WorldWideScience

Sample records for beam test calibration

  1. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  2. The space telescope NINA: results of a beam test calibration

    CERN Document Server

    Bidoli, V; Pascale, M P D; Morselli, A; Furano, G; Picozza, P; Scoscini, A; Sparvoli, R; Barbiellini, G; Bonvicini, W; Cirami, R; Schiavon, Paolo; Vacchi, A; Zampa, N; Ambriola, M; Bellotti, R; Cafagna, F; Ciacio, F; Castellano, M; Circella, M; Marzo, C D; Bartalucci, S; Giuntoli, S; Ricci, M; Papini, P; Piccardi, S; Spillantini, P; Bakaldin, A; Batishev, A; Galper, A M; Koldashov, S; Korotkov, M; Mikhailov, V; Murashov, A; Voronov, S; Boezio, M

    1999-01-01

    In June 1998 the telescope NINA will be launched in space on board of the Russian satellite Resource-01 n.4. The main scientific objective of the mission is the study of the anomalous, galactic and solar components of the cosmic rays in the energy interval 10-200 MeV/n. The core of the instrument is a silicon detector whose performances have been tested with a particle beam at the GSI Laboratory in Germany in 1997; we report here on the results obtained during the beam calibration.

  3. Tests of Local Hadron Calibration approaches in ATLAS Combined Beam Tests

    CERN Document Server

    Pospelov, G; The ATLAS collaboration

    2010-01-01

    The three Atlas calorimeter systems in the region of the forward crack at |eta| = 3.2 in the nominal Atlas setup and a typical section of the two barrel calorimeters at |eta| = 0.45 of Atlas have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap testbeam. The local hadronic calibration approach as used in the full Atlas setup has been applied to the endcap test beam data. An extension of it using layer correlations has been tested on the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to MC simulations are presented.

  4. Tests of Local Hadron Calibration Approaches in ATLAS Combined Beam Tests

    CERN Document Server

    Grahn, KJ; The ATLAS collaboration; Pospelov, G

    2010-01-01

    Three ATLAS calorimeters in the region of the forward crack at $|eta| = 3.2$ in the nominal ATLAS setup and a typical section of the two barrel calorimeters at $|eta| = 0.45$ of ATLAS have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap testbeam. The local hadronic calibration approach as used in the full Atlas setup has been applied to the endcap testbeam data. An extension of it using layer correlations has been tested with the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to Monte-Carlo simulations are presented.

  5. A Layer Correlation Technique for ATLAS Calorimetry Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Carli, T; Spanò, F; Speckmayer, P

    2008-01-01

    A method for calibrating the response of a segmented calorimeter to hadrons is developed. The ansatz is that information on longitudinal shower fluctuations gained from a principal component analysis of the layer energy depositions can improve energy resolution by correcting for hadronic invisible energy and dead material losses: projections along the eigenvectors of the correlation matrix are used as input for the calibration. The technique is used to reconstruct the energy of pions impinging on the ATLAS calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. Simulated Monte Carlo events are used to derive corrections for invisible energy lost in nuclear reactions and in dead material in front and in between the calorimeters. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the resolution is improved by about 20%.

  6. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    Science.gov (United States)

    Abat, E.; Abdallah, J. M.; Addy, T. N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T. P. A.; Aleksa, M.; Alexa, C.; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Atkinson, T.; Baines, J.; Baker, O. K.; Banfi, D.; Baron, S.; Barr, A. J.; Beccherle, R.; Beck, H. P.; Belhorma, B.; Bell, P. J.; Benchekroun, D.; Benjamin, D. P.; Benslama, K.; Bergeaas Kuutmann, E.; Bernabeu, J.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V. G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Broklova, Z.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeáns Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M. V.; Catinaccio, A.; Cauz, D.; Cavalli, D.; Cavalli Sforza, M.; Cavasinni, V.; Cetin, S. A.; Chen, H.; Cherkaoui, R.; Chevalier, L.; Chevallier, F.; Chouridou, S.; Ciobotaru, M.; Citterio, M.; Clark, A.; Cleland, B.; Cobal, M.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Correard, S.; Corso Radu, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cuneo, S.; Cwetanski, P.; Da Silva, D.; Dam, M.; Dameri, M.; Danielsson, H. O.; Dannheim, D.; Darbo, G.; Davidek, T.; De, K.; Defay, P. O.; Dekhissi, B.; Del Peso, J.; Del Prete, T.; Delmastro, M.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobos, D.; Dobson, M.; Dolgoshein, B. A.; Dotti, A.; Drake, G.; Drasal, Z.; Dressnandt, N.; Driouchi, C.; Drohan, J.; Ebenstein, W. L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T. F.; Einsweiler, K.; El Kacimi, M.; Elsing, M.; Emelyanov, D.; Escobar, C.; Etienvre, A. I.; Fabich, A.; Facius, K.; Fakhr-Edine, A. I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O. L.; Fenyuk, A.; Fergusson, D.; Ferrari, P.; Ferrari, R.; Ferreira, B. C.; Ferrer, A.; Ferrere, D.; Filippini, G.; Flick, T.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, M.; Gallop, B. J.; Gameiro, S.; Gan, K. K.; Garcia, R.; Garcia, C.; Gavrilenko, I. L.; Gemme, C.; Gerlach, P.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Goettfert, T.; Golling, T.; Gollub, N.; Gomes, A.; Gomez, M. D.; Gonzalez-Sevilla, S.; Goodrick, M. J.; Gorfine, G.; Gorini, B.; Goujdami, D.; Grahn, K.-J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Grosse-Knetter, J.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Haertel, R.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Harvey, A., Jr.; Hawkings, R. J.; Heinemann, F. E. W.; Henriques Correia, A.; Henss, T.; Hervas, L.; Higon, E.; Hill, J. C.; Hoffman, J.; Hostachy, J. Y.; Hruska, I.; Hubaut, F.; Huegging, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jansen, E.; Jen-La Plante, I.; Johansson, P. D. C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Joseph, J.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P. T.; Kekelidze, G. D.; Kerschen, N.; Kersten, S.; Khomich, A.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T. H.; Klingenberg, R.; Klinkby, E. B.; Kodys, P.; Koffas, T.; Kolos, S.; Konovalov, S. P.; Konstantinidis, N.; Kopikov, S.; Korolkov, I.; Kostyukhin, V.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; Kulchitsky, Y.; Lacasta, C.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Lari, T.; Le Bihan, A.-C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Lester, C. G.; Liang, Z.; Lichard, P.; Liebig, W.; Lipniacka, A.; Lokajicek, M.; Louchard, L.; Lourerio, K. F.; Lucotte, A.; Luehring, F.; Lund-Jensen, B.; Lundberg, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V. P.; Malek, F.; Mandelli, L.; Maneira, J.; Mangin-Brinet, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Garcia, S. Marti i.; Martin, F.; Mathes, M.; Mazzanti, M.; McFarlane, K. W.; McPherson, R.; Mchedlidze, G.; Mehlhase, S.; Meirosu, C.; Meng, Z.; Meroni, C.; Mialkovski, V.; Mikulec, B.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V. A.; Moed, S.; Monnier, E.; Moorhead, G.; Morettini, P.; Morozov, S. V.; Mosidze, M.; Mouraviev, S. V.; Moyse, E. W. J.; Munar, A.; Myagkov, A.; Nadtochi, A. V.; Nakamura, K.; Nechaeva, P.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S. Y.; Newcomer, F. M.; Nikitine, I.; Nikolaev, K.; Nikolic-Audit, I.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parodi, F.; Parsons, J.; Parzhitskiy, S.; Pasqualucci, E.; Passmored, S. M.; Pater, J.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V. D.; Petersen, J.; Petersen, T. C.; Petti, R.; Phillips, P. W.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poppleton, A.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M. J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; RØhne, O.; Ragusa, F.; Rajagopalan, S.; Reeves, K.; Reisinger, I.; Rembser, C.; Bruckman de Renstrom, P. A.; Reznicek, P.; Ridel, M.; Risso, P.; Riu, I.; Robinson, D.; Roda, C.; Roe, S.; Rohne, O.; Romaniouk, A.; Rousseau, D.; Rozanov, A.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Salto, O.; Salvachua, B.; Salzburger, A.; Sandaker, H.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Saraiva, J. G.; Sarri, F.; Sauvage, G.; Says, L. P.; Schaefer, M.; Schegelsky, V. A.; Schiavi, C.; Schieck, J.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schultes, J.; Schwemling, P.; Schwindling, J.; Seixas, J. M.; Seliverstov, D. M.; Serin, L.; Sfyrla, A.; Shalanda, N.; Shaw, C.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J. E.; Smirnov, S. Yu; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V. V.; Spanò, F.; Speckmayer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S. I.; Suk, M.; Szczygiel, R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Tegenfeldt, F.; Teuscher, R.; Thioye, M.; Tikhomirov, V. O.; Timmermans, C. J. W. P.; Tisserant, S.; Toczek, B.; Tremblet, L.; Troncon, C.; Tsiareshka, P.; Tyndel, M.; Karagoez Unel, M.; Unal, G.; Unel, G.; Usai, G.; Van Berg, R.; Valero, A.; Valkar, S.; Valls, J. A.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V. I.; Vasilyeva, L.; Vazeille, F.; Vernocchi, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Virzi, J.; Vivarelli, I.; de Vivie, J. B.; Volpi, M.; Anh, T. Vu; Wang, C.; Warren, M.; Weber, J.; Weber, M.; Weidberg, A. R.; Weingarten, J.; Wells, P. S.; Werner, P.; Wheeler, S.; Wiessmann, M.; Wilkens, H.; Williams, H. H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhelezko, A.; Zhou, N.

    2011-06-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  7. Heavy ion beams from an Alphatross source for use in calibration and testing of diagnostics

    Science.gov (United States)

    Ward, R. J.; Brown, G. M.; Ho, D.; Stockler, B. F. O. F.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.

    2016-10-01

    Ion beams from the 1.7 MV Pelletron Accelerator at SUNY Geneseo have been used to test and calibrate many inertial confinement fusion (ICF) diagnostics and high energy density physics (HEDP) diagnostics used at the Laboratory for Laser Energetics (LLE). The ion source on this accelerator, a radio-frequency (RF) alkali-metal charge exchange source called an Alphatross, is designed to produce beams of hydrogen and helium isotopes. There is interest in accelerating beams of carbon, oxygen, argon, and other heavy ions for use in testing several diagnostics, including the Time Resolved Tandem Faraday Cup (TRTF). The feasibility of generating these heavy ion beams using the Alphatross source will be reported. Small amounts of various gases are mixed into the helium plasma in the ion source bottle. A velocity selector is used to allow the desired ions to pass into the accelerator. As the heavy ions pass through the stripper canal of the accelerator, they emerge in a variety of charge states. The energy of the ion beam at the high-energy end of the accelerator will vary as a function of the charge state, however the maximum energy deliverable to target is limited by the maximum achievable magnetic field produced by the accelerator's steering magnet. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. A Layer Correlation Technique for Pion Energy Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Grahn, Karl-Johan

    2009-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the ATLAS calorimeters were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by about 20% compared to the electromagnetic scale.

  9. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, A., E-mail: antonioanastasi89@gmail.com [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Dipartimento MIFT, Università di Messina, Messina (Italy); Basti, A.; Bedeschi, F.; Bartolini, M. [INFN, Sezione di Pisa (Italy); Cantatore, G. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Trieste, Trieste (Italy); Cauz, D. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Udine, Udine (Italy); Corradi, G. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Dabagov, S. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Lebedev Physical Institute and NRNU MEPhI, Moscow (Russian Federation); Di Sciascio, G. [INFN, Sezione di Roma Tor Vergata, Roma (Italy); Di Stefano, R. [INFN, Sezione di Napoli (Italy); Università di Cassino, Cassino (Italy); Driutti, A. [INFN, Sezione di Trieste e G.C. di Udine (Italy); Università di Udine, Udine (Italy); Escalante, O. [Università di Napoli, Napoli (Italy); Ferrari, C. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, via Moruzzi 1, 56124, Pisa (Italy); Fienberg, A.T. [University of Washington, Box 351560, Seattle, WA 98195 (United States); Fioretti, A.; Gabbanini, C. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Istituto Nazionale di Ottica del C.N.R., UOS Pisa, via Moruzzi 1, 56124, Pisa (Italy); Gioiosa, A. [INFN, Sezione di Lecce (Italy); Università del Molise, Pesche (Italy); Hampai, D. [Laboratori Nazionali Frascati dell' INFN, Via E. Fermi 40, 00044 Frascati (Italy); Hertzog, D.W. [University of Washington, Box 351560, Seattle, WA 98195 (United States); and others

    2017-01-11

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  10. Electron beam test of key elements of the laser-based calibration system for the muon g - 2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anastasi, A.; Basti, A.; Bedeschi, F.; Bartolini, M.; Cantatore, G.; Cauz, D.; Corradi, G.; Dabagov, S.; Di Sciascio, G.; Di Stefano, R.; Driutti, A.; Escalante, O.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Gabbanini, C.; Gioiosa, A.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Karuza, M.; Kaspar, J.; Liedl, A.; Lusiani, A.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Piacentino, G. M.; Raha, N.; Rossi, E.; Santi, L.; Venanzoni, G.

    2017-01-01

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be provided by the laser and the stability of the calibration system components.

  11. Final focus test beam

    International Nuclear Information System (INIS)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  12. A Study of Hadronic Calibration Schemes for Pion Test Beam Data in the ATLAS Forward Calorimeter

    CERN Document Server

    McCarthy, Thomas G

    The ATLAS forward calorimeters constitute a small though important fraction of the detector's calorimeter system, designed in part to accurately and precisely measure the energy of particles and jets of particles originating from the collisions of high-energy protons at the detector's centre. The application of hadronic weights, a practice common in high-energy calorimetry, provides a means of compensation for the fraction of energy which is deposited by particles in the detector, but which is invisible to the detector due to the nature of hadronic showers. Explored here are various schemes of extracting hadronic weights, as well as the application of such weights, based on pion data from the 2003 ATLAS forward calorimeter test beam. During the collection of test beam data, beams of both pions and electrons of known energy, ranging from 10 to 200 GeV, were fired at specific points of an isolated detector in order to understand its response. The improvement in noise-subtracted energy resolution with respect to...

  13. A Layer Correlation Technique for Pion Energy Calibration at the 2004 ATLAS Combined Beam Test (Conference record)

    CERN Document Server

    Grahn, K-J; The ATLAS collaboration

    2009-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the ATLAS calorimeters were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by about 20% compared to the electromagnetic scale.

  14. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  15. Validation of the Local Hadronic Calibration Scheme of ATLAS with Combined Beam Test Data in the End-Cap and Forward Regions of ATLAS

    CERN Document Server

    Kiryunin, A; The ATLAS collaboration

    2011-01-01

    The three Atlas calorimeter systems in the region of the forward crack at |eta| = 3.2 in the nominal Atlas setup have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented. The Local Hadron Calibration developed for the energy reconstruction and the calibration of jets and missing transverse energy in ATLAS, has been validated using data obtained during these beam tests. The analysis has been carried out by using special sets of calibration weights and corrections obtained with the Geant4 simulation of a detailed beam test set-up. The validation itself has been performed by careful studying specific calorimeter performance parameters such as e.g. energy response, energy resolution, shower shapes, cluster energy density as well as different physics lists of the Geant4 simulation.

  16. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Lokajíček, Miloš; Němeček, Stanislav

    2010-01-01

    Roč. 6, č. 6 (2010), P06001/1-P06001/28 ISSN 1748-0221 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimeter methods * calorimeter s * detector modelling and simulations * pattern recognition * cluster finding * calibration and fitting methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.148, year: 2010

  17. Geometry calibration method for a cone-beam CT system.

    Science.gov (United States)

    Yang, Hongkai; Kang, Kejun; Xing, Yuxiang

    2017-05-01

    The positioning accuracy of each component is important to ensure the image quality of cone-beam CT. However, accurate positioning is not easy and requires experience and time. The option is to calibrate the geometric parameters and then plug them into a reconstruction algorithm which is the preferred solution in practice. In this case, the image quality is determined by the accuracy and precision of the calibration method. This work describes a method to independently calibrate an imaging system in each pose (projection angle) for a cone-beam CT with a nonideal circular trajectory. The calibration method uses a phantom with 12 beads on 2 planes that are observed on the radiographic images. This pose-independent calibration method (PIC) can decorrelate the relationships among the geometric parameters so that the parameters can be estimated one-by-one. This simplifies the calibration process. Besides the pose-independent calibration method, this paper also describes an extended calibration method with additional constraints on the system geometry. Both methods are validated with numerical simulations and then experimentally on a practical system with a scanning object loosely supported by rotating wheels. The object rotates during the CT data acquisition. The angular and pose information of the CT system are not accurately known a priori in this case. The numerical simulations and the experiments both provide satisfactory results. The relative error of the calibrated source-to-detector distance in the simulation is less than 0.1%. The errors in the calibrated roll, pitch, and yaw angles are less than 0.04°. A sensitivity study using various bead position uncertainties in random directions shows that the pose-independent calibration method is robust to measurement errors. Tests were also done with a nonideal circular trajectory for further validation. Images reconstructed using the geometric parameters from both the pose-independent and the extended calibration

  18. Test Beam Coordination: 2003 ATLAS Combined Test Beam

    CERN Multimedia

    Di Girolamo, B.

    The 2003 Test Beam Period The 2003 Test Beam period has been very fruitful for ATLAS. In spite of several days lost because of the accelerator problems, ATLAS has been able to achieve many results: FCAL has completed the calibration program in H6 Tilecal has completed the calibration program in H8 Pixel has performed extensive studies with normal and high intensity beams (up to 1.4*108 hadrons/spill) SCT has completed a variety of studies with quite a high number of modules operated concurrently TRT has performed several studies at high, low and very low energy (first use of the new H8 beam in the range 1 to 9 GeV) Muons (MDT,RPC and TGC) have been operating a large setup for about 5 months. The almost final MDT ROD (MROD) has been integrated in the readout and the final trigger electronics for TGC and RPC has been tested and certified with normal beam and during dedicated 40 MHz beam periods. The TDAQ has exploited a new generation prototype successfully and the new Event Filter infrastructure f...

  19. Auto calibration of a cone-beam-CT

    International Nuclear Information System (INIS)

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich

    2012-01-01

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, “Geometric misalignment and calibration in cone-beam tomography,” Med. Phys. 31(12), 3242–3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the

  20. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  1. GTK beam test 2017

    CERN Document Server

    Vostinic, Snezana

    2017-01-01

    The GTK is in operation at NA62 since 2014 and is among the few silicon pixel detectors performing 4D tracking. This summer, a beam test was conducted to study the phenomena determining the detector time resolution. The project described here contributed to the beam test preparation, data taking and data analyses. One of the main goals of the test was to understand the weight field contribution to the detector time resolution. This field is distorting the signal pulse shape at the edge of the pixel. Hence, to study this effect, the position of the hits inside the pixel has to be determined. An external telescope was therefore used for this purpose.

  2. Bench calibration of INDUS-2 beam position indicators

    International Nuclear Information System (INIS)

    Tyagi, Y.; Banerji, Anil; Kotaiah, S.

    2005-01-01

    A third generation synchrotron radiation source of energy 2.5 GeV named INDUS-2 at Centre for Advanced Technology (C.A.T), Indore (M.P) is in the advanced stage of construction. Accurate determination and correction of beam closed orbit in INDUS-2 machine within 100 of microns is a very desirable goal. Bench based calibration of Beam Position Indicators (BPI) play a very important and useful role during initial commissioning of electron machines. To precisely measure transverse position of electron beam in the Indus-2 storage ring, 56 Beam Position Indicators (BPI) will be installed in INDUS-2 machine. Out of 56 Beam Position Indicators 40 are of individual type whereas 16 are integrated with dipole vacuum chamber. The Beam Position Indicators are required to be calibrated before they can be installed. The calibration is done to determine electrical offset with respect to defined mechanical centre, to determine displacement sensitivities as well as non linearity's of BPI. Ideally when beam passes through the geometrical center of BPI's, all electrodes should have same signal strength. However due to different capacitance of electrodes and offset and drift in electronics, the electrical centre (mechanical x, y where all electrodes shows same signal strength) differs from mechanical centre of BPI. A fully automatic calibration system has been developed to carry out the calibration of Beam Position Indicators. A calibration software has been developed which has necessary utilities to process and display calibration data and results. This paper describes the calibration results of Indus-2 BPM. (author)

  3. Testing and calibration through laser radiation and muon beams of the hadron calorimeter in ATLAS detector; Controle et etalonnage par lumiere laser et par faisceaux de muons du calorimetre hadronique a tuiles scintillantes d'ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Garde, V

    2003-10-15

    This study is dedicated to the calibration of the hadronic calorimeter (Tilecal) of the ATLAS detector. This detector will be installed on the LHC collider at CERN. The first data will be taken in 2007. This thesis is divided in two parts. The first part is dedicated to the study of the LASER system. A prototype of the final system was studied. It was shown that the stability and the linearity of this prototype are conform to the specification. Several studies were devoted to measurements which can be done on the Tilecal: The relative gain can be calculated and gives the stability of the Tilecal with a resolution of 0.35 %. The number of photoelectrons per charge unit has been calculated. The linearity was checked for a normal range of functioning and was corrected for the functioning at high charge. In both cases it was shown that the non-linearity was smaller than 0.5 %. The second study is devoted to muons beams in test beam periods. These results are used to find a calibration constant. Several problems which come from the difference of size cells are not totally solved. But the resolution of the calibration constant found by this method cannot exceed 2.3%. (author)

  4. Testing and calibration of geodetic instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2007-06-01

    Full Text Available The problem of testing, verification and calibration of length-scales (electronic rangefinders and angle-scales (geodetic instruments. The calibration of coded levelling rods and the systemic calibration of digital levelling instruments. The calibration on linear comparative baseline in a terrain – the elaboration of measured data. The testing of universal measuring instruments in laboratory conditions - specific problems in testing of instruments with the passive reflection. Some knowledge about the calibration of horizontal circles of angle-measuring geodetic instruments.

  5. Polarisation and precise calibration of the LEP beam energy

    CERN Document Server

    Koutchouk, Jean-Pierre

    2002-01-01

    We report in this article on two issues of precision accelerator physics, performed at the LEP collider, that challenged international collaborations. The first result is an increase of the polarisation degree from an almost vanishing natural level to 50%, opening the way to energy calibration by resonant depolarisation. The second result is a systematic and precise determination of the collider centre-of- mass energy correcting for subtle effects such as the azimuthal variation of the beam energy, the magnet temperature, the effects of parasitic earth currents and terrestrial tides. It resulted in an extremely accurate test of the standard model and set significant constraints on the top quark and Higgs masses. (16 refs).

  6. How to calibrate Grenz-beams in clinical practice?

    Energy Technology Data Exchange (ETDEWEB)

    Schaeken, B. [Algemeen Ziekenhius Middelheim, Antwerp (Belgium); Bressers, E. [Virga jesse Ziekenhius, Hasselt (Belgium)

    1995-12-01

    In recent years, considerable efforts have been spent improving the precision and consistency in the whole process of calibration of high energy photon and electron beams (national protocols, primary calibration facilities ....). The reading in air of 5 different ionisation chambers (NE2532, NE2536, NE2571, PTWM23342, Markus) in an X-ray beam (RT50, HVL=0.35 mm Al) has been compared. Ali NE chambers were provided with a calibration factor Nk, the PTW chamber was directly calibrated in dose water ND,W. The polarisation and recombination effects were measured. In our reference field (ssd=4cm, field diameter 40 mm), the readings in air for the dedicated plan parallel chambers deviated by not more than 8%. The measurements with the NE2571 chamber did not correspond very well with the other measurements. For the equipment in our hospital, the dose rate in air for the reference field was measured from 1971 on and found to be very stable: 17.36 Gy/min (0.48) (1sd). An attempt was made to measure the BSF for the field defining cones used in clinical practice using a Markus plane parallel chamber, but the resulting BSF did not correspond to those reported in BJR/suppl. 17. Special attention has been be paid to the calibration of beams with field size comparable to the dimension of the chamber window- chamber body.

  7. Tests with different kind of k Vp-meters in standard X-rays beams used for instruments calibration, in diagnostic radiology level

    International Nuclear Information System (INIS)

    Lucena, Rodrigo Ferreira de; Potiens, Maria da Penha A.; Caldas, Linda V. E.; Vivolo, Vitor

    2008-01-01

    In this work, tests were carried out in one X-ray system, Medicor Moevek Roentgengyara, Model Neo-Diagnomax, (single-phase, full wave rectified) that operate in the range from 40 kV to 100 kV, and fixed 6 mA in the fluoroscopic mode, with total filtration of 2.5 mmAl. It was used as reference system an invasive system from Radcal, model Dynalyzer III (trade mark). The equipment tested were three non-invasive instruments, one PTW,model Diavolt (trade mark), and two Victoreen, model NERO (trade mark). It was performed measurements with those equipment, in the range from 50 kV to 100 kV, in steps of 10 kV and current of 6 mA (fixed). The quantity measured was kVp max . The results showed the maximum variation of 3 % for one NERO (trade mark) and 1 % for the other equipment of the same type, and 0,3 % for Diavolt (trade mark) related to the invasive reference measurement system. The differences in the obtained values could be caused by the different kind of equipment used in that, their manufacturer calibration and aged. (author)

  8. Studies on the beam system for the calibration of the OPAL jet chamber with laser beams

    International Nuclear Information System (INIS)

    Maringer, G.

    1988-07-01

    UV laser beams are an important tool for the calibration of the OPAL jet chamber. A beam transport system containing about 350 mirrors in total guides the beams from the laser outside the detector into the chamber. Four of the mirrors are moveable under remote control allowing to guide the beams into each of the 24 sectors and to correct the beam path in case of deviations. A program to control these moveable mirrors has been developed. Drift velocity measurements will be performed by means of double beams which are generated by appropriate beamsplitters. Accurate knowledge of the double beam distances is essential to obtain the desired accuracy of better than 0.1% or 10 μm. Using a CCD device with a pixel size of 23x23 μm 2 the beam distance could be measured with errors below the required limit. (orig.)

  9. Simultaneous calibration phantom commission and geometry calibration in cone beam CT.

    Science.gov (United States)

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-08-09

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm -1 . The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  10. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolò; Fabbri, Franco L; Finkel, Alexey; Orfanelli, Stella; Loos, R; Montanari, Alessandro; Rusack, R; Stickland, David P

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the cavern of the Compact Muon Solenoid (CMS) experiment for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing. The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of...

  11. Calibration and performance testing of electronic personal dosimeters (EPD)

    International Nuclear Information System (INIS)

    Banaga, H.A.

    2008-04-01

    In modern radiation protection practices, active personal dosimeters are becoming absolutely necessary operational tools for satisfying the ALARA principle. The aim of this work was to carry out calibration and performance testing of ten electronic personal dosimeters (EPD) used for the individual monitoring. The EPDs were calibrated in terms of operation radiation protection quantity, personal dose equivalent, Hp (10). Calibrations were carried out at three of x-ray beam qualities described in ISO 4037 namely 60, 100 and 150 kV in addition to Cs-137 gamma ray quality. The calibrations were performed using polymethylmethacrylate (PMMA) phantom with dimensions 20*20*15 cm 3 . Conversion coefficient Hp (10)/K air for the phantom was also calculated. The response and linearity of the dosimeter at the specified energies were also tested. The EPDs tested showed that the calibration coefficient ranged from 0.60 to 1.31 and an equivalent response for the specified energies that ranged from 0.76 to 1.67. The study demonstrated the possibility of using non standard phantom for calibrating dosimeters used for individual monitoring. The dosimeters under study showed a good response in all energies except the response in quality 100 kV. The linearity of the dosimeters was within ±15%, with the exception of the quality 100 kV where this limit was exceeded.(Author)

  12. Radiochromic film calibration for the RQT9 quality beam

    Science.gov (United States)

    Costa, K. C.; Gomez, A. M. L.; Alonso, T. C.; Mourao, A. P.

    2017-11-01

    When ionizing radiation interacts with matter it generates energy deposition. Radiation dosimetry is important for medical applications of ionizing radiation due to the increasing demand for diagnostic radiology and radiotherapy. Different dosimetry methods are used and each one has its advantages and disadvantages. The film is a dose measurement method that records the energy deposition by the darkening of its emulsion. Radiochromic films have a little visible light sensitivity and respond better to ionizing radiation exposure. The aim of this study is to obtain the resulting calibration curve by the irradiation of radiochromic film strips, making it possible to relate the darkening of the film with the absorbed dose, in order to measure doses in experiments with X-ray beam of 120 kV, in computed tomography (CT). Film strips of GAFCHROMIC XR-QA2 were exposed according to RQT9 reference radiation, which defines an X-ray beam generated from a voltage of 120 kV. Strips were irradiated in "Laboratório de Calibração de Dosímetros do Centro de Desenvolvimento da Tecnologia Nuclear" (LCD / CDTN) at a dose range of 5-30 mGy, corresponding to the range values commonly used in CT scans. Digital images of the irradiated films were analyzed by using the ImageJ software. The darkening responses on film strips according to the doses were observed and they allowed obtaining the corresponding numeric values to the darkening for each specific dose value. From the numerical values of darkening, a calibration curve was obtained, which correlates the darkening of the film strip with dose values in mGy. The calibration curve equation is a simplified method for obtaining absorbed dose values using digital images of radiochromic films irradiated. With the calibration curve, radiochromic films may be applied on dosimetry in experiments on CT scans using X-ray beam of 120 kV, in order to improve CT acquisition image processes.

  13. Calibrating and validating a FE model for long-term behavior of RC beams

    Directory of Open Access Journals (Sweden)

    Tošić Nikola D.

    2014-01-01

    Full Text Available This study presents the research carried out in finding an optimal finite element (FE model for calculating the long-term behavior of reinforced concrete (RC beams. A multi-purpose finite element software DIANA was used. A benchmark test in the form of a simply supported beam loaded in four point bending was selected for model calibration. The result was the choice of 3-node beam elements, a multi-directional fixed crack model with constant stress cut-off, nonlinear tension softening and constant shear retention and a creep and shrinkage model according to CEB-FIP Model Code 1990. The model was then validated on 14 simply supported beams and 6 continuous beams. Good agreement was found with experimental results (within ±15%.

  14. A Method to Test Model Calibration Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    2016-08-26

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then the calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.

  15. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rosado, P.H.G.; Cunha, P.G. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  16. Calibration artefacts in radio interferometry - III. Phase-only calibration and primary beam correction

    Science.gov (United States)

    Grobler, T. L.; Stewart, A. J.; Wijnholds, S. J.; Kenyon, J. S.; Smirnov, O. M.

    2016-09-01

    This is the third installment in a series of papers in which we investigate calibration artefacts. Calibration artefacts (also known as ghosts or spurious sources) are created when we calibrate with an incomplete model. In the first two papers of this series, we developed a mathematical framework which enabled us to study the ghosting mechanism itself. An interesting concomitant of the second paper was that ghosts appear in symmetrical pairs. This could possibly account for spurious symmetrization. Spurious symmetrization refers to the appearance of a spurious source (the antighost) symmetrically opposite an unmodelled source around a modelled source. The analysis in the first two papers indicates that the antighost is usually very faint, in particular, when a large number of antennas are used. This suggests that spurious symmetrization will mainly occur at an almost undetectable flux level. In this paper, we show that phase-only calibration produces an antighost that is N-times (where N denotes the number of antennas in the array) as bright as the one produced by phase and amplitude calibration and that this already bright ghost can be further amplified by the primary beam correction.

  17. The Observability Calibration Test Development Framework

    Energy Technology Data Exchange (ETDEWEB)

    Endicott-Popovsky, Barbara E.; Frincke, Deborah A.

    2007-06-20

    Abstract— Formal standards, precedents, and best practices for verifying and validating the behavior of low layer network devices used for digital evidence-collection on networks are badly needed— initially so that these can be employed directly by device owners and data users to document the behaviors of these devices for courtroom presentation, and ultimately so that calibration testing and calibration regimes are established and standardized as common practice for both vendors and their customers [1]. The ultimate intent is to achieve a state of confidence in device calibration that allows the network data gathered by them to be relied upon by all parties in a court of law. This paper describes a methodology for calibrating forensic-ready low layer network devices based on the Flaw Hypothesis Methodology [2,3].

  18. Radiation protection instrumentation test and calibration

    International Nuclear Information System (INIS)

    Selby, J.M.; Larson, H.V.; Bartlett, W.T.; Mulhern, O.R.; Fleming, D.M.

    1978-01-01

    The operational requirements of radiation protection instrumentation are set forth in the recommendations of various commissions and committees. Additionally, the user may establish the need for different or more restrictive requirements. The ability to meet these requirements will depend not only on the instrument capabilities but also on periodic recalibrations, preventative maintenance and testing of the instruments. A new standard, ANSI N323, ''Radiation Protection Instrumentation Test and Calibration'', has been prepared and approved for use in the USA. This standard establishes calibration methods for portable radiation protection instruments used for detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contamination. Included within the scope of this standard are conditions, equipment and techniques for calibration, as well as the degree of precision and accuracy required. The salient points of the new standard will be presented in the paper. The nature of improvements at our laboratory required by the standard will be discussed. (author)

  19. Retained Gas Sampler Calibration and Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    CRAWFORD, B.A.

    2000-01-05

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  20. Retained Gas Sampler Calibration and Simulant Tests

    International Nuclear Information System (INIS)

    CRAWFORD, B.A.

    2000-01-01

    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis

  1. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolo

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the CMS cavern for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing.The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of light to monitor the efficiency of the sys...

  2. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  3. Application of methodology for calibration of instruments utilized in dosimetry of high energy beams, for radiodiagnosis

    International Nuclear Information System (INIS)

    Potiens, Maria P.A.; Caldas, Linda V.E.

    2000-01-01

    The radiation qualities recommended by the IEC 1267 standard for the calibration of instruments used in diagnostic radiology measurements were established using a neo-diagnomax X-ray system (125 kV). The RQR radiation qualities are recommended to test ionization chambers used in non attenuated beams, and the RQA radiation qualities in attenuated beams (behind a phantom). To apply the methodology, 6 ionization chambers commonly used in diagnostic radiology were tested. The higher energy dependence (17%) was obtained for an ionization chamber recommended for mammography beams, that is not the case of the X radiation system used in this work. The other ionization chambers presented good performance in terms of energy (maximum of 5%), therefore within the limits of the international recommendations for this kind of instrument. (author)

  4. FEM simulation of static loading test of the Omega beam

    Science.gov (United States)

    Bílý, Petr; Kohoutková, Alena; Jedlinský, Petr

    2017-09-01

    The paper deals with a FEM simulation of static loading test of the Omega beam. Omega beam is a precast prestressed high-performance concrete element with the shape of Greek letter omega. Omega beam was designed as a self-supporting permanent formwork member for construction of girder bridges. FEM program ATENA Science was exploited for simulation of load-bearing test of the beam. The numerical model was calibrated using the data from both static loading test and tests of material properties. Comparison of load-displacement diagrams obtained from the experiment and the model was conducted. Development of cracks and crack patterns were compared. Very good agreement of experimental data and the FEM model was reached. The calibrated model can be used for design of optimized Omega beams in the future without the need of expensive loading tests. The calibrated material model can be also exploited in other types of FEM analyses of bridges constructed with the use of Omega beams, such as limit state analysis, optimization of shear connectors, prediction of long-term deflections or prediction of crack development.

  5. Calibration of a multi-beam Laser System by using a TLS-generated Reference

    Directory of Open Access Journals (Sweden)

    M. Gordon

    2013-10-01

    Full Text Available Rotating multi-beam LIDARs mounted on moving platforms have become very successful for many applications such as autonomous navigation, obstacle avoidance or mobile mapping. To obtain accurate point coordinates, a precise calibration of such a LIDAR system is required. For the determination of the corresponding parameters we propose a calibration scheme which exploits the information of 3D reference point clouds captured by a terrestrial laser scanning (TLS device. It is assumed that the accuracy of this point clouds is considerably higher than that from the multi-beam LIDAR and that the data represent faces of man-made objects at different distances. After extracting planes in the reference data sets, the point-plane-incidences of the measured points and the reference planes are used to formulate the implicit constraints. We inspect the Velodyne HDL-64E S2 system as the best-known representative for this kind of sensor system. The usability and feasibility of the calibration procedure is demonstrated with real data sets representing building faces (walls, roof planes and ground. Beside the improvement of the point accuracy by considering the calibration results, we test the significance of the parameters related to the sensor model and consider the uncertainty of measurements w.r.t. the measured distances. The Velodyne returns two kinds of measurements – distances and encoder angles. To account for this, we perform a variance component estimation to obtain realistic standard deviations for the observations.

  6. Determination of absorbed dose calibration factors for therapy level electron beam ionization chambers.

    Science.gov (United States)

    McEwen, M R; Williams, A J; DuSautoy, A R

    2001-03-01

    Over several years the National Physical Laboratory (NPL) has been developing an absorbed dose calibration service for electron beam radiotherapy. To test this service, a number of trial calibrations of therapy level electron beam ionization chambers have been carried out during the last 3 years. These trials involved 17 UK radiotherapy centres supplying a total of 46 chambers of the NACP, Markus, Roos and Farmer types. Calibration factors were derived from the primary standard calorimeter at seven energies in the range 4 to 19 MeV with an estimated uncertainty of +/-1.5% at the 95% confidence level. Investigations were also carried out into chamber perturbation, polarity effects, ion recombination and repeatability of the calibration process. The instruments were returned to the radiotherapy centres for measurements to be carried out comparing the NPL direct calibration with the 1996 IPEMB air kerma based Code of Practice. It was found that, in general, all chambers of a particular type showed the same energy response. However, it was found that polarity and recombination corrections were quite variable for Markus chambers-differences in the polarity correction of up to 1% were seen. Perturbation corrections were obtained and were found to agree well with the standard data used in the IPEMB Code. The results of the comparison between the NPL calibration and IPEMB Code show agreement between the two methods at the +/-1% level for the NACP and Farmer chambers, but there is a significant difference for the Markus chambers of around 2%. This difference between chamber types is most likely to be due to the design of the Markus chamber.

  7. Test-beam with Python

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The talk will show the current implementation of the software tool developed by Silab (Bonn) and Oxford University to analyze test beam data with Mimosa telescope. Data collected from the telescope are merged with hits recorded on pixel detectors with a FE-I4 chips, the official read-out chip of the Atlas Pixel Detector. The software tool used to collect data, pyBAR, is developed with Python as well. The test-beam analysis tool parses the data-sets, recreates the tracks, aligns the telescope planes and allows to investigate the detectors spatial properties with high resolution. This has just allowed to study the properties of brand new devices that stand as possible candidate to replace the current pixel detector in Atlas.

  8. Calibration free beam hardening correction for cardiac CT perfusion imaging

    Science.gov (United States)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  9. Characteristic parameters analysis on diagnostic X-ray beams for dosemeter calibration

    International Nuclear Information System (INIS)

    Oliveira, Paulo Marcio Campos de

    2008-01-01

    Ionizing radiation metrology is the base to achieve reliable dose measurements in ali areas; it is also part of the framework that is established to assure radiation protection procedures in order to avoid or minimize the harmful biological effect that may be caused by ionizing radiation. A well done metrology means the use of reliable instruments that comply with standard performance requirements worldwide accepted. Those instruments are expected to be calibrated by Metrology Laboratories under well defined conditions. The International Electrotechnical Commission (IEC) in Standard 61267 established the reference radiations for medical diagnostic x-ray equipment that are recommended to be used for calibrating dosimetric systems for diagnostic dosimetry. In this work, X-ray beam qualities were established in a Calibration Laboratory and their characteristics were analyzed through the measurement of beam parameters like inherent tube filtration, beam uniformity and field size, energy spectra and peak voltage for additional filtration with 94.425 por cent and 99.999 por cent purity filters. Also, the first half-value layer and the homogeneity coefficient were measured for the three RQR 2, RQR 6 and RQR 10 IEC beam qualities and they were analyzed according to the IEC standard. Air-kerma measurements were carried out with an ionization chamber that had its reliability confirmed through repetition and reproducibility reading tests. In 50 sets of measurements the maximum standard deviation found of 10 successive readings was 0.19 %; the maximum shift of the reading mean value at a fixed geometry condition was 0.80 % with an overall standard deviation of 0.23 %. Results showed that the use of different purity filters did not cause a relevant influence on the beam energy spectra. An ionization chamber was also calibrated against a standard dosimeter in ali implemented reference radiations and the relevant sources of uncertainties were estimated. Calibration could be done

  10. Construction, Test And Calibration of the GLAST Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sgro, C.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bellazzini, R.; Belli, F.; Bonamente, E.; Borden, T.; Bregeon, J.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De Angelis, A.; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; /INFN, Pisa /Pisa U. /UC, Santa Cruz /INFN, Trieste /Rome U.,Tor Vergata /SLAC /INFN, Bari /Bari U. /INFN, Perugia /Perugia U. /Udine U. /Hiroshima U. /Maryland U., JCA /Tokyo Inst. Tech. /JAXA, Sagamihara /INFN, Padua /Padua U. /Pisa, Scuola Normale Superiore /NASA, Goddard

    2009-06-05

    The Gamma-ray Large Area Space Telescope represents a great advance in space application of silicon detectors. With a surface of 80 m{sup 2} and about 1 M readout channels it is the largest silicon tracker ever built for a space experiment. GLAST is an astro-particle mission that will study the mostly unexplored, high energy (20 MeV-300 GeV) spectrum coming from active sources or diffused in the Universe. The detector integration and test phase is complete. The full instrument underwent environmental testing and the spacecraft integration phase has just started: the launch is foreseen in late 2007. In the meanwhile the spare modules are being used for instrument calibration and performance verification employing the CERN accelerator complex. A Calibration Unit has been exposed to photon, electron and hadron beams from a few GeV up to 300 GeV. We report on the status of the instrument and on the calibration campaign.

  11. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service

    International Nuclear Information System (INIS)

    Jangda, A.Q.; Hussein, S.

    2012-01-01

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility. (author)

  12. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  13. The 2002 Test Beam DAQ

    CERN Multimedia

    Mapelli, L.

    The ATLAS Tilecal group has been the first user of the Test Beam version of the DAQ/EF-1 prototype in 2000. The prototype was successfully tested in lab in summer 1999 and it has been officially adopted as baseline solution for the Test Beam DAQ at the end of 1999. It provides the right solution for users who need to have a modern data acquisition chain for final or almost final front-end and off-detector electronics (RODs and ROD emulators). The typical architecture for the readout and the DAQ is sketched in the figure below. A number of detector crates can send data over the Read Out Link to the Read Out System. The Read Out System sends data over an Ethernet link to a SubFarm PC that provides to send the data to Central Data Recording. In 2001 also the Muon MDT group has adopted this modern DAQ where for the first time a PC-based ReadOut System has been used, instead of the VME based implementation used in 2000, and for the Tilecal DAQ in 2001. In 2002 also Tilecal has adopted the PC-based implement...

  14. Test surfaces useful for calibration of surface profilometers

    Science.gov (United States)

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  15. Self-calibrating magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which we call ''static'' and ''dynamic.'' A detailed analysis shows that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarization analyzers are installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of complete static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. The main merit of this scheme relies on the fact that it is self-calibrating with respect to both the characteristics of the mirror and the transmission of the different polarization channels, the latter item implying that it is uniquely based on relative measurements of spectra. Further advantages are a greater flexibility with regard to different kinds of diagnostics and the circumstance that the technical equipment is less involved. The above scheme is based on a detection system of moderate etendue exploiting a large spectral domain, which is the regime where static polarimetry usually operates. It is also possible, however, to work with large etendue and a small spectral domain, such as commonly adopted in dynamic polarimetry. Using such a regime, static polarimetry loses the advantages mentioned above but gains, as a new advantage, the benefit of a comparatively lower level of photon noise. copyright 1995 American Institute of Physics

  16. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Directory of Open Access Journals (Sweden)

    A. Wolski

    2011-07-01

    Full Text Available We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  17. Seepage Calibration Model and Seepage Testing Data

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM is developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA (see upcoming REV 02 of CRWMS M and O 2000 [153314]), which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model (see BSC 2003 [161530]). The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross Drift to obtain the permeability structure for the seepage model; (3) to use inverse modeling to calibrate the SCM and to estimate seepage-relevant, model-related parameters on the drift scale; (4) to estimate the epistemic uncertainty of the derived parameters, based on the goodness-of-fit to the observed data and the sensitivity of calculated seepage with respect to the parameters of interest; (5) to characterize the aleatory uncertainty

  18. Seepage Calibration Model and Seepage Testing Data

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-17

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM is developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA (see upcoming REV 02 of CRWMS M&O 2000 [153314]), which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model (see BSC 2003 [161530]). The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross Drift to obtain the permeability structure for the seepage model; (3) to use inverse modeling to calibrate the SCM and to estimate seepage-relevant, model-related parameters on the drift scale; (4) to estimate the epistemic uncertainty of the derived parameters, based on the goodness-of-fit to the observed data and the sensitivity of calculated seepage with respect to the parameters of interest; (5) to characterize the aleatory uncertainty of

  19. Automatic Phase Calibration for RF Cavities using Beam-Loading Signals

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Chase, B. E. [Fermilab

    2017-10-01

    Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique could be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.

  20. Modelling and calibration of the laser beam-scanning triangulation measurement system

    NARCIS (Netherlands)

    Wang, G.Y.; Zheng, Bing; Li, Xin; Houkes, Z.; Regtien, Paulus P.L.

    2002-01-01

    We present an approach of modelling and calibration of an active laser beam-scanning triangulation measurement system. The system works with the pattern of two-dimensional beam-scanning illumination and one-dimensional slit-scanning detection with a photo-multiplier tube instead of a CCD camera. By

  1. Results of Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Dieter R

    2003-06-13

    The beam experiments of Final Focus Test Beam (FFTB) started in September 1993 at SLAC, and have produced a 1.7 {micro}m x 75 nm spot of 46 GeV electron beam. A number of new techniques involving two nanometer spot-size monitors have been developed. Several beam diagnostic/tuning schemes are applied to achieve and maintain the small spot. This experiment opens the way toward the nanometer world for future linear colliders.

  2. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  3. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    Science.gov (United States)

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-01

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  4. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    Energy Technology Data Exchange (ETDEWEB)

    Peřina, Jan, E-mail: jan.perina.jr@upol.cz [RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics AS CR, 17. listopadu 12, 77146 Olomouc (Czech Republic); Haderka, Ondřej [Joint Laboratory of Optics of Palacký University and Institute of Physics AS CR, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Allevi, Alessia [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, I-22100 Como (Italy); Bondani, Maria [Istituto di Fotonica e Nanotecnologie, CNR-IFN, I-22100 Como (Italy)

    2014-01-27

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  5. Seepage Calibration Model and Seepage Testing Data

    International Nuclear Information System (INIS)

    Finsterle, S.

    2004-01-01

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross-Drift to obtain the permeability structure for the seepage model

  6. Seepage Calibration Model and Seepage Testing Data

    Energy Technology Data Exchange (ETDEWEB)

    S. Finsterle

    2004-09-02

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross

  7. Accurate technique for complete geometric calibration of cone-beam computed tomography systems

    International Nuclear Information System (INIS)

    Cho Youngbin; Moseley, Douglas J.; Siewerdsen, Jeffrey H.; Jaffray, David A.

    2005-01-01

    Cone-beam computed tomography systems have been developed to provide in situ imaging for the purpose of guiding radiation therapy. Clinical systems have been constructed using this approach, a clinical linear accelerator (Elekta Synergy RP) and an iso-centric C-arm. Geometric calibration involves the estimation of a set of parameters that describes the geometry of such systems, and is essential for accurate image reconstruction. We have developed a general analytic algorithm and corresponding calibration phantom for estimating these geometric parameters in cone-beam computed tomography (CT) systems. The performance of the calibration algorithm is evaluated and its application is discussed. The algorithm makes use of a calibration phantom to estimate the geometric parameters of the system. The phantom consists of 24 steel ball bearings (BBs) in a known geometry. Twelve BBs are spaced evenly at 30 deg in two plane-parallel circles separated by a given distance along the tube axis. The detector (e.g., a flat panel detector) is assumed to have no spatial distortion. The method estimates geometric parameters including the position of the x-ray source, position, and rotation of the detector, and gantry angle, and can describe complex source-detector trajectories. The accuracy and sensitivity of the calibration algorithm was analyzed. The calibration algorithm estimates geometric parameters in a high level of accuracy such that the quality of CT reconstruction is not degraded by the error of estimation. Sensitivity analysis shows uncertainty of 0.01 deg. (around beam direction) to 0.3 deg. (normal to the beam direction) in rotation, and 0.2 mm (orthogonal to the beam direction) to 4.9 mm (beam direction) in position for the medical linear accelerator geometry. Experimental measurements using a laboratory bench Cone-beam CT system of known geometry demonstrate the sensitivity of the method in detecting small changes in the imaging geometry with an uncertainty of 0.1 mm in

  8. Beam Profile Measurement in MTA Beam Line for High Pressure RF Cavity Beam Test

    International Nuclear Information System (INIS)

    Jana, M.R.; Bross, A.; Chung, M.; Greer, S.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.; Leonova, M.; Moretti, A.; Popovic, M.; Schwartz, T.

