a wastewater treatment system manufactured with polyacrylonitrile fiber. The investigation goal is to elucidate the effectiveness of Ralstonia solanacearum and Acidovorax avenae in treating acrylic acid from synthetic wastewater and industrial wastewater. The results reveal that Ralstonia solanacearum and Acidovorax avenae could utilize acrylic acid from synthetic wastewater for growth, when the initial acrylic acid concentration was below 1,009.1 mg/l and 1,383.4 mg/l, respectively. When the acrylic acid concentration was below 606.8 mg/l, the acrylic acid removal ability reached 96.7% and 100%, respectively. Both strains could tolerate acrylamide toxicity, but only Ralstonia solanacearum could tolerate acrylonitrile toxicity. Ralstonia solanacearum and Acidovorax avenae could utilize acrylic acid from industrial wastewater for growth, when the initial acrylic acid concentration was below 1,741.1 mg/l and 1,431.2 mg/l, respectively. When the acrylic acid concentration was below 690.8 mg/l, the acrylic acid removal efficiency reached 83.5% and 62.2%, respectively. Whether the acrylic acid existed in synthetic wastewater or in industrial wastewater, the removal efficiency of acrylic acid by Ralstonia solanacearum exceeded that by Acidovorax avena.

  20. Transport and fate of microplastic particles in wastewater treatment plants.

    Science.gov (United States)

    Carr, Steve A; Liu, Jin; Tesoro, Arnold G

    2016-03-15

    Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs. Published by Elsevier Ltd.

  1. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  2. Beyond the conventional life cycle inventory in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo-Toja, Yago, E-mail: yago.lorenzo@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Alfonsín, Carolina [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Amores, María José; Aldea, Xavier; Marin, Desirée [Cetaqua, Water Technology Centre, 08940 Cornellà de Llobregat, Barcelona (Spain); Moreira, María Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain)

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO{sub 2} emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. - Highlights: • The influence of LCI quality on the environmental assessment

  3. RESOURCE RECOVERY BY OSMOTIC BIOELECTROCHEMICAL SYSTEMS  TOWARDS SUSTAINABLE WASTEWATER TREATMENT

    OpenAIRE

    Qin, Mohan

    2017-01-01

    Recovering valuable resources from wastewater will transform wastewater management from a treatment focused to sustainability focused strategy, and creates the need for new technology development. An innovative treatment concept - osmotic bioelectrochemical system (OsBES), which is based on cooperation between bioelectrochemical systems (BES) and forward osmosis (FO), has been introduced and studied in the past few years. An OsBES can accomplish simultaneous treatment of wastewater and recove...

  4. Potential Bacterial Consortium to Increase the Effectiveness of Beer Wastewater Treatment

    OpenAIRE

    Putu Nia Anggraeni; Ida Bagus Wayan Gunam; Retno Kawuri

    2014-01-01

    The main objective of this research is to determine the effectiveness of microbial consortia in beer wastewater treatment. The research was initiated with the isolation of soil microbial consortium that has been contaminated by beer waste water, followed by the selection of the best potential microbial beer wastewater treatment. At the end, the selection of the best microbial consortium was tested in beer wastewater treatment based on pollutant parameters namely biochemical oxygen demand (BOD...

  5. Capacity of textile filters for wastewater Treatment at changeable wastewater level – a hydraulic model

    Directory of Open Access Journals (Sweden)

    Marcin Spychała

    2016-12-01

    Full Text Available The aim of the study was to describe in a mathematical manner the hydraulic capacity of textile filters for wastewater treatment at changeable wastewater levels during a period between consecutive doses, taking into consideration the decisive factors for flow-conditions of filtering media. Highly changeable and slightly changeable flow-conditions tests were performed on reactors equipped with non-woven geo-textile filters. Hydraulic conductivity of filter material coupons was determined. The dry mass covering the surface and contained in internal space of filtering material was then indicated and a mathematical model was elaborated. Flow characteristics during the highly changeable flow-condition test were sensitivity to differentiated values of hydraulic conductivity in horizontal zones of filtering layer. During the slightly changeable flow-conditions experiment the differences in permeability and hydraulic conductivity of different filter (horizontal zones height regions were much smaller. The proposed modelling approach in spite of its simplicity provides a satisfactory agreement with empirical data and therefore enables to simulate the hydraulic capacity of vertically oriented textile filters. The mathematical model reflects the significant impact of the filter characteristics (textile permeability at different filter height and operational conditions (dosing frequency on the textile filters hydraulic capacity.

  6. Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant

    International Nuclear Information System (INIS)

    Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

    1998-07-01

    The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality

  7. Screening of lipid degrading microorganisms for wastewater treatment

    Directory of Open Access Journals (Sweden)

    Sarmurzina, Z. S.

    2013-01-01

    Full Text Available Aims: Fats, oils and greases (FOG are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G30, and Zb32 showed highest units of LA and were identified by sequence analysis of 16S rRNA genes. Lipid masses were determined gravimetrically after chloroform/ethyl alcohol extraction. In the model solutions with animal fats the strain Pseudomonas aeruginosa G23 reduced mass fractions of mutton fat, beef tallow, and lard by 79±5%, 88±4%, and 80±6% respectively. Under the same conditions Aeromonas punctata G30 reduced: 65±3%, 60±8%, and 75±4%, and P. aeruginosa Zb32 reduced: 47±5%, 52±6% and 73±7%. In the model solutions with FOGs trap specimens as a carbon source from the local cafeteria the strains P. aeruginosa G23, A. punctata G30, and P. aeruginosa Zb32 reduced a lipid mass fraction by 61.5±7%, 45.2±5%, and 37.5±3% respectively.Conclusion, significance and impact of study: The strain P. aeruginosa G23 is the most effective lipid-degrading microorganism and the best candidate to use in biological treatment technology of FOGs polluted wastewater in Kazakhstan.

  8. Life Cycle Assessment of urban wastewater reuse with ozonation as tertiary treatment

    International Nuclear Information System (INIS)

    Munoz, Ivan; Rodriguez, Antonio; Rosal, Roberto; Fernandez-Alba, Amadeo R.

    2009-01-01

    Life Cycle Assessment has been used to compare different scenarios involving wastewater reuse, with special focus on toxicity-related impact categories. The study is based on bench-scale experiments applying ozone and ozone in combination with hydrogen peroxide to a wastewater effluent from a Spanish sewage treatment plant. Two alternative characterisation models have been used to account for toxicity of chemical substances, namely USES-LCA and EDIP97. Four alternative scenarios have been assessed: wastewater discharge plus desalination supply, wastewater reuse without tertiary treatment, wastewater reuse after applying a tertiary treatment consisting on ozonation, and wastewater reuse after applying ozonation in combination with hydrogen peroxide. The results highlight the importance of including wastewater pollutants in LCA of wastewater systems assessing toxicity, since the contribution of wastewater pollutants to the overall toxicity scores in this case study can be above 90%. Key pollutants here are not only heavy metals and other priority pollutants, but also non-regulated pollutants such as pharmaceuticals and personal care products. Wastewater reuse after applying any of the tertiary treatments considered appears as the best choice from an ecotoxicity perspective. As for human toxicity, differences between scenarios are smaller, and taking into account the experimental and modelling uncertainty, the benefits of tertiary treatment are not so clear. From a global warming potential perspective, tertiary treatments involve a potential 85% reduction of greenhouse gas emissions when compared with desalination

  9. Olive mill wastewater treatment in Jordan: A Review

    Science.gov (United States)

    Bawab, Abeer Al; Ghannam, Noor; Abu-Mallouh, Saida; Bozeya, Ayat; Abu-Zurayk, Rund A.; Al-Ajlouni, Yazan A.; Alshawawreh, Fida'a.; Odeh, Fadwa; Abu-Dalo, Muna A.

