WorldWideScience

Sample records for beam stacking

  1. A new method for beam stacking in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2008-06-01

    Recently, I developed a new beam stacking scheme for synchrotron storage rings called 'longitudinal phase-space coating' (LPSC). This scheme has been convincingly validated by multi-particle beam dynamics simulations and has been demonstrated with beam experiments at the Fermilab Recycler. Here, I present the results from both simulations and experiments. The beam stacking scheme presented here is the first of its kind.

  2. Asymmetrical prism for beam shaping of laser diode stacks.

    Science.gov (United States)

    Zeng, Xiaodong; Cao, Changqing; An, Yuying

    2005-09-10

    A beam-shaping scheme for a laser diode stack to obtain a flattop output intensity profile is proposed. The shaping element consists of an asymmetrical glass prism. The large divergence-angle compression in the direction perpendicular to the junction plane and the small divergence-angle expansion in the parallel direction are performed simultaneously by a single shaping element. The transformation characteristics are presented, and the optimization performance is investigated based on the ray-tracing method. Analysis shows that a flattop intensity profile can be obtained. This beam-shaping system can be fabricated easily and has a large alignment tolerance.

  3. Beam shaping design for coupling high power diode laser stack to fiber.

    Science.gov (United States)

    Ghasemi, Seyed Hamed; Hantehzadeh, Mohammad-Reza; Sabbaghzadeh, Jamshid; Dorranian, Davoud; Lafooti, Majid; Vatani, Vahid; Rezaei-Nasirabad, Reza; Hemmati, Atefeh; Amidian, Ali Asghar; Alavian, Seyed Ali

    2011-06-20

    A beam shaping technique that rearranges the beam for improving the beam symmetry and power density of a ten-bar high power diode laser stack is simulated considering a stripe mirror plate and a V-Stack mirror in the beam shaping system. In this technique, the beam of a high power diode laser stack is effectively coupled into a standard 550 μm core diameter and a NA=0.22 fiber. By this technique, compactness, higher efficiency, and lower cost production of the diode are possible.

  4. Beam-shaping technique for improving the beam quality of a high-power laser-diode stack.

    Science.gov (United States)

    Gao, Xin; Ohashi, Hiroyuki; Okamoto, Hiroshi; Takasaka, Masaomi; Shinoda, Kazunori

    2006-06-01

    We report a beam-shaping technique that reconfigures the beams to improve the beam quality and enhance the power density for a ten-array high-power laser-diode stack by using two optical rectangular cubes and two stripe-mirror plates. The reshaped beam has threefold improvement in beam quality, and its power density is effectively enhanced. On the basis of this technique, we focus the beam of the high-power laser-diode stack to effectively end pump a high-power fiber laser.

  5. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    International Nuclear Information System (INIS)

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  6. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  7. Correction of beam errors in high power laser diode bars and stacks.

    Science.gov (United States)

    Monjardin, J F; Nowak, K M; Baker, H J; Hall, D R

    2006-09-01

    The beam errors of an 11 bar laser diode stack fitted with fast-axis collimator lenses have been corrected by a single refractive plate, produced by laser cutting and polishing. The so-called smile effect is virtually eliminated and collimator aberration greatly reduced, improving the fast-axis beam quality of each bar by a factor of up to 5. The single corrector plate for the whole stack ensures that the radiation from all the laser emitters is parallel to a common axis. Beam-pointing errors of the bars have been reduced to below 0.7 mrad.

  8. Incoherent vertical ion losses during multiturn stacking cooling beam injection

    Science.gov (United States)

    Syresin, E. M.

    2014-07-01

    The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.

  9. Highly efficient diode-stack, end-pumped Nd:YAG slab laser with symmetrized beam quality.

    Science.gov (United States)

    Liao, Y; Du, K; Falter, S; Zhang, J; Quade, M; Loosen, P; Poprawe, R

    1997-08-20

    An efficient high-power cw Nd:YAG slab laser, partially end pumped by diode-laser stacks, and a novel beam-shaping technique are reported. The optical efficiency amounted to 44 %, and the slope efficiency amounted to 55 %. Introducing an intracavity Brewster plate to polarize the laser beam, we obtained an optical efficiency of 35 % and a slope efficiency of 41 %. The output beam was rectangular and the beam quality asymmetric in two orthogonal directions. To equalize the beam quality, we introduced a step-mirror beam-shaping technique. The beam-shaping technique and the results obtained are discussed.

  10. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Science.gov (United States)

    O'Connor, A. P.; Grussie, F.; Bruhns, H.; de Ruette, N.; Koenning, T. P.; Miller, K. A.; Savin, D. W.; Stützel, J.; Urbain, X.; Kreckel, H.

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ˜7.4% for H- at a beam energy of 10 keV and ˜3.7% for C- at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  11. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks.

    Science.gov (United States)

    O'Connor, A P; Grussie, F; Bruhns, H; de Ruette, N; Koenning, T P; Miller, K A; Savin, D W; Stützel, J; Urbain, X; Kreckel, H

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ∼7.4% for H(-) at a beam energy of 10 keV and ∼3.7% for C(-) at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table. PMID:26628128

  12. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    CERN Document Server

    O'Connor, A P; Grussie, F; Koenning, T P; Miller, K A; de Ruette, N; Stützel, J; Savin, D W; Urbain, X; Kreckel, H

    2015-01-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of $\\sim$7.4\\% for H$^-$ at a beam energy of 10\\,keV and $\\sim$3.7\\% for C$^-$ at 28\\,keV. The diode laser systems used here operate at 975\\,nm and 808\\,nm, respectively, and provide high continuous power levels of up to 2\\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  13. Exposure of CR39 Stacks to Oxygen and Sulphur Beams at the CERN-SPS

    CERN Multimedia

    2002-01-01

    We plan to expose 8 stacks of CR39 sheets to oxygen and sulphur ions of 60 and 200~GeV at the CERN-SPS.\\\\ \\\\ The main purpose of the exposures is the calibration of the CR39 sheets used for a large area experimental search for magnetic monopoles at the Gran Sasso Laboratory (experiment MACRO). \\\\ \\\\ The stacks have 20~layers of CR39, each layer 13~cm~x~7~cm and 1.4~mm thick. A copper absorber is located after the first 6 layers. \\\\ \\\\ We require exposures of about 2000 tracks per cm$^2$ over the entire area of the stack with a uniform illumination. The standard beam used for the emulsion experiments is normally adequate for this purpose.\\\\ \\\\ We have performed one exposure to sulphur ions. The etched tracks have been measured automatically with the Elbeck image analyser system. We measured the incoming sulphur ions as well as the nuclear fragments produced in the copper absorber. Clean separation among the peaks due to the various fragments is obtained (there is no indication of nuclei with fractional electri...

  14. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks.

    Science.gov (United States)

    Xiao, Y; Brunet, F; Kanskar, M; Faucher, M; Wetter, A; Holehouse, N

    2012-01-30

    We have demonstrated a monolithic cladding-pumped ytterbium-doped single all-fiber laser oscillator generating 1 kW of CW signal power at 1080 nm with 71% slope efficiency and near diffraction-limited beam quality. Fiber components were highly integrated on "spliceless" passive fibers to promote laser efficiency and alleviate non-linear effects. The laser was pumped through a 7:1 pump combiner with seven 200-W 91x nm fiber-pigtailed wavelength-beam-combined diode-stack modules. The signal power of such a single all-fiber laser oscillator showed no evidence of roll-over, and the highest output was limited only by available pump power.

  15. Experimental and computational techniques for the analysis of proton beam propagation through a target stack

    International Nuclear Information System (INIS)

    Proton beam energy, energy straggling, and intensity in thick stacks of target materials at the Los Alamos Isotope Production Facility were investigated using the foil activation technique and computational simulations. Isotopic yield measurements of irradiated foils from several recent experiments used to determine these quantities were compared with the predictions of MCNP6 and TRIM codes, and with Andersen & Ziegler’s semi-empirical formalism. Differences between code predictions and experimental data were examined. Methods for computational simulation of energy propagation agree well with one another and were able to accurately predict the proton beam’s energy for a limited range. Predictions were accurate when degrading from an initial energy of 100 MeV down to approximately 50 MeV, but struggled to represent measured data well at lower energies

  16. Output optics for Aurora: Beam separation, pulse stacking, and target focusing

    International Nuclear Information System (INIS)

    An end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. The optical system has been designed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. During first-phase design, the system was conceived of as only an amplifier demonstration and not as an end-to-end system demonstration. The design concept for second-phase optics that provides demultiplexing and carries the laser light to target is presented

  17. Possibility of identification of elastic properties in laminate beams with cross-ply laminae stacking sequences

    Directory of Open Access Journals (Sweden)

    Zajíček M.

    2011-12-01

    Full Text Available The goal of this work is to show the possibility of the identification of laminate beam specimens elastic properties with cross-ply laminae stacking sequences using prescribed eigenfrequencies. These frequencies are not determined experimentally in this paper but they are calculated numerically by means of the finite element (FE software MSC.Marc. The composite material properties of the FE model based on Euler-Bernoulli theory have been subsequently tuned to correlate the determined frequencies in cross-ply laminate beams with the eigenfrequencies obtained by the software package. A real-coded genetic algorithm (GA and a micro-genetic algorithm (mGA are applied as the inverse technique for the identification problem. Because a small efficiency of the GAs in searching for Poisson’s ratio values was found, this parameter and the in-plane shear modulus have been estimated by using the law of mixtures. Some numerical examples are given to illustrate the proposed technique.

  18. Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    Science.gov (United States)

    Karacheban, O.; Afanaciev, K.; Hempel, M.; Henschel, H.; Lange, W.; Leonard, J. L.; Levy, I.; Lohmann, W.; Schuwalow, S.

    2015-08-01

    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm2 size and 525 μ m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10% at 095 V. The signal size obtained from electrons crossing the stack at this voltage is about 02200 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20% in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.

  19. Laser-plasma acceleration with multi-color pulse stacks: Designer electron beams for advanced radiation sources

    Science.gov (United States)

    Kalmykov, Serge; Shadwick, Bradley; Ghebregziabher, Isaac; Davoine, Xavier

    2015-11-01

    Photon engineering offers new avenues to coherently control electron beam phase space on a femtosecond time scale. It enables generation of high-quality beams at a kHz-scale repetition rate. Reducing the peak pulse power (and thus the average laser power) is the key to effectively exercise such control. A stepwise negative chirp, synthesized by incoherently stacking collinear sub-Joule pulses from conventional CPA, affords a micron-scale bandwidth. It is sufficient to prevent rapid compression of the pulse into an optical shock, while delaying electron dephasing. This extends electron energy far beyond the limits suggested by accepted scalings (beyond 1 GeV in a 3 mm plasma), without compromising beam quality. In addition, acceleration with a stacked pulse in a channel favorably modifies electron beam on a femtosecond time scale, controllably producing synchronized sequences of 100 kA-scale, quasi-monoenergetic bunches. These comb-like, designer GeV electron beams are ideal drivers of polychromatic, tunable inverse Thomson γ-ray sources. The work of SYK and BAS is supported by the US DOE Grant DE-SC0008382 and NSF Grant PHY-1104683. Inverse Thomson scattering simulations were completed utilizing the Holland Computing Center of the University of Nebraska.

  20. Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    CERN Document Server

    Karacheban, O; Hempel, M; Henschel, H; Lange, W; Leonard, J L; Levy, I; Lohmann, W; Schuwalow, S

    2015-01-01

    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitoring systems at the Large Hadron Collider, FLASH or XFEL. Artificial diamond sensors are currently widely used as sensors in these systems. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm^2 size and 525 micrometer thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the dete...

  1. Al and Ge simultaneous oxidation using neutral beam post-oxidation for formation of gate stack structures

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Takeo, E-mail: t-ohno@wpi-aimr.tohoku.ac.jp [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nakayama, Daiki [Institute of Fluid Science (IFS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Samukawa, Seiji, E-mail: samukawa@ifs.tohoku.ac.jp [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Fluid Science (IFS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2015-09-28

    To obtain a high-quality Germanium (Ge) metal–oxide–semiconductor structure, a Ge gate stacked structure was fabricated using neutral beam post-oxidation. After deposition of a 1-nm-thick Al metal film on a Ge substrate, simultaneous oxidation of Al and Ge was carried out at 300 °C, and a Ge oxide film with 29% GeO{sub 2} content was obtained by controlling the acceleration bias power of the neutral oxygen beam. In addition, the fabricated AlO{sub x}/GeO{sub x}/Ge structure achieved a low interface state density of less than 1 × 10{sup 11 }cm{sup −2 }eV{sup −1} near the midgap.

  2. Detection and characterization of stacking faults by light beam induced current mapping and scanning infrared microscopy in silicon

    Science.gov (United States)

    Vève-Fossati, C.; Martinuzzi, S.

    1998-08-01

    Non destructive techniques like scanning infrared microscopy and light beam induced current mapping are used to reveal the presence of stacking faults in heat treated Czochralski grown silicon wafers. In oxidized or contaminated samples, scanning infrared microscopy reveals that stacking faults grow around oxygen precipitates. This could be due to an aggregation of silicon self-interstitials emitted by the growing precipitates in the (111) plane. Light beam induced current maps show that the dislocations which surround the stacking faults are the main source of recombination centers, especially when they are decorated by a fast diffuser like copper. Des techniques non destructives telles que la microscopie infrarouge à balayage et la cartographie de photocourant induit par un spot lumineux ont été utilisées pour révéler la présence de fautes d'empilement après traitements thermiques, dans des plaquettes de silicium préparées par tirage Czochralski. Dans des échantillons oxydés ou contaminés, la microscopie infrarouge à balayage révèle des fautes d'empilement qui se développent autour des précipités d'oxygène. Cela peut être dû à la formation d'un agglomérat d'auto-interstitiels de silicium émis par la croissance des précipités dans les plans (111). Les cartographies de photocourant montrent que les dislocations qui entourent les fautes d'empilement sont la principale source de centres de recombinaison, et cela tout particulièrement quand ces fautes sont décorées par un diffuseur rapide tel que le cuivre.

  3. Resonance effects of transition radiation emitted from thin foil stacks using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Awata, Takaaki; Yajima, Kazuaki; Tanaka, Takashi [Kyoto Univ. (Japan). Faculty of Engineering] [and others

    1997-03-01

    Transition Radiation(TR) X rays are expected to be a high brilliant X-ray source because the interference among TR X rays emitted from many thin foils placed periodically in vacuum can increase their intensity and make them quasi-monochromatic. In order to study the interference (resonance) effects of TR, we measured the energy spectra of TR for several sets of thin-foil stacks at various emission angles. It was found that the resonance effects of TR are classified into intrafoil and interfoil resonances and the intensity of TR X rays increases nonlinearly with increasing foil number, attributing to the interfoil resonance. It became evident that the brilliance of TR is as high as that of SR. (author)

  4. Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating.

    Science.gov (United States)

    Chann, B; Goyal, A K; Fan, T Y; Sanchez-Rubio, A; Volodin, B L; Ban, V S

    2006-05-01

    We report a method of scaling the spatial brightness from commercial off-the-shelf diode laser stacks through wavelength beam combining, by use of a linearly wavelength-chirped volume Bragg grating (VBG). Using a three-bar commercial stack of broad-area lasers and a VBG, we demonstrate 89.5 W cw of beam-combined output with a beam-combining efficiency of 75%. The output beam has a propagation factor M2 approximately 26 on the slow axis and M2 approximately 21 on the fast axis. This corresponds to a brightness of approximately 20 MW/cm2 sr. To our knowledge, this is the highest brightness broad-area diode laser system. We achieve 81% coupling efficiency into a 100 microm, 0.22 N.A. fiber.

  5. Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.

    Science.gov (United States)

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro

    2015-07-01

    To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.

  6. An economic analysis of the abatement of pollution due to flue gas stacks of industrial, electrical plants and of incinerators using electrical discharges, ozone and electron beam

    International Nuclear Information System (INIS)

    There are numerous of investigations, many reports and a lot of industrial applications for simultaneous reduction of SO2 and NOx from flue gas stack emission by electron beam induced plasma process. When ammonia is applied under electron beam bombardment, concentration decreases to zero, and it is also accompanied by salt formation, i.e. ammonium sulphate and ammonium nitrate. This efficient technology, requires high costs for investment and has been applied in only few countries until now (Japan, China, USA, Poland). There are a lot of small countries, consumers of cheap combustibles, which produce large quantities of atmospheric pollutants such as SO2 and NOx. For this reason there is a great interest for the implementation of cheaper technologies with a similar impact as electron beam processing. In this paper we have given a lot of experimental data for SO2 and NOx removal by means of electron beams, electrical discharge and ozone, both in stand alone and in hybrid systems and, also, a comparison with the results obtained by other laboratories.The applications of new technologies are presented with an Economic Analysis of the efficiency

  7. Beam Stacking Study of HIRFL-CSR Project%兰州重离子加速器冷却储存环束流累积研究

    Institute of Scientific and Technical Information of China (English)

    原有进; 夏佳文; 张文志; 宋明涛; 杨晓东

    2001-01-01

    The beam accumulation methods of HIRFL-CSR(Heavy Ion ResearchFacility of Lanzhou and Cooler Storage Rings) project were studied. Two accumulation methods will be adopted to increase the beam intensity of CSRm. For both multiple multi-turn injection method and RF stacking method, electron cooling of beam plays an important role.%对兰州重离子加速器冷却储存环加速器主体的主要功能环——主环的束流累积方法和设计进行了研究.为了使主环对不同种类的重离子束流都具有较强的累积能力,在设计时考虑采用电子冷却参与下的两种束流累积方法:多次多圈注入和射频堆积.对这两种方法,电子冷却的冷却时间都是将束流累积到高流强的关键因素.

  8. Multibeam collimator uses prism stack

    Science.gov (United States)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  9. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition

    Science.gov (United States)

    Meng, Jun Hua; Zhang, Xing Wang; Wang, Hao Lin; Ren, Xi Biao; Jin, Chuan Hong; Yin, Zhi Gang; Liu, Xin; Liu, Heng

    2015-09-01

    Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were obtained by using the continuous h-BN film as a substrate. Furthermore, the well-designed sub-bilayered h-BN substrates provide direct evidence that the monolayered h-BN on Cu exhibits higher catalytic activity than the bilayered h-BN on Cu. The growth method applied here may have great potential in the scalable preparation of large-area high-quality graphene/h-BN heterostructures.Graphene/hexagonal boron nitride (h-BN) heterostructures have attracted a great deal of attention in recent years due to their unique and complementary properties for use in a wide range of potential applications. However, it still remains a challenge to synthesize large-area high quality samples by a scalable growth method. In this work, we present the synthesis of both in-plane and stacked graphene/h-BN heterostructures on Cu foils by sequentially depositing h-BN via ion beam sputtering deposition (IBSD) and graphene with chemical vapor deposition (CVD). Due to a significant difference in the growth rate of graphene on h-BN and Cu, the in-plane graphene/h-BN heterostructures were rapidly formed on h-BN domain/Cu substrates. The large-area vertically stacked graphene/h-BN heterostructures were

  10. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  11. Beam collimation of diode laser vertical stack%二极管激光器垂直阵列光束精密准直

    Institute of Scientific and Technical Information of China (English)

    郭林辉; 高松信; 武德勇; 吕文强; 李弋; 李艾

    2011-01-01

    为实现二极管激光器垂直阵列输出光束具有小发散角、高指向精度的特点,简述了快轴准直(FAC)微透镜的光束准直原理,分析了调节装置的精度要求及透镜选择等问题.通过光学成像方法实时监测二极管激光bar条的近场像和远场像,对FAC透镜分别进行粗调节和细调节,获得了20个bar条连续输出2kW,垂直阵列二极管激光快轴准直光束远场发散角4.4 mrad,bar条问准直光束指向精度不大于±1.7 mrad的准直效果,并对监测精度进行了简要分析.对影响光束准直效果的因素进行了分析,指出了工艺优化的重点.%Beam collimation mechanism of the fast axis collimation(FAC) microlens is described, and theoretical accuracy requirements for adjusting advice and the selection of lens are analyzed, for the output beam of diode laser vertical stack to achieve small divergence angle and high pointing accuracy. The images of diode laser bar in the near field and far field are real-time monitored through optical imaging methods to realize coarse and fine adjustments of FAC lens, respectively. The output power of the 20-bar vertical stack is 2 kW, and the far field divergence angle of fast axis collimated beams is 4.4 mrad,with the pointing accuracy among bars of less than ±1.7 mrad. The monitering precision and the collimation influencing factors are analyzed,and the key of optimization is pointed out.

  12. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    Energy Technology Data Exchange (ETDEWEB)

    Ni, P. A.; Bieniosek, F. M.; Logan, B. G. [Lawrence Berkeley National Laboratory, California 94720 (United States); Lund, S. M.; Barnard, J. J.; Bellei, C.; Cohen, R. H. [Lawrence Livermore National Laboratory, California 94551 (United States); McGuffey, C.; Beg, F. N.; Kim, J. [University of California, San Diego, California 92093 (United States); Alexander, N. [General Atomics, San Diego, California 92121 (United States); Aurand, B.; Brabetz, C.; Neumayer, P. [GSI-Darmstadt, Planckstraße 1, 64291 Darmstadt (Germany); Roth, M. [TU-Darmstadt, Karolinenplatz 5, 64289 Darmstadt (Germany)

    2013-08-15

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure (“lens”) consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a “passive environment,” i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt “PHELIX” laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the “Helmholtzzentrum für Schwerionenforschung–GSI” in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  13. A method to compensate the energy loss of a continuous stacked beam with a large momentum spread

    International Nuclear Information System (INIS)

    A system of rectangular drift tube loaded cavities resonating in the TE 101 mode combined with a cyclic scaling guide field can be used to accelerate an unbunched beam of charged particles. The system is superior to phase displacement because the cavities are driven at a fixed frequency with certain phase differences between each other. The range of particle momenta is limited by rf-knock out. Rf-induced betatron oscillations and phase dependent momentum changes can be compensated by means of sixteen cavities on the circumference of the accelerator. The amplitude of the betatron oscillations and the energy gain were calculated numerically for storage devices consisting of a spiral-sector FFAG guide field and one or sixteen cavities, respectively, using measured rf-feld data. The systems seem to be practical only for electrons with an energy up to 100 MeV. The rf-system works within an energy width of several MeV. (Auth.)