    2012-01-01

    Recent High Pressure RF (HPRF) cavity experiment at MuCool Test Area (MTA) has used 400 MeV Linac proton beam to study the beam loading effect. When the energetic proton beam passes through the cavity, it ionizes the inside gas and produces the electrons. These electrons consume RF power inside the cavity. Number of electrons produced per cm inside the cavity (at 950 psi Hydrogen gas) per incident proton is ∼ 1200. The measurement of beam position and profile are necessary. MTA is flammable gas (Hydrogen) hazard zone so we have developed a passive beam diagnostic instrument using Chromox-6 scintillation screen and CCD camera. This paper presents quantitative information about beam position and beam profile. Neutral density filter was used to avoid saturation of CCD camera. Image data is filtered and fitted with Gaussian function to compute the beam size. The beam profile obtained from scintillation screen shall be compared with multi-wire beam profile.

  9. Beam position determination for the Test Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Peter

    1987-01-01

    The Test Storage Ring (TSR) for heavy ions, currently under design and construction at the Max Planck Institute for Nuclear Physics in Heidelberg, requires an extensive beam diagnostics system in order to enable it to operate without friction. This thesis concerns the beam position determination sub-system of this diagnostics system which is intended to determine the beam center of gravity of a bunched beam inside the cross section of the beam tube in a non-destructive manner. An electrostatic pickup is used to sense the location of the beam; the mode of operation of this device will be explained in detail. The signals go to a preamplifier from where they are then sent via a multiplex system to the measuring unit. This point also represents the interface to the computer system that controls the TSR. The prototype developed here was tested with the aid of a particle beam, as well as with other measurement methods. Resolutions of better than 1 mm about the center have been measured. In order to achieve or even improve such resolutions later in actual operation, it is possible to determine the properties of the preamplifiers with the aid of calibration signals and to take these into account in the course of the signal evaluation in the computer. The differences between the individual electrodes of a given pickup must also be compensated. These procedures and their associated electronic circuits are also described in this paper.

  10. Appendix B : small beam tests.

    Science.gov (United States)

    2013-03-01

    The AASHTO LRFD Bridge Design Specifications (2007) require that confinement : reinforcement be placed around prestressing strands in the bottom bulb of pretensioned concrete : beams. Although the AASHTO specifications contain prescriptive requiremen...

  11. CT calibration for two-dimensional scaling of proton pencil beams

    International Nuclear Information System (INIS)

    Szymanowski, Hanitra; Oelfke, Uwe

    2003-01-01

    For proton dose calculations in heterogeneous media, it was shown in a previous work that the conventional pencil beam approach based on pathlength scaling does not properly account for scattering effects in nonwater media (Szymanowski and Oelfke 2002 Phys. Med. Biol. 47 3313-30). A two-dimensional scaling method was therefore introduced, which is able to predict with high accuracy the propagation of proton pencil beams both along the depth and the lateral directions in inhomogeneous media. In order to integrate this improved pencil beam algorithm in a CT based treatment planning system, two CT calibration curves are needed. The first one relates the Hounsfield numbers to the relative stopping powers, as for the conventional pencil beam approach. The second curve is to relate the Hounsfield numbers to the material-specific lateral scaling factors. The purpose of this work is to provide the CT calibration curves needed for the integration of the pencil beam algorithm featuring the two-dimensional scaling method. Similarly to as suggested by Schneider et al (1996 Phys. Med. Biol. 41 111-24) for the calibration curve in terms of stopping powers, we follow a stoichiometric procedure to get the calibration curve in terms of material-specific lateral scaling factors. The calibration curves for a CT scanner of the type Siemens Somatom Plus 4 are obtained from the analytical calculation of the CT Hounsfield numbers, relative stopping powers and material-specific lateral scaling factors for human biological tissues

  12. A novel method of strain - bending moment calibration for blade testing

    International Nuclear Information System (INIS)

    Greaves, P; Prieto, R; Gaffing, J; Van Beveren, C; Dominy, R; Ingram, G

    2016-01-01

    A new method of interpreting strain data in full scale static and fatigue tests has been implemented as part of the Offshore Renewable Energy Catapult's ongoing development of biaxial fatigue testing of wind turbine blades. During bi-axial fatigue tests, it is necessary to be able to distinguish strains arising from the flapwise motion of the blade from strains arising from the edgewise motion. The method exploits the beam-like structure of blades and is derived using the equations of beam theory. It offers several advantages over the current state of the art method of calibrating strain gauges. (paper)

  13. Beam-Based Calibration of the Electron Energy in the Fermilab Electron Cooler

    CERN Document Server

    Seletsky, Sergey

    2005-01-01

    Electron cooling of 8.9 GeV antiprotons in the Fermilab's Recycler ring requires precise matching of electron and antiproton velocities. While the final match can be done by optimization of the cooling process, for the very first cooling one should rely on the knowledge of absolute values of electron and antiproton energies. The upper limit for the energy uncertainty of both beams is determined by the Recycler's momentum aperture and is equal to 0.3%. The paper discusses a method of the electron energy calibration that is based on the measurement of the electron's Larmor wavelength in the field of the cooling section solenoid. The method was tested in an 18 m long cooling section prototype with 3.5 MeV electrons. An accuracy of 0.3% was demonstrated.

  14. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  15. Bowtie filter and water calibration in the improvement of cone beam CT image quality

    International Nuclear Information System (INIS)

    Li Minghui; Dai Jianrong; Zhang Ke

    2010-01-01

    Objective: To evaluate the improvement of cone beam CT (CBCT) image quality by using bewtie filter (F 1 ) and water calibration. Methods: First the multi-level gain calibration of the detector panel with the method of Cal 2 calibration was performed, and the CT images of CATPHAN503 with F 0 and bowtie filter were collected, respectively. Then the detector panel using water calibration kit was calibrated, and images were acquired again. Finally, the change of image quality after using F 1 and (or) water calibration method was observed. The observed indexes included low contrast visibility, spatial uniformity, ring artifact, spatial resolution and geometric accuracy. Results: Comparing with the traditional combination of F 0 filter and Cal 2 calibration, the combination of bowtie filter F 1 and water calibration improves low contrast visibility by 13.71%, and spatial uniformity by 54. 42%. Water calibration removes ring artifacts effectively. However, none of them improves spatial resolution and geometric accuracy. Conclusions: The combination of F 1 and water calibration improves CBCT image quality effectively. This improvement is aid to the registration of CBCT images and localization images. (authors)

  16. SU-F-E-19: A Novel Method for TrueBeam Jaw Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Corns, R; Zhao, Y; Huang, V [Fraser Valley Cancer Centre - BC Cancer Agency, Surrey, BC (United Kingdom)

    2016-06-15

    Purpose: A simple jaw calibration method is proposed for Varian TrueBeam using an EPID-Encoder combination that gives accurate fields sizes and a homogeneous junction dose. This benefits clinical applications such as mono-isocentric half-beam block breast cancer or head and neck cancer treatment with junction/field matching. Methods: We use EPID imager with pixel size 0.392 mm × 0.392 mm to determine the radiation jaw position as measured from radio-opaque markers aligned with the crosshair. We acquire two images with different symmetric field sizes and record each individual jaw encoder values. A linear relationship between each jaw’s position and its encoder value is established, from which we predict the encoder values that produce the jaw positions required by TrueBeam’s calibration procedure. During TrueBeam’s jaw calibration procedure, we move the jaw with the pendant to set the jaw into position using the predicted encoder value. The overall accuracy is under 0.1 mm. Results: Our in-house software analyses images and provides sub-pixel accuracy to determine field centre and radiation edges (50% dose of the profile). We verified the TrueBeam encoder provides a reliable linear relationship for each individual jaw position (R{sup 2}>0.9999) from which the encoder values necessary to set jaw calibration points (1 cm and 19 cm) are predicted. Junction matching dose inhomogeneities were improved from >±20% to <±6% using this new calibration protocol. However, one technical challenge exists for junction matching, if the collimator walkout is large. Conclusion: Our new TrueBeam jaw calibration method can systematically calibrate the jaws to crosshair within sub-pixel accuracy and provides both good junction doses and field sizes. This method does not compensate for a larger collimator walkout, but can be used as the underlying foundation for addressing the walkout issue.

  17. Calibration of Eringen's small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model

    International Nuclear Information System (INIS)

    Wang, C M; Zhang, Z; Challamel, N; Duan, W H

    2013-01-01

    In this paper, we calibrate Eringen's small length scale coefficient e 0 for an initially stressed vibrating nonlocal Euler beam via a microstructured beam modelled by some repetitive cells comprising finite rigid segments and elastic rotational springs. By adopting the pseudo-differential operator and Padé's approximation, an analytical solution for the vibration frequency in terms of initial stress may be developed for the microstructured beam model. When comparing this analytical solution with the established exact vibration solution from the nonlocal beam theory, one finds that the calibrated Eringen's small length scale coefficient e 0 is given by e 0 = √(1/6)-(1/12)(σ 0 /σ-breve m ) where σ 0 is the initial stress and σ-breve m is the mth mode buckling stress of the corresponding local Euler beam. It is shown that e 0 varies with respect to the initial axial stress, from 1/√(12)∼0.289 at the buckling compressive stress to 1/√6∼0.408 when the axial stress is zero and it monotonically increases with increasing initial tensile stress. The small length scale coefficient e 0 , however, does not depend on the vibration/buckling mode considered. (paper)

  18. Quality assurance network in central Europe. External audit on output calibration for photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Izewska, J. [Radiotherapy Dept., Univ. Hospital Gasthuisberg, Leuven (Belgium); Novotny, J. [Radiotherapy Dept., Univ. Hospital Gasthuisberg, Leuven (Belgium); Gwiazdowska, B. [Medical Physics Dept., Cancer Centre, Warsaw (Poland); Kindlova, A. [Dept. of Radiotherapy and Oncology, Univ. Hospital Vinohrady, Prague (Czech Republic); Kontra, G. [National Inst. of Oncology, Budapest (Hungary); Dam, J. van [Radiotherapy Dept., Univ. Hospital Gasthuisberg, Leuven (Belgium); Dutreix, A. [Radiotherapy Dept., Univ. Hospital Gasthuisberg, Leuven (Belgium); Schueren, E. van der [Radiotherapy Dept., Univ. Hospital Gasthuisberg, Leuven (Belgium)

    1995-12-31

    The EROPAQ project for TLD monitoring of photon beams started in June 1994 with the set-up of the TLD system: calibration, reading and evaluation procedures. The acceptance level of {+-}3% was set for the TLD intercomparisons. The policy of the project was to check all beams in 47 participating radiotherapy centres and to recheck all the beams in those centres, where a deviation exceeding {+-}3% occurred in one or more of the beams. Out of 129 beams checked, 100 beams (78%) were found within the {+-}3% limit. Eleven beams show deviations larger than {+-}6%, and immediate corrective action was undertaken. Out of 47 centres checked, 22 did not participate in any external audit in a preceding 5 years. In these centres 68% (34/50) of the total number of {gamma} and X-ray beams checked but only 59% (20/34) of {gamma} beams were within the acceptance level, while in the 25 centres, which participated in an external audit before, these figures were 84% (66/79) and 88% (35/40) respectively. The sources of discrepancies were thoroughly investigated, discussed with the participants and the errors corrected. Poor results were in several cases associated with very old design of radiotherapy units and old dosimetry systems, equipped with inadequate ionization chambers. In several centres, an insufficient training of the physicists in clinical dosimetry was observed. Thanks to the corrective action, a great improvement of calibration of the beams was achieved. Standard deviation of the distribution of the results for all x and {gamma} beams checked decreased from SD = 7.4% at the first check to SD = 2.5% at the second check. (orig.).

  19. Absolute spectral calibration of an intensified CCD camera using twin beams

    Czech Academy of Sciences Publication Activity Database

    Haderka, O.; Peřina Jr., J.; Michálek, Václav; Hamar, Martin

    2014-01-01

    Roč. 31, č. 10 (2014), B1-B7 ISSN 0740-3224 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : spectral calibration * intensified CCD camera * twin beams * photon pairs Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.970, year: 2014

  20. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    Energy Technology Data Exchange (ETDEWEB)

    Penha, M. da; Potiens, A.; Caldas, L.V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Sao Paulo (Brazil)]. E-mail: mppalbu@ipen.br

    2004-07-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm{sup 3} for radiation protection measurements, and the other with a volume of 1 cm{sup 3} for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  1. The Effect of a New Calibration Procedure on the Measurement Accuracy of Scintec's Displaced-Beam Laser Scintillometer

    NARCIS (Netherlands)

    Kesteren, van A.J.H.; Hartogensis, O.K.; Kroonenberg, van den A.C.

    2014-01-01

    We describe a new calibration procedure included in the production process of Scintec’s displaced-beam laser scintillometers (SLS-20/40) and its effect on their measurement accuracy. The calibration procedure determines the factual displacement distances of the laser beams at the receiver and

  2. Absolute Current Calibrations of 1$\\mu$A CW Electron Beam

    CERN Document Server

    Freyberger, A; Day, A R; Degtiarenko, P; Saha, A; Slachtouski, S

    2005-01-01

    The future experimental program at Jefferson Lab requires an absolute current calibration of a 1$\\mu\\A CW electron beam to better than 1% accuracy. This paper presents the mechanical and electrical design of a Tungsten calorimeter that is being constructed to provide an accurate measurement of the deposited energy. The energy is determined by measuring the change in temperature after beam exposure. Knowledge of the beam energy then yields number of electrons stopped by the calorimeter during the exposure. Simulations show that the energy losses due to electromagnetic and hadronic losses are the dominant uncertainty. Details of the precision thermometry and calibration, mechanical design, thermal simulations and GEANT simulations will be presented.

  3. Calibration and use of filter test facility orifice plates

    Science.gov (United States)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  4. Measurement of longitudinal impedance for a KAON test pipe model with TSD-calibration method

    International Nuclear Information System (INIS)

    Yin, Y.; Oram, C.; Ilinsky, N.; Reinhardt-Nikulin, P.

    1991-05-01

    We report measurements of longitudinal impedances for a KAON factory beam pipe model by means of the TSD-calibration method. The experimental method and the results are discussed. The frequency band is from 48 MHz up to 900 MHz, within which range the method produces measured impedances accurate enough to be useful in indicating whether a test pipe will have a suitably low impedance. (Author) 9 refs., 7 figs

  5. Scenario for Precision Beam Energy Calibration in FCC-ee

    CERN Document Server

    Koop, I A

    2015-01-01

    The resonance depolarization method was very successfully used in the experiments at LEP, where the mass of the Z-boson was determined with the relative uncertainty [1, 2]. In the future FCC-ee circular electron-positron collider the luminosity at Z-peak (beam energy 45.5 GeV) is expected be 4-5 orders of magnitude higher and one goal is to perform the same experiments as at LEP, but with much greater accuracy, approaching the level of [3]. Obviously this can be done only by measuring the spin precession frequency. But there are many problems which still need to be solved on the way towards a complete design. The first one: the self-polarization takes too long a time. The Sokolov-Ternov polarization time is about 250 hours at Z-peak. One approach is to install the special field-asymmetric polarizing wigglers to make the self-polarization time much shorter [4, 5] and to utilize only few percent of the polarization degree to measure the resonance spin precession frequency. But these very strong wigglers substan...

  6. Optimal Bayesian Adaptive Design for Test-Item Calibration

    NARCIS (Netherlands)

    van der Linden, Willem J.; Ren, Hao

    2015-01-01

    An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the

  7. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    International Nuclear Information System (INIS)

    Wang, S; Chao, C; Chang, J

    2014-01-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as a detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect

  8. Calibration method of parallel projection beams for 3D profile measurement

    Science.gov (United States)

    Lee, Shuo-Jen; Fan, Tienjung

    1996-10-01

    3D profile measurement of work-piece by non-contact optical methods has been studied extensively because of its importance in the automated manufacturing processes and quality control of components. In this paper, a projection method and its calibration algorithm of parallel projection means for 3D profile measurement system was presented. The proposed method used the pin-hole theory. An arc light which was assumed to be a point light source was positioned in the focal point of a parabolic mirror. After it was reflected by the parabolic mirror, uniform parallel light beams were projected. Using alignment collimator and telescope, the best positions of all of the optical elements in the system can be adjusted. Parameters of CCD lens, image center, arc light source and their relative positional relationship were also calibrated. This ensures the overall accuracy of the projection system. For most of the structured light optical methods, the size and shape of the dot laser beam or the length and width of a line laser beam of the projected slits were functions of the measurement range. A lot of efforts and caution have been conducted int he calibration process and mathematical manipulations are required to assure the measurement accuracy. The proposed parallel projection beam method eliminates above mentioned difficulty. It could be a robust and efficient non-contact optical method for the measurement of 3D profile.

  9. Study of the 2004 End-Cap beam tests of the ATLAS detector

    CERN Document Server

    Bieri, Marco

    The ATLAS detector is an all-purpose detector to study high-ener gy proton–proton colli- sions. ATLAS is located at the LHC (Lar ge Hadron Collider) at CERN in Gene va, Switzer - land. Before first data taking, man y beam tests have been carried out in order to fully understand each detector component. The studies in this thesis will concentrate on the 2004 beam test of the entire combined end-cap calorimeter system. The first section of this thesis outlines particle selection in the incoming test beam, eliminating contamination in order to have an accurate calibration environment. The remainder of the thesis focuses on detector calibration and performance studies, including signal-to-ener gy calibration con- stant determination, and various detector ener gy summation methods studying their effect on response. Ov erall detector ener gy sharing characteristics including the response of dead detector regions is also presented.

  10. Item calibration in incomplete testing designs

    Directory of Open Access Journals (Sweden)

    Norman D. Verhelst

    2011-01-01

    Full Text Available This study discusses the justifiability of item parameter estimation in incomplete testing designs in item response theory. Marginal maximum likelihood (MML as well as conditional maximum likelihood (CML procedures are considered in three commonly used incomplete designs: random incomplete, multistage testing and targeted testing designs. Mislevy and Sheenan (1989 have shown that in incomplete designs the justifiability of MML can be deduced from Rubin's (1976 general theory on inference in the presence of missing data. Their results are recapitulated and extended for more situations. In this study it is shown that for CML estimation the justification must be established in an alternative way, by considering the neglected part of the complete likelihood. The problems with incomplete designs are not generally recognized in practical situations. This is due to the stochastic nature of the incomplete designs which is not taken into account in standard computer algorithms. For that reason, incorrect uses of standard MML- and CML-algorithms are discussed.

  11. A Method to Test Model Calibration Techniques: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    2016-09-01

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then the calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.

  12. Test Beam Measurements on Picosec Gaseous Detector.

    CERN Document Server

    Sohl, Lukas

    2017-01-01

    In the Picosec project micro pattern gaseous detectors with a time resolution of some ten picoseconds are developed. The detectors are based on Micromegas detectors. With a cherenkov window and a photocathode the time jitter from different position of the primary ionization clusters can be substituted. This reports describes the beam setup and measurements of different Picosec prototypes. A time resolution of under 30 ps has been measured during the test beam. This report gives an overview of my work as a Summer Student. I set up and operated a triple-GEM tracker and a trigger system for the beam. During the beam I measured different prototypes of Picosec detectors and analysed the data.

  13. Comparison of two methods of therapy level calibration at 60Co gamma beams

    International Nuclear Information System (INIS)

    Bjerke, H.; Jaervinen, H.; Grimbergen, T.W.M.; Grindborg, J.E.; Chauvenet, B.; Czap, L.; Ennow, K.; Moretti, C.; Rocha, P.

    1998-01-01

    The accuracy and traceability of the calibration of radiotherapy dosimeters is of great concern to those involved in the delivery of radiotherapy. It has been proposed that calibration should be carried out directly in terms of absorbed dose to water, instead of using the conventional and widely applied quantity of air kerma. In this study, the faithfulness in disseminating standards of both air kerma and absorbed dose to water were evaluated, through comparison of both types of calibration for three types of commonly used radiotherapy dosimeters at 60 Co gamma beams at a few secondary and primary standard dosimetry laboratories (SSDLs and PSDLs). A supplementary aim was to demonstrate the impact which the change in the method of calibration would have on clinical dose measurements at the reference point. Within the estimated uncertainties, both the air kerma and absorbed dose to water calibration factors obtained at different laboratories were regarded as consistent. As might be expected, between the SSDLs traceable to the same PSDL the observed differences were smaller (less than 0.5%) than between PSDLs or SSDLs traceable to different PSDLs (up to 1.5%). This can mainly be attributed to the reported differences between the primary standards. The calibration factors obtained by the two methods differed by up to about 1.5% depending on the primary standards involved and on the parameters of calculation used for 60 Co gamma radiation. It is concluded that this discrepancy should be settled before the new method of calibration at 60 Co gamma beams in terms of absorbed dose to water is taken into routine use. (author)

  14. Comparison of two methods of therapy level calibration at 60Co gamma beams

    International Nuclear Information System (INIS)

    Bjerke, H; Jaervinen, H; Grimbergen, T W M; Grindborg, J-E; Chauvenet, B; Czap, L; Ennow, K; Moretti, C; Rocha, P

    1998-01-01

    The accuracy and traceability of the calibration of radiotherapy dosimeters is of great concern to those involved in the delivery of radiotherapy. It has been proposed that calibration should be carried out directly in terms of absorbed dose to water, instead of using the conventional and widely applied quantity of air kerma. In this study, the faithfulness in disseminating standards of both air kerma and absorbed dose to water were evaluated, through comparison of both types of calibration for three types of commonly used radiotherapy dosimeters at 60 Co gamma beams at a few secondary and primary standard dosimetry laboratories (SSDLs and PSDLs). A supplementary aim was to demonstrate the impact which the change in the method of calibration would have on clinical dose measurements at the reference point. Within the estimated uncertainties, both the air kerma and absorbed dose to water calibration factors obtained at different laboratories were regarded as consistent. As might be expected, between the SSDLs traceable to the same PSDL the observed differences were smaller (less than 0.5%) than between PSDLs or SSDLs traceable to different PSDLs (up to 1.5%). This can mainly be attributed to the reported differences between the primary standards. The calibration factors obtained by the two methods differed by up to about 1.5% depending on the primary standards involved and on the parameters of calculation used for 60 Co gamma radiation. It is concluded that this discrepancy should be settled before the new method of calibration at 60 Co gamma beams in terms of absorbed dose to water is taken into routine use

  15. Testing of a one dimensional model for Field II calibration

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2008-01-01

    Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...

  16. Tests and calibration of NIF neutron time of flight detectors.

    Science.gov (United States)

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  17. Design of a test facility for probe calibration

    Directory of Open Access Journals (Sweden)

    Šimák Jan

    2017-01-01

    Full Text Available A possibility to easily calibrate probes for flow field measurements is always welcome. From this reason, a design of a test facility for probe calibration was made. The probes will be calibrated in a free jet of known properties, which is created by an exchangeable nozzle to cover a wide range of Mach numbers up to Mach 2. The most important is to create a homogeneous flow across the test section. This is accomplished by a precise design of the nozzles carried out by numerical tools. The convergent nozzle part is common for all subsonic flow regimes while the divergent part (forming a de Laval nozzle is suited for a specific supersonic Mach number. These parts are designed using the method of characteristics. Numerical simulations performed by a CFD code show a feasibility and quality of the proposed test facility.

  18. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    Science.gov (United States)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  19. A low energy ion beam facility for mass spectrometer calibration: First results

    Science.gov (United States)

    Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2018-01-01

    The exploration of habitable environments around the gas giants in the Solar System is of major interest in upcoming planetary missions. Exactly this theme is addressed by the Jupiter Icy Moons Explorer (JUICE) mission of the European Space Agency (ESA), which will characterise Ganymede, Europa, and Callisto as planetary objects and potential habitats. The NIM, Neutral gas and Ion Mass spectrometer, is part of the PEP experiment and will be used to measure the chemical composition of the exospheres of the icy Jovian moons. We designed and developed a calibration facility (SATANS, Supersonic cATion and ANion Source), especially for use with the NIM instrument. In a first step, we established a low energy ion beam for positive ions in the range of 0.01-30 eV. Then we conducted beam velocity calibrations with a velocity uncertainty mission conditions, i.e., for velocities from 1 up to 7 km/s and even more.

  20. An optimized calibration method for surface measurements with MOSFETs in shaped-beam radiosurgery.

    Science.gov (United States)

    Sors, A; Cassol, E; Latorzeff, I; Duthil, P; Sabatier, J; Lotterie, J A; Redon, A; Berry, I; Franceries, X

    2014-02-01

    Nowadays MOSFET dosimeters are widely used for dose verification in radiotherapy procedures. Although their sensitive area satisfies size requirements for small field dosimetry, their use in radiosurgery has rarely been reported. The aim of this study is to propose and optimize a calibration method to perform surface measurements in 6 MV shaped-beam radiosurgery for field sizes down to 18 × 18 mm(2). The effect of different parameters such as recovery time between 2 readings, batch uniformity and build-up cap attenuation was studied. Batch uniformity was found to be within 2% and isocenter dose attenuation due to the build-up cap over the MOSFET was near 2% irrespective of field size. Two sets of sensitivity coefficients (SC) were determined for TN-502RD MOSFET dosimeters using experimental and calculated calibration; the latter being developed using an inverse square law model. Validation measurements were performed on a realistic head phantom in irregular fields. MOSFET dose values obtained by applying either measured or calculated SC were compared. For calibration, optimal results were obtained for an inter-measurement time lapse of 5 min. We also found that fitting the SC values with the inverse square law reduced the number of measurements required for calibration. The study demonstrated that combining inverse square law and Sterling-Worthley formula resulted in an underestimation of up to 4% of the dose measured by MOSFETs for complex beam geometries. With the inverse square law, it is possible to reduce the number of measurements required for calibration for multiple field-SSD combinations. Our results suggested that MOSFETs are suitable sensors for dosimetry when used at the surface in shaped-beam radiosurgery down to 18 × 18 mm(2). Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described.

  2. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    International Nuclear Information System (INIS)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described

  3. Study of the alignment of X radiation beam for calibration of chambers used in radiotherapy

    International Nuclear Information System (INIS)

    Cardoso, Ricardo de Souza; Bossio, Francisco; Peixoto, Jose Guilherme Pereira

    2014-01-01

    The activities developed in radiotherapy, diagnostic radiology and radiation safety, require that the metrological parameters involving these activities have on its results a high degree of reliability, to ensure traceability. To meet the existing demand in Brazil, the National Metrology Laboratory of Ionizing Radiation - LNMRI - is deploying a new tube X-ray beams used in the calibration of the standard rooms, which serve to quality control in hospitals, clinics and industry. (author)

  4. Standard practice for torque calibration of testing machines and devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers procedures and requirements for the calibration of torque for static and quasi-static torque capable testing machines or devices. These may, or may not, have torque indicating systems and include those devices used for the calibration of hand torque tools. Testing machines may be calibrated by one of the three following methods or combination thereof: 1.1.1 Use of standard weights and lever arms. 1.1.2 Use of elastic torque measuring devices. 1.1.3 Use of elastic force measuring devices and lever arms. 1.1.4 Any of the methods require a specific uncertainty of measurement and a traceability derived from national standards of mass and length. 1.2 The procedures of 1.1.1, 1.1.2, and 1.1.3 apply to the calibration of the torque-indicating systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the torque-indicating system(s) to be calibrated and included in the repor...

  5. Characterization of a tagged $\\gamma$-ray beam line at the DAFNE Beam Test Facility

    CERN Document Server

    Cattaneo, P W; Boffelli, F; Bulgarelli, A; Buonomo, B; Chen, A W; D’Ammando, F; FoggettA, L; Froysland, T; Fuschino, F; Galli, M; Gianotti, F; Giuliani, A; Longo, F; Marisaldi, M; Mazzitelli, G; Pellizzoni, A; Prest, M; Pucella, G; Quintieri, L; Rappoldi, A; Tavani, M; Trifoglio, M; Trois, A; Valente, P; Vallazza, E; Vercellone, S; Zambra, A; Barbiellini, G; Caraveo, P; Cocco, V; Costa, E; De Paris, G; Del Monte, E; Di Cocco, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Mastropietro, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Pilia, M; Porrovecchio, G; Rapisarda, M; Rubini, A; Sabatini, S; Soffitta, P; Striani, E; Vittorini, V; Zanello, D; Colafrancesco, S; Giommi, P; Pittori, C; Santolamazza, P; Verrecchia, F; Salotti, L

    2012-01-01

    At the core of the AGILE scientific instrument, designed to operate on a satellite, there is the Gamma Ray Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an Anti-Coincidence system of plastic scintillator bars. The ST needs an on-ground calibration with a γ-ray beam to validate the simulation used to calculate the energy response function and the effective area versus the energy and the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali of Frascati (LNF), based on an electron beam generating γ-rays through bremsstrahlung in a position-sensitive target. The γ-ray energy is deduced by difference with the post-bremsstrahlung electron energy [1] and [2]. The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of position sensitive silicon strip detectors, the Photon Tagging System (PTS). The use of the combined BTF-PTS system as tagged photon be...

  6. CALIBRATION AND TESTING OF SONIC STIMULATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Roger Turpening; Wayne Pennington; Christopher Schmidt; Sean Trisch

    2005-03-01

    In conjunction with Baker Atlas Inc. Michigan Technological University devised a system capable of recording the earth motion and pressure due to downhole and surface seismic sources. The essential elements of the system are (1) a borehole test site that will remain constant and is available all the time and for any length of time, (2) a downhole sonde that will itself remain constant and, because of its downhole digitization feature, does not require the wireline or surface recording components to remain constant, and (3) a set of procedures that ensures that the amplitude and frequency parameters of a wide range of sources can be compared with confidence. This system was used to record four seismic sources, three downhole sources and one surface source. A single activation of each of the downhole sources was not seen on time traces above the ambient noise, however, one sweep of the surface source, a small vertical vibrator, was easily seen in a time trace. One of the downhole sources was seen by means of a spike in its spectrum and a second downhole source was clearly seen after correlation and stacking. The surface vibrator produced a peak to peak particle motion signal of approximately 4.5 x 10{sup -5} cm/sec and a peak to peak pressure of approx. 2.5 x 10{sup -7} microPascals at a depth of 1,485 ft. Theoretical advances were made with our partner, Dr. Igor Beresnev at Iowa State University. A theory has been developed to account for the behavior of oil ganglia trapped in pore throats, and their ultimate release through the additional incremental pressure associated with sonic stimulation.

  7. Calibration and Testing of Sonic Stimulation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roger M. Turpening; Wayne D.Pennington

    2005-03-31

    In conjunction with Baker Atlas Inc. Michigan Technological University devised a system capable of recording the earth motion and pressure due to downhole and surface seismic sources. The essential elements of the system are 1) a borehole test site that will remain constant and is available all the time and for any length of time, 2) a downhole sonde that will itself remain constant and, because of its downhole digitization feature, does not require the wireline or surface recording components to remain constant, and 3) a set of procedures that ensures that the amplitude and frequency parameters of a wide range of sources can be compared with confidence. This system was used to record four seismic sources, three downhole sources and one surface source. A single activation of each of the downhole sources was not seen on time traces above the ambient noise, however, one sweep of the surface source, a small vertical vibrator, was easily seen in a time trace. One of the downhole sources was seen by means of a spike in its spectrum and a second downhole source was clearly seen after correlation and stacking. The surface vibrator produced a peak to peak particle motion signal of approximately 4.5 X 10-5 cm/sec and a peak to peak pressure of approx. 2.5 X 10-7 microPascals at a depth of 1,485 ft. Theoretical advances were made with our partner, Dr. I. Beresnev at Iowa State University. A theory has been developed to account for the behavior of oil ganglia trapped in pore throats, and their ultimate release through the additional incremental pressure associated with sonic stimulation.

  8. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  9. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  10. A low energy ion beam facility for mass spectrometer calibration: First results.

    Science.gov (United States)

    Meyer, Stefan; Tulej, Marek; Wurz, Peter

    2018-01-01

    The exploration of habitable environments around the gas giants in the Solar System is of major interest in upcoming planetary missions. Exactly this theme is addressed by the Jupiter Icy Moons Explorer (JUICE) mission of the European Space Agency (ESA), which will characterise Ganymede, Europa, and Callisto as planetary objects and potential habitats. The NIM, Neutral gas and Ion Mass spectrometer, is part of the PEP experiment and will be used to measure the chemical composition of the exospheres of the icy Jovian moons. We designed and developed a calibration facility (SATANS, Supersonic cATion and ANion Source), especially for use with the NIM instrument. In a first step, we established a low energy ion beam for positive ions in the range of 0.01-30 eV. Then we conducted beam velocity calibrations with a velocity uncertainty <5%, which provided exact settings and formulas for the cation beam velocity of different gas mixtures in the range of 1-15 km/s. In addition, first results are obtained by using the NIM prototype for direct ion beam measurements under realistic JUICE mission conditions, i.e., for velocities from 1 up to 7 km/s and even more.

  11. Accounting for polarization in the calibration of a donut beam axial optical tweezers.

    Science.gov (United States)

    Pollari, Russell; Milstein, Joshua N

    2018-01-01

    Advances in light shaping techniques are leading to new tools for optical trapping and micromanipulation. For example, optical tweezers made from Laguerre-Gaussian or donut beams display an increased axial trap strength and can impart angular momentum to rotate a specimen. However, the application of donut beam optical tweezers to precision, biophysical measurements remains limited due to a lack of methods for calibrating such devices sufficiently. For instance, one notable complication, not present when trapping with a Gaussian beam, is that the polarization of the trap light can significantly affect the tweezers' strength as well as the location of the trap. In this article, we show how to precisely calibrate the axial trap strength as a function of height above the coverslip surface while accounting for focal shifts in the trap position arising from radiation pressure, mismatches in the index of refraction, and polarization induced intensity variations. This provides a foundation for implementing a donut beam optical tweezers capable of applying precise axial forces.

  12. Optimal Bayesian Adaptive Design for Test-Item Calibration.

    Science.gov (United States)

    van der Linden, Wim J; Ren, Hao

    2015-06-01

    An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.

  13. Calibration of a Chemistry Test Using the Rasch Model

    Directory of Open Access Journals (Sweden)

    Nancy Coromoto Martín Guaregua

    2011-11-01

    Full Text Available The Rasch model was used to calibrate a general chemistry test for the purpose of analyzing the advantages and information the model provides. The sample was composed of 219 college freshmen. Of the 12 questions used, good fit was achieved in 10. The evaluation shows that although there are items of variable difficulty, there are gaps on the scale; in order to make the test complete, it will be necessary to design new items to fill in these gaps.

  14. Calibration and monitoring of the MEG experiment by a proton beam from a Cockcroft-Walton accelerator

    International Nuclear Information System (INIS)

    Adam, J.; Bai, X.; Baldini, A.; Baracchini, E.; Bemporad, C.; Boca, G.; Cattaneo, P.W.; Cavoto, G.; Cei, F.; Cerri, C.; Corbo, M.; Curalli, N.; Bari, A. de; De Gerone, M.; Doke, T.; Dussoni, S.; Egger, J.

    2011-01-01

    The MEG experiment at PSI searches for the decay μ→eγ at a level of ∼10 -13 on the branching ratio BR(μ→eγ/μ→tot), well beyond the present experimental limit (BR≤1.2x10 -11 ) and is sensitive to the predictions of SUSY-GUT theories. To reach this goal the experiment uses one of the most intense continuous surface muon beams available (∼10 8 μ/s) and relies on advanced technology (LXe calorimetry, a gradient-field superconducting spectrometer as well as flexible and powerful trigger and acquisition systems). In order to maintain the highest possible energy, time and spatial resolutions for such detector, frequent calibration and monitoring, using a Cockcroft-Walton proton accelerator, are required. The proton beam is brought to the centre of MEG by a special bellows insertion system and travels in a direction opposite to the one of the normal μ-beam. Protons interact with a lithium tetraborate (Li 2 B 4 O 7 ) nuclear target and produce one γ (17.6 MeV) from the reaction 7 3 Li(p,γ) 8 4 Be or two coincident γs (11.67 and 4.4 MeV) from the reaction 11 5 B(p,γ 1 ) 12 6 C * . The 17.6 MeV γ is used for calibrating and monitoring the LXe calorimeter (σ E γ /E γ =3.85±0.15% at 17.6 MeV) while the coincident 11.67 and 4.4 MeV γs are used to measure the relative timing of the calorimeter and the spectrometer timing counters (σ Δt =0.450±0.015ns). - Highlights: →Experiments that search for rare phenomena need to be constantly monitor and calibrated. →We show that proton induced nuclear reactions generate γ-rays useful for calibrating and monitoring the MEG experiment. →We describe the design, assembly and test of the calibration and monitoring accelerator for the MEG experiment.

  15. An analytical geometric calibration method for circular cone-beam geometry.

    Science.gov (United States)

    Xu, Jingyan; Tsui, Benjamin M W

    2013-09-01

    This work is a continuation of our previous work on geometric calibration in the circular cone-beam geometry. It is well known that seven parameters completely describe such a geometry in either flat-panel X-ray computed tomography or single pinhole SPECT imaging. Previously we developed a graphical procedure to determine the detector in-plane rotation angle independently of the other six parameters. Using the discovered geometrical relationships, in this paper we determine the remaining six parameters using the cone-beam projections of a minimum of three point objects. Our method is analytical. It makes use of the parameters of the fitted ellipse from the calibration data. The parameter estimation is accurate in the noise-free case or when there is moderate projection data truncation or shorter calibration scan range ( ≤ 360°). We perform numerical evaluations to study the robustness of the proposed method under different projection noise levels and using different data acquisition ranges. Using a full 360° scan range, the estimation accuracy and precision of our method are comparable or superior to previous methods. Using a shorter acquisition range, there may be bias in the ellipse parameters obtained by simple algebraic fitting methods. This bias will propagate to the estimated geometric parameters. Such bias can be mostly eliminated by using a more sophisticated fitting algorithm. At the same noise level, the geometric parameter estimation accuracies are comparable, but the estimation precision degrades, as the acquisition range becomes shorter.

  16. Characterization of a Cs-137 radiation beam for dosimeter calibrations in the CRCN-CO

    International Nuclear Information System (INIS)

    Baptista Neto, Annibal T.; Soares, Carlos M. de A.; Silva, Teogenes A. da; Correa, Rosangela da S.

    2009-01-01

    The Centro Regional de Ciencias Nucleares do Centro Oeste (CRCN-CO) has played an important role in the environmental radiation monitoring program in Goiania city. The reduce its dependence of others monitoring laboratories, the CRCN-CO acquired a model 28 JL Shepherd and Associates irradiation system with a 137 Cs source for calibrations and frequent quality control checks of radiation dosimeters. A characterization of the irradiation system was carried out with the reference standard dosimeters that are maintained by the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). The laboratory surrounding areas were monitored to demonstrate the adequate radiation protection conditions and parameters as the radiation field size, beam uniformity and the level of the scatter radiation were investigated. Dosimetry of the 137 Cs radiation beam in terms of air kerma rate was carried out at many source-detector distances with 4 (four) different beam lead attenuators. Results demonstrated that in spite of the radiation shutter automation is strongly recommended, the irradiation system is adequate and it complies with the requirements to be used for dosimeter irradiations and calibrations for the purpose of radiation protection. (author)

  17. Radiation pressure calibration and test mass reflectivities for LISA Pathfinder

    Science.gov (United States)

    Korsakova, Natalia; Kaune, Brigitte; LPF Collaboration

    2017-05-01

    This paper describes a series of experiments which were carried out during the main operations of LISA Pathfinder. These experiments were performed by modulating the power of the measurement and reference beams. In one series of experiments the beams were sequentially switched on and off. In the other series of experiments the powers of the beams were modulated within 0.1% and 1% of the constant power. These experiments use recordings of the total power measured on the photodiodes to infer the properties of the Optical Metrology System (OMS), such as reflectivities of the test masses and change of the photodiode efficiencies with time. In the first case the powers are back propagated from the different photodiodes to the same place on the optical bench to express the unknown quantities in the measurement with the complimentary photodiode measurements. They are combined in the way that the only unknown left is the test mass reflectivities. The second experiment compared two estimates of the force applied to the test masses due to the radiation pressure that appears because of the beam modulations. One estimate of the force is inferred from the measurements of the powers on the photodiodes and propagation of this measurement to the test masses. The other estimation of the force is done by calculating it from the change in the main scientific output of the instrument - differential displacement of the two test masses.

  18. Calibration of an advanced photon source linac beam position monitor used for positron position measurement of a beam containing both positrons and electrons

    International Nuclear Information System (INIS)

    Sereno, Nicholas S.

    1998-01-01

    The Advanced Photon Source (APS) linac beam position monitors can be used to monitor the position of a beam containing both positrons and electrons. To accomplish this task, both the signal at the bunching frequency of 2856 MHz and the signal at 2x2856 MHz are acquired and processed for each stripline. The positron beam position is obtained by forming a linear combination of both 2856 and 5712 MHz signals for each stripline and then performing the standard difference over sum computation. The required linear combination of the 2856 and 5712 MHz signals depends on the electrical calibration of each stripline/cable combination. In this paper, the calibration constants for both 2856 MHz and 5712 MHz signals for each stripline are determined using a pure beam of electrons. The calibration constants are obtained by measuring the 2856 and 5712 MHz stripline signals at various electron beam currents and positions. Finally, the calibration constants measured using electrons are used to determine positron beam position for the mixed beam case

  19. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  20. Brookhaven National Laboratory electron beam test stand

    International Nuclear Information System (INIS)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Prelec, K.; Snydstrup, L.

    1998-01-01

    The main purpose of the electron beam test stand (EBTS) project at the Brookhaven National Laboratory is to build a versatile device to develop technologies that are relevant for a high intensity electron beam ion source (EBIS) and to study the physics of ion confinement in a trap. The EBTS will have all the main attributes of EBIS: a 1-m-long, 5 T superconducting solenoid, electron gun, drift tube structure, electron collector, vacuum system, ion injection system, appropriate control, and instrumentation. Therefore it can be considered a short prototype of an EBIS for a relativistic heavy ion collider. The drift tube structure will be mounted in a vacuum tube inside a open-quotes warmclose quotes bore of a superconducting solenoid, it will be at room temperature, and its design will employ ultrahigh vacuum technology to reach the 10 -10 Torr level. The first gun to be tested will be a 10 A electron gun with high emission density and magnetic compression of the electron beam. copyright 1998 American Institute of Physics

  1. Pixel-Tilecal-MDT Combined Test Beam

    CERN Multimedia

    B. Di Girolamo

    A test with many expectations When an additional week of running (from September 11th to 18th) was allocated for the test-beam, it was decided to give priority to a combined run with the participation of the Pixel, Tilecal and MDT sub-detectors. The integration of these three sub-detectors was possible as they all use the baseline (DAQ-1/EF based) DAQ for test beams (as reported in a previous e-news). The tests and the addition of a common trigger and busy were organized in a short timescale by experts from the three sub-detectors and DAQ/EF. The expectations were many; both looking for problems and finding solutions. The setup The setup, shown in the figure, consisted of the Pixel telescope normally used during the sub-detector tests, two Tilecal barrel modules, two Tilecal extended barrel modules, and six MDT barrel chambers. This fully occupied a length of some 30 meters in the H8 line of the SPS North Area. Each sub-detector used their own specialized front-end electronics. The data collected by modu...

  2. Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array

    Science.gov (United States)

    Sokolowski, M.; Colegate, T.; Sutinjo, A. T.; Ung, D.; Wayth, R.; Hurley-Walker, N.; Lenc, E.; Pindor, B.; Morgan, J.; Kaplan, D. L.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, Bi-Qing; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.

    2017-11-01

    The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200-231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.

  3. A line fiducial method for geometric calibration of cone-beam CT systems with diverse scan trajectories

    Science.gov (United States)

    Jacobson, M. W.; Ketcha, M. D.; Capostagno, S.; Martin, A.; Uneri, A.; Goerres, J.; De Silva, T.; Reaungamornrat, S.; Han, R.; Manbachi, A.; Stayman, J. W.; Vogt, S.; Kleinszig, G.; Siewerdsen, J. H.

    2018-01-01

    Modern cone-beam CT systems, especially C-arms, are capable of diverse source-detector orbits. However, geometric calibration of these systems using conventional configurations of spherical fiducials (BBs) may be challenged for novel source-detector orbits and system geometries. In part, this is because the BB configurations are designed with careful forethought regarding the intended orbit so that BB marker projections do not overlap in projection views. Examples include helical arrangements of BBs (Rougee et al 1993 Proc. SPIE 1897 161-9) such that markers do not overlap in projections acquired from a circular orbit and circular arrangements of BBs (Cho et al 2005 Med. Phys. 32 968-83). As a more general alternative, this work proposes a calibration method based on an array of line-shaped, radio-opaque wire segments. With this method, geometric parameter estimation is accomplished by relating the 3D line equations representing the wires to the 2D line equations of their projections. The use of line fiducials simplifies many challenges with fiducial recognition and extraction in an orbit-independent manner. For example, their projections can overlap only mildly, for any gantry pose, as long as the wires are mutually non-coplanar in 3D. The method was tested in application to circular and non-circular trajectories in simulation and in real orbits executed using a mobile C-arm prototype for cone-beam CT. Results indicated high calibration accuracy, as measured by forward and backprojection/triangulation error metrics. Triangulation errors on the order of microns and backprojected ray deviations uniformly less than 0.2 mm were observed in both real and simulated orbits. Mean forward projection errors less than 0.1 mm were observed in a comprehensive sweep of different C-arm gantry angulations. Finally, successful integration of the method into a CT imaging chain was demonstrated in head phantom scans.

  4. Calibration of a reading comprehension test for Portuguese students

    Directory of Open Access Journals (Sweden)

    Irene Cadime

    2014-10-01

    Full Text Available Reading comprehension assessments are important for determining which students are performing below the expected levels for their grade's normative group. However, instruments measuring this competency should also be able to assess students' gains in reading comprehension as they move from one grade to the next. In this paper, we present the construction and calibration process of three vertically scaled test forms of an original reading comprehension test to assess second, third and fourth grade students. A sample of 843 students was used. Rasch model analyses were employed during the following three phases of this study: (a analysis of the items' pool, (b item selection for the test forms, and (c test forms' calibration. Results suggest that a one dimension structure underlies the data. Mean-square residuals (infit and outfit indicated that the data fitted the model. Thirty items were assigned to each test form, by selecting the most adequate items for each grade in terms of difficulty. The reliability coefficients for each test form were high. Limitations and potentialities of the developed test forms are discussed.

  5. Design, fabrication, and testing of the CUORE detector calibration system

    Science.gov (United States)

    Dally, Adam

    2013-04-01

    CUORE, the Cryogenic Underground Observatory for Rare Events, is a neutrinoless double beta decay experiment with an active mass of 206 kg of ^130Te. The detector consists of 988 TeO2 bolometers operating at 10 mK. The signature of 0νββ decay is an excess of events at the Q-value of 2528 keV. Understanding the energy response is critical for event identification, but this presents many challenges. The detector requires ultra-low background radiation, vacuum compatible materials, and cryogenic temperatures. Individual energy calibration of the bolometers is achieved by placing radioactive sources between detectors inside the cryostat. A source deployment and thermalization system that meets the background and thermal requirements of the CUORE experiment has been developed. This talk will discuss the design, fabrication, and testing of the CUORE detector calibration system.

  6. Results of 2007 test beam of AMS-02 Electromagnetic Calorimeter

    Science.gov (United States)

    di Falco, Stefano

    2010-01-01

    The AMS-02 experiment will be delivered by the Space Shuttle Discovery to the ISS in summer 2010. The main goals of the experiment are search for antimatter and dark matter, high precision measurement of charged cosmic ray spectra and fluxes and study of gamma rays, in the GeV to TeV energy range. In AMS-02 the Electromagnetic Calorimeter (ECAL) is required to measure e+,e- and gamma energy and to discriminate electromagnetic showers from hadronic cascades. ECAL is based on a lead/scintillating fiber sandwich, providing a 3D imaging reconstruction of the showers. The electronics equipping the detector has low power consumption, low noise, large dynamic range readout and full double redundancy. The calorimeter successfully got through several space qualification tests concerning the mechanical and thermal stability, the electromagnetic compatibility and radiation hardness. The ECAL Flight Model was calibrated during Summer 2007 in a test beam at CERN, using 6-250 GeV electron and proton beams: angular and energy resolutions, obtained from these data, are reported.

  7. The 2003 Tracker Inner Barrel Beam Test

    CERN Document Server

    Boccali, Tommaso; Borrello, Laura; Carrone, Enzo; Chiorboli, Massimiliano; Ciulli, Vitaliano; Civinini, Carlo; D'Alfonso, Mariarosaria; De Filippis, Nicola; Dell'Orso, Roberto; Drouhin, Frédéric; Dutta, Suchandra; Giammanco, Andrea; Giassi, Alessandro; Giordano, Domenico; Kaminski, A; Macchiolo, Anna; Marchettini, Cristiano; Meschini, Marco; Mirabito, Laurent; My, Salvatore; Palla, Fabrizio; Palmonari, Francesco; Paoletti, Simone; Radicci, Valeria; Ranieri, Riccardo; Segneri, Gabriele; Siegrist, Patrice; Silvestris, Lucia; Tricomi, Alessia; Tsirou, Andromachi; Verdini, Piero Giorgio

    2008-01-01

    Before starting the CMS Silicon Strip Tracker (SST) mass production, where the quality control tests can only be done on single components, an extensive collection of activities aiming at validating the tracker system functionality has been performed. In this framework, a final component prototype of the Inner Barrel part (TIB) of the SST has been assembled and tested in the INFN laboratories and then moved to CERN to check its behaviour in a 25~ns LHC-like particle beam. A set of preproduction single-sided silicon microstrip modules was mounted on a mechanical structure very similar to a sector of the third layer of the TIB and read out using a system functionally identical to the final one. In this note the system setup configuration is fully described and the results of the test, concerning both detector performance and system characteristics, are presented and discussed.