    2018-02-01

    The environmental impact of olive mill wastewater (OMW) pollution is a public concern. OMW contains high levels of phenols, organic compounds, chemical oxygen demand (COD), biological oxygen demand (BOD), microorganisms, nutrients, and toxic compounds. The treatment of OMW has been investigated by many researchers in the Mediterranean region, using several treatment techniques to remove contaminants from OMW. These techniques include chemical, biological, physiochemical, and biophysical techniques. Surfactants and some adsorbents were used in chemical techniques, anaerobic and aerobic in biological techniques, while the combined treatment methods used Electroosmosis, ozonation and electrocoagulation processes as physiochemical methods, and ultrasonic irradiation combined with aerobic biodegradation as biophysical method. The effects of OMW, whether treated or untreated, have been evaluated on both plants’ growth and soil properties. The treatment methods as well as the environmental impact of OMW in Jordan were summarized in this review.

  10. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    Science.gov (United States)

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  11. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Study the Stability of a Wastewater Treatment Unit using LABVIEW

    Directory of Open Access Journals (Sweden)

    Ghainm M. Alwan

    2013-05-01

    Full Text Available This study was devoted to limit the stability conditions of the wastewater treatment unit.       LABVIEW was a powerful and versatile graphical programming language in automation control and date acquisition of the system. The on-line show that accurate and stable control responses were obtained in the present work. The actual phase plane proved to a better technique to limit the regions of the non-linear system stability compared to other theoretical techniques. Limit cycle did not appear in the present system. 

  13. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  14. TREATMENT SYSTEM FOR WASTEWATER AT VILLA CLARA WATER MANAGEMENT COMPANY

    Directory of Open Access Journals (Sweden)

    Floramis Pérez Martín

    2016-04-01

    Full Text Available The aim of this paper is to assess the current operating and safety conditions of biological treatment systems for wastewater in the centers of swinish and poultry breeding at Villa Clara Water Management Company, with the purpose of setting a group of organizational, technical and human measures that contributes to prevent contamination and minimize biological risks. In this way it can be guaranteed the protection to the workers, the facilities, community and the environment, to have a sure occupational atmosphere in the organization. As a result of the evaluation the factors that affect the operation of the biodigestion system and the security of the process are defined.

  15. Municipal wastewater treatment by a periodic biofilter with granular biomass.

    Science.gov (United States)

    Di Iaconi, C; Del Moro, G; Lopez, A; De Sanctis, M; Ramadori, R

    2008-01-01

    The paper reports the results obtained during an experimental campaign aimed at transferring aerobic granulation to a demonstrative SBBGR system (i.e., a submerged biofilter that operates in a "fill and draw" mode) for the treatment of municipal wastewater by financial support of the European Commission, within the framework of Life-Environment Programme (PERBIOF Project; www.perbiof-europe.com). The results show that following the generation of granular biomass during the start-up period, the SBBGR was able to remove 80-90% of COD, total suspended solids and ammonia occurring in primary effluent from a municipal wastewater treatment plant even when the minimum hydraulic residence time (i.e., 4 h) was investigated. The process was characterised by a sludge production almost one magnitude order lower than commonly reported for conventional treatment plants. The granular biomass was characterised by a high density (i.e., 150 gTSS/L(biomass)) that allowed a biomass concentration as high as 35 kgTSS/m(3)(bed) to be achieved. Proteobacteria were found as main microbial components of the granular biomass by applying Fluorescence In Situ Hybridization (FISH). No significant changes in microbial composition were observed during reactor operation. IWA Publishing 2008.

  16. Towards energy neutrality of wastewater treatment plants via deammonification process

    Science.gov (United States)

    Janiak, Kamil; Łojek, Andrzej; Muszyński-Huhajło, Mateusz

    2017-11-01

    Energy neutrality of wastewater treatment plants is possible with constant and consistent optimization and implementation of new technologies. In recent years new process called deammonification has been discovered and implemented in treatment of side streams rich in nitrogen. With its implementation on wastewater treatment plants it is possible to remove nearly all nitrogen from side stream (even 30% of overall nitrogen load) in less energy consuming way. Additionally, thanks to lower nitrogen load to main stream reactors it is possible to optimize them to further lower energy consumption. This article presents simulation studies of deammonification implementation and main stream reactor optimization in case of medium Polish WWTP (115 000 p.e.). With removal of 20% of nitrogen in side stream via deammonification and subsequent main line optimization it is possible to save 5000 euro/year by lowering sludge retention time, oxygen concentration in main stream reactors. When additional COD is precipitated in primary clarifiers with iron coagulants, 55 000 euro/year can be saved in case of energy costs which states for most of the energy costs. However, when coagulant and disposal costs are included savings are on the level of 25 000 euro/year.

  17. Towards energy neutrality of wastewater treatment plants via deammonification process

    Directory of Open Access Journals (Sweden)

    Janiak Kamil

    2017-01-01

    Full Text Available Energy neutrality of wastewater treatment plants is possible with constant and consistent optimization and implementation of new technologies. In recent years new process called deammonification has been discovered and implemented in treatment of side streams rich in nitrogen. With its implementation on wastewater treatment plants it is possible to remove nearly all nitrogen from side stream (even 30% of overall nitrogen load in less energy consuming way. Additionally, thanks to lower nitrogen load to main stream reactors it is possible to optimize them to further lower energy consumption. This article presents simulation studies of deammonification implementation and main stream reactor optimization in case of medium Polish WWTP (115 000 p.e.. With removal of 20% of nitrogen in side stream via deammonification and subsequent main line optimization it is possible to save 5000 euro/year by lowering sludge retention time, oxygen concentration in main stream reactors. When additional COD is precipitated in primary clarifiers with iron coagulants, 55 000 euro/year can be saved in case of energy costs which states for most of the energy costs. However, when coagulant and disposal costs are included savings are on the level of 25 000 euro/year.

  18. SELECTION OF CHEMICAL TREATMENT PROGRAM FOR OILY WASTEWATER

    Directory of Open Access Journals (Sweden)

    Miguel Díaz

    2017-04-01

    Full Text Available When selecting a chemical treatment program for wastewater to achieve an effective flocculation and coagulation is crucial to understand how individual colloids interact. The coagulation process requires a rapid mixing while flocculation process needs a slow mixing. The behavior of colloids in water is strongly influenced by the electrokinetic charge, where each colloidal particle carries its own charge, which in its nature is usually negative. Polymers, which are long chains of high molecular weight and high charge, when added to water begin to form longer chains, allowing removing numerous particles of suspended matter. A study of physico-chemical treatment by addition of coagulant and flocculant was carried out in order to determine a chemical program for oily wastewater coming from the gravity separation process in a crude oil refinery. The tests were carried out in a Jar Test equipment, where commercial products: aluminum polychloride (PAC, aluminum sulfate and Sintec D50 were evaluated with five different flocculants. The selected chemical program was evaluated with fluids at three temperatures to know its sensitivity to this parameter and the mixing energy in the coagulation and flocculation. The chemical program and operational characteristics for physico-chemical treatment with PAC were determined, obtaining a removal of more than 93% for suspended matter and 96% for total hydrocarbons for the selected coagulant / flocculant combination.