  14. Investigation of InGaP/(In)AlGaAs/GaAs triple-junction top cells for smart stacked multijunction solar cells grown using molecular beam epitaxy

    Science.gov (United States)

    Sugaya, Takeyoshi; Mochizuki, Toru; Makita, Kikuo; Oshima, Ryuji; Matsubara, Koji; Okano, Yoshinobu; Niki, Shigeru

    2015-08-01

    We report high-quality InGaP/(In)AlGaAs/GaAs triple-junction solar cells fabricated using solid-source molecular beam epitaxy (MBE) for the first time. The triple-junction cells can be used as top cells for smart stacked multijunction solar cells. A growth temperature of 480 °C was found to be suitable for an (In)AlGaAs second cell to obtain high-quality tunnel junctions. The properties of AlGaAs solar cells were better than those of InAlGaAs solar cells when a second cell was grown at 480 °C. The high-quality InGaP/AlGaAs/GaAs solar cell had an impressive open-circuit voltage of 3.1 V. This result indicates that high-performance InGaP/AlGaAs/GaAs triple-junction solar cells can be fabricated using solid-source MBE.

  15. Experiments on a relativistic magnetron driven by a microsecond electron beam accelerator with a ceramic insulating stack

    Science.gov (United States)

    Lopez, Mike Rodriguez

    2003-10-01

    Relativistic magnetron experiments with a 6-vane, Titan tube have generated over 300 MW total microwave output power near 1 GHz. These experiments were driven by a long-pulse, e-beam accelerator. Parameters of the device were voltage = -0.3 to -0.4 MV, current = 1--10 kA, and pulselength = 0.5 microsecond. This body of work investigated pulse-shortening in the relativistic magnetron. Microwave generation with a conventional plastic insulator was compared to that with a new ceramic insulator. The ceramic insulator improved the vacuum by an order of magnitude (1 x 10-7 Torr) and increased voltage stability of the accelerator. The effect of RF breakdown in the waveguide on the intensity and duration of high power microwaves were also investigated. These experiments found that when SF6 gas was introduced into the waveguide, the measured efficiency, power, and pulselength of microwaves increased. Two different microwave extraction mechanisms were used. In the first system, two waveguides were connected to the magnetron pi-radians from each other. The second system used three waveguides to connect to the magnetron's extraction ports at 2pi/3 radians from each other. Microwaves were extracted into and measured from the waveguide. Pulselengths were found to be in the range of 10--200 ns. The theoretical investigation calculates the maximum injected current for a time-independent cycloidal flow in a relativistic, magnetically insulated diode. The analytical theory of Lovelace-Ott was extended by relaxing the space charge limited (SCL) assumption. This theory reduced to Christenson's results in the deeply non-relativistic regime, and to Lovelace-Ott under SCL. This theory has been successfully tested against relativistic PIC code simulations.

  16. 高功率叠阵二极管激光器光束整形%Beam reshape of high power laser diode stack

    Institute of Scientific and Technical Information of China (English)

    武德勇; 吕文强; 魏彬; 高松信

    2014-01-01

    Based on the ray tracing method the laser intensity distribution of single DL bar collimated with micro spherical cylindrical lens was analyzed in detail.We found that the intensity distribution of output laser have a better flat shape when the di-vergence angle is about 5°.A beam reshape system was designed for a 25-bar DL stack.The system includes microlens of fast ax-is collimating,coupling lens of fast axis and coupling lens of slow axis.The laser medium to be pumped was designed at the focus plane of fast axis coupling lens and close to the imaging plane of slow axis coupling lens.A 7 mm×8 mm pump beam was ob-tained with intensity uniformity of 90%.The coupling efficiency of the beam reshaping system reached 85%.%采用光线追迹法详细分析线阵二极管激光器经微球面柱透镜快轴准直后的光强变化情况,利用快轴准直微球面柱透镜的球差可调整输出激光光强分布的特性,得出了快轴准直输出发散角约5°时光强分布具有较好的平顶形式。根据叠阵二极管激光器输出光的特点,设计了由25个二极管激光器组成的叠阵二极管激光器的光束整形输出系统,该系统由快轴准直微透镜、快轴耦合透镜和慢轴耦合透镜组成,把需要泵浦的激光介质薄片设计在快轴耦合透镜的焦点上,并且在慢轴耦合透镜的成像面附近,得到了7 mm×8 mm 的泵浦光斑,光强不均匀性约10%,输出效率达到85%。

  17. Dynamical Stability of Slip-stacking Particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Zwaska, Robert [Fermilab

    2014-09-04

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  18. Measurement of the Collimated Beam Pointing Among Bars for Diode Laser Vertical Stack%垂直阵列DL巴间准直光束指向精度测量方法

    Institute of Scientific and Technical Information of China (English)

    郭林辉; 吕文强; 高松信; 武德勇; 李弋; 李艾; 蒋建锋; 彭勇

    2011-01-01

    High power diode laser vertical stack's collimated beam pointing error and the influence of the pointing on the laser beam are introduced. The experimental device is built, and single anastigmatic far field lens are adopted to collect the light spot of the vertical stacking. By combining the centroid arithmetic measured continuous work 2 kW vertical stacking diode laser, the results of collimation beam's pointing accuracy was ±1.7 mrad. The errors of the metrical method are analyzed and some routes are optimized to improve the metrical method.%简介了大功率二极管激光器垂直阵列巴条(Bar)间准直光束指向精度问题,及其对激光器垂直阵列输出光束的影响.采用单透镜远场探测系统对激光器垂直阵列远场光斑进行采集,搭建了实验测试装置.结合光斑强度质心算法对实验室封装的20巴条连续输出2 kw二极管激光器垂直阵列进行了测量,测试结果为巴间准直光束指向精度±1.7 mrad,结合二极管激光器封装工艺分析了测试结果,并对该测量方法进行了讨论分析,提出了优化该测试方法的途径.

  19. Calculation for the fast axis beam quality of the laser diode stack%半导体激光器堆栈快轴光束质量计算的研究

    Institute of Scientific and Technical Information of China (English)

    李峙; 尧舜; 高祥宇; 潘飞; 贾冠男; 王智勇

    2015-01-01

    Based on the Gaussian beam propagation theory, and combined with the structure of the laser diode stack, the fast axis beam model of the laser diode stacks was established. And considered with the divergence angle and directional factor of each diode laser array, the calculation for the fast axis beam quality of the diode laser stacks was amended which was finally verified by the experiment. The result shows that compared with the experimental measurements, the calculation error of this model is only 2.14%. Compared with the ones before amending, which are 24.16% and 18.36%, the new calculation method is improved a lot in accuracy and can reflect the fast axis beam quality of diode laser stacks more exactitudly.%以高斯光束传输理论为基础,结合半导体激光器堆栈结构,建立了半导体激光器堆栈快轴方向光束传输理论模型,并引入单个半导体激光器阵列的发散角和指向性因子,对半导体激光器堆栈快轴方向光束质量计算方法进行了修正,最后通过实验对计算结果进行验证。结果显示,相对于实验测量值,该理论模型计算值的误差仅为2.14%,与修正前的计算误差24.16%和18.36%相比,在精度上有了很大程度的提高,因此,该方法可行,能更精确的反应堆栈快轴的光束质量。

  20. Electrochemical cell stack assembly

    Science.gov (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  1. TRANGE: computer code to calculate the energy beam degradation in target stack; TRANGE: programa para calcular a degradacao de energia de particulas carregadas em alvos

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Luis F.

    1995-07-01

    A computer code to calculate the projectile energy degradation along a target stack was developed for an IBM or compatible personal microcomputer. A comparison of protons and deuterons bombarding uranium and aluminium targets was made. The results showed that the data obtained with TRANGE were in agreement with other computers code such as TRIM, EDP and also using Williamsom and Janni range and stopping power tables. TRANGE can be used for any charged particle ion, for energies between 1 to 100 MeV, in metal foils and solid compounds targets. (author). 8 refs., 2 tabs.

  2. When is Stacking Confusing?: The Impact of Confusion on Stacking in Deep HI Galaxy Surveys

    CERN Document Server

    Jones, Michael G; Giovanelli, Riccardo; Papastergis, Emmanouil

    2015-01-01

    We present an analytic model to predict the HI mass contributed by confused sources to a stacked spectrum in a generic HI survey. Based on the ALFALFA correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest SKA-precursor HI surveys. Stacking with LADUMA and DINGO UDEEP data will only be mildly impacted by confusion if their target synthesised beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES' 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST will be the most impeded by confusion, with HI surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the reds...

  3. Deploying OpenStack

    CERN Document Server

    Pepple, Ken

    2011-01-01

    OpenStack was created with the audacious goal of being the ubiquitous software choice for building public and private cloud infrastructures. In just over a year, it's become the most talked-about project in open source. This concise book introduces OpenStack's general design and primary software components in detail, and shows you how to start using it to build cloud infrastructures. If you're a developer, technologist, or system administrator familiar with cloud offerings such as Rackspace Cloud or Amazon Web Services, Deploying OpenStack shows you how to obtain and deploy OpenStack softwar

  4. Polarization Coupling Between Strongly Guiding Waveguides Stacked Laterally

    OpenAIRE

    Yamauchi, Junji; Shibuya, Noriyuki; Nakano, Hisamatsu

    2009-01-01

    The full-vectorial beam-propagation method is appliedto the assessment of the coupling characteristics betweenstrongly guiding waveguides stacked laterally. The polarizationcrosstalk behavior of square waveguides stacked laterally isdemonstrated by the eigenmode and beam-propagation analyses.In order to make use of the polarization crosstalk constructively,we determine the vertical spacing between the two square waveguides.Almost complete conversion can be obtained, when the twowaveguides are...

  5. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  6. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  7. Proposed Cavity for Reduced Slip-Stacking Loss

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, J. [Indiana U.; Zwaska, R. [Fermilab

    2015-06-01

    This paper employs a novel dynamical mechanism to improve the performance of slip-stacking. Slip-stacking in an accumulation technique used at Fermilab since 2004 which nearly double the proton intensity. During slip-stacking, the Recycler or the Main Injector stores two particles beams that spatially overlap but have different momenta. The two particle beams are longitudinally focused by two 53 MHz 100 kV RF cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV RF cavity, with a frequency at the double the average of the upper and lower main RF frequencies. In simulation, we find the proposed RF cavity significantly enhances the stable bucket area and reduces slip-stacking losses under reasonable injection scenarios. We quantify and map the stability of the parameter space for any accelerator implementing slip-stacking with the addition of a harmonic RF cavity.

  8. Decoding Stacked Denoising Autoencoders

    OpenAIRE

    Sonoda, Sho; Murata, Noboru

    2016-01-01

    Data representation in a stacked denoising autoencoder is investigated. Decoding is a simple technique for translating a stacked denoising autoencoder into a composition of denoising autoencoders in the ground space. In the infinitesimal limit, a composition of denoising autoencoders is reduced to a continuous denoising autoencoder, which is rich in analytic properties and geometric interpretation. For example, the continuous denoising autoencoder solves the backward heat equation and transpo...

  9. Compact stacking of diode lasers for pulsed light sources of high brightness.

    Science.gov (United States)

    Alahautala, Taito; Lassila, Erkki; Hernberg, Rolf

    2004-07-20

    A compact stacking architecture for high-power diode-laser arrays is proposed and compared with traditional stacks. The objective of compact stacking is to achieve high brightness values without the use of microlenses. The calculated brightness for a compact stack is over 300 W mm(-2) sr(-1), which is approximately 40 times higher than that of a traditional stack made of similar laser emitters. Even higher brightness values of over 600 W mm(-2) sr(-1) were reached in practice. A laser head was manufactured in which the light from several compact laser stacks could be fiber coupled or the light could be transformed to a highly uniform beam.

  10. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  11. When is stacking confusing? The impact of confusion on stacking in deep H I galaxy surveys

    Science.gov (United States)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Papastergis, Emmanouil

    2016-01-01

    We present an analytic model to predict the H I mass contributed by confused sources to a stacked spectrum in a generic H I survey. Based on the ALFALFA (Arecibo Legacy Fast ALFA) correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest Square Kilometre Array precursor H I surveys. Stacking with LADUMA (Looking At the Distant Universe with MeerKAT) and DINGO UDEEP (Deep Investigation of Neutral Gas Origins - Ultra Deep) data will only be mildly impacted by confusion if their target synthesized beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES (COSMOS H I Large Extragalactic Survey) 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST (Five hundred metre Aperture Spherical Telescope) will be the most impeded by confusion, with H I surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the redshift evolution of the H I density of the Universe and the H I correlation function. However, we argue that the two idealized cases we adopt should bracket the true evolution, and the qualitative conclusions are unchanged regardless of the model choice. The profile shape of the signal due to confusion (in the absence of any detection) was also modelled, revealing that it can take the form of a double Gaussian with a narrow and wide component.

  12. Wolfram technology stack

    CERN Multimedia

    2013-01-01

    Stephen Wolfram gives a personal account of his vision for the "Wolfram technology stack" and how it developed, starting with his work in particle physics. The talk was presented at the 2013 ROOT Users' Meeting and followed a talk, earlier in the day, on "Mathematica with ROOT".

  13. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  14. Multipole Stack for the 800 MeV PS Booster

    CERN Multimedia

    1975-01-01

    The 800 MeV PS Booster had seen first beam in its 4 superposed rings in 1972, routine operation began in 1973. In the strive for ever higher beam intensities, the need for additional multipole lenses became evident. After detailed studies, the manufacture of 8 stacks of multipoles was launched in 1974. Each stack consists of 4 superposed multipoles and each multipole has 4 concentric shells. From the innermost to the outermost shell, Type A contains octupole, skew-octupole, sextupole, skew-sextupole. Type B contains skew-octupole, skew-sextupole, vertical dipole, horizontal dipole. Completion of installation in 1976 opened the way to higher beam intensities. M. Battiaz is seen here with a multipole stack and its many electrical connections.

  15. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  16. Energy Expenditure of Sport Stacking

    Science.gov (United States)

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.

    2009-01-01

    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  17. Analytic stacks and hyperbolicity

    OpenAIRE

    Borghesi, Simone; Tomassini, Giuseppe

    2012-01-01

    The classical Brody's theorem asserts the equivalence between two notions of hyperbolicity for compact complex spaces, one named after Kobayashi and one expressed in terms of lack of non constant holomorphic entire functions (compactness is only used to prove the harder implication). We extend this theorem to Deligne-Mumford analytic stacks, by first providing definitions of what we think of Kobayashi and Brody hyperbolicity for such objects and then proving the equivalence of these concepts ...

  18. Toric Stacks II: Intrinsic Characterization of Toric Stacks

    CERN Document Server

    Geraschenko, Anton

    2011-01-01

    The purpose of this paper and its prequel (Toric Stacks I) is to introduce and develop a theory of toric stacks which encompasses and extends the notions of toric stacks defined in [Laf02, BCS05, FMN09, Iwa09, Sat09, Tyo10], as well as classical toric varieties. While the focus of the prequel is on how to work with toric stacks, the focus of this paper is how to show a stack is toric. For toric varieties, a classical result says that any normal variety with an action of a dense open torus arises from a fan. In [FMN09, Theorem 7.24], it is shown that a smooth separated DM stack with an action of a dense open stacky torus arises from a stacky fan. In the same spirit, the main result of this paper is that any Artin stack with an action of a dense open torus arises from a stacky fan under reasonable hypotheses.

  19. Stack Caching Using Split Data Caches

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Schoeberl, Martin

    2015-01-01

    In most embedded and general purpose architectures, stack data and non-stack data is cached together, meaning that writing to or loading from the stack may expel non-stack data from the data cache. Manipulation of the stack has a different memory access pattern than that of non-stack data, showin...

  20. Die-stacking architecture

    CERN Document Server

    Xie, Yuan

    2015-01-01

    The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, promise attractive solutions to reduce the delay of interconnects in future microprocessors. 3D memory stacking enables much higher memory bandwidth for future chip-multiprocessor design, mitigating the ""memory wall"" problem. In addition, heterogenous integration enabled by 3D technology can also result in innovative designs for future microprocessors. This book first provides a brief introduction to this emerging technology, and then presents a variety of approaches to design

  1. Measuring fusion excitation functions with RIBs: A thorough analysis of the stacked target technique and the related problems

    Energy Technology Data Exchange (ETDEWEB)

    Fisichella, M., E-mail: fisichella@lns.infn.it; Di Pietro, A.; Figuera, P.; Marchetta, C. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Shotter, A. C. [School of Physics and Astronomy, University of Edinburgh, JCMB, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Lattuada, M.; Torresi, D. [INFN, Laboratori Nazionali del Sud, via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica ed Astronomia, via S. Sofia 64, I-95125 Catania (Italy); Privitera, V. [CNR-IMM MATIS, via S. Sofia 64, Catania (Italy); Romano, L. [Dipartimento di Fisica ed Astronomia, via S. Sofia 64, I-95125 Catania (Italy); CNR-IMM MATIS, via S. Sofia 64, Catania (Italy); Ruiz, C. [TRIUMF 4004 Wesbrook Mall Vancouver BC V6T 2A3 (Canada); Zadro, M. [Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb (Croatia)

    2015-10-15

    The use of the stacked target technique to measure fusion cross-sections of reactions induced by low intensity radioactive beams offers considerable advantages since several reaction energies may be simultaneously measured. The main disadvantage of the method is the degradation of the beam quality as it passes through the stack due to statistical nature of energy loss processes and any non-uniformity of the stacked targets. This degradation can lead to ambiguities of associating effective beam energies to reaction product yields for the targets within the stack. A detailed investigation of these ambiguities has been performed and some of the obtained results are presented.

  2. Technology stacks and frameworks for full-stack application development

    OpenAIRE

    Ušaj, Erik

    2016-01-01

    This work aims providing a comprehensive overview and analysis of current JavaScript (JS) technology stacks and frameworks for full-stack application development: from web clients, mobile and desktop applications to server applications and cloud-connected services. Analysis shall focus on MEAN technology stack and frameworks such as Meteor which also tries to leverage mobile app development using Apache Cordova framework. We will include an overview of available JS build tools for desktop app...

  3. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed. PMID:25361517

  4. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  5. Proton Beam Energy Characterization

    OpenAIRE

    Marus, Lauren A.; Engle, J.W.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2015-01-01

    Introduction The Los Alamos Isotope Production Facility (IPF) is actively engaged in the development of isotope production technologies that can utilize its 100 MeV proton beam. Characterization of the proton beam energy and current is vital for optimizing isotope production and accurately conducting research at the IPF. Motivation In order to monitor beam intensity during research irradiations, aluminum foils are interspersed in experimental stacks. A theoretical yield of 22Na from...

  6. Multipole stack for the 4 rings of the PS Booster

    CERN Multimedia

    1976-01-01

    The PS Booster (originally 800 MeV, now 1.4 GeV) saw first beam in 1972, routine operation began in 1973. The strive for ever higher intensities required the addition of multipoles. Manufacture of 8 stacks of multipoles was launched in 1974, for installation in 1976. For details, see 7511120X.

  7. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  8. Stacking catalog sources in WMAP data

    CERN Document Server

    Schultz, Kasey W

    2011-01-01

    We stack WMAP 7-year temperature data around extragalactic point sources, showing that the profiles are consistent with WMAP's beam models, in disagreement with the findings of Sawangwit & Shanks (2010). These results require that the source sample's selection is not biased by CMB fluctuations. We compare profiles from sources in the standard WMAP catalog, the WMAP catalog selected from a CMB-free combination of data, and the NVSS catalog, and quantify the agreement with fits to simple parametric beam models. We estimate the biases in source profiles due to alignments with positive CMB fluctuations, finding them roughly consistent with those biases found with the WMAP standard catalog. Addressing those biases, we find source spectral indices significantly steeper than those used by WMAP, with strong evidence for spectral steepening above 61 GHz. Such changes modify the power spectrum correction required for unresolved point sources, and tend to weaken somewhat the evidence for deviation from a Harrison-Ze...

  9. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    segmentations that capture different structural elements of the image. We also apply the method to collections of images with identical pixel dimensions, which we call image stacks. Here it turns out that the method is able to both identify groups of similar images in the stack, and to provide segmentations...

  10. Stacking disorder in ice I.

    Science.gov (United States)

    Malkin, Tamsin L; Murray, Benjamin J; Salzmann, Christoph G; Molinero, Valeria; Pickering, Steven J; Whale, Thomas F

    2015-01-01

    Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work on ice with stacking disorder including ice that was called cubic ice in the past. We also present new experimental data which shows that ice which crystallises after heterogeneous nucleation in water droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of around -15 °C. This supports the results from molecular simulations, that the structure of ice that crystallises initially from supercooled water is always stacking-disordered and that this metastable ice can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via other routes. The emerging picture of ice I is that of a very complex material which frequently contains stacking disorder and this stacking disorder can vary in complexity depending on the route of formation and thermal history. PMID:25380218

  11. Fabrication of submicron La2-xSrxCuO4 intrinsic Josephson junction stacks

    Science.gov (United States)

    Kubo, Yuimaru; Takahide, Yamaguchi; Tanaka, Takayoshi; Ueda, Shinya; Ishii, Satoshi; Tsuda, Shunsuke; Islam, ATM Nazmul; Tanaka, Isao; Takano, Yoshihiko

    2011-02-01

    Intrinsic Josephson junction (IJJ) stacks of cuprate superconductors have potential to be implemented as intrinsic phase qubits working at relatively high temperatures. We report success in fabricating submicron La2-xSrxCuO4 (LSCO) IJJ stacks carved out of single crystals. We also show a new fabrication method in which argon ion etching is performed after focused ion beam etching. As a result, we obtained an LSCO IJJ stack in which resistive multibranches appeared. It may be possible to control the number of stacked IJJs with an accuracy of a single IJJ by developing this method.