  8. Calibration Tests of Fuel Assembly Simulators of APR+ Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kih Wan; Chu, In Cheol; Euh, Dong Jin; Kwon, Tae Soon [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    A Reactor flow distribution is regarded to be major importance in improving the design margin of a flow distribution. The prediction of APR+ core fluid flow phenomena has been in demand, since 257 fuel assemblies are adapted in the APR+, unlike in the APR1400. The APR+ reactor flow test facility, the ACOP (APR+ Core Flow and Pressure Test Facility), was constructed to analyze the hydraulic characteristics. For the ACOP facility, the core simulator was designed with a scale analysis to simulate the real HIPER fuel assembly of an APR+. In this study, for all 257 core simulators, several calibration tests were conducted to verify their design performance before applying them to the ACOP facility. The inlet flow rate and the total pressure drop of the simulators were measured by varying flow rates to evaluate its compatibility. The discharge coefficients were also calculated from the experimental data to produce a statistical database for a further ACOP facility test.

  9. Beam test performance of the SKIROC2 ASIC

    CERN Document Server

    Frisson, T; Anduze, M; Augustin, J.E; Bonis, J; Boudry, V; Bourgeois, C; Brient, J.C; Callier, S; Cerutti, M; Chen, S; Cornat, R; Cornebise, P; Cuisy, D; David, J; De la Taille, C; Dulucq, F; Frotin, M; Gastaldi, F; Ghislain, P; Giraud, J; Gonnin, A; Grondin, D; Guliyev, E; Hostachy, J.Y; Jeans, D; Kamiya, Y; Kawagoe, K; Kozakai, C; Lacour, D; Lavergne, L; Lee, S.H; Magniette, F; Ono, H; Poeschl, R; Rouëné, J; Seguin-Moreau, N; Song, H.S; Sudo, Y; Thiebault, A; Tran, H; Ueno, H; Van der Kolk, N; Yoshioka, T

    2015-01-01

    Beam tests of the first layers of CALICE silicon tungsten ECAL technological prototype were performed in April and July 2012 using 1–6 GeV electron beam at DESY. This paper presents an analysis of the SKIROC2 readout ASIC performance under test beam conditions.

  10. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  11. On implementing reference radiations for calibrating and testing solid state detectors for dose measurements in radiology

    International Nuclear Information System (INIS)

    Oliveira, P.M.C.; Da Silva, T.A.; Baptista N, A.T.; Pereira, E.G.; Nogueira, M.S.

    2007-01-01

    Full text: Ionizing radiation metrology laboratories seek to assure a metrological coherence among their radiation beams. Reference radiations have been established and recommended to be implemented worldwide in order to allow dosemeter calibrations under similar conditions and radiation characteristics (ISO 1991, IEC 2005). Solid state detectors like thermoluminescent dosemeters, semiconductors, ionization chambers, etc. have been used for dose measurements on individuals or areas. This work reports the results of the implementation of reference radiations recommended by IEC (2005) for calibrating and testing detectors to be used for accurate dose measurements on patients or in phantoms in radiology. As part of the reference radiation implementation procedure, attenuation curves of nine beam qualities with voltage from 40 to 150 kV were carried out. The constant potential Agfa Pantak HS320 x-ray machine that is installed at the CDTN Dosemeter Calibration Laboratory (DCL) was used. Ionization measurements were performed with a 6cc Radcal 10X5-6 ionization chamber traceable to the Brazilian National Laboratory for Ionizing Metrology. Although 99.9% purity aluminium filters are recommended by the IEC standard, 99.5% purity filters were used in this work because they were available and one expects they will cause negligible influence on the energy spectrum. Variation of the beam intensity against the added filtration was measured to the nine RQR IEC reference radiations. The first half value layer (HVL), which it is defined as the aluminum filter thickness that reduces the beam intensity to half of its original value, and the homogeneity coefficient (HC), which it is given by the ratio between the first to second HVL, were determined. For all RQR radiations the 1st HVL measured at the DCL agreed with the C values with a maximum deviation of 2.3%. The HC also showed a good agreement since the DCL and the IEC values had a maximum deviation of 0.03, therefore RQR

  12. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated...... by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain...

  13. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    CERN Document Server

    Krieger, A.; Catherall, R.; Hochschulz, F.; Kramer, J.; Neugart, R.; Rosendahl, S.; Schipper, J.; Siesling, E.; Weinheimer, Ch.; Yordanov, D.T.; Nortershauser, W.

    2011-01-01

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  14. BEAM LINE DESIGN FOR THE CERN HIRADMAT TEST FACILITY

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×1013 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  15. Beam Line Design for the CERN Hiradmat Test Facility

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2010-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×10**13 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  16. Extended calibration range for prompt photon emission in ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, F. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Boehlen, T.T.; Chin, M.P.W. [CERN, Geneva (Switzerland); Collamati, F. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Faccini, R., E-mail: riccardo.faccini@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Ferrari, A. [CERN, Geneva (Switzerland); Lanza, L. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Mancini-Terracciano, C. [CERN, Geneva (Switzerland); Dipartimento di Fisica, Università Roma Tre, Roma (Italy); Marafini, M. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Mattei, I. [Dipartimento di Fisica, Università Roma Tre, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Morganti, S. [INFN Sezione di Roma, Roma (Italy); Ortega, P.G. [CERN, Geneva (Switzerland); Patera, V. [Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Piersanti, L. [Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Russomando, A. [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Sala, P.R. [INFN Sezione di Milano, Milano (Italy); and others

    2014-05-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.

  17. Extended calibration range for prompt photon emission in ion beam irradiation

    International Nuclear Information System (INIS)

    Bellini, F.; Boehlen, T.T.; Chin, M.P.W.; Collamati, F.; De Lucia, E.; Faccini, R.; Ferrari, A.; Lanza, L.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Morganti, S.; Ortega, P.G.; Patera, V.; Piersanti, L.; Russomando, A.; Sala, P.R.

    2014-01-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported

  18. Extended calibration range for prompt photon emission in ion beam irradiation

    CERN Document Server

    Bellini, F.

    2014-01-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum.This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is report...

  19. Creation of geographic information database of subsatellite calibration test site

    Science.gov (United States)

    Zyelyk, Ya. I.; Semeniv, O. V.

    2014-12-01

    The prototype of geographic information database (DB) of the sub-satellite calibration test site has been created, to which user can be accessed from the free open-source geographic information system Quantum GIS (QGIS) environment. QGIS is used as an integrator of all data and applications and visualizer of the satellite imagery and vector layers of test sites in the cartographic interface. Conversion of the database from the local representation in the MS Access to the server representation in the PostgreSQL environment has been performed. Dynamic application to QGIS for user interaction from QGIS environment with the object-relational database and to display information from the database has been created. Functional-algorithmic part of these application and the interface for user interaction with the database has been developed.

  20. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  1. The role of a certified calibration laboratory in a station's measuring and test equipment calibration, repair, and documentation program

    International Nuclear Information System (INIS)

    Ebenstreit, K.; MacIntosh, N.

    1995-01-01

    This paper outlines the role of a Certified Calibration Laboratory in- ensuring that the requirements of Measuring and Test Equipment calibration, identification, and traceability are met and documented. The Nuclear environment is one which is subject to influences from numerous 'quality agents'. One of the fields which comes under the scrutiny of the quality agents is that of equipment calibration and repair (both field components and M and TE). There is a responsibility to produce a superior product for the Ontario Consumer. The maintenance and calibration of Station Systems and their components have a direct impact on this output. The Measuring and Test Equipment element in each of these needs can be addressed by having a defined group of Maintenance Staff to execute a Measuring and Test Equipment Program which meets specific parameters. (author)

  2. POINT CLOUD REFINEMENT WITH A TARGET-FREE INTRINSIC CALIBRATION OF A MOBILE MULTI-BEAM LIDAR SYSTEM

    Directory of Open Access Journals (Sweden)

    H. Nouiraa

    2016-06-01

    Full Text Available LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different

  3. Radiochromic film sensitivity calibrations using ion beams from a Pelletron accelerator

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ward, R. J.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.; Sangster, T. C.

    2015-11-01

    Radiochromic film (RCF) is a transparent detector film that permanently changes color following exposure to ionizing radiation. The optical density of the film increases with increasing absorbed dose. RCF is convenient to use because it requires no chemical processing and can be scanned using commercially available document scanners. RCF is used frequently in medical applications, but is also used in a variety of diagnostics in high energy density physics. The film consists of a single or double layer of radiation-sensitive organic microcrystal monomers placed onto a polyester backing. GafchromicTM manufactures a large number of different types of RCF, and new types of film frequently replace older products. In this study, the sensitivity of several types of RCF to ion beams of different energies was measured. Ion beams produced by the SUNY Geneseo 1.7 MV Pelletron accelerator were directed into a target chamber where they scattered off of a gold foil. A sample of RCF was exposed to the scattered ions. The fluence of incident particles on the film was measured using a surface barrier detector. Results of these calibrations will be presented. This work was funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  4. Calibration of a Thomson parabola ion spectrometer using proton beams from a pelletron accelerator

    Science.gov (United States)

    Canfield, Michael; Lombardo, Andrew; Graeper, Gavin; Stillman, Collin; Freeman, Charles; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

    2010-11-01

    The position-to-energy calibration of a Thomson parabola ion spectrometer (TPIS) was measured using proton beams from the 1.7 MV tandem pelletron accelerator at SUNY Geneseo. The TPIS was designed for use on the multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The TPIS implements parallel electric and magnetic fields to separate ions of a given mass-to-charge ratio onto parabolic curves on the detector plane. The position of the ions along the parabola is used to determine the ions' energy. Monoenergetic proton beams with energies between approximately 1 and 3 MeV were directed into the TPIS. Both radiochromic film (RCF) and Fujifilm imaging plates (IP) were placed at the rear of the TPIS and were used to detect the protons. The horizontal deflection due to the electrostatic plates and the vertical deflection due to the permanent magnetic field were studied as a function of the proton energy. This research was funded in part by DOE.

  5. Geometric calibration of a mobile C-arm for intraoperative cone-beam CT.

    Science.gov (United States)

    Daly, M J; Siewerdsen, J H; Cho, Y B; Jaffray, D A; Irish, J C

    2008-05-01

    A geometric calibration method that determines a complete description of source-detector geometry was adapted to a mobile C-arm for cone-beam computed tomography (CBCT). The non-iterative calibration algorithm calculates a unique solution for the positions of the source (X(s), Y(s), Z(s)), detector (X(d), Y(d), Z(d)), piercing point (U(o), V(o)), and detector rotation angles (phi, theta, eta) based on projections of a phantom consisting of two plane-parallel circles of ball bearings encased in a cylindrical acrylic tube. The prototype C-arm system was based on a Siemens PowerMobil modified to provide flat-panel CBCT for image-guided interventions. The magnitude of geometric nonidealities in the source-detector orbit was measured, and the short-term (approximately 4 h) and long-term (approximately 6 months) reproducibility of the calibration was evaluated. The C-arm exhibits large geometric nonidealities due to mechanical flex, with maximum departures from the average semicircular orbit of deltaU(o) = 15.8 mm and deltaV(o) = 9.8 mm (for the piercing point), deltaX and deltaY = 6-8 mm and deltaZ = 1 mm (for the source and detector), and deltaphi approximately 2.9 degrees, deltatheta approximately 1.9 degrees, and delta eta approximately 0.8 degrees (for the detector tilt/rotation). Despite such significant departures from a semicircular orbit, these system parameters were found to be reproducible, and therefore correctable by geometric calibration. Short-term reproducibility was < 0.16 mm (subpixel) for the piercing point coordinates, < 0.25 mm for the source-detector X and Y, < 0.035 mm for the source-detector Z, and < 0.02 degrees for the detector angles. Long-term reproducibility was similarly high, demonstrated by image quality and spatial resolution measurements over a period of 6 months. For example, the full-width at half-maximum (FWHM) in axial images of a thin steel wire increased slightly as a function of the time (delta) between calibration and image

  6. The 2004 ATLAS Combined Test Beam

    CERN Multimedia

    The ATLAS CTB Team, .

    2004-01-01

    In the year 2004, ATLAS has been involved in a huge combined test beam (CTB) effort in H8. A complete slice of the barrel detector and of the Muon End-cap has been tested, with the following clear goals: pre-commission the final elements and study the detector performance in a realistic combined data taking. Thanks to this experience, a lot of expertise in the operations has been acquired and much data (~ 4.6 TB of data, ~ 90 million events on castor) has been collected and is already under analysis. The CTB has been characterized by different phases with an incremental presence of sub-detectors modules and associated DAQ infrastructure, as well as incremental improvement of analysis tools for prompt data certification. The physics goals of the CTB have been defined in consultation with the physics coordinator, all the sub-detector representatives and the combined performance group representative. With all these indications, a detailed run plan day-by-day schedule was defined before the CTB start and was foll...

  7. ATLAS TRT Barrel in Test Beam

    CERN Multimedia

    Luehring, F

    In July, the TRT group made a highly successful test of 6 Barrel TRT modules in the ATLAS H8 testbeam. Over 3000 TRT straw tubes (4 mm diameter gas drift tubes) were instrumented and found to operate well. The prototype represents 1/16 of the ATLAS TRT barrel and was assembled from TRT modules produced as spares. This was the largest scale test of the TRT to this date and the measured detector performance was as good as or better than what was expected in all cases. The 2004 TRT testbeam setup before final cabling was attached. The readout chain and central DAQ system used in the TRT testbeam is a final prototype for the ATLAS experiment. The TRT electronics used to read out the data were: The Amplifier/Shaper/Discriminator with Baseline Restoration (ASDBLR) chip is the front-end analog chip that shapes and discriminates the electronic pulses generated by the TRT straws. The Digital Time Measurement Read Out Chip (DTMROC) measures the time of the pulse relative to the beam crossing time. The TRT-ROD ...

  8. Last Stand-alone Beam Test of the Hadronic End-cap Calorimeter (HEC) Finished.

    CERN Multimedia

    Oberlack, H

    One quarter of all 134 HEC modules are tested with electron, pion and muon beams: two "partial HEC wheels", three HEC1 modules and three HEC2 modules, are used in a standard setup using the HEC cryostat in the H6 beam line. The picture shows a view of the set-up in the cryostat during the installation. MC results show that in this setup the energy leakage is well under control - well below 5 %. In addition, the other three quarters of modules are tested in technical cold tests. Using calibration signals, a detailed test of the cabling, cold electronics, crosstalk and noise performance is being done. The beam tests started with four prototype modules per run in '97, when technological optimization was still the key issue. From '98 onwards, modules of the "module 0" type have been tested, typically in two run periods per year. Finally in '99 the series production has started, with first beam test of series modules in 2000. Since then 57 series modules have been cold tested, 24 of them actually in beam tests. T...

  9. Geodetic antenna calibration test in the Antarctic environment

    Science.gov (United States)

    Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.

    2006-01-01

    TransAntarctic Mountain DEFormation (TAMDEF) Monitoring Network is the NSF-sponsored OSU and USGS project, aimed at measuring crustal motion in the Transantarctic Mountains of Victoria Land using GPS carrier phase measurements. Station monumentation, antenna mounts, antenna types, and data processing strategies were optimized to achieve mm-level estimates for the rates of motion. These data contributes also to regional Antarctic frame definition. Significant amount of data collected over several years allow the investigation of unique aspects of GPS geodesy in Antarctica, to determine how the error spectrum compares to the mid-latitude regions, and to identify the optimum measurement and data processing schemes for Antarctic conditions, in order to test the predicted rates of motion (mm-level w.r.t. time). The data collection for the TAMDEF project was initiated in 1996. The primary antenna used has been the Ashtech L1/L2 Dorne Margolin (D/M) choke ring. A few occupations involved the use of a Trimble D/M choke ring. The data were processed using the antenna calibration data available from the National Geodetic Survey (NGS). The recent developments in new antenna designs that are lighter in weight and lower in cost are being considered as a possible alternative to the bulkier and more expensive D/M choke ring design. In November 2003, in situ testing of three alternative models of L1/L2 antennas was conducted at a site located in the vicinity of McMurdo Station, Antarctica (S77.87, E166.56). The antenna models used in this test were: Ashtech D/M choke ring, Trimble D/M choke ring, Trimble Zephyr, and the NovAtel GPS-702. Two stations, spaced within 30 meters, were used in the test. Both had the characteristics similar to the stations of the TAMDEF network, i.e., the UNAVCO fixed-height, force-centered level mounts with a constant antenna offset were used, ensuring extreme stability of the antenna/ mount/pin set up. During each of the four 3-day test data collection

  10. Performance of the ATLAS liquid argon forward calorimeter in beam tests

    CERN Document Server

    Archambault, J P; Cadabeschi, M; Epshteyn, V; Galt, C; Gillberg, D; Gorbounov, P; Heelan, L; Khakzad, M; Khovanskiy, V; Krieger, P; Loch, P; McCarthy, T G; Oakham, F G; Orr, R S; Rutherfoord, J; Savine, A; Schram, M; Shatalov, P; Shaver, L; Shupe, M; Strickland, V; Thompson, P; Tsukerman, I

    2013-01-01

    One of two ATLAS Forward Calorimeters, consisting of threemodules, one behind the other, was exposed to particle beams ofknown energies in order to study the detector performance with andwithout the presence of upstream material in the beam, and at theinner edge of the acceptance where shower energy containment isincomplete. Data were taken in the H6 beamline at CERN usingelectron and hadron beams with energies from 10 to 200 GeV.Results related to the intrinsic detector calibration, based on datataken with a minimal amount of material in front of the detector,have been previously published, but are updated here. This paperfocuses on studies of data taken with additional upstream materialin place. The effects of this additional material on the linearityand resolution of the response are presented. The response at theinner edge of the acceptance is also investigated. For all analyses,results based on a GEANT4 simulation of the beam-test setup anddetector response are also presented.

  11. Test of an amorphous silicon detector in medical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Martisikova, M., E-mail: m.martisikova@dkfz.de [Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Hesse, B.M. [Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Nairz, O. [Heidelberger Ionenstrahl-Therapiezentrum HIT am Universitaetsklinikum Heidelberg, Im Neuenheimer Feld 450, D-69120 Heidelberg (Germany); Jaekel, O [Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Heidelberger Ionenstrahl-Therapiezentrum HIT am Universitaetsklinikum Heidelberg, Im Neuenheimer Feld 450, D-69120 Heidelberg (Germany)

    2011-05-15

    Ion beam radiation therapy for cancer treatment allows for improved dose confinement to the target in comparison with the standard radiation therapy using high energy photons. Dose delivery to the patient using focused ion beam scanning over the target volume is going to be increasingly used in the upcoming years. The high precision of the dose delivery achieved in this way has to be met by practical methods for beam monitoring with sufficient spatial resolution in two dimensions. Flat panel detectors, used for photon portal imaging at the newest medical linear accelerators, are an interesting candidate for this purpose. Initial detector tests presented here were performed using proton beams with the highest available energy. The investigations include measurements of beam profiles at different beam intensities and for different beam width, as well as the signal linearity. Radiation damage was also investigated. The obtained results show that the detector is a promising candidate to be used in the therapeutic proton beams.

  12. Personal extrapolation of CDF test beam use to the SSC

    International Nuclear Information System (INIS)

    Nodulman, L.

    1986-01-01

    The author's personal experience in test beam usage at CDF is used to predict SSC needs at the point of turn-on. It is concluded that the test beam demand will reflect the scale of effort involved in SSC detectors rather than the total number of them. Provision for later expansion is recommended. It is also recommended that the test beam facilities, as well as detector electronics, should reflect the available dynamic range; particularly, a single high energy beam derived from the SSC could be shared by several groups

  13. Data acquisition system for medium power neutral beam test facility

    International Nuclear Information System (INIS)

    Stewart, C.R. Jr.; Francis, J.E. Jr.; Hammons, C.E.; Dagenhart, W.K.

    1978-06-01

    The Medium Power Neutral Beam Test Facility at Oak Ridge National Laboratory was constructed in order to develop, test, and condition powerful neutral beam lines for the Princeton Large Torus experiment at Princeton Plasma Physics Laboratory. The data acquisition system for the test stand monitors source performance, beam characteristics, and power deposition profiles to determine if the beam line is operating up to its design specifications. The speed of the computer system is utilized to provide near-real-time analysis of experimental data. Analysis of the data is presented as numerical tabulation and graphic display

  14. Data acquisition system for PLT Neutral Beam Test Stand

    International Nuclear Information System (INIS)

    Francis, J.E. Jr.; Hammons, C.E.

    1977-01-01

    The PLT Neutral Beam Test Stand at Oak Ridge National Laboratory was constructed to test and condition powerful neutral beam sources for the Princeton Large Torus experiment at Princeton Plasma Physics Laboratory. The data acquisition system for the test stand monitors the beam characteristics and power output to determine if the beam is operating at its design specifications. The high speed of the computer system is utilized to provide near-real-time analysis of experimental data. The analysis of the data is presented as numerical tabulation and graphic display

  15. Neutron Irradiation Tests of Calibrated Cryogenic Sensors at Low Temperatures

    CERN Document Server

    Junquera, T; Thermeau, J P; Casas-Cubillos, J

    1998-01-01

    This paper presents the advancement of a program being carried out in view of selecting the cryogenic temperature sensors to be used in the LHC accelerator. About 10,000 sensors will be installed around the 26.6 km LHC ring, and most of them will be exposed to high radiation doses during the accelerator lifetime. The following thermometric sensors : carbon resistors, thin films, and platinum resistors, have been exposed to high neutron fluences (>10$^15$ n/cm$^2$) at the ISN (Grenoble, France) Cryogenic Irradiation Test Facility. A cryostat is placed in a shielded irradiation vault where a 20 MeV deuteron beam hits a Be target, resulting in a well collimated and intense neutron beam. The cryostat, the on-line acquisition system, the temperature references and the main characteristics of the irradiation facility are described. The main interest of this set-up is its ability to monitor online the evolution of the sensors by comparing its readout with temperature references that are in principle insensitive to t...

  16. GMI Instrument Spin Balance Method, Optimization, Calibration, and Test

    Science.gov (United States)

    Ayari, Laoucet; Kubitschek, Michael; Ashton, Gunnar; Johnston, Steve; Debevec, Dave; Newell, David; Pellicciotti, Joseph

    2014-01-01

    The Global Microwave Imager (GMI) instrument must spin at a constant rate of 32 rpm continuously for the 3 year mission life. Therefore, GMI must be very precisely balanced about the spin axis and CG to maintain stable scan pointing and to minimize disturbances imparted to the spacecraft and attitude control on-orbit. The GMI instrument is part of the core Global Precipitation Measurement (GPM) spacecraft and is used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center to design, build, and test the GMI instrument. The GMI design has to meet a challenging set of spin balance requirements and had to be brought into simultaneous static and dynamic spin balance after the entire instrument was already assembled and before environmental tests began. The focus of this contribution is on the analytical and test activities undertaken to meet the challenging spin balance requirements of the GMI instrument. The novel process of measuring the residual static and dynamic imbalances with a very high level of accuracy and precision is presented together with the prediction of the optimal balance masses and their locations.

  17. Calibration and Application of the Field Instruments of a Fuel Test Loop

    International Nuclear Information System (INIS)

    Choi, Young-San; In, Won-Ho; Bae, Sang-Hoon; Kim, Sang-Jin; Jung, Hoan-Sung

    2007-01-01

    The Fuel Test Loop in HANARO is now in commissioning. The field instruments of the FTL were selected to secure stability and reliability of signals and they were self calibrated by the plant prior to the installation. The field instruments consist of thermometer, flowmeter, manometer, level meter and analyzer, and the standard measuring devices used for calibration were certified by the national calibration laboratory before use. This paper describes the calibration methods and results of field instruments for each parameter as well as any particulars and corrections identified during calibration. Also, it describes problems in using standard measuring devices employed for calibration

  18. Calibration and Performance Testing of Sodium Iodide, NaI (Tl ...

    African Journals Online (AJOL)

    The performance testing of a newly acquired sodium iodide detector (NaI), (Tl)) at Ghana Atomic Energy Commission (GAEC) was investigated by carrying out energy and efficiency calibration on the detector, as well as validation of its calibration. The energy and efficiency calibrations were performed using mixed ...

  19. Effects of Calibration Sample Size and Item Bank Size on Ability Estimation in Computerized Adaptive Testing

    Science.gov (United States)

    Sahin, Alper; Weiss, David J.

    2015-01-01

    This study aimed to investigate the effects of calibration sample size and item bank size on examinee ability estimation in computerized adaptive testing (CAT). For this purpose, a 500-item bank pre-calibrated using the three-parameter logistic model with 10,000 examinees was simulated. Calibration samples of varying sizes (150, 250, 350, 500,…

  20. Fast method for geometric calibration of detectors and matching testing between two detectors

    International Nuclear Information System (INIS)

    Pechenova, O.Yu.

    2002-01-01

    A fast method of geometric calibration of detectors has been proposed. The main idea of this method is to determine offsets by fitting the real data distribution by analytic functions which describe the motion of one detector relative to the other one. This method can be applicable to offsets determination for one detector relative to the other detector or for one part of the detector relative to its other part. The detectors should be placed perpendicular to the beam axis. The form of analytic functions depends on the geometry of the experiment and direction of the coordinate axes. The analytic functions have been obtained using the rotation matrices. This method can be applied to the matching testing between two detectors

  1. Report of the Ad Hoc Committee on Test Beam Policy

    International Nuclear Information System (INIS)

    Stefanski, R.; Anderson, D.; Childress, S.

    1989-01-01

    This document was developed at the request of the Physics Advisory Committee of the Fermi National Accelerator Laboratory to review the general subject of test beams with the purpose of establishing general policy and guidelines for consideration of future test beam requests. The recommendations stated here should be subject to periodic review, since the Laboratory position must change as needs and available resources change

  2. A beam test of prototype time projection chamber using micro ...

    Indian Academy of Sciences (India)

    Abstract. We conducted a series of beam tests of prototype TPCs for the international linear collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype operated successfully in a test beam at KEK under an axial magnetic field of up to 1 T. The analysis of data is now in ...

  3. A beam test of prototype time projection chamber using micro ...

    Indian Academy of Sciences (India)

    We conducted a series of beam tests of prototype TPCs for the international linear collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype operated successfully in a test beam at KEK under an axial magnetic field of up to 1 T. The analysis of data is now in progress ...

  4. A calibration mechanism based on the principles of the Michelson interferometer micro-thrust test device

    Science.gov (United States)

    Yan, Biao; Wang, Hai; Yang, Chunlai; Wen, Li

    2017-08-01

    A micro-thrust test system based on Michelson interferometer was proposed and tested. The relationship between thrust and output voltage of the calibration component in the system was calculated and verified with numerical modeling. The fitting function of the calibration component was obtained, which will be tested during future thrust test experiments.

  5. Characteristic parameters analysis on diagnostic X-ray beams for dosemeter calibration; Analise de parametros caracteristicos de feixes de raios-X diagnostico para calibracao de dosimetros

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Paulo Marcio Campos de

    2008-07-01

    Ionizing radiation metrology is the base to achieve reliable dose measurements in ali areas; it is also part of the framework that is established to assure radiation protection procedures in order to avoid or minimize the harmful biological effect that may be caused by ionizing radiation. A well done metrology means the use of reliable instruments that comply with standard performance requirements worldwide accepted. Those instruments are expected to be calibrated by Metrology Laboratories under well defined conditions. The International Electrotechnical Commission (IEC) in Standard 61267 established the reference radiations for medical diagnostic x-ray equipment that are recommended to be used for calibrating dosimetric systems for diagnostic dosimetry. In this work, X-ray beam qualities were established in a Calibration Laboratory and their characteristics were analyzed through the measurement of beam parameters like inherent tube filtration, beam uniformity and field size, energy spectra and peak voltage for additional filtration with 94.425 por cent and 99.999 por cent purity filters. Also, the first half-value layer and the homogeneity coefficient were measured for the three RQR 2, RQR 6 and RQR 10 IEC beam qualities and they were analyzed according to the IEC standard. Air-kerma measurements were carried out with an ionization chamber that had its reliability confirmed through repetition and reproducibility reading tests. In 50 sets of measurements the maximum standard deviation found of 10 successive readings was 0.19 %; the maximum shift of the reading mean value at a fixed geometry condition was 0.80 % with an overall standard deviation of 0.23 %. Results showed that the use of different purity filters did not cause a relevant influence on the beam energy spectra. An ionization chamber was also calibrated against a standard dosimeter in ali implemented reference radiations and the relevant sources of uncertainties were estimated. Calibration could be done

  6. EBT-XD Radiochromic Film Sensitivity Calibrations Using Proton Beams from a Pelletron Accelerator

    Science.gov (United States)

    Stockler, Barak; Grun, Alexander; Brown, Gunnar; Klein, Matthew; Wood, Jacob; Cooper, Anthony; Ward, Ryan; Freeman, Charlie; Padalino, Stephen; Regan, S. P.; Sangster, T. C.

    2017-10-01

    Radiochromic film (RCF) is a transparent detector film that permanently changes color following exposure to ionizing radiation. RCF is used frequently in medical applications, but also has been used in a variety of high energy density physics diagnostics. RCF is convenient to use because it requires no chemical processing and can be scanned using commercially available document scanners. In this study, the sensitivity of Gafchromic™ EBT-XD RCF to protons and x-rays was measured. Proton beams produced by the SUNY Geneseo Pelletron accelerator were directed into an evacuated target chamber where they scattered off a thin gold foil. The scattered protons were incident on a sample of RCF which subtended a range of angles around the scattering center. A new analysis method, which relies on the variation in scattered proton fluence as a function of scattering angle in accordance with the Rutherford scattering law, is currently being developed to speed up the proton calibrations. Samples of RCF were also exposed to x-ray radiation using an X-RAD 160 x-ray irradiator, allowing the sensitivity of RCF to X-rays to be measured. This work was funded in part by a Grant from the DOE through the Laboratory for Laser Energetics as well as the NSF.

  7. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  8. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Macri, J.R.; Bancroft, C.M.; Connor, T.P.; Ryan, J.M.

    2009-01-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50-500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete 'engineering model' of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46±0.06 and 0.48±0.03 at 69.5 and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  9. WFC3 Science Calibration Plan Part 1: Overview of Ground-Based Ambient and Thermal Vacuum Calibration Tests

    Science.gov (United States)

    Reid, Iain Neill

    2002-05-01

    The goals of the WFC3 ground-based calibration effort are to perform a comprehensive instrument characterization to verify CEI performance, to understand the operational characteristics of the instrument, and to create calibration reference files that will serve as a baseline for on-orbit calibrations and data pipeline processing. The plan is based on the extensive experience and groundwork laid by the WFPC2, NICMOS, STIS and ACS instruments. As with ACS and WFPC2, this Calibration Plan emphasizes a suite of nine test categories. The suite of test categories includes a comprehensive characterization of all essential science performance parameters, and encompasses measurements conducted at component, subassembly and systems levels, and carried out in both ambient and thermal vacuum environments. Detailed test procedures will identify the desired WFC3 instrument configuration, the Optical Stimulus configuration, and the Exposure Time Calculator (ETC) estimates of exposure times for each of the measurements required. Our approach is to implement a "test as you build" approach. Given the schedule and budget constrained WFC3 program, this approach provides the opportunity to perform trouble shooting and noise debugging at the earliest possible opportunity, and to identify potential problems and implement solutions in a timely manner before launch. The overall integration and testing program makes use of facilities and Ground Support Equipment (GSE) at Ball, JPL and GSFC, using hardware and software tools developed for previous HST instruments. Using lessons learned from previous HST instruments, we plan to implement improvements in the data handling process to increase efficiency and assure data quality. This document addresses primarily those tests and calibration measurements that will be done at GSFC to ensure that WFC3 will be able to complete its scientific mission.

  10. Design and development of source holder of collimator assembly for low level radiological testing and calibration

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Meghwal, L.R.

    2012-01-01

    The low level radiological test and calibration facility under ISO: 17025; NABL accreditation has been recently upgraded in terms of radiation source strength and radiation collimation geometry. The decayed cobalt-60 radiation source (2.3 mCi) has been replenished with new radioactive source of activity 10 mCi. The source was procured from BRIT Mumbai with physical dimension 15 mm (L) x 10 mm (f), however, the active geometry of the source was not known. An autoradiography concept was applied to know the exact geometry of active dimension of the source with respect to its physical dimension. The source was immobilized on the industrial radiography film and exposed with X-rays (KV: 100, mA: 1, t: 0.5 s) at 100 cm from focal point of X-ray tube. The film was developed under standard laboratory condition in the dark room. The radioactive pellet has been found well delineated with respect to the physical dimension of the source inside the capsule. The exact physical dimension of the source and active dimension have been found as 9 mm (L) x 8 mm (f) and 3 mm (L) x 2 mm (f) respectively. A source holder of perspex material was designed and fabricated as per collimator geometry, ease of fitment and divergence profile of radiation beam. The autoradiography procedure (KV: 70, mA: 1, t: 0.7 s) was repeated after fixing the source in fabricated perpex holder for checking the quality of the immobilization of source in the holder. An improvement in positioning error (±5 mm) while testing and calibrating the radiological instruments, has been observed with the help of autoradiograph. The alignment of the source was checked and verified with laser alignment system. The designed collimator is made of tissue equivalent material and hence will have less radiation scattering. The radiological calibration facility is now more efficient in terms of systematic measurement uncertainty. This has improved the quality standard of the radiological test and calibration. The various aspects

  11. Tokamak Fusion Test Reactor neutral beam injection system vacuum chamber

    International Nuclear Information System (INIS)

    Pedrotti, L.R.

    1977-01-01

    Most of the components of the Neutral Beam Lines of the Tokamak Fusion Test Reactor (TFTR) will be enclosed in a 50 cubic meter box-shaped vacuum chamber. The chamber will have a number of unorthodox features to accomodate both neutral beam and TFTR requirements. The design constraints, and the resulting chamber design, are presented

  12. Review of tolerances at the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Bulos, F.; Burke, D.; Helm, R.; Irwin, J.; Roy, G.; Yamamoto, N.

    1991-01-01

    The authors review the tolerances associated with the Final Focus Test Beam (FFTB). The authors have computed the acceptability window of the input beam for orbit jitter, emittance beta functions mismatch, incoming dispersion and coupling; tolerances on magnet alignment, strength and multipole content; and the initial tuneability capture of the line

  13. Review of tolerances at the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Bulos, F.; Burke, D.; Helm, R.; Irwin, J.; Roy, G.; Yamamoto, N.

    1991-05-01

    We review the tolerances associated with the Final Focus Test Beam (FFTB). We have computed the acceptability window of the input beam for orbit jitter, emittance beta functions mismatch, incoming dispersion and coupling; tolerances on magnet alignment, strength and multipole content; and the initial tuneability capture of the line. 2 refs., 1 fig

  14. Evaluation of the energy dependence of ionization chambers pencil type calibrated beam tomography standards

    International Nuclear Information System (INIS)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha A.

    2015-01-01

    The Instrument Calibration Laboratory of IPEN (LCI - IPEN) performs calibrations of pencil-type ionization chambers (IC) used in measures of dosimetric survey on clinical systems of Computed Tomography (CT). Many users make mistakes when using a calibrated ionization chamber in their CT dosimetry systems. In this work a methodology for determination of factors of correction for quality (Kq) through the calibration curve that is specific for each ionization chamber was established. Furthermore, it was possible to demonstrate the energy dependence on an pencil-type Ionization Chamber(IC) calibrated at the LCI - IPEN. (author)

  15. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  16. SSC detector muon sub-system beam tests

    International Nuclear Information System (INIS)

    Downing, R.; Errede, S.; Gauthier, A.; Haney, M.; Karliner, I.; Liss, T.; O'Halloran, T.; Sheldon, P.; Simiatis, V.; Thaler, J.; Wiss, J.; Kunori, S.; Skuja, A.; Davisson, R.; Liang, G.; Lubatti, H.; Wilkes, R.; Zhao, T.; Carlsmith, D.

    1993-01-01

    We propose to start a test-beam experiment at Fermilab studying the problems associated with tracking extremely high energy muons through absorbers. We anticipate that in this energy range the observation of the muons will be complicated by associated electromagnetic radiation Monte Carlo simulations of this background need to be tuned by direct observations. These beam tests are essential to determine important design parameters of a SSC muon detector, such as the choice of the tracking, geometry, hardware triggering schemes, the number of measuring stations, the amount of iron between measuring stations, etc. We intend to begin the first phase of this program in November of 1990 utilizing the Tevatron muon beam. We plan to measure the multiplicity, direction, and separation of secondary particles associated with the primary muon track as it emerges from an absorber. The second phase of beam test in 1992 or later will be a full scale test for the final design chosen in our muon subsystem proposal

  17. The MPE X-ray test facility PANTER: Calibration of hard X-ray (15-50 kev) optics

    Science.gov (United States)

    Freyberg, M. J.; Bräuninger, H.; Burkert, W.; Hartner, G. D.; Citterio, O.; Mazzoleni, F.; Pareschi, G.; Spiga, D.; Romaine, S.; Gorenstein, P.; Ramsey, B. D.

    2005-12-01

    The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV).

  18. Beam test of CSES silicon strip detector module

    Science.gov (United States)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  19. Test Beam Results of a 3D Diamond Detector

    CERN Document Server

    Dunser, Marc

    2015-01-01

    3D pixel technology has been used successfully in the past with silicon detectors for tracking applications. Recently, a first prototype of the same 3D technology has been produced on a chemical vapour deposited single-crystal diamond sensor. This device has been subsequently tested in a beam test at CERN’s SPS accelerator in a beam of 120 GeV protons. Details on the production and results of testbeam data are presented.

  20. Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)

    Science.gov (United States)

    Arrington, E. Allen

    2012-01-01

    There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.

  1. Beam tests with microstrip gas counters

    International Nuclear Information System (INIS)

    Landry, M.R.; Birchall, J.; Crow, K.; Davis, C.A.; Faszer, W.; Gan, L.; Lee, L.; van Oers, W.T.H.; Page, S.A.; Ramsay, W.D.; Salomon, M.

    1994-10-01

    We have measured the efficiency, timing and pulse heights in several types of microstrip Gas Chambers with plastic substrates passivated with a thin Nickel layer. We used as active gas mixtures Argon/Isobutane and CF 4 /Isobutane. We placed the detectors in a secondary beam at TRIUMF tuned to a momentum of 100 MeV/c of pions, muons and electrons. Preliminary results indicate good efficiency for minimum ionizing particles in Argon/Isobutane mixtures but lesser efficiency in CF 4 based gases indicating the importance of high quality preamplifiers to increase the signal to noise ratio. (author). 20 refs., 6 figs

  2. Postal dosimetry audit test for small photon beams.

    Science.gov (United States)

    Espinosa, María del Mar; Núñez, Luis; Muñiz, José Luis; Lagares, Juan Ignacio; Embid, Miguel; Gómez-Ros, José María

    2012-01-01

    Small radiation beams (advanced techniques as Intensity Modulated Radiotherapy (IMRT) and Stereotactic Radiosurgery (SRS). Dose measurements in small beams present challenges not encountered for larger beams. A postal audit with Thermoluminiscent Dosimeters (TLD) was developed to check the doses in small photon beams. A validation test in real conditions was carried out in fourteen centres. The TLD postal audit employs very small chips (1×1×1 mm(3)) of TLD-100 inserted at 5 and 10 cm of depth in a cylindrical PMMA phantom designed for this purpose. This experimental system is mailed to the audited centres to be irradiated with beams of 1 and 3 cm of side or diameter. The prescribeddose is 1.5 Gy at 10 cm. The properties of this system were studied experimentally and by Monte Carlo (MC) simulation, before the external test. Deviations between the prescribed and measured absorbed doses are below 5% for 69% (1×1 cm(2) beam) and 64% (3×3 cm(2) beam) of the audited centres. When deviations are above 5%, their causes have been investigated and led to corrections. The developed postal audit is suitable to verify the absorbed doses in small photon beams with an accuracy of 2.9% (1 s). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Overview of the Beam diagnostics in the Medaustron Accelerator:Design choices and test Beam commissioning

    CERN Document Server

    Osmic, F; Gyorgy, A; Kerschbaum, A; Repovz, M; Schwarz, S; Neustadt, W; Burtin, G

    2012-01-01

    The MedAustron centre is a synchrotron based accelerator complex for cancer treatment and clinical and non-clinical research with protons and light ions, currently under construction in Wiener Neustadt, Austria. The accelerator complex is based on the CERN-PIMMS study [1] and its technical implementation by the Italian CNAO foundation in Pavia [2]. The MedAustron beam diagnostics system is based on sixteen different monitor types (153 devices in total) and will allow measuring all relevant beam parameters from the source to the irradiation rooms. The monitors will have to cope with large intensities and energy ranges. Currently, one ion source, the low energy beam transfer line and the RFQ are being commissioned in the Injector Test Stand (ITS) at CERN. This paper gives an overview of all beam monitors foreseen for the MedAustron accelerator, elaborates some of the design choices and reports the first beam commissioning results from the ITS.

  4. Plasma lens experiments at the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Barletta, B.; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 x 10 10 , tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders

  5. Plasma lens experiments at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, B. [California Univ., Los Angeles, CA (United States)]|[Lawrence Berkeley Lab., CA (United States); Chattopadhyay, S. [Lawrence Berkeley Lab., CA (United States); Chen, P. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  6. Postal dosimetry audit test for small photon beams

    International Nuclear Information System (INIS)

    Espinosa, María del Mar; Núñez, Luis; Muñiz, José Luis; Lagares, Juan Ignacio; Embid, Miguel; Gómez-Ros, José María

    2012-01-01

    Background and purpose: Small radiation beams ( 3 ) of TLD-100 inserted at 5 and 10 cm of depth in a cylindrical PMMA phantom designed for this purpose. This experimental system is mailed to the audited centres to be irradiated with beams of 1 and 3 cm of side or diameter. The prescribeddose is 1.5 Gy at 10 cm. The properties of this system were studied experimentally and by Monte Carlo (MC) simulation, before the external test. Results: Deviations between the prescribed and measured absorbed doses are below 5% for 69% (1 × 1 cm 2 beam) and 64% (3 × 3 cm 2 beam) of the audited centres. When deviations are above 5%, their causes have been investigated and led to corrections. Conclusion: The developed postal audit is suitable to verify the absorbed doses in small photon beams with an accuracy of 2.9% (1s).

  7. Standard Test Method for Calibration of Non-Concentrator Photovoltaic Secondary Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers calibration and characterization of secondary terrestrial photovoltaic reference cells to a desired reference spectral irradiance distribution. The recommended physical requirements for these reference cells are described in Specification E1040. Reference cells are principally used in the determination of the electrical performance of a photovoltaic device. 1.2 Secondary reference cells are calibrated indoors using simulated sunlight or outdoors in natural sunlight by reference to a primary reference cell previously calibrated to the same desired reference spectral irradiance distribution. 1.3 Secondary reference cells calibrated according to this test method will have the same radiometric traceability as the of the primary reference cell used for the calibration. Therefore, if the primary reference cell is traceable to the World Radiometric Reference (WRR, see Test Method E816), the resulting secondary reference cell will also be traceable to the WRR. 1.4 This test method appli...

  8. IPEM Report No 84: Guidelines for the Testing and Calibration of Physiotherapy Ultrasound Machines

    Energy Technology Data Exchange (ETDEWEB)

    Duck, Francis A

    2003-01-21

    Institute of Physics and Engineering in Medicine York: IPEM (2001) 67 pp, 20.00 British Pounds, ISBN: 0-904181-98-7. This 67-page soft-cover report has been prepared by an expert group within the Institute of Physics and Engineering in Medicine (IPEM) to provide detailed guidance on the testing and calibration of ultrasound therapy devices. Physiotherapists have long used external energy sources to supplement massage and manipulation for musculo-skeletal therapy. Whilst, recently, there has been a general reduction in use of electrotherapy using radio-frequency radiation, microwaves and interferential devices, ultrasound therapy still remains central to physiotherapy practice. There is now robust evidence that, at least for some injuries, ultrasound accelerates the repair of injured tissue. This has been particularly well demonstrated for bone fracture repair. Managed therapy relies on well-calibrated radiation sources. Unfortunately, there has been less than adequate management of ultrasound output in the past. Several well-documented situations have occurred for which faulty ultrasound equipment has continued in clinical use, either generating no output at all, or, more seriously, operating at maximum power all the time. This report reminds those responsible for managing ultrasound equipment of the need for testing and calibration, and gives detailed advice on procedures for carrying this out. These details are contained in 12 annexes forming the majority of the text. Each annex presents a self-contained aspect of one aspect of testing or calibration, such as the measurement of acoustic power, or an example protocol for machine testing. Each is sufficiently detailed to allow novice technical staff to follow the recommended procedure, or to allow a department to plan to introduce ultrasound field calibration into its practice. Other annexes contain useful additional material, not included in the earlier IPSM Report 58. A procedure for the measurement of effective

  9. Flexural Test of Fly Ash based Geopolimer Concrete Beams

    Directory of Open Access Journals (Sweden)

    Nindyawati

    2017-01-01

    Full Text Available Fly ash is a by-product from the coal industry, which is widely available in Indonesia. Fly ash contains quite high silicate and alumina. Silica and alumina reacts with alkaline solution to produce alumina silicate gel which binds the aggregate to produce geopolymer concrete. Geopolymer concrete is introduced as an environmental concrete with high compressive strength. The use of geopolymer concrete beams is a solution to reduce the effects of greenhouse gases. This research uses experimental designs. The data are obtained from the testing of 4 pieces of reinforced geopolymer concrete beams and reinforced ordinary concrete beams with a / d of 1.11 and 2.24. The results are obtained from the maximum load that can be accepted by the beam. The results of this study are: (1 Geopolymer concrete cylinder has 26.78% higher compressive strength than ordinary concrete cylinders (2 Ordinary concrete beams can withstand 34.8% load higher compared to the geopolymer concrete beam (3 Reinforced ordinary concrete beams experience bending shear collapse while reinforced geopolymer concrete beam experience pure bending collapse.

  10. Testing long range beam-beam compensation for the LHC luminosity upgrade

    CERN Document Server

    Rijoff, Tatiana; Caracciolo, Sergio

    The performance of the Large Hadron Collider (LHC) at CERN and its minimum crossing angle are limited by long-range beam-beam collisions. A wire compensators can mitigate part of the long-range effects and may allow for smaller crossing angles, or higher beam intensity. A prototype long-range wire compensator should be installed in the LHC by 2014/15. The originally reserved position for the wire compensator (named BBC) seems not available in this first step, we need so to test other possibilities. The performed tests consider various longitudinal and transverse locations, different wire shapes, different optics configuration and trying several crossing angles between the beam. Simulation are done with the weak-strong code BBtrack developed by U. Dorda. New postprocessing tools were used to analyse tune footprints and particle stability In particular for particle stability was implemented a new method for the Lyapunov coefficient calculation.

  11. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  12. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT.

    Science.gov (United States)

    Grimmer, Rainer; Kachelriess, Marc

    2011-04-01

    Scatter and beam hardening are prominent artifacts in x-ray CT. Currently, there is no precorrection method that inherently accounts for tube voltage modulation and shaped prefiltration. A method for self-calibration based on binary tomography of homogeneous objects, which was proposed by B. Li et al. ["A novel beam hardening correction method for computed tomography," in Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering CME 2007, pp. 891-895, 23-27 May 2007], has been generalized in order to use this information to preprocess scans of other, nonbinary objects, e.g., to reduce artifacts in medical CT applications. Further on, the method was extended to handle scatter besides beam hardening and to allow for detector pixel-specific and ray-specific precorrections. This implies that the empirical binary tomography calibration (EBTC) technique is sensitive to spectral effects as they are induced by the heel effect, by shaped prefiltration, or by scanners with tube voltage modulation. The presented method models the beam hardening correction by using a rational function, while the scatter component is modeled using the pep model of B. Ohnesorge et al. ["Efficient object scatter correction algorithm for third and fourth generation CT scanners," Eur. Radiol. 9(3), 563-569 (1999)]. A smoothness constraint is applied to the parameter space to regularize the underdetermined system of nonlinear equations. The parameters determined are then used to precorrect CT scans. EBTC was evaluated using simulated data of a flat panel cone-beam CT scanner with tube voltage modulation and bow-tie prefiltration and using real data of a flat panel cone-beam CT scanner. In simulation studies, where the ground truth is known, the authors' correction model proved to be highly accurate and was able to reduce beam hardening by 97% and scatter by about 75%. Reconstructions of measured data showed significantly less artifacts than the standard reconstruction

  13. Electron Beam Design and Calibration for the Solid/Liquid Lithium Divertor Experiment

    Science.gov (United States)

    Jaworski, Michael; Flauta, R.; Gray, T. K.; Kim, J.; Lau, C. Y.; Lee, M. B.; Neumann, M. J.; Surla, V.; Ruzic, D. N.

    2008-11-01

    An electron beam has been developed as part of the Solid/Liquid Lithium Divertor Experiment (SLiDE) at the University of Illinois at Urbana-Champaign. The purpose of the SLiDE apparatus is to examine the motion of liquid lithium under fusion relevant heat loads and magnetic fields. To mimic the heat fluxes present in the divertor of a fusion machine, a linear sheet beam is utilized which can operate over a range of applied magnetic fields and power levels. With steady state operation up to 15kW input power, the beam can produce peak heat fluxes of 10 MW/m^2 and heat flux gradients comparable to those found in fusion experiments. The design of the electron beam was developed using commercial beam transport codes and the final design is diagnosed with a two-lead Faraday cup. Beam performance and characteristics are presented.