  19. Cactus Opuntia as natural flocculant for urban wastewater treatment.

    Science.gov (United States)

    Rachdi, Raouen; Srarfi, Feyda; Shimi, Najet Slim

    2017-10-01

    The cactus tree, species Opuntia ficus-indica, is a primary material of many products in various domains such as cosmetics, medicine and nutrition. In the present work, we assess its potential as a flocculant. We tried a technique which adopts three sequential treatments that used coagulation, flocculation and sedimentation processes under certain operating conditions. For this purpose, we used the aluminum sulfate (AS) as coagulant and fresh cladodes juice (FCJ) as bioflocculant. All tests were carried out on high turbid urban wastewater collected from the Metlaoui's Wastewater Treatment Plant (MWTP) (in Gafsa in southwest Tunisia). Experiments with this couple AS/FCJ show very interesting results: a high-removal of turbidity (TUR), suspended solids (SS) and chemical oxygen demand (COD). The percentages of abatement of these parameters are respectively 93.65%, 82.75% and 64.30%. The experimental results of the present study prove that the turbidity, SS and COD removal efficiency of new technique is superior to that of conventional process (with only AS). By this technique, we save 50% in AS dose. Moreover, flocs formed by the treatment using AS/FCJ are coarse and readily settleable.

  20. Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data

    Directory of Open Access Journals (Sweden)

    Nasim Habibi

    2017-08-01

    Full Text Available This data article describes a facile method for production of an adsorbent from Tamarix hispida wasted wood and modified by lanthanum metal for fluoride ions removal from wastewater. The main characteristics of the adsorbent consist of BET surface area, functional groups, and elemental analysis is presented. The data for attenuating the pollutants from a real wastewater treatment which was provided from a glass factory is also represented. More than 90% of fluoride content of the real wastewater was treated by the adsorbent. Generally, these data would be informative for extend research aim to industrial wastewater treatment and those who work in the wastewater treatment plants.

  1. Wastewater treatments by membrane bioreactors (MBR); Bioreactores de membrana (MBR) para la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Guardino Ferre, R.

    2001-07-01

    Wastewater treatments by membrane bioreactors (MBR), are a good alternative of treatment to the conventional processes when wish to obtain very high quality of the treated water or to try high load contaminants in low flow. Simultaneously, the article explains the significant reduction of the wastewater treatment plant space, eliminating the secondary septic tank. (Author) 7 refs.

  2. Influence of Central Wastewater Treatment Plant on the Environment

    International Nuclear Information System (INIS)

    Cackovic, M.; Marovic, G.; Pehnec, G.; Sencar, J.; Vadic, V.

    2013-01-01

    Project CUPOVZ (Zagreb Central Wastewater Treatment Plant) is the first concession for wastewater purification in Croatia. For the City of Zagreb this project provides compliance with EU ecological standards in the field of environmental protection and protection of waters. The construction of CUPOVZ has finished in 2007, and 'Zagrebaèke otpadne vode - Upravljanje i pogon d.o.o.' is responsible for its management, proper working and regular maintenance. The influence of the wastewater treatment plant on the environment has been monitored since the beginning of the construction in 2003. Monitoring includes radioactivity measurements and measurements of specific air pollutants. This paper presents the measuring results obtained at CUPOVZ in 2011. Measurements were carried out over four months; for thirty days in each season. Ionising radiation was measured using ALARA ED dosimeters (expressed here as mean daily absorbed dose rates). In 2011 average absorbed dose rate at CUPOVZ was 77 ± 4 nGyh -1 . Equivalent dose for population was assessed on yearly base 0.680 ± 0.064 mSv. Samples of ammonia (NH 3 ), hydrogen sulphide (H 2 S) and mercaptans (RSH) were collected by 24-hour sampling. Twenty-four-hour concentrations of ammonia ranged between 2.3 μg/m 3 and 23.0 μg/m 3 , concentrations of hydrogen sulphide were between 0 μg/m 3 and 17.8 μg/m 3 , while mercaptan concentrations ranged between 0 μg/m 3 and 0.93 μg/m 3 . H 2 S levels occasionally exceeded values set by Croatian air protection legislation.(author)

  3. Identification of industrial wastewater by clustering wastewater treatment plant influent ultraviolet visible spectra.

    Science.gov (United States)

    Dürrenmatt, David J; Gujer, Willi

    2011-01-01

    A procedure is proposed which allows the detection of industrial discharge events at the inlet of a wastewater treatment plant without the need for measurements performed at the industry, for special equipment and for exact knowledge of the industrial sewage. By performing UV/Vis measurements at the inlet of a plant and analyzing them with a two-staged clustering method consisting of the self-organizing map algorithm and the Ward clustering method, typical sewage clusters can be found. In an experiment performed at a mid-sized Swiss plant, one cluster of a cluster model with five clusters could be attributed to an industrial laundry. Out of 95 laundry discharging events measured in a validation period, 93 were correctly detected by the proposed algorithm, two were false positives and five were false negatives.

  4. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  5. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling.

    Science.gov (United States)

    Watkinson, A J; Murby, E J; Costanzo, S D

    2007-10-01

    Removal of 28 human and veterinary antibiotics was assessed in a conventional (activated sludge) and advanced (microfiltration/reverse osmosis) wastewater treatment plant (WWTP) in Brisbane, Australia. The dominant antibiotics detected in wastewater influents were cephalexin (med. 4.6 microg L(-1), freq. 100%), ciprofloxacin (med. 3.8 microg L(-1), freq. 100%), cefaclor (med. 0.5 microg L(-1), freq. 100%), sulphamethoxazole (med. 0.36 microg L(-1), freq. 100%) and trimethoprim (med. 0.34 microg L(-1), freq. 100%). Results indicated that both treatment plants significantly reduced antibiotic concentrations with an average removal rate from the liquid phase of 92%. However, antibiotics were still detected in both effluents from the low-to-mid ng L(-1) range. Antibiotics detected in effluent from the activated sludge WWTP included ciprofloxacin (med. 0.6 microg L(-1), freq. 100%), sulphamethoxazole (med. 0.27 microg L(-1), freq. 100%) lincomycin (med. 0.05 microg L(-1), freq. 100%) and trimethoprim (med. 0.05 microg L(-1), freq. 100%). Antibiotics identified in microfiltration/reverse osmosis product water included naladixic acid (med. 0.045 microg L(-1), freq. 100%), enrofloxacin (med. 0.01 microg L(-1), freq. 100%), roxithromycin (med. 0.01 microg L(-1), freq. 100%), norfloxacin (med. 0.005 microg L(-1), freq. 100%), oleandomycin (med. 0.005 microg L(-1), freq. 100%), trimethoprim (med. 0.005 microg L(-1), freq. 100%), tylosin (med. 0.001 microg L(-1), freq. 100%), and lincomycin (med. 0.001 microg L(-1), freq. 66%). Certain traditional parameters, including nitrate concentration, conductivity and turbidity of the effluent were assessed as predictors of total antibiotic concentration, however only conductivity demonstrated any correlation with total antibiotic concentration (p=0.018, r=0.7). There is currently a lack of information concerning the effects of these chemicals to critically assess potential risks for environmental discharge and water recycling.

  6. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    Science.gov (United States)

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  7. Synthesis of BiOCl using Cl source from industrial wastewater and its application for wastewater treatment.

    Science.gov (United States)

    Yao, Kun; Jia, Manke; Wu, Huanhuan; Li, Yonggang; Chen, Chuncheng; Huang, Yingping

    2017-11-03

    Cl - in industrial wastewater from glyphosate production has been used as Cl source to synthesize BiOCl photocatalyst via a simple solvothermal route. The crystalline, morphology, specific surface area and optical properties of photocatalysts prepared under various conditions have been investigated. BiOCl photocatalyst prepared in acidic solution shows the highest crystallinity and without impurities and microcellular structure. The degradation of industrial wastewater contaminants demonstrates the possibility of this BiOCl used in industrial wastewater treatment and phosphorus recycling through the subsequent phosphorus recovery processes. This study not only sheds light on the possibility of photocatalysts' preparation in situ using industrial wasterwater as raw materials and the feasibility of using photocatalysis technology in wastewater treatment area, but also the chloride ions have been removed as an available resource and the corrosion to treatment facilities has been slowed down. The phosphorus and nitrogen resources can be recycled by other subsequent recycle recoveries. It offers a novel way for the wastewater treatment process in succession from photocatalysts' manufacture to contaminants disposal.