  12. Single-molecule dissection of stacking forces in DNA.

    Science.gov (United States)

    Kilchherr, Fabian; Wachauf, Christian; Pelz, Benjamin; Rief, Matthias; Zacharias, Martin; Dietz, Hendrik

    2016-09-01

    We directly measured at the single-molecule level the forces and lifetimes of DNA base-pair stacking interactions for all stack sequence combinations. Our experimental approach combined dual-beam optical tweezers with DNA origami components to allow positioning of blunt-end DNA helices so that the weak stacking force could be isolated. Base-pair stack arrays that lacked a covalent backbone connection spontaneously dissociated at average rates ranging from 0.02 to 500 per second, depending on the sequence combination and stack array size. Forces in the range from 2 to 8 piconewtons that act along the helical direction only mildly accelerated the stochastic unstacking process. The free-energy increments per stack that we estimate from the measured forward and backward kinetic rates ranged from -0.8 to -3.4 kilocalories per mole, depending on the sequence combination. Our data contributes to understanding the mechanics of DNA processing in biology, and it is helpful for designing the kinetics of DNA-based nanoscale devices according to user specifications. PMID:27609897

  13. Measuring fusion excitation functions with RIBs using the stacked target technique: Problems and possible solutions

    Directory of Open Access Journals (Sweden)

    Fisichella M.

    2016-01-01

    Full Text Available For measuring fusion excitation functions, the activation technique with a stack of targets offers the considerable advantage that several reaction energies may be simultaneously measured by using one beam energy. However, its main drawback is the degradation of the beam quality as it passes through the stack due to statistical nature of energy loss processes and any non-uniformity of the stacked targets. If not taken properly into account, this degradation can lead to a wrong determination of the fusion excitation function. In this contribution some results of the investigation of this problem are reported.

  14. Seismic qualification of ventilation stack

    International Nuclear Information System (INIS)

    This paper describes the method to be used to qualify the 105 K ventilation stack at the US Department of Energy's Hanford Site, near Richland, Washington, under seismic and wind loadings. The stack stands at 175 ft (53.34 m), with a diameter tapering from 22 ft (6.71 m) at the foundation to 12.83 ft (3.91 m) at the top. Although the stack is classified as Safety Class 3 (low hazard), it is treated as a Safety Class 1 (high hazard) component, as failure could damage a Safety Class 1 facility (the irradiated fuel storage basin). The evaluation used US Department of Energy criteria specified in UCRL 15910 (1990). The seismic responses of the stack under earthquake loading were obtained from modal analyses with response spectrum input that used the ANSYS (1989) finite-element computer code. The moments and shear forces from the results of seismic analysis were used to qualify the reinforcement capacity of the stack structure by the ultimate-strength method. The wind forces acting on the stack in both along-wind and are evaluations of the soil bearing pressure, the moment, and the shear capacity of the stack foundation

  15. Enhanced Dynamical Stability with Harmonic Slip-stacking

    CERN Document Server

    Eldred, Jeffrey

    2016-01-01

    We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out the resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal dis...

  16. Note: O-ring stack system for electron gun alignment

    International Nuclear Information System (INIS)

    We present a reliable method for aligning an electron gun which consists of an electron source and lenses by controlling a stack of rubber O-rings in a vacuum condition. The beam direction angle is precisely tilted along two axes by adjusting the height difference of a stack of O-rings. In addition, the source position is shifted in each of three orthogonal directions. We show that the tilting angle and linear shift along the x and y axes as obtained from ten stacked O-rings are ±2.55° and ±2 mm, respectively. This study can easily be adapted to charged particle gun alignment and adjustments of the flange position in a vacuum, ensuring that its results can be useful with regard to electrical insulation between flanges with slight modifications

  17. Solid state laser disk amplifer architecture: the normal-incidence stack

    Science.gov (United States)

    Dane, C. Brent; Albrecht, Georg F.; Rotter, Mark D.

    2005-01-25

    Normal incidence stack architecture coupled with the development of diode array pumping enables the power/energy per disk to be increased, a reduction in beam distortions by orders of magnitude, a beam propagation no longer restricted to only one direction of polarization, and the laser becomes so much more amendable to robust packaging.

  18. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  19. Feature-Weighted Linear Stacking

    CERN Document Server

    Sill, Joseph; Mackey, Lester; Lin, David

    2009-01-01

    Ensemble methods, such as stacking, are designed to boost predictive accuracy by blending the predictions of multiple machine learning models. Recent work has shown that the use of meta-features, additional inputs describing each example in a dataset, can boost the performance of ensemble methods, but the greatest reported gains have come from nonlinear procedures requiring significant tuning and training time. Here, we present a linear technique, Feature-Weighted Linear Stacking (FWLS), that incorporates meta-features for improved accuracy while retaining the well-known virtues of linear regression regarding speed, stability, and interpretability. FWLS combines model predictions linearly using coefficients that are themselves linear functions of meta-features. This technique was a key facet of the solution of the second place team in the recently concluded Netflix Prize competition. Significant increases in accuracy over standard linear stacking is demonstrated on the Netflix Prize collaborative filtering da...

  20. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  1. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin

    2015-01-01

    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  2. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  3. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  4. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    YANG Ye-hua; WANG Xue-kui; YAO Ming-jing; FAN Yu-peng; GAO Da-yu

    2008-01-01

    @@ To date,more and more transgenic varieties of upland cotton (Gossypium hirsuturn L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct transgenic lines in a cultivar and possibly makes a significant contribution to cultivar improvement.

  5. Behavior of a Nuclear Power Plant Ventilation Stack for Wind Loads

    Science.gov (United States)

    Venkatachalapathy, V.

    2012-05-01

    This paper describes behavior of self supporting tall reinforced concrete (RC) ventilation stack of a nuclear power plant (NPP) for wind loads. Since the static and equivalent dynamic wind loads are inter-dependant on overall size of the stack, proper sizing of the stack geometry is important for reducing wind loads. The present study investigated the influence of engineered backfill soil on lateral response of ventilation stack. Ignoring backfill soil stiffness up to ground height does not allow to predict actual critical wind velocity causing across wind oscillation. The results show that proposed modification in the stack geometry modeled using 2D beam-spring elements is economical than that of single tapered geometry. Shaft diameter reduced in the proposed geometry indicates that there is a scope for overall space savings in the NPP layout.

  6. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    repeating units are reported and discussed. The performance and degradation of a 14-cell co-flow stack was monitored for more than 667 hours at steady operating conditions using the sequential impedance measurement setup. The stack was tested galvanostatically (at constant current) with 50% steam...... carried out on an experimental 14-cell SOFC stack at varying frequencies and fuel utilizations. The results illustrated that THD can be used to detect increasing non-linearities in the current-voltage characteristics of the stack when the stack suffers from fuel starvation by monitoring the stack sum...

  7. Analysis of spectrum characteristics of optical scintillation in stack gas flow

    Institute of Scientific and Technical Information of China (English)

    Liu Wen-Qing; Liu He-Lai; Zeng Zong-Yong; Jiang Yu

    2006-01-01

    Based on the analysis of spectrum characteristics of intensity fluctuations while light beams pass through stack gas flow in an industrial setting, this paper puts emphasis upon discussing the spectrum of optical intensity fluctuations by the variety of particle concentration in stack gas flow. This paper also gives the primary theoretical explanation of the measurement results in the stack of coal-fired utility boilers. Meanwhile, the cross-correlation formula is given as the theoretical basis of velocity measurement by using particle concentration scintillation.

  8. Fabrication of submicron La$_{2-x}$Sr$_{x}$CuO$_{4}$ intrinsic Josephson junction stacks

    OpenAIRE

    Kubo, Yuimaru; Takahide, Yamaguchi; Tanaka, Takayoshi; Ueda, Shinya; Ishii, Satoshi; Tsuda, Shunsuke; Islam, A. T. M. Nazmul; Tanaka, Isao; Takano, Yoshihiko

    2011-01-01

    Intrinsic Josephson junction (IJJ) stacks of cuprate superconductors have potential to be implemented as intrinsic phase qubits working at relatively high temperatures. We report success in fabricating submicron La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO) IJJ stacks carved out of single crystals. We also show a new fabrication method in which argon ion etching is performed after focused ion beam etching. As a result, we obtained an LSCO IJJ stack in which resistive multi-branches appeared. It may be p...

  9. Radiation Detector Characterization at APO While Stacking pbars in 1999

    International Nuclear Information System (INIS)

    The Main Injector provided beam for pbar stacking for the first time in 1999 over the period 12/20 to 12/21. The purpose of this memo is to record some observations on the response of various radiation detectors as a function of beam on the pbar targel. The detectors include a Scarecrow in the APO Vault, a Chipmunk just upstream of the APO vault, and a Chipmunk in the water cage adjacent to the Pulsed Magnet pump skid in the water systems cage. In addition, there are air monitors, one sampling in the PreVault enclosure and one sampling at the exhaust stack at the upstream end of lhe PreTarget enclosure. All data was collected by the ACNET system Lumberjack data logger. Beam intensity data was summed over consecutive 10 minute periods and normalized to an hourly intensity. The Chipmunk, Scarecrow, and Air Monitor data are based 10 minute averages taken over periods which coincide with normalized beam intensity.

  10. Radiatio Detector Characterization at APO While Stacking pbars in 1999

    Energy Technology Data Exchange (ETDEWEB)

    Leveling, A.F.; /Fermilab

    2000-02-09

    The Main Injector provided beam for pbar stacking for the first time in 1999 over the period 12/20 to 12/21. The purpose of this memo is to record some observations on the response of various radiation detectors as a function of beam on the pbar targel. The detectors include a Scarecrow in the APO Vault, a Chipmunk just upstream of the APO vault, and a Chipmunk in the water cage adjacent to the Pulsed Magnet pump skid in the water systems cage. In addition, there are air monitors, one sampling in the PreVault enclosure and one sampling at the exhaust stack at the upstream end of lhe PreTarget enclosure. All data was collected by the ACNET system Lumberjack data logger. Beam intensity data was summed over consecutive 10 minute periods and normalized to an hourly intensity. The Chipmunk, Scarecrow, and Air Monitor data are based 10 minute averages taken over periods which coincide with normalized beam intensity.

  11. Federation of OpenStack clouds

    OpenAIRE

    Tartarini, Luca; Denis, Marek

    2014-01-01

    Project Specification Rackspace and CERN are implementing federated identity of OpenStack clouds within the OpenStack cloud project. The project is to enhance the client tools in OpenStack to support Thefederated identity functionalities, work with the open source community to incorporate these changes into the product and adapt the documentation and testing. The student will learn about the internals of OpenStack, federated identity techniques such as SAML and working with open sour...

  12. Slip-stacking Dynamics and the 20 Hz Booster

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery; Zwaska, Robert

    2015-03-01

    Slip-stacking is an accumulation technique used at Fermilab since 2004 which nearly doubles the proton intensity. The Proton Improvement Plan II intensity upgrades require a reduction in slip-stacking losses by approximately a factor of 2. We study the single-particle dynamics that determine the stability of slip-stacking particles. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We show the particle loss as a function of time. We calculate the injection efficiency as a function of longitudinal emittance and aspect-ratio. We demonstrate that the losses from RF single particle dynamics can be reduced by a factor of 4-10 (depending on beam parameters) by upgrading the Fermilab Booster from a 15-Hz cycle-rate to a 20-Hz cycle-rate. We recommend a change in injection scheme to eliminate the need for a greater momentum aperture in the Fermilab Recycler.

  13. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    completely. Thus, in systems with hard deadlines the worst-case execution time (WCET) of the real-time software running on them needs to be bounded. Modern architectures use features such as pipelining and caches for improving the average performance. These features, however, make the WCET analysis more...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore......Embedded systems are computing systems for controlling and interacting with physical environments. Embedded systems with special timing constraints where the system needs to meet deadlines are referred to as real-time systems. In hard real-time systems, missing a deadline causes the system to fail...

  14. Docker on OpenStack

    OpenAIRE

    Agarwal, Nitin; Moreira, Belmiro

    2014-01-01

    Project Specification CERN is establishing a large scale private cloud based on OpenStack as part of the expansion of the computing infrastructure for storing the data coming out of the Large Hadron Collider (LHC) experiments. As the data coming out of the detectors is increasing continuously that needs to be stored in the data center, we need more physical resources (more money) and since Virtual machines takes lot of CPU and memory overhead and minutes for creating the images, booting u...

  15. Power conditioning for low-voltage piezoelectric stack energy harvesters

    Science.gov (United States)

    Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.

    2016-04-01

    Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.

  16. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  17. Self-Adjusting Stack Machines

    CERN Document Server

    Hammer, Matthew A; Chen, Yan; Acar, Umut A

    2011-01-01

    Self-adjusting computation offers a language-based approach to writing programs that automatically respond to dynamically changing data. Recent work made significant progress in developing sound semantics and associated implementations of self-adjusting computation for high-level, functional languages. These techniques, however, do not address issues that arise for low-level languages, i.e., stack-based imperative languages that lack strong type systems and automatic memory management. In this paper, we describe techniques for self-adjusting computation which are suitable for low-level languages. Necessarily, we take a different approach than previous work: instead of starting with a high-level language with additional primitives to support self-adjusting computation, we start with a low-level intermediate language, whose semantics is given by a stack-based abstract machine. We prove that this semantics is sound: it always updates computations in a way that is consistent with full reevaluation. We give a comp...

  18. Spherical distribution structure of the semiconductor laser diode stack for pumping

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Tianzhuo; Yu Jin; Liu Yang; Zhang Xue; Ma Yunfeng; Fan Zhongwei, E-mail: fanzw@gklaser.com [Opto-Electronics System Department, The Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094 (China)

    2011-09-15

    A semiconductor laser diode stack is used for pumping and 8 semiconductor laser diode arrays of the stack are put on a sphere, and the output of every bar is specially off-axis compressed to realize high coupling efficiency. The output beam of this semiconductor laser diode stack is shaped by a hollow duct to the laser active medium. The efficiency of the hollow light pipe, which is used for semiconductor laser diode stack coupling, is analyzed by geometric optics and ray tracing. Geometric optics analysis diagnoses the reasons for coupling loss and guides the design of the structure. Ray tracing analyzes the relation between the structural parameters and the output characteristics of this pumping system, and guides parameter optimization. Simulation and analysis results show that putting the semiconductor laser diode arrays on a spherical surface can increase coupling efficiency, reduce the optimum duct length and improve the output energy field distribution. (semiconductor devices)

  19. Spherical distribution structure of the semiconductor laser diode stack for pumping

    International Nuclear Information System (INIS)

    A semiconductor laser diode stack is used for pumping and 8 semiconductor laser diode arrays of the stack are put on a sphere, and the output of every bar is specially off-axis compressed to realize high coupling efficiency. The output beam of this semiconductor laser diode stack is shaped by a hollow duct to the laser active medium. The efficiency of the hollow light pipe, which is used for semiconductor laser diode stack coupling, is analyzed by geometric optics and ray tracing. Geometric optics analysis diagnoses the reasons for coupling loss and guides the design of the structure. Ray tracing analyzes the relation between the structural parameters and the output characteristics of this pumping system, and guides parameter optimization. Simulation and analysis results show that putting the semiconductor laser diode arrays on a spherical surface can increase coupling efficiency, reduce the optimum duct length and improve the output energy field distribution. (semiconductor devices)

  20. Spherical distribution structure of the semiconductor laser diode stack for pumping

    Institute of Scientific and Technical Information of China (English)

    Zhao Tianzhuo; Yu Jin; Liu Yang; Zhang Xue; Ma Yunfeng; Fan Zhongwei

    2011-01-01

    A semiconductor laser diode stack is used for pumping and 8 semiconductor laser diode arrays of the stack are put on a sphere,and the output of every bar is specially off-axis compressed to realize high coupling efficiency.The output beam of this semiconductor laser diode stack is shaped by a hollow duct to the laser active medium.The efficiency of the hollow light pipe,which is used for semiconductor laser diode stack coupling,is analyzed by geometric optics and ray tracing.Geometric optics analysis diagnoses the reasons for coupling loss and guides the design of the structure.Ray tracing analyzes the relation between the structural parameters and the output characteristics of this pumping system,and guides parameter optimization.Simulation and analysis results show that putting the semiconductor laser diode arrays on a spherical surface can increase coupling efficiency,reduce the optimum duct length and improve the output energy field distribution.

  1. Gate stack technology for nanoscale devices

    Directory of Open Access Journals (Sweden)

    Byoung Hun Lee

    2006-06-01

    Full Text Available Scaling of the gate stack has been a key to enhancing the performance of complementary metal-oxide-semiconductor (CMOS field-effect transistors (FETs of past technology generations. Because the rate of gate stack scaling has diminished in recent years, the motivation for alternative gate stacks or novel device structures has increased considerably. Intense research during the last decade has led to the development of high dielectric constant (k gate stacks that match the performance of conventional SiO2-based gate dielectrics. However, many challenges remain before alternative gate stacks can be introduced into mainstream technology. We review the current status of and challenges in gate stack research for planar CMOS devices and alternative device technologies to provide insights for future research.

  2. The untyped stack calculus and Bohm's theorem

    OpenAIRE

    Alberto Carraro

    2013-01-01

    The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.

  3. Diode Stack End-Pumped Nd:GdVO4 Continuous Wave Slab Laser

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng-Li; ZHANG Huai-Jin; LI Dai-Jun; WANG Ji-Yang; SHI Peng; Haas Rüdiger; LI Hong-Xia; JIANG Min-Hua; DU Keming

    2005-01-01

    @@ We report a diode stack end-pumped Nd:GdVO4 slab laser with a near-diffraction-limited beam. The output power of 45.8 W at 1064nm is obtained under the pumping power of 147W, with the optical-optical conversion efficiency of 31.2%, and the slope efficiency is 39.6%.

  4. Demagnetizing effects in stacked rectangular prisms

    DEFF Research Database (Denmark)

    Christensen, Dennis; Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden;

    2011-01-01

    configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack, the...... spacing between the prisms and the packing density of the stack. The results show that the resulting internal field is far from being equal to the applied field and that the various stack configurations investigated affect the resulting internal field significantly and non-linearly. The results have a...

  5. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures....

  6. Ball Bearing Stacking Automation System

    Directory of Open Access Journals (Sweden)

    Shafeequerrahman S . Ahmed

    2013-01-01

    Full Text Available This document is an effort to introduce the concept of automation in small scale industries and or small workshops that are involved in the manufacturing of small objects such as nuts, bolts and ball bearing in this case. This an electromechanical system which includes certain mechanical parts that involves one base stand on which one vertical metallic frame is mounted and hinged to this vertical stand is an in humanized effort seems inadequate in this era making necessary the use of Electronics, Computer in the manufacturing processes leading to the concept of Automated Manufacturing System (AMS.The ball bearing stack automation is an effort in this regard. In our project we go for stack automation for any object for example a ball bearing, be that is still a manual system there. It will be microcontroller based project control system equipped with microcontroller 89C51 from any manufacturer like Atmel or Philips. This could have been easily implemented if a PLC could be used for manufacturing the staking unit but I adopted the microcontroller based system so that some more modification in the system can be effected at will as to use the same hardware .Although a very small object i.e. ball bearig or small nut and fixture will be tried to be stacked, the system with more precision and more power handling capacity could be built for various requirements of the industry. For increasing more control capacity, we can use another module of this series. When the bearing is ready, it will be sent for packing. This is sensed by an inductive sensor. The output will be proceeds by PLC and microcontroller card which will be driving the assembly in order to put it into pads or flaps. This project will also count the total number of bearings to be packed and will display it on a LCD for real time reference and a provision is made using a higher level language using hyper terminal of the computer

  7. Do Stack Traces Help Developers Fix Bugs?

    NARCIS (Netherlands)

    Schröter, A.; Bettenburg, N.; Premraj, R.

    2010-01-01

    A widely shared belief in the software engineering community is that stack traces are much sought after by developers to support them in debugging. But limited empirical evidence is available to confirm the value of stack traces to developers. In this paper, we seek to provide such evidence by condu

  8. 49 CFR 178.815 - Stacking test.

    Science.gov (United States)

    2010-10-01

    ... qualification of all IBC design types intended to be stacked. (b) Special preparation for the stacking test. (1) All IBCs except flexible IBC design types must be loaded to their maximum permissible gross mass. (2) The flexible IBC must be filled to not less than 95 percent of its capacity and to its maximum...

  9. Excitation transfer in stacked quantum dot chains

    International Nuclear Information System (INIS)

    Stacked InAs quantum dot chains (QDCs) on InGaAs/GaAs cross-hatch pattern (CHP) templates yield a rich emission spectrum with an unusual carrier transfer characteristic compared to conventional quantum dot (QD) stacks. The photoluminescent spectra of the controlled, single QDC layer comprise multiple peaks from the orthogonal QDCs, the free-standing QDs, the CHP, the wetting layers and the GaAs substrate. When the QDC layers are stacked, employing a 10 nm GaAs spacer between adjacent QDC layers, the PL spectra are dominated by the top-most stack, indicating that the QDC layers are nominally uncoupled. Under high excitation power densities when the high-energy peaks of the top stack are saturated, however, low-energy PL peaks from the bottom stacks emerge as a result of carrier transfers across the GaAs spacers. These unique PL signatures contrast with the state-filling effects in conventional, coupled QD stacks and serve as a means to quickly assess the presence of electronic coupling in stacks of dissimilar-sized nanostructures. (paper)

  10. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  11. Demagnetizing effects in stacked rectangular prisms

    International Nuclear Information System (INIS)

    A numerical, magnetostatic model of the internal magnetic field of a rectangular prism is extended to the case of a stack of rectangular prisms. The model enables the calculation of the spatially resolved, three-dimensional internal field in such a stack given any magnetic state function, stack configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack, the spacing between the prisms and the packing density of the stack. The results show that the resulting internal field is far from being equal to the applied field and that the various stack configurations investigated affect the resulting internal field significantly and non-linearly. The results have a direct impact on the design of, e.g., active magnetic regenerators made of stacked rectangular prisms in terms of optimizing the internal field.

  12. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe;

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  13. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  14. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  15. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures....

  16. Stacking fault probability and stacking fault energy in CoNi alloys

    Institute of Scientific and Technical Information of China (English)

    周伟敏; 江伯鸿; 刘岩; 漆王睿

    2001-01-01

    The stacking fault probability of CoNi alloys with different contents of Ni was measured by X-ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing temperature. The thermodynamical calculation has found an equation that can express the stacking fault energy γ of CoNi at temperature T. The phase equilibrium temperature depends on the composition of the certain alloy. The relationship between stacking fault energy γ and stacking fault probability Psf is determined.