  14. Design of Test Tracks for Odometry Calibration of Wheeled Mobile Robots

    Directory of Open Access Journals (Sweden)

    Changbae Jung

    2011-09-01

    Full Text Available Pose estimation for mobile robots depends basically on accurate odometry information. Odometry from the wheel's encoder is widely used for simple and inexpensive implementation. As the travel distance increases, odometry suffers from kinematic modeling errors regarding the wheels. Therefore, in order to improve the odometry accuracy, it is necessary that systematic errors be calibrated. The UMBmark test is a practical and useful scheme for calibrating the systematic errors of two-wheeled mobile robots. However, the square path track size used in the test has not been validated. A consideration of the calibration equations, experimental conditions, and modeling errors is essential to improve the calibration accuracy. In this paper, we analyze the effect on calibration performance of the approximation errors of calibration equations and nonsystematic errors under experimental conditions. Then, we propose a test track size for improving the accuracy of odometry calibration. From simulation and experimental results, we show that the proposed test track size significantly improves the calibration accuracy of odometry under a normal range of kinematic modeling errors for robots.

  15. Modified calibration protocol evaluated in a model-based testing of SBR flexibility

    DEFF Research Database (Denmark)

    Corominas, Lluís; Sin, Gürkan; Puig, Sebastià

    2011-01-01

    statistical evaluation of the calibration outcome. The updated calibration protocol is then evaluated on a case study to obtain a thoroughly validated model for testing the flexibility of an N-removing SBR to adapt the operating conditions to the changing influent wastewater load. The performance of reference...

  16. The proposed alignment system for the Final Focus Test Beam at SLAC

    International Nuclear Information System (INIS)

    Ruland, R.E.; Fischer, G.E.

    1990-09-01

    This report describes the current state of work in progress with respect to the geometry, alignment requirements, scenarios, and hardware for meeting the tolerances of the Final Focus Test Beam (FFTB) at SLAC. The methods and systems proposed acknowledge that component motion at the micron level, from whatever cause (ground motion, thermal effects, etc.) must be measured on-line and compensated for on relatively short time scales. To provide an integrated alignment/positioning package, some unique designs for reference systems, calibration of effect electric and magnetic centers, and component movers are introduced. 24 refs., 28 figs

  17. TEST BEAM COORDINATION: Major upgrade of the ATLAS Test Beam network infrastructure

    CERN Multimedia

    Di Girolamo, B; Pasqualucci, E

    Based on the positive experience gained last year by the Muon group with the adoption of a completely isolated private network for the data acquisition, already last year for the 2002 Combined Pixel-Tilecal-Muon Test Beam, we adopted the private network solution. The main advantage of the isolation from the common CERN network infrastructure is the complete independence from possible problems that could affect the network in the area, intended to serve many other users, and the possibility to have a completely independent management of the IP addresses assignment. Moreover the presence of a firewall in the private network allows a better protection against possible external hackers, allowing users to transparently access the external word. A Fast Ethernet network has been set up as a control network. It relies on a backbone 24-port Fast Ethernet switch on which, in a tree structure, are connected several smaller switches dedicated to each sub-detector. In this way each sub-detector produces its own traffic...

  18. AMS Ground Truth Measurements: Calibrations and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr T. [National Security Technologies, LLC

    2015-12-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima NPP accident in March-May 2011. To map ground contamination, a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count data, expressed in counts per second (cps), need to be converted to a terrestrial component of the exposure rate at 1 meter (m) above ground, or surface activity of the isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large-scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, because production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish a common calibration line very early into the event. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and that are potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  19. Analysis and calibration of the noise voltage between the damper plates used for beam diffusion during the crystal extraction experiment

    CERN Document Server

    Gyr, Marcel; Klem, J T; Louwerse, R; Milstead, I

    1995-01-01

    The analogue noise signal produced by a WAVETEK function generator, which is used to excite one of the horizontal dampers BDH 21437 or BDH 21451 for blowing up the beam during the crystal extraction MDs, has been analysed to determine its r.m.s. value as a function of the selected attenuation. The input/output characteristics of damper Nº 2 (BDH 21451) has been measured in order to calibrate the r.m.s. kicks (diffusion speed) which a particle experiences on its passage through the damper.

  20. Testing fundamental symmetries using radioactive ion beams at ...

    Indian Academy of Sciences (India)

    The ISAC Facility at TRIUMF, Canada's national laboratory for particle and nuclear physics, provides rare isotope beams for a diverse research program. In this paper we summarize some recent experimental developments at TRIUMF pertaining to fundamental symmetry tests. These tests use the atomic nucleus as a probe ...

  1. Numerical Calibration of Mass Flow Plug for Inlet Testing

    Science.gov (United States)

    Sasson, Jonathan; Barnhart, Paul; Davis, David O.

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."

  2. Structural testing of the technology integration box beam

    Science.gov (United States)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  3. Test-beam results of a SOI pixel detector prototype

    CERN Document Server

    Bugiel, Roma; Dannheim, Dominik; Fiergolski, Adrian; Hynds, Daniel; Idzik, Marek; Kapusta, P; Kucewicz, Wojciech; Munker, Ruth Magdalena; Nurnberg, Andreas Matthias

    2018-01-01

    This paper presents the test-beam results of a monolithic pixel-detector prototype fabricated in 200 nm Silicon-On-Insulator (SOI) CMOS technology. The SOI detector was tested at the CERN SPS H6 beam line. The detector is fabricated on a 500 μm thick high-resistivity float- zone n-type (FZ-n) wafer. The pixel size is 30 μm × 30 μm and its readout uses a source- follower configuration. The test-beam data are analysed in order to compute the spatial resolution and detector efficiency. The analysis chain includes pedestal and noise calculation, cluster reconstruction, as well as alignment and η-correction for non-linear charge sharing. The results show a spatial resolution of about 4.3 μm.

  4. Calibration of Monte Carlo simulation code to low voltage electron beams through radiachromic dosimetry

    International Nuclear Information System (INIS)

    Weiss, D.E.; Kalweit, H.W.; Kensek, R.P.

    1994-01-01

    A simple multilayer slab model of an electron beam using the ITS/TIGER code can consistently account for about 80% of the actual dose delivered by a low voltage electron beam. The difference in calculated values is principally due to the 3D hibachi structure which blocks 22% of the beam. A 3D model was constructed using the ITS/ACCEPT code to improve upon the TIGER simulations. A rectangular source description update to the code and reproduction of all key geometric elements involved, including the hibachi, accounted for 90-95% of the dose received by routine dosimetry

  5. Calibration and performance testing of the IAEA Aquila Active Well Coincidence Counter (Unit 1)

    International Nuclear Information System (INIS)

    Menlove, H.O..; Siebelist, R.; Wenz, T.R.

    1996-01-01

    An Active Well Coincidence Counter (AWCC) and a portable shift register (PSR-B) produced by Aquila Technologies Group, Inc., have been tested and cross-calibrated with existing AWCCs used by the International Atomic Energy Agency (IAEA). This report summarizes the results of these tests and the cross-calibration of the detector. In addition, updated tables summarizing the cross-calibration of existing AWCCs and AmLi sources are also included. Using the Aquila PSR-B with existing IAEA software requires secondary software also supplied by Aquila to set up the PSR-B with the appropriate measurement parameters

  6. The production of calibration specimens for impact testing of subsize Charpy specimens

    Science.gov (United States)

    Alexander, D. J.; Corwin, W. R.; Owings, T. D.

    Calibration specimens have been manufactured for checking the performance of a pendulum impact testing machine that has been configured for testing subsize specimens, both half-size (5.0 x 5.0 x 25.4 mm) and third-size (3.33 x 3.33 x 25.4 mm). Specimens were fabricated from quenched-and-tempered 4340 steel heat treated to produce different microstructures that would result in either high or low absorbed energy levels on testing. A large group of both half- and third-size specimens were tested at -40 C. The results of the tests were analyzed for average value and standard deviation, and these values were used to establish calibration limits for the Charpy impact machine when testing subsize specimens. These average values plus or minus two standard deviations were set as the acceptable limits for the average of five tests for calibration of the impact testing machine.

  7. Pulsed beam tests at the SANAEM RFQ beamline

    Science.gov (United States)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  8. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm

    Science.gov (United States)

    Warren, Daniel R.; Partridge, Mike; Hill, Mark A.; Peach, Ken

    2015-06-01

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  treatment plans for a non-small cell lung cancer patient. The change in stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  9. QCD tests with SLD and polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, M.G. [Univ. of Massachusetts, Amherst, MA (United States)

    1994-12-01

    The author presents a measurement of the strong coupling {alpha}{sub s} derived from multijet rates using data collected by the SLD experiment at SLAC and find that {alpha}{sub s}(M{sub Z}{sup 2}) = 0.118 {+-} 0.002(stat.) {+-} 0.003(syst.) {+-} 0.010(theory). He presents tests of the flavor independence of strong interactions via preliminary measurements of the ratios {alpha}{sub s}(b)/{alpha}{sub s}(udsc) and {alpha}{sub s}(uds)/{alpha}{sub s}(bc). In addition, the group has measured the difference in charged particle multiplicity between Z{sup 0} {yields} b{bar b} and Z{sup 0} {yields} u{bar u}, d{bar d}, s{bar s} events, and find that it supports the prediction of perturbative QCD that the multiplicity difference be independent of center-of-mass energy. Finally, the group has made a preliminary study of jet polarization using the jet handedness technique.

  10. Development of a calibration methodology and tests of kerma area product meters

    International Nuclear Information System (INIS)

    Costa, Nathalia Almeida

    2013-01-01

    The quantity kerma area product (PKA) is important to establish reference levels in diagnostic radiology exams. This quantity can be obtained using a PKA meter. The use of such meters is essential to evaluate the radiation dose in radiological procedures and is a good indicator to make sure that the dose limit to the patient's skin doesn't exceed. Sometimes, these meters come fixed to X radiation equipment, which makes its calibration difficult. In this work, it was developed a methodology for calibration of PKA meters. The instrument used for this purpose was the Patient Dose Calibrator (PDC). It was developed to be used as a reference to check the calibration of PKA and air kerma meters that are used for dosimetry in patients and to verify the consistency and behavior of systems of automatic exposure control. Because it is a new equipment, which, in Brazil, is not yet used as reference equipment for calibration, it was also performed the quality control of this equipment with characterization tests, the calibration and an evaluation of the energy dependence. After the tests, it was proved that the PDC can be used as a reference instrument and that the calibration must be performed in situ, so that the characteristics of each X-ray equipment, where the PKA meters are used, are considered. The calibration was then performed with portable PKA meters and in an interventional radiology equipment that has a PKA meter fixed. The results were good and it was proved the need for calibration of these meters and the importance of in situ calibration with a reference meter. (author)

  11. Testing of a nuclear-reactor-based positron beam

    International Nuclear Information System (INIS)

    Van Veen, A.; Labohm, F.; Schut, H.; De Roode, J.; Heijenga, T.; Mijnarends, P.E.

    1997-01-01

    This paper describes the testing of a positron beam which is primarily based on copper activation near the core of a nuclear reactor and extraction of the positrons through a beam guide tube. An out-of-core test with a 22 Na source and an in-core test with the reactor at reduced power have been performed. Both tests indicated a high reflectivity of moderated positrons at the tungsten surfaces of the moderation discs which enhanced the expected yield. Secondary electrons generated in the source materials during the in-core test caused electrical field distortions in the electrode system of the system by charging of the insulators. At 100 kW reactor power during one hour, positrons were observed with an intensity of 4.4x10 4 e + s -1 of which 90% was due to positrons created by pair formation and 10% by copper activation

  12. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  13. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).

  14. Beam tests of ATLAS SCT silicon strip detector modules

    Czech Academy of Sciences Publication Activity Database

    Campabadal, F.; Fleta, C.; Key, M.; Böhm, Jan; Mikeštíková, Marcela; Šťastný, Jan

    2005-01-01

    Roč. 538, - (2005), s. 384-407 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * silicon * micro-strip * beam * test Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.224, year: 2005

  15. Beam test of Cherenkov counter prototype for ZDF setup

    International Nuclear Information System (INIS)

    Kacharava, A.K.; Macharashvili, G.G.; Nioradze, M.S.; Komarov, V.I.; Sopov, V.S.; Chernyshev, V.P.

    1995-01-01

    We describe a Cherenkov counter of total internal reflection for particle separation in the momentum range where all types of particles radiate Cherenkov light. The Cherenkov counter prototype with the lucite radiator was tested on the secondary beam of the ITEP (Moscow) accelerator. Dependence of the photomultiplier pulse height on the particle entrance angle was clearly observed. 4 refs., 4 figs

  16. Beam test of a large area silicon drift detector

    International Nuclear Information System (INIS)

    Castoldi, A.; Chinnici, S.; Gatti, E.; Longoni, A.; Palma, F.; Sampietro, M.; Rehak, P.; Ballocchi, G.; Kemmer, J.; Holl, P.; Cox, P.T.; Giacomelli, P.; Vacchi, A.

    1992-01-01

    The results from the tests of the first large area (4 x 4 cm 2 ) planar silicon drift detector prototype in a pion beam are reported. The measured position resolution in the drift direction is (σ=40 ± 10)μm

  17. Optimal Filtering applied to 1998 Test Beam of Module 0

    CERN Document Server

    Camarena, F; Fullana, E

    2002-01-01

    Optimal filtering is an algorithm that allows the reconstruction of energy and time for a photomultiplier multiple sampled signal, minimazing the noise coming from electronics and Minimum Bias events. This is anticipated to be the method used in ATLAS. This note treat upon the application of optimal filtering technic to real data from test beam and the comparison with the method used until now.

  18. Fermilab Test Beam Facility Annual Report. FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  19. Test of an albedo neutron dosimetry system: TLD calibration and readout procedure, neutron calibration, dosimetry properties, routine application

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1988-03-01

    The two-component albedo dosemeter in use consists of an universal boron-loaded plastic encapsulation, the beta and albedo neutron windows of which are adopted to the corresponding TLD system of the manufacturers Alnor, Harshaw, Panasonic and Vinten. Beside the TLD detectors the capsule may contain also track etch detectors. Within a BMU project the system was investigated by four governmental measurement services in the FRG with respect to its qualification for personnel monitoring with emphasis in the readout and calibration procedures for the TLD system, the evaluation technique for the estimation of the photon and neutron dose equivalent in routine monitoring and the calibration of the personnel dosemeter in stray neutron fields. The test has shown the readiness of the system to act in the application areas of nuclear power reactors and linacs behind heavy shieldings, in the fuel element cycle, use of fissile materials, criticality, use of radionuclide sources, high energy particle accelerators. The uncertainty due to energy dependence was found to be within a factor of 2 for a single application area. In the case of irradiations from the front half space the dose equivalent H'(10) is indicated sufficiently independent of the direction of the radiation incidence. After completion of the test the albedo dosemeter became the official neutron personnel dosemeter in the FRG. It allows the separate estimation of the dose equivalent of hard beta radiation, photon radiation and neutrons. (orig./HP) [de

  20. Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

    2011-08-01

    This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

  1. Modify beam transversal test to evaluate hemiparkinsonian rats

    International Nuclear Information System (INIS)

    Blanco Lezcano, Lissette; Lorigados Pedre, Lourdes del C; Fernandez Verdecia, Caridad I; Serrano Sanchez, Teresa; Pavon Fuentes, Nancy; Turner, Liliana Francis

    2010-01-01

    The nigrostriatal degeneration underlying Parkinson's disease (PD) is commonly studied in experimental animals by injection of the neurotoxin 6-hydroxydopamine. the present study describes a modified version of a beam traversal test which allows the quantification of the motor deficit through the time spent to arrive to the platform once all four paws of the animals are in contact with the beam (escape latency, el), the time spent before falling (tumbled down latency, TDL) and the number of errors (NE) committed for the animals in each beam. The shape and the diameter of the cross section of the beams were modified from rectangular and circular cross section with 2.5 cm of diameter to the same shape with 1 cm of diameter, which induced a high difficulty to the execution of the test. Three groups of Wistar rats were examined: untreated (n=15), lesioned with 6-hydroxydopamine (n=14), and sham-operated (n=14). All variables studied showed significant differences between control and hemiparkinsonian rats. The EL and the NE were increased and the TDL was decreased in hemiparkinsonian rats for all beams in comparison with control rats. In TDL the significant differences between groups were more evident (p<0.001) for the beams with high cross section irrespective of the shape of the cross section. BTT is a convenient sensorimotor test that does not need to be trained extensively, and require adverse motivation or food deprivation and appears to be very useful in evaluating the motor deficits in established unilateral model of PD and also other experimental models.

  2. Muon catalyzed fusion beam window mechanical strength testing and analysis

    International Nuclear Information System (INIS)

    Ware, A.G.; Zabriskie, J.M.

    1989-01-01

    A thin aluminum window [0.127 mm (0.005-inch) thick x 146 mm (5 3/4-inch diameter] of 2024-T6 alloy was modeled and analyzed using the ABACUS non-linear finite element analysis code. A group of windows was fabricated, heat-treated and subsequently tested. Testing included both ultimate burst pressure and fatigue. Fatigue testing cycles involved oil-canning behavior representing vacuum purge and reversal to pressure. Test results are compared to predictions and the mode of failure is discussed. Operational requirements, based on the above analysis and correlational testing for the actual beam window are discussed

  3. aSi-EPID transit signal calibration for dynamic beams: a needful step for the IMRT in vivo dosimetry.

    Science.gov (United States)

    Greco, Francesca; Piermattei, Angelo; Azario, Luigi; Placidi, Lorenzo; Cilla, Savino; Caivano, Rocchina; Fusco, Vincenzo; Fidanzio, Andrea

    2013-10-01

    This work reports a method based on correlation functions to convert EPID transit signals into in vivo dose values at the isocenter point, D iso, of dynamic IMRT beams supplied by Varian linac. Dose reconstruction for intensity-modulated beams required significant corrections of EPID response, due to the X-ray component transmitted through multileaf collimator. The algorithm was formulated using a set of simulated IMRT beams. The beams were parameterized by means of a fluence inhomogeneity index, FI, introduced to describe the degree of beam modulation with respect to open beams. This way, all dosimetric parameters involved in D iso reconstruction algorithm, such as the correlation functions, the correction factor for EPID to phantom distance and the modulated tissue maximum ratios, were determined as a function of the FI index. Clinical IMRT beams were used to irradiate a homogeneous phantom, and for each beam, the agreement between the reconstructed dose, D iso, and the dose computed by TPS, D iso,TPS, was well within 5 %. Moreover, the average ratios, R, between the D iso, and D iso,TPS, resulted equal to 1.002 ± 0.030. Thirty-five IMRT fields of 5 different patients undergoing radiotherapy for head-neck tumors were tested and the results were displayed on a computer screen after 2 min from the end of the treatment. However, 350 in vivo tests supplied an average ratio R equal to 1.004 ± 0.040. The in vivo dosimetry procedure here presented is among the objectives of a National Project financially supported by the Istituto Nazionale di Fisica Nucleare for the development of in vivo dosimetry procedures (Piermattei et al. in Nucl Instrum Methods Phys Res B 274:42-50, 2012) connected to the Record-Verify system of the radiotherapy center.

  4. Test Takers' Performance Appraisals, Appraisal Calibration, and Cognitive and Metacognitive Strategy Use

    Science.gov (United States)

    Phakiti, Aek

    2016-01-01

    The current study explores the nature and relationships among test takers' performance appraisals, appraisal calibration, and reported cognitive and metacognitive strategy use in a language test situation. Performance appraisals are executive processes of strategic competence for judging test performance (e.g., evaluating the correctness or…

  5. Results from the 1999 Beam Test of a Preshower Prototype

    CERN Document Server

    Aspell, Paul; Bloch, Philippe; Bourotte, Jean; Domeniconi, Jacques; Peisert, Anna; Evangelou, Ioannis; Kloukinas, Kostas; Kyriakis, Aristotelis; Loos, Robert; Loukas, Demetrios; Mousa, Jehad; Peron, Franck; Reynaud, Serge; Sirunyan, Albert M; Tournefier, Edwige; Van Hove, Alain; Zamiatin, Nikolai

    2000-01-01

    At the end of June 1999 a test of a preshower prototype, equipped with real-size detectors and LHC-style electronics, was tested in the H4 beam at CERN in front of a matrix of "Endcap" crystals. Data were taken with a variety of incident electron energies, and three angles of incidence ( to simulate different regions of the CMS endcaps). The prototype functioned well, with a very small startup period and operated successfully for the duration of the test ( ~ 1 week) without intervention. Good agreement has been found between data and a GEANT-3 based simulation, and the absolute results are promising. Plans are presented for a further test of the prototype in 2000 in the H2 beam inside the 3T magnet.

  6. Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

    International Nuclear Information System (INIS)

    Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly

    2004-01-01

    An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system

  7. Beam Based Calibration of Slow Orbit Bump in the NSLS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Shaftan, T.; Rose, J.

    2009-05-04

    The orbit bumps in NSLS booster are used to move the beam orbit within 2mm of the extraction septum aperture on a time scale of millisecond at extraction in order to reduce the requirement on the amplitude of the fast extraction kicker. This may cause charge losses since before extraction, the beam stays on the distorted orbit for thousands of revolutions. In order to find the optimal orbit bump setpoint, which brings the maximum distortion at the extraction position and minimum distortions everywhere else, we developed an extraction model and performed an experiment to validate it. Afterwards, the model was applied to optimize the extraction process.

  8. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    Science.gov (United States)

    2015-10-01

    the tunnel. The calibration data are presented and analysed and explanations of flow behaviour are given. 2. Mean-Velocity Measurements 2.1...1073. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2003 Calibration of the flow in the extended test section...of the low-speed wind tunnel at DSTO. DSTO-TR-1384. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2015

  9. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    Czech Academy of Sciences Publication Activity Database

    Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.

    2014-01-01

    Roč. 104, č. 4 (2014), "041113-1"-"041113-4" ISSN 0003-6951 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon- number resolving detector * twin beams * photon fields Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.302, year: 2014

  10. Construction and calibration of a fast superconducting bolometer for molecular beams detection

    International Nuclear Information System (INIS)

    Gallinaro, G.; Varone, R.

    1975-01-01

    A tin bolometer evaporated on an anodized aluminum block is described. The noise equivalent power of the bolometer is of 10 -13 watt Hzsup(-1/2) and the time constant is 3μ sec. The bolometer is a suitable fast molecular beam detector

  11. Check Calibration of the NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (2014 Test Entry)

    Science.gov (United States)

    Johnson, Aaron; Pastor-Barsi, Christine; Arrington, E. Allen

    2016-01-01

    A check calibration of the 10- by 10-Foot Supersonic Wind Tunnel (SWT) was conducted in May/June 2014 using an array of five supersonic wedge probes to verify the 1999 Calibration. This check calibration was necessary following a control systems upgrade and an integrated systems test (IST). This check calibration was required to verify the tunnel flow quality was unchanged by the control systems upgrade prior to the next test customer beginning their test entry. The previous check calibration of the tunnel occurred in 2007, prior to the Mars Science Laboratory test program. Secondary objectives of this test entry included the validation of the new Cobra data acquisition system (DAS) against the current Escort DAS and the creation of statistical process control (SPC) charts through the collection of series of repeated test points at certain predetermined tunnel parameters. The SPC charts secondary objective was not completed due to schedule constraints. It is hoped that this effort will be readdressed and completed in the near future.

  12. First test of BNL electron beam ion source with high current density electron beam

    International Nuclear Information System (INIS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm 2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given

  13. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  14. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    Science.gov (United States)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  15. Test beam results from the CMS electromagnetic calorimeter

    CERN Document Server

    Brunelière, R

    2004-01-01

    A precision lead tungstate crystal calorimeter is being constructed by the CMS collaboration. As a key part of the future CMS detector at the LHC, the electromagnetic calorimeter will play a major role in probing electroweak symmetry-breaking and searches for new physics. In order to check that the required performance of the electromagnetic calorimeter is attainable, every prototype is tested in real conditions within a beam of particles. In 2003 two modules of the electromagnetic calorimeter featuring the final mechanical design and electronic architecture have been tested with two different versions of the front-end electronics. In this paper a review of the main results of test beam campaigns in 2002 and 2003 are given. (7 refs).

  16. Wide-bandwidth test fixture for electromagnetic-beam sensors

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Sherwood, B.A.; Hahn, J.; Chamberlin, D.D.

    1983-01-01

    The Fusion Materials Irradiation Test (FMIT) accelerator will supply the neutron flux required for studying materials that may be used in a fusion environment. The diagnostic measurement instrumentation, which will characterize the accelerator beam, must be noninterceptive because of the beam's power density. Instrumentation also must be fully functional for start up of the FMIT accelerator. To this end, three types of test facility were proposed: (1) a low-energy electron accelerator, (2) a large electron-gun assembly, and (3) a coaxial structure that produces electromagnetic fields similar to that of the proposed FMIT accelerator. The third type was chosen. This paper describes the design and some experimental results of the coaxial test fixture

  17. Measurement of acoustic emission signal energy. Calibration and tests

    International Nuclear Information System (INIS)

    Chretien, N.; Bernard, P.; Fayolle, J.

    1975-01-01

    The possibility of using an Audimat W device for analyzing the electric energy of signals delivered by a piezo-electric sensor for acoustic emission was investigated. The characteristics of the prototype device could be improved. The tests performed revealed that the 7075-T651 aluminium alloy can be used as a reference material [fr

  18. External audit on output calibration for photon beams (Polish participation in pan-European Radiation Oncology Project for Assurance of Treatment Quality)

    Energy Technology Data Exchange (ETDEWEB)

    Izewska, J.; Rostkowska, J.; Kania, M.; Gwiazdowska, B.; Hliniak, A. [Instytut Onkologii, Warsaw (Poland)

    1995-12-31

    TLD audit of photon beams in radiotherapy centres started in June 1994 within the frame of the EROPAQ project. All 55 photon beams in Polish departments have been checked and 18 beams rechecked in the centres , where deviations out of 3% were detected. Out of 55 beams checked in the first run, 87% were found within 3% acceptance limit and 13% showed deviations larger than 3%. No deviations out of 6% have been detected. The results of the national intercomparison for photon beams (90-92) compared to the results of the EROPAQ audit (94-95) show an improvement of the beam calibrations in Poland and illustrate the usefulness of external audits. (author). 15 refs, 3 figs, 3 tabs.

  19. Beam Transport Testing for the Production Accelerator Arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-14

    The beam transport system is designed to deliver an electron beam from the accelerator to the target. The design of the beam line depends on beam parameter (energy, energy spread, etc.) and target geometry. Elements of the beam transport system should provide transportation, focusing, and positioning of the beam onto the target surface.

  20. Electron beam dosimetry. Calibration and use of plane parallel chambers following IAEA TRS-381 recommendations

    International Nuclear Information System (INIS)

    Lizuain, M.C.; Linero, D.; Picon, C.; Saldana, O.

    2000-01-01

    Using different plane parallel chamber types (NACP-02, PTW Roos and PTW Markus), and a cylindrical chamber NE-2571 as reference, the IAEA TRS-381 Code of Practice has been compared with the AAPM TG-39 dosimetry protocol for plane parallel chambers. N D,air pp was determined following the 60 Co in-phantom method and the electron beam method described in TRS-381, using water, PMMA and RMI-457 Solid Water phantoms. Differences were smaller than 0.5% between the two methods except for the PTW Roos chamber where the discrepancy was about 1.5%. The absorbed dose to water was determined according to the procedures and data of each protocol for electron beams between 4 and 18 MeV. Differences in absorbed dose were less than 1% when measurements were made in water, but a deviation of up to 2% was found between TRS-381 and TG-39 when PMMA phantoms were used. To validate the results obtained and to investigate differences between plastic and water phantoms in electron beam dosimetry, the scaling factor C pl and the fluence correction factor h m for PMMA and solid water RMI-457 were measured and compared to the data in TRS-381. Good agreement was found for C pl , but only when the plastics density were taken into account. The experimental values of h m have a large uncertainty but for PMMA a trend for h m being lower than in TRS-381 has been obtained. (author)

  1. Infrasound Calibration Experiment at Sayarim, Israel: preliminary tests

    Science.gov (United States)

    Gitterman, Y.; Hofstetter, A.; Garces, M.; Bowman, J. R.; Fee, D.; Israelsson, H.

    2009-12-01

    We are establishing a Ground Truth (GT0) infrasound dataset for Middle East/Mediterranean region, through conducting a series of surface explosions at Sayarim Military Range (SMR), Negev desert, which culminated with an 82-ton explosion in August 2009. The dataset will be used to characterize the infrasonic propagation in the region, depending on source features and atmosphere conditions, and thus to improve monitoring capabilities of International Monitoring System (IMS). Test explosions of broad yield range and various designs were conducted on the first stage, in different days and seasons, thus providing a wide range of atmospheric conditions. The goals were to: 1) test charge design and assembling, and train procedures of logistics and coordination, for preparation and conducting of the main explosion; 2) analyze atmospheric effects on infrasound propagation in different azimuths based on collected meteo-data. In June-July 2008, we conducted a series of 13 detonations of outdated ammunition (in the range 0.2-10 ton) and two experimental shots of 1 ton of different explosives (TNT and Composition B). The two shots were placed close to an ammunition explosion and 10 min afterwards to help estimate ammunition actual yield (TNT). Some of these explosions were observed at IMS station I48TN (Tunisia) at ~2500 km, using array processing and analysis. Two test explosions of 1 ton and 5 tons of different recuperated HE explosives were conducted at SMR in December 2008. High-pressures in air-shock waves at close distances (150-250 m) were measured and speed video recording was done. The data obtained from the test series provided estimation of the explosion yield, that showed approximate TNT equivalency. We analyzed signals from the tests, recorded on seismic and acoustic channels at near-source and local distances. We compared energy generation for different explosives, including cratering conditions, and investigated the influence of wind direction on infrasound

  2. Calibration of a silicon semiconductor detecter using a 2 MeV electron accelerator beam

    International Nuclear Information System (INIS)

    Fleurot, N.; Gouard, P.; Mazataud, E.; Nail, M.; Savy, C.; Bayer, C.; Cauchois, Y.; Kherouf, R.; Mathieu, D.

    1981-01-01

    This paper describes the current mode calibration, carried out on a 2 MeV electron accelerator, of PIN detectors involved in electron spectrum measurements for laser-matter interaction experiments. A theoretical analysis simulating the interaction between the incident electrons and the irradiated medium has been carried out using the FOTELEC code. It accounts well for the experimental results giving a reasonable value for the mean electron-hole pair formation energy when back-scattering corrections are included. This work provides the transfer function data required for a plasma diagnostic spectrometer. (orig.)

  3. Calibration of activation detectors in a monoenergetic neutron beam. Contribution to criticality dosimetry

    International Nuclear Information System (INIS)

    Massoutie, Martine.

    1981-05-01

    Activation detectors have been calibrated for critical dosimetry applications. Measurements are made using a monoenergetic neutron flux. 14 MeV neutrons obtained par (D-T) reaction are produced by 150 kV accelerator. Neutron flux determined by different methods leads us to obtain an accuracy better than 6%. The present dosimetric system (Activation Neutron Spectrometer - SNAC) gives few informations in the (10 keV - 2 MeV) energetic range. The system has been improved and modified so that SNAC detectors must be read out by gamma spectrometer [fr

  4. Beam tests of ionization chambers for the NuMI neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Zwaska et al.

    2003-09-25

    We have conducted tests at the Fermilab Booster of ionization chambers to be used as monitors of the NuMI neutrino beamline. The chambers were exposed to proton fluxes of up to 10{sup 12} particles/cm{sup 2}/1.56 {micro}s. We studied space charge effects which can reduce signal collection from the chambers at large charged particle beam intensities.

  5. Calibration and test capabilities of the Langley 7- by 10- foot high speed tunnel

    Science.gov (United States)

    Fox, C. H., Jr.; Huffman, J. K.

    1977-01-01

    The results of a new subsonic calibration of the Langley 7 by 10 foot high speed tunnel with the test section in a solid wall configuration are presented. A description of the test capabilities of the 7 by 10 foot high speed tunnel is also given.

  6. Innovative thin silicon detectors for monitoring of therapeutic proton beams: preliminary beam tests

    Science.gov (United States)

    Vignati, A.; Monaco, V.; Attili, A.; Cartiglia, N.; Donetti, M.; Fadavi Mazinani, M.; Fausti, F.; Ferrero, M.; Giordanengo, S.; Hammad Ali, O.; Mandurrino, M.; Manganaro, L.; Mazza, G.; Sacchi, R.; Sola, V.; Staiano, A.; Cirio, R.; Boscardin, M.; Paternoster, G.; Ficorella, F.

    2017-12-01

    To fully exploit the physics potentials of particle therapy in delivering dose with high accuracy and selectivity, charged particle therapy needs further improvement. To this scope, a multidisciplinary project (MoVeIT) of the Italian National Institute for Nuclear Physics (INFN) aims at translating research in charged particle therapy into clinical outcome. New models in the treatment planning system are being developed and validated, using dedicated devices for beam characterization and monitoring in radiobiological and clinical irradiations. Innovative silicon detectors with internal gain layer (LGAD) represent a promising option, overcoming the limits of currently used ionization chambers. Two devices are being developed: one to directly count individual protons at high rates, exploiting the large signal-to-noise ratio and fast collection time in small thicknesses (1 ns in 50 μm) of LGADs, the second to measure the beam energy with time-of-flight techniques, using LGADs optimized for excellent time resolutions (Ultra Fast Silicon Detectors, UFSDs). The preliminary results of first beam tests with therapeutic beam will be presented and discussed.

  7. Tests and Calibration of the NIF Neutron Time of Flight Detectors

    International Nuclear Information System (INIS)

    Ali, Z.A.; Glebov, V.Yu.; Cruz, M.; Duffy, T.; Stoeckl, C.; Roberts, S.; Sangster, T.C.; Tommasini, R.; Throop, A; Moran, M.; Dauffy, L.; Horsefield, C.

    2008-01-01

    The National Ignition Facility (NIF) Neutron Time of Flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD (D = deuterium, T = tritium, H = hydrogen) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 10 9 to 2 x 10 19 . The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 m and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory (LLNL). Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detectors tests and calibration will be presented

  8. SU-C-202-07: Protocol and Hardware for Improved Flood Field Calibration of TrueBeam FFF Cine Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, J; Faught, A; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Flattening filter free photon energies are commonly used for high dose treatments such as SBRT, where localization accuracy is essential. Often, MV cine imaging may be employed to verify correct localization. TrueBeam Electronic Portal Imaging Devices (EPIDs) equipped with the 40×30cm{sup 2} Image Detection Unit (IDU) are prone to image saturation at the image center especially for higher dose rates. While saturation often does not occur for cine imaging during treatment because the beam is attenuated by the patient, the flood field calibration is affected when the standard calibration procedure is followed. Here we describe the hardware and protocol to achieve improved image quality for this model of TrueBeam EPID. Methods: A stainless steel filter of uniform thickness was designed to have sufficient attenuation to avoid panel saturation for both 6XFFF and 10XFFF at the maximum dose rates (1400 MU/min & 2400 MU/min, respectively). The cine imaging flood field calibration was then acquired with the filter in place for the FFF energies under the standard calibration geometry (SDD=150cm). Image quality during MV cine was assessed with & without the modified flood field calibration using a low contrast resolution phantom and an anthropomorphic phantom. Results: When the flood field is acquired using the standard procedure (no filter in place), a pixel gain artifact is clearly present in the image center (r=3cm for 10XFFF at 2400 MU/min) which appears similar to and may be mis-attributed to panel saturation in the subject image. The artifact obscured all low contrast inserts at the image center and was also visible on the anthropomorphic phantom. Using the filter for flood field calibration eliminated the artifact. Conclusion: Use of a modified flood field calibration procedure improves image quality for cine MV imaging with TrueBeams equipped with the 40×30cm{sup 2} IDU.

  9. Study of ECAL Energy Reconstruction Algorithms in Test Beam Data

    CERN Document Server

    Seez, Christopher

    1998-01-01

    The well understood data set taken in the test beam in August 1997, which has previously been used to study lateral uniformity of energy response, is used to investigate the performance of different sized summation areas for energy reconstruction. Results for 5x5, 4x4 and 3x3 areas are presented and compared with shower simulation results. The correction of the energy response as a function of position is also investigated.

  10. Fermilab Test Beam Facility Annual Report FY17

    Energy Technology Data Exchange (ETDEWEB)

    Rominsky, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmidt, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rivera, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Uplegger, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Asaadi, J. [Univ. of Texas, Arlington, TX (United States); Raaf, J. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Freeman, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Price, J. [Univ. of Liverpool (United Kingdom); Casey, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ehrlich, R. [Univ. of Virginia, Charlottesville, VA (United States); Belmont, R. [Univ. of Colorado, Boulder, CO (United States); Boose, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Conners, M. [Georgia State Univ., Atlanta, GA (United States); Haggerty, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, K. [Univ. of Colorado, Boulder, CO (United States); Hodges, A. [Georgia State Univ., Atlanta, GA (United States); Huang, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kistenev, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lajoie, J. [Iowa State Univ., Ames, IA (United States); Mannel, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Osborn, J. [Univ. of Michigan, Ann Arbor, MI (United States); Pontieri, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Purschke, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sarsour, M. [Georgia State Univ., Atlanta, GA (United States); Sen, A. [Iowa State Univ., Ames, IA (United States); Skoby, M. [Univ. of Michigan, Ann Arbor, MI (United States); Stoll, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Toldo, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ujvari, B. [Debrecen Univ., Debrecen (Hungary); Woody, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ronzhin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hanagaki, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Apresyan, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bose, T. [Boston Univ., MA (United States); Canepa, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Demina, R. [Univ. of Rochester, NY (United States); Gershtein, Y. [Rutgers Univ., Piscataway, NJ (United States); Halkiadakis, E. [Rutgers Univ., Piscataway, NJ (United States); Haytmyradov, M. [Univ. of Iowa, Iowa City, IA (United States); Hazen, E. [Boston Univ., MA (United States); Hindrichs, O. [Univ. of Rochester, NY (United States); Korjenevski, S. [Univ. of Rochester, NY (United States); Nachtman, J. [Univ. of Iowa, Iowa City, IA (United States); Narain, M. [Brown Univ., Providence, RI (United States); Nash, K. [Rutgers Univ., Piscataway, NJ (United States); Onel, Y. [Univ. of Iowa, Iowa City, IA (United States); Osherson, M. [Rutgers Univ., Piscataway, NJ (United States); Rankin, D. [Boston Univ., MA (United States); Schneider, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stone, B. [Rutgers Univ., Piscataway, NJ (United States); Metcalfe, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Benoit, M. [Univ. of Geneva (Switzerland); Vicente, M. [Univ. of Geneva (Switzerland); di Bello, F. [Univ. of Geneva (Switzerland); Cavallaro, E. [Univ. Autonoma de Barcelona (Spain); Chakanov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Frizzell, D. [Univ. of Oklahoma, Norman, OK (United States); Kiehn, M. [Univ. of Geneva (Switzerland); Meng, L. [Univ. of Geneva (Switzerland); Miucci, A. [Univ. of Bern, Bern (Switzerland); Nodulman, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Terzo, S. [Univ. Autonoma de Barcelona (Spain); Wang, Rui [Argonne National Lab. (ANL), Argonne, IL (United States); Weston, T. [Univ. of Oklahoma, Norman, OK (United States); Xie, Junqie [Argonne National Lab. (ANL), Argonne, IL (United States); Xu, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaffaroni, E. [Univ. of Geneva (Switzerland); Zhang, M. [Univ. of Illinois, Urbana, IL (United States); Argelles, C. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Axani, S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Katori, T. [Queen Mary Univ. of London (United Kingdom); Noulai, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mandalia, S. [Queen Mary Univ. of London (United Kingdom); Sandstrom, P. [Univ. of Wisconsin, Madison, WI (United States); Kryemadhi, A. [Messiah College, Mechanicsburg, PA (United States); Barner, L. [Messiah College, Mechanicsburg, PA (United States); Grove, A. [Messiah College, Mechanicsburg, PA (United States); Mohler, J. [Messiah College, Mechanicsburg, PA (United States); Roth, A. [Messiah College, Mechanicsburg, PA (United States); Beuzekom, M. van [Nikhef National Inst. for Subatomic Physics, Amsterdam (Netherlands); Dall' Occo, E. [Nikhef National Inst. for Subatomic Physics, Amsterdam (Netherlands); Schindler, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Paley, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Badgett, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Denisov, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lukic, S. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia); Ujic, P. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia); Lebrun, P. L.G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Fields, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zaki, R. [Radboud Univ., Nijmegen (Netherlands)

    2018-01-23

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY2017. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table 1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  11. A self-calibrating led-based solar test platform

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Sylvester-Hvid, Kristian O.; Jørgensen, Mikkel

    2011-01-01

    A compact platform for testing solar cells is presented. The light source comprises a multi-wavelength high-power LED (light emitting diode) array allowing the homogenous illumination of small laboratory solar cell devices (substrate size 50 × 25 mm) within the 390–940 nm wavelength range......, it is possible to perform all the commonly employed measurements on the solar cell at very high speed without moving the sample. In particular, the LED-based illumination system provides an alternative to light-biased incident photon-to-current efficiency measurement to be performed which we demonstrate. Both...... top and bottom contact is possible and the atmosphere can be controlled around the sample during measurements. The setup was developed for the field of polymer and organic solar cells with particular emphasis on enabling different laboratories to perform measurements in the same manner and obtain...

  12. Test and calibration of the IDS fast-timing electronics

    CERN Document Server

    AUTHOR|(CDS)2160817

    2016-01-01

    The ISOLDE decay station(IDS) is one of the permanent experimental setups at the ISOLDE facility of CERN. IDS is used to study decay properties of radioactive nuclei. Thus, fast-timing electronics are necessary for extracting nuclear half-lives. The aims of this work are testing and optimization of the IDS fast-timing electronics as well as measuring a nuclear level half-life in the decay of $^{152}$Eu. The energy resolution of LaBr$_3$ $\\gamma$-detectors was characterized and optimized. A nuclear level lifetime of $^{152}$Eu was measured after obtaining the best parameters for energy resolution and time walk. Dedicated sorting scripts were developed in ROOT in order of perform the characterization and optimization automatically.

  13. Trigger and DAQ in the Combined Test Beam

    CERN Multimedia

    Dobson, M; Padilla, C

    2004-01-01

    Introduction During the Combined Test Beam the latest prototype of the ATLAS Trigger and DAQ system is being used to support the data taking of all the detectors. Further development of the TDAQ subsystems benefits from the direct experience given by the integration in the beam test. Support of detectors for the Combined Test Beam All ATLAS detectors need their own detector-specific DAQ development. The readout electronics is controlled by a Readout Driver (ROD), custom-built for each detector. The ROD receives data for events that are accepted by the first level trigger. The detector-specific part of the DAQ system needs to control the ROD and to respond to commands of the central DAQ (e.g. to "Start" a run). The ROD module then sends event data to a Readout System (ROS), a PC with special receiver modules/buffers. At this point the data enters the realm of the ATLAS DAQ and High Level Trigger system, constructed from Linux PCs connected with gigabit Ethernet networks. Most ATLAS detectors, representing s...

  14. Beam tests on a proton linac booster for hadron therapy

    CERN Document Server

    De Martinis, C; Berra, P; Birattari, C; Calabretta, L; Crandall, K; Giove, D; Masullo, M R; Mauri, M; Rosso, E; Rovelli, A; Serafini, L; Szeless, Balázs; Toet, D Z; Vaccaro, Vittorio G; Weiss, M; Zennaro, R

    2002-01-01

    LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained duri...

  15. Thermal shock tests of carbon materials with high power beam

    International Nuclear Information System (INIS)

    Akiba, M.; Araki, M.; Ando, T.; Jinbou, R.; Saidoh, M.; Suzuki, S.; Nakamura, K.; Tanaka, S.

    1992-01-01

    In tokamak machines, not only present machine but also future tokamak devices, off-normal events, so called plasma disruption, is considered as unavoidable phenomena. During the plasma disruption, plasma energy will deposit onto the surface of plasma facing components (PFC). Erosion induced by the disruption will be considered as primary limitation factor of life time of the PFCs. To evaluate erosion rate during the disruption, high power beam facilities have strongly been required. JAERI constructed an electron beam test facility to simulate the disruption heat load. The facility can produce an intense electron beam at a heat flux of up to 2000 MW/m 2 from 1 ms. Many carbon based materials, which have regarded at most promising armor materials, have been tested at the facility at a heat flux range from 300 MW/m 2 to 2000 MW/m 2 . The erosion depth of carbon-fiber-carbon composites (C/C composites) is ∼ 3 times larger than that of numerical prediction. Carbon based B 4 C-coated and B 4 C converted materials which have been developed at JAERI have also tested in the facility. The B 4 C converted C/C composites show high thermal shock resistance. (author)

  16. Comparison of the absorbed dose at calibration depth of photon beams using the Japan society of medical physics 12 beam quality conversion factor in the presence or absence of a waterproofing sleeve

    International Nuclear Information System (INIS)

    Kinoshita, Naoki; Kita, Akinobu; Murai, Emi; Nishimoto, Yasuhiro; Toi, Akiko; Shimada, Masato; Sasamoto, Kouhei; Adachi, Toshiki; Takemura, Akihiro

    2013-01-01

    In standard external beam radiotherapy dosimetry, which is based on absorbed dose by water, the absorbed dose at any calibration depth is calculated using the same beam quality conversion factor, regardless of the presence or absence of a waterproofing sleeve. In this study, we evaluated whether there were differences between absorbed doses at calibration depths calculated using a beam quality conversion factor including a wall correction factor that corresponds to a waterproofing sleeve thickness of 0.3 mm, and without a waterproofing sleeve. The Japan Society of Medical Physics (JSMP) has reported that the uncertainty of the results using a beam quality conversion factor that included a wall correction factor corresponding to a waterproofing sleeve thickness of 0.3 mm, regardless of the presence or absence of the sleeve, was 0.2%. This uncertainty proved to be in agreement with the reported range.(author)

  17. ZY3-02 Laser Altimeter On-orbit Geometrical Calibration and Test

    Directory of Open Access Journals (Sweden)

    TANG Xinming

    2017-06-01

    Full Text Available ZY3-02 is the first satellite equipped with a laser altimeter for earth observation in China .This laser altimeter is an experimental payload for land elevation measurement experiment. The ranging and pointing bias of the laser altimeter would change due to the launch vibration, the space environment difference or other factors, and that could bring plane and elevation errors of laser altimeter. In this paper, we propose an on-orbit geometric calibration method using a ground-based electro-optical detection system based on the analysis of ZY3-02 laser altimeter characteristic, and this method constructs the rigorous geometric calibration model, which consider the pointing and ranging bias as unknown systematic errors, and the unknown parameters are calibrated with laser spot's location captured by laser detectors and the minimum ranging error principle. With the ALOS-DSM data as reference, the elevation accuracy of the laser altimeter can be improved from 100~150 meters before calibration to 2~3 meters after calibration when the terrain slope is less than 2 degree. With several ground control points obtained with RTK in laser footprint for validation, the absolute elevation precision of laser altimeter in the flat area can reach about 1 meter after the calibration. The test results demonstrated the effectiveness and feasibility of the proposed method.

  18. A modified and calibrated drift-diffusion-reaction model for time-domain analysis of charging phenomena in electron-beam irradiated insulators

    Science.gov (United States)

    Raftari, Behrouz; Budko, Neil; Vuik, Kees

    2018-01-01

    This paper presents a modified self-consistent drift-diffusion-reaction model suitable for the analysis of electron-beam irradiated insulators at both short and long time scales. A novel boundary condition is employed that takes into account the reverse electron current and a fully dynamic trap-assisted generation-recombination mechanism is implemented. Sensitivity of the model with respect to material parameters is investigated and a calibration procedure is developed that reproduces experimental yield-energy curves for uncharged insulators. Long-time charging and yield variations are analyzed for stationary defocused and focused beams as well as moving beams dynamically scanning composite insulators.

  19. Absolute calibration of a cold and thermal neutron detector using monochromatic neutron beam

    Science.gov (United States)

    Choi, Jin Ha; Cude-Woods, Christopher; Ito, Takeyasu; Young, Albert

    2017-09-01

    Time of flight spectra for cold neutrons exiting the moderator volume of the LANSCE UCN source has been obtained using a commercial neutron scintillator, EJ-426, coupled to a Hamamatsu R1355. The absolute efficiency for this detector system was determined using a 37.4 meV (monochromatic) neutron beam from the Neutron Powder Diffraction Facility (NPDF) at North Carolina State University's PULSTAR reactor. We measured the absolute neutron flux at the NPDF through thin foil activation and explored threshold effects through analysis of the measured pulse height distribution for effectively pure neutron signals from the NPDF beam. Non-uniformity of the flux profile across the detector and the detection efficiency as a function of the point of incidence of neutrons on the scintillator was explored using a X-Y translation system to perform scans using either fixed or movable apertures. The results are generally consistent with our expectations for this system, and provide a quantitative assessment of the sensitivity of this system to cold and thermal neutrons. This project was funded by the National Science Foundation and the Department of Energy.

  20. Beam tests of the 12 MHz RFQ RIB injector for ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-05-06

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged {sup 132}Xe and {sup 84}Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations.

  1. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-01-01

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged 132 Xe and 84 Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations

  2. Performance of CREAM Calorimeter Results of Beam Tests

    CERN Document Server

    Ahn, H S; Beatty, J J; Bigongiari, G; Castellina, A; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Kang, T G; Kim, H J; Kim, K C; Kim, M Y; Kim, T; Kim, Y J; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinine, A; Marrocchesi, P S; Mognet, S I; Nam, S W; Nutter, S; Park, N H; Park, H; Seo, E S; Sina, R; Syed, S; Song, C; Swordy, S; Wu, J; Yang, J; Zhang, H Q; Zei, R; Zinn, S Y

    2005-01-01

    The Cosmic Ray Energetics And Mass (CREAM), a balloon-borne experiment, is under preparation for a flight in Antarctica at the end of 2004. CREAM is planned to measure the energy spectrum and composition of cosmic rays directly at energies between 1 TeV and 1000 TeV. Incident particle energies will be measured by a transition radiation detector and a sampling calorimeter. The calorimeter was constructed at the University of Maryland and tested at CERN in 2003. Performance of the calorimeter during the beam tests is reported.