  8. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  9. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities

    OpenAIRE

    Hubbe, Martin A.; Metts, Jeremy R.; Hermosilla, Daphne; Angeles Blanco, M.; Yerushalmi, Laleh; Haghighat, Fariborz; Lindholm-Lehto, Petra; Khodaparast, Zahra; Kamali, Mohammadreza; Elliott, Allan

    2016-01-01

    The pulp and paper (P&P) industry worldwide has achieved substantial progress in treating both process water and wastewater, thus limiting the discharge of pollutants to receiving waters. This review covers a variety of wastewater treatment methods, which provide P&P companies with cost-effective ways to limit the release of biological or chemical oxygen demand, toxicity, solids, color, and other indicators of pollutant load. Conventional wastewater treatment systems, often comprising primary...

  10. Development of a novel bioelectrochemical membrane reactor for wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Sheng, Guo-Ping; Li, Wen-Wei; Huang, Yu-Xi; Yu, Yang-Yang; Zeng, Raymond J; Yu, Han-Qing

    2011-11-01

    A novel bioelectrochemical membrane reactor (BEMR), which takes advantage of a membrane bioreactor (MBR) and microbial fuel cells (MFC), is developed for wastewater treatment and energy recovery. In this system, stainless steel mesh with biofilm formed on it serves as both the cathode and the filtration material. Oxygen reduction reactions are effectively catalyzed by the microorganisms attached on the mesh. The effluent turbidity from the BEMR system was low during most of the operation period, and the chemical oxygen demand and NH(4)(+)-N removal efficiencies averaged 92.4% and 95.6%, respectively. With an increase in hydraulic retention time and a decrease in loading rate, the system performance was enhanced. In this BEMR process, a maximum power density of 4.35 W/m(3) and a current density of 18.32 A/m(3) were obtained at a hydraulic retention time of 150 min and external resister of 100 Ω. The Coulombic efficiency was 8.2%. Though the power density and current density of the BEMR system were not very high, compared with other high-output MFC systems, electricity recovery could be further enhanced through optimizing the operation conditions and BEMR configurations. Results clearly indicate that this innovative system holds great promise for efficient treatment of wastewater and energy recovery.

  11. Greenhouse gases from wastewater treatment - A review of modelling tools.

    Science.gov (United States)

    Mannina, Giorgio; Ekama, George; Caniani, Donatella; Cosenza, Alida; Esposito, Giovanni; Gori, Riccardo; Garrido-Baserba, Manel; Rosso, Diego; Olsson, Gustaf

    2016-05-01

    Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incomplete. The literature review shows also that a plant-wide modelling approach that includes GHG is the best option for the understanding how to reduce the carbon footprint of WWTPs. Indeed, several studies have confirmed that a wide vision of the WWPTs has to be considered in order to make them more sustainable as possible. Mechanistic dynamic models were demonstrated as the most comprehensive and reliable tools for GHG assessment. Very few plant-wide GHG modelling studies have been applied to real WWTPs due to the huge difficulties related to data availability and the model complexity. For further improvement in GHG plant-wide modelling and to favour its use at large real scale, knowledge of the mechanisms involved in GHG formation and release, and data acquisition must be enhanced. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Limited dissemination of the wastewater treatment plant core resistome

    DEFF Research Database (Denmark)

    Munck, Christian; Albertsen, Mads; Telke, Amar

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissem......Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role...... in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes...... of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting...

  13. Biological treatment of model dyes and textile wastewaters.

    Science.gov (United States)

    Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel

    2017-08-01

    Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Improvement of wastewater treatment by use of natural coagulants

    Directory of Open Access Journals (Sweden)

    Jelena Prodanović

    2013-06-01

    Full Text Available An activated sludge and other organic sludges from wastewater treatment processes are usually anaerobically digested prior to application on land. The purpose of digestion is to convert bulky, odorous sludges to relatively inert material that can be rapidly dewatering. The important benefit of this process is a biogas production, too. It is proper to enlarge primary sludge production in a primary settler by adding some coagulation aids, with aim to increase a biogas production, as much as possible. The most common coagulant is alum, but presence of large quantities of aluminum salts in sludge has a harmful impact on digestion and digested sludge application. Some natural coagulants, that have a numerous advantages, can be used instead of alum. Natural coagulants could be extracted from a different plant material, and considering the fact that they are of organic nature, the biogas yield can be enhanced by their presence. A plant material that remains after extraction can be used as a feed. The aim of this paper is a consideration of potential environmental benefits of substitution of alum by natural coagulant extracted from common bean seeds in sewage wastewater treatment process.

  15. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  16. Conditions and technologies of biological wastewater treatment in Hungary.

    Science.gov (United States)

    Tardy, G M; Bakos, V; Jobbágy, A

    2012-01-01

    A survey has been carried out involving 55 Hungarian wastewater treatment plants in order to evaluate the wastewater quality, the applied technologies and the resultant problems. Characteristically the treatment temperature is very wide-ranging from less than 10 °C to higher than 26 °C. Influent quality proved to be very variable regarding both the organic matter (typical COD concentration range 600-1,200 mg l(-1)) and the nitrogen content (typical NH(4)-N concentration range 40-80 mg l(-1)). As a consequence, significant differences have been found in the carbon availability for denitrification from site to site. Forty two percent of the influents proved to lack an appropriate carbon source. As a consequence of carbon deficiency as well as technologies designed and/or operated with non-efficient denitrification, rising sludge in the secondary clarifiers typically occurs especially in summer. In case studies, application of intermittent aeration, low DO reactors, biofilters and anammox processes have been evaluated, as different biological nitrogen removal technologies. With low carbon source availability, favoring denitrification over enhanced biological phosphorus removal has led to an improved nitrogen removal.

  17. Poultry slaughterhouse wastewater treatment plant for high quality effluent.

    Science.gov (United States)

    Del Nery, V; Damianovic, M H Z; Moura, R B; Pozzi, E; Pires, E C; Foresti, E

    2016-01-01

    This paper assesses a wastewater treatment plant (WWTP) regarding the technology used, as well as organic matter and nutrient removal efficiencies aiming to optimize the treatment processes involved and wastewater reclamation. The WWTP consists of a dissolved air flotation (DAF) system, an upflow anaerobic sludge blanket (UASB) reactor, an aerated-facultative pond (AFP) and a chemical-DAF system. The removal efficiencies of chemical oxygen demand (COD) (97.9 ± 1.0%), biochemical oxygen demand (BOD) (98.6 ± 1.0%) and oil and grease (O&G) (91.1 ± 5.2%) at the WWTP, the nitrogen concentration of 17 ± 11 mg N-NH3 and phosphorus concentration of 1.34 ± 0.93 mg PO4(-3)/L in the final effluent indicate that the processes used are suitable to comply with discharge standards in water bodies. Nitrification and denitrification tests conducted using biomass collected at three AFP points indicated that nitrification and denitrification could take place in the pond.