  17. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  18. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    and uniqueness of flows on a manifold as well as the author's existing results for orbifolds. It sets the scene for a discussion of Morse Theory on a general proper stack and also paves the way for the categorification of other key aspects of differential geometry such as the tangent bundle and the Lie algebra......This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...

  19. Do Stack Traces Help Developers Fix Bugs?

    OpenAIRE

    Schröter, A; Bettenburg, N.; Premraj, R

    2010-01-01

    A widely shared belief in the software engineering community is that stack traces are much sought after by developers to support them in debugging. But limited empirical evidence is available to confirm the value of stack traces to developers. In this paper, we seek to provide such evidence by conducting an empirical study on the usage of stack traces by developers from the ECLIPSE project. Our results provide strong evidence to this effect and also throws light on some of the patterns in bug...

  20. Capping stack: An industry in the making

    Institute of Scientific and Technical Information of China (English)

    Jack Chen; Li Xunke; Xie Wenhui; Kang Yongtian

    2013-01-01

    This paper gives an overview of recent development of the marine well containment system (MWCS)after BP Macondo subsea well blowout occurred on April 20,2010 in the Gulf of Mexico.Capping stack,a hardware utilized to contain blowout well at or near the wellhead is the center piece of MWCS.Accessibility to the dedicated capping stacks is gradually becoming a pre-requirement to obtain the permit for offshore drilling/workover,and the industry for manufacturing,maintenance,transportation and operation of the capping stack is in the making.

  1. Parallel transport on principal bundles over stacks

    Science.gov (United States)

    Collier, Brian; Lerman, Eugene; Wolbert, Seth

    2016-09-01

    In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending the results of Barrett, Caetano and Picken, and Schreiber and Waldorf from manifolds to stacks. In the process of proving our main result we simplify Schreiber and Waldorf's original definition of a transport functor for principal bundles with connections over manifolds and provide a more direct proof of the correspondence between principal bundles with connections and transport functors.

  2. Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

    OpenAIRE

    Christopher Kugler; Tilo Müller

    2015-01-01

    Despite the fact that protection mechanisms like StackGuard, ASLR and NX are widespread, the development on new defense strategies against stack-based buffer overflows has not yet come to an end. In this article, we present a novel compiler-level protection called SCADS: Separated Control and Data Stacks that protects return addresses and saved frame pointers on a separate stack, called the control stack. In common computer programs, a single user mode stack is used to store control informati...

  3. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H

    2016-01-01

    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  4. Stacking for Cosmic Magnetism with SKA Surveys

    CERN Document Server

    Stil, J M

    2015-01-01

    Stacking polarized radio emission in SKA surveys provides statistical information on large samples that is not accessible otherwise due to limitations in sensitivity, source statistics in small fields, and averaging over frequency (including Faraday synthesis). Polarization is a special case because one obvious source of stacking targets is the Stokes I source catalog, possibly in combination with external catalogs, for example an SKA HI survey or a non-radio survey. We point out the significance of stacking sub-samples selected by additional observable parameters to investigate relations that reveal more about the physics of the source. Applications of stacking polarization include, but are not limited to, obtaining in a statistical sense polarization information to the detection limit in total intensity, depolarization as a function of cosmic time at consistent source-frame wavelengths, magnetic field properties in objects with a low radio luminosity such as dwarf and low-surface-brightness galaxies, and in...

  5. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  6. Turing Impossibility Properties for Stack Machine Programming

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2012-01-01

    The strong, intermediate, and weak Turing impossibility properties are introduced. Some facts concerning Turing impossibility for stack machine programming are trivially adapted from previous work. Several intriguing questions are raised about the Turing impossibility properties concerning different

  7. Exploring online evolution of network stacks

    OpenAIRE

    Imai, Pierre

    2013-01-01

    Network stacks today follow a one-size-fits-all philosophy. They are mostly kept unmodified due to often prohibitive costs of engineering, deploying and administrating customisation of the networking software, with the Internet stack architecture still largely being based on designs and assumptions made for the ARPANET 40 years ago. We venture that heterogeneous and rapidly changing networks of the future require, in order to be successful, run-time self-adaptation mechanisms at different tim...

  8. Stacking fault energy in some single crystals

    Institute of Scientific and Technical Information of China (English)

    Aditya M.Vora

    2012-01-01

    The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory.The structural characterizations of these crystals are made by XRD.Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry,which possesses the stacking fault in the single crystal.

  9. Stacking interactions in PUF-RNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Yiling Koh, Yvonne; Wang, Yeming; Qiu, Chen; Opperman, Laura; Gross, Leah; Tanaka Hall, Traci M; Wickens, Marvin [NIH; (UW)

    2012-07-02

    Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to 'target' versus 'off-target' interactions, and thus be an important consideration in the design of proteins with new specificities.

  10. Vibration Attenuation by a Combination of a Piezoelectric Stack and a Permanent Magnet

    Directory of Open Access Journals (Sweden)

    A. Nandi

    2012-01-01

    Full Text Available The present work proposes a non-contact vibration attenuator made up of a permanent magnet mounted on a piezoelectric stack. Two such actuators are made to work simultaneously in a 'twin-actuator' configuration. It is conceived that a controlled change in the gap between the actuator and the structure is capable of attenuation of vibration of the structure. This appropriate change in gap is achieved by controlled motion of the piezoelectric stacks. It is shown that the actuator works as an active damper when the extension and contraction of the actuators are made proportional to the velocity of the beam. The resolution of extension of a piezoelectric stack is in the order of nanometers. Thus in the proposed actuator the force of actuation can be applied with great precision. This actuator is also attractive for its simple constructional feature.

  11. Stacked subwavelength gratings for imaging polarimetry

    Science.gov (United States)

    Deguzman, Panfilo Castro

    The stacking of subwavelength gratings (SWG) in an integrated structure is presented for an application in imaging polarimetry. Imaging polarimetry extends the capability of conventional imaging by providing polarization information about a scene, in addition to variations in intensity. In this dissertation, a novel approach is introduced to develop a real-time imaging polarimeter. Subwavelength gratings are implemented as linear and circular polarization filters that are directly mounted onto the focal plane array of an infrared (IR) camera. Wire grid polarizers are used as linear polarization filters. The stacked structure, consisting of a wire grid polarizer and a form birefringent quarter-wave plate (QWP), implements the circular polarization filter and is the focus of this dissertation. Initial investigations of the development of the individual SWG components and their integration are presented. Rigorous Coupled Wave Analysis (RCWA) was used to design the SWG structures. A broadband form birefringent quarter-wave plate for the 3.5 to 5 μm wavelength range was designed as a grating structure patterned directly into the substrate. Two fabrication methods for the wire grid polarizer were investigated. A 0.5 μm period polarizer was patterned by interference lithography. A 1 μm period polarizer was patterned by contact printing. The stacking of the subwavelength grating structures was analyzed using the Jones Matrix calculus and a new RCWA method (developed by fellow graduate student Jianhua Jiang). Stacked SWG's were fabricated as large area (1.3 cm x 1.3 cm) filters and as a 256 x 256 array of small aperture (15 μm x 15 μm) pixels. Two stack designs were investigated, referred to as Stack I and Stack II. Stack I consisted of the 0.5 μm period polarizer and the form birefringent QWP. Stack II consisted of the I μm grid period polarizer and the form birefringent QWP. Simulation and measured results are presented to compare the cases of samples with and

  12. A method to increase the nominal range resolution of a stack of parallel-plate ionization chambers

    Science.gov (United States)

    Rinaldi, I.; Brons, S.; Jäkel, O.; Voss, B.; Parodi, K.

    2014-09-01

    A detector prototype based on a stack of 61 parallel-plate ionisation chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) was assembled for transmission imaging purposes in ion beam therapy. The thickness of the absorber sheets in the PPIC stack determines the nominal range resolution of the detector. In the current set-up, 3 mm PMMA slabs are used. The signal of the 61 active channels of the stack thereby provides a discrete approximation of the Bragg curve in the detector. In this work, a data processing method to increase the range resolution (MIRR) in a stack of ionization chambers is presented. In the MIRR the position of the maximum of the Bragg curve is deduced from the ratio of measured signals in adjacent PPIC channels. The method is developed based on Bragg curves obtained from Monte Carlo simulations and validated with experimental data of a wedge-shaped PMMA phantom acquired with the PPIC stack using carbon ion beams. The influence of the initial beam energy and of phantom inhomogeneities on the MIRR is quantitatively evaluated. Systematic errors as well as inaccuracies related to signal noise are discussed and quantified. It is shown that with the MIRR an increased range resolution of 0.7 mm PMMA equivalent or 0.8 mm water equivalent thickness is achieved for the considered experimental data.

  13. Beam intensity upgrade at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  14. Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films

    Science.gov (United States)

    Hsiao, C. H.; Yao, Y. D.; Lo, S. C.; Chang, H. W.; Ouyang, Chuenhou Hao

    2015-10-01

    FePd (001) films, prepared by an electron beam deposition system on MgO(100), exhibit a perpendicular magnetic anisotropy (1.7 × 107 erg/cc) with a high order parameter (0.92). The relation between stacking faults induced by the strain relaxation, which act as strong domain wall pinning sites, and the perpendicular coercivity of (001) oriented L10 FePd films prepared at different temperatures have been investigated. Perpendicular coercivity can be apparently enhanced by raising the stacking fault densities, which can be elevated by climbing dissociation of total dislocation. The increased stacking fault densities (1.22 nm-2) with large perpendicular coercivity (6000 Oe) are obtained for samples prepared at 650 °C. This present work shows through controlling stacking fault density in FePd film, the coercivity can be manipulated, which can be applied in future magnetic devices.

  15. Fungal melanins differ in planar stacking distances.

    Directory of Open Access Journals (Sweden)

    Arturo Casadevall

    Full Text Available Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  16. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  17. A Late Pleistocene sea level stack

    Directory of Open Access Journals (Sweden)

    R. M. Spratt

    2015-08-01

    Full Text Available Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA on seven records from 0–430 ka and five records from 0–798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively. When we compare the sea level stack with the δ18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  18. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  19. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel

    1993-01-01

    -density calculations of stacking-fault energies, and gives a simple way of understanding the calculated energy contributions from the different atomic layers in the stacking-fault region. The two parameters in the model describe the relative energy contributions of the s and d electrons in the noble and transition......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...... metals, and thereby explain the pronounced differences in energetics in these two classes of metals. The model is discussed in the framework of the effective-medium theory where it is possible to find a functional form for the pair potential and relate the contribution associated with the fourth moment...

  20. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.;

    2012-01-01

    application of advanced methods for detailed electrochemical characterisation during operation. An operating stack is subject to steep compositional gradients in the gaseous reactant streams, and significant temperature gradients across each cell and across the stack, which makes it a complex system...... Fuel Cell A/S was characterised in detail using electrochemical impedance spectroscopy. An investigation of the optimal geometrical placement of the current probes and voltage probes was carried out in order to minimise measurement errors caused by stray impedances. Unwanted stray impedances...... are particularly problematic at high frequencies. Stray impedances may be caused by mutual inductance and stray capacitance in the geometrical set-up and do not describe the fuel cell. Three different stack geometries were investigated by electrochemical impedance spectroscopy. Impedance measurements were carried...

  1. Three wafer stacking for 3D integration.

    Energy Technology Data Exchange (ETDEWEB)

    Greth, K. Douglas; Ford, Christine L.; Lantz, Jeffrey W.; Shinde, Subhash L.; Timon, Robert P.; Bauer, Todd M.; Hetherington, Dale Laird; Sanchez, Carlos Anthony

    2011-11-01

    Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

  2. Geometry and kinematics of experimental antiformal stacks

    Directory of Open Access Journals (Sweden)

    CAROLINE JANETTE SOUZA GOMES

    2000-06-01

    Full Text Available Sandbox experiments with different boundary conditions demonstrate that antiformal stacks result from a forward-breaking thrust sequence. An obstacle blocks forward thrust propagation and transfers the deformation back to the hinterland in a previously formed true duplex. In the hinterland, continued shortening causes faults to merge toward the tectonic transport direction until the older thrusts override the younger thrusts. In experiments using thin sand layers or high basal friction, shortening is accommodated by a cyclic process of thrusting, back rotation of the newly formed thrust combined with strong vertical strain, and nucleation of a new thrust. Continuous deformation produces an antiformal stack through progressive convergence of branch lines.

  3. Stacking of SKA data: comparing uv-plane and image-plane stacking

    CERN Document Server

    Knudsen, K K; Vlemmings, W; Conway, J; Marti-Vidal, I

    2015-01-01

    Stacking as a tool for studying objects that are not individually detected is becoming popular even for radio interferometric data, and will be widely used in the SKA era. Stacking is typically done using imaged data rather than directly using the visibilities (the uv-data). We have investigated and developed a novel algorithm to do stacking using the uv-data. We have performed exten- sive simulations comparing to image-stacking, and summarize the results of these simulations. Furthermore, we disuss the implications in light of the vast data volume produced by the SKA. Having access to the uv-stacked data provides a great advantage, as it allows the possibility to properly analyse the result with respect to calibration artifacts as well as source properties such as size. For SKA the main challenge lies in archiving the uv-data. For purposes of robust stacking analysis, it would be strongly desirable to either keep the calibrated uv-data at least in an aver- age form, or implement a stacking queue where stacki...

  4. Measuring Structural Parameters Through Stacking Galaxy Images

    CERN Document Server

    Li, Yubin; Gu, Qiu-Sheng; Wang, Yi-Peng; Wen, ZhangZheng; Guo, Kexin; An, FangXia

    2016-01-01

    It remains challenging to detect the low surface brightness structures of faint high-z galaxies, which is key to understanding the structural evolution of galaxies. The technique of image stacking allows us to measure the averaged light profile beneath the detection limit and probe the extended structure of a group of galaxies. We carry out simulations to examine the recovery of the averaged surface brightness profile through stacking model HST/ACS images of a set of galaxies as functions of Sersic index (n), effective radius (Re) and axis ratio (AR). The Sersic profile best fitting the radial profile of the stacked image is taken as the recovered profile, in comparison with the intrinsic mean profile of the model galaxies. Our results show that, in general, the structural parameters of the mean profile can be properly determined through stacking, although systematic biases need to be corrected when spreads of Re and AR are counted. We find that Sersic index is slightly overestimated and Re is underestimated ...

  5. Scaling the CERN OpenStack cloud

    Science.gov (United States)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  6. OpenStack Object Storage (Swift) essentials

    CERN Document Server

    Kapadia, Amar; Varma, Sreedhar

    2015-01-01

    If you are an IT administrator and you want to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Basic knowledge of Linux and server technology is beneficial to get the most out of the book.

  7. Average Transmission Probability of a Random Stack

    Science.gov (United States)

    Lu, Yin; Miniatura, Christian; Englert, Berthold-Georg

    2010-01-01

    The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower…

  8. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of perylenebisi

  9. SRS reactor stack plume marking tests

    Energy Technology Data Exchange (ETDEWEB)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart.

  10. OpenStack cloud computing cookbook

    CERN Document Server

    Jackson, Kevin

    2013-01-01

    A Cookbook full of practical and applicable recipes that will enable you to use the full capabilities of OpenStack like never before.This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments with familiarity of cloud computing platforms. Knowledge of virtualization and managing linux environments is expected.

  11. Measurement of heat conduction through stacked screens.

    Science.gov (United States)

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  12. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  13. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  14. A 10B-based neutron detector with stacked Multiwire Proportional Counters and macrostructured cathodes

    CERN Document Server

    Stefanescu, I; Birch, J; Defendi, I; Hall-Wilton, R; Hoglund, C; Hultman, L; Zee, M; Zeitelhack, K

    2013-01-01

    We present the results of the measurements of the detection efficiency for a 4.7 \\r{A} neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45{\\deg}, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficie...

  15. Effect of foundation flexibility on ductility reduction factors for R/C stack-like structures

    Science.gov (United States)

    Halabian, Amir M.; Kabiri, Shabnam

    2011-06-01

    The most important parameter used to determine force reduction factors in force-based design procedures adopted in the current seismic codes is the structural ductility. For a structure supported on a flexible foundation, the ductility factor could be affected by foundation compliances. The ductility factors given in the current codes are mostly assigned ignoring the effect of SSI and therefore the objective of this research is to assess the significance of SSI phenomenon on ductility factors of stack-like structures. The deformed configuration of stack-like structures is idealized as an assemblage of beam elements considering nonlinear moment-curvature relations, while a linear sway-rocking model was implemented to model the supporting soil. Using a set of artificial records, repeated linear and nonlinear analyses were performed by gradually increasing the intensity of acceleration to a level where the first yielding of steel in linear and nonlinear analyses is observed and a level corresponding to the stack collapse in the nonlinear analysis. The difference between inelastic and elastic resistance in terms of displacement ductility factors has been quantified. The results indicate that foundation flexibility can decrease the ductility of the system and neglecting this phenomenon may lead to erroneous conclusions in the prediction of the seismic performance of flexibly-supported R/C stack-like structures.

  16. UV PRE-IONIZED RAIL-GAP SWITCH FOR STACKED BLUMLEIN PULSE GENERATORS*

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, M A

    2005-05-09

    Stacked Blumlein Pulse Generators comprised of parallel-plate transmission lines are potentially a useful pulse-power architecture for high-gradient, compact, electron-beam accelerators and other applications. Such pulse generators require a low-inductance, fast (<5ns) switch per stage to erect the stack and produce the desired output pulse. We are developing a rail-gap switch tightly integrated with the stack for this application. We employ ultraviolet light (UV) to pre-ionize the switch, which facilitates prompt, low-jitter, and potentially multichannel operation. A novel aspect of our switch is that the source of the UV is a conventional Xenon flashlamp. This allows variation of the switch pressure and gas without affecting the flashlamp operation. We can operate our switch in either triggered or self-breaking mode. Here we present initial results of a two-stage, stacked Blumlein operating in self-break mode. We compare the switch performance to gas-switch scaling laws with respect to resistive-phase risetime and trigger delay as a function of gas density, gap-length, and gap-voltage.

  17. Narrow line diode laser stacks for DPAL pumping

    Science.gov (United States)

    Koenning, Tobias; Irwin, David; Stapleton, Dean; Pandey, Rajiv; Guiney, Tina; Patterson, Steve

    2014-02-01

    Diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality, making them an attractive candidate for future defense applications. A variety of gain media are used and each requires a different pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The biggest challenge in pumping these materials efficiently is the narrow gain media absorption band of approximately 0.01nm. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum. With state of the art locking techniques, either internal to the cavity or externally mounted gratings, the spectral width can typically be reduced to 0.5nm to 1nm for kW-class, high power stacks. More narrow spectral width has been achieved at lower power levels. The diode's inherent wavelength drift over operating temperature and output power is largely, but not completely, eliminated. However, standard locking techniques cannot achieve the required accuracy on the location of the spectral output or the spectral width for efficient DPAL pumping. Actively cooled diode laser stacks with continuous wave output power of up to 100W per 10mm bar at 780nm optimized for rubidium pumping will be presented. Custom designed external volume holographic gratings (VHGs) in conjunction with optimized chip material are used to narrow and stabilize the optical spectrum. Temperature tuning on a per-bar-level is used to overlap up to fifteen individual bar spectra into one narrow peak. At the same time, this tuning capability can be used to adjust the pump wavelength to match the absorption band of the active medium. A spectral width of <0.1nm for the entire stack is achieved at <1kW optical output power. Tuning of the peak wavelength is demonstrated for up to 0.15nm. The technology can easily be adapted to other diode laser wavelengths to pump different materials.

  18. Localized radiative energy transfer from a plasmonic bow-tie nano-antenna to a magnetic thin film stack

    OpenAIRE

    Sendur, K.; Kosar, A.; Mengüç, M. Pınar

    2011-01-01

    Localized radiative energy transfer from a near-field emitter to a magnetic thin film structure is investigated. A magnetic thin film stack is placed in the near-field of the plasmonic nano-antenna to utilize the evanescent mode coupling between the nano-antenna and magnetic thin film stack. A bow-tie nano-optical antenna is excited with a tightly focused beam of light to improve near-field radiative energy transfer from the antenna to the magnetic thin film structure. A tightly focused incid...

  19. Localized radiative energy transfer from a plasmonic bow-tie nanoantenna to a magnetic thin film stack

    OpenAIRE

    Şendur, Kürşat; Sendur, Kursat; Koşar, Ali; Kosar, Ali; Mengüç, Pınar; Menguc, Pinar

    2010-01-01

    Localized radiative energy transfer from a near-field emitter to a magnetic thin film structure is investigated. A magnetic thin film stack is placed in the near-field of the plasmonic nanoantenna to utilize the evanescent mode coupling between the nanoantenna and magnetic thin film stack. A bow-tie nano-optical antenna is excited with a tightly focused beam of light to improve near-field radiative energy transfer from the antenna to the magnetic thin film structure. A tightly focused inci...

  20. Absorption spectra of AA-stacked graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F [Department of Physics, National Cheng Kung University, Taiwan (China); Shyu, F L, E-mail: fl.shyu@msa.hinet.ne, E-mail: mflin@mail.ncku.edu.t [Department of Physics, ROC Military Academy, 830 Kaohsiung, Taiwan (China)

    2010-08-15

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  1. High power collimated diode laser stack

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan-yuan; FANG Gao-zhan; MA Xiao-yu; LIU Su-ping; FENG Xiao-ming

    2006-01-01

    A high power collimated diode laser stack is carried out based on fast-axis collimation and stack packaging techniques.The module includes ten typical continuous wave (cw) bars and the total output power can be up to 368W at 48.6A.Using a cylindrical lens as the collimation elements,we can make the fast-axis divergence and the slow-axis divergence are 0.926 40 and 8.2060 respectively.The light emitting area is limited in a square area of 18.3 mm×11 mm.The module has the advantage of high power density and offers a wide potential applications in pumping and material processing.