  3. Beam tests of ATLAS SCT silicon strip detector modules

    CERN Document Server

    Campabadal, F; Key, M; Lozano, M; Martínez, C; Pellegrini, G; Rafí, J M; Ullán, M; Johansen, L; Pommeresche, B; Stugu, B; Ciocio, A; Fadeev, V; Gilchriese, M G D; Haber, C; Siegrist, J; Spieler, H; Vu, C; Bell, P J; Charlton, D G; Dowell, John D; Gallop, B J; Homer, R J; Jovanovic, P; Mahout, G; McMahon, T J; Wilson, J A; Barr, A J; Carter, J R; Fromant, B P; Goodrick, M J; Hill, J C; Lester, C G; Palmer, M J; Parker, M A; Robinson, D; Sabetfakhri, A; Shaw, R J; Anghinolfi, F; Chesi, Enrico Guido; Chouridou, S; Fortin, R; Grosse-Knetter, J; Gruwé, M; Ferrari, P; Jarron, P; Kaplon, J; MacPherson, A; Niinikoski, T O; Pernegger, H; Roe, S; Rudge, A; Ruggiero, G; Wallny, R; Weilhammer, P; Bialas, W; Dabrowski, W; Grybos, P; Koperny, S; Blocki, J; Brückman, P; Gadomski, S; Godlewski, J; Górnicki, E; Malecki, P; Moszczynski, A; Stanecka, E; Stodulski, M; Szczygiel, R; Turala, M; Wolter, M; Ahmad, A; Benes, J; Carpentieri, C; Feld, L; Ketterer, C; Ludwig, J; Meinhardt, J; Runge, K; Mikulec, B; Mangin-Brinet, M; D'Onofrio, M; Donega, M; Moêd, S; Sfyrla, A; Ferrère, D; Clark, A G; Perrin, E; Weber, M; Bates, R L; Cheplakov, A P; Saxon, D H; O'Shea, V; Smith, K M; Iwata, Y; Ohsugi, T; Kohriki, T; Kondo, T; Terada, S; Ujiie, N; Ikegami, Y; Unno, Y; Takashima, R; Brodbeck, T; Chilingarov, A G; Hughes, G; Ratoff, P; Sloan, T; Allport, P P; Casse, G L; Greenall, A; Jackson, J N; Jones, T J; King, B T; Maxfield, S J; Smith, N A; Sutcliffe, P; Vossebeld, Joost Herman; Beck, G A; Carter, A A; Lloyd, S L; Martin, A J; Morris, J; Morin, J; Nagai, K; Pritchard, T W; Anderson, B E; Butterworth, J M; Fraser, T J; Jones, T W; Lane, J B; Postranecky, M; Warren, M R M; Cindro, V; Kramberger, G; Mandic, I; Mikuz, M; Duerdoth, I P; Freestone, J; Foster, J M; Ibbotson, M; Loebinger, F K; Pater, J; Snow, S W; Thompson, R J; Atkinson, T M; Bright, G; Kazi, S; Lindsay, S; Moorhead, G F; Taylor, G N; Bachindgagyan, G; Baranova, N; Karmanov, D; Merkine, M; Andricek, L; Bethke, Siegfried; Kudlaty, J; Lutz, Gerhard; Moser, H G; Nisius, R; Richter, R; Schieck, J; Cornelissen, T; Gorfine, G W; Hartjes, F G; Hessey, N P; de Jong, P; Muijs, A J M; Peeters, S J M; Tomeda, Y; Tanaka, R; Nakano, I; Dorholt, O; Danielsen, K M; Huse, T; Sandaker, H; Stapnes, S; Bargassa, Pedrame; Reichold, A; Huffman, T; Nickerson, R B; Weidberg, A; Doucas, G; Hawes, B; Lau, W; Howell, D; Kundu, N; Wastie, R; Böhm, J; Mikestikova, M; Stastny, J; Broklová, Z; Broz, J; Dolezal, Z; Kodys, P; Kubík, P; Reznicek, P; Vorobel, V; Wilhelm, I; Chren, D; Horazdovsky, T; Linhart, V; Pospísil, S; Sinor, M; Solar, M; Sopko, B; Stekl, I; Ardashev, E N; Golovnya, S N; Gorokhov, S A; Kholodenko, A G; Rudenko, R E; Ryadovikov, V N; Vorobev, A P; Adkin, P J; Apsimon, R J; Batchelor, L E; Bizzell, J P; Booker, P; Davis, V R; Easton, J M; Fowler, C; Gibson, M D; Haywood, S J; MacWaters, C; Matheson, J P; Matson, R M; McMahon, S J; Morris, F S; Morrissey, M; Murray, W J; Phillips, P W; Tyndel, M; Villani, E G; Dorfan, D E; Grillo, A A; Rosenbaum, F; Sadrozinski, H F W; Seiden, A; Spencer, E; Wilder, M; Booth, P; Buttar, C M; Dawson, I; Dervan, P; Grigson, C; Harper, R; Moraes, A; Peak, L S; Varvell, K E; Chu Ming Lee; Hou Li Shing; Lee Shih Chang; Teng Ping Kun; Wan Chang Chun; Hara, K; Kato, Y; Kuwano, T; Minagawa, M; Sengoku, H; Bingefors, N; Brenner, R; Ekelöf, T J C; Eklund, L; Bernabeu, J; Civera, J V; Costa, M J; Fuster, J; García, C; García, J E; González-Sevilla, S; Lacasta, C; Llosa, G; Martí i García, S; Modesto, P; Sánchez, J; Sospedra, L; Vos, M; Fasching, D; González, S; Jared, R C; Charles, E

    2005-01-01

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalised in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 multiplied by 1014 protons per square centimetre. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  4. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, I

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented.

  5. Application of multiwire proportional chamber in BEPC test beam

    International Nuclear Information System (INIS)

    Shen Ji; Chen Ziyu; Ye Yunxiu; Cuiu Xiangzong; Li Jiacai

    2006-01-01

    This paper describes a Multiwire Proportional Chamber (MWPC) for the Test Beam on BEPC (Beijing Electron Positron Colider). The distance between the anode surface and the cathode surface of the MWPC is 6 mm. Both surfaces are made of gold-plated tungsten wires, the anode wires are 20 μm in diameter and 2 mm apart, and the cathode wires are 50 μm indiameter and 0.7 mm apart. Six adjacent wires are connected together to form a 4.2 mm wide cathode strip. The MWPC can localize the particles of e, π by cathode-induced charge centre-of-gravity read-out. For 5.9 keV γ photon, the positional resolution is less than 0.3 mm (FWHM) and for 1.1 GeV beam electron, 0.224 mm (FWHM) positional resolution is attained. (authors)

  6. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase of the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies’ qualification with particular emphasis on irradiation and beam tests are presented.

  7. Beam Test of the First Production Forward RPC

    CERN Document Server

    Ban, Yong; Liu, Haidong; Qian, Si-Jin; Wang, Quanjin; Ye, Yan-Lin; Ying, Y; Hong, Byung-Sik; Wang, Quanjin; Hong, Seong Jong; Lee, Kyong Sei; Park, Sangnam; Sim, Kwang Souk; Ball, Austin; Chatelain, Jean-Paul; Crotty, Ian; Sharma, Abhishek; Whitaker, William; Van Doninck, Walter; Akimenko, Sergey; Litov, Leander; Marinov, Andrey; Asghar, Muhammad Irfan; Ahmed, Ijaz; Hoorani, Hafeez R; Colaleo, Anna; Iaselli, Giuseppe; Loddo, Flavio; Maggi, Marcello

    2004-01-01

    The production of the first set of forward Resistive Plate Chambers (RPC) for the CMS experiment at the Large Hadron Collider (LHC) has started at CERN since June 2004. The detectors are assembled with gas gaps made in Korea, mechanics made in China and are equipped with the final front-end electronics, high/low-voltage distribution and threshold control. After testing and validating one of the preseries RE1/2 chambers, it was coupled to the corresponding Cathode Strips Chamber (CSC), ME1/2 and exposed to muons at the X5A beam area at CERN. Its performance in terms of detection efficiency, noise and cluster size in this beam with 25 ns bunch structure is presented.

  8. Brightness checkerboard lattice method for the calibration of the coaxial reverse Hartmann test

    Science.gov (United States)

    Li, Xinji; Hui, Mei; Li, Ning; Hu, Shinan; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin

    2018-01-01

    The coaxial reverse Hartmann test (RHT) is widely used in the measurement of large aspheric surfaces as an auxiliary method for interference measurement, because of its large dynamic range, highly flexible test with low frequency of surface errors, and low cost. And the accuracy of the coaxial RHT depends on the calibration. However, the calibration process remains inefficient, and the signal-to-noise ratio limits the accuracy of the calibration. In this paper, brightness checkerboard lattices were used to replace the traditional dot matrix. The brightness checkerboard method can reduce the number of dot matrix projections in the calibration process, thus improving efficiency. An LCD screen displayed a brightness checkerboard lattice, in which the brighter checkerboard and the darker checkerboard alternately arranged. Based on the image on the detector, the relationship between the rays at certain angles and the photosensitive positions of the detector coordinates can be obtained. And a differential de-noising method can effectively reduce the impact of noise on the measurement results. Simulation and experimentation proved the feasibility of the method. Theoretical analysis and experimental results show that the efficiency of the brightness checkerboard lattices is about four times that of the traditional dot matrix, and the signal-to-noise ratio of the calibration is significantly improved.

  9. Indirect deformation (strain) measurements and calibrations in Sandia triaxial apparatus for rock testing to 2500C

    International Nuclear Information System (INIS)

    Wawersik, W.R.

    1979-09-01

    Indirect procedures for axial and radial strain measurements on rock in triaxial tests to 250 0 C are presented. The description of techniques includes discussions of all calibrations and of the accuracies of measurements. In addition, two examples are given to show how the techniques are implemented in triaxial compression and triaxial extension experiments. 10 figures

  10. GESCAL: Quality management automated system for a calibration and test laboratory

    International Nuclear Information System (INIS)

    Manzano de Armas, J.; Valdes Ramos, M.; Morales Monzon, J.A.

    1998-01-01

    GESCAL is a software created to automate all elements composing the quality system in a calibration and test laboratory. It also evaluates quality according to its objectives and policies. This integrated data system decreases considerably the amount of time devoted to manage quality. It is speedier in searching and evaluating information registers thus notably in reducing the workload for laboratory staff

  11. Calibration of Airframe and Occupant Models for Two Full-Scale Rotorcraft Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta, Lucas G.; Polanco, Michael A.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. Accelerations and kinematic data collected from the crash tests were compared to a system integrated finite element model of the test article. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the second full-scale crash test. This combination of heuristic and quantitative methods was used to identify modeling deficiencies, evaluate parameter importance, and propose required model changes. It is shown that the multi-dimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and co-pilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. This approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and test planning guidance. Complete crash simulations with validated finite element models can be used

  12. Standard test bench for calibrating instruments used to measure natural or artificial radioactive airborne particulates

    International Nuclear Information System (INIS)

    Charuau, J.; Grivaud, L.; Le Breton, M.

    1992-01-01

    An aerodynamic calibration device, known as ICARE, has been set up in France at the Saclay Research Centre to certify instruments used to measure natural or artificial airborne radioactive particulate contamination or radon. ICARE can calibrate passive detectors and monitors with sampling air flow-rates of less than 60 m 3 /h. The adjustment of such parameters as 222 Rn daughters volume activity, attached fraction and equilibrium factor, and the volume activity and size of α or β emitter carrying aerosols, allows realistic conditions to be obtained. ICARE complies with monitor test method standard currently under development by the International Electrotechnical Commission

  13. Seafloor multibeam backscatter calibration experiment: comparing 45°-tilted 38-kHz split-beam echosounder and 30-kHz multibeam data

    Science.gov (United States)

    Ladroit, Yoann; Lamarche, Geoffroy; Pallentin, Arne

    2017-12-01

    Obtaining absolute seafloor backscatter measurements from hydrographic multibeam echosounders is yet to be achieved. We propose a low-cost experiment to calibrate the various acquisition modes of a 30-kHz Kongsberg EM 302 multibeam echosounder in a range of water depths. We use a 38-kHz Simrad EK60 calibrated fisheries split-beam echosounder mounted at 45° angle on the vessel's hull as a reference for the calibration. The processing to extract seafloor backscatter from the EK60 requires bottom detection, ray tracing and motion compensation to obtain acceptable geo-referenced backscatter measurements from this non-hydrographic system. Our experiment was run in Cook Strait, New Zealand, on well-known seafloor patches in shallow, mid, and deep-water depths. Despite acquisition issues due to weather, our results demonstrate the strong potential of such an approach to obtain system's absolute calibration which is required for quantitative use of backscatter strength data.

  14. Status of the realization of the neutral beam test facility

    International Nuclear Information System (INIS)

    Toigo, Vanni

    2015-01-01

    The ITER Neutral Beam Injectors (NBI) are required to deliver 16.5 MW of additional heating power to the plasma, accelerating negative ions up to -1 MV with a beam current of 40A lasting up to 1 hour. Since these outstanding requirements were never achieved all together so far, the realization of a Neutral Beam Test Facility (NBTF), called PRIMA, currently under construction in Padova, was launched with the aim to test the operation of the NB injector and to study the relevant physical and technological issues, in advance to the implementation in ITER. Two projects are under development: MITICA and SPIDER. MITICA is a full scale prototype of the ITER NB injector; the design is based on a similar scheme and layout, with the same power supply system and also the control and protection systems are being designed according to the ITER rules and constraints. The HV components are procured by JADA; the low voltage ones and the injector are procured by F4E. SPIDER project is an ion source with the same characteristics of the ITER one, specifically addressed to study the issues related to the RF operation; for this reason, the beam energy is limited to 100keV. It can generate both Hydrogen and Deuterium Ions; the design includes provisions to filter electrons and also to allow the use of cesium to attain the high values of current density required. SPIDER is procured by F4E and INDA. The construction of PRIMA buildings and auxiliaries, started in autumn 2008, was completed in summer 2015. SPIDER plant systems procurement is well advanced and some systems are under installation or site acceptance tests. In 2016 integrated commissioning and power supply integrated tests will be performed followed by the beginning of the first experimental phase. MITICA design was completed; many procurement contracts have been signed or will be launched in the next months. Installation activity will start in December 2015 with the installation of the first HV power supply components provided

  15. Beam Tests of the Balloon-Borne ATIC Experiment

    Science.gov (United States)

    Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.

    2003-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.

  16. Maintenance schemes for the ITER neutral beam test facility

    International Nuclear Information System (INIS)

    Zaccaria, P.; Dal Bello, S.; Marcuzzi, D.; Masiello, A.; Coniglio, A.; Antoni, V.; Cordier, J.J.; Hemsworth, R.; Jones, T.; Di Pietro, E.; Mondino, P.L.

    2004-01-01

    The ITER neutral beam test facility (NBTF) is planned to be built, after the approval of the ITER construction and the choice of the ITER site, with the agreement of the ITER International Team and of the JA and RF participant teams. The key purpose is to progressively increase the performance of the first ITER injector and to demonstrate its reliability at the maximum operation parameters: power delivered to the plasma 16.5 MW, beam energy 1 MeV, accelerated D - ion current 40 A, pulse length 3600 s. Several interventions for possible modifications and for maintenance are expected during the early operation of the ITER injector in order to optimize the beam generation, aiming and steering. The maintenance scheme and the related design solutions are therefore a very important aspect to be considered for the NBTF design. The paper describes consistently the many interrelated aspects of the design, such as the optimisation of the vessel and cryopump geometry, in order to get a better maintenance flexibility, an easier man access and a larger access for diagnostic and monitoring. (authors)

  17. Beam tests of the balloon-borne ATIC experiment

    CERN Document Server

    Ganel, O; Ahn, H S; Ampe, J; Bashindzhagian, G L; Case, G; Chang, H; Ellison, S; Fazely, A; Gould, R; Granger, D; Gunasingha, R M; Guzik, T G; Han, Y J; Isbert, J; Kim, H J; Kim, K C; Kim, S K; Kwon, Y; Panasyuk, M Y; Panov, A; Price, B; Samsonov, G; Schmidt, W K H; Sen, M; Seo, E S; Sina, R; Sokolskaya, N; Stewart, M; Voronin, A; Wagner, D; Wang, J Z; Wefel, J P; Wu, J; Zatsepin, V

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurements from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide information about some of the most fundamental questions in astroparticle physics today. ATIC's design centers on an 18 radiation length (X0) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75λint graphite target. In September 1999, the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000–January 2001 and again in December 2002–January 2003, ATIC flew on the first two of a series of long-duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam tests, including energy resolutions for electrons and protons at several beam energies from 100 to 375 G...

  18. Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment

    Science.gov (United States)

    Dixon, T. H.; Wolf, S. Kornreich

    1990-01-01

    Wet tropospheric path delay can be a major error source for Global Positioning System (GPS) geodetic experiments. Strategies for minimizing this error are investigted using data from CASA Uno, the first major GPS experiment in Central and South America, where wet path delays may be both high and variable. Wet path delay calibration using water vapor radiometers (WVRs) and residual delay estimation is compared with strategies where the entire wet path delay is estimated stochastically without prior calibration, using data from a 270-km test baseline in Costa Rica. Both approaches yield centimeter-level baseline repeatability and similar tropospheric estimates, suggesting that WVR calibration is not critical for obtaining high precision results with GPS in the CASA region.

  19. Advanced productivity forecast using petrophysical wireline data calibrated with MDT tests and numerical reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Andre, Carlos de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Low, Steven; Barreto, Wesley [Schlumberger, Houston, TX (United States)

    2004-07-01

    This paper describes an integrated and rigorous approach for viscous and middle oil reservoir productivity evaluation using petrophysical models calibrated with permeability derived from mini tests (Dual Packer) and Vertical Interference Tests (VIT) from open hole wire line testers (MDT SLB TM). It describes the process from Dual Packer Test and VIT pre-job design, evaluation via analytical and inverse simulation modeling, calibration and up scaling of petrophysical data into a numerical model, history matching of Dual Packer Tests and VIT with numerical simulation modeling. Finally, after developing a dynamic calibrated model, we perform productivity forecasts of different well configurations (vertical, horizontal and multilateral wells) for several deep offshore oil reservoirs in order to support well testing activities and future development strategies. The objective was to characterize formation static and dynamic properties early in the field development process to optimize well testing design, extended well test (EWT) and support the development strategies in deep offshore viscous oil reservoirs. This type of oil has limitations to flow naturally to surface and special lifting equipment is required for smooth optimum well testing/production. The integrated analysis gave a good overall picture of the formation, including permeability anisotropy and fluid dynamics. Subsequent analysis of different well configurations and lifting schemes allows maximizing formation productivity. The simulation and calibration results are compared to measured well test data. Results from this work shows that if the various petrophysical and fluid properties sources are integrated properly an accurate well productivity model can be achieved. If done early in the field development program, this time/knowledge gain could reduce the risk and maximize the development profitability of new blocks (value of the information). (author)

  20. Standard test method for calibration of surface/stress measuring devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    Return to Contents page 1.1 This test method covers calibration or verification of calibration, or both, of surface-stress measuring devices used to measure stress in annealed and heat-strengthened or tempered glass using polariscopic or refractometry based principles. 1.2 This test method is nondestructive. 1.3 This test method uses transmitted light, and therefore, is applicable to light-transmitting glasses. 1.4 This test method is not applicable to chemically tempered glass. 1.5 Using the procedure described, surface stresses can be measured only on the “tin” side of float glass. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. BAYESIAN CALIBRATION OF SAFETY CODES USING DATA FROM SEPARATE-AND INTEGRAL EFFECTS TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Yurko, Joseph P.; Buongiorno, Jacopo; Youngblood, Robert

    2015-04-01

    Large-scale system codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. In order to be able to use the results of these simulation codes with confidence, it is important to learn how the uncertainty on the values of these parameters affects the output of the codes. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the safety code, and thereby improves its support for decision-making. Modern analysis capabilities afford very significant improvements on classical ways of doing calibration, and the work reported here implements some of those improvements. The key innovation has come from development of safety code surrogate model (code emulator) construction and prediction algorithms. A surrogate is needed for calibration of plant-scale simulation codes because the multivariate nature of the problem (i.e., the need to adjust multiple uncertain parameters at once to fit multiple pieces of new information) calls for multiple evaluations of performance, which, for a computation-intensive model, makes calibration very computation-intensive. Use of a fast surrogate makes the calibration processes used here with Markov Chain Monte Carlo (MCMC) sampling feasible. Moreover, most traditional surrogates do not provide uncertainty information along with their predictions, but the Gaussian Process (GP) based code surrogates used here do. This improves the soundness of the code calibration process. Results are demonstrated on a simplified scenario with data from Separate and Integral Effect Tests.

  2. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  3. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  4. Planar Pixel Sensors for the ATLAS Upgrade: Beam Tests results

    CERN Document Server

    Weingarten, J

    2012-01-01

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  5. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    Science.gov (United States)

    Tadikonda, S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todrita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar back-ground-sevents impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  6. Hearing Tests on Mobile Devices: Evaluation of the Reference Sound Level by Means of Biological Calibration.

    Science.gov (United States)

    Masalski, Marcin; Kipiński, Lech; Grysiński, Tomasz; Kręcicki, Tomasz

    2016-05-30

    Hearing tests carried out in home setting by means of mobile devices require previous calibration of the reference sound level. Mobile devices with bundled headphones create a possibility of applying the predefined level for a particular model as an alternative to calibrating each device separately. The objective of this study was to determine the reference sound level for sets composed of a mobile device and bundled headphones. Reference sound levels for Android-based mobile devices were determined using an open access mobile phone app by means of biological calibration, that is, in relation to the normal-hearing threshold. The examinations were conducted in 2 groups: an uncontrolled and a controlled one. In the uncontrolled group, the fully automated self-measurements were carried out in home conditions by 18- to 35-year-old subjects, without prior hearing problems, recruited online. Calibration was conducted as a preliminary step in preparation for further examination. In the controlled group, audiologist-assisted examinations were performed in a sound booth, on normal-hearing subjects verified through pure-tone audiometry, recruited offline from among the workers and patients of the clinic. In both the groups, the reference sound levels were determined on a subject's mobile device using the Bekesy audiometry. The reference sound levels were compared between the groups. Intramodel and intermodel analyses were carried out as well. In the uncontrolled group, 8988 calibrations were conducted on 8620 different devices representing 2040 models. In the controlled group, 158 calibrations (test and retest) were conducted on 79 devices representing 50 models. Result analysis was performed for 10 most frequently used models in both the groups. The difference in reference sound levels between uncontrolled and controlled groups was 1.50 dB (SD 4.42). The mean SD of the reference sound level determined for devices within the same model was 4.03 dB (95% CI 3

  7. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  8. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a four-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark.Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements...... with measurement uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  9. SU-F-T-215: An Investigation Of Multi-Scanner CT Hounsfield Unit Calibration for Pencil Beam Scanning Proton Therapy Using 3D Gamma Analysis

    International Nuclear Information System (INIS)

    Zhang, J; Li, X; Liu, G; Liu, Q; Liang, J; Ding, X

    2016-01-01

    Purpose: We compare and investigate the dosimetric impacts on pencil beam scanning (PBS) proton treatment plans generated with CT calibration curves from four different CT scanners and one averaged ‘global’ CT calibration curve. Methods: The four CT scanners are located at three different hospital locations within the same health system. CT density calibration curves were collected from these scanners using the same CT calibration phantom and acquisition parameters. Mass density to HU value tables were then commissioned in a commercial treatment planning system. Five disease sites were chosen for dosimetric comparisons at brain, lung, head and neck, adrenal, and prostate. Three types of PBS plans were generated at each treatment site using SFUD, IMPT, and robustness optimized IMPT techniques. 3D dose differences were investigated using 3D Gamma analysis. Results: The CT calibration curves for all four scanners display very similar shapes. Large HU differences were observed at both the high HU and low HU regions of the curves. Large dose differences were generally observed at the distal edges of the beams and they are beam angle dependent. Out of the five treatment sites, lung plans exhibits the most overall range uncertainties and prostate plans have the greatest dose discrepancy. There are no significant differences between the SFUD, IMPT, and the RO-IMPT methods. 3D gamma analysis with 3%, 3 mm criteria showed all plans with greater than 95% passing rate. Two of the scanners with close HU values have negligible dose difference except for lung. Conclusion: Our study shows that there are more than 5% dosimetric differences between different CT calibration curves. PBS treatment plans generated with SFUD, IMPT, and the robustness optimized IMPT has similar sensitivity to the CT density uncertainty. More patient data and tighter gamma criteria based on structure location and size will be used for further investigation.

  10. Numerical simulation of impact tests on reinforced concrete beams

    International Nuclear Information System (INIS)

    Jiang, Hua; Wang, Xiaowo; He, Shuanhai

    2012-01-01

    Highlights: ► Predictions using advanced concrete model compare well with the impact test results. ► Several important behavior of concrete is discussed. ► Two mesh ways incorporating rebar into concrete mesh is also discussed. ► Gives a example of using EPDC model and references to develop new constitutive models. -- Abstract: This paper focuses on numerical simulation of impact tests of reinforced concrete (RC) beams by the LS-DYNA finite element (FE) code. In the FE model, the elasto-plastic damage cap (EPDC) model, which is based on continuum damage mechanics in combination with plasticity theory, is used for concrete, and the reinforcement is assumed to be elasto-plastic. The numerical results compares well with the experimental values reported in the literature, in terms of impact force history, mid-span deflection history and crack patterns of RC beams. By comparing the numerical and experimental results, several important behavior of concrete material is investigated, which includes: damage variable to describe the strain softening section of stress–strain curve; the cap surface to describe the plastic volume change; the shape of the meridian and deviatoric plane to describe the yield surface as well as two methods of incorporating rebar into concrete mesh. This study gives a good example of using EPDC model and can be utilized for the development new constitutive models for concrete in future.

  11. LArIAT: Liquid Argon TPC in a Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-02-28

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of the LArIAT collaboration who have committed to participate in beam tests to be carried out starting during the 2013 Fermilab Test Beam Facility program. The TSW is intended primarily for the purpose of recording expectations for budget estimates and work allocation for Fermilab, the funding agencies and the participating institutions. It reflects an arrangement that currently is satisfactory to the parties; however, it is recognized and anticipated that changing circumstances of the evolving research program will necessitate revisions. The parties agree to modify this TSW to reflect such required adjustments. Actual contractual obligations will be set forth in separate documents. This TSW fulfills Article 1 (facilities and scope of work) of the User Agreements signed (or still to be signed) by an authorized representative of each institution collaborating on this experiment. Precision neutrino physics has entered a new era both with pressing questions to be addressed at short and long baselines, and with increasing interest and development of Liquid Argon Time Projection Chambers (LArTPCs). These open volume liquid argon TPCs drift ionization electrons from passing charged particles to readout wire chamber planes at the edge of the detector. The Signals are then combined to form 2D and 3D pho-quality like millimeter scale images of the charged particles tracks and to provide calorimetric measurements of the deposited energy in the detector.

  12. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  13. TEST BEAM COORDINATION: The 2004 Test Beam Calorimetry set-up in H8

    CERN Multimedia

    Aleksa, M; Di Girolamo, B; Ferrari, C; Giugni, D; Santoni, C; Wingerter, I

    A new table has been designed, built and finally mounted to position the LAr cryostat in front of the Tilecal modules. The new table has been connected to the existing Tilecal table to be able to move the full set-up along eta values between 0 and 1.2. The table has been conceived by D. Giugni (INFN Milano and now CERN PH) and modeled by G. Braga (INFN Milano) in spring-summer 2003. The realization of the table has been done by an Italian firm (MatecImpianti, Fenegrò, Como) under the supervision of S. Coelli (INFN Milano) starting August 2003. Figure 1 shows the table assembled at the firm (left). Figure 1: The Tilecal-LAr table: in Fenegro (left) and at CERN (right). In November 2003 the table has been delivered to CERN and put in temporary storage to be assembled after the preparation of the Tilecal zone. In February 2004 two technicians from the firm and the team of technician coordinated by C. Ferrari (CERN AB/ATB), assembled, tested and commissioned the table under the supervision of S. Coelli...

  14. Test beam results of LHCb scintillating fibre tracker prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Sebastian; Comerma, Albert; Gerick, David; Hansmann-Menzemer, Stephanie; Kecke, Matthieu; Leverington, Blake; Mazorra de Cos, Jose; Mitzel, Dominik; Neuner, Max; Uwer, Ulrich; Han, Xiaoxue [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: LHCb-Collaboration

    2016-07-01

    During the Long Shutdown 2 of the LHC, the LHCb detector will undergo a major upgrade to meet the challenges of running at a higher luminosity. The current Inner and Outer Tracking system will not be sufficient to deal with the envisaged increased detector occupancy and higher radiation levels and will be replaced by a single tracking detector based on 0.250 mm diameter plastic scintillating fibres. The fibres are wound to multilayer ribbons 2.4 m long and read out by 128 channel silicon photomultiplier arrays. The Scintillating Fibre (SciFi) tracker will cover a total active area of 360 m{sup 2}, arranged in 12 layers. The performances of prototype modules having 6 and 8 layers of fibre have been tested at the SPS at CERN. This talk focuses on basic properties of the prototype modules such as spatial resolution, single hit efficiency and light yield measured during the test beam campaigns in 2015.

  15. Proposal for PS beam tests of a fast rich detector

    CERN Document Server

    Séguinot, Jacques; Ypsilantis, Thomas; CERN. Geneva. Detector Research and Development Committee

    1993-01-01

    A full scale prototype Fast RICH detector with pad readout for unambiguous imaging has been constructed for operation in a high luminosity environment. It uses the best photosensitive gas capable of fast response (TEA) or the intrinsically fast solid photocathode (CsI/TMAE), developed specifically for this purpose. It can be used at e+e- or hadron colliders as well as at fixed target facilities. It has time resolution of 20 ns with a 1.3 microsecond pipeline and parallel readout of 4000 pad sectors. Fast digital VLSI electronics has been developed for readout and 24000 channels have been tested. The prototype device (12000 pad channels) is assembled and ready for beam tests in 1993.

  16. The optics of the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Irwin, J.; Brown, K.; Bulos, F.; Burke, D.; Helm, R.; Roy, G.; Ruth, R.; Yamamoto, N.; Oide, K.

    1991-01-01

    The Final Focus Test Beam (FFTB), currently under construction at the end of the SLAC Linac, is being built by an international collaboration as a test bed for ideas and methods required in the design and construction of final focus systems for next generation e + e - linear colliders. The FFTB lattice shown is based on the previously developed principle of using sextupole pairs in a dispersive region to compensate chromaticity. The linear lattice was optimized for length, and implementation of diagnostic procedures. The transformations between sextupole pairs (CCX and CCY) are exactly -I, the matrix for the intermediate transformer (BX) is exactly diagonal, and the dispersion function has zero slope at the sextupoles and is thus zero at the minimum of the β x function in the intermediate transformer

  17. Modified Mode-I Cracked Sandwich Beam (CSB) Fracture Test

    Science.gov (United States)

    Smith, S. A.; Shivakumar, K. N.

    2001-01-01

    Five composite sandwich panels were fabricated using vacuum assisted resin transfer molding (VARTM). Four of these panels had E-glass/vinylester facesheets and one had carbon/epoxy facesheets. The sandwich panels had different density PVC foam cores. The four E-glass panels had core densities of 80, 100, 130, 200 kg/cu m. The sandwich with carbon/epoxy 3 facesheets had a core with density of 100 kg/cu m. Fracture tests were conducted using a modified Cracked Sandwich Beam (CSB) test configuration. Load displacement curves were obtained for loading and unloading of the specimens during crack growth. Various increments of crack growth were monitored. Critical Strain Energy Release Rates (SERR) were determined from the tests using the area method. The critical values of SERR can be considered the fracture toughness of the sandwich material. The fracture toughness ranged 367 J/sq m to 1350 J/sq m over the range of core densities. These results are compared to the Mode-I fracture toughness of the PVC foam core materials and values obtained for foam-cored sandwiches using the TSD specimen. Finite-element analyses (FEA) were performed for the test configuration and Strain Energy Release Rates were calculated using the Virtual Crack Closure Technique (VCCT). The SERR values determined from the FEA were scaled to the fracture loads, or critical loads, obtained from the modified CSB tests. These critical loads were in close agreement with the test values.

  18. Dose calibrator linearity test: 99mTc versus 18F radioisotopes

    Directory of Open Access Journals (Sweden)

    José Willegaignon

    2015-02-01

    Full Text Available Objective: The present study was aimed at evaluating the viability of replacing 18F with 99mTc in dose calibrator linearity testing. Materials and Methods: The test was performed with sources of 99mTc (62 GBq and 18F (12 GBq whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical 99mTc and 18F sources activities were calculated and subsequently compared. Results: Mean deviations between experimental and theoretical 99mTc and 18F sources activities were 0.56 (± 1.79% and 0.92 (± 1.19%, respectively. The mean ratio between activities indicated by the device for the 99mTc source as measured with the equipment pre-calibrated to measure 99mTc and 18F was 3.42 (± 0.06, and for the 18F source this ratio was 3.39 (± 0.05, values considered constant over the measurement time. Conclusion: The results of the linearity test using 99mTc were compatible with those obtained with the 18F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in 18F acquisition suggest 99mTc as the element of choice to perform dose calibrator linearity tests in centers that use 18F, without any detriment to the procedure as well as to the quality of the nuclear medicine service.

  19. Acceptance test of an activity meter to be used as reference in a calibration methodology establishment

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Eduardo L.; Kuahara, Lilian T.; Potiens, Maria da Penha A., E-mail: educorrea1905@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    The nuclear medicine is a medical physics area in which radiopharmaceuticals are used in diagnostic procedures. These radioactive elements are administered in the patient and the radiation emitted is detected by an equipment, that makes the body scan, connected to a computer software, and the image is constructed. In order to operate the nuclear medicine service must have calibrated radiation detectors. Thought, it does not exist, in Brazil, an activity meter calibration methodology, which causes many measurement uncertainties. The goal of this study is to present the acceptance test results of an activity meter to be used as reference in a new calibration methodology establishment. It was checked an activity meter Capintec, CRC-25R model, using three control sources ({sup 137}Cs, {sup 57}Co, {sup 133}Ba). The tests were based on the CNEN-NN 3.05 standard, the manufacturer manual, the TRS-454 and the TECDOC 602 and include: physical inspection, chamber voltage, zero adjustment, background response, data check and repeatability. The linearity and geometry tests could not be made, because the laboratory where the activity meter is located is not authorized to receive non-sealed radioactive sources. The equipment has presented a good behavior. All the results are in the range presented by national and international standards and the equipment is now being used in the laboratory and periodically passes through the quality control tests. (author)

  20. Energy-Calibration of the ATLAS Hadronic and Electromagnetic Liquid-Argon Endcap Calorimeters

    CERN Document Server

    Menke, Sven

    2003-01-01

    In 2002 the first combined beam test of the hadronic and electromagnetic liquid-argon endcap calorimeters of the ATLAS experiment took place at the SPS test beam at CERN. A total of 15 million events from electrons, muons and pions in the energy range from 6 to 200 GeV were recorded. The entire calibration chain, from digital filter weights, over calibration constants, to clustering and energy weights, as is relevant for the energy calibration of hadronic and electromagnetic showers in ATLAS was tested and applied to the beam test data. The calibration methods and first results for the combined performance of the two calorimeters are presented.

  1. Micro-scale testing of ductile and brittle cantilever beam specimens in situ with a dual beam workstation

    International Nuclear Information System (INIS)

    Darnbrough, J E; Liu, D; Flewitt, P E J

    2013-01-01

    Micro-scale cantilever beam specimens created by focused ion beam milling have been mechanically loaded in situ at room temperature to observe the deformation and fracture of single crystal silicon, nanocrystalline nickel and thermal barrier coatings with a multilayer structure. The micro-scale preparation technique allows cantilever beams to be selected from preferred positions in the samples so that specific mechanical properties can be evaluated. As a consequence these microstructural specific properties can be combined with direct observation of the response of the test specimen throughout the period of the test. The measured mechanical properties and response for the materials given above are discussed and compared with previously published data. (paper)

  2. Test Beam Data Analysis for a Timepix3 Readout Chip

    CERN Document Server

    Williams, Morag

    2016-01-01

    The vertex and tracker detector R&D for a future linear collider (CLICdp) aims at developing new silicon sensor technologies. The EP-LCD group has been helping develop a novel pixel detector chip called the Timepix3 with a very thick active silicon layer (675 μm). This thick detector can be used to reconstruct the track incidence angle using the charge drift-time information. To evaluate the principle, test beam data was taken in October 2015 and June 2016 with the Timepix3 at various angles to the beam. The data was analysed to evaluate the sensors performance in calculating the track incidence angle. The device angle was determined using three methods: the first using the cluster size information, secondly using the timing information, and finally using a multivariate analysis technique. The timing method proved the principle of the Timepix3 track angle measurements but the MVA method was found to give much better results, especially for smaller angles, than the other two methods and requires fewer cal...

  3. Estimated of associated uncertainties of the linearity test of dose calibrators

    International Nuclear Information System (INIS)

    Sousa, Carlos H.S.; Peixoto, Jose G.P.

    2013-01-01

    Activimeters determine the activity of radioactive samples and them are validated by performance tests. This research determined the expanded uncertainties associated to the linearity test. Were used three dose calibrators and three sources of 99 Tc m for testing using recommended protocol by the IAEA, which considered the decay of radioactive samples. The expanded uncertainties evaluated were not correlated with each other and their analysis considered a rectangular probability distribution. The results are also presented in graphical form by the function of normalized activity measured in terms of conventional true value. (author)

  4. Quality control tests in dose calibrators used in research laboratories of IPEN

    International Nuclear Information System (INIS)

    Kuahara, Lilian T.; Junior, Amaury C.R.; Martins, Elaine W.; Dias, Carla R.; Correa, Eduardo de L.; Potiens, Maria da Penha A.

    2013-01-01

    The aim of this study was to do the intercomparison between two dose calibrators used in research laboratories at IPEN-CNEN / SP, one being the Capinted NPL-CRC, of the Laboratorio de Calibracao de Instrumentos (LCI) do IPEN, and the other Capintec CRC-15R of the Centro de Radiofarmacia (CR). The standard sources used for carrying out the comparing tests between the two laboratories were 57 Co, 133 Ba and the 13 7 C s

  5. Erosion tests of materials by energetic particle beams

    International Nuclear Information System (INIS)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed

  6. Beam test of ferrite absorber in TRISTAN MR

    International Nuclear Information System (INIS)

    Tajima, T.; Asano, K.; Furuya, T.; Ishi, Y.; Kijima, Y.; Mitsunobu, S.; Sennyu, K.; Takahashi, T.

    1996-06-01

    A study on the effect of beams on the ferrite absorber was performed using TRISTAN MR. The tested absorber consists of a 300 mm-diam. copper pipe with 4 mm-thick ferrite inner layer, which was fabricated with Hot Isostatic Press (HIP) technique. No spark, damage, or degradation were observed up to the highest available single bunch current of 4.4 mA, i.e. 2.8x10 11 electrons per bunch, which is 8.5 times higher than that of KEKB low energy ring. The loss factor showed significant increase with bunch shortening, e.g. 2.6 V/pC at 4 mm was about 40% higher than the value predicted by the calculation assuming Gaussian bunch and no incoming power from outside of the chamber. (author)

  7. Test Beam Results with a Full Size sTGC

    CERN Document Server

    Rettie, Sebastien; The ATLAS collaboration

    2014-01-01

    The forthcoming LHC upgrade to high luminosity will increase the background rate in the forward region of the ATLAS Muon Spectrometer (composed of three Big Wheels (BW) and a Small Wheel (SW) on each side of the detector) by approximately a factor of five. With such a rate some of the present Muon Spectrometer detectors in the SW region will produce fake triggers and will therefore be replaced by a New Small Wheel (NSW) composed of small Thin Gap Chamber (sTGC) and Micromegas planes. The aim of the detectors is to reach 100 micrometers position resolution and an online muon track reconstruction with better than 1 mrad precision. A full size sTGC quadruplet has been constructed and equipped with the first prototype of the dedicated front end electronics (VMM1). The performance of the sTGC quadruplet at the Fermilab test beam facility is presented here.

  8. Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility

    CERN Document Server

    Dubrovskiy, A; Bathe, BN; Srivastava, S

    2013-01-01

    A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.

  9. Sensor calibration of polymeric Hopkinson bars for dynamic testing of soft materials

    Science.gov (United States)

    Martarelli, Milena; Mancini, Edoardo; Lonzi, Barbara; Sasso, Marco

    2018-02-01

    Split Hopkinson pressure bar (SHPB) testing is one of the most common techniques for the estimation of the constitutive behaviour of metallic materials. In this paper, the characterisation of soft rubber-like materials has been addressed by means of polymeric bars thanks to their reduced mechanical impedance. Due to their visco-elastic nature, polymeric bars are more sensitive to temperature changes than metallic bars, and due to their low conductance, the strain gauges used to measure the propagating wave in an SHPB may be exposed to significant heating. Consequently, a calibration procedure has been proposed to estimate quantitatively the temperature influence on strain gauge output. Furthermore, the calibration is used to determine the elastic modulus of the polymeric bars, which is an important parameter for the synchronisation of the propagation waves measured in the input and output bar strain gate stations, and for the correct determination of stress and strain evolution within the specimen. An example of the application has been reported in order to demonstrate the effectiveness of the technique. Different tests at different strain rates have been carried out on samples made of nytrile butadyene rubber (NBR) from the same injection moulding batch. Thanks to the correct synchronisation of the measured propagation waves measured by the strain gauges and applying the calibrated coefficients, the mechanical behaviour of the NBR material is obtained in terms of strain-rate–strain and stress–strain engineering curves.

  10. Accuracy improvement in a calibration test bench for accelerometers by a vision system

    Energy Technology Data Exchange (ETDEWEB)

    D’Emilia, Giulio, E-mail: giulio.demilia@univaq.it; Di Gasbarro, David, E-mail: david.digasbarro@graduate.univaq.it; Gaspari, Antonella, E-mail: antonella.gaspari@graduate.univaq.it; Natale, Emanuela, E-mail: emanuela.natale@univaq.it [University of L’Aquila, Department of Industrial and Information Engineering and Economics (DIIIE), via G. Gronchi, 18, 67100 L’Aquila (Italy)

    2016-06-28

    A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behavior if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.

  11. A Seafloor Test of the A-0-A Approach to Calibrating Pressure Sensors for Vertical Geodesy

    Science.gov (United States)

    Wilcock, W. S. D.; Manalang, D.; Harrington, M.; Cram, G.; Tilley, J.; Burnett, J.; Martin, D.; Paros, J. M.

    2017-12-01

    Seafloor geodetic observations are critical for understanding the locking and slip of the megathrust in Cascadia and other subduction zones. Differences of bottom pressure time series have been used successfully in several subduction zones to detect slow-slip earthquakes centered offshore. Pressure sensor drift rates are much greater than the long-term rates of strain build-up and thus, in-situ calibration is required to measure secular strain. One approach to calibration is to use a dead-weight tester, a laboratory apparatus that produces an accurate reference pressure, to calibrate a pressure sensor deployed on the seafloor by periodically switching between the external pressure and the deadweight tester (Cook et al, this session). The A-0-A method replaces the dead weight tester by using the internal pressure of the instrument housing as the reference pressure. We report on the first non-proprietary ocean test of this approach on the MARS cabled observatory at a depth of 900 m depth in Monterey Bay. We use the Paroscientific Seismic + Oceanic Sensors module that is designed for combined geodetic, oceanographic and seismic observations. The module comprises a three-component broadband accelerometer, two pressure sensors that for this deployment measure ocean pressures, A, up to 2000 psia (14 MPa), and a barometer to measure the internal housing reference pressure, 0. A valve periodically switches between external and internal pressures for 5 minute calibrations. The seafloor test started in mid-June and the results of 30 calibrations collected over the first 6 weeks of operation are very encouraging. After correcting for variations in the internal temperature of the housing, the offset of the pressure sensors from the barometer reading as a function of time, can be fit with a straight line for each sensor with a rms misfit of 0.1 hPa (1 mm of water). The slopes of these lines (-4 cm/yr and -0.4 cm/yr) vary by an order of magnitude but the difference in the span

  12. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed

  13. THE METHOD OF GEOMETRIC CALIBRATION OF OPTOELECTRONIC SYSTEMS BASED ON ELECTRONIC TEST OBJECT

    Directory of Open Access Journals (Sweden)

    D. A. Kozhevnikov

    2017-01-01

    Full Text Available Designing remote sensing of the Earth devices is requires a lot of attention to evaluation lens distortion level and providing the required accuracy values of geometric calibration of optoelectronic systems at all. Test- objects known as most common tools for optical systems geometric calibration. The purpose of the research was creating an automatically method of distortion correction coefficients calculating with a 3 μm precision in the measurement process. The method of geometric calibration of the internal orientation elements of the optical system based on the electronic test object is proposed. The calculation of the test string brightness image from its multispectral image and filtered signal extrema position determination are presented. Ratio of magnitude of the distortion and interval center is given. Three variants of electronic test-objects with different step and element size are considered. Оptimal size of calibration element was defined as 3×3 pixels due to shape of the subpixels with the aspect ratio of the radiating areas about 1 : 3. It is advisable to use IPS as an electronic test object template. An experimental test and measurement stand functional diagram based on the collimator and optical bench «OSK-2CL» is showed. It was determined that test objects with a grid spacing of 4 and 8 pixels can’t provide tolerable image because of non-collimated emission of active sites and scattering on optical surfaces – the shape of the elements is substantially disrupted. Test-object with a 12 pixels grid spacing was used to distortion level analyzing as most suitable.Ratio of coordinate increment and element number graphs for two photographic lenses (Canon EF-S 17-85 f/4-5.6 IS USM and EF-S 18-55 f/3.5-5.6 IS II are presented. A calculation of the distortion values in edge zones was held, which were respectively 43 μm and 51.6 μm. The technique and algorithm of software implementation is described. Possible directions of the

  14. The adaptive calibration model of stress responsivity : An empirical test in the Tracking Adolescents' Individual Lives Survey study

    NARCIS (Netherlands)

    Ellis, Bruce J; Oldehinkel, Albertine J; Nederhof, Esther

    The adaptive calibration model (ACM) is a theory of developmental programing focusing on calibration of stress response systems and associated life history strategies to local environmental conditions. In this article, we tested some key predictions of the ACM in a longitudinal study of Dutch

  15. ACCESS, Absolute Color Calibration Experiment for Standard Stars: Integration, Test, and Ground Performance

    Science.gov (United States)

    Kaiser, Mary Elizabeth; Morris, Matthew; Aldoroty, Lauren; Kurucz, Robert; McCandliss, Stephan; Rauscher, Bernard; Kimble, Randy; Kruk, Jeffrey; Wright, Edward L.; Feldman, Paul; Riess, Adam; Gardner, Jonathon; Bohlin, Ralph; Deustua, Susana; Dixon, Van; Sahnow, David J.; Perlmutter, Saul

    2018-01-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, now exceed the statistical errors associated with merged databases of these measurements. ACCESS, “Absolute Color Calibration Experiment for Standard Stars”, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35‑1.7μm bandpass. To achieve this goal ACCESS (1) observes HST/ Calspec stars (2) above the atmosphere to eliminate telluric spectral contaminants (e.g. OH) (3) using a single optical path and (HgCdTe) detector (4) that is calibrated to NIST laboratory standards and (5) monitored on the ground and in-flight using a on-board calibration monitor. The observations are (6) cross-checked and extended through the generation of stellar atmosphere models for the targets. The ACCESS telescope and spectrograph have been designed, fabricated, and integrated. Subsystems have been tested. Performance results for subsystems, operations testing, and the integrated spectrograph will be presented. NASA sounding rocket grant NNX17AC83G supports this work.

  16. Development of nanometer resolution C-Band radio frequency beam position monitors in the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Slaton, T.; Mazaheri, G. [Stanford Univ., CA (US). Stanford Linear Accelerator Center; Shintake, T. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1998-08-01

    Using a 47 GeV electron beam, the Final Focus Test Beam (FFTB) produces vertical spot sizes around 70 nm. These small beam sizes introduce an excellent opportunity to develop and test high resolution Radio Frequency Beam Position Monitors (RF-BPMs). These BPMs are designed to measure pulse to pulse beam motion (jitter) at a theoretical resolution of approximately 1 nm. The beam induces a TM{sub 110} mode with an amplitude linearly proportional to its charge and displacement from the BPM's (cylindrical cavity) axis. The C-band (5,712 MHz) TM{sub 110} signal is processed and converted into beam position for use by the Stanford Linear Collider (SLC) control system. Presented are the experimental procedures, acquisition, and analysis of data demonstrating resolution of jitter near 25 nm. With the design of future e{sup +}e{sup -} linear colliders requiring spot sizes close to 3 nm, understanding and developing RF-BPMs will be essential in resolving and controlling jitter.