  18. Energy efficient urban wastewater treatment using Galdieria sulphuraria

    Science.gov (United States)

    Selvaratnam, Thinesh

    This dissertation research was undertaken to develop and validate the fundamentals of a photosynthetically oxygenated waste to energy recovery (POWER) system that can potentially render urban wastewater treatment energy-positive and sustainable. Experiments conducted in the first phase of the studies demonstrated that, Galdieria sulphuraria can be cultivated in primary-settled urban wastewater, achieving high nutrient removal efficiencies at removal rates comparable to other strains. In the lab scale reactors, the strain achieved ammoniacal-nitrogen removals greater than 95%; and phosphate removals greater than 96% in 7 days. Biomass yield in these experiments averaged 27.42 g biomass per g nitrogen removed while similar data reported in the literature averaged 25.75 g biomass per g nitrogen. The high biomass yield recorded under laboratory conditions as well as the high areal productivity achieved under outdoor conditions in closed photobioreactors, hold promise for Galdieria sulphuraria as a preferred strain for use in the POWER system. Growth studies conducted in the second phase of the research with the aqueous product of hydrothermal liquefaction of algal biomass confirmed that Galdieria sulphuraria could be grown at rates comparable to that in the baseline artificial medium. This study confirmed another premise of the POWER system that recycling of the aqueous product of hydrothermal liquefaction could increase biomass productivity and net energy yield: biomass productivity recorded with initial N-NH3 level of 80 mg L-1 and 20 mg L-1 of phosphate was 0.241 g L-1 d -1 whereas, that with initial N-NH3 level of 40 mg L -1 and 10 mg L-1 of phosphate typical of primary settled wastewater was 0.201 g L-1 d-1. Heterotrophic growth of Galdieria sulphuraria cultivated in the aqueous product of hydrothermal liquefaction conducted over a range of temperatures (180 to 300°C) and dilutions showed that biomass productivity recorded with recycled AP was greater than that

  19. A new approach to implementing decentralized wastewater treatment concepts.

    Science.gov (United States)

    van Afferden, Manfred; Cardona, Jaime A; Lee, Mi-Yong; Subah, Ali; Müller, Roland A

    2015-01-01

    Planners and decision-makers in the wastewater sector are often confronted with the problem of identifying adequate development strategies and most suitable finance schemes for decentralized wastewater infrastructure. This paper research has focused on providing an approach in support of such decision-making. It is based on basic principles that stand for an integrated perspective towards sustainable wastewater management. We operationalize these principles by means of a geographic information system (GIS)-based approach 'Assessment of Local Lowest-Cost Wastewater Solutions'--ALLOWS. The main product of ALLOWS is the identification of cost-effective local wastewater management solutions for any given demographic and physical context. By using universally available input data the tool allows decision-makers to compare different wastewater solutions for any given wastewater situation. This paper introduces the ALLOWS-GIS tool. Its application and functionality are illustrated by assessing different wastewater solutions for two neighboring communities in rural Jordan.

  20. Design considerations for wastewater treatment by reverse osmosis.

    Science.gov (United States)

    Bartels, C R; Wilf, M; Andes, K; Iong, J

    2005-01-01

    Reverse Osmosis is finding increasing use for the treatment of municipal and industrial wastewaters due to the growing demand for high quality water in large urban areas. The growing success of membranes in this application is related to improved process designs and improved membrane products. Key factors which have been determined to result in successful operation of large-scale plants will be discussed. Factors which play a key role in the use of RO membranes include ultra or microfiltration pretreatment, low fouling membranes, flux rate, recovery and control of fouling and scaling. In particular, high flux rates can be used when UF or MF pretreatment is used. These technologies remove most of the suspended particles that would normally cause heavy fouling of lead elements. Typically, fluxes in the range of 17-21 lmh lead to cleaning frequencies in the range of 3-4 months. By combining the use of membrane pretreatment and chloramination of the feed water through chlorine addition, two of the primary sources of RO membrane fouling can be controlled. The use of chloramine has become a proven means to control biofouling in a membrane for wastewater applications. The other significant problems for RO membranes result from organics fouling by dissolved organics and scaling due to saturation of marginally soluble salts. The former can be a significant problem for membranes, due to the strong attraction forces. To some extent, these can be mitigated by making the membrane surface more hydrophilic or changing the charge of the membrane surface. To minimize fouling, many plants are turning to low fouling membranes. Extensive studies have demonstrated that the membrane surface is hydrophilic, neutrally charged over a broad pH range, and more resistant to organic adsorption. Also, an analysis of the potential scaling issues will be reviewed. In particular, calcium phosphate has been found to be one of the key scalants that will limit RO system recovery rate. Calcium

  1. Application of Advanced Oxidation Processes to Wastewater Treatment

    OpenAIRE

    Lucas, Marco Paulo Gomes de Sousa

    2009-01-01

    Tese de Doutoramento em Química This research contributes to the study and development of advanced oxidation technologies applied to two different problematic wastewaters: textile and winery wastewaters. In this dissertation the factors that influence the oxidation of the model compound of textile wastewaters, the azo dye Reactive Black 5 (RB5), and of the winery wastewaters were investigated. The first part of the thesis experimental work is dedicated to the decolorization of RB5 solut...

  2. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    Directory of Open Access Journals (Sweden)

    Szeląg Bartosz

    2017-01-01

    Full Text Available In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP. The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline method, artificial neural networks (ANN of the multilayer perceptron type combined with the classification model (SOM and cascade neural networks (CNN. The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.

  3. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    Science.gov (United States)

    Szeląg, Bartosz; Barbusiński, Krzysztof; Studziński, Jan; Bartkiewicz, Lidia

    2017-11-01

    In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline) method, artificial neural networks (ANN) of the multilayer perceptron type combined with the classification model (SOM) and cascade neural networks (CNN). The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.

  4. Modelling of an oil refinery wastewater treatment plant.

    Science.gov (United States)

    Pinzón Pardo, A L; Brdjanovic, D; Moussa, M S; López-Vázquez, C M; Meijer, S C F; Van Straten, H H A; Janssen, A J H; Amy, G; Van Loosdrecht, M C M

    2007-11-01

    The Activated Sludge Model No. 3 (ASM3) and Dutch calibration guidelines (STOWA) were evaluated in the modelling of an activated sludge system treating effluents from a large oil refinery. The plant was designed to remove suspended solids, organic matter and nitrogen from wastewater at an average water temperature of 34 degrees C. The plant consists of three tanks in series; the first two tanks operate in on-off aeration mode with pure oxygen for N-removal, whilst extra methanol is added for the denitrification, and the third tank is maintained as constantly aerobic. Calibration was performed based on a simplified influent characterisation and extra batch experiments (nitrification and denitrification). With the adjustment of only four parameters the model proved capable of describing the performance of the plant concerning both the liquid phase and the biomass. The model was further used to analyse possible modifications in the plant layout and optimize operational conditions in order to reduce operating costs. Modelling results indicated reduction in methanol dosage by implementing an idle time between aerobic and anoxic phases. In this way, surplus methanol was prevented from entering during the aerobic period. Moreover, simulations showed that the most cost-effective option regarding the denitrification process was a combined pre-post-denitrification scheme, without the need for enlarging existing basins. It can be concluded that although ASM3 and STOWA guidelines were originally developed for domestic wastewater application at a temperature range of 10 to 20 degrees C, they proved well capable of describing the performance of an oil refinery wastewater treatment plant operating at 34 degrees C. Moreover, the plant model proved useful for optimization of the plant performance regarding operational costs.

  5. Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment.

    Science.gov (United States)

    Rodriguez, Jackson; Stopić, Srećko; Krause, Gregor; Friedrich, Bernd

    2007-11-01

    Electrocoagulation (EC) may be a potential answer to environmental problems dealing with water reuse and rational waste management. The aim of this research was to assess the feasibility of EC-process for industrial contaminated effluents from copper production, taking into consideration technical and economical factors. EC-technology claims to offer efficient removal rates for most types of wastewater impurities at low power consumption and without adding any precipitating agents. Real wastewater from Saraka stream with high concentrations of heavy metals was provided by RTB-BOR, a Serbian copper mining and smelting complex. Runs were performed on a 10 l EC-reactor using aluminum plates as sacrificial electrodes and powered by a 40 A supply unit. Results concerning key factors like pH, conductivity and power consumption were measured in real time. Analysis of dissolved metal concentrations before and after treatment were carried out via ICP-OES and confirmed by an independent test via AAS. Several aspects were taken into account, including current density, conductivity, interfacial resistivity and reactor settings throughout the runs, in order to analyze all possible factors playing a role in neutralization and metal removal in real industrial wastewater. Electrode configurations and their effects on energy demand were discussed and exemplified based on fundamentals of colloidal and physical chemistry. Based on experimental data and since no precipitating agents were applied, the EC-process proved to be not only feasible and environmentally-friendly, but also a cost-effective technology The EC-technology provides strategic guidelines for further research and development of sustainable water management processes. However, additional test series concerning continuous operation must be still performed in order to get this concept ready for future large-scale applications.