  2. Process for 3D chip stacking

    Science.gov (United States)

    Malba, Vincent

    1998-01-01

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  3. Industrial stacks design; Diseno de chimeneas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Cacheux, Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The Instituto de Investigaciones Electricas (IIE) though its Civil Works Department, develops, under contract with CFE`s Gerencia de Proyectos Termoelectricos (Management of Fossil Power Plant Projects), a series of methods for the design of stacks, which pretends to solve the a present day problem: the stack design of the fossil power plants that will go into operation during the next coming years in the country. [Espanol] El Instituto de Investigaciones Electricas (IIE), a traves del Departamento de Ingenieria Civil, desarrolla, bajo contrato con la Gerencia de Proyectos Termoelectricos, de la Comision Federal de Electricidad (CFE), un conjunto de metodos para el diseno de chimeneas, con el que se pretende resolver un problema inmediato: el diseno de las chimeneas de las centrales termoelectricas que entraran en operacion durante los proximos anos, en el pais.

  4. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  5. System for inspection of stacked cargo containers

    Science.gov (United States)

    Derenzo, Stephen

    2011-08-16

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. The invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.

  6. Fluxon dynamics in three stacked Josephson junctions

    DEFF Research Database (Denmark)

    Gorria, Carlos; Christiansen, Peter Leth; Gaididei, Yuri Borisovich;

    2002-01-01

    /sub -/, the coupling between junctions leads to a repulsion of the fluxons with the same polarity. Above this critical velocity a fluxon will induce radiation in the neighboring junctions, leading to a bunching of the fluxons in the stacked junctions. Using the Sakai-Bodin-Pedersen model, three coupled perturbed sine......The motion of fluxons of the same polarity in three vertically stacked Josephson junctions is studied. In this configuration the difference between exterior and interior junctions plays a more important role than in other configurations with several interior junctions. Below the Swihart velocity c......-Gordon equations are numerically studied for different values of coupling, damping, and bias parameters. In a narrow range of velocities bunching occurs. Outside this interval the fluxons split and new fluxons may be created. I-V characteristics are presented...

  7. Radiation-Tolerant Intelligent Memory Stack - RTIMS

    Science.gov (United States)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2011-01-01

    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  8. Spectral analysis using linearly chirped Gaussian pulse stacking

    International Nuclear Information System (INIS)

    We analyze the spectrum of a stacked pulse with the technique of linearly chirped Gaussian pulse stacking. Our results show that there are modulation structures in the spectrum of the stacked pulse. The modulation frequencies are discussed in detail. By applying spectral analysis, we find that the intensity fluctuation cannot be smoothed by introducing an optical amplitude filter. (authors)

  9. Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huan; WANG An-Ting; XU Li-Xin; MING Hai

    2009-01-01

    We analyze the spectrum of a stacked pulse with the technique of linearly chirped Gaussian pulse stacking.Our results show that there are modulation structures in the spectrum of the stacked pulse. The modulation frequencies are discussed in detail. By applying spectral analysis, we find that the intensity fluctuation cannot be smoothed by introducing an optical amplitude filter.

  10. Angular resolution of stacked resistive plate chambers

    CERN Document Server

    Samuel, Deepak; Murgod, Lakshmi P

    2016-01-01

    We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.

  11. HTS twisted stacked-tape cable conductor

    International Nuclear Information System (INIS)

    The feasibility of high field magnet applications of the twisted stacked-tape cabling method with 2G YBCO tapes has been investigated. An analysis of torsional twist strains of a thin HTS tape has been carried out taking into account the internal shortening compressive strains accompanied with the lengthening tensile strains due to the torsional twist. The model is benchmarked against experimental tests using YBCO tapes. The critical current degradation and current distribution of a four-tape conductor was evaluated by taking account of the twist strain, the self-field and the termination resistances. The critical current degradation for the tested YBCO cables can be explained by the perpendicular self-field effect. It is shown that the critical current of a twisted stacked-tape conductor with a four-tape cable does not degrade with a twist pitch length as short as 120 mm. Current distribution among tapes and hysteresis losses are also investigated. A compact joint termination method for a 2G YBCO tape cable has been developed. The twisted stacked-tape conductor method may be an attractive means for the fabrication of highly compact, high current cables from multiple flat HTS tapes.

  12. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros. PMID:19334940

  13. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  14. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications.

    Science.gov (United States)

    Wlodarczyk, Krystian L; Bryce, Emma; Schwartz, Noah; Strachan, Mel; Hutson, David; Maier, Robert R J; Atkinson, David; Beard, Steven; Baillie, Tom; Parr-Burman, Phil; Kirk, Katherine; Hand, Duncan P

    2014-02-01

    A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 μm maximum actuator stroke, a 1.4 μm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

  15. A Novel Kind of Transverse Micro-Stack High-Power Diode Bars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; CUI Bi-Feng; LI Jian-Jun; GUO Wei-Ling; WANG Zhi-Qun; SHEN Guang-Di

    2008-01-01

    @@ Novel transverse micro-stack semiconductor laser bars are put forward to improve the output optical power of semiconductor laser bars at low injection current. More importantly, the novel laser bars have a coupled large optical cavity, which can overcome the problem of catastrophic optical damage and improve light beam quality due to the coherently coupled emitting along the transverse direction. The micro-stack tunnel regeneration tri-active region laser structure was grown by metal organic chemical vapour deposition. For a weakly coupled uncoated device, the optical power exceeds 60 W under 50 A driving current and the slope efficiency reaches 1.55 W/A.Further experiments show that the perpendicular divergence of 23°is achieved from transverse strongly coupled devices.

  16. Multi-stacks of epitaxial GeSn self-assembled dots in Si: Structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Fischer, I. A.; Schulze, J. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Benedetti, A. [CACTI, Univ. de Vigo, Campus Universitario Lagoas Marcosende 15, Vigo (Spain); Cerqueira, M. F.; Vasilevskiy, M. I. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Stefanov, S.; Chiussi, S. [Dpto. Fisica Aplicada, Univ. de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2015-03-28

    We report on the growth and structural and morphologic characterization of stacked layers of self-assembled GeSn dots grown on Si (100) substrates by molecular beam epitaxy at low substrate temperature T = 350 °C. Samples consist of layers (from 1 up to 10) of Ge{sub 0.96}Sn{sub 0.04} self-assembled dots separated by Si spacer layers, 10 nm thick. Their structural analysis was performed based on transmission electron microscopy, atomic force microscopy, and Raman scattering. We found that up to 4 stacks of dots could be grown with good dot layer homogeneity, making the GeSn dots interesting candidates for optoelectronic device applications.

  17. A Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Nielsen, Carsten

    2016-01-01

    Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related...... to locality, lifetime, and static analyzability of access addresses comparedto static or heap allocated data. Therefore, caching of stack allocateddata benefits from having its own cache. In this paper we present a cache architecture optimized for stack allocateddata. This cache is additional to the normal...... data cache. As stack allocated datahas a high locality, even a small stack cache gives a high hit rate. A stack cache added to a write-through data cache considerablyimproves the performance, while a stack cache compared tothe harder to analyze write-back cache has about the sameaverage case...

  18. Spectroscopic Signature of Stacking Disorder in Ice I.

    Science.gov (United States)

    Carr, Thomas H G; Shephard, Jacob J; Salzmann, Christoph G

    2014-07-17

    There is a growing realization that the presence of stacking disorder in ice I strongly influences its physical and chemical properties. Using Raman spectroscopy, we gain new fundamental insights into the spectroscopic properties of ice. We show that stacking disorder can be detected and quantified by comparing the spectra of stacking disordered ice with spectra of the "ordinary" hexagonal ice Ih. The spectral signature of stacking disorder is thought to arise from a greater structural diversity on the local length scale, vibrational modes that appear due to the lower-symmetry environments, and a strengthening of the covalent bonds. Our findings are compared to results from diffraction and calorimetry, and we discuss the advantages and disadvantages of the three techniques with respect to detecting stacking disorder in ice I. Apart from characterizing stacking disordered ice in the research lab, our new method is perfectly suited for remote or telescopic applications aiming at the identification of stacking disordered ice in nature.

  19. Horizontal high speed stacking for batteries with prismatic cans

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  20. Beam propagation considerations in the Aurora laser system

    International Nuclear Information System (INIS)

    Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering, absorption thermal gradients and turbulence, beam alignment, and control and optical component figure errors

  1. Intrinsic coincident linear polarimetry using stacked organic photovoltaics.

    Science.gov (United States)

    Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W

    2016-06-27

    Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter. PMID:27410627

  2. Intrinsic coincident linear polarimetry using stacked organic photovoltaics.

    Science.gov (United States)

    Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W

    2016-06-27

    Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter.

  3. PBG Based High Gain Microstrip Stacked Antenna

    Directory of Open Access Journals (Sweden)

    Babulal Chaudhary

    2013-03-01

    Full Text Available In this paper, authors have proposed the analysis of a rectangular stacked patch antenna operates at the frequency of 2.4 GHz with a photonic band-gap structure (PBG and compared its performances with a conventional patch antenna. Due to the presence of the PBG structure in the dielectric substrate, proposed antenna shows a significant reduction in surface wave levels than a conventional patch antenna. As a result, the gain of the proposed antenna is found to be improved by 3.2 dB

  4. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y. S.; Choi, Jung-Pyung; Xu, Wei; Stephens, Elizabeth V.; Koeppel, Brian J.; Stevenson, Jeffry W.; Lara-Curzio, Edgar

    2014-04-01

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  5. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  6. Synthetic data products for future H I galaxy surveys: a tool for characterizing source confusion in spectral line stacking experiments

    Science.gov (United States)

    Elson, E. C.; Blyth, S. L.; Baker, A. J.

    2016-08-01

    Much of our current understanding of neutral, atomic gas in galaxies comes from radio observations of the nearby Universe. Until the next generation of instruments allow us to push to much higher redshifts, we must rely mostly upon theoretical models of galaxy formation to provide us with key insights into the likely cosmic evolution of H I in the Universe, and its links to molecular clouds and star formation. In this work, we present a new set of methods to convert mock galaxy catalogues into synthetic data cubes containing model galaxies with realistic spatial and spectral H I distributions over large cosmological volumes. Such synthetic data products can be used to guide observing and data handling/analysis strategies for forthcoming H I galaxy surveys. As a demonstration of the potential use of our simulated products we use them to conduct several mock H I stacking experiments for both low and high-redshift galaxy samples. The stacked spectra can be accurately decomposed into contributions from target and non-target galaxies, revealing in all co-added spectra large fractions of contaminant mass due to source confusion. Our results are consistent with similar estimates extrapolated from z = 0 observational data. The amount of confused mass in a stacked spectrum grows almost linearly with the size of the observational beam, suggesting potential overestimates of Ω _{H I} by some recent H I stacking experiments. Our simulations will allow the study of subtle redshift-dependent effects in future stacking analyses.

  7. Synthetic data products for future H I galaxy surveys: a tool for characterising source confusion in spectral line stacking experiments

    Science.gov (United States)

    Elson, E. C.; Blyth, S. L.; Baker, A. J.

    2016-05-01

    Much of our current understanding of neutral, atomic gas in galaxies comes from radio observations of the nearby Universe. Until the next generation of instruments allow us to push to much higher redshifts, we must rely mostly upon theoretical models of galaxy formation to provide us with key insights into the likely cosmic evolution of H I in the Universe, and its links to molecular clouds and star formation. In this work, we present a new set of methods to convert mock galaxy catalogues into synthetic data cubes containing model galaxies with realistic spatial and spectral H I distributions over large cosmological volumes. Such synthetic data products can be used to guide observing and data handling/analysis strategies for forthcoming H I galaxy surveys. As a demonstration of the potential use of our simulated products we use them to conduct several mock H I stacking experiments for both low and high-redshift galaxy samples. The stacked spectra can be accurately decomposed into contributions from target and non-target galaxies, revealing in all co-added spectra large fractions of contaminant mass due to source confusion. Our results are consistent with similar estimates extrapolated from z = 0 observational data. The amount of confused mass in a stacked spectrum grows almost linearly with the size of the observational beam, suggesting potential over-estimates of ΩHI by some recent H I stacking experiments. Our simulations will allow the study of subtle redshift-dependent effects in future stacking analyses.

  8. Tolerance Stack Analysis in Francis Turbine Design

    Directory of Open Access Journals (Sweden)

    Indra Djodikusumo

    2010-05-01

    Full Text Available The tolerance stacking problem arises in the context of assemblies from interchangeable parts because of the inability to produce or to join parts exactly according to nominal dimensions. Either the relevant part’s dimension varies around some nominal values from part to part or the act of assembly that leads to variation. For example, as runner of Francis turbine is joined with turbine shaft via mechanical lock, there is not only variation in the diameter of runner and the concentricity between the runner hole and turbine shaft, but also the variation in concentricity between the outer parts of runner to runner hole. Thus, there is the possibility that the assembly of such interacting parts won’t function or won’t come together as planned. Research in this area has been conducted and 2 mini hydro Francis turbines (800 kW and 910 kW have been designed and manufactured for San Sarino and Sawi Dago 2 in Central Sulawesi. Experiences in analyzing the tolerance stacks have been documented. In this paper it will be demonstrated how the requirements of assembling performance are derived to be the designed tolerances of each interacting component, such a way that the assembling would be functioning and come together as planned.

  9. PBFA-2 vacuum insulator stack failure mechanisms

    Science.gov (United States)

    Sweeney, M. A.

    The BPFA-II accelerator includes a large-radius, vertical-axis vacuum insulator stack. The possible failure of the acrylic rings in the stack from electron- or gamma-induced charge buildup is being evaluated. The induced static charges could remain for many hours, and either type of irradiation might cause dendrites to form. Aluminum grading rings sandwiched between the acrylic affect charge accumulation; the acrylic would preferentially break down to these grading rings. The charge buildup and the bremsstrahlung dose could depend critically upon the directionality and position of the electron loss. The effects of electron loss that occurs in the vicinity of the ion diode, where the electrons have energies of about 30 MeV are considered. Monte Carlo electron-photon transport calculations indicate that the bremsstrahlung dose expected in an acrylic ring once diode experiments begin in 1986 could be as much as 5 krads per shot, with roughly half of the photon energy above 5 MeV. Moreover, the calculation indicate that the charge deposition in an individual acrylic ring might exceed 2x10 to the 11 electrons/sq cm.

  10. Stacking interactions and the twist of DNA

    DEFF Research Database (Denmark)

    Cooper, V.R.; Thonhauser, T.; Puzder, A.;

    2008-01-01

    The importance of stacking interactions for the Twist and stability of DNA is investigated using the fully ab initio van der Waals density functional (vdW-DF).(1,2) Our results highlight the role that binary interactions between adjacent sets of base pairs play in defining the sequence-dependent ......The importance of stacking interactions for the Twist and stability of DNA is investigated using the fully ab initio van der Waals density functional (vdW-DF).(1,2) Our results highlight the role that binary interactions between adjacent sets of base pairs play in defining the sequence......-dependent Twists observed in high-resolution experiments. Furthermore, they demonstrate that additional stability gained by the presence of thymine is due to methyl interactions with neighboring bases, thus adding to our understanding of the mechanisms that contribute to the relative stability of DNA and RNA. Our...... mapping of the energy required to twist each of the 10 unique base pair steps should provide valuable information for future studies of nucleic acid stability and dynamics. The method introduced will enable the nonempirical theoretical study of significantly larger pieces of DNA or DNA/amino acid...

  11. High performance zinc air fuel cell stack

    Science.gov (United States)

    Pei, Pucheng; Ma, Ze; Wang, Keliang; Wang, Xizhong; Song, Mancun; Xu, Huachi

    2014-03-01

    A zinc air fuel cell (ZAFC) stack with inexpensive manganese dioxide (MnO2) as the catalyst is designed, in which the circulation flowing potassium hydroxide (KOH) electrolyte carries the reaction product away and acts as a coolant. Experiments are carried out to investigate the characteristics of polarization, constant current discharge and dynamic response, as well as the factors affecting the performance and uniformity of individual cells in the stack. The results reveal that the peak power density can be as high as 435 mW cm-2 according to the area of the air cathode sheet, and the influence factors on cell performance and uniformity are cell locations, filled state of zinc pellets, contact resistance, flow rates of electrolyte and air. It is also shown that the time needed for voltages to reach steady state and that for current step-up or current step-down are both in milliseconds, indicating the ZAFC can be excellently applied to vehicles with rapid dynamic response demands.

  12. The Lockman Hole project: gas and galaxy properties from a stacking experiment

    OpenAIRE

    Geréb, K.; Morganti, R.; Oosterloo, T. A.; Guglielmino, G.; Prandoni, I.

    2013-01-01

    We perform an HI stacking analysis to study the relation between HI content and optical/radio/IR properties of galaxies located in the Lockman Hole area. In the redshift range covered by the observations (up to z = 0.09), we use the SDSS to separate galaxies with different optical characteristics, and we exploit the deep L-band radio continuum image (with noise 11 \\mu Jy/beam) to identify galaxies with radio continuum emission. Infrared properties are extracted from the Spitzer catalog. We de...

  13. SOD Stack Low-k Integration for 45nm Node and Beyond

    Institute of Scientific and Technical Information of China (English)

    K. Maekawa; K. Mishima; H. Nagano; M. Kodera; K. Tokushige; H. Nagai; M. Iwashita; M. Muramatsu; K. Kubota; K. Hinata; A.Shiota; T. Kokubo; M. Hattori

    2005-01-01

    We investigated single damascene integration with Porous MSQ (Methyl-Silsesqui-oxane, k value is 2.3) and Spin on Low k MSQ (k value is 2.9) as hard mask on Porous MSQ. Mechanical property of Low k material is improved by Electron Beam (EB) Cure technology. And also One time cure of stacked Low k is successful without any problem. On integration issue of Low k material, we demonstrated low damage resist strip process by using reducing gas chemistry and clarified mechanism of new Cu corrosion mode during CMP process.

  14. Simple Stacking Methods for Silicon Micro Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gianmario Scotti

    2014-08-01

    Full Text Available We present two simple methods, with parallel and serial gas flows, for the stacking of microfabricated silicon fuel cells with integrated current collectors, flow fields and gas diffusion layers. The gas diffusion layer is implemented using black silicon. In the two stacking methods proposed in this work, the fluidic apertures and gas flow topology are rotationally symmetric and enable us to stack fuel cells without an increase in the number of electrical or fluidic ports or interconnects. Thanks to this simplicity and the structural compactness of each cell, the obtained stacks are very thin (~1.6 mm for a two-cell stack. We have fabricated two-cell stacks with two different gas flow topologies and obtained an open-circuit voltage (OCV of 1.6 V and a power density of 63 mW·cm−2, proving the viability of the design.

  15. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  16. Cloud Computing with Open Source Tool :OpenStack

    Directory of Open Access Journals (Sweden)

    Dr. Urmila R. Pol

    2014-09-01

    Full Text Available OpenStack is a especially scalable open source cloud operating system that is a global alliance of developers and cloud computing technologists producing the ubiquitous open source cloud computing platform for public and private clouds. OpenStack provides series of interrelated projects delivering various components for a cloud infrastructure solution as well as controls large pools of storage, compute and networking resources throughout a datacenter that all managed through a Dashboard(Horizon that gives administrators control while empowering their users to provision resources through a web interface.In this paper, we present a overview of Cloud Computing Platform such as, Openstack, Eucalyptus ,CloudStack and Opennebula which is open source software, cloud computing layered model, components of OpenStack, architecture of OpenStack. The aim of this paper is to show mainly importance of OpenStack as a Cloud provider and its installation.

  17. Size filtering effect in vertical stacks of In(Ga)As/GaAs self-assembled quantum rings

    International Nuclear Information System (INIS)

    We present a systematic study of closely In(Ga)As/InAs quantum rings (QRs) grown by molecular beam epitaxy (MBE). Photoluminescence (PL) experiments show a strong filtering effect in the ring being stacked and simultaneous linewidth narrowing for the appropriate layer thickness (thinner thickness). If the spacer thickness is further reduced, a strong coupling between the nanostructures is produced and the signal shifts to low energy

  18. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  19. Compact bipolar plate-free direct methanol fuel cell stacks.

    Science.gov (United States)

    Dong, Xue; Takahashi, Motohiro; Nagao, Masahiro; Hibino, Takashi

    2011-05-14

    Fuel cells with a PtAu/C anode and a Pr-doped Mn(2)O(3)/C cathode were stacked without using a bipolar plate, and their discharge properties were investigated in a methanol aqueous solution bubbled with air. A three-cell stack exhibited a stack voltage of 2330 mV and a power output of 21 mW. PMID:21451850

  20. Solid oxide cell stack and method for preparing same

    DEFF Research Database (Denmark)

    2012-01-01

    A method for producing and reactivating a solid oxide cell stack structure by providing a catalyst precursor in at least one of the electrode layers by impregnation and subsequent drying after the stack has been assembled and initiated. Due to a significantly improved performance and an unexpecte...... voltage improvement this solid oxide cell stack structure is particularly suitable for use in solid oxide fuel cell (SOFC) and solid oxide electrolysing cell (SOEC) applications....

  1. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  2. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  3. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn

    2014-09-11

    Fermilab@?s Accelerator Complex has been recently upgraded, in order to increase the 120GeV proton beam power on target from about 400kW to over 700kW for NO@nA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at V_p_e_a_k@?150kV, but at slightly different frequencies (@Df=1260Hz). Their installation was completed in September 2013. This paper describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  4. Complexity of the FIFO Stack-Up Problem

    OpenAIRE

    Gurski, Frank; Rethmann, Jochen; Wanke, Egon

    2013-01-01

    We study the combinatorial FIFO stack-up problem. In delivery industry, bins have to be stacked-up from conveyor belts onto pallets with respect to customer orders. Given k sequences q_1, ..., q_k of labeled bins and a positive integer p, the aim is to stack-up the bins by iteratively removing the first bin of one of the k sequences and put it onto an initially empty pallet of unbounded capacity located at one of p stack-up places. Bins with different pallet labels have to be placed on differ...

  5. Rapid Feature Learning with Stacked Linear Denoisers

    CERN Document Server

    Xu, Zhixiang Eddie; Sha, Fei

    2011-01-01

    We investigate unsupervised pre-training of deep architectures as feature generators for "shallow" classifiers. Stacked Denoising Autoencoders (SdA), when used as feature pre-processing tools for SVM classification, can lead to significant improvements in accuracy - however, at the price of a substantial increase in computational cost. In this paper we create a simple algorithm which mimics the layer by layer training of SdAs. However, in contrast to SdAs, our algorithm requires no training through gradient descent as the parameters can be computed in closed-form. It can be implemented in less than 20 lines of MATLABTMand reduces the computation time from several hours to mere seconds. We show that our feature transformation reliably improves the results of SVM classification significantly on all our data sets - often outperforming SdAs and even deep neural networks in three out of four deep learning benchmarks.