  17. Multiple transfer standard for calibration and characterization of test setups for LED lamps and luminaires in industry

    Science.gov (United States)

    Sperling, A.; Meyer, M.; Pendsa, S.; Jordan, W.; Revtova, E.; Poikonen, T.; Renoux, D.; Blattner, P.

    2018-04-01

    Proper characterization of test setups used in industry for testing and traceable measurement of lighting devices by the substitution method is an important task. According to new standards for testing LED lamps, luminaires and modules, uncertainty budgets are requested because in many cases the properties of the device under test differ from the transfer standard used, which may cause significant errors, for example if a LED-based lamp is tested or calibrated in an integrating sphere which was calibrated with a tungsten lamp. This paper introduces a multiple transfer standard, which was designed not only to transfer a single calibration value (e.g. luminous flux) but also to characterize test setups used for LED measurements with additional provided and calibrated output features to enable the application of the new standards.

  18. Dose calibrator linearity test: {sup 99m}Tc versus {sup 18}F radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, Jose; Coura-Filho, George Barberio; Garcez, Alexandre Teles, E-mail: willegaignon@hotmail.com [Instituto do Cancer do Estado de Sao Paulo Octavio Frias de Oliveira (ICESP), Sao Paulo, SP (Brazil); Sapienza, Marcelo Tatit; Buchpiguel, Carlos Alberto [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Fac. de Medicina; Alves, Carlos Eduardo Gonzalez Ribeiro; Cardona, Marissa Anabel Rivera; Gutterres, Ricardo Fraga [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-01-15

    Objective: the present study was aimed at evaluating the viability of replacing {sup 18}F with {sup 99m}Tc in dose calibrator linearity testing. Materials and methods: the test was performed with sources of {sup 99m}Tc (62 GBq) and {sup 18}F (12 GBq) whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical {sup 99m}Tc and {sup 18}F sources activities were calculated and subsequently compared. Results: mean deviations between experimental and theoretical {sup 99m}Tc and {sup 18}F sources activities were 0.56 (± 1.79)% and 0.92 (± 1.19)%, respectively. The mean ratio between activities indicated by the device for the {sup 99m}Tc source as measured with the equipment precalibrated to measure {sup 99m}Tc and {sup 18}F was 3.42 (± 0.06), and for the {sup 18}F source this ratio was 3.39 (± 0.05), values considered constant over the measurement time. Conclusion: the results of the linearity test using {sup 99m}Tc were compatible with those obtained with the {sup 18}F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in {sup 18}F acquisition suggest {sup 99m}Tc as the element of choice to perform dose calibrator linearity tests in centers that use {sup 18}F, without any detriment to the procedure as well as to the quality of the nuclear medicine service. (author)

  19. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts.

    Science.gov (United States)

    Dagalakis, Nicholas G; Yoo, Jae Myung; Oeste, Thomas

    2016-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.

  20. Test bench for fibers of the LHAASO-WCDA time calibration system

    Science.gov (United States)

    Liu, J. Y.; Gao, B.; Yu, C. X.; Chen, M. J.; Luo, Y. A.; Yao, Z. G.; Zha, M.; Wu, H. R.; Li, H. C.; Wang, X. J.

    2017-10-01

    The Water Cherenkov Detector Array (WCDA), which is one of the main components of the Large High Altitude Air Shower Observatory (LHAASO), functions in surveying the northern sky for high-energy gamma ray sources at the energy range around of 100 GeV-30 TeV. The precision of the time measurement for shower particles hitting every detector in the array is directly associated with the detection sensitivity for the sources. The calibration precision of the time offsets among the detector cells should be less than 0.1 ns to obtain less than 0.1o pointing error of the detector to any point source. In this regard, "cross calibration" is employed for the detector array, with 180 bundles of fiber systems guiding the lights of LEDs to each PMT. A test bench comprising fast PMTs and an one-dimensional slide platform is set up in the laboratory to test the fiber bundles. The test bench and the test procedure is described in this paper, and the test results are presented.

  1. Computer control of the beam transport system of the Chalk River electron test accelerator

    International Nuclear Information System (INIS)

    McMichael, G.E.; Kidner, S.H.; Fraser, J.S.

    1977-05-01

    The beam transport system of the Chalk River Electron Test Accelerator comprises steering coils and solenoidal focusing magnets driven by voltage-programmed, current-regulated power supplies. This report describes the beam transport and beam diagnostics systems presently in use. The computer controls all beam transport magnets from a single, allocatable control knob. The system is currently being expanded to two knobs and two readouts. (author)

  2. Fault detection and protection system for neutral beam generators on the Neutral Beam Engineering Test Facility (NBETF)

    International Nuclear Information System (INIS)

    deVries, G.J.; Chesley, K.L.; Owren, H.M.

    1983-12-01

    Neutral beam sources, their power supplies and instrumentation can be damaged from high voltage sparkdown or from overheating due to excessive currents. The Neutral Beam Engineering Test Facility (NBETF) in Berkeley has protective electronic hardware that senses a condition outside a safe operating range and generates a response to terminate such a fault condition. A description of this system is presented in this paper. 8 references, 2 figures, 2 tables

  3. Summary test results of the particle-beam diagnostics for the Advanced Photon Source (APS) subsystems

    International Nuclear Information System (INIS)

    Lumpkin, A.; Wang, X.; Sellyey, W.; Patterson, D.; Kahana, E.

    1994-01-01

    During the first half of 1994, a number of the diagnostic systems for measurement of the charged-particle beam parameters throughout the subsystems of the Advanced Photon Source (APS) have been installed and tested. The particle beams eventually will involve 450-MeV to 7-GeV positrons and with different pulse formats. The first test and commissionin results for beam profiles, beam position monitors, loss rate monitors, current monitors, and synchrotron radiation photon monitors hve been obtained using 200- to 350-MeV electron beams injected into the subsystems. Data presented are principally from the transport lines and the positron accumulator ring

  4. The optics of the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Irwin, J.; Brown, K.; Bulos, F.; Burke, D.; Helm, R.; Roy, G.; Ruth, R.; Yamamoto, N.; Oide, K.

    1991-05-01

    The Final Focus Test Beam (FFTB), currently under construction at the end of the SLAC Linac, is being built by an international collaboration as a test bed for ideas and methods required in the design and construction of final focus systems for next generation e + e - linear colliders. The FFTB lattice is based on the previously developed principle of using sextupole pairs in a dispersive region to compensate chromaticity. The linear lattice was optimized for length, and implementation of diagnostic procedures. The transformations between sextupole pairs (CCX and CCY) are exactly -I, the matrix for the intermediate transformer (BX) is exactly diagonal, and the dispersion function has zero slope at the sextupoles and is thus zero at the minimum of the β x function in the intermediate transformer. The introduction of sextupoles in final focus systems leads to the presence of additional optical aberrations, and synchrotron radiation in the dipoles also enlarges the final spot size. The important fourth-order optical aberrations which determine the main features of the design have been identified. Additional lower order aberrations arise in the implementation of these designs, since the real system is not the ideal design. We concentrate on these aberrations and describe strategies for their diagnosis and correction

  5. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line.

  6. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line

  7. Standard Test Method for Calibration of Primary Non-Concentrator Terrestrial Photovoltaic Reference Cells Using a Tabular Spectrum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method is intended to be used for calibration and characterization of primary terrestrial photovoltaic reference cells to a desired reference spectral irradiance distribution, such as Tables G173. The recommended physical requirements for these reference cells are described in Specification E1040. Reference cells are principally used in the determination of the electrical performance of photovoltaic devices. 1.2 Primary photovoltaic reference cells are calibrated in natural sunlight using the relative spectral response of the cell, the relative spectral distribution of the sunlight, and a tabulated reference spectral irradiance distribution. 1.3 This test method requires the use of a pyrheliometer that is calibrated according to Test Method E816, which requires the use of a pyrheliometer that is traceable to the World Radiometric Reference (WRR). Therefore, reference cells calibrated according to this test method are traceable to the WRR. 1.4 This test method is a technique that may be used ...

  8. Qualification and calibration tests of detector modules for the CMS Pixel Phase 1 upgrade

    Science.gov (United States)

    Zhu, D.; Backhaus, M.; Berger, P.; Meinhard, M.; Starodumov, A.; Tavolaro, V.

    2018-01-01

    In high energy particle physics, accelerator- and detector-upgrades always go hand in hand. The instantaneous luminosity of the Large Hadron Collider will increase to up to L = 2×1034cm‑2s‑1 during Run 2 until 2023. In order to cope with such luminosities, the pixel detector of the CMS experiment has been replaced early 2017. The so-called CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important production step is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration tests and results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average 0.55‰ ± 0.01‰ defective pixels and that all performance parameters stay within their specifications.

  9. Proceedings of the 2. International Linear Collider Test-beam workshop - LCTW'09

    International Nuclear Information System (INIS)

    Wormser, G.; Poeschl, R.; Takeshi, M.; Yu, J.; Hauptman, J.; Jeans, D.; Velthuis, J.; Repond, J.; Stanitzki, M.; Chefdeville, M.; Pauletta, G.; Hauptman, J.; Kulis, S.; Charpy, A.; Rivera, R.; Turchetti, M.; Vos, M.; Dehmelt, K.; Settles, R.; Decotigny, D.; Killenberg, M.; Haas, D.; Gaede, F.; Graf, N.; Wing, M.; Gaede, F.; Karstensen, S.; Meyners, N.; Hast, C.; Vrba, V.; Takeshita, T.; Kawagoe, K.; Linssen, L.; Ramberg, E.; Demarteau, M.; Fisk, H.E.; Savoy-Navarro, A.; Videau, H.; Boudry, V.; Hauptman, J.; Lipton, R.; Nelson, T.

    2009-01-01

    At this workshop detector and simulation experts have described and discussed the necessary ILC (International Linear Collider) detector research and development program in view of its need for test beams. This workshop has provided an opportunity to evaluate the capabilities and shortcomings of existing facilities in the context of planned test beam activities. This document gathers together the slides of the presentations. The presentations have been classified into 4 topics: -) plans of sub-detectors - calorimetry, silicon and gaseous tracking, -) data acquisition, -) test beam facilities, and -) resources and infrastructure for future test beams

  10. Low-cost and versatile thermal test chip for power assemblies assessment and thermometric calibration purposes

    International Nuclear Information System (INIS)

    Jorda, X.; Perpina, X.; Vellvehi, M.; Madrid, F.; Flores, D.; Hidalgo, S.; Millan, J.

    2011-01-01

    Chips specifically designed for thermal tests such as the assessment of packages, are of main interest in Microelectronics. Nevertheless, these test dies are required in relatively low quantities and their price is a limiting factor. This work describes a low-cost thermal test chip, specifically developed for the needs of power electronics. It is based on a poly-silicon heating resistor and a decoupled Pt temperature sensing resistor on the top, allowing to dissipate more than 60 W (170 W/cm 2 ) and reaching temperatures up to 200 o C. Its simple structure allows an easy simulation and modeling. These features have been taken in profit for packaging materials assessment, calibration of temperature measurement apparatus and methods, and validation of thermal models and simulations. - Highlights: → We describe a low-cost thermal test chip developed for power electronics applications. → It integrates a poly-silicon heating resistor and a Pt temperature sensing resistor on the top. → It can dissipate up to 200 W/cm 2 and work up to 200 o C. → It has been used for thermal resistance and conductivity measurement of substrates. → It allowed also the calibration of advanced thermometric equipments.

  11. Investigation on calibration parameter of mammography calibration facilities at MINT

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Wan Hazlinda Ismail; Md Saion Salikin; Muhammad Jamal Md Isa; Azuhar Ripin; Norriza Mohd Isa

    2004-01-01

    A mammography calibration facility has been established in the Medical Physics Laboratory, Malaysian Institute for Nuclear Technology Research (MINT). The calibration facility is established at the national level mainly to provide calibration services for radiation measuring test instruments or test tools used in quality assurance programme in mammography, which is being implemented in Malaysia. One of the accepted parameters that determine the quality of a radiation beam is the homogeneity coefficient. It is determined from the values of the 1 st and 2 nd Half Value Layer (HVL). In this paper, the consistency of the mammography machine beam qualities that is available in MINT, is investigated and presented. For calibration purposes, five radiation qualities namely 23, 25, 28, 30 and 35 kV, selectable from the control panel of the X-ray machine is used. Important parameters that are set for this calibration facility are exposure time, tube current, focal spot to detector distance (FDD) and beam size at specific distance. The values of homogeneity coefficient of this laboratory for the past few years tip to now be presented in this paper. Backscatter radiations are also considered in this investigation. (Author)

  12. Two frequency beam-loading compensation in the drive-beam accelerator of the CLIC Test Facility

    CERN Document Server

    Braun, Hans Heinrich

    1999-01-01

    The CLIC Test Facility (CTF) is a prototype two-beam accelerator, in which a high-current "drive beam" is used to generate the RF power for the main-beam accelerator. The drive-beam accelerator consists of two S-band structures which accelerate a bunch train with a total charge of 500 nC. The substantial beam loading is compensated by operating the two accelerating structures at 7.81 MHz above and below the bunch repetition frequency, respectively. This introduces a change of RF phase from bunch to bunch, which leads, together with off-crest injection into the accelerator, to an approximate compensation of the beam loading. Due to the sinusoidal time-dependency of the RF field, an energy spread of about 7% remains in the bunch train. A set of idler cavities has been installed to reduce this residual energy spread further. In this paper, the considerations that motivated the choice of the parameters of the beam-loading compensation system, together with the experimental results, are presented.

  13. The LHCD Launcher for Alcator C-Mod - Design, Construction, Calibration and Testing

    International Nuclear Information System (INIS)

    Hosea, J.; Beals, D.; Beck, W.; Bernabei, S.; Burke, W.; Childs, R.; Ellis, R.; Fredd, E.; Greenough, N.; Grimes, M.; Gwinn, D.; Irby, J.; Jurczynski, S.; Koert, P.; Kung, C.C.; Loesser, G.D.; Marmar, E.; Parker, R.; Rushinski, J.; Schilling, G.; Terry, D.; Vieira, R.; Wilson, J.R.; Zaks, J.

    2005-01-01

    MIT and PPPL have joined together to fabricate a high-power lower hybrid current drive (LHCD) system for supporting steady-state AT regime research on Alcator C-Mod. The goal of the first step of this project is to provide 1.5 MW of 4.6 GHz rf [radio frequency] power to the plasma with a compact launcher which has excellent spectral selectivity and fits into a single C-Mod port. Some of the important design, construction, calibration and testing considerations for the launcher leading up to its installation on C-Mod are presented here

  14. Built-in-Self-Test and Digital Self-Calibration for RF SoCs

    CERN Document Server

    Bou-Sleiman, Sleiman

    2012-01-01

    This book will introduce design methodologies, known as Built-in-Self-Test (BiST) and Built-in-Self-Calibration (BiSC), which enhance the robustness of radio frequency (RF) and millimeter wave (mmWave) integrated circuits (ICs). These circuits are used in current and emerging communication, computing, multimedia and biomedical products and microchips. The design methodologies presented will result in enhancing the yield (percentage of working chips in a high volume run) of RF and mmWave ICs which will enable successful manufacturing of such microchips in high volume. 

  15. The LHCD launcher for Alcator C-Mod-Design, construction, calibration and testing

    International Nuclear Information System (INIS)

    Hosea, J.; Beals, D.; Beck, W.; Bernabei, S.; Burke, W.; Childs, R.; Ellis, R.; Fredd, E.; Greenough, N.; Grimes, M.; Gwinn, D.; Irby, J.; Jurczynski, S.; Koert, P.; Kung, C.C.; Loesser, G.D.; Marmar, E.; Parker, R.; Rushinski, J.; Schilling, G.; Terry, D.; Vieira, R.; Wilson, J.R.; Zaks, J.

    2005-01-01

    MIT and PPPL have joined together to fabricate a high-power lower hybrid current drive (LHCD) system for supporting steady-state AT regime research on Alcator C-Mod. The goal of the first step of this project is to provide 1.5 MW of 4.6 GHz rf power to the plasma with a compact launcher which has excellent spectral selectivity and fits into a single C-Mod port. Some of the important design, construction, calibration and testing considerations for the launcher leading up to its installation on C-Mod are presented here

  16. Development and calibration of an on-line aerosol monitor for PHEBUS test FPT1

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Carmack, W.J.; Sprenger, M.H.; Thurston, G.C.; Hunt, J.L.

    1994-10-01

    An on-line aerosol monitor (OLAM2) has been developed and tested for PHEBUS test FPT1. OLAM2 utilizes new detachable fiber optic cables and sapphire light pipes for light transmission between the OLAM and the electronics. This light transmission system was tested and found to provide better signal-to-noise performance than was achieved with the continuous fibers used for test FPT0. An additional advantage of the detachable fiber/light pipe system is ease of installation. Aerosol testing (OLAM calibration) was performed in order to verify adequate signal-to-noise performance of the new fiber optic system over the specified operating conditions and to check the quantitative light attenuation measurements against theoretical predictions. Results of the testing indicated that light extinction measurements obtained during Phebus tests could be used to estimate aerosol volume concentrations, if diamond window fouling can be avoided. OLAM2 was also subjected to a proof pressure test and a long-term thermal stability test. These tests verified the mechanical and thermal integrity of the OLAM within design specifications. Long-term output signal stability was also verified with the system maintained at design temperature and half-design pressure

  17. Fabrication and testing of SMA composite beam with shape control

    Science.gov (United States)

    Noolvi, Basavaraj; S, Raja; Nagaraj, Shanmukha; Mudradi, Varada Raj

    2017-07-01

    Smart materials are the advanced materials that have characteristics of sensing and actuation in response to the external stimuli like pressure, heat or electric charge etc. These materials can be integrated in to any structure to make it smart. From the different types of smart materials available, Shape Memory Alloy (SMA) is found to be more useful in designing new applications, which can offer more actuating speed, reduce the overall weight of the structure. The unique property of SMA is the ability to remember and recover from large strains of upto 8% without permanent deformation. Embedding the SMA wire/sheet in fiber-epoxy/flexible resin systems has many potential applications in Aerospace, Automobile, Medical, Robotics and various other fields. In this work the design, fabrication, and testing of smart SMA composite beam has been carried out. Two types of epoxy based resin systems namely LY 5210 resin system and EPOLAM 2063 resin system are used in fabricating the SMA composite specimens. An appropriate mould is designed and fabricated to retain the pre-strain of SMA wire during high temperature post curing of composite specimens. The specimens are fabricated using vacuum bag technique.

  18. Beam Test of the ATLAS Level-1 Calorimeter Trigger System

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Thomas, J P; Typaldos, D; Watkins, P M; Watson, A; Achenbach, R; Föhlisch, F; Geweniger, C; Hanke, P; Kluge, E E; Mahboubi, K; Meier, K; Meshkov, P; Rühr, F; Schmitt, K; Schultz-Coulon, H C; Ay, C; Bauss, B; Belkin, A; Rieke, S; Schäfer, U; Tapprogge, T; Trefzger, T; Weber, GA; Eisenhandler, E F; Landon, M; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Mirea, A; Perera, V J O; Qian, W; Sankey, D P C; Bohm, C; Hellman, S; Hidvegi, A; Silverstein, S

    2005-01-01

    The Level-1 Calorimter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce Region-of-Interest (RoIs) and trigger multiplicities. The latter are sent in real time to the Central Trigger Processor (CTP) where the Level-1 decision is made. On receipt of a Level-1 Accept, Readout Driver Modules (RODs), provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purpose. RoI information is sent to the RoI builder (RoIB) to help reduce the amount of data required for the Level-2 Trigger The Level-1 Calorimeter Trigger System at the test beam consisted of 1 Preprocessor module, 1 Cluster Processor Module, 1 Jet/Energy Module and 2 Common Merger Modules. Calorimeter energies were sucessfully handled thourghout the chain and trigger object sent to the CTP. Level-1 Accepts were sucessfully produced and used to drive the readout path. Online diagno...

  19. Reliability Tests of the LHC Beam Loss Monitoring FPGA Firmware

    CERN Document Server

    Hajdu, C F; Dehning, B; Jackson, S

    2010-01-01

    The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver a feedback of losses to the control room as well as to several systems for their setup and analysis. It has to transmit and process signals from almost 4’000 monitors, and has nearly 3 million configurable parameters. In a system of such complexity, firmware reliability is a critical issue. The integrity of the signal chain of the LHC BLM system and its ability to correctly detect unwanted scenarios and thus provide the required protection level must be ensured. In order to analyze the reliability and functionality, an advanced verification environment has been developed to evaluate the performance and response of the FPGA-based data analysis firmware. This paper will report on the numerous tests that have been performed and on how the results are used to quantify the reliabi...

  20. Modelling and Testing of the Piezoelectric Beam as Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Koszewnik Andrzej

    2016-12-01

    Full Text Available The paper describes modelling and testing of the piezoelectric beam as energy harvesting system. The cantilever beam with two piezo-elements glued onto its surface is considered in the paper. As result of carried out modal analysis of the beam the natural frequencies and modes shapes are determined. The obtained results in the way mentioned above allow to estimate such location of the piezo-actuator on the beam where the piezo generates maximal values of modal control forces. Experimental investigations carried out in the laboratory allow to verify results of natural frequencies obtained during simulation and also testing of the beam in order to obtain voltage from vibration with help of the piezo-harvester. The obtained values of voltage stored on the capacitor C0 shown that the best results are achieved for the beam excited to vibration with third natural frequency, but the worst results for the beam oscillating with the first natural frequency.

  1. The Self-Calibration Test of flowmeter installed in STELLA(Sodium Integral Effect Test Loop for Safety Simulation and Assessment) facility

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Minhwan; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The objective of this study is to describe the procedure of the self-calibration test for the flowmeters and to analyze the result of the test. In this work, the test procedure of the self-calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility was described and the test result was analyzed. In regard to the long-term SFR development plan, a large-scale sodium thermal-hydraulic test project is being progressed by KAERI. This project is called STELLA (Sodium Integral Effect Test Loop for Safety Simulation and Assessment), and it is proceeding by adopting the QA (Quality Assurance) program. Due to the specificity of an experiment using sodium(Na) categorized as Class 3(pyrophoric material and water-prohibiting substance) by the Safety Control of Dangerous Substances Act, it is necessary to apply QA in consideration of the sodium experiment environment in certain parts. The one of them is about calibration of measuring instrument such as a flowmeter, thermocouple and pressure gauge. It is described in the QAP (Quality Assurance Procedures) of KAERI that calibration work should be conducted in accordance with self-calibration procedures in a special case where conventional calibration is not practicable. The calibration of two flowmeters (FT-101, FT-102) installed in STELLA facility is the typical example. As a result of test, it was confirmed that the flowmeters meet the pass criterion. Therefore, it was concluded that the flowmeters maintain instrument capacity a year ago.

  2. Testing Long-Range Beam-Beam Compensation for the LHC Luminosity Upgrade

    CERN Document Server

    Rijoff, T L

    2012-01-01

    The performance of the Large Hadron Collider (LHC) at CERN and its minimum crossing angle are limited by the effect of long-range beam-beam collisions. A wire compensators can mitigate part of the long-range effects and may allow for smaller crossing angles, or higher beam intensity. A prototype long-range wire compensator could be installed in the LHC by 2014/15. Since the originally reserved position for such a wire compensator is not available for this first step, we explore other possible options. Our investigations consider various longitudinal and transverse locations, different wire shapes, different optics configurations and several crossing angles between the two colliding beams. Simulations are carried out with the weak-strong code BBtrack. New postprocessing tools are introduced to analyse tune footprints and particle stability. In particular, a new method for the Lyapunov coefficient calculation is implemented. Submitted as "Tesi di laurea" at the University of Milano, 2012.

  3. Calibration of straight TXRF analysis - results of an European Round Robin test

    International Nuclear Information System (INIS)

    Rink, I.; Wortelboer, R.; Gendt, S. de; Horn, M.; Steiner, J.; Neumann, C.; Knoth, J.; Schwenke, H.; Dobler, M.; Erdmann, V.; Rostam-Khani, P.; Kolbesen, B.O.; Metz, S.; Pahlke, S.; Fabry, L.; Gonchond, J.P.; Weiss, C.; Comin, F.

    2000-01-01

    Calibration of spot measurements pose in general less problems than calibration of straight TXRF measurements as several Round Robin tests show. This is at least matter of discussion for those TXRF users who apply a droplet standard for straight TXRF measurements at the angle of incident where particle and film-type contamination show the same fluorescence intensity - the so-called iso-angle. In order to gain more insight in the differences between several TXRF-equipment types and calibration methods we started an European Round Robin test in 1998 in which twelve firms participated using twenty different TXRF-tools, one RBS- and one Synchrotron-TXRF equipment. In contrast to earlier global Round Robin tests e.g. in 1996 (ISO/TC201/WG2) direct comparison of measurements of the same wafers is possible, because the same wafers were sent to several participants and additional reference measurements were performed at Philips as well. Wafer preparation has been performed by spin-coating of Ni (5 concentrations) and by dipping in Fe-spiked SCI-solution (1 blank, 2 spiking concentrations). From this eight sets were formed containing eight wafers with varying Ni-and Fe-concentrations. All wafers were firstly measured at Philips as reference and then sent to certain participant-groups. The results of this first measurement show that the sets were almost comparable to each other with a standard deviation of < 15 % for the variants Ni-3, Ni-4, Ni-5 and Fe-2, with exception of few single concentrations of some sets. After normalization it is possible to compare all results of these variants with one reference value. The results can be divided in three groups with similar results and one extreme outlier: group 1: RBS-results and those results based on correction with Fit-program from GKSS, calibration with spin-coated wafers (RBS, Radio tracer) and results of one XSA 8000 and of one Rigaku 3750; group 2: Results of all Atomika TXRF 8030, three Atomika TXRF 8010, one TREX630S

  4. Bias Impact Analysis and Calibration of UAV-Based Mobile LiDAR System with Spinning Multi-Beam Laser Scanner

    Directory of Open Access Journals (Sweden)

    Radhika Ravi

    2018-02-01

    Full Text Available Light Detection and Ranging (LiDAR is a technology that uses laser beams to measure ranges and generates precise 3D information about the scanned area. It is rapidly gaining popularity due to its contribution to a variety of applications such as Digital Building Model (DBM generation, telecommunications, infrastructure monitoring, transportation corridor asset management and crash/accident scene reconstruction. To derive point clouds with high positional accuracy, estimation of mounting parameters relating the laser scanners to the onboard Global Navigation Satellite System/Inertial Navigation System (GNSS/INS unit, i.e., the lever-arm and boresight angles, is the foremost and necessary step. This paper proposes a LiDAR system calibration strategy for a Unmanned Aerial Vehicle (UAV-based mobile mapping system that can directly estimate the mounting parameters for spinning multi-beam laser scanners through an outdoor calibration procedure. This approach is based on the use of conjugate planar/linear features in overlapping point clouds derived from different flight lines. Designing an optimal configuration for calibration is the first and foremost step in order to ensure the most accurate estimates of mounting parameters. This is achieved by conducting a rigorous theoretical analysis of the potential impact of bias in mounting parameters of a LiDAR unit on the resultant point cloud. The dependency of the impact on the orientation of target primitives and relative flight line configuration would help in deducing the configuration that would maximize as well as decouple the impact of bias in each mounting parameter so as to ensure their accurate estimation. Finally, the proposed analysis and calibration strategy are validated by calibrating a UAV-based LiDAR system using two different datasets—one acquired with flight lines at a single flying height and the other with flight lines at two different flying heights. The calibration performance is

  5. Beam Profiling through Wire Chambing Tracking

    CERN Document Server

    Nash, W

    2013-01-01

    This note describes the calibration of the Delay Wire Chambers (DWCs) used during test runs of CALICE’s Tungsten Digital Hadron Calorimeter (W-DHCAL) prototype in CERN’s SPS beam line (10 – 300 GeV).

  6. Tests and calibration of the H1 hadronic calorimeter at HERA

    International Nuclear Information System (INIS)

    Haydar, R.

    1991-05-01

    We study the tests and the calibration of the H1 liquid argon calorimeter. We show that, for the modules carried out and tested at LAL, we get an accuracy of the argon gap measurement of 0.6%. The required precision for the hadronic energy calibration is 2%. We analyse the data taken at CERN. The negative crosstalk effect is understood, it is due to the calorimeter mechanical constants and it is corrected for in the analysis. The liquid argon impurity is measured and corrected for also. The calorimeter response is homogeneous and is practicly identical between different modules. A simple model of dead material correction is tuned to CERN data. This model corrects a significant part of the energy loss in dead material but it should be worked out more precisely. Weighting methods are applied to pions data. They improve the performances of the hadronic calorimetry, namely, their resolution and linearity with energy. Finally, we study the leptoquarks signal in H1 [fr

  7. Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer.

    Science.gov (United States)

    Yuan, Liyin; He, Zhiping; Lv, Gang; Wang, Yueming; Li, Chunlai; Xie, Jia'nan; Wang, Jianyu

    2017-09-18

    We discuss and evaluate a long wave infrared imaging spectrometer in terms of its opto-mechanical design and analysis, alignment, testing, and calibration. The instrument is a practical airborne sensor achieving high spectral resolution and sensitive noise equivalent delta temperature. The instrument operates in the 8 to 12.5 μm spectral region with 28.85 nm spectral sampling, 1 mrad instantaneous field of view, and >40° cross track field. The instrument comprises three uniform sub-modules with identical design parameters and performances. The sub-module design is based on a refractive foreoptics feeding an all-reflective spectrometer. The optical form of the spectrometer is a double-pass reflective triplet with a flat grating, which has a fast f/2 and high optical throughput. Cryogenic optics of 100 K is implemented only for the spectrometer. Assembly and thermal deformation and focusing adjustment design are particularly considered for this low temperature. All the mirrors of the spectrometer are opto-mechanical-integrated designed and manufactured by single-point diamond turning technology. We consider the center sub-module as an example, and we present its laboratory testing results and calibration; the results indicate the instrument's potential value in airborne sensing.

  8. INTRODUCING NOVEL GENERATION OF HIGH ACCURACY CAMERA OPTICAL-TESTING AND CALIBRATION TEST-STANDS FEASIBLE FOR SERIES PRODUCTION OF CAMERAS

    Directory of Open Access Journals (Sweden)

    M. Nekouei Shahraki

    2015-12-01

    Full Text Available The recent advances in the field of computer-vision have opened the doors of many opportunities for taking advantage of these techniques and technologies in many fields and applications. Having a high demand for these systems in today and future vehicles implies a high production volume of video cameras. The above criterions imply that it is critical to design test systems which deliver fast and accurate calibration and optical-testing capabilities. In this paper we introduce new generation of test-stands delivering high calibration quality in single-shot calibration of fisheye surround-view cameras. This incorporates important geometric features from bundle-block calibration, delivers very high (sub-pixel calibration accuracy, makes possible a very fast calibration procedure (few seconds, and realizes autonomous calibration via machines. We have used the geometrical shape of a Spherical Helix (Type: 3D Spherical Spiral with special geometrical characteristics, having a uniform radius which corresponds to the uniform motion. This geometrical feature was mechanically realized using three dimensional truncated icosahedrons which practically allow the implementation of a spherical helix on multiple surfaces. Furthermore the test-stand enables us to perform many other important optical tests such as stray-light testing, enabling us to evaluate the certain qualities of the camera optical module.

  9. First test of a CMS DT chamber equipped with full electronics in a muon beam

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    A CMS DT chamber of MB3 type, equipped with the final version of a minicrate (containing all on-chamber trigger and readout electronics), was tested in a muon beam for the first time. The beam was bunched in 25 ns spills, allowing an LHC-like response of the chamber trigger. This test confirmed the excellent performance of the trigger design.

  10. SU-F-T-180: Evaluation of a Scintillating Screen Detector for Proton Beam QA and Acceptance Testing

    International Nuclear Information System (INIS)

    Ghebremedhin, A; Taber, M; Koss, P; Camargo, G; Patyal, B; Ebstein, S

    2016-01-01

    Purpose: To test the performance of a commercial scintillating screen detector for acceptance testing and Quality Assurance of a proton pencil beam scanning system. Method: The detector (Lexitek DRD 400) has 40cm × 40cm field, uses a thin scintillator imaged onto a 16-bit scientific CCD with ∼0.5mm resolution. A grid target and LED illuminators are provided for spatial calibration and relative gain correction. The detector mounts to the nozzle with micron precision. Tools are provided for image processing and analysis of single or multiple Gaussian spots. Results: The bias and gain of the detector were studied to measure repeatability and accuracy. Gain measurements were taken with the LED illuminators to measure repeatability and variation of the lens-CCD pair as a function with f-stop. Overall system gain was measured with a passive scattering (broad) beam whose shape is calibrated with EDR film placed in front of the scintillator. To create a large uniform field, overlapping small fields were recorded with the detector translated laterally and stitched together to cover the full field. Due to the long exposures required to obtain multiple spills of the synchrotron and very high detector sensitivity, borated polyethylene shielding was added to reduce direct radiation events hitting the CCD. Measurements with a micro ion chamber were compared to the detector’s spot profile. Software was developed to process arrays of Gaussian spots and to correct for radiation events. Conclusion: The detector background has a fixed bias, a small component linear in time, and is easily corrected. The gain correction method was validated with 2% accuracy. The detector spot profile matches the micro ion chamber data over 4 orders of magnitude. The multiple spot analyses can be easily used with plan data for measuring pencil beam uniformity and for regular QA comparison.

  11. Load Test and Model Calibration of a Horizontally Curved Steel Box-Girder Bridge

    Directory of Open Access Journals (Sweden)

    Freydoon Rezaie

    2015-12-01

    Full Text Available In this paper, full scale load test of a horizontally curved steel box-girder bridge is carried out in order to detect structural defects, which reportedly result in unwanted vibrations in nearby buildings. The bridge is tested under the passage of six heavy vehicles at different speeds, so as to determine its static and dynamic responses. A total number of one hundred and two (102 sensors are used to measure the displacements, strains, and accelerations of different points of the bridge. It is observed that the bridge vibrates at a fundamental frequency of 2.6 Hz intensively and the first mode of vibration is torsional instead of flexural. The dominant frequency of vibration of the nearby buildings is computed to be approximately 2.5Hz using rational formulas. Thus, nearness of the fundamental frequency of the bridge to those of the adjacent buildings may be causing resonance phenomenon. However, in static load tests, low ranges of strain and displacement illustrated adequate structural capacity and appropriate safety under static loads. Numerical models are created using ANSYS and SAP2000 software products, so as to design the loading test and calibrate the finite element models. The connections of the transversal elements to the girders, transversal element spacing, and changes of the stiffness values of the slabs were found to be the most influential issues in the finite elements calibration process. Finally, considering the total damage of all members, the final health score of the bridge was evaluated as 89% indicating that the bridge is in a very good situation.

  12. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Matsui, S.; Mori, Y.; Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M.

    2016-01-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  13. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  14. Hearing Tests Based on Biologically Calibrated Mobile Devices: Comparison With Pure-Tone Audiometry.

    Science.gov (United States)

    Masalski, Marcin; Grysiński, Tomasz; Kręcicki, Tomasz

    2018-01-10

    Hearing screening tests based on pure-tone audiometry may be conducted on mobile devices, provided that the devices are specially calibrated for the purpose. Calibration consists of determining the reference sound level and can be performed in relation to the hearing threshold of normal-hearing persons. In the case of devices provided by the manufacturer, together with bundled headphones, the reference sound level can be calculated once for all devices of the same model. This study aimed to compare the hearing threshold measured by a mobile device that was calibrated using a model-specific, biologically determined reference sound level with the hearing threshold obtained in pure-tone audiometry. Trial participants were recruited offline using face-to-face prompting from among Otolaryngology Clinic patients, who own Android-based mobile devices with bundled headphones. The hearing threshold was obtained on a mobile device by means of an open access app, Hearing Test, with incorporated model-specific reference sound levels. These reference sound levels were previously determined in uncontrolled conditions in relation to the hearing threshold of normal-hearing persons. An audiologist-assisted self-measurement was conducted by the participants in a sound booth, and it involved determining the lowest audible sound generated by the device within the frequency range of 250 Hz to 8 kHz. The results were compared with pure-tone audiometry. A total of 70 subjects, 34 men and 36 women, aged 18-71 years (mean 36, standard deviation [SD] 11) participated in the trial. The hearing threshold obtained on mobile devices was significantly different from the one determined by pure-tone audiometry with a mean difference of 2.6 dB (95% CI 2.0-3.1) and SD of 8.3 dB (95% CI 7.9-8.7). The number of differences not greater than 10 dB reached 89% (95% CI 88-91), whereas the mean absolute difference was obtained at 6.5 dB (95% CI 6.2-6.9). Sensitivity and specificity for a mobile

  15. Performance test for implantation of a primary standard of low energy X-ray beams

    International Nuclear Information System (INIS)

    Cardoso, Ricardo de Souza; Bossio, Francisco; Peixoto, Jose Guilherme P.

    2005-01-01

    The implementation of a standard laboratory of calibration chambers that will serve to radiotherapy activities, radiodiagnosis and radioprotection, depends on the knowledge of physical and dosimetric parameters that characterize the quality of the radiation beam. With the aim of verifying the reliability of the ionizing free-air chamber with variable volume manufactured by Victoreen Instruments, model 481, as a primary standard, a study of the performance of the chamber to x-rays qualities of low energy was developed in this work. These qualities are the ones recommended by 'Bureau International des Poids et Mesures' - BIPM, for daily routine of the calibration service performed by the 'Laboratorio Nacional de Metrologia das Radiacoes Ionizantes - LNMRI/IRD, for calibration of this secondary standard chambers that serve to the control in hospitals, clinics and industries. The results obtained at the present work show that the Victoreen chamber model 481 behaves as a primary standard, being easy to handle and having simple mechanical construction, and showing an expanded uncertainty equal to 0,26%, regarding the quality of the radiation beam of 30 kV. However, some of the equipment used at the present study need to be submitted to a strict routine calibration, in order for the laboratory to be in accordance with the recommendations of the standard ABNT -NBR ISO/IEC 17025 (2003). (author)

  16. A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography (CT) metrology

    Science.gov (United States)

    Kiekens, K.; Welkenhuyzen, F.; Tan, Y.; Bleys, Ph; Voet, A.; Kruth, J.-P.; Dewulf, W.

    2011-11-01

    While computed tomography (CT) has long been used for medical applications and material inspection, its application field has recently been broadened to include industrial dimensional metrology. However, the accuracy of CT-based measurements remains yet largely uncertain. Not only are the measurements influenced by a number of factors and parameters like e.g. workpiece orientation, magnification, edge detection and so on, but also the calibration method matters greatly. This paper investigates the influence of these factors and parameters and the calibration method (rescaling and correction) on accuracy and repeatability of the measurements, using a test object with parallel grooves. The test object is also used to illustrate how more accurate CMM measurements can be used to calibrate CT measurements and to compare different calibration and compensation strategies. This paper was presented at ISMQC-2010, the 10th International Symposium on Measurement and Quality Control, held in Osaka, Japan, on 5-9 September 2010.

  17. Psychophysical Calibration of Mobile Touch-Screens for Vision Testing in the Field

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2015-01-01

    The now ubiquitous nature of touch-screen displays in cell phones and tablet computers makes them an attractive option for vision testing outside of the laboratory or clinic. Accurate measurement of parameters such as contrast sensitivity, however, requires precise control of absolute and relative screen luminances. The nonlinearity of the display response (gamma) can be measured or checked using a minimum motion technique similar to that developed by Anstis and Cavanagh (1983) for the determination of isoluminance. While the relative luminances of the color primaries vary between subjects (due to factors such as individual differences in pre-retinal pigment densities), the gamma nonlinearity can be checked in the lab using a photometer. Here we compare results obtained using the psychophysical method with physical measurements for a number of different devices. In addition, we present a novel physical method using the device's built-in front-facing camera in conjunction with a mirror to jointly calibrate the camera and display. A high degree of consistency between devices is found, but some departures from ideal performance are observed. In spite of this, the effects of calibration errors and display artifacts on estimates of contrast sensitivity are found to be small.

  18. Calibration of Seismic Sources during a Test Cruise with the new RV SONNE

    Science.gov (United States)

    Engels, M.; Schnabel, M.; Damm, V.

    2015-12-01

    During autumn 2014, several test cruises of the brand new German research vessel SONNE were carried out before the first official scientific cruise started in December. In September 2014, BGR conducted a seismic test cruise in the British North Sea. RV SONNE is a multipurpose research vessel and was also designed for the mobile BGR 3D seismic equipment, which was tested successfully during the cruise. We spend two days for calibration of the following seismic sources of BGR: G-gun array (50 l @ 150 bar) G-gun array (50 l @ 207 bar) single GI-gun (3.4 l @ 150 bar) For this experiment two hydrophones (TC4042 from Reson Teledyne) sampling up to 48 kHz were fixed below a drifting buoy at 20 m and 60 m water depth - the sea bottom was at 80 m depth. The vessel with the seismic sources sailed several up to 7 km long profiles around the buoy in order to cover many different azimuths and distances. We aimed to measure sound pressure level (SPL) and sound exposure level (SEL) under the conditions of the shallow North Sea. Total reflections and refracted waves dominate the recorded wave field, enhance the noise level and partly screen the direct wave in contrast to 'true' deep water calibration based solely on the direct wave. Presented are SPL and RMS power results in time domain, the decay with distance along profiles, and the somehow complicated 2D sound radiation pattern modulated by topography. The shading effect of the vessel's hull is significant. In frequency domain we consider 1/3 octave levels and estimate the amount of energy in frequency ranges not used for reflection seismic processing. Results are presented in comparison of the three different sources listed above. We compare the measured SPL decay with distance during this experiment with deep water modeling of seismic sources (Gundalf software) and with published results from calibrations with other marine seismic sources under different conditions: E.g. Breitzke et al. (2008, 2010) with RV Polarstern

  19. First heavy ion beam tests with a superconducting multigap CH cavity

    Science.gov (United States)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  20. Successful Electron Beam Recirculation Test for Fermilab Electron Cooling

    Science.gov (United States)

    Nagaitsev, Sergei; Crawford, A. Curtis; Sharapa, Anatoly; Shemyakin, Alexander

    1998-04-01

    In this paper we describe the successful operation of a dc recirculation electron beam system at energies 1 -- 1.5 MeV and currents in excess of 200 mA. This system employs an electrostatic HV supply like a Van de Graaff generator with maximum charging current of a few hundred microamps. Electron beam line consits of a 10 m long channel with discrete focusing elements flanked by high-gradient (10 kV/cm), small aperture (2.54 cm ID) acceleraton and deceleration tubes. This work is performed as part of the Fermilab R&D program to develop electron cooling for 8 GeV antiprotons.

  1. Experimental results of Tore Supra neutral beam injector in the line testing system

    International Nuclear Information System (INIS)

    Fumelli, M.; Jequier, F.

    1991-04-01

    Results of the tests carried out on one of the six Tore Supra neutral beam injectors are reported. Several minor modifications of the injector design allowed us to operate up to 92 keV - 30 A beams limited by the high voltage power supplies. Results of studies on different topics like new titanium pumping system, neutron yield from neutraliser and target, beam conditioning and breakdown statistical analysis are also reported [fr

  2. Physiotherapy ultrasound calibrations

    International Nuclear Information System (INIS)

    Gledhill, M.

    1996-01-01

    Calibration of physiotherapy ultrasound equipment has long been a problem. Numerous surveys around the world over the past 20 years have all found that only a low percentage of the units tested had an output within 30% of that indicatd. In New Zealand, a survey carried out by the NRL in 1985 found that only 24% had an output, at the maximum setting, within + or - 20% of that indicated. The present performance Standard for new equipment (NZS 3200.2.5:1992) requires that the measured output should not deviate from that indicated by more than + or - 30 %. This may be tightened to + or - 20% in the next few years. Any calibration is only as good as the calibration equipment. Some force balances can be tested with small weights to simulate the force exerted by an ultrasound beam, but with others this is not possible. For such balances, testing may only be feasible with a calibrated source which could be used like a transfer standard. (author). 4 refs., 3 figs

  3. Analysis of test beam data of ATLAS Pixel Detector production modules with a high intensity pion beam.

    CERN Document Server

    Alimonti, G; Bazalova, M; Beccherle, R; Breugnon, P; Brüser, D; Cauz, D; Clemens, J C; Cobal-Grassman, M; Dobos, D; Einsweiler, Kevin F; Flick, T; Gagliardi, G; Gemme, C; Gerlach, P; Gorelov, I; Grosse-Knetter, J; Hügging, F G; Imhauser, M; Kersten, S; Klingenberg, R; Kuhn, M; Lari, T; Martínez, G; Mass, M; Massman, F; Matera, A; Mathes, M; Meroni, C; Morettini, P; Naumov, D; Netchaeva, P; Ragusa, F; Richardson, J; Rossi, L; Rozanov, A; Santi, L; Schiavi, C; Schultes, J; Sícho, P; Stahl, T; Ta, D B; Tieman, D; Tomasek, L; Troncon, C; Vahsen, S; Valenta, J; Virzi, J; Vrba, V; Weingarten, J

    2005-01-01

    Beam tests of ATLAS Pixel Detector production modules were performed with a high intensity pion bion at the SPS H8 test beam facility. Several of the modules had been previously irradiated to the fluence of 10**15 neq/cm2. Data were taken at different beam intensities, up to the value foreseen for the innermost pixel layer at the design LHC luminosity of 10**34/cm2/s. At each intensity, data were taken with different configurations of the front-end chip. This note describes the analysis of the high intensity run of August 2004. The particles trajectories were reconstructed using the pixel detectors under test and the detection efficiency was measured as a function of the beam intensity. With the standard ATLAS b-layer configuration and at the B-layer expected column-pair hit occupancy of 0.17 pixel hits per bunch crossing, the measured readout efficiency is 98 %, which is the same value found at low intensity. Efficiency losses are observed only when the column pair occupancy exceeds 0.24 hits per bunch cross...

  4. Static and dynamic testing of a damaged post tensioned concrete beam

    Directory of Open Access Journals (Sweden)

    Limongelli M.P.

    2015-01-01

    Full Text Available In this paper are reported the results of an experimental campaign carried out on a post tensioned concrete beam with the aim of investigating the possibility to detect early warning signs of deterioration basing on static and/or dynamic tests. The beam was tested in several configurations aimed to reproduce several different phases of the ‘life’ of the beam: the original undamaged state, increasing loss of tension in the post tensioning cables, a strengthening intervention carried out by means of a second tension cable, formation of further cracks on the strengthened beam. Responses of the beam were measured by an extensive set of instruments consisting of accelerometers, inclinometers, displacement transducers, strain gauges and optical fibres. The paper discusses the tests program and the dynamic characterization of the beam in the different damage scenarios. The modal properties of the beam in the different phases were recovered basing on the responses recorded on the beam during sine-sweep and impact hammer tests. The variation of the first modal frequency was studied to investigate the sensitivity of this parameter to both the cracking of the concrete section and the tension in the cables and also to compare results given by different types of experimental tests.

  5. First results about on-ground calibration of the silicon tracker for the AGILE satellite

    International Nuclear Information System (INIS)

    Cattaneo, P.W.; Argan, A.; Boffelli, F.; Bulgarelli, A.; Buonomo, B.; Chen, A.W.; D'Ammando, F.; Froysland, T.; Fuschino, F.; Galli, M.; Gianotti, F.; Giuliani, A.; Longo, F.; Marisaldi, M.; Mazzitelli, G.; Pellizzoni, A.; Prest, M.; Pucella, G.; Quintieri, L.; Rappoldi, A.

    2011-01-01

    The AGILE scientific instrument has been calibrated with a tagged γ-ray beam at the Beam Test Facility (BTF) of the INFN Laboratori Nazionali di Frascati (LNF). The goal of the calibration was the measure of the Point Spread Function (PSF) as a function of the photon energy and incident angle and the validation of the Monte Carlo (MC) simulation of the silicon tracker operation. The calibration setup is described and some preliminary results are presented.

  6. Hamamatsu C11204-01 calibration, test and design of a dedicated LabVIEW interface

    Science.gov (United States)

    Nocerino, E.; de Asmundis, R.; Barbato, F. C. T.

    2017-04-01

    In the last 50 years solid state devices have been widely used as radiation detectors (photons, betas, fast electrons and heavy ions) thanks to the advantages they offer with respect to photomultiplier tubes technology. However, despite their benefits (low power consumption, small size, low costs), semiconductors are very sensitive to temperature variations. This means that for those experiments using solid state detectors without any thermal control, the correct operation of the detectors is affected by the environmental condition. To solve this problem Hamamatsu Photonics realized the C11204-01 device: a special voltage supply module for silicon photomultipliers which compensates the overvoltage at different temperatures. In the following work we present the results of the calibration of this device and a test we performed on a silicon photomultiplier, by means of a LabVIEWTM interface designed ad hoc for this purpose.

  7. Rorschach test: Italian calibration update about statistical frequencies of responses and location sheets

    Directory of Open Access Journals (Sweden)

    Stefano Caruson

    2015-12-01

    Full Text Available Abstract The remarkable importance of a calibration of a test lies in the formalization of useful statistical norms. In particular, the determination of these norms is of key importance for the Rorschach Test because of it allows objectifying the estimates of the interpretations’ formal qualities, and help to characterize responses consistent with the common perception. The aim of this work is to communicate the new results provided by a study conducted  on Rorschach protocols related to a sample of “non-clinical” subjects. The expert team in Psychodiagnostic of CIFRIC (Italian Center for training, research and clinic in medicine and psychology has carried out the following work identifying the rate at which the details of each card are interpreted by normative sample. The data obtained are systematized in new Location sheets, which refers to the next edition of the "Updated Manual of Locations and Coding of Responses to Rorschach Test".             Considering the Rorschach Test one of the more effective means for the acquaintance of the personality, it appears therefore fundamental to provide the professional, who uses it, with the possibility of accessing updated statistical data that reflect the population of reference, in order to deduce from them reliable and objectively valid indications.