  6. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    International Nuclear Information System (INIS)

    Mok, Young Sun; Ahn, Hyun Tae; Kim, Joeng Tai

    2007-01-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly

  7. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  8. Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview

    Directory of Open Access Journals (Sweden)

    Francesca Giaccherini

    2017-06-01

    Full Text Available In this study the carbon footprint and power demand of tannery wastewater treatment processes for the largest bovine leather producing regions were quantified and analysed. Moreover, we present a case in which we benchmarked the carbon footprint and energy demand analysis of tannery wastewater treatment to municipal wastewater treatment. We quantified the greenhouse gas direct and indirect emissions from tannery wastewater treatment facilities. Our results show that the total CO2-equivalent emission for tannery wastewater treatment is 1.49 103 tCO2,eq d−1. Moreover, the energy intensity of tannery wastewater treatment processes are evaluated at 3.9 kWh kg−1bCOD,removed, compared to 1.4 kWh kg−1bCOD,removed of municipal wastewater treatment processes. Based on this work in the field of tannery wastewater treatment, an effort to innovate suitable treatment trains and technologies has the strong potential to reduce the carbon footprint.

  9. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    2016-12-01

    Full Text Available Municipal wastewater treatment plants consume much energy and manpower, are expensive to run, and generate sludge and treated wastewater whilst removing pollutants through specific treatment regimes. The sustainable development of the wastewater treatment industry is therefore challenging, and a comprehensive evaluation method is needed for assessing the sustainability of different wastewater treatment processes, for identifying the improvement potential of treatment plants, and for directing policymakers, management measures and development strategies. This study established improved evaluation indicators based on Emergy Analysis that place total wastewater, resources, energy, economic input and emission of pollutants on the same scale compared to the traditional indicators. The sustainability of four wastewater treatment plants and their associated Anaerobic-Anoxic-Oxic (A2O, Constant Waterlevel Sequencing Batch Reactor (CWSBR, Cyclic Activated Sludge Technology (CAST and Biological Aerated Filter (BAF treatment processes were assessed in a city in northeast China. Results show that the CWSBR process was the most sustainable wastewater treatment process according to its largest calculated value of Improved Emergy Sustainable Index (2.53 × 100, followed by BAF (1.60 × 100, A2O (9.78 × 10−1 and CAST (5.77 × 10−1. Emergy Analysis provided improved indicators that are suitable for comparing different wastewater treatment processes.

  10. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater.

    Science.gov (United States)

    Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak

    2017-03-01

    In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.

  11. The sustainable utilization of malting industry wastewater biological treatment sludge

    Science.gov (United States)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  12. Evaluation of photocatalytic treatment of industrial wastewater using solar energy

    International Nuclear Information System (INIS)

    Restrepo, Gloria Maria; Rios, Luis A; Marin, Juan Miguel; Montoya, Juan Felipe; Velasquez, Jorge Armando

    2008-01-01

    Wastewater of a chemical industry was treated in a photocatalytic process, using a solar photo-reactor made of glass corrugated flat plates that had been set in cascade and using Titanium Dioxide (Degussa p-25) as photocatalyst that is supported on each one of them in film form. the influence of three variables in the decontamination efficiency were studied: amount of H 2 O 2 , volume of water and amount of dispersed TiO 2 , by means of the accomplishment of fifteen experiments carried out in discontinuous operation mode by a period of 5 hours for each test. The obtained results allow establishing that the FH is a viable technology of treatment like previous stage to a biological treatment since percentage of reduction in the DQO varies between 6 and 46% and was managed to reach a biodegradable effluent in all tests

  13. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities.

    Science.gov (United States)

    Jamaly, Sanaa; Giwa, Adewale; Hasan, Shadi Wajih

    2015-11-01

    Oily wastewater poses significant threats to the soil, water, air and human beings because of the hazardous nature of its oil contents. The objective of this review paper is to highlight the current and recently developed methods for oily wastewater treatment through which contaminants such as oil, fats, grease, and inorganics can be removed for safe applications. These include electrochemical treatment, membrane filtration, biological treatment, hybrid technologies, use of biosurfactants, treatment via vacuum ultraviolet radiation, and destabilization of emulsions through the use of zeolites and other natural minerals. This review encompasses innovative and novel approaches to oily wastewater treatment and provides scientific background for future work that will be aimed at reducing the adverse impact of the discharge of oily wastewater into the environment. The current challenges affecting the optimal performance of oily wastewater treatment methods and opportunities for future research development in this field are also discussed. Copyright © 2015. Published by Elsevier B.V.

  14. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan

    2013-10-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  15. Treatment of trace organic compounds in common onsite wastewater systems

    Science.gov (United States)

    Robert Siegrist,; Conn, Kathleen E.

    2015-01-01

    Onsite wastewater systems (OWS) have historically been relied on to treat conventional pollutants and pathogens in a fashion similar to that expected from centralized wastewater systems. However, based on the occurrence of, and potential effects from, contaminants of emerging concern in wastewaters, OWS as well as centralized systems need to account for these compounds in system design and use. One group of contaminants involves organic compounds such as those associated with consumer product chemicals and pharmaceuticals, which are collectively referred to as trace organic compounds (TOrCs) due to their very low levels (e.g., ng/L to ug/L) relative to other pollutants. The question being confronted today is how best to account for TOrCs in onsite system design and use while also achieving other goals such as system simplicity, limited operation and maintenance requirements, low cost, and sustainability. In contrast to conventional pollutants such as nutrients and pathogens which have specific and achievable treatment goals, there are currently no enforceable treatment standards for TOrCs, which often have non-traditional toxicological endpoints (i.e. endocrine disruption). As highlighted in this paper, there are a large number of TOrCs that can be present in OWS and they have different properties, can be present at different frequencies of occurrence and concentrations, and have different susceptibilities to treatment in OWS. In general, based on the studies summarized in this paper, TOrCs normally should not require additional considerations beyond those for conventional pollutants and pathogens (e.g., nitrogen or bacteria and virus) during design and use of OWS. That said, there are situations where TOrCs could be a serious concern warranting special consideration in system design and use. In this paper, the frequency of occurrence of TOrCs and the range of concentrations encountered are highlighted. An evolving approach is outlined that could help assess the

  16. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review

    Directory of Open Access Journals (Sweden)

    Lu Haifeng

    2017-01-01

    Full Text Available Using microalgae to treat wastewater has received growing attention in the world because it is regarded as a novel means for wastewater treatment. It is commonly recognized that large-scale cultivation and commercial application of microalgae are limited by the development of photobioreactor (PBR. Although there are a lot of PBRs for microalgae pure cultivation which used culture medium, specialized PBRs designed for wastewater treatment are rare. The composition of wastewater is quite complicated; this might cause a very different photosynthetic effect of microalgae compared to those grown in a pure cultivation medium. Therefore, PBRs for wastewater treatment need to be redesigned and improved based on the existing PBRs that are used for microalgae pure cultivation. In this review, different PBRs for microalgae cultivation and wastewater treatment are summarized. PBR configurations, PBR design parameters and types of wastewater are presented. In addition, the wastewater treatment efficiency and biomass productivity were also compared among each type of PBRs. Moreover, some other promising PBRs are introduced in this review, and a two-stage cultivation mode which combines both closed and open system is discussed as well. Ultimately, this article focuses on current problems and gives an outlook for this field, aiming at providing a primary reference for microalgae cultivation by using wastewater.