  6. GRB neutrino detection via time profile stacking

    CERN Document Server

    van Eijndhoven, Nick

    2007-01-01

    A method is presented for the identification of high-energy neutrinos from gamma ray bursts by means of a large-scale neutrino telescope. The procedure makes use of a time profile stacking technique of observed neutrino induced signals in correlation with satellite observations. By selecting a rather wide time window, a possible difference between the arrival times of the gamma and neutrino signals may also be identified. This might provide insight in the particle production processes at the source. By means of a toy model it will be demonstrated that a statistically significant signal can be obtained with a km$^{3}$-scale neutrino telescope on a sample of 500 gamma ray bursts for a signal rate as low as 1 detectable neutrino for 3% of the bursts.

  7. Stacking the odds for Golgi cisternal maturation.

    Science.gov (United States)

    Mani, Somya; Thattai, Mukund

    2016-01-01

    What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. PMID:27542195

  8. Stacking the odds for Golgi cisternal maturation.

    Science.gov (United States)

    Mani, Somya; Thattai, Mukund

    2016-01-01

    What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo.

  9. Stacking of silicon pore optics for IXO

    Science.gov (United States)

    Collon, Maximilien J.; Guenther, Ramses; Ackermann, Marcelo; Partapsing, Rakesh; Kelly, Chris; Beijersbergen, Marco W.; Bavdaz, Marcos; Wallace, Kotska; Olde Riekerink, Mark; Mueller, Peter; Krumrey, Michael

    2009-08-01

    Silicon pore optics is a technology developed to enable future large area X-ray telescopes, such as the International Xray Observatory (IXO), a candidate mission in the ESA Space Science Programme 'Cosmic Visions 2015-2025'. IXO uses nested mirrors in Wolter-I configuration to focus grazing incidence X-ray photons on a detector plane. The IXO mirrors will have to meet stringent performance requirements including an effective area of ~3 m2 at 1.25 keV and ~1 m2 at 6 keV and angular resolution better than 5 arc seconds. To achieve the collecting area requires a total polished mirror surface area of ~1300 m2 with a surface roughness better than 0.5 nm rms. By using commercial high-quality 12" silicon wafers which are diced, structured, wedged, coated, bent and stacked the stringent performance requirements of IXO can be attained without any costly polishing steps. Two of these stacks are then assembled into a co-aligned mirror module, which is a complete X-ray imaging system. Included in the mirror module are the isostatic mounting points, providing a reliable interface to the telescope. Hundreds of such mirror modules are finally integrated into petals, and mounted onto the spacecraft to form an X-ray optic of four meters in diameter. In this paper we will present the silicon pore optics assembly process and latest X-ray results. The required metrology is described in detail and experimental methods are shown, which allow to assess the quality of the HPOs during production and to predict the performance when measured in synchrotron radiation facilities.

  10. Dielectric elastomer generators that stack up

    International Nuclear Information System (INIS)

    This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body

  11. Evaluating interaction techniques for stack mode viewing.

    Science.gov (United States)

    Atkins, M Stella; Fernquist, Jennifer; Kirkpatrick, Arthur E; Forster, Bruce B

    2009-08-01

    Three interaction techniques were evaluated for scrolling stack mode displays of volumetric data. Two used a scroll-wheel mouse: one used only the wheel, while another used a "click and drag" technique for fast scrolling, leaving the wheel for fine adjustments. The third technique used a Shuttle Xpress jog wheel. In a within-subjects design, nine radiologists searched stacked images for simulated hyper-intense regions on brain, knee, and thigh MR studies. Dependent measures were speed, accuracy, navigation path, and user preference. The radiologists considered the task realistic. They had high inter-subject variability in completion times, far larger than the differences between techniques. Most radiologists (eight out of nine) preferred familiar mouse-based techniques. Most participants scanned the data in two passes, first locating anomalies, then scanning for omissions. Participants spent a mean 10.4 s/trial exploring anomalies, with only mild variation between participants. Their rates of forward navigation searching for anomalies varied much more. Interaction technique significantly affected forward navigation rate (scroll wheel 5.4 slices/s, click and drag 9.4, and jog wheel 6.9). It is not clear what constrained the slowest navigators. The fastest navigator used a unique strategy of moving quickly just beyond an anomaly, then backing up. Eight naïve students performed a similar protocol. Their times and variability were similar to the radiologists, but more (three out of eight) students preferred the jog wheel. It may be worthwhile to introduce techniques such as the jog wheel to radiologists during training, and several techniques might be provided on workstations, allowing individuals to choose their preferred method.

  12. Dielectric elastomer generators that stack up

    Science.gov (United States)

    McKay, T. G.; Rosset, S.; Anderson, I. A.; Shea, H.

    2015-01-01

    This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body

  13. Identifying dislocations and stacking faults in GaN films by scanning transmission electron microscopy

    Science.gov (United States)

    Su, X. J.; Niu, M. T.; Zeng, X. H.; Huang, J.; Zhang, J. C.; Zhang, J. P.; Wang, J. F.; Xu, K.

    2016-08-01

    The application of annular bright field (ABF) and medium-angle annular dark field (MAADF) scanning transmission electron microscopy (STEM) imaging to crystalline defect analysis has been extended to dislocations and stacking faults (SFs). Dislocations and SFs have been imaged under zone-axis and two-beam diffraction conditions. Comparing to conventional two-beam diffraction contrast images, the ABF and MAADF images of dislocations and SFs not only are complementary and symmetrical with their peaks at dislocation core and SFs plane, but also show similar extinction phenomenon. It is demonstrated that conventional TEM rules for diffraction contrast, i.e. g · b and g · R invisibility criteria remain applicable. The contrast mechanism and extinction of dislocation and SFs in ABF and MAADF STEM are illuminated by zero-order Laue zone Kikuchi diffraction.

  14. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  15. Calculation of AC losses in large HTS stacks and coils

    DEFF Research Database (Denmark)

    Zermeno, Victor; Abrahamsen, Asger Bech; Mijatovic, Nenad;

    2012-01-01

    In this work, we present a homogenization method to model a stack of HTS tapes under AC applied transport current or magnetic field. The idea is to find an anisotropic bulk equivalent for the stack of tapes, where the internal alternating structures of insulating, metallic, superconducting...

  16. Development of internal reforming carbonate fuel cell stack technology

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  17. Yield and Cost Analysis or 3D Stacked ICs

    NARCIS (Netherlands)

    Taouil, M.

    2014-01-01

    3D stacking is an emerging technology promising many benefits such as low latency between stacked dies, reduced power consumption, high bandwidth communication, improved form factor and package volume density, heterogeneous integration, and low-cost manufacturing. However, it requires modification o

  18. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  19. 29 CFR 1917.14 - Stacking of cargo and pallets.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Stacking of cargo and pallets. 1917.14 Section 1917.14 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... pallets. Cargo, pallets and other material stored in tiers shall be stacked in such a manner as to...

  20. Nondestructive cell evaluation techniques in SOFC stack manufacturing

    Science.gov (United States)

    Wunderlich, C.

    2016-04-01

    Independent from the specifics of the application, a cost efficient manufacturing of solid oxide fuel cells (SOFC), its electrolyte membranes and other stack components, leading to reliable long-life stacks is the key for the commercial viability of this fuel cell technology. Tensile and shear stresses are most critical for ceramic components and especially for thin electrolyte membranes as used in SOFC cells. Although stack developers try to reduce tensile stresses acting on the electrolyte by either matching CTE of interconnects and electrolytes or by putting SOFC cells under some pressure - at least during transient operation of SOFC stacks ceramic cells will experience some tensile stresses. Electrolytes are required to have a high Weibull characteristic fracture strength. Practical experiences in stack manufacturing have shown that statistical fracture strength data generated by tests of electrolyte samples give limited information on electrolyte or cell quality. In addition, the cutting process of SOFC electrolytes has a major influence on crack initiation. Typically, any single crack in one the 30 to 80 cells in series connection will lead to a premature stack failure drastically reducing stack service life. Thus, for statistical reasons only 100% defect free SOFC cells must be assembled in stacks. This underlines the need for an automated inspection. So far, only manual processes of visual or mechanical electrolyte inspection are established. Fraunhofer IKTS has qualified the method of optical coherence tomography for an automated high throughput inspection. Alternatives like laser speckle photometry and acoustical methods are still under investigation.

  1. Assessment of mean stack rises for cold sources

    International Nuclear Information System (INIS)

    A stack rise for cold sources depends on the exit conditions, namely the exit velocity, the stack diameter, the stack height, and the heat emission and, for calculating a mean rise, on the weather statistics employed. For routine assessments, in most cases the Holland-Stuemke formula is used. It supplies values for the stack rise, and so for the diffusion factor, which are in the medium range of those calculated by means of equations available for cold sources. The Moses-Carson formula supplies the lowest rise values. The Bryant-Davidson formula produces results up to mean exit impulses which are similar to those of the Holland-Stuemke formula, but for very high exit impulses it deviates positively to an increasing extent. Downwash occurs only at low exit velocities in connection with high wind speed. The decision as to whether a mean stack rise should be taken into account for long-term diffusion calculations can only be taken after assessing this quantity by means of one of the described formulas. The stack height is also important in this context. With lower stacks a certain rise has stronger effects than with high stacks. (orig./HP)

  2. 40 CFR 52.383 - Stack height review.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Stack height review. 52.383 Section 52.383 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... by stack height credits greater than good engineering practice or any other prohibited...

  3. Computer Center: 2 HyperCard Stacks for Biology.

    Science.gov (United States)

    Duhrkopf, Richard, Ed.

    1989-01-01

    Two Hypercard stacks are reviewed including "Amino Acids," created to help students associate amino acid names with their structures, and "DNA Teacher," a tutorial on the structure and function of DNA. Availability, functions, hardware requirements, and general comments on these stacks are provided. (CW)

  4. Phase dynamics of two parallel stacks of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu M.; Rahmonov, I. R.; Plecenik, A.; Seidel, P.; Ilʼichev, E.; Nawrocki, W.

    2014-12-01

    Two parallel stacks of coupled Josephson junctions (JJs) are investigated to clarify the physics of transitions between the rotating and oscillating states and their effect on the IV-characteristics of the system. The detailed study of phase dynamics and bias dependence of the superconducting and diffusion currents allows one to explain all features of simulated IV-characteristics and demonstrate the correspondence in their behavior. The coupling between JJ in the stacks leads to the branching of IV-characteristics and a decrease in the hysteretic region. The crucial role of the diffusion current in the formation of the IV-characteristic of the parallel stacks of coupled JJs is demonstrated. We discuss the effect of symmetry in a number of junctions in the stacks and show a decrease of the branching in the symmetrical stacks. The observed effects might be useful for development of superconducting electronic devices based on intrinsic JJs.

  5. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...

  6. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  7. Progress on the NSTX Center Stack Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    L. Dudek, J. Chrzanowski, P. Heitzenroeder, D. Mangra, C. Neumeyer, M. Smith, R. Strykowsky, P. Titus, T. Willard

    2010-09-22

    The National Spherical Torus Experiment (NSTX) will be upgraded to provide increased toroidal field, plasma current and pulse length. This involves the replacement of the so-called center stack, including the inner legs of the Toroidal Field (TF) coil, the Ohmic Heating (OH) coil, and the inner Poloidal Field (PF) coils. In addition the increased performance of the upgrade requires qualification of remaining existing components for higher loads. Initial conceptual design efforts were based on worst-case combinations of possible currents that the power supplies could deliver. This proved to be an onerous requirement and caused many of the outer coils support structures to require costly heavy reinforcement. This has led to the planned implementation of a Digital Coil Protection System (DCPS) to reduce design-basis loads to levels that are more realistic and manageable. As a minimum, all components must be qualified for the increase in normal operating loads with headroom. Design features and analysis efforts needed to meet the upgrade loading are discussed. Mission and features of the DCPS are presented.

  8. Lithiation-induced shuffling of atomic stacks

    KAUST Repository

    Nie, Anmin

    2014-09-10

    In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.

  9. Progress on NSTX center stack upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, L., E-mail: ldudek@pppl.gov [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States); Chrzanowski, J.; Heitzenroeder, P.; Mangra, D.; Neumeyer, C.; Smith, M.; Strykowsky, R.; Titus, P.; Willard, T. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States)

    2012-09-15

    The national spherical torus experiment (NSTX) will be upgraded to provide increased toroidal field, plasma current and pulse length. This involves the replacement of the so-called center stack, including the inner legs of the toroidal field (TF) coil, the Ohmic heating (OH) coil, and the inner poloidal field (PF) coils. In addition the increased performance of the upgrade requires qualification of remaining existing components for higher loads. Initial conceptual design efforts were based on worst-case combinations of possible currents that the power supplies could deliver. This proved to be an onerous requirement and caused many of the outer coils support structures to require costly heavy reinforcement. This has led to the planned implementation of a digital coil protection system (DCPS) to reduce design-basis loads to levels that are more realistic and manageable. As a minimum, all components must be qualified for the increase in normal operating loads with headroom. Design features and analysis efforts needed to meet the upgrade loading are discussed. Mission and features of the DCPS are presented.

  10. ATLAS software stack on ARM64

    CERN Document Server

    Smith, Joshua Wyatt; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment explores new hardware and software platforms that, in the future, may be more suited to its data intensive workloads. One such alternative hardware platform is the ARM architecture, which is designed to be extremely power efficient and is found in most smartphones and tablets. CERN openlab recently installed a small cluster of ARM 64-bit evaluation prototype servers. Each server is based on a single-socket ARM 64-bit system on a chip, with 32 Cortex-A57 cores. In total, each server has 128 GB RAM connected with four fast memory channels. This paper reports on the port of the ATLAS software stack onto these new prototype ARM64 servers. This included building the "external" packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adj...

  11. Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

    Science.gov (United States)

    Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens

    2016-03-01

    The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.

  12. Calibration and GEANT4 Simulations of the Phase II Proton Compute Tomography (pCT) Range Stack Detector

    Energy Technology Data Exchange (ETDEWEB)

    Uzunyan, S. A. [Northern Illinois Univ., DeKalb, IL (United States); Blazey, G. [Northern Illinois Univ., DeKalb, IL (United States); Boi, S. [Northern Illinois Univ., DeKalb, IL (United States); Coutrakon, G. [Northern Illinois Univ., DeKalb, IL (United States); Dyshkant, A. [Northern Illinois Univ., DeKalb, IL (United States); Francis, K. [Northern Illinois Univ., DeKalb, IL (United States); Hedin, D. [Northern Illinois Univ., DeKalb, IL (United States); Johnson, E. [Northern Illinois Univ., DeKalb, IL (United States); Kalnins, J. [Northern Illinois Univ., DeKalb, IL (United States); Zutshi, V. [Northern Illinois Univ., DeKalb, IL (United States); Ford, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rauch, J. E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rubinov, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sellberg, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wilson, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Naimuddin, M. [Univ. of Delhi, New Delhi (India)

    2015-12-29

    Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input for image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.

  13. Calibration and GEANT4 Simulations of the Phase II Proton Compute Tomography (pCT) Range Stack Detector

    CERN Document Server

    Uzunyan, S A; Boi, S; Coutrakon, G; Dyshkant, A; Francis, K; Hedin, D; Johnson, E; Kalnins, J; Zutshi, V; Ford, R; Rauch, J E; Rubinov, P; Sellberg, G; Wilson, P; Naimuddin, M

    2016-01-01

    Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input for image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulati...

  14. Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, C. H.; Ouyang, Chuenhou, E-mail: wei0208@gmail.com, E-mail: houyang@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yao, Y. D. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Lo, S. C. [Material and Chemical Research Laboratories and Nanotechnology Research Center, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Chang, H. W., E-mail: wei0208@gmail.com, E-mail: houyang@mx.nthu.edu.tw [Department of Applied Physics, Tunghai University, Taichung 40704, Taiwan (China)

    2015-10-05

    FePd (001) films, prepared by an electron beam deposition system on MgO(100), exhibit a perpendicular magnetic anisotropy (1.7 × 10{sup 7 }erg/cc) with a high order parameter (0.92). The relation between stacking faults induced by the strain relaxation, which act as strong domain wall pinning sites, and the perpendicular coercivity of (001) oriented L1{sub 0} FePd films prepared at different temperatures have been investigated. Perpendicular coercivity can be apparently enhanced by raising the stacking fault densities, which can be elevated by climbing dissociation of total dislocation. The increased stacking fault densities (1.22 nm{sup −2}) with large perpendicular coercivity (6000 Oe) are obtained for samples prepared at 650 °C. This present work shows through controlling stacking fault density in FePd film, the coercivity can be manipulated, which can be applied in future magnetic devices.

  15. Stacking for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Zitlau, Roman; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-01-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When appl...

  16. Stacking for machine learning redshifts applied to SDSS galaxies

    Science.gov (United States)

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-08-01

    We present an analysis of a general machine learning technique called `stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We show how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organizing maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9 per cent and 21 per cent on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4 per cent and 2.5 per cent for the explored metrics and comes at almost no additional computational cost.

  17. Diagnosis of PEM fuel cell stack dynamic behaviors

    Science.gov (United States)

    Chen, Jixin; Zhou, Biao

    In this study, the steady-state performance and dynamic behavior of a commercial 10-cell Proton Exchange Membrane (PEM) fuel cell stack was experimentally investigated using a self-developed PEM fuel cell test stand. The start-up characteristics of the stack to different current loads and dynamic responses after current step-up to an elevated load were investigated. The stack voltage was observed to experience oscillation at air excess coefficient of 2 due to the flooding/recovery cycle of part of the cells. In order to correlate the stack voltage with the pressure drop across the cathode/anode, fast Fourier transform was performed. Dominant frequency of pressure drop signal was obtained to indicate the water behavior in cathode/anode, thereby predicting the stack voltage change. Such relationship between frequency of pressure drop and stack voltage was found and summarized. This provides an innovative approach to utilize frequency of pressure drop signal as a diagnostic tool for PEM fuel cell stack dynamic behaviors.

  18. Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

    Directory of Open Access Journals (Sweden)

    Christopher Kugler

    2015-10-01

    Full Text Available Despite the fact that protection mechanisms like StackGuard, ASLR and NX are widespread, the development on new defense strategies against stack-based buffer overflows has not yet come to an end. In this article, we present a novel compiler-level protection called SCADS: Separated Control and Data Stacks that protects return addresses and saved frame pointers on a separate stack, called the control stack. In common computer programs, a single user mode stack is used to store control information next to data buffers. By separating control information from the data stack, we can protect sensitive pointers of a program’s control flow from being overwritten by buffer overflows. To substantiate the practicability of our approach, we provide SCADS as an open source patch for the LLVM compiler infrastructure. Focusing on Linux and FreeBSD running on the AMD64 architecture, we show compatibility, security and performance results. As we make control flow information simply unreachable for buffer overflows, many exploits are stopped at an early stage of progression with only negligible performance overhead.

  19. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  20. Longitudinal phase-space coating of beam in a storage ring

    CERN Document Server

    Bhat, C M

    2015-01-01

    In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via multi-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.

  1. po_stack_movie:video, der viser funktionaliteten i systemet po_stack (design Anders Brix)

    OpenAIRE

    Brix, Anders

    2009-01-01

    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset.Reolen kan let ombygges, udvides eller opdeles, når nye behov opstår. Hylder og stablingselementer låser stabilt til hinanden, så selv store højder kan opbygges uden brug af værktøj eller samlinger. Et bredt udvalg af længder, dybder, højder og accessor...

  2. Phase dynamics modeling of parallel stacks of Josephson junctions

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.

    2014-11-01

    The phase dynamics of two parallel connected stacks of intrinsic Josephson junctions (JJs) in high temperature superconductors is numerically investigated. The calculations are based on the system of nonlinear differential equations obtained within the CCJJ + DC model, which allows one to determine the general current-voltage characteristic of the system, as well as each individual stack. The processes with increasing and decreasing base currents are studied. The features in the behavior of the current in each stack of the system due to the switching between the states with rotating and oscillating phases are analyzed.

  3. Fabrication of high gradient insulators by stack compression

    Energy Technology Data Exchange (ETDEWEB)

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  4. Current status and challenges in PEMFC stacks, systems and commercialization

    Institute of Scientific and Technical Information of China (English)

    任远; 曹广益; 朱新坚

    2006-01-01

    The current status of worldwide developments of polymer electrolyte membrane fuel cell (PEMFC) stacks and system,research activities in resent years to analyze the cost of PEMFC stacks and systems, the remaining research and development issues that should be resolved before the PEMFC available for commercial application were discussed. The two main problems that challenge the PEMFC commercialization were cost and fuel supply infrastructure. The ways to lower the cost, to choose the fuel and improve the efficiency and reliability were described. To research the cost target of 125 kW and stack lifetime of 40 000 ~ 100 000h, basic research in PEMFC was indispensable.

  5. Revisiting the Fundamentals and Capabilities of the Stack Compression Test

    DEFF Research Database (Denmark)

    Alves, L.M.; Nielsen, Chris Valentin; Martin, P.A.F.

    2011-01-01

    of understanding for the stack compression test and to evaluate its capability for constructing the flow curves of metal sheets under high strains across the useful range of material testing conditions. The presentation draws from the fundamentals of the stack compression test to the assessment of its overall...... performance by comparing the flow curves obtained from its utilisation with those determined by means of compressive testing carried out on solid cylinder specimens of the same material. Results show that mechanical testing of materials by means of the stack compression test is capable of meeting...

  6. Multilayer stacked white polymer light-emitting diodes

    International Nuclear Information System (INIS)

    Multilayer stacked white polymer light-emitting diodes (WPLEDs) with a multilayer emitting structure were produced using a stamp transfer printing process. Two light-emitting layers were stacked using a transfer printing method, and the device performance of the WPLEDs was examined. Yellow light-emitting polymers spin coated onto silicone substrates were transferred to a polydimethylsiloxane stamp, which was transferred effectively to the top of blue polymers. White colour coordinates of (0.34, 0.41) were obtained from the multilayer stacked WPLEDs.

  7. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts

    2011-11-01

    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  8. On $k$-stellated and $k$-stacked spheres

    OpenAIRE

    Bagchi, Bhaskar; Datta, Basudeb

    2012-01-01

    We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...