  8. Development of a calibration methodology and tests of kerma area product meters; Desenvolvimento de uma metodologia de calibracao e testes de medidores de produto Kerma-Area

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nathalia Almeida

    2013-07-01

    The quantity kerma area product (PKA) is important to establish reference levels in diagnostic radiology exams. This quantity can be obtained using a PKA meter. The use of such meters is essential to evaluate the radiation dose in radiological procedures and is a good indicator to make sure that the dose limit to the patient's skin doesn't exceed. Sometimes, these meters come fixed to X radiation equipment, which makes its calibration difficult. In this work, it was developed a methodology for calibration of PKA meters. The instrument used for this purpose was the Patient Dose Calibrator (PDC). It was developed to be used as a reference to check the calibration of PKA and air kerma meters that are used for dosimetry in patients and to verify the consistency and behavior of systems of automatic exposure control. Because it is a new equipment, which, in Brazil, is not yet used as reference equipment for calibration, it was also performed the quality control of this equipment with characterization tests, the calibration and an evaluation of the energy dependence. After the tests, it was proved that the PDC can be used as a reference instrument and that the calibration must be performed in situ, so that the characteristics of each X-ray equipment, where the PKA meters are used, are considered. The calibration was then performed with portable PKA meters and in an interventional radiology equipment that has a PKA meter fixed. The results were good and it was proved the need for calibration of these meters and the importance of in situ calibration with a reference meter. (author)

  9. Beam Loading Tests on DC-SC Photoinjector at Peking University

    CERN Document Server

    Huang, Senlin; Chu, Xiangqiang; Ding, Yuantao; Hao, Jiankui; Jiao, Fei; Lin, Lin; Lu Xiang Yang; Quan, Shengwen; Wang, Guimei; Wang, Lifang; Xiang Rong; Xiao, Binping; Xie, Datao; Yang Li Min; Zhang, Baocheng; Zhao, Kui; Zhu, Feng

    2004-01-01

    Since the beginning of commissioning in February 2003, lots of tests on the DC-SC photoinjector test facility have been performed. At present, Q0 of the 1+1/2-cell cavity has reached ~1E8 (at 4.2K) and the average gradient was about 4MeV/m. The DC photogun can provide stable electron beams. When the power of output laser went up to 100mW (266nm), the average beam current reached 400μA. Beam loading tests have been carried out, and SC acceleration was achieved. Average current of electron beams is about 100μA after acceleration.Further investigations are in progress to improve diagnostics system and to measure the emittance, energy spread and pulse length of electron beams.

  10. Crash test for groundwater recharge models: The effects of model complexity and calibration period on groundwater recharge predictions

    Science.gov (United States)

    Moeck, Christian; Von Freyberg, Jana; Schrimer, Maria

    2016-04-01

    An important question in recharge impact studies is how model choice, structure and calibration period affect recharge predictions. It is still unclear if a certain model type or structure is less affected by running the model on time periods with different hydrological conditions compared to the calibration period. This aspect, however, is crucial to ensure reliable predictions of groundwater recharge. In this study, we quantify and compare the effect of groundwater recharge model choice, model parametrization and calibration period in a systematic way. This analysis was possible thanks to a unique data set from a large-scale lysimeter in a pre-alpine catchment where daily long-term recharge rates are available. More specifically, the following issues are addressed: We systematically evaluate how the choice of hydrological models influences predictions of recharge. We assess how different parameterizations of models due to parameter non-identifiability affect predictions of recharge by applying a Monte Carlo approach. We systematically assess how the choice of calibration periods influences predictions of recharge within a differential split sample test focusing on the model performance under extreme climatic and hydrological conditions. Results indicate that all applied models (simple lumped to complex physically based models) were able to simulate the observed recharge rates for five different calibration periods. However, there was a marked impact of the calibration period when the complete 20 years validation period was simulated. Both, seasonal and annual differences between simulated and observed daily recharge rates occurred when the hydrological conditions were different to the calibration period. These differences were, however, less distinct for the physically based models, whereas the simpler models over- or underestimate the observed recharge depending on the considered season. It is, however, possible to reduce the differences for the simple models by

  11. Test bed for a long pulse 160 KeV neutral beam-line

    International Nuclear Information System (INIS)

    Becherer, R.; Bariaud, A.; Bottiglioni, F.; Bussac, J.P.; Desmons, M.; Fumelli, M.; Raimbault, P.; Sledziewski, Z.; Valckx, F.P.G.

    1983-01-01

    The development of 160 KeV neutral injectors with deuterium beams is required for JET - operation. A test bed has been constructed, allowing the operation and testing of quasi DC-neutral beams (10 sec) of 60 A in the energy range of 80 to 160 KeV. For deuterium operation the whole test bed will be moved into a concrete blockhouse for radiation protection. Different elements are described. (author)

  12. Test-beam programs for devices to measure luminosity and energy ...

    Indian Academy of Sciences (India)

    tem studies for luminosity and energy measurements and beam diagnostics for luminosity optimization. Keywords. ... tional information is obtained from a calorimeter measuring e+e− pairs produced by beamstrahlung ... (left); A diamond sensor of 10 × 10 mm2 size and 300 µm thickness assembled for the test-beam (right).

  13. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  14. Analysis of Test-beam Data, Obtained with Module Zero of Hadron End-Cap Calorimeter

    CERN Document Server

    Minaenko, A A

    1999-01-01

    Beam tests of the module zero of the LAr hadron end-cap calorimeter were carried out during two periods in April and August 1998. The results of the analysis of data, obtained with electron and pion beams are presented in the note.

  15. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S. [Somerville College, Oxford (United Kingdom)

    2004-01-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.

  16. The progress of funnelling gun high voltage condition and beam test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lambiase, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rahman, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sheehy, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pietz, J. [Transfer Engineering and Manufacturing, Inc., Fremont, CA (United States); Ackeret, M. [Transfer Engineering and Manufacturing, Inc., Fremont, CA (United States); Yeckel, C. [Thompson, Stangenes Industries, Palo Alto, CA (United States); Miller, R. [Thompson, Stangenes Industries, Palo Alto, CA (United States); Dobrin, E. [Thompson, Stangenes Industries, Palo Alto, CA (United States); Thompson, K. [Thompson, Stangenes Industries, Palo Alto, CA (United States)

    2015-05-03

    A prototype of a high average current polarized electron funneling gun as an eRHIC injector has been built at BNL. The gun was assembled and tested at Stangenes Incorporated. Two beams were generated from two GaAs photocathodes and combined by a switched combiner field. We observed the combined beams on a YAG crystal and measured the photocurrent by a Faraday cup. The gun has been shipped to Stony Brook University and is being tested there. In this paper we will describe the major components of the gun and recent beam test results. High voltage conditioning is discussed as well.

  17. Development Of Test Rig System For Calibration Of Temperature Sensing Fabric

    Directory of Open Access Journals (Sweden)

    Husain Muhammad Dawood

    2017-09-01

    Full Text Available A test rig is described, for the measurement of temperature and resistance parameters of a Temperature Sensing Fabric (TSF for calibration purpose. The equipment incorporated a temperature-controlled hotplate, two copper plates, eight thermocouples, a temperature data-logger and a four-wire high-resolution resistance measuring multimeter. The copper plates were positioned above and below the TSF and in physical contact with its surfaces, so that a uniform thermal environment might be provided. The temperature of TSF was estimated by the measurement of temperature profiles of the two copper plates. Temperature-resistance graphs were created for all the tests, which were carried out over the range of 20 to 50°C, and they showed that the temperature and resistance values were not only repeatable but also reproducible, with only minor variations. The comparative analysis between the temperature-resistance test data and the temperature-resistance reference profile showed that the error in estimation of temperature of the sensing element was less than ±0.2°C. It was also found that the rig not only provided a stable and homogenous thermal environment but also offered the capability of accurately measuring the temperature and resistance parameters. The Temperature Sensing Fabric is suitable for integration into garments for continuous measurement of human body temperature in clinical and non-clinical settings.

  18. SPECTIX, a PETAL+ X-ray spectrometer: design, calibration and preliminary tests

    Science.gov (United States)

    Reverdin, C.; Bastiani, S.; Batani, D.; Brambrink, E.; Boutoux, G.; Duval, A.; Hulin, S.; Jakubowska, K.; Koenig, M.; Lantuéjoul-Thfoin, I.; Lecherbourg, L.; Szabo, C. I.; Vauzour, B.

    2018-01-01

    The present article describes the design, the calibration and preliminary tests of the X-ray transmission crystal spectrometer SPECTIX (Spectromètre PEtal à Cristaux en Transmission X) built in the framework of the PETAL (PETawatt Aquitaine Laser) project and located in the Laser MégaJoule (LMJ) facility [1,2]. SPECTIX aims at characterizing the hard x-ray Kα emission generated by the interaction of the PETAL ps ultra high-energy laser with a target. The broad spectral range covered by this spectrometer (7 to 150 keV) is achieved by using two measurement channels composed by two distinct crystals. Due to the harsh environment experienced by the spectrometer during a LMJ-PETAL shot, passive detection with image plates is used. Shielding has been dimensioned in order to protect the detector against PETAL shot products. It includes a magnetic dipole to remove electrons entering the spectrometer, a 20 mm thick tungsten frontal collimation and a 6 mm thick lead housing. The SPECTIX performances, including the shielding efficiency, have been tested during an experimental campain performed at the PICO 2000 laser facility at LULI. Improvements inferred from these tests are currently being implemented. Full commissioning of SPECTIX is planned on PETAL shots at the end of 2017.

  19. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  20. Compression of pulsed electron beams for material tests

    Science.gov (United States)

    Metel, Alexander S.

    2018-03-01

    In order to strengthen the surface of machine parts and investigate behavior of their materials exposed to highly dense energy fluxes an electron gun has been developed, which produces the pulsed beams of electrons with the energy up to 300 keV and the current up to 250 A at the pulse width of 100-200 µs. Electrons are extracted into the accelerating gap from the hollow cathode glow discharge plasma through a flat or a spherical grid. The flat grid produces 16-cm-diameter beams with the density of transported per one pulse energy not exceeding 15 J·cm-2, which is not enough even for the surface hardening. The spherical grid enables compression of the beams and regulation of the energy density from 15 J·cm-2 up to 15 kJ·cm-2, thus allowing hardening, pulsed melting of the machine part surface with the further high-speed recrystallization as well as an explosive ablation of the surface layer.

  1. Preliminary results from the GLAST silicon tracker beam test

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Stefano [INFN sez.Perugia, Via A. Pascoli, 06123, Perugia (Italy)], E-mail: stefano.germani@pg.infn.it

    2007-12-01

    The Large Area Telescope (LAT) on board the Gamma-ray Large Area Space Telescope (GLAST) is a pair-conversion gamma-ray detector designed to explore the gamma-ray universe in the 20 MeV-300 GeV energy band. The Tracker subsystem of the LAT will perform tracking of electrons and positrons to determine the origin of the gamma-ray. The LAT instrument, the Calibration Unit (CU) and the beamtest performed at CERN during the summer 2006 are described in this paper.

  2. Preliminary Results From the GLAST Silicon Tracker Beam Test

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Stefano; /INFN, Perugia

    2009-05-12

    The Large Area Telescope (LAT) on board the Gamma-ray Large Area Space Telescope (GLAST) is a pair-conversion gamma-ray detector designed to explore the gamma-ray universe in the 20 MeV-300 GeV energy band. The Tracker subsystem of the LAT will perform tracking of electrons and positrons to determine the origin of the gamma-ray. The LAT instrument, the Calibration Unit (CU) and the beamtest performed at CERN during the summer 2006 are described in this paper.

  3. Test research of consistency for amplitude calibration coefficients of pulsed electric field sensor

    International Nuclear Information System (INIS)

    Meng Cui; Guo Xiaoqiang; Chen Xiangyue; Nie Xin; Mao Congguang; Xiang Hui; Cheng Jianping

    2007-01-01

    The amplitude calibration of an electric field sensor is important in the measurement of electromagnetic pulse. In this paper, an arbitrary waveform generator (AWG) is used to generate multi-waveform electric field in the TEM cell and the dipole antenna pulsed electric field sensor is calibrated. In the frequency band of the sensor, the calibrated amplitude coefficients with different waveforms are identical. The coefficient derived from the TEM cell calibration system suits to the measurement of unknown electric field pulse within the frequency band. (authors)

  4. Evaluation of Safety Index and Calibration of Load and Resistance Factors for Reinforced Concrete Beams under Bending, Shear and Torsion Demands

    Directory of Open Access Journals (Sweden)

    Faeze Jafari

    2017-02-01

    Full Text Available The aim of designing of the structural members is withstanding the members or structures against the different loading conditions such that the safety of the system could be preserved. The conventional method for designing of reinforced concrete members in Iranian concrete code is based on load and resistance factor. Although, load and resistance parameters are random variables, and in the mentioned Code the constant values have been designated for them during the designing procedure. Accounting these factors as the constants parameters will ultimately be led to the unsafe and uneconomical designs. The main purpose of this paper is probability-based designing of reinforcement concrete beams under simultaneous effects of bending, shear and torsion actions. For this purpose, analytical relations of the limit states for combination of bending, shear and torsion have been developed. Using the method, the structural designers could be fulfilled the designing of the RC beams based on the importance of structures and the required safety indexes of the owners.  The next goal of this investigation is evaluation and calibration of load and resistance factors for desired safety index. The economic and fully probabilistic designing of concrete beams for simultaneous effects of bending, shear and torsion are available by implementing the proposed design procedures. In order to calculate the safety indexes a computer program has been written in the MATLAB environment, and the Monte Carlo simulation technique has been utilized.

  5. Beam parameters of a possible emittance-dynamics test area for NLC studies at the SLC

    International Nuclear Information System (INIS)

    Seeman, J.T.; Fieguth, T.; Kheifets, S.; Raubenheimer, T.; Yeremian, A.D.

    1992-08-01

    A group at SLAC has studied the possibility of using the Stanford Linear Collider (SLC) to generate short-bunch small-emittance beams similar to those required for the Next Linear Collider (NLC). The conclusion is that such beams are feasible and that an experimental area for testing many concepts related to NLC beams can be provided with a reasonable addition of hardware to the existing SLC Linac. Some of the concepts that can be tested are: (1) effect tolerances of double bunch length compression, (2) wakefields of ultra-short bunches in accelerating structures, (3) the acceleration of short intense multiple bunches, (4) the generation and preservation of bunches with 100 to 1 emittances ratios, (5) beam deflections by collimators, (6) energy and energy spread control of multiple short bunches, and (7) vibration effects and trajectory stability for low emittance beams

  6. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60Co γ-rays

    International Nuclear Information System (INIS)

    Vadrucci, M.; Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A.; Esposito, G.; De Angelis, C.; Cherubini, R.; Pimpinella, M.

    2015-01-01

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference 60 Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a 60 Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to 60 Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in

  7. Standard practice of calibration of force-measuring instruments for verifying the force indication of testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 The purpose of this practice is to specify procedures for the calibration of force-measuring instruments. Procedures are included for the following types of instruments: 1.1.1 Elastic force-measuring instruments, and 1.1.2 Force-multiplying systems, such as balances and small platform scales. Note 1Verification by deadweight loading is also an acceptable method of verifying the force indication of a testing machine. Tolerances for weights for this purpose are given in Practices E 4; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in SI units are to be regarded as the standard. Other metric and inch-pound values are regarded as equivalent when required. 1.3 This practice is intended for the calibration of static force measuring instruments. It is not applicable for dynamic or high speed force calibrations, nor can the results of calibrations performed in accordance with this practice be assumed valid for...

  8. On-line testing of response time and calibration of temperature and pressure sensors in nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1995-01-01

    Periodic calibrations and response time measurements are necessary for temperature and pressure sensors in the safety systems of nuclear power plants. Conventional measurement methods require the test to be performed at the sensor location or involve removing the sensor from the process and performing the tests in a laboratory or on the bench. The conventional methods are time consuming and have the potential of causing wear and tear on the equipment, can expose the test personnel to radiation and other harsh environments, and increase the length of the plant outage. Also, the conventional methods do not account for the installation effects which may have an influence on sensor performance. On-line testing methods alleviate these problems by providing remote sensor response time and calibration capabilities. For temperature sensors such as Resistance Temperature Detectors (RTDs) and thermocouples, an on-line test method called the Loop Current Step Response (LCSR) technique has been developed, and for pressure transmitters, an on-line method called noise analysis which was available for reactor diagnostics was validated for response time testing applications. Both the LCSR and noise analysis tests are performed periodically in U.S. nuclear power plants to meet the plant technical specification requirements for response time testing of safety-related sensors. Automated testing of the calibration of both temperature and pressure sensors can be accomplished through an on-line monitoring system installed in the plant. The system monitors the DC output of the sensors over the fuel cycle to determine if any calibration drift has occurred. Changes in calibration can be detected using signal averaging and intercomparison methods and analytical redundancy techniques. (author)

  9. Testing and ground calibration of DREAMS-H relative humidity device

    Science.gov (United States)

    Genzer, Maria; Hieta, Maria; Nikkanen, Timo; Schmidt, Walter; Kemppinen, Osku; Harri, Ari-Matti; Haukka, Harri

    2015-04-01

    DREAMS (Dust Characterization, Risk Assessment and Environmental Analyzer on the Martian Surface) instrument suite is to be launched as part of the ESA ExoMars 2016/Schiaparelli lander. DREAMS consists of an environmental package for monitoring temperature, pressure, relative humidity, winds and dust opacity, as well as atmospheric electricity of Martian atmosphere. The DREAMS instruments and scientific goals are described in [1]. Here we describe testing and ground calibration of the relative humidity device, DREAMS-H, provided to the DREAMS payload by the Finnish Meteorological Institute and based on proprietary technology of Vaisala, Inc. The same kind of device is part of the REMS instrument package onboard MSL Curiosity Rover [2][3]. DREAMS-H is based on Vaisala Humicap® technology adapted for use in Martian environment by the Finnish Meteorological Institute. The device is very small and lightweighed, with total mass less than 20 g and consuming only 15 mW of power. The Humicap® sensor heads contain an active polymer film that changes its capacitance as function of relative humidity, with 0% to 100% RH measurement range. The dynamic range of the device gets smaller with sensor temperature, being in -70°C approximately 30% of the dynamic range in 0°C [3]. Good-quality relative humidity measurements require knowing the temperature of the environment in which relative humidity is measured. An important part of DREAMS-H calibration was temperature calibration of Vaisala Thermocap® temperature sensors used for housekeeping temperature measurements of the DREAMS-H device. For this, several temperature points in the desired operational range were measured with 0.1°C accuracy traceable to national standards. The main part of humidity calibration of DREAMS-H flight models was done in subzero temperatures in a humidity generator of the Finnish Center of Metrology and Accreditation (MIKES). Several relative humidity points ranging from almost dry to almost wet

  10. The ITER neutral beam test facility: Designs of the general infrastructure, cryosystem and cooling plant

    International Nuclear Information System (INIS)

    Cordier, J.J.; Hemsworth, R.; Chantant, M.; Gravil, B.; Henry, D.; Sabathier, F.; Doceul, L.; Thomas, E.; Houtte, D. van; Zaccaria, P.; Antoni, V.; Bello, S. Dal; Marcuzzi, D.; Antipenkov, A.; Day, C.; Dremel, M.; Mondino, P.L.

    2005-01-01

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKAEA European Associations, in the first ITER neutral beam (NB) injector and the ITER neutral beam test facility design (EFDA task ref. TW3-THHN-IITF1). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF includes the test facility itself equipped with a dedicated beamline vessel [P.L. Zaccaria, et al., Maintenance schemes for the ITER neutral beam test facility, this conference] and integration studies of associated auxiliaries such as cooling plant, cryoplant and forepumping system

  11. Design and Test Beam Performance of Substructures of the CMS Tracker End Caps

    CERN Document Server

    Brauer, Richard

    2005-01-01

    With its total active silicon area of about 200 squaremetres and more than 15000 silicon modules the silicon strip tracker of the CMS experiment at the LHC will be the largest silicon strip detector ever built. While the performance of single silicon modules has already been tested extensively in various test beam experiments, the performance of larger integrated substructures also had to be studied with a particle beam before launching mass production, in order to ensure the envisaged performance of the overall system. In May/June 2004 the performance of a system of two petals of the tracker end caps (TEC), which represents about 1% of the full TEC and forms an autonomous unit in terms of data acquisition, has been studied in a test beam experiment at CERN. In this document the test beam experiment is described and results are presented.

  12. Design and initial tests of beam current monitoring systems for the APS transport lines

    International Nuclear Information System (INIS)

    Wang, Xucheng.

    1992-01-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included

  13. An evaluation testing technique of single event effect using Beam Blanking SEM

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, J.; Hada, T.; Pesce, A.; Akutsu, T.; Matsuda, S. [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Igarashi, T.; Baba, S.

    1997-03-01

    Beam Blanking SEM (Scanning Electron Microscope) testing technique has been applied to CMOS SRAM devices to evaluate the occurence of soft errors on memory cells. Cross-section versus beam current and LET curves derived from BBSEM and heavy ion testing technique, respectively, have been compared. A linear relation between BBSEM current and heavy ion LET has been found. The purpose of this study was to demonstrate that the application of focused pulsed electron beam could be a reliable, convenient and inexpensive tool to investigate the effects of heavy ions and high energy particles on memory devices for space application. (author)

  14. Beam test results for the SuperB-SVT thin striplet detector

    Science.gov (United States)

    Fabbri, L.; Comotti, D.; Manghisoni, M.; Re, V.; Traversi, G.; Gabrielli, A.; Giorgi, F.; Pellegrini, G.; Sbarra, C.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Berra, A.; Lietti, D.; Prest, M.; Bevan, A.; Wilson, F.; Beck, G.; Morris, J.; Ganaway, F.; Cenci, R.; Bombelli, L.; Citterio, M.; Coelli, S.; Fiorini, C.; Liberali, V.; Monti, M.; Nasri, B.; Neri, N.; Palombo, F.; Stabile, A.; Balestri, G.; Batignani, G.; Bernardelli, A.; Bettarini, S.; Bosi, F.; Casarosa, G.; Ceccanti, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Mammini, P.; Morsani, F.; Oberhof, B.; Paoloni, E.; Perez, A.; Petragnani, G.; Profeti, A.; Rizzo, G.; Soldani, A.; Walsh, J.; Gaioni, L.; Manazza, A.; Quartieri, E.; Ratti, L.; Zucca, S.; Alampi, G.; Cotto, G.; Gamba, D.; Zambito, S.; Dalla Betta, G.-F.; Fontana, G.; Pancheri, L.; Povoli, M.; Verzellesi, G.; Bomben, M.; Bosisio, L.; Cristaudo, P.; Lanceri, L.; Liberti, B.; Rashevskaya, I.; Stella, C.; Vitale, L.

    2013-08-01

    The baseline detector option for the first layer of the SuperB Silicon Vertex Tracker (SVT) is a high resistivity double-sided silicon device with short strips (striplets) at 45° angle to the detector's edge. A prototype was tested with a 120 GeV/c pion beam in September 2011 at the SPS-H6 test-beam line at CERN. In this paper studies on efficiency, resolution and cluster size are reported.

  15. Beam test performance of the APV5 chip

    International Nuclear Information System (INIS)

    De Fez-Laso, M.D.M.; Gill, K.; MacEvoy, B.; Millmore, M.; Potts, A.; Raymond, M.

    1996-01-01

    The performance of the latest prototype of the radiation hard front end chip to be used by the CMS collaboration for analogue readout of the microstrip tracker has been evaluated with a silicon microstrip detector in a beam at CERN. The circuit, developed by the RD20 collaboration, consists of 128 channels of amplifier, pipeline memory, analogue signal processor and a serial multiplexer. As a result of these studies improvements in the circuit design have been devised which will be implemented in the next version. (orig.)

  16. Exercise for laboratory comparison of calibration coefficient in {sup 137}Cs beam, radiation protection - 2013/2014; Exercicio de comparacao laboratorial do coeficiente de calibracao em feixe de Cesio-137, radioprotecao - 2013/2014

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, T.S. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Potiens, M.P.A., E-mail: tschirn@ird.gov.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, C.M.A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Silveira, R.R. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Khoury, H. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernandes, E. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Ciencias Radiologicas; Cardoso, W.F. [Eletrobras Termonuclear S.A. (Eletronuclear), Rio de Janeiro, RJ (Brazil); Borges, J.C. [MRA Comercio de Instrumentos Eletronicos Ltda., Ribeirao Preto, SP (Brazil)

    2015-07-01

    This work deals with the preliminary results of the second exercise of comparing the radiation monitors calibration laboratories in Brazil. The exercise involved eight laboratories and the measured quantity is the air kerma in a beam of {sup 137}Cs for radioprotection. The exercise was conducted by the LNMRI/IRD, in a star shaped arrangement from October 2013 to July 2015. The largest deviation was 2% of the calibration coefficient that is acceptable for applications in radioprotection. (author)

  17. Monitoring the electron beam position at the TESLA test facility free electron laser

    International Nuclear Information System (INIS)

    Kamps, T.

    2000-01-01

    The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)

  18. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Kaye, R. A.

    1999-01-01

    In recent tests without beam, the Argonne 12 MHz split-coaxial radio-frequency quadruple (RFQ) achieved a cw intervane voltage of more than 100 kV, the design operating voltage for the device. This voltage is sufficient for the RFQ to function as the first stage of a RIB injector for the Argonne Tandem Linear Accelerator System (ATLAS). Previously reported beam dynamics calculations for the structure predict longitudinal emittance growth of only a few keV·ns for beams of mass 132 and above with transverse emittance of 0.27 π mm·mrad (normalized). Such beam quality is not typical of RFQ devices. The work reported here is preparation for tests with beams of mass up to 132. Beam diagnostic stations are being developed to measure the energy gain and beam quality of heavy ions accelerated by the RFQ using the Dynamitron accelerator facility at the ANL Physics Division as the injector. Beam diagnostic development includes provisions for performing the measurements with both a Si charged-particle detector and an electrostatic energy spectrometer system

  19. Reanimation of the RICH Test Beam Simulation in GEANT4

    CERN Document Server

    Arzymatov, Kenenbek

    2017-01-01

    This test was originally developed by Sajan Easo (LHCb) ten years ago mostly for the purpose of testing the behavior of photomultipliers, but it wasn’t used in regression testing in Gauss/Geant4 famework. The goal of project is to revive simulation of cherenkov radiaton test by completing.

  20. Calibration of the VIRGO experiment: from the testing of the detector to the search of coalescing binaries with the central interferometer; Calibration de l'experience VIRGO: de l'etalonnage du detecteur a la recherche de signaux de coalescences binaires avec l'interferometre central

    Energy Technology Data Exchange (ETDEWEB)

    Veziant, O

    2003-05-01

    The aim of the VIRGO experiment is the detection of gravitational waves. The detector is based on a Michelson interferometer with three-kilometer long arms. Before the availability of the complete detector, most of the technical choices have been tested on a small scale interferometer (central interferometer or CITF). This allowed to record the first technical data of the experiment. The calibration of the CITF data has been studied in this thesis. This work involved some local operations such as the calibration of the electronics of the detection system, and also some more global operation such as the characterisation of the detector response function. The latter is used to unfold the data from experimental effects and to estimate the detector sensitivity. A monitoring procedure of this response function has been applied to produce a time series of reconstructed data, i.e. data free from experimental distortions. The implementation of VIRGO will make use of an optical calibrator using the radiation pressure of a laser beam to act on the interferometer mirrors and characterize its response. The optical calibrator has been designed and assembled in laboratory and its performances have been measured. The physics analysis following the calibration step was tackled through a coalescing binary search algorithm. The latter was applied both on simulated data and on CITF data in order to estimate the detector noise level and to check the effects of the reconstruction procedure. (author)

  1. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bambade, P.; /Orsay /KEK, Tsukuba; Alabau Pons, M.; /Valencia U., IFIC; Amann, J.; /SLAC; Angal-Kalinin, D.; /Daresbury; Apsimon, R.; /Oxford U., JAI; Araki, S.; Aryshev, A.; /KEK, Tsukuba; Bai, S.; /Beijing, Inst. High Energy Phys.; Bellomo, P.; /SLAC; Bett, D.; /Oxford U., JAI; Blair, G.; /Royal Holloway, U. of London; Bolzon, B.; /Savoie U.; Boogert, S.; Boorman, G.; /Royal Holloway, U. of London; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; /Oxford U., JAI; Delahaye, Jean-Pierre; /CERN; Deacon, L.; /Royal Holloway, U. of London; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

    2011-11-11

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  2. First beam test of a combined ramp and squeeze at LHC

    CERN Document Server

    Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; Gorzawski, Arkadiusz; Redaelli, Stefano; Schaumann, Michaela; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2015-01-01

    With increasing maturity of LHC operation it is possible to envisage more complex beam manipulations. At the same time operational efficiency receives increasing attention. So far ramping the beams to their target energy and squeezing the beams to smaller or higher beta are decoupled at the LHC. (De-)squeezing is always performed at the target energy, currently 6.5 TeV. Studies to combine the ramp and squeeze processes have been made for the LHC since 2011, but so far no experimental test with beam had ever performed. This note describes the first machine experiment with beam aiming at validating the combination of ramp and squeeze, the so-called combined ramp and squeeze (CRS).

  3. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  4. Design, calibration and tests of an extended-range Bonner sphere spectrometer

    CERN Document Server

    Mitaroff, Angela; Silari, Marco

    2001-01-01

    Stray radiation fields outside the shielding of hadron accelerators are of complex nature. They consist of a multiplicity of radiation components (neutrons, photons, electrons, pions, muons, ...) which extend over a wide range of energies. Since the dose equivalent in these mixed fields is mainly due to neutrons, neutron dosimetry is a particularly important task. The neutron energy in these fields ranges from thermal up to several hundreds of MeV, thus making dosimetry difficult. A well known instrument for measuring neutron energy distributions from thermal energies up to about E=10 MeV is the Bonner sphere spectrometer (BSS). It consists of a set of moderating spheres of different radii made of polyethylene, with a thermal neutron counter in the centre. Each detector (sphere plus counter) has a maximum response at a certain energy value depending on its size, but the overall response of the conventional BSS drops sharply between E=10-20 MeV. This thesis focuses on the development, the calibration and tests...

  5. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-03-14

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  6. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: Expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2010-07-26

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  7. Accounting for Test Variability through Sizing Local Domains in Sequential Design Optimization with Concurrent Calibration-Based Model Validation

    Science.gov (United States)

    2013-08-01

    release. 1 Proceedings of IDETC/ CIE 2013 ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering...in Sequential Design Optimization with Concurrent Calibration-Based Model Validation Dorin Drignei 1 Mathematics and Statistics Department...insufficient to achieve the desired validity level . In this paper, we introduce a technique to determine the number of tests required to account for their

  8. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-01-01

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays (Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)) has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer (Nucl. Instr. and Meth. A616, 172 (2010)). Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  9. Acoustic emission study on 50 years old reinforced concrete beams under bending and shear tests

    NARCIS (Netherlands)

    Yang, Y.; Hordijk, D.A.; de Boer, A.

    2016-01-01

    This paper presents the Acoustic Emission (AE) measurement of several tests carried out on reinforced concrete beams sawn from a 50 years old concrete bridge – Ruytenschildt bridge. The purpose of these tests is to provide additional information to the already executed in-situ load testing on the

  10. Experimental testing of a self-sensing FRP-concrete composite beam using FBG sensors

    Science.gov (United States)

    Wang, Yanlei; Hao, Qingduo; Ou, Jinping

    2009-03-01

    A new kind of self-sensing fiber reinforced polymer (FRP)-concrete composite beam, which consists of a FRP box beam combined with a thin layer of concrete in the compression zone, was developed by using two embedded FBG sensors in the top and bottom flanges of FRP box beam at mid-span section along longitudinal direction, respectively. The flexural behavior of the proposed self-sensing FRP-concrete composite beam was experimentally studied in four-point bending. The longitudinal strains of the composite beam were recorded using the embedded FBG sensors as well as the surfacebonded electric resistance strain gauges. Test results indicate that the FBG sensors can faithfully record the longitudinal strain of the composite beam in tension at bottom flange of the FRP box beam or in compression at top flange over the entire load range, as compared with the surface-bonded strain gauges. The proposed self-sensing FRP-concrete composite beam can monitor its longitudinal strains in serviceability limit state as well as in strength limit state, and will has wide applications for long-term monitoring in civil engineering.

  11. CFRP strengthening of concrete beams - testing in sub-zero temperature

    DEFF Research Database (Denmark)

    Täljsten, Björn; Carolin, A.

    2007-01-01

    durability and do not normally need to be maintained over time. However, disadvantages might be mechanical damage and long term properties. There is also a question regarding the behaviour of CFRP strengthen structures in cold climates, for example will the structure behave more brittle during the winter...... compared to the summer period? In this paper the last issue will be addressed. CFRP strengthen concrete beams have been tested in sub-zero temperature and loaded up to failure. The cold climate tests are then compared with similar beams tested in room climate. From the tests no significantly difference...

  12. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  13. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  14. Standard practice for calibration of torque-measuring instruments for verifying the torque indication of torque testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice is to specify procedure for the calibration of elastic torque-measuring instruments. Note 1—Verification by deadweight and a lever arm is an acceptable method of verifying the torque indication of a torque testing machine. Tolerances for weights used are tabulated in Practice WK6364; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.3 This practice is intended for the calibration of static or quasi-static torque measuring instruments. The practice is not applicable for high speed torque calibrations or measurements. 1.4 This standard does not purport to address all of the safety concerns, if any,...

  15. Sustaining neutral beam power supply system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Eckard, R.D.; Van Ness, H.W.

    1979-01-01

    A fixed-price procurement contract for $24.9 million was awarded to Aydin Energy Division, Palo Alto, CA, for the design, manufacture, installation, and acceptance testing of the sustaining neutral beam power supply system (SNBPSS). This system is scheduled for completion in early 1981 and will provide the conditioned power for the 24 neutral beam source modules. Each of the 24 power supply sets will provide the accel potential of 80 kV at 88 A, the arc power, the filament power, and the suppressor power for its associated neutral beam source module

  16. First Results of the Beam Gas Ionization Profile Monitor (BGIP) Tested in the SPS Ring

    CERN Document Server

    Arauzo-Garcia, A; Koopman, J; Variola, A

    2000-01-01

    The BGIP is a proposal for a new, non-destructive beam profile monitor for the future Large Hadron Collider (LHC). This device provides the rms beam size value by means of the analysis of the velocity spectrum of the rest gas ions created and accelerated by the beam itself. After a thorough computer simulation study of the related physics, a first prototype of the BGIP has been conceived, built up and installed in the SPS main ring during 1999. This paper contains a short presentation of the simulation work and a description of the test set-up. The first experimental results are presented and compared with theoretical computations.

  17. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    Waldschmidt, G. J.

    1998-01-01

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  18. On designing data-sampling for Rasch model calibrating an achievement test

    Directory of Open Access Journals (Sweden)

    TAKUYA YANAGIDA

    2009-12-01

    Full Text Available In correspondence with pertinent statistical tests, it is of practical importance to design data-sampling when the Rasch model is used for calibrating an achievement test. That is, determining the sample size according to a given type-I- and type-II-risk, and according to a certain effect of model misfit which is of practical relevance is of interest. However, pertinent Rasch model tests use chi-squared distributed test-statistics, whose degrees of freedom do not depend on the sample size or the number of testees, but only on the number of estimated parameters. We therefore suggest a new approach using an F-distributed statistic as applied within analysis of variance, where the sample size directly affects the degrees of freedom. The Rasch model’s quality of specific objective measurement is in accordance with no interaction effect in a specific analysis of variance design. In analogy to Andersen’s approach in his Likelihood-Ratio test, the testees must be divided into at least two groups according to some criterion suspected of causing differential item functioning (DIF. Then a three-way analysis of variance design (A>BxC with mixed classification is the result: There is a (fixed group factor A, a (random factor B of testees within A, and a (fixed factor C of items cross-classified with A>B; obviously the factor B is nested within A. Yet the data are dichotomous (a testee either solves an item or fails to solve it and only one observation per cell exists. The latter is not assumed to do harm, though the design is a mixed classification. But the former suggests the need to perform a simulation study in order to test whether the type-I-risk holds for the AxC interaction F-test – this interaction effect corresponds to Rasch model’s specific objectivity. If so, the critical number of testees is of interest for fulfilling the pertinent precision parameters. The simulation study (100 000 runs for each of several special cases proved that the

  19. The Stress Analysis and Tests on the Hinge Beam of the Diamond Synthesis Cubic Press

    Directory of Open Access Journals (Sweden)

    Ma Liang

    2016-01-01

    Full Text Available To deal with the problem of the lug fractures of hinge beam caused by the fatigue and overload during the operation of the cubic press, the analysis methods of finite element are applied to the analysis of the internal stress distributions of the hinge beam. The simulation results show that the internal stress of the hinge beam mainly concentrates on the upper surface of the lug roots connecting the outer cylinder with the both lugs. According to the data of simulation and analysis as well as the actual fracture situations, considering the strain-test methods we have designed the schemes of testing the strain on the lugs of hinge beam. And the strain measurements of the lugs are completed by the repeated loading experiments. Comparing the data of simulation and analysis with the measured data has verified their consistency. It also confirms the model established by the simulation and analysis is reasonable and accurate at the same time.

  20. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  1. The APS X-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of thirs generation synchrotron sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS X-ray undulators will increase the brilliance in the 3-40 keV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve submicron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper. (orig.)

  2. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  3. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  4. Construction of the facility for the testing of the TFTR Neutral Beam Injector

    International Nuclear Information System (INIS)

    Haughian, J.; Lou, K.; Roth, D.

    1979-11-01

    The prototype for the TFTR Neutral Beam Injection System has been assembled at the Lawrence Berkeley Laboraory, and is presently under test. Some of the construction features of the shielding enclosure, the cryogenic supply system, control and computer area, and the auxiliary vacuum and utility supply system are described. In addition, the paper describes the target chamber, its beam dump and cryopanels, and the duct that connects the target chamber to the injector vessel

  5. Testing fundamental symmetries using radioactive ion beams at ...

    Indian Academy of Sciences (India)

    paper we summarize some recent experimental developments at TRIUMF pertaining to fundamental symmetry tests. These tests use the atomic nucleus as a probe to search for physics beyond the Standard Model. Some recent results and future plans are discussed. Keywords. Standard Model; symmetries; radioactive ion ...

  6. Submicron beam X-ray diffraction of nanoheteroepitaxily grown GaN: Experimental challenges and calibration procedures

    International Nuclear Information System (INIS)

    Bonanno, P.L.; Gautier, S.; Sirenko, A.A.; Kazimirov, A.; Cai, Z.-H.; Goh, W.H.; Martin, J.; Martinez, A.; Moudakir, T.; Maloufi, N.; Assouar, M.B.; Ramdane, A.; Gratiet, L. Le; Ougazzaden, A.

    2010-01-01

    Highly relaxed GaN nanodots and submicron ridges have been selectively grown in the NSAG regime using MOVPE on lattice mismatched 6H-SiC and AlN substrates. 2D real space and 3D reciprocal space mapping was performed with a CCD detector using 10.4 keV synchrotron X-ray radiation at the 2-ID-D micro-diffraction beamline at Advanced Photon Source (APS). Calibration procedures have been developed to overcome the unique challenges of analyzing NSAG structures grown on highly mismatched substrates. We studied crystallographic planar bending on the submicron scale and found its correlation with strain relaxation in the NSAG ridges.

  7. Sustaining neutral beam power supply system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

    1980-01-01

    In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year

  8. Testing avian compass calibration: comparative experiments with diurnal and nocturnal passerine migrants in South Sweden.

    Science.gov (United States)

    Åkesson, Susanne; Odin, Catharina; Hegedüs, Ramón; Ilieva, Mihaela; Sjöholm, Christoffer; Farkas, Alexandra; Horváth, Gábor

    2014-12-12

    Cue-conflict experiments were performed to study the compass calibration of one predominantly diurnal migrant, the dunnock (Prunella modularis), and two species of nocturnal passerine migrants, the sedge warbler (Acrocephalus schoenobaenus), and the European robin (Erithacus rubecula) during autumn migration in South Sweden. The birds' orientation was recorded in circular cages under natural clear and simulated overcast skies in the local geomagnetic field, and thereafter the birds were exposed to a cue-conflict situation where the horizontal component of the magnetic field (mN) was shifted +90° or -90° at two occasions, one session starting shortly after sunrise and the other ca. 90 min before sunset and lasting for 60 min. The patterns of the degree and angle of skylight polarization were measured by full-sky imaging polarimetry during the cue-conflict exposures and orientation tests. All species showed orientation both under clear and overcast skies that correlated with the expected migratory orientation towards southwest to south. For the European robin the orientation under clear skies was significantly different from that recorded under overcast skies, showing a tendency that the orientation under clear skies was influenced by the position of the Sun at sunset resulting in more westerly orientation. This sun attraction was not observed for the sedge warbler and the dunnock, both orientating south. All species showed similar orientation after the cue-conflict as compared to the preferred orientation recorded before the cue-conflict, with the clearest results in the European robin and thus, the results did not support recalibration of the celestial nor the magnetic compasses as a result of the cue-conflict exposure. © 2015. Published by The Company of Biologists Ltd.

  9. Testing avian compass calibration: comparative experiments with diurnal and nocturnal passerine migrants in South Sweden

    Directory of Open Access Journals (Sweden)

    Susanne Åkesson

    2014-12-01

    Full Text Available Cue-conflict experiments were performed to study the compass calibration of one predominantly diurnal migrant, the dunnock (Prunella modularis, and two species of nocturnal passerine migrants, the sedge warbler (Acrocephalus schoenobaenus, and the European robin (Erithacus rubecula during autumn migration in South Sweden. The birds' orientation was recorded in circular cages under natural clear and simulated overcast skies in the local geomagnetic field, and thereafter the birds were exposed to a cue-conflict situation where the horizontal component of the magnetic field (mN was shifted +90° or −90° at two occasions, one session starting shortly after sunrise and the other ca. 90 min before sunset and lasting for 60 min. The patterns of the degree and angle of skylight polarization were measured by full-sky imaging polarimetry during the cue-conflict exposures and orientation tests. All species showed orientation both under clear and overcast skies that correlated with the expected migratory orientation towards southwest to south. For the European robin the orientation under clear skies was significantly different from that recorded under overcast skies, showing a tendency that the orientation under clear skies was influenced by the position of the Sun at sunset resulting in more westerly orientation. This sun attraction was not observed for the sedge warbler and the dunnock, both orientating south. All species showed similar orientation after the cue-conflict as compared to the preferred orientation recorded before the cue-conflict, with the clearest results in the European robin and thus, the results did not support recalibration of the celestial nor the magnetic compasses as a result of the cue-conflict exposure.

  10. Backsplash studies for the Scintillator Pad Detector of LHCb in a tagged-photon test beam

    CERN Document Server

    Garrido, L; Miquel, R; Peralta, D

    2002-01-01

    The Scintillator Pad Detector (SPD) of the LHCb experiment is part of the calorimeter system, positioned just before the preshower (PS), and is meant to separate photons and electrons at level 0 of the trigger. A tagged-photon test beam allowed to test in photon signals the SPD. These signals are mainly due to pair production inside the scintillator and to particles generated in the electromagnetic shower in the PS and in the electromagnetic calorimeter (backsplash). The observed results in a test beam experiment stress the low inefficiencies in e/gamma separation arising from backsplash.

  11. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    Science.gov (United States)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  12. The design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Patterson, J.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-01-01

    The Neutral Beam Engineering Test Facility (NBETF) at the Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. The thermal hydraulic design of the panels permits the dissipation of 2 kW/cm 2 anywhere on the panel surface. The cooling water requirements of the actively cooled dump system are provided by the closed loop Primary High Pressure Cooling Water System. To minimize the operating costs of continuously running this high power system, a variable speed hydraulic drive is used for the main pump. During beam pulses, the pump rotates at high speed, then cycles to low speed upon completion of the beam shot. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline also has an inertially cooled duct calorimeter assembly. This assembly is a moveable hinged matrix of copper plates that can be used as a beam stop up to pulse lengths of 50 ms. The beamline is also equipped with many beam scraper plates of differing detail design and dissipation capabilities

  13. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, Peter Gregory [Stanford Univ., CA (United States)

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  14. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Tenenbaum, P.G.

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research

  15. Improvement of the calibration technique of clinical dosemeters

    International Nuclear Information System (INIS)

    Ehlin Caldas, L.V.

    1988-08-01

    Clinical dosemeters constituted of ionization chambers connected to electrometers are usually calibrated as whole systems in appropriate radiation fields against secondary standard dosemeters in calibration laboratories. This work reports on a technique of component calibration procedures separately for chambers and electrometers applied in the calibration laboratory of IPEN-CNEN, Brazil. For electrometer calibration, redundancy was established by using a standard capacitor of 1000pF (General Radio, USA) and a standard current source based on air ionization with Sr 90 (PTW, Germany). The results from both methods applied to several electrometers of clinical dosemeters agreed within 0.4%. The calibration factors for the respective chambers were determined by intercomparing their response to the response of a certified calibrated chamber in a Co 60 calibration beam using a Keithley electrometer type 617. Overall calibration factors compared with the product of the respective component calibration factors for the tested dosemeters showed an agreement better than 0.7%. This deviation has to be considered with regard to an uncertainty of 2.5% in routine calibration of clinical dosemeters. Calibration by components permits to calibrate ionization chambers one at a time for those hospitals who have several ionization chambers but only one electrometer (small hospitals, hospitals in developing countries). 6 refs, 2 figs, 2 tabs

  16. Chracterization of the beam from the RFQ of the PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Carneiro. J.-P., Carneiro. J.-P. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Scarpine, V. [Fermilab; Sista, V. L.S. [Bhabha Atomic Res. Ctr.; Steimel, J. [Fermilab

    2017-05-01

    A 2.1 MeV, 10 mA CW RFQ has been installed and commissioned at the Fermilab’s test accelerator known as PIP-II Injector Test. This report describes the measure-ments of the beam properties after acceleration in the RFQ, including the energy and emittance.

  17. The Cherenkov correlated timing detector: beam test results from quartz and acrylic bars

    International Nuclear Information System (INIS)

    Kichimi, H.; Sugaya, Y.; Yamaguchi, H.; Yoshimura, Y.; Kanda, S.; Olsen, S.; Ueno, K.; Varner, G.; Bergfeld, T.; Bialek, J.; Lorenc, J.; Palmer, M.; Rudnick, G.; Selen, M.; Auran, T.; Boyer, V.; Honscheid, K.; Tamura, N.; Yoshimura, K.; Lu, C.; Marlow, D.; Mindas, C.; Prebys, E.; Asai, M.; Kimura, A.; Hayashi, S.

    1996-01-01

    Several prototypes of a Cherenkov correlated timing (CCT) detector have been tested at the KEK-PS test beam line. We describe the results for Cherenkov light yields and timing characteristics from quartz and acrylic bar prototypes. A Cherenkov angle resolution is found to be 15 mrad at a propagation distance of 100 cm with a 2 cm thick quartz bar prototype. (orig.)

  18. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    Science.gov (United States)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  19. Calibration methods of plane-parallel ionization chambers used in electron dosimetry

    International Nuclear Information System (INIS)

    Bulla, Roseli Tadeu

    1999-01-01

    The use of linear accelerators in radiotherapy is of great importance in Medicine, and according to international recommendations the electron beam dosimetry has to be performed using plane-parallel ionization chambers, previously calibrated in standard gamma radiation fields at accredited laboratories. In this work, calibration methods of plane-parallel ionization chambers used in dosimetry procedures of high energy electron beams of clinical accelerators were presented, tested and intercompared. The experiments were carried out using gamma radiation beams of 60 Co at the Calibration Laboratory of Clinical Dosemeters at IPEN and electron beams od 4 to 16 MeV at the Radiotherapy Department of Hospital Israelita Albert Einstein, Sao Paulo. A method was chosen to be established at IPEN. Proposals of the calibration procedure, calibration certificate and data sheets are presented. (author)

  20. Automated touch sensing in the mouse tapered beam test using Raspberry Pi.

    Science.gov (United States)

    Ardesch, Dirk Jan; Balbi, Matilde; Murphy, Timothy H

    2017-11-01

    Rodent models of neurological disease such as stroke are often characterized by motor deficits. One of the tests that are used to assess these motor deficits is the tapered beam test, which provides a sensitive measure of bilateral motor function based on foot faults (slips) made by a rodent traversing a gradually narrowing beam. However, manual frame-by-frame scoring of video recordings is necessary to obtain test results, which is time-consuming and prone to human rater bias. We present a cost-effective method for automated touch sensing in the tapered beam test. Capacitive touch sensors detect foot faults onto the beam through a layer of conductive paint, and results are processed and stored on a Raspberry Pi computer. Automated touch sensing using this method achieved high sensitivity (96.2%) as compared to 'gold standard' manual video scoring. Furthermore, it provided a reliable measure of lateralized motor deficits in mice with unilateral photothrombotic stroke: results indicated an increased number of contralesional foot faults for up to 6days after ischemia. The automated adaptation of the tapered beam test produces results immediately after each trial, without the need for labor-intensive post-hoc video scoring. It also increases objectivity of the data as it requires less experimenter involvement during analysis. Automated touch sensing may provide a useful adaptation to the existing tapered beam test in mice, while the simplicity of the hardware lends itself to potential further adaptations to related behavioral tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Successful beam test of the SPS-to-LHC transfer line TI2

    CERN Multimedia

    2007-01-01

    Image of the first beam spot on the last BTV screen traversed by the beam during the TI 2 test.At 12:03:47 on 28 October a beam passed down the 2.7 km of the new SPS-to-LHC transfer line TI 2 at the first attempt, to within some 50 m of the LHC tunnel. After initial tuning, a range of measurements was carried out with a low intensity proton beam and preliminary analyses look good. After the test, no increase in radiation levels was found in either the LHC or ALICE, and the zones were rapidly opened again for access. As from next year TI 2 will regularly transport a beam from the SPS to the LHC injection point of Ring 1, near Point 2 (ALICE). The TI 8 transfer line, which will bring particles from the SPS to the injection point in Ring 2, near Point 8 (LHCb), was commissioned successfully with low intensity beam in 2004. The two LHC injection lines have a combined length of 5.6 km and comprise some seven hundred warm magnets. While a...