  17. Agricultural use of treated wastewater: the need for a paradigm shift in sanitation & treatment

    NARCIS (Netherlands)

    Lier, van J.B.; Huibers, F.P.

    2004-01-01

    Appropriate treated domestic sewage can be regarded as iseal for irrigation and fertilization purposes, particularly in the (semi)arid climate region. This contribution focuses on: 1) pathogens, various levels of interception; 2) basic wastewater treatment; 3) wastewater treatment for effluent use

  18. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    Science.gov (United States)

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  19. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  20. Inter-Municipal Cooperation For Wastewater Treatment: Case studies from Israel

    NARCIS (Netherlands)

    Hophmayer Tokich, Sharon; Kliot, Nurit

    2008-01-01

    Since the beginning of the 1990s, local authorities in Israel have been engaged in promoting advanced Wastewater Treatment Plant (WWTP) projects throughout the country, resulting in the “wastewater treatment revolution” of the 1990s. These achievements are extremely important in the water-scarce

  1. Operation of Wastewater Treatment Plants. Volume 1. A Field Study Training Program. Third Edition. Revised.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    The purpose of this wastewater treatment field study training program is to: (1) develop new qualified wastewater treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  2. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    Science.gov (United States)

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  3. Environmental risk assessment of Polish wastewater treatment plant activity.

    Science.gov (United States)

    Kudłak, Błażej; Wieczerzak, Monika; Yotova, Galina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek

    2016-10-01

    Wastewater treatment plants (WWTPs) play an extremely important role in shaping modern society's environmental well-being and awareness, however only well operated and supervised systems can be considered as environmentally sustainable. For this reason, an attempt was undertaken to assess the environmental burden posed by WWTPs in major Polish cities by collecting water samples prior to and just after wastewater release points. Both classical and biological methods (Microtox(®), Ostracodtoxkit F™ and comet assay) were utilized to assess environmental impact of given WWTP. Interestingly, in some cases, water quality improvement indicated as a toxicity decrement toward one of the bio-indicating organisms makes water worse for others in the systems. This fact is particularly noticeable in case of Silesian cities where heavy industry and high population density is present. It proves that WWTP should undergo individual evaluation of pollutant removal efficiency and tuned to selectively remove pollutants of highest risk to surrounding regional ecosystems. Biotests again proved to be an extremely important tool to fully assess the impact of environmental stressors on water bodies receiving effluents from WWTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Decentralized wastewater treatment using passively aerated biological filter.

    Science.gov (United States)

    Abou-Elela, Sohair I; Hellal, Mohamed S; Aly, Olfat H; Abo-Elenin, Salah A

    2017-10-13

    This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m 2 /m 3 /d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p filter systems.

  5. A novel integrated treatment system for coal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Srinivasan, K.R.

    1992-01-01

    The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and heavy metals present in coal conversion wastewaters. To remove and recover heavy metals from wastewaters, four different types of surfactant-clay complexes have been prepared using hectored or montmorillonite as the base clays. The adsorbent is prepared by first coating the clay surface, upto a monolayer, with a cationic surfactant, CBDA, to which an amine, (DT), or a carboxylic acid (Palmitic acid, PA) is anchored using hydrophobic effect to form a mixed bilayer. Such an arrangement is expected to locate the functional groups in metal adsorption at the solid-solution interface. Complexes based on hectored are shown to adsorb Cu{sup 2+} ions more strongly than the ones based on montmorillonite. The rate of adsorption of Cu{sup 2+} ions is quite rapid and the adsorbed amount levels off in less than 2 hrs. The optimum pH for metal adsorption is around 6.5 and the amount of metal adsorbed declines sharply on the lower pH side of the pH optimum, suggesting that removal and recovery of adsorbed metal ions can be effected by a slight pH shift.

  6. Vegetable coagulants as alternative for treatment of wastewater in Mexico

    Directory of Open Access Journals (Sweden)

    Servando López-León

    2017-11-01

    Full Text Available This review addresses the various properties of natural coagulants, water, the chemical substance essential for life and the ideal solvent for a large number of compounds, it is commonly used with domestic, commercial and industrial purposes. After its use, it presents sewage to be retired before use it once again. To remove pollutant, water is subject to different physical, chemical and biological processes. Here, the clarification process uses aluminum and iron materials to remove the solids present; these materials are reported as health hazardous and toxic. In Mexico, regulatory frame work stablish that treated wastewater should do not exceed 0.2 mg/L of aluminum even though has been reported an increased risk of Alzheimer's in populations when water exceeds 0.1 mg/L. Natural coagulants have showed coagulation properties when are used in the clarification process, proven its advantages over traditional ones; such as low cost, good coagulant properties and safe health and non-toxic properties. Here, we enlist some vegetable species as alternatives to the traditional based on aluminum and iron. Additionally, these species are known to have origins on Mexico or being present extensively in the territory, making possible to think about them as alternative coagulants in the clarification process of the wastewater treatment process.

  7. Development of large bore superconducting magnet for wastewater treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui Ming; Xu, Dong; Shen, Fuzhi; Zhang, Hengcheng; Li, Lafeng [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China)

    2017-03-15

    Water issue, especially water pollution, is a serious issue of 21st century. Being an significant technique for securing water resources, superconducting magnetic separation wastewater system was indispensable. A large bore conduction-cooled magnet was custom-tailored for wastewater treatment. The superconducting magnet has been designed, fabricated and tested. The superconducting magnet was composed of NbTi solenoid coils with an effective horizontal warm bore of 400 mm and a maximum central field of 2.56T. The superconducting magnet system was cooled by a two-stage 1.5W 4K GM cryocooler. The NbTi solenoid coils were wound around an aluminum former that is thermally connected to the second stage cold head of the cryocooler through a conductive copper link. The temperature distribution along the conductive link was measured during the cool-down process as well as at steady state. The magnet was cooled down to 4.8K in approximately 65 hours. The test of the magnetic field and quench analysis has been performed to verify the safe operation for the magnet system. Experimental results show that the superconducting magnet reached the designed magnetic performance.

  8. Temporal dynamics of antibiotics in wastewater treatment plant influent.

    Science.gov (United States)

    Coutu, Sylvain; Wyrsch, V; Wynn, H K; Rossi, L; Barry, D A

    2013-08-01

    A yearlong field experimental campaign was conducted to reveal time scales over which antibiotic fluxes vary in the influent of a wastewater treatment plant (WTP). In particular, sampling was carried out to ascertain the amplitudes of monthly, daily and hourly fluctuations of several antibiotics. A total of 180 samples was collected at the entrance of a WTP in Lausanne, Switzerland. Sample concentrations were multiplied by flow rate to obtain monthly, daily and hourly mass fluxes of six antibiotics (trimethoprim, norfloxacin, ciprofloxacin, ofloxacin, clindamycin and metronidazole). Seasonality in mass fluxes was observed for all substances, with maximum values in winter being up to an order of magnitude higher than in summer. The hourly measurements of the mass flux of antibiotics were found to have a period of 12h. This was due to peaks in toilet use in the morning and early evening. In particular, the morning peak in flushing coincided with high concentrations (and hence high mass fluxes) due to overnight accumulation of substances in urine. However, little variation was observed in the average daily flux. Consequently, fluctuations in mass fluxes of antibiotics were mainly evident at the monthly and hourly time scales, with little variation on the day-week time scale. These results can aid in optimizing removal strategies and future sampling campaigns focused on antibiotics in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K

    2011-05-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L-1-135 mg L-1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d-1-1780 mg d-1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency. © 2011.