  9. PENGARUH POSISI STACK TERHADAP FREKUENSI RESONANSI PADA TABUNG RESONATOR TERMOAKUSTIK

    Directory of Open Access Journals (Sweden)

    Sigit Ristanto

    2013-05-01

    Full Text Available Telah dilakukan penelitian tentang pengaruh posisi stack dalam tabung resonator termoakustik terhadap frekuensi resonansi. Posisi stack ditaruh pada jarak 10 cm, 30 cm, dan 50 cm. Data frekuensi diambil menggunakan mikrofon yang dipasang pada ujung resonator. Mikrofon tersebut dihubungkan dengan laptop yang telah terisntall software sound card oscilloscope V1.40. Hasil penelitian menunjukkan variasi posisi stack tidak berpengaruh terhadap frekuensi resonansi, tetapi berpengaruh terhadap amplitudo maksimum pada masing-masing frekuensi resonansi. Amplitudo maksimum frekuensi resonansi terendah terjadi di tengah-tengah tabung resonator sedangkan amplitudo frekuensi resonansi terbesar terjadi pada ujung terjauh dari sumber bunyi.

  10. Electrolytic cell stack with molten electrolyte migration control

    Science.gov (United States)

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  11. Ablation of film stacks in solar cell fabrication processes

    Science.gov (United States)

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  12. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation.

    Science.gov (United States)

    Park, Seki; Kim, Hyun; Kim, Min Su; Han, Gang Hee; Kim, Jeongyong

    2016-09-19

    Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties.

  13. A 46-W Laser Diode Stack End-Pumped Slab Amplifier with a Pulse Duration of Picoseconds

    Institute of Scientific and Technical Information of China (English)

    YAN Ying; FAN Zhong-Wei; NIU Gang; YU Jin; ZHANG Heng-Li

    2012-01-01

    A 46-W laser diode end-pumped amplifier is demonstrated by using a SESAM passively mode-locked oscillator and a compact LD stack end-pumped slab amplifier.For the oscillator,a 5-W picosecond mode-locked laser with a repetition frequency of 79MHz is obtained with beam quality factors of M2 < 1.3.A beam shaping system made up of cylindrical lens is designed according to different sizes of the active medium in both directions,and a plane-plane cavity is used in the amplifier for high efficiency.At the absorbed pumping power of 174 W,the highest output power of 46 W is obtained with the slope efficiency of 29.5%.The beam quality factors M2 in both directions are measured to be 1.43 and 1.76,respectively.

  14. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kourbanis, Ioanis [Fermilab

    2014-07-01

    After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.

  15. TOOL PATH PLANNING USING VORONOI DIAGRAM AND THREE STACKS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the object-oriented data structure of Vor onoi diagram, the algorithm of the trimmed offset generating and the optimal too l path planning of the pocket machining for multiply connected polygonal domains are studied. The intersection state transition rule is improved in this algorit hm. The intersection is between the trimmed offsets and Voronoi polygon. On this basis, the trimmed offset generating and the optimal tool path planning are mad e with three stacks(I-stack, C-stack and P-stack)in different monotonous pouc hes of Voronoi diagram. At the same time, a merging method of Voronoi diagram an d offsets generating for multiply connected polygonal domains is also presented. The above algorithms have been implemented in NC machining successfully, and th e efficiency is fully verified.

  16. Static analysis of worst-case stack cache behavior

    DEFF Research Database (Denmark)

    Jordan, Alexander; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Utilizing a stack cache in a real-time system can aid predictability by avoiding interference that heap memory traffic causes on the data cache. While loads and stores are guaranteed cache hits, explicit operations are responsible for managing the stack cache. The behavior of these operations can...... be analyzed statically. We present algorithms that derive worst-case bounds on the latency-inducing operations of the stack cache. Their results can be used by a static WCET tool. By breaking the analysis down into subproblems that solve intra-procedural data-flow analysis and path searches on the call......-graph, the worst-case bounds can be efficiently yet precisely determined. Our evaluation using the MiBench benchmark suite shows that only 37% and 21% of potential stack cache operations actually store to and load from memory, respectively. Analysis times are modest, on average running between 0.46s and 1.30s per...

  17. SEE on Different Layers of Stacked-SRAMs

    CERN Document Server

    Gupta, V; Tsiligiannis, G; Rousselet, M; Mohammadzadeh, A; Javanainen, A; Virtanen, A; Puchner, H; Saigné, F; Wrobel, F; Dilillo, L

    2015-01-01

    This paper presents heavy-ion and proton radiation test results of a 90 nm COTS SRAM with stacked structure. Radiation tests were made using high penetration heavy-ion cocktails at the HIF (Belgium) and at RADEF (Finland) as well as low energy protons at RADEF. The heavy-ion SEU cross-section showed an unusual profile with a peak at the lowest LET (heavy-ion with the highest penetration range). The discrepancy is due to the fact that the SRAM is constituted of two vertically stacked dice. The impact of proton testing on the response of both stacked dice is presented. The results are discussed and the SEU cross-sections of the upper and lower layers are compared. The impact of the stacked structure on the proton SEE rate is investigated.

  18. Stacking dependence of carrier transport properties in multilayered black phosphorous

    Science.gov (United States)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  19. DBaaS with OpenStack Trove

    CERN Document Server

    Giardini, Andrea

    2013-01-01

    The purpose of the project was to evaluate the Trove component for OpenStack, understand if it can be used with the CERN infrastructure and report the benefits and disadvantages of this software. Currently, databases for CERN projects are provided by a DbaaS software developed inside the IT-DB group. This solution works well with the actual infrastructure but it is not easy to maintain. With the migration of the CERN infrastructure to OpenStack the Database group started to evaluate the Trove component. Instead of mantaining an own DbaaS service it can be interesting to migrate everything to OpenStack and replace the actual DbaaS software with Trove. This way both virtual machines and databases will be managed by OpenStack itself.

  20. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    Science.gov (United States)

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous. PMID:26809017

  1. Design and High Power Testing of 52.809 MHz RF Cavities for Slip Stacking in the Fermilab Recycler

    CERN Document Server

    Madrak, R

    2014-01-01

    For NOvA and future experiments requiring high intensity proton beams, Fermilab is in the process of upgrading the existing accelerator complex for increased proton production. One such improvement is to reduce the Main Injector cycle time, by performing slip stacking, previously done in the Main Injector, in the now repurposed Recycler Ring. Recycler slip stacking requires two new RF cavities operating at slightly different frequencies (df = 1260Hz). These are copper, coaxial, quarter wave cavities with R/Q =13 ohms. They operate at a peak gap voltage of 150 kV with 150 kW peak drive power (60% duty factor), and are resonant at 52.809 MHz with a 10 kHz tuning range. Two have been completed and installed. The design, high power test results, and status of the cavities are presented.

  2. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.; Divan, Ralu; Jacobsen, Chris

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.

  3. National Spherical Torus Experiment (NSTX) Center Stack Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Neumeyer, C; Chrzanowski, J; Dudek, L; Fan, H; Hatcher, R; Heitzenroeder, P; Menard, J; Ono, M; Ramakrishnan, S; Titus, P; Woolley, R

    2009-09-24

    The purpose of the NSTX Center Stack Upgrade project is to expand the NSTX operational space and thereby the physics basis for next-step ST facilities. The plasma aspect ratio (ratio of plasma major to minor radius) of the upgrade is increased to 1.5 from the original value of 1.26, which increases the cross sectional area of the center stack by a factor of ~ 3 and makes possible higher levels of performance and pulse duration.

  4. Methodology for planning log stacking using geotechnology and operations research

    OpenAIRE

    Mariana Peres de Lima; Luis Marcelo Tavares de Carvalho; Adriana Zanella Martinhago; Luciano Teixeira de Oliveira; Samuel de Pádua Chaves e Carvalho; Gleyce Campos Dutra; Thomaz Chaves de Andrade Oliveira

    2011-01-01

    In view of the need to improve the planning of timber harvest and transportation, with both activities being the most influential in determining the final cost of timber delivered to the mill yard, this work aims to develop a new methodological proposal using operations research and geotechnology tools in order to determine optimal locations for log stacking and also the amount of timber to be allocated to each selected stack. Analysis was performed using two software applications, geographic...

  5. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    2006-01-01

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...... are developed for the problem and used with each of the heuristics. Finally some computational results are given along with lower bounds on the objective value....

  6. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...... are developed for the problem and used with each of the heuristics. Finally some computational results are given along with lower bounds on the objective value....

  7. Field-induced stacking transition of biofunctionalized trilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Masato Nakano, C. [Flintridge Preparatory School, La Canada, California 91011 (United States); Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  8. Standoff Stack Emissions Monitoring Using Short Range Lidar

    Science.gov (United States)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin

    2016-06-01

    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  9. Finite element analysis of multilayer DEAP stack-actuators

    Science.gov (United States)

    Kuhring, Stefan; Uhlenbusch, Dominik; Hoffstadt, Thorben; Maas, Jürgen

    2015-04-01

    Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP). They are coated with compliant and conductive electrodes on each side, which make them performing a relative high amount of deformation with considerable force generation under the influence of an electric field. Because the realization of high electric fields with a limited voltage level requests single layer polymer films to be very thin, novel multilayer actuators are utilized to increase the absolute displacement and force. In case of a multilayer stack-actuator, many actuator films are mechanically stacked in series and electrically connected in parallel. Because there are different ways to design such a stack-actuator, this contribution considers an optimization of some design parameters using the finite element analysis (FEA), whereby the behavior and the actuation of a multilayer dielectric electroactive polymer (DEAP) stack-actuator can be improved. To describe the material behavior, first different material models are compared and necessary material parameters are identified by experiments. Furthermore, a FEA model of a DEAP film is presented, which is expanded to a multilayer DEAP stack-actuator model. Finally, the results of the FEA are discussed and conclusions for design rules of optimized stack-actuators are outlined.

  10. Attachment method for stacked integrated circuit (IC) chips

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Anthony F. (Berkeley, CA); Malba, Vincent (Livermore, CA)

    1999-01-01

    An attachment method for stacked integrated circuit (IC) chips. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM.

  11. Attachment method for stacked integrated circuit (IC) chips

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, A.F.; Malba, V.

    1999-08-03

    An attachment method for stacked integrated circuit (IC) chips is disclosed. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM. 12 figs.

  12. Fuel flow distribution in SOFC stacks revealed by impedance spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, Rasmus;

    2014-01-01

    As SOFC technology is moving closer to a commercial break through, methods to measure the “state-of-health” of operating stacks are becoming of increasing interest. This requires application of advanced methods for detailed electrical and electrochemical characterization during operation. An oper......As SOFC technology is moving closer to a commercial break through, methods to measure the “state-of-health” of operating stacks are becoming of increasing interest. This requires application of advanced methods for detailed electrical and electrochemical characterization during operation....... An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. An experimental stack with low ohmic resistance from Topsoe Fuel Cell A/S was characterized using Electrochemical...... Impedance Spectroscopy (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible...

  13. High net modal gain (>100 cm(-1)) in 19-stacked InGaAs quantum dot laser diodes at 1000 nm wavelength band.

    Science.gov (United States)

    Tanoue, Fumihiko; Sugawara, Hiroharu; Akahane, Kouichi; Yamamoto, Naokatsu

    2013-07-01

    An InGaAs quantum dot (QD) laser diode with 19-stacked QDs separated by 20 nm-thick GaAs spacers was fabricated using an ultrahigh-rate molecular beam epitaxial growth technique, and the laser characteristics were evaluated. A 19-stacked simple broad area QD laser diode was lased at the 1000 nm waveband. A net modal gain of 103 cm(-1) was obtained at 2.25 kA/cm(2), and the saturated modal gain was 145.6 cm(-1); these are the highest values obtained to our knowledge. These results indicate that using this technique to highly stack QDs is effective for improving the net modal gain of QD lasers.

  14. Optimization of the vacuum insulator stack of the MIG pulsed power generator

    Science.gov (United States)

    Khamzakhan, G.; Chaikovsky, S. A.

    2014-11-01

    The MIG multi-purpose pulsed power machine is intended to generate voltage pulses of amplitude up to 6 MV with electron-beam loads and current pulses of amplitude up to 2.5 MA and rise time '00 ns with inductive loads like Z pinches. The MIG generator is capable of producing a peak power of 2.5 TW. Its water transmission line is separated from the vacuum line by an insulator stack. In the existing design of the insulator, some malfunctions have been detected. The most serious problems revealed are the vacuum surface flashover occurring before the current peaks and the deep discharge traces on the water-polyethylene interface of the two rings placed closer to the ground. A comprehensive numerical simulation of the electric field distribution in the insulator of the MIG generator has been performed. It has been found that the chief drawbacks are nonuniform voltage grading across the insulator rings and significant enhancement of the electric field at anode triple junctions. An improved design of the insulator stack has been developed. It is expected that the proposed modification that requires no rearrangement of either the water line or the load-containing vacuum chamber will provide higher electric strength of the insulator.

  15. Magnetic properties and interfacial characteristics of all-epitaxial Heusler-compound stacking structures

    Science.gov (United States)

    Yamada, S.; Honda, S.; Hirayama, J.; Kawano, M.; Santo, K.; Tanikawa, K.; Kanashima, T.; Itoh, H.; Hamaya, K.

    2016-09-01

    We study magnetic properties and interfacial characteristics of all-epitaxial D 03-Fe3Si /L 21 - Fe3 -xMnxSi /L 21-Co2FeSi Heusler-compound trilayers grown on Ge(111) by room-temperature molecular beam epitaxy. We find that the magnetization reversal processes can be intentionally designed by changing the chemical composition of the intermediate Fe3 -xMnxSi layers because of their tunable ferromagnetic-paramagnetic phase-transition temperature. From first-principles calculations, interfacial half metallicity in the Co2FeSi layer is nearly expected when the sequence of stacking layers along of the Fe2MnSi /Co2FeSi interface includes the atomic row of L 21 - or B 2 -ordered structures. We believe that Co2FeSi /Fe2MnSi /Co2FeSi trilayer systems stacked along will open a new avenue for high-performance current-perpendicular-to-plane giant magnetoresistive devices with Heusler compounds.

  16. One stacked-column vibration test and analysis for VHTR core

    International Nuclear Information System (INIS)

    The paper describes experimental results of the vibration test on a single stacked-column and compares them with the analytical results. A 1/2 scale model of the core element of a very high temperature gas-cooled reactor (VHTR) was set on a shaking table. Sinusoidal waves, response time history waves, a beat wave and a step wave of input acceleration 100 to 900 gal in the frequency of 0.5 to 15 Hertz were used to vibrate the table horizontally. Results are as follows: (1) the column has a nonlinear resonance and exhibits a hysteresis response with jump points; (2) the column vibration characteristics is similar to that of the finite beams connected with nonlinear soft spring; (3) the column resonance frequency decreases with increasing input acceleration; (4) the impact force increases with increasing input acceleration and boundary gap width; (5) good correlation in vibration behavior of the stacked column and impact force on the boundary between test and analysis was obtained

  17. Optimization of the vacuum insulator stack of the MIG pulsed power generator

    International Nuclear Information System (INIS)

    The MIG multi-purpose pulsed power machine is intended to generate voltage pulses of amplitude up to 6 MV with electron-beam loads and current pulses of amplitude up to 2.5 MA and rise time '00 ns with inductive loads like Z pinches. The MIG generator is capable of producing a peak power of 2.5 TW. Its water transmission line is separated from the vacuum line by an insulator stack. In the existing design of the insulator, some malfunctions have been detected. The most serious problems revealed are the vacuum surface flashover occurring before the current peaks and the deep discharge traces on the water-polyethylene interface of the two rings placed closer to the ground. A comprehensive numerical simulation of the electric field distribution in the insulator of the MIG generator has been performed. It has been found that the chief drawbacks are nonuniform voltage grading across the insulator rings and significant enhancement of the electric field at anode triple junctions. An improved design of the insulator stack has been developed. It is expected that the proposed modification that requires no rearrangement of either the water line or the load-containing vacuum chamber will provide higher electric strength of the insulator

  18. Efficient fabrication of carbon nanotube micro tip arrays by tailoring cross-stacked carbon nanotube sheets.

    Science.gov (United States)

    Wei, Yang; Liu, Peng; Zhu, Feng; Jiang, Kaili; Li, Qunqing; Fan, Shoushan

    2012-04-11

    Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method. PMID:22433000

  19. Terahertz emission from intrinsic Josephson junction stacks in high-Tc superconductors: effects of fabrication technique

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Y.; Koval, Y.; Mueller, P. [Department of Physics, Interdisciplinary Center for Molecular Materials (ICMM), Universitaet Erlangen-Nuernberg (Germany); Oezyuezer, L. [Department of Physics, Interdisciplinary Center for Molecular Materials (ICMM), Universitaet Erlangen-Nuernberg (Germany); Department of Physics, Izmir Institute of Technology, Izmir (Turkey); Preu, S.; Ploss, D.; Malzer, S. [Max-Planck-Institute for the Science of Light, Erlangen (Germany); Wang, H.B. [National Institute for Materials Science (NIMS), Tsukuba (Japan)

    2010-07-01

    It was found recently that large area Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212) mesas show terahertz emission due to intrinsic Josephson junctions (IJJ). We have fabricated large and tall Bi2212 mesas by optical and electron beam lithography, and studied effects of fabrication technique on THz emission characteristics. Monitoring the emission was performed with a Si composite bolometer, while the applied current through the IJJ stacks was slowly swept by a function generator. Emission peaks were observed on I-V return branches while the bias current was decreasing. The frequency of emission was determined by a terahertz interferometer. The observed emission frequencies match the frequency calculated by the cavity resonance condition.

  20. Characteristics of spatial modulation in nonlinear propagation of broad-band lasers stacked by chirped pulses

    International Nuclear Information System (INIS)

    To identify the potential risks of spatial modulation of broad-band laser beams stacked by chirped pulses on the safety of optics, this paper numerically investigated the effect of temporal modulation on the generation and growth of spatial modulation during its nonlinear propagation. When there is no additional spatial modulation and the B integral is limited in the practical working range(usually less than 2.0 rad), no spatial modulation will be generated for both normal dispersion and anomalous dispersion;while with the B integral further increasing, spatial modulation will emerge with a rapid growth. When there is additional spatial modulation for anomalous dispersion, the spatial modulation with additional temporal modulation will grow more quickly than that without additional temporal modulation. However, for normal dispersion,the growth of spatial modulation for both cases is similar. (authors)

  1. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  2. Maturing of SOFC cell and stack production technology and preparation for demonstration of SOFC stacks. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    2006-07-01

    The TOFC/Riso pilot plant production facility for the manufacture of anode-supported cells has been further up-scaled with an automated continuous spraying process and an extra sintering capacity resulting in production capacity exceeding 15,000 standard cells (12x12 cm2) in 2006 with a success rate of about 85% in the cell production. All processing steps such as tape-casting, spraying, screen-printing and atmospheric air sintering in the cell production have been selected on condition that up-scaling and cost effective, flexible, industrial mass production are feasible. The standard cell size is currently being increased to 18x18 cm2, and 150 cells of this size have been produced in 2006 for our further stack development. To improve quality and lower production cost, a new screen printing line is under establishment. TOFC's stack design is an ultra compact multilayer assembly of cells (including contact layers), metallic interconnects, spacer frames and glass seals. The compactness ensures minimized material consumption and low cost. Standard stacks with cross flow configuration contains 75 cells (12x12cm2) delivering about 1.2 kW at optimal operation conditions with pre-reformed NG as fuel. Stable performance has been demonstrated for 500-1000 hours. Significantly improved materials, especially concerning the metallic interconnect and the coatings have been introduced during the last year. Small stacks (5-10 cells) exhibit no detectable stack degradation using our latest cells and stack materials during test periods of 500-1000 hours. Larger stacks (50-75 cells) suffer from mal-distribution of gas and air inside the stacks, gas leakage, gas cross-over, pressure drop, and a certain loss of internal electrical contact during operation cycles. Measures have been taken to find solutions during the following development work. The stack production facilities have been improved and up-scaled. In 2006, 5 standard stacks have been assembled and burned in based on

  3. FERRITE-FREE STACKED BLUMLEIN PULSE GENERATOR FOR COMPACT INDUCTION LINACS

    International Nuclear Information System (INIS)

    Stacked Blumlein Pulse Generators comprised of parallel-plate transmission lines are potentially a useful pulse-power architecture for high-gradient, compact, electron-beam induction accelerators. However, like induction accelerators driven by other pulse-power architectures, it is generally a system requirement that the multi-stage accelerator structure be enclosed in a grounded metal enclosure so that the full beam voltage is not developed on the exterior of the machine. In the past, this has been accomplished by using magnetic cores to prevent the external metal case from shorting the accelerating field. However, magnetic cores are heavy, bulky, expensive, lossy, nonlinear, and therefore generally undesirable. Various core-free pulse architectures have been reported in the past. One class uses pairs of lines with widely different dielectric constants while another class uses combinations of open-circuit lines combined with short-circuit lines. These designs are encased in metal and support stackable output pulses without the need for magnetic isolation cores. These configurations are also known as bi-polar or zero-integral configurations because they produce a positive and negative voltage pulse with a net time integral of zero. Some of these designs are inefficient leaving substantial stored energy in the lines while others have never been realized as practical accelerating structures. We present here a particular, realizable, magnetic-core-free induction LINAC geometry that is based on a parallel-plate, stacked Blumlein-like structure, with a symmetric bi-polar, zero integral output pulse, and an outer metal enclosure. Our design is, in theory, 100% efficient into a matched load. We have evaluated the electromagnetic operation of this geometry by computer modeling. We present the results of this modeling

  4. Assessment of the 296-S-21 Stack Sampling Probe Location

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.

    2006-09-08

    Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the

  5. Generalized diffraction-stack migration and filtering of coherent noise

    KAUST Repository

    Zhan, Ge

    2014-01-27

    We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.