  2. Initial beam-profiling tests with the NML prototype station at the Fermilab A0 Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.; Flora, R.; Johnson, A.S.; Ruan, J.; Santucci, J.; Scarpine, V.; Sun, Y.-E.; Thurman-Keup, R.; Church, M.; Wendt, M.; /Fermilab

    2011-03-01

    The beam-profile diagnostics station prototype for the superconducting rf electron linac being constructed at Fermilab at the New Muon Lab has been tested. The station uses intercepting radiation converter screens for the low-power beam mode: either a 100-{micro}m thick YAG:Ce single crystal scintillator or a 1-{micro}m thin Al optical transition radiation (OTR) foil. The screens are oriented with the surface perpendicular to the beam direction. A downstream mirror with its surface at 45 degrees to the beam direction is used to direct the radiation into the optical transport. The optical system has better than 20 (10) {micro}m rms spatial resolution when covering a vertical field of view of 18 (5) mm. The initial tests were performed at the A0 Photoinjector at a beam energy of {approx}15 MeV and with micropulse charges from 25 to 500 pC for beam sizes of 45 to 250 microns. Example results will be presented.

  3. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Kuechler, D.; Toivanen, V. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  4. Design of optics for the final focus test beam at SLAC

    International Nuclear Information System (INIS)

    Oide, Katsunobu.

    1989-05-01

    The goal of the Final Focus Test Beam experiment (FFTB) is to produce an electron beam spot of 1 μm by 60 nm in transverse dimensions. In the future linear collider of TeV region (TLC), a typical spot size of 100 nm by 1 nm at the interaction point is required to get luminosity of 1 /times/ 10 34 cm/sup /minus/2/s/sup /minus/1/. This spot size is about 1/1000 of the SLC in the vertical dimension, and is demanding for an optics design, alignments, beam diagnostics, and tuning procedures. The spot size of the FFTB will be an important next step from the SLC toward the TLC. This paper describes the design of the beam optics. 11 refs., 2 figs., 1 tab

  5. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    CERN Document Server

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  6. SRAM single event upset calculation and test using protons in the secondary beam in the BEPC

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuanming; Guo Hongxia; Zhang Fengqi; Zhang Keying; Chen Wei; Luo Yinhong; Guo Xiaoqiang, E-mail: wangym2007@gmail.com [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2011-09-15

    The protons in the secondary beam in the Beijing Electron Positron Collider (BEPC) are first analyzed and a large proportion at the energy of 50-100 MeV supply a source gap of high energy protons. In this study, the proton energy spectrum of the secondary beam was obtained and a model for calculating the proton single event upset (SEU) cross section of a static random access memory (SRAM) cell has been presented in the BEPC secondary beam proton radiation environment. The proton SEU cross section for different characteristic dimensions has been calculated. The test of SRAM SEU cross sections has been designed, and a good linear relation between SEUs in SRAM and the fluence was found, which is evidence that an SEU has taken place in the SRAM. The SEU cross sections were measured in SRAM with different dimensions. The test result shows that the SEU cross section per bit will decrease with the decrease of the characteristic dimensions of the device, while the total SEU cross section still increases upon the increase of device capacity. The test data accords with the calculation results, so the high-energy proton SEU test on the proton beam in the BEPC secondary beam could be conducted. (semiconductor physics)

  7. MWPC for the test beam on BEPC-LINAC

    International Nuclear Information System (INIS)

    Shen Ji; Chen Ziyu; Ye Zhenyu; Jiang Linli; Pan Jianjun; Ye Yunxiu; Cui Xiangzhong; Li Jiacai

    2004-01-01

    This paper introduces the MWPC developed for the test on BEPC, which localizes the particles of e, π by center of gravity of the signals induced on the cathodes of the chamber, and describes its configuration, structure and the investigation of properties. (authors)

  8. ATLAS Transition Radiation Tracker test-beam results

    Science.gov (United States)

    Akesson, T.; Arik, E.; Baker, K.; Baron, S.; Benjamin, D.; Bertelsen, H.; Bondarenko, V.; Bytchkov, V.; Callahan, J.; Capeans, M.; Cardiel-Sas, L.; Catinaccio, A.; Cetin, S. A.; Cwetanski, P.; Dam, M.; Danielsson, H.; Dittus, F.; Dolgoshein, B.; Dressnandt, N.; Driouichi, C.; Ebenstein, W. L.; Eerola, P.; Farthouat, P.; Fedin, O.; Froidevaux, D.; Gagnon, P.; Grichkevitch, Y.; Grigalashvili, N.; Hajduk, Z.; Hansen, P.; Kayumov, F.; Keener, P. T.; Kekelidze, G.; Khristatchev, A.; Konovalov, S.; Koudine, L.; Kovalenko, S.; Kowalski, T.; Kramarenko, V. A.; Kruger, K.; Laritchev, A.; Lichard, P.; Luehring, F.; Lundberg, B.; Maleev, V.; Markina, I.; McFarlane, K.; Mialkovski, V.; Mitsou, V. A.; Mindur, B.; Morozov, S.; Munar, A.; Muraviev, S.; Nadtochy, A.; Newcomer, F. M.; Ogren, H.; Oh, S. H.; Oleshko, S.; Olszowska, J.; Passmore, S.; Patritchev, S.; Peshekhonov, V.; Petti, R.; Price, M.; Rembser, C.; Rohne, O.; Romaniouk, A.; Rust, D. R.; Ryabov, Yu.; Schegelsky, V.; Seliverstov, D.; Shin, T.; Shmeleva, A.; Smirnov, S.; Sosnovtsev, V.; Soutchkov, V.; Spiridenkov, E.; Tikhomirov, V.; Van Berg, R.; Vassilakopoulos, V.; Vassilieva, L.; Wang, C.; Williams, H. H.; Zalite, A.

    2004-04-01

    Several prototypes of the Transition Radiation Tracker for the ATLAS experiment at the LHC have been built and tested at the CERN SPS accelerator. Results from detailed studies of the straw-tube hit registration efficiency and drift-time measurements and of the pion and electron spectra without and with radiators are presented.

  9. Evaluation of the Impact Resistance of Various Composite Sandwich Beams by Vibration Tests

    Directory of Open Access Journals (Sweden)

    Amir Shahdin

    2011-01-01

    Full Text Available Impact resistance of different types of composite sandwich beams is evaluated by studying vibration response changes (natural frequency and damping ratio. This experimental works will help aerospace structural engineer in assess structural integrity using classification of impact resistance of various composite sandwich beams (entangled carbon and glass fibers, honeycomb and foam cores. Low velocity impacts are done below the barely visible impact damage (BVID limit in order to detect damage by vibration testing that is hardly visible on the surface. Experimental tests are done using both burst random and sine dwell testing in order to have a better confidence level on the extracted modal parameters. Results show that the entangled sandwich beams have a better resistance against impact as compared to classical core materials.

  10. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  11. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations

    NARCIS (Netherlands)

    Jordan-Meille, L.; Rubaek, G.H.; Ehlert, P.A.I.; Genot, V.; Hofman, G.; Goulding, K.; Recknagel, J.; Provolo, G.; Barraclough, P.

    2012-01-01

    The procedure for applying phosphorus (P) fertilizer to soil can be divided into three consecutive steps: (i) Measurement of soil-P availability, (ii) calibration of the soil-P fertility level and (iii) estimation of the recommended P dose. Information on each of these steps was obtained for 18

  12. An Electron Miniaccelerator on the Basis of Tesla Transformer for Nondestructive Testing of Charged Particle Beams

    International Nuclear Information System (INIS)

    Akimov, V.E.; Bulatov, A.V.; Logatchev, P.V.; Kazarezov, I.V.; Korepanov, A.A.; Malyutin, D.A.; Starostenko, A.A.

    2006-01-01

    An electron miniaccelerator on the basis of Tesla-transformer for nondestructive testing of charged particle beams with operating voltage 120...200 kV, half-wave duration 4 mks and diagnostic beam current within few mA is described. The primary circuit is switched by IGBT. The gun control and filament circuit power supply (impregnated cathode with 1.2 mm diameter) are realized through high frequency isolated transformer. The accelerating tube is made of sectional welded metal ceramics insulator (ceramic 22HS with diameter 95/85 mm). The accelerator test results are presented

  13. Test facility for the development of 150-keV, multi-megawatt neutral beam systems

    International Nuclear Information System (INIS)

    Haughian, W.; Baker, W.R.; Biagi, L.A.; Hopkins, D.B.

    1975-11-01

    The next generation of CTR experiments, such as the Tokamak Fusion Test Reactor (TFTR), will require neutral-beam injection systems that produce multi-megawatt, 120-keV deuterium-beam pulses of 0.5-second duration. Since present injection systems are operating in the 10- to 40-keV range, an intensive development effort is in progress to meet a 150-keV requirement. The vacuum system and power supplies that make up a test facility to be used in the development of these injectors are described

  14. Memory testing with Saturne synchrotron beams. Experiments with protons and deuterons

    International Nuclear Information System (INIS)

    Buisson, J.

    1989-01-01

    For simulate light ions of the cosmic rays CEA will use facilities used in fundamental physic research. SATURNE is a synchrotron especially designed to accelerate light particles, for example protons with energy up to 2.9 GeV. Two experiments are made on SATURNE to specify the beam characteristics (energy and intensity) and to adapt the beam for irradiation of electronic components. During these preliminary experimentation memories and microprocessors was tested. The results of the tests (cross-section) are given in this paper [fr

  15. Beam tests of WPC-7 prototype of iwire pad chambers for the LHCb muon system

    CERN Document Server

    Bochin, B; Lazarev, V A; Saguidova, N; Spiridenkov, E M; Vorobev, A P; Vorobyov, A

    2000-01-01

    A new prototype of the Wire Pad Chamber for the LHCb Muon System, WPC-7, has been constructed at PNPI and tested in the T11 beam at CERN. This prototype proved to be more stable against the electrical discharges at high voltages thus extending the operational plateau of the chamber by 200V. This made it possible to operate with larger wire pad sizes up to 12x16cm2. This report presents the results from the beam tests of the WPC-7 prototype : time resolution and efficiency, cross-talk, noise counting rates, streamer probability measured at various high voltages and discriminator thresholds.

  16. Development of picoseconds Time of Flight systems in Meson Test Beam Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ronzhin, A.; Albrow, M.; Demarteau, M.; Los, S.; /Fermilab; Malik, S.; /Rockefeller U.; Pronko, S.; Ramberg, E.; /Fermilab; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-11-01

    The goal of the work is to develop time of flight (TOF) system with about 10 picosecond time resolution in real beam line when start and stop counters separated by some distance. We name the distance as 'base' for the TOF. This 'real' TOF setup is different from another one when start and stop counters located next to each other. The real TOF is sensitive to beam momentum spread, beam divergence, etc. Anyway some preliminary measurements are useful with close placement of start and stop counter. We name it 'close geometry'. The work started about 2 years ago at Fermilab Meson Test Beam Facility (MTBF). The devices tested in 'close geometry' were Microchannel Plate Photomultipliers (MCP PMT) with Cherenkov radiators. TOF counters based on Silicon Photomultipliers (SiPms) with Cherenkov radiators also in 'close geometry' were tested. We report here new results obtained with the counters in the MTBF at Fermilab, including beam line data.

  17. Calibration of TDR Test Probe for Measuring Moisture in the Body of the Railway Substructure and its Subgrade

    Directory of Open Access Journals (Sweden)

    Dobeš Peter

    2015-12-01

    Full Text Available In the introduction of the paper there is characterized a way of monitoring the moisture in the railway substructure in the experimental stand, which is a part of the experimental workplace of the Department of Railway Engineering and Track Management. A substantial part of the paper is devoted to the calibration of TDR test probe for selected rock materials as a basic prerequisite for the determination of the actual moisture in the body of the railway substructure and subgrade.

  18. The AMS-02 RICH Imager Prototype - In-Beam Tests with 20 GeV/c per Nucleon Ions -

    CERN Document Server

    Buenerd, M.; Aguilar Benitez, M.; Arruda, L.; Barao, F.; Barrau, A.; Baret, B.; Belmont, E.; Berdugo, J.; Boudoul, G.; Borges, J.; Casadei, D.; Casaus, J.; Delgado, C.; Diaz, C.; Derome, L.; Eraud, L.; Gallin-Martel, L.; Giovacchini, F.; Goncalves, P.; Lanciotti, E.; Laurenti, G.; Malinine, A.; Mana, C.; Marin, J.; Martinez, G.; Menchaca-Rocha, A.; Palomares, C.; Pimenta, M.; Protasov, K.; Sanchez, E.; Seo, E-S.; Sevilla, I.; Torrento, A.; Vargas-Trevino, M.

    2003-01-01

    A prototype of the AMS Cherenkov imager (RICH) has been tested at CERN by means of a low intensity 20 GeV/c per nucleon ion beam obtained by fragmentation of a primary beam of Pb ions. Data have been collected with a single beam setting, over the range of nuclear charges 2beam conditions and using different radiators. The charge Z and velocity beta resolutions have been measured.

  19. 4-Point beam tensile test on a soft adhesive

    International Nuclear Information System (INIS)

    Budzik, Michal K.; Jumel, Julien; Shanahan, Martin E.R.

    2013-01-01

    Highlights: ► An adhesive butt joint with a soft bondline of variable thickness has been studied. ► We found that bondline thickness affects the stress state in soft bondlines. ► Fracture energy at crack onset is lowest for the thinnest of bondlines and becomes stable for thicker layers. ► Maximum stress decreases with increasing bondline thickness. ► We found that for optimal joint design, rate effects must be taken into account. - Abstract: An adhesive butt joint with a soft bondline has been studied. A series of experiments was conducted on test pieces constituted of aluminium adherends bonded with a low modulus epoxy adhesive, Scotch Weld™ 2216. The joint was subjected to four point bending, in tension/compression loading, under constant deflection rate, with the bondline being parallel to the applied load. The objective was to examine and evaluate crack nucleation for a range of adhesive layer thicknesses. Three criteria were used to evaluate joint efficiency. Firstly, force/stress at crack onset revealed that thinner bondlines were preferable to produce stronger and stiffer bonded structures. Secondly, fracture energy was derived, which, in the present configuration, is associated with the energy stored within the adhesive layer, rather than the substrates. This is one of originalities of the test proposed. Fracture energy data lead to the conclusion, that more energy is dissipated by the joints with lower effective rigidity, viz. thicker bondlines. Finally, we applied a criterion of non-linear, ‘pragmatic’ work of adhesion – similar to the J-integral approach. In terms of energy consumption, the third criterion yielded (quasi) independence of the adhesive thickness. From the data collected, we conclude that for optimal joint design, rate effects must be carefully taken into account

  20. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF

    International Nuclear Information System (INIS)

    Fernandez, C.; Fouz, M.C.; Marin, J.; Oller, J.C.; Willmott, C.; Amigo, L.J.

    2002-01-01

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs

  1. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF

    CERN Document Server

    Fernández, C; Fouz-Iglesias, M C; Marin, J; Oller, J C; Willmott, C

    2002-01-01

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs.

  2. Test Operations Procedure (TOP) 03-2-827 Test Procedures for Video Target Scoring Using Calibration Lights

    Science.gov (United States)

    2016-04-04

    Calibration Light Pole. Light poles should be erected as straight as possible (plumb). Its base must be firmly set. Where applicable, poles should...function of the Quazar** application to record the event until the projectile impacts the farthest target while monitoring the live video feedback . The

  3. First results from a beam test of a high-granularity silicon-based calorimeter for CMS at HL-LHC

    CERN Document Server

    Chatterjee, Rajdeep Mohan

    2016-01-01

    A prototype of the electromagnetic calorimeter for the CMS High Granularity Calorimeter that is being designed for the High Luminosity LHC (HL-LHC) was tested in a test beam at the Fermilab Test Beam Facility (FTBF). The detector consisted of 16 sampling layers of silicon sensors interspersed withtungsten plates for a total thickness of 15.3 X$_{0}$. Each of the hexagonal sensors were sub-divided into 128 cells, predominantly hexagonal in shape, of area ~1.1 cm$^2$. The analog signal from the 2048 cells was readout using the 64-channel SKIROC2 ASIC, developed by the LLR OMEGA group for the CALICE collaboration. Data were collected with a custom data acquisition system developed for these tests. The detector was calibrated using signals obtained with 120 GeV protons.We report here the design of the prototype detector and the results obtained from analyzing the data collected in July 2016, with electron beams at energies ranging from 4 to 32 GeV.

  4. Latest R&D news and beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

    Science.gov (United States)

    Irles, A.

    2018-02-01

    High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the ILC. In this document we present the latest news on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration and commissioning of the current set of available SiW ECAL modules; the test of performance of individual slabs under 1T magnetic fields; and the study of electromagnetic showers events.

  5. Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O' Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1989-09-01

    Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

  6. Temporal behavior of neutral particle fluxes in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.

    1989-09-01

    Data from an E parallel B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs

  7. Assessment of mechanical properties of metallic thin-films through micro-beam testing

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, M.; Gonzalez, D.; Elizalde, M.R.; Martínez-Esnaola, J.M. [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastián (Spain); Hernandez, M.T.; Li, H.; Pantuso, D. [Design Technology Solutions, Intel Corporation, Hillsboro 97124, OR (United States); Ocaña, I., E-mail: iocana@ceit.es [CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastián (Spain)

    2014-11-28

    Microelectronic industry is driven by the continuous miniaturization process conducing to the introduction of materials with better performance. These materials are subjected to stresses mainly due to thermal mismatch, microstructural changes or process integration which can be in the origin of mechanical reliability issues. To study these phenomena and even electromigration a good mechanical characterization of the materials is needed. This work aims at developing tests to assess fracture and elastoplastic behavior of thin Cu films. The tests developed are based on the deflection of microbeams (micromachined using a focused ion beam) using a nanoindenter. Different test geometries for microbeams have been evaluated and quantitative data have been obtained combining experimental results with analytical or numerical models, depending on the property under study. Microbeam response shows a strong dependence on the orientation of the grains close to the fixed end. Grain orientation has been measured by electron backscatter diffraction and the plastic behavior has been modeled by the finite element method using an in-house crystal plasticity subroutine. The effect of film thickness on fracture energy has been determined from tests of notched beams. - Highlights: • Cu microbeams have been machined with a focused ion beam and tested at a TriboIndenter. • Crystal plasticity has been accounted for when modeling constitutive behavior of Cu. • Fracture energy has been calculated using notched microcantilever beams. • Fracture energy decreases with film thickness.

  8. The quest for equivalence of test results: the pilgrimage of the Dutch Calibration 2.000 program for metrological traceability.

    Science.gov (United States)

    Jansen, Rob T P; Cobbaert, Christa M; Weykamp, Cas; Thelen, Marc

    2018-01-17

    Calibration 2.000 was initiated 20 years ago for standardization and harmonization of medical tests. The program also intended to evaluate adequate implementation of the In Vitro Diagnostics (IVD) 98/79/EC directive, in order to ensure that medical tests are fit-for-clinical purpose. The Calibration 2.000 initiative led to ongoing verification of test standardization and harmonization in the Netherlands using commutable external quality assessment (EQA)-tools and a type 1 EQA-design, where feasible. National support was guaranteed by involving all laboratory professionals as well as laboratory technicians responsible for EQA and quality officers. A category 1 EQA-system for general chemistry analytes, harmonizers for specific analytes like hGH and IGF-1, and commutable materials for other EQA-sections have been developed and structurally introduced in the EQA-schemes. The type 1 EQA-design facilitates the dialogue between individual specialists in laboratory medicine and the IVD-industry to reduce lot-to-lot variation and to improve standardization. In such a way, Calibration 2.000 sheds light on the metrological traceability challenges that we are facing and helps the laboratory community to get the issues on the table and resolved. The need for commutable trueness verifiers and/or harmonizers for other medical tests is now seen as paramount. Much knowledge is present in the Netherlands and for general chemistry, humoral immunology and protein chemistry, a few endocrinology tests, and various therapeutic drug monitoring (TDM) tests, commutable materials are available. Also the multi sample evaluation scoring system (MUSE) and the category 1 EQA-design offer many possibilities for permanent education of laboratory professionals to further improve the between and within laboratory variation and the test equivalence.

  9. Particle Beam Tests of the Calorimetric Electron Telescope

    CERN Document Server

    Tamura, Tadahisa

    The Calorimetric Electron Telescope (CALET) is a new mission addressing outstanding astrophysics questions including the nature of dark matter, the sources of high-energy particles and photons, and the details of particle acceleration and transport in the galaxy by measuring the high-energy spectra of electrons, nuclei, and gamma-rays. It will launch on HTV-5 (H-II Transfer Vehicle 5) in 2014 for installation on the Japanese Experiment Module–Exposed Facility (JEM-EF) of the International Space Station. The CALET collaboration is led by JAXA and includes researchers from Japan, the U.S. and Italy. The CALET Main Telescope uses a plastic scintillator charge detector followed by a 30 radiation-length (X0) deep particle calorimeter divided into a 3 X0 imaging calorimeter, with scintillating optical fibers interleaved with thin tungsten sheets, and a 27 X0 fully-active total-absorption calorimeter made of lead tungstate scintillators. CALET prototypes were tested at the CERN (European Laboratory for Particle Ph...

  10. Calibration and Recovery of Nuclear Test Seismic Ground-Motion Data from the Leo Brady Seismic Network

    Science.gov (United States)

    Young, B.; Abbott, R. E.

    2016-12-01

    In 1960, Sandia National Laboratories established a small seismic network with stations in Nevada, Utah, and California with the mission to monitor underground nuclear tests (UGTs) at the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site). Over time, this seismic network came to be known as the Leo Brady Seismic Network (LBSN). The LBSN recorded approximately 800 UGTs at the NNSS from its inception through the end of testing in 1992. These irreplaceable data, mostly archived on analog, frequency-modulated magnetic tapes and stored in vaults, are now being digitized. This necessitated a calibration method to take the data from analog FM to digital counts to ground-motion units. Complicating the issue, the seismic system setup, telemetering, instrumentation, and calibration methods changed several times over the course of the LBSN's service life, and much of the documentation and knowledge of the system has been lost to time. The information necessary to understand, interpret, and ultimately calibrate these data was therefore collected from many disparate sources, each of which contains bits and pieces of relevant information. Contradictory information was often the rule rather than the exception. Where necessary (due to a lack of direct information) we made educated guesses as to the exact system, setup, and methodologies used. Ultimately, we documented the evolution and configuration of the seismic network, and determined both empirical and analytical approaches to calibrating these data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. In-situ calibration of TFTR [Tokamak Fusion Test Reactor] neutron detectors

    International Nuclear Information System (INIS)

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.P.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.

    1990-03-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled 252 Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two 235 U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source, and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of ± 13%. 21 refs., 23 figs., 4 tabs

  12. Vertical cold test of the crab cavity with a co-axial beam pipe

    International Nuclear Information System (INIS)

    Morita, Y.; Hara, K.; Hosoyama, K.; Kabe, A.; Kojima, Y.; Nakai, H.; Inoue, M.; Ohkubo, K.

    2003-01-01

    A crab cavity was designed for the KEKB electron-positron collider-accelerator. The aim of this cavity is to deflect the beam bunch and realize the crab-crossing scheme. The cavity, operating in the TM110 mode, has a squashed cell with a co-axial beam pipe coupling scheme to extract the lowest order mode (TM010). Operating voltage should be high enough to deflect a beam bunch for a finite beam-crossing angle. For the R and D of this complicated structure, we have fabricated a prototype cavity and a simplified inner conductor for the co-axial beam pipe structure. We tested the RF performance of the cavity with the inner conductor in a vertical cryostat. During the tests, a serious Q-degradation was observed, which is so called Hydrogen Q-disease'. A calorimetric RF loss measurement showed that the loss at the inner conductor is a cause of the Q-degradation. We applied a quick cool-down procedure to the inner conductor and achieved a required deflecting voltage. (author)

  13. Initial measurements of beam breakup instability in the advanced test accelerator

    International Nuclear Information System (INIS)

    Chong, Y.P.; Caporaso, G.T.; Struve, K.W.

    1985-01-01

    This paper reports the measurements of beam breakup (BBU) instability performed on the Advanced Test Accelerator (ATA) up to the end of February 1984. The main objective was to produce a high current usable electron beam at the ATA output. A well-known instability is BBU which arises from the accelerator cavity modes interacting with the electron beam. The dominant mode is TM130 at a frequency of approximately 785 MHz. It couples most strongly to the beam motion and has been observed to grow in the Experimental Test Accelerator (ETA), which has only eight accelerator cavities. ATA has one hundred and seventy cavities and therefore the growth of BBU is expected to be more severe. In this paper, BBU measurements are reported for ATA with beam currents of 4 to 7 kA. Analysis showed that the growth of the instability with propagation distance was as expected for the lower currents. However, the high current data showed an apparent higher growth rate than expected. An explanation for this anomaly is given in terms of a ''corkscrew'' excitation. The injector BBU noise level for a field emission brush cathode was found to be an order of magnitude lower than for a cold plasma discharge cathode. These injector rf amplitudes agree very well with values obtained using the method of differenced Btheta loops

  14. A neutral beam-line installation for testing injector systems in the long pulse, megawatt regime

    International Nuclear Information System (INIS)

    Brookes, C.E.; Coupland, J.R.; Green, T.S.; Hammond, D.P.; Hicks, J.B.; Hoskins, A.J.; Pedley, T.R.; West, W.A.

    1981-01-01

    The existing Megawatt Beam Line assembly is being upgraded primarily in order to test prototype JET injector modules to the full rating of 80 Kv, 60 A for pulse durations up to 5 seconds. Two extra vacuum tanks are being installed, together with additional cryopumps to bring the total pumping speed to 4 x 10 5 l/s, and an inertial beam stop calorimeter capable of absorbing the full beam power is being manufactured. The auxiliary electrical supply system is being re-designed to match the proposed 'bucket' type plasma source; the new 144 Kw arc supply has a quasi constant power characteristic in order to reduce fluctuations in beam intensity, and the filament supply is designed to stabilise the source cathodes in the required emission limited mode. The high voltage supply has 120 Kv open circuit voltage for the full beam current and a commercial series tube system which will provide voltage stabilisation, tracking, and fast protection has been ordered from the Systems, Science and Software Company. The assembly and testing of all major components is planned to be completed by early 1981 in order to meet the expected delivery time of the first JET prototype injector. (author)

  15. Technological considerations in emergency instrumentation preparedness. Phase II-D. Evaluation testing and calibration methodology for emergency radiological instrumentation

    International Nuclear Information System (INIS)

    Bramson, P.E.; Andersen, B.V.; Fleming, D.M.; Kathren, R.L.; Mulhern, O.R.; Newton, C.E.; Oscarson, E.E.; Selby, J.M.

    1976-09-01

    In response to recommendations from the Advisory Committee on Reactor Safeguards, the Division of Operational Safety, U.S. ERDA has contracted with Battelle, Pacific Northwest Laboratories to survey the adequacy of existing instrumentation at nuclear fuel cycle facilities to meet emergency requirements and to develop technical criteria for instrumentation systems to be used in assessment of environmental conditions following plant emergencies. This report, the fifth in a series, provides: (1) calibration methods to assure the quality of radiological measurements and (2) testing procedures for determining whether an emergency radiological instrument meets the performance specifications. Three previous reports in this series identified the emergency instrumentation needs for power reactors, mixed oxide fuel plants, and fuel reprocessing facilities. Each of these three reports contains a Section VI, which sets forth applicable radiological instrument performance criteria and calibration requirements. Testing and calibration procedures in this report have been formatted in two parts: IV and V, each divided into three subsections: (1) Power Reactors, (2) Mixed Oxide Fuel Plants, and (3) Fuel Reprocessing Facilities. The three performance criteria subsections directly coincide with the performance criteria sections of the previous reports. These performance criteria sections have been reproduced in this report as Part III with references of ''required action'' added

  16. Technological considerations in emergency instrumentation preparedness. Phase II-D. Evaluation testing and calibration methodology for emergency radiological instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Bramson, P.E.; Andersen, B.V.; Fleming, D.M.; Kathren, R.L.; Mulhern, O.R.; Newton, C.E.; Oscarson, E.E.; Selby, J.M.

    1976-09-01

    In response to recommendations from the Advisory Committee on Reactor Safeguards, the Division of Operational Safety, U.S. ERDA has contracted with Battelle, Pacific Northwest Laboratories to survey the adequacy of existing instrumentation at nuclear fuel cycle facilities to meet emergency requirements and to develop technical criteria for instrumentation systems to be used in assessment of environmental conditions following plant emergencies. This report, the fifth in a series, provides: (1) calibration methods to assure the quality of radiological measurements and (2) testing procedures for determining whether an emergency radiological instrument meets the performance specifications. Three previous reports in this series identified the emergency instrumentation needs for power reactors, mixed oxide fuel plants, and fuel reprocessing facilities. Each of these three reports contains a Section VI, which sets forth applicable radiological instrument performance criteria and calibration requirements. Testing and calibration procedures in this report have been formatted in two parts: IV and V, each divided into three subsections: (1) Power Reactors, (2) Mixed Oxide Fuel Plants, and (3) Fuel Reprocessing Facilities. The three performance criteria subsections directly coincide with the performance criteria sections of the previous reports. These performance criteria sections have been reproduced in this report as Part III with references of ''required action'' added.

  17. Recent Results from Beam Tests of 3D and Pad pCVD Diamond Detectors

    CERN Document Server

    Wallny, Rainer

    2017-01-01

    Results from prototypes of a detector using chemical vapor deposited (CVD) diamond with embedded resistive electrodes in the bulk forming a 3D diamond device are presented. A detector system consisting of 3D devices based on poly-crystalline CVD (pCVD) diamond was connected to a multi-channel readout and successfully tested in a 120 GeV/c proton beam at CERN proving for the first time the feasibility of the 3D detector concept in pCVD for particle tracking applications. We also present beam test results on the dependence of signal size on incident particle rate in charged particle detectors based on poly-crystalline CVD diamond. The detectors were tested in a 260 MeV/c pion beam over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2 . The pulse height of the sensors was measured with pad readout electronics at a peaking time of 7 ns. Our data from the 2015 beam tests at PSI indicate that the pulse height of poly-crystalline CVD diamond sensor irradiated to 5×1014 neq/cm2 is independent of particle flux...

  18. Study of the ATLAS MDT spectrometer using high energy CERN combined test beam data

    NARCIS (Netherlands)

    Adorisio, C.; et al., [Unknown; Barisonzi, M.; Bobbink, G.; Boterenbrood, H.; Brouwer, G.; Groenstege, H.; Hart, R.; Konig, A.; Linde, F.; van der Graaf, H.; Vermeulen, J.; Vreeswijk, M.; Werneke, P.

    2009-01-01

    In 2004, a combined system test was performed in the H8 beam line at the CERN SPS with a setup reproducing the geometry of sectors of the ATLAS Muon Spectrometer, formed by three stations of Monitored Drift Tubes (MDT). The full ATLAS analysis chain was used to obtain the results presented in this

  19. Facility for the testing of the TFTR prototype neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Haughian, J.M.

    1977-07-01

    The design of the prototype neutral beam injection system for TFTR is nearing completion at the Lawrence Livermore Laboratory. This paper describes some of the features of the facility at the Lawrence Berkeley Laboratory where this prototype will be assembled and tested.

  20. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    Cordero Lopez, F.

    1961-01-01

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  1. The beam test of muon detector parameters for the SHiP experiment at CERN

    Science.gov (United States)

    Likhacheva, V. L.; Kudenko, Yu. G.; Mefodiev, A. V.; Mineev, O. V.; Khotyantsev, A. N.

    2018-01-01

    Scintillation detectors based on extruded plastics have been tested in a 10 GeV/c beam at CERN. The scintillation signal readout was provided using optical wavelength shifting fibers Y11 Kuraray and Hamamatsu MPPC micropixel avalanche photodiodes. The light yield was scanned along and across the detectors. Time resolution was found by fitting the MPPC digitized pulse rise and other methods.

  2. ALICE EMCal Reconstructable Energy Non-Linearity From Test Beam Monte Carlo

    CERN Document Server

    Carter, Thomas Michael

    2017-01-01

    Calorimeters play many important roles in modern high energy physics detectors, such as event selection, triggering, and precision energy measurements. EMCal, in the case of the ALICE experiment provides triggering on high energy jets, improves jet quenching study measurement bias and jet energy resolution, and improves electron and photon measurements [3]. With the EMCal detector in the ALICE experiment taking on so many important roles, it is important to fully understand, characterize and model its interactions with particles. In 2010 SPS and PS electron test beam measurements were performed on an EMCal mini-module [2]. Alongside this, the test beam setup and geometry was recreated in Geant4 by Nico [1]. Figure 1 shows the reconstructable energy linearity for the SPS test beam data and that obtained from the test beam monte carlo, indicating the amount of energy deposit as hits in the EMCal module. It can be seen that for energies above ∼ 100 GeV there is a significant drop in the reconstructableenergym...

  3. Facility for the testing of the TFTR prototype neutral beam injector

    International Nuclear Information System (INIS)

    Haughian, J.M.

    1977-07-01

    The design of the prototype neutral beam injection system for TFTR is nearing completion at the Lawrence Livermore Laboratory. This paper describes some of the features of the facility at the Lawrence Berkeley Laboratory where this prototype will be assembled and tested

  4. Design and Application of a Beam Testing System for Experiential Learning in Mechanics of Materials

    Science.gov (United States)

    Sullivan, R. Warsi; Rais-Rohani, M.

    2009-01-01

    Research shows that students can significantly improve their understanding and retention of topics presented in an engineering course when discussions of theoretical and mathematical approaches are combined with active-learning exercises involving hands-on physical experiments. In this paper, the design and application of a beam testing system…

  5. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    Science.gov (United States)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  6. Calibration of the radiation monitors from DESY and SPring-8 at the quasi-mono-energetic neutron beams using 100 and 300 MeV 7Li(p,n) reaction at RCNP in Osaka Japan in November 2014

    Science.gov (United States)

    Leuschner, Albrecht; Asano, Yoshihiro; Klett, Alfred

    2017-09-01

    At the ring cyclotron facility of the Research Center for Nuclear Physics (RCNP) Osaka University, Osaka, Japan a series of measurement campaigns had been continued with quasi mono-energetic neutron beams in November 2014. A 7Li target was bombarded with 100 and 300 MeV protons and the generated neutron beams were directed into a long time-of-flight tunnel at 0 and 25 degrees deflection angle with respect to the proton beam. At a distance of 41 m the cross section of the neutron beam was large enough for the illumination of square meter sized objects like extended range rem-counters. The research institutes SPring-8/RIKEN, Japan, and DESY, Germany, participated in this campaign for the calibration of 4 different types of active ambient dose rate monitors: LB 6411, LB 6411-Pb, LB 6419 and LB 6420. The measurements of their responses are reported and compared with the calculated values.

  7. Calibration of the radiation monitors from DESY and SPring-8 at the quasi-mono-energetic neutron beams using 100 and 300 MeV 7Li(p,n reaction at RCNP in Osaka Japan in November 2014

    Directory of Open Access Journals (Sweden)

    Leuschner Albrecht

    2017-01-01

    Full Text Available At the ring cyclotron facility of the Research Center for Nuclear Physics (RCNP Osaka University, Osaka, Japan a series of measurement campaigns had been continued with quasi mono-energetic neutron beams in November 2014. A 7Li target was bombarded with 100 and 300 MeV protons and the generated neutron beams were directed into a long time-of-flight tunnel at 0 and 25 degrees deflection angle with respect to the proton beam. At a distance of 41 m the cross section of the neutron beam was large enough for the illumination of square meter sized objects like extended range rem-counters. The research institutes SPring-8/RIKEN, Japan, and DESY, Germany, participated in this campaign for the calibration of 4 different types of active ambient dose rate monitors: LB 6411, LB 6411-Pb, LB 6419 and LB 6420. The measurements of their responses are reported and compared with the calculated values.

  8. Test and Calibration of the Digital World-Wide Standardized Seismograph

    Science.gov (United States)

    Peterson, Jon; Hutt, Charles R.

    1982-01-01

    sophisticated than the original concept. It was decided to record three components of long-period data continuously, three components of intermediate- period data in an event mode, and the vertical-component short-period data in and event mode (with the capability of adding short-period horizontal channels in the future). Special amplifiers were developed for use with the WWSS seismometers, and a 16-bit fixed-point analog-to-digital converter was chosen to provide increased resolution (as opposed to a 16-bit gain-ranged encoder). The microprocessor-based digital recording systems were developed and assembled at the USGS Albuquerque Seismological Laboratory (ASL) and ASL-based techni- cians began installation at WWSSN stations in 1980. The current and proposed locations of the DWWSSN stations, together with other stations in the Global Digital Seismograph Network (GDSN), are shown on the map in Figure i.i. A system was operated at Albuquerque for about 18 months, serving as a test bed for evaluatiDn studies. Although the network hardware has been available for some time, the installation of the DWWSSN has proceeded slowly. The National Science Foundation supported installation of six stations and the USGS is funding installation of most of the others; however, the network completion date is conjectural because of funding uncertainties. The DWWSSN stations are supported with supplies and technical assistance from ASL (subject to availability of funds). Data recorded on magnetic tapes are mailed to ASL where they are reviewed for quality, then merged with other GDSN station data on the network-day tapes. Hoffman (1980) provides a description of the network-day tape format. Zirbes and Buland (1981) have developed and published user software for reading and interpreting the day tapes. This report will serve several purposes. One is to provide nominal system transfer functions and calibration information that are n

  9. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test

    Science.gov (United States)

    Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-01

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from −20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis. PMID:29320443

  10. IOP Latest R&D news and beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

    CERN Document Server

    Irles, Adrián

    2018-02-22

    High precision physics at future colliders as the International Linear Collider (ILC) require unprecedented high precision in the determination of the energy of final state particles. The needed precision will be achieved thanks to the Particle Flow algorithms (PF) which require highly granular and hermetic calorimeters systems. The physical proof of concept of the PF was performed in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. One of these prototypes was the physics prototype of the Silicon-Tungsten Electromagnetic Calorimeter (SiW-ECAL) for the International Large Detector at the ILC. In this document we present the latest nes on R&D of the next generation prototype, the technological prototype with fully embedded very front-end (VFE) electronics, of the SiW-ECAL. Special emphasis is given to the presentation and discussion of the first results from the beam test done at DESY in June 2017. The physics program for such beam test consisted in the calibration a...

  11. Beam tests of prototype fiber detectors for the H1 forward proton spectrometer

    International Nuclear Information System (INIS)

    Baehr, J.; Hiller, K.; Hoffmann, B.; Luedecke, H.; Menchikov, A.; Nahnhauer, R.; Roloff, H.E.; Tonisch, F.; Voelkert, R.

    1994-07-01

    Different prototypes of fiber detectors with an internal trigger system were tested in a 5 GeV electron beam at DESY. A silicon microstrip telescope was used for an external reference measurement of the beam to study the spatial resolution of the fiber detectors. On average 75% of all crossing electron tracks could be reconstructed with a precision better than 150 μm. These successful methodical investigations led to the installation of similar detectors in the proton beamline 81 m downstream of the central H1-detector at HERA as part of a forward proton spectrometer in spring 1994. (orig.)

  12. Development and beam test of a continuous wave radio frequency quadrupole accelerator

    Directory of Open Access Journals (Sweden)

    P. N. Ostroumov

    2012-11-01

    Full Text Available The front end of any modern ion accelerator includes a radio frequency quadrupole (RFQ. While many pulsed ion linacs successfully operate RFQs, several ion accelerators worldwide have significant difficulties operating continuous wave (CW RFQs to design specifications. In this paper we describe the development and results of the beam commissioning of a CW RFQ designed and built for the National User Facility: Argonne Tandem Linac Accelerator System (ATLAS. Several innovative ideas were implemented in this CW RFQ. By selecting a multisegment split-coaxial structure, we reached moderate transverse dimensions for a 60.625-MHz resonator and provided a highly stabilized electromagnetic field distribution. The accelerating section of the RFQ occupies approximately 50% of the total length and is based on a trapezoidal vane tip modulation that increased the resonator shunt impedance by 60% in this section as compared to conventional sinusoidal modulation. To form an axially symmetric beam exiting the RFQ, a very short output radial matcher with a length of 0.75βλ was developed. The RFQ is designed as a 100% oxygen-free electronic (OFE copper structure and fabricated with a two-step furnace brazing process. The radio frequency (rf measurements show excellent rf properties for the resonator, with a measured intrinsic Q equal to 94% of the simulated value for OFE copper. An O^{5+} ion beam extracted from an electron cyclotron resonance ion source was used for the RFQ commissioning. In off-line beam testing, we found excellent coincidence of the measured beam parameters with the results of beam dynamics simulations performed using the beam dynamics code TRACK, which was developed at Argonne. These results demonstrate the great success of the RFQ design and fabrication technology developed here, which can be applied to future CW RFQs.

  13. Modelling of tests performed in order to evaluate the residual strength of corroded beams in the framework of the benchmark of the rance beams

    Science.gov (United States)

    Millard, A.; Vivier, M.

    2006-11-01

    The Benchmark of the Rance beams has been organised in order to evaluate the capabilities of various modelling tools, to predict the residual load carrying capacity of corroded beams. The Rance beams have been corroded in a marine environment for nearly 40years. Different types of prestressed beams, made of different types of cement, have been subjected to four points bending monotonous and cyclic tests as well as direct traction tests. The tests have been carried on up to failure, in order to evaluate the residual carrying capacity of the beams. Different teams have participated to the blind prediction of the tests results. In this framework, the CEA/DM2S/LM2S team has performed bidimensionnal modellings which are described in details in this paper. The various constitutive elements of the beams are represented : for concrete, the isotropic Mazars' damage model is used, in a non local version, for prestressing and passive steels, an elasto-plastic strain hardening model is adopted. The corrosion effects, taken into account for the longitudinal rebars, are derived on one hand from the measurements performed on the beams after the tests, and on the other hand from the literature. They consist mainly in a reduction of the rebars cross-section, as well as in their ductility. In principle, the properties of the bond between steel and rebars are also modified by the corrosion. Here, because of the unavailability of specific data on the smooth rebars of the Rance beams, the bond has been modelled by means of specific joint finite elements. The load carrying capacity has been calculated for the monotonous as well as the cyclic tests. Moreover, a sensitivity analysis has been performed, by considering variants where either the rebars are sane, or they have only reduced sections, with their original ductility. The results are compared to the experimental database, and discussed.

  14. VALIDATION TESTS OF OPEN-SOURCE PROCEDURES FOR DIGITAL CAMERA CALIBRATION AND 3D IMAGE-BASED MODELLING

    Directory of Open Access Journals (Sweden)

    I. Toschi

    2013-07-01

    Full Text Available Among the many open-source software solutions recently developed for the extraction of point clouds from a set of un-oriented images, the photogrammetric tools Apero and MicMac (IGN, Institut Géographique National aim to distinguish themselves by focusing on the accuracy and the metric content of the final result. This paper firstly aims at assessing the accuracy of the simplified and automated calibration procedure offered by the IGN tools. Results obtained with this procedure were compared with those achieved with a test-range calibration approach using a pre-surveyed laboratory test-field. Both direct and a-posteriori validation tests turned out successfully showing the stability and the metric accuracy of the process, even when low textured or reflective surfaces are present in the 3D scene. Afterwards, the possibility of achieving accurate 3D models from the subsequently extracted dense point clouds is also evaluated. Three different types of sculptural elements were chosen as test-objects and "ground-truth" data were acquired with triangulation laser scanners. 3D models derived from point clouds oriented with a simplified relative procedure show a suitable metric accuracy: all comparisons delivered a standard deviation of millimeter-level. The use of Ground Control Points in the orientation phase did not improve significantly the accuracy of the final 3D model, when a small figure-like corbel was used as test-object.

  15. Quality control tests of an activity meter to be used as reference for an in situ calibration methodology

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Eduardo de L.; Kuahara, Lilian T.; Potiens, Maria da Penha A., E-mail: educorrea1905@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The Nuclear Medicine is a medical speciality involving the application of radioactive isotopes in diagnosis and/or treatment of disease. In order to ensure that the radiation dose applied to the patient is adequate, the radiopharmaceutical activity must be adequately measured. This work was performed to analyze the behavior of an activity meter Capintec NPL-CRC to be used as a reference for the implementation of a methodology for in situ calibration of nuclear medicine equipment. It were made the daily quality control tests, such as auto zero, background, system test, accuracy test and constancy test, and determination of repeatability and intermediate measurement precision using {sup 137}Cs, {sup 57}Co and {sup 133}Ba sources.Furthermore, this equipment was used to confirm the check sources activities produced at IPEN and used by the laboratory that produces the radiopharmaceuticals sent to the nuclear medicine services. The results showed a good behavior of this equipment. The maximum variation obtained in the accuracy test was of 1.81% for the {sup 57}Co source. For {sup 137}Cs this variation was of 4.59%, and for {sup 133}Ba, 11.83%. The high value obtained for the last case, indicates the needs of a correction that can be obtained by calibration methods. The result obtained using different reference sources showed a great repeatability with maximum variation of 1.38%. (author)

  16. Thermal shock testing of TiC-coated molybdenum with pulsed hydrogen beams

    International Nuclear Information System (INIS)

    Nakamura, Kazuyuki

    1985-07-01

    Thermal shock testing of molybdenum samples, on which TiC is coated by TP-CVD and CVD methods, has been made by using a pulsed hydrogen beam. The power density applied was 2 kw/cm 2 . The test results showed that TiC coatings did not exfoliate until the melting of the substrate and showed good adhesion under the thermal shock condition. (author)

  17. First joint test beam of CMS Drift Tubes (DT) and Resistive Plate Chambers (RPC)

    CERN Multimedia

    Paolo Giacomelli

    2001-01-01

    The first full size muon drift tube chamber ever built for the CMS barrel with the final cell design (constructed at CIEMAT, Madrid) was succesfully tested with a muon beam in September 2001 at the Gamma Irradiation Facility (GIF) at CERN. For the first time also both muon detectors for the CMS barrel (DT + RPC) were coupled together. The results of this test were fully succesful and confirmed the excellent performance of both detectors together in a radiation environment.

  18. Calibration and Validation of a Finite ELement Model of THor-K Anthropomorphic Test Device for Aerospace Safety Applications

    Science.gov (United States)

    Putnam, J. B.; Unataroiu, C. D.; Somers, J. T.

    2014-01-01

    The THOR anthropomorphic test device (ATD) has been developed and continuously improved by the National Highway Traffic Safety Administration to provide automotive manufacturers an advanced tool that can be used to assess the injury risk of vehicle occupants in crash tests. Recently, a series of modifications were completed to improve the biofidelity of THOR ATD [1]. The updated THOR Modification Kit (THOR-K) ATD was employed at Wright-Patterson Air Base in 22 impact tests in three configurations: vertical, lateral, and spinal [2]. Although a computational finite element (FE) model of the THOR had been previously developed [3], updates to the model were needed to incorporate the recent changes in the modification kit. The main goal of this study was to develop and validate a FE model of the THOR-K ATD. The CAD drawings of the THOR-K ATD were reviewed and FE models were developed for the updated parts. For example, the head-skin geometry was found to change significantly, so its model was re-meshed (Fig. 1a). A protocol was developed to calibrate each component identified as key to the kinematic and kinetic response of the THOR-K head/neck ATD FE model (Fig. 1b). The available ATD tests were divided in two groups: a) calibration tests where the unknown material parameters of deformable parts (e.g., head skin, pelvis foam) were optimized to match the data and b) validation tests where the model response was only compared with test data by calculating their score using CORrelation and Analysis (CORA) rating system. Finally, the whole ATD model was validated under horizontal-, vertical-, and lateral-loading conditions against data recorded in the Wright Patterson tests [2]. Overall, the final THOR-K ATD model developed in this study is shown to respond similarly to the ATD in all validation tests. This good performance indicates that the optimization performed during calibration by using the CORA score as objective function is not test specific. Therefore confidence is

  19. Cavity beam position monitor system for the Accelerator Test Facility 2

    Directory of Open Access Journals (Sweden)

    Y. I. Kim

    2012-04-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1  μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  20. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A.J.; Beccherle, R.; Bell, P.J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P.A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J.B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick,, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B.J.; Gan, K.K.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gottfert, T.; Grosse-Knetter, J.; Hansen, P.H.; Hara, K.; Hartel, R.; Harvey, A.; Hawkings, R.J.; Heinemann, F.E.W.; Henss, T.; Hill, J.C.; Huegging, F.; Jansen, E.; Joseph, J.; Unel, M. Karagoz; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C.G.; Liebig, W.; Lipniacka, A.; Lourerio, K.F.; Mangin-Brinet, M.; Marti i Garcia, S.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E.W.J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P.W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C.J.W.P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wellsf, P.S.; Zhelezkow, A.

    2008-06-02

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.