  10. Modelling of biological nitrogen removal during treatment of piggery wastewater.

    Science.gov (United States)

    Béline, F; Boursier, H; Guiziou, F; Paul, E

    2007-01-01

    During this study, a mathematical model simulating piggery wastewater treatment was developed, with the objective of process optimisation. To achieve this, the effect of temperature and free ammonia concentration on the nitrification rate were experimentally studied using respirometry. The maximum growth rates obtained were higher for ammonium-oxidising biomass than for nitrite-oxidising biomass for the temperatures above 20 degrees C; values at 35 degrees C were equal to 1.9 and 1.35 day(-1), respectively. No inhibition of nitrification was observed for free ammonia concentrations up to 50 mgN/L. Using these data with others experimental data obtained from a pilot-scale reactor to treat piggery wastewater, a model based on a modified version of the ASM1 was developed and calibrated. In order to model the nitrite accumulation observed, the ASM1 model was extended with a two-step nitrification and denitrification including nitrite as intermediate. Finally, the produced model called PiWaT1 demonstrated a good fit with the experimental data. In addition to the temperature, oxygen concentration was identified as an important factor influencing the nitrite accumulation during nitrification. Even if some improvements of the model are still necessary, this model can already be used for process improvement.

  11. Utilization of Waste Materials for Microbial Carrier in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    H. T. Le

    2016-01-01

    Full Text Available This research focused on the ammonium-nitrogen (NH4-N removal from the domestic wastewater using the attached growth reactors. Two types of waste material of corncob (biodegradable material and concrete (nonbiodegradable material were used as the carrier for microorganisms’ attachment. During operation, both reactors achieved absolutely high performance of ammonium removal (up to 99% and total nitrogen removal (up to 95%. The significant advantage of corncob carrier was that the corncob was able to be a source of carbon for biological denitrification, leading to no external carbon requirement for operating the system. However, the corncob caused an increasing turbidity of the effluent. On the other hand, the concrete carrier required the minimal external carbon of 3.5 C/N ratio to reach the good performance. Moreover, a longer period for microorganisms’ adaptation was found in the concrete carrier rather than the corncob carrier. Further, the same physiological and biochemical characteristics of active bacteria were found at the two carriers, which were negative gram, cocci shape, and smooth and white-turbid colony. Due to the effluent quality, the concrete was more appropriate carrier than the corncob for wastewater treatment.

  12. Utilization of Waste Materials for Microbial Carrier in Wastewater Treatment.

    Science.gov (United States)

    Le, H T; Jantarat, N; Khanitchaidecha, W; Ratananikom, K; Nakaruk, A

    2016-01-01

    This research focused on the ammonium-nitrogen (NH4-N) removal from the domestic wastewater using the attached growth reactors. Two types of waste material of corncob (biodegradable material) and concrete (nonbiodegradable material) were used as the carrier for microorganisms' attachment. During operation, both reactors achieved absolutely high performance of ammonium removal (up to 99%) and total nitrogen removal (up to 95%). The significant advantage of corncob carrier was that the corncob was able to be a source of carbon for biological denitrification, leading to no external carbon requirement for operating the system. However, the corncob caused an increasing turbidity of the effluent. On the other hand, the concrete carrier required the minimal external carbon of 3.5 C/N ratio to reach the good performance. Moreover, a longer period for microorganisms' adaptation was found in the concrete carrier rather than the corncob carrier. Further, the same physiological and biochemical characteristics of active bacteria were found at the two carriers, which were negative gram, cocci shape, and smooth and white-turbid colony. Due to the effluent quality, the concrete was more appropriate carrier than the corncob for wastewater treatment.

  13. Treatment of real paracetamol wastewater by fenton process

    Directory of Open Access Journals (Sweden)

    Dalgic Gamze

    2017-01-01

    Full Text Available The study investigated the pretreatment of real paracetamol (PCT wastewater of a pharmaceutical industry by Fenton process. At the best experimental conditions (COD/H2O2 = 1/1, Fe+2/H2O2 = 1/70, settling method:centrifuging, pH 6 at settling step, 92.7, 92.7, 95.5, 99.1, 99.9 and 99.4% of chemical oxygen demand (COD, total organic carbon (TOC, 5-day biological oxygen demand (BOD5, PCT, para-amino phenol (PAP and aniline were removed, respectively. Changes in the concentrations of these parameters were also investigated for both oxidation and settling steps of Fenton process. It was found that COD and TOC were removed at the settling step (precipitation whereas PCT, PAP and aniline were removed at the oxidation step. Mass balance calculations were also studied to show the mass distributions of COD in different phases (gas + foam, effluent and sludge. Fenton process was found as an effective method for the pretreatment of real PCT wastewater for discharging in a determined collective treatment plant.

  14. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.

  15. Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    KAUST Repository

    Jahangir, Daniyal

    2017-12-01

    Membrane fouling, which is caused by deposition/adsorption of foulants on the surface or within membrane pores, still remains a bottleneck that hampers the widespread application of membrane bioreactor (MBR) technology for wastewater treatment. Recently membrane surface modification has proved to be a useful method in water/wastewater treatment to improve the surface hydrophilicity of membranes to obtain higher water fluxes and to reduce fouling. In this study, membrane modification was investigated by depositing a thin film of same thickness of TiO2 on the surface of an ultrafiltration alumina membrane. Various thin-film deposition (TFD) methods were employed, i.e. electron-beam evaporation, sputter and atomic layer deposition (ALD), and a comparative study of the methods was conducted to assess fouling inhibition performance in a lab-scale anaerobic MBR (AnMBR) fed with synthetic municipal wastewater. Thorough surface characterization of all modified membranes was carried out along with clean water permeability (CWP) tests and fouling behavior by bovine serum albumin (BSA) adsorption tests. The study showed better fouling inhibition performance of all modified membranes; however the effect varied due to different surface characteristics obtained by different deposition methods. As a result, ALD-modified membrane showed a superior status in terms of surface characteristics and fouling inhibition performance in AnMBR filtration tests. Hence ALD was determined to be the best TFD method for alumina membrane surface modification for this study. ALD-modified membranes were further characterized to determine an optimum thickness of TiO2-film by applying different ALD cycles. ALD treatment significantly improved the surface hydrophilicity of the unmodified membrane. Also ALD-TiO2 modification was observed to reduce the surface roughness of original alumina membrane, which in turn enhanced the anti-fouling properties of modified membranes. Finally, a same thickness of ALD

  16. External and internal sources which inhibit the nitrification process in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sinkjær, O.; Bøgebjerg, P.; Grüttner, H.

    1996-01-01

    In connection with the upgrading of the two largest wastewater treatment plants in the Copenhagen area to nutrient removal special attention has been paid to the nitrification process regarding inhibition effects. Inhibitory substances in the wastewater could be identified by simple batch tests......, and the long-term effects on the nitrification process were tested in pilot plants or at full-scale. A distinction could be made between effects produced by wastewater from external sources in the catchment area and internally circulated flows in the wastewater treatment plant. Results from programmes...

  17. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    OpenAIRE

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; La Cour Jansen, Jes; Jönsson, Karin

    2016-01-01

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps as state-of-the-art technologies for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forwar...

  18. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  19. Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

    Science.gov (United States)

    This report presents the opportunities for combined heat and power (CHP) applications in the municipal wastewater treatment sector, and it documents the experiences of the wastewater treatment facility (WWTF) operators who have employed CHP.

  20. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Las Casas, Alexandre

    2004-01-01

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)