  6. Spectral beam combining of multi-single emitters

    Science.gov (United States)

    Wang, Baohua; Guo, Weirong; Guo, Zhijie; Xu, Dan; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Chen, Xiaohua

    2016-03-01

    Spectral beam combination expands the output power while keeps the beam quality of the combined beam almost the same as that of a single emitter. Spectral beam combination has been successfully achieved for high power fiber lasers, diode laser arrays and diode laser stacks. We have recently achieved the spectral beam combination of multiple single emitter diode lasers. Spatial beam combination and beam transformation are employed before beams from 25 single emitter diode lasers can be spectrally combined. An average output power about 220W, a spectral bandwidth less than 9 nm (95% energy), a beam quality similar to that of a single emitter and electro-optical conversion efficiency over 46% are achieved. In this paper, Rigorous Coupled Wave analysis is used to numerically evaluate the influence of emitter width, emitter pitch and focal length of transform lens on diffraction efficiency of the grating and spectral bandwidth. To assess the chance of catastrophic optical mirror damage (COMD), the optical power in the internal cavity of a free running emitter and the optical power in the grating external cavity of a wavelength locked emitter are theoretically analyzed. Advantages and disadvantages of spectral beam combination are concluded.

  7. Piezoelectric stack actuator parameter extraction with hysteresis compensation

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Mangeot, Charles; Andersen, Michael A. E.;

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is a type of rotary motor that transforms the linear motion of piezoelectric stack actuators into a precise rotational motion. The very high stiffness of the actuators employed make this type of motor suited for open-loop control, but the inherent hysteresis...... exhibited by piezoelectric ceramics causes losses. Therefore, this paper presents a straightforward method to measure piezoelectric stack actuator equiv- alent parameters that includes nonlinearities. By folding the nonlinearities into a newly-defined cou- pling coefficient, the inherent hysteretic behavior...... of piezoelectric stack actuators can be greatly reduced through precompensation. Experimental results show a fitting accuracy of 98.8 % between the model and measurements and a peak absolute error reduction by a factor of 10 compared to the manufacturer- provided parameter. This method improves both the static...

  8. Study of organic solar cells with stacked bulk heterojunction structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-fang; XU Zheng; ZHAO Su-ling; ZHANG Fu-jun; LI Yan; WU Chun-yu; CHEN Yue-ning

    2008-01-01

    Organic solar cells with stacked bulk heterojunction(BHJ) are investigated based on conjugated polymer. By using the solution spin-coating method, Poly[2-methoxy, 5-(2'-ethyl-hexyloxy) -1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles (50 nm) are mixed as the optical sense layer. Ag is used as inter-layer to connect the upper BILl cell and the lower cell. The structures are ITO/PEDOT:PSS/MEH-PPV/Ag/MEH-PPV:ZnO/Al. The open circuit voltage (Voc) of a stacked cell is about 3.7 times of that of an individual organic solar cell (ITO/PEDOT:PSS/MEH-PPV/A1). The short circuit current (Jsc) of a stacked cell is increased by about 1.6 times of that of individual one.

  9. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  10. Gate stack engineering for GaN lateral power transistors

    International Nuclear Information System (INIS)

    Developing optimal gate-stack technology is a key to enhancing the reliability and performance of GaN insulated-gate devices for high-voltage power switching applications. In this paper, we discuss current challenges and review our recent progresses in gate-stack technology development toward high-performance and high-reliability GaN power devices, including (1) interface engineering that creates a high-quality dielectric/III-nitride interface with low trap density; (2) barrier-layer engineering that enables optimal trade-off between performance and stability; (3) bulk quality and reliability enhancement of the gate dielectric. These gate-stack techniques in terms of new process development and device structure design are valuable to realize highly reliable and competitive GaN power devices. (paper)

  11. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    KAUST Repository

    Geise, Geoffrey M.

    2014-01-14

    Membrane ionic resistance is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt concentration is known to affect membrane resistance when the same concentration is used on both sides of the membrane, little is known about membrane resistance when the membrane is placed between solutions of different concentrations, such as in a reverse electrodialysis (RED) stack. Ionic resistance measurements obtained using Selemion CMV and AMV that separated sodium chloride and ammonium bicarbonate solutions of different concentrations were greater than those measured using only the high-concentration solution. Measured RED stack resistances showed good agreement with resistances calculated using an equivalent series resistance model, where the membranes accounted for 46% of the total stack resistance. The high area resistance of the membranes separating different salt concentration solutions has implications for modeling and optimizing membranes used in RED systems.

  12. Fluxons in long and annular intrinsic Josephson junction stacks

    Science.gov (United States)

    Clauss, T.; Oehmichen, V.; Mößle, M.; Müller, A.; Weber, A.; Koelle, D.; Kleiner, R.

    2002-12-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi2Sr2CaCu2O8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  13. Van der Waals stacked 2D layered materials for optoelectronics

    Science.gov (United States)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  14. Communication: Thermodynamics of stacking disorder in ice nuclei

    Science.gov (United States)

    Quigley, D.

    2014-09-01

    A simple Ising-like model for the stacking thermodynamics of ice 1 is constructed for nuclei in supercooled water, and combined with classical nucleation theory. For relative stabilities of cubic and hexagonal ice I within the range of experimental estimates, this predicts critical nuclei are stacking disordered at strong sub-cooling, consistent with recent experiments. At higher temperatures nucleation of pure hexagonal ice is recovered. Lattice-switching Monte-Carlo is applied to accurately compute the relative stability of cubic and hexagonal ice for the popular mW model of water. Results demonstrate that this model fails to adequately capture the relative energetics of the two polytypes, leading to stacking disorder at all temperatures.

  15. Tunable Geometric Fano Resonances in a Metal/Insulator Stack

    CERN Document Server

    Grotewohl, Herbert

    2014-01-01

    A metal-insulator-metal-insulator stack is shown to have a Fano resonance in the angular domain. The metal/insulator stack consists of two interacting subsystems, a metallic waveguide mode and a surface plasmon mode, coupled by a finite layer metal film. The two modes in close spatial proximity interfere destructively resulting in level repulsion of two metal/insulator stack modes. By adding a coupling prism to momentum match the input EM field, the reflected field exhibits a geometric Fano resonance. Changes to the waveguide insulator permittivity and thickness are shown to tune the geometric Fano resonance. The geometric Fano resonance is also tuned by variations of the exterior insulator permittivity. At a given frequency, the geometric Fano resonance can be tuned to desired lineshape. In addition, this tunability allows for a geometric Fano resonance for any frequency in the visible range.

  16. Detailed experimental characterization of a reformate fuelled PEM stack

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    integrators. Additionally, the paper contains a comprehensive set of test results based on a commercial reformate PEM stack  A series of different synthesis gas compositions were applied to the stack including 5 and 10 ppm CO content, 20% CO2 and air bleeding. During these tests, the dynamic response...... with electric power output from 1-3-kW. All process inputs for the stack can be altered to provide realistic performance analyses, corresponding to those encountered in field applications. These include cathode/anode dew point control, cathode flow rate, cooling water temperature control as well as synthesis...... gas mixing (CO, CO2, N2, Air and H2). The control system includes 12 thermocouple inputs, up to 60 cell voltages, more than 10 flow measurements and 10 pressure measurements, all at sample rates up to 1 kHz. The system design is thoroughly explained to provide valuable information for system...

  17. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  18. Methodology for planning log stacking using geotechnology and operations research

    Directory of Open Access Journals (Sweden)

    Mariana Peres de Lima

    2011-09-01

    Full Text Available In view of the need to improve the planning of timber harvest and transportation, with both activities being the most influential in determining the final cost of timber delivered to the mill yard, this work aims to develop a new methodological proposal using operations research and geotechnology tools in order to determine optimal locations for log stacking and also the amount of timber to be allocated to each selected stack. Analysis was performed using two software applications, geographic information system (GIS and operations research (OR. GIS spatial analyses were based on layers of the study site, which is a property owned by Votorantim Celulose e Papel, located in the municipality of São José dos Campos, in order to obtain three variables: degree of difficulty in operating forestry equipment, degree of difficulty in log stacking, and distance between log stacks and existing roadways. To obtain these variables, layers containing information on terrain inclination and existing roadways were combined in another analysis named weighted overlay. Results were then filtered and inserted into an operations research environment for maximization of the timber volume in each selected stack. With results obtained from the geographic information system, 80 potential sites were selected for log stacking. By using operations research, 59 of these sites were ruled out, a 73% reduction in the number of potential sites, with only 21 sites remaining as potentially optimal for log storage. For each of these 21 sites, an optimal amount of timber was determined to be allocated to each one of them.

  19. Active control of structural vibration by piezoelectric stack actuators

    Institute of Scientific and Technical Information of China (English)

    NIU Jun-chuan; ZHAO Guo-qun; HU Xia-xia

    2005-01-01

    This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.

  20. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Marmy, C.A.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M. [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  1. Nonlinear Predictive Control for PEMFC Stack Operation Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.

  2. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2016-06-01

    We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.

  3. Design of vertically-stacked polychromatic light-emitting diodes.

    Science.gov (United States)

    Hui, K N; Wang, X H; Li, Z L; Lai, P T; Choi, H W

    2009-06-01

    A new design for a polychromatic light-emitting diode (LED) is proposed and demonstrated. LED chips of the primary colors are physically stacked on top of each other. Light emitted from each layer of the stack passes through each other, and thus is mixed naturally without additional optics. As a color-tunable device, a wide range of colors can be generated, making it suitable for display purposes. As a phosphor-free white light LED, luminous efficacy of 30 lm/watt was achieved.

  4. Practical memory checkers for stacks, queues and deques

    OpenAIRE

    Fischlin, Marc

    2005-01-01

    A memory checker for a data structure provides a method to check that the output of the data structure operations is consistent with the input even if the data is stored on some insecure medium. In [8] we present a general solution for all data structures that are based on insert(i,v) and delete(j) commands. In particular this includes stacks, queues, deques (double-ended queues) and lists. Here, we describe more time and space efficient solutions for stacks, queues and deques. Each algorithm...

  5. Implementing cloud storage with OpenStack Swift

    CERN Document Server

    Rajana, Kris; Varma, Sreedhar

    2014-01-01

    This tutorial-based book has a step-by-step approach for each topic, ensuring it is thoroughly covered and easy to follow. If you are an IT administrator who wants to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Whether your job is to build, manage, or use OpenStack Swift, this book is an ideal way to move your career ahead. Only basic Linux and server technology skills are expected, to take advantage of this book.

  6. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng; Chen, Chii-Dong, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Chang, Wen-Hao [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 62102, Taiwan (China); Li, Yuan-Yao [Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 62102, Taiwan (China)

    2014-09-08

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  7. Hardware Evaluation of the Horizontal Exercise Fixture with Weight Stack

    Science.gov (United States)

    Newby, Nate; Leach, Mark; Fincke, Renita; Sharp, Carwyn

    2009-01-01

    HEF with weight stack seems to be a very sturdy and reliable exercise device that should function well in a bed rest training setting. A few improvements should be made to both the hardware and software to improve usage efficiency, but largely, this evaluation has demonstrated HEF's robustness. The hardware offers loading to muscles, bones, and joints, potentially sufficient to mitigate the loss of muscle mass and bone mineral density during long-duration bed rest campaigns. With some minor modifications, the HEF with weight stack equipment provides the best currently available means of performing squat, heel raise, prone row, bench press, and hip flexion/extension exercise in a supine orientation.

  8. Study of interfaces and band offsets in TiN/amorphous LaLuO3 gate stacks

    KAUST Repository

    Mitrovic, Ivona Z.

    2011-07-01

    TiN/LaLuO3 (LLO) gate stacks formed by molecular beam deposition have been investigated by X-ray photoelectron spectroscopy, medium energy ion scattering, spectroscopic ellipsometry, scanning transmission electron microscopy, electron energy loss spectroscopy and atomic force microscopy. The results indicate an amorphous structure for deposited LLO films. The band offset between the Fermi level of TiN and valence band of LLO is estimated to be 2.65 ± 0.05 eV. A weaker La-O-Lu bond and a prominent Ti2p sub-peak which relates to Ti bond to interstitial oxygen have been identified for an ultra-thin 1.7 nm TiN/3 nm LLO gate stack. The angle-dependent XPS analysis of Si2s spectra as well as shifts of La4d, La3d and Lu4d core levels suggests a silicate-type with Si-rich SiOx LLO/Si interface. Symmetrical valence and conduction band offsets for LLO to Si of 2.2 eV and the bandgap of 5.5 ± 0.1 eV have been derived from the measurements. The band alignment for ultra-thin TiN/LLO gate stack is affected by structural changes. Copyright © 2011 Published by Elsevier B.V. All rights reserved.

  9. Lateral vibration attenuation of a beam with circular cross-section by a support with integrated piezoelectric transducers shunted to negative capacitances

    Science.gov (United States)

    Götz, Benedict; Schaeffner, Maximilian; Platz, Roland; Melz, Tobias

    2016-09-01

    Undesired vibration may occur in lightweight structures due to excitation and low damping. For the purpose of lateral vibration attenuation in beam structures, piezoelectric transducers shunted to negative capacitances can be an appropriate measure. In this paper, a new concept for lateral vibration attenuation by integrated piezoelectric stack transducers in the elastic support of a beam with circular cross-section is presented. In the piezoelastic support, bending of the beam in an arbitrary direction is transformed into a significant axial deformation of three stack transducers and, thus, the beam’s surface may remain free from transducers. For multimodal vibration attenuation, each piezoelectric transducer is shunted to a negative capacitance. It is shown by numerical simulation and experiment that the concept of an elastic beam support with integrated shunted piezoelectric stack transducers is capable of reducing the lateral vibration of the beam in an arbitrary direction.

  10. In situ monitoring of stacking fault formation and its carrier lifetime mediation in p-type 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin, E-mail: chenbinmse@gmail.com; Chen, Jun; Yao, Yuanzhao; Sekiguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Matsuhata, Hirofumi; Okumura, Hajime [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-07-28

    Using the fine control of an electron beam (e-beam) in scanning electron microscopy with the capabilities of both electrical and optical imaging, the stacking fault (SF) formation together with its tuning of carrier lifetime was in situ monitored and investigated in p-type 4H-SiC homoepitaxial films. The SFs were formed through engineering basal plane dislocations with the energy supplied by the e-beam. The e-beam intensity required for the SF formation in the p-type films was ∼100 times higher than that in the n-type ones. The SFs reduced the minority-carrier lifetime in the p-type films, which was opposite to that observed in the n-type case. The reason for the peculiar SF behavior in the p-type 4H-SiC is discussed with the cathodoluminescence results.

  11. Recent development of electron beam flue gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Kim, Jinkyu; Kim, Yuri; Kim, Sungmyun [EB-Technology Co., Ltd., Mainland (China); Chmielewski, Andrzej G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2008-04-15

    Electron beam flue gas treatment (EBFGT) technology is among the most promising advanced technologies of the new generation. This is a dry-scrubbing process of simultaneous SO{sub 2} and NO{sub X} removal where no waste except the by-product is generated. Research shows that irradiation of stack gases with an electron beam cna bring about chemical changes that make removal of SO{sub 2} and NO{sub X} easier. The energy of incident electron beam is absorbed by components of stack gas in proportion to their mass fraction. The main components of stack gas are N{sub 2}, O{sub 2}, H{sub 2}O and CO{sub 2}, with much lower concentration of SO{sub 2} and NO{sub X}. Electron energy is consumed in the ionization, excitation and dissociation of the molecules and finally in the formation of active free radicals OH, HO{sub 2}, O, N and H. These radicals oxidize SO{sub 2} and NO to SO{sub 3} and NO{sub 2} which in reaction with water vapor, present in the stack gas, form H{sub 2}SO{sub 4} and HNO{sub 3} respectively. These acids subsequently react with added ammonia (injected to the stack gas before its inlet to the process vessel) to form ammonium sulfate ((NH{sub 4}){sub 2}SO{sub 4}) and ammonium sulfate-nitrate ((NH{sub 4}){sub 2}SO{sub 4}, 2NH{sub 4}NO{sub 3}). These salts are recovered as a dry powder using a conventional particle collector. The collected powder can be marketed as an agricultural fertilizer or as a component of the commercial NPK or NPKS fertilizers.

  12. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  13. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  14. From the components to the stack. Developing and designing 5kW HT-PEFC stacks; Von der Komponente zum Stack. Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klasse

    Energy Technology Data Exchange (ETDEWEB)

    Bendzulla, Anne

    2010-12-22

    The aim of the present project is to develop a stack design for a 5-kW HTPEFC system. First, the state of the art of potential materials and process designs will be discussed for each component. Then, using this as a basis, three potential stack designs with typical attributes will be developed and assessed in terms of practicality with the aid of a specially derived evaluation method. Two stack designs classified as promising will be discussed in detail, constructed and then characterized using short stack tests. Comparing the stack designs reveals that both designs are fundamentally suitable for application in a HT-PEFC system with on-board supply. However, some of the performance data differ significantly for the two stack designs. The preferred stack design for application in a HT-PEFC system is characterized by robust operating behaviour and reproducible high-level performance data. Moreover, in compact constructions (120 W/l at 60 W/kg), the stack design allows flexible cooling with thermal oil or air, which can be adapted to suit specific applications. Furthermore, a defined temperature gradient can be set during operation, allowing the CO tolerance to be increased by up to 10 mV. The short stack design developed within the scope of the present work therefore represents an ideal basis for developing a 5-kW HT-PEFC system. Topics for further research activities include improving the performance by reducing weight and/or volume, as well as optimizing the heat management. The results achieved within the framework of this work clearly show that HTPEFC stacks have the potential to play a decisive role in increasing efficiency in the future, particularly when combined with an on-board supply system. (orig.) [German] Ziel der vorliegenden Arbeit ist die Entwicklung eines Stackkonzeptes fuer ein 5 kW-HT-PEFC System. Dazu wird zunaechst fuer jede Komponente der Stand der Technik moeglicher Materialien und Prozesskonzepte diskutiert. Darauf aufbauend werden drei

  15. Fast static field CIPT mapping of unpatterned MRAM film stacks

    DEFF Research Database (Denmark)

    Kjær, Daniel; Hansen, Ole; Henrichsen, Henrik Hartmann;

    2015-01-01

    While investigating uniformity of magnetic tunnel junction (MTJ) stacks we find experimentally and analytically that variation in the resistance area product (RA) is more important to monitor as compared to the tunnel magnetoresistance (TMR), which is less sensitive to MTJ variability. The standard...

  16. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...

  17. Wideband Coaxial Fed Rotated Stacked Patch Antenna for Wireless Applications

    OpenAIRE

    D. Ujwala; A. Gnandeep Reddy

    2014-01-01

    A novel circularly polarized coaxial fed rotated stacked patch antenna is proposed and its performance characteristics are presented in the current work. The antenna consisting of four parasitic patch, each one being rotated by 300 relative to its adjacent patches. The proposed antenna is giving return loss less than -10 dB with VSWR

  18. The view from the boundary: a new void stacking method

    CERN Document Server

    Cautun, Marius; Frenk, Carlos S

    2015-01-01

    We introduce a new method for stacking voids and deriving their profile that greatly increases the potential of voids as a tool for precision cosmology. Given that voids are highly non-spherical and have most of their mass at their edge, voids are better described relative to their boundary rather than relative to their centre, as in the conventional spherical stacking approach. The boundary profile is obtained by computing the distance of each volume element from the void boundary. Voids can then be stacked and their profiles computed as a function of this boundary distance. This approach enhances the weak lensing signal of voids, both shear and convergence, by a factor of two when compared to the spherical stacking method. It also results in steeper void density profiles that are characterised by a very slow rise inside the void and a pronounced density ridge at the void boundary, in qualitative agreement with theoretical models of expanding spherical underdensities. The resulting boundary density profile i...

  19. Piezoelectric stack actuator parameter extraction with hysteresis compensation

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Mangeot, Charles; Andersen, Michael A. E.;

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is a type of rotary motor that transforms the linear motion of piezoelectric stack actuators into a precise rotational motion. The very high stiffness of the actuators employed make this type of motor suited for open-loop control, but the inherent hysteresis...

  20. Compactifications of reductive groups as moduli stacks of bundles

    DEFF Research Database (Denmark)

    Martens, Johan; Thaddeus, Michael

    Let G be a reductive group. We introduce the moduli problem of "bundle chains" parametrizing framed principal G-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack provides an equivariant toroidal compactification of G...

  1. Exact Solutions to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Archetti, Claudia; Madsen, Oli B.G.;

    In the Double Travelling Salesman Problem with Multiple Stacks (DTSPMS) a set of orders is given, each one requiring transportation of one item from a customer in a pickup region to a customer in a delivery region. The vehicle available for the transportation in each region carries a container...

  2. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  3. The Memory Stack: New Technologies Harness Talking for Writing.

    Science.gov (United States)

    Gannon, Maureen T.

    In this paper, an elementary school teacher describes her experiences with the Memory Stack--a HyperCard based tool that can accommodate a voice recording, a graphic image, and a written text on the same card--which she designed to help her second and third grade students integrate their oral language fluency into the process of learning how to…

  4. Efficient Context Switching for the Stack Cache: Implementation and Analysis

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar; Brandner, Florian; Naji, Amine;

    2015-01-01

    The design of tailored hardware has proven a successful strategy to reduce the timing analysis overhead for (hard) real-time systems. The stack cache is an example of such a design that has been proven to provide good average-case performance, while being easy to analyze. So far, however, the ana...

  5. Strong Orbital Interaction in pi-pi Stacking System

    CERN Document Server

    Fu, Xiao-Xiao; Zhang, Rui-Qin

    2016-01-01

    A simple prototypical model of aromatic pi-pi stacking system -- benzene sandwich dimer is investigated by ab initio calculations based on second-order Moller-Plesset perturbation theory (MP2) and Minnesota hybrid functional M06-2X.

  6. Experimental and computational studies on stacking faults in zinc titanate

    Science.gov (United States)

    Sun, W.; Ageh, V.; Mohseni, H.; Scharf, T. W.; Du, J.

    2014-06-01

    Zinc titanate (ZnTiO3) thin films grown by atomic layer deposition with ilmenite structure have recently been identified as an excellent solid lubricant, where low interfacial shear and friction are achieved due to intrafilm shear velocity accommodation in sliding contacts. In this Letter, high resolution transmission electron microscopy with electron diffraction revealed that extensive stacking faults are present on ZnTiO3 textured (104) planes. These growth stacking faults serve as a pathway for dislocations to glide parallel to the sliding direction and hence achieve low interfacial shear/friction. Generalized stacking fault energy plots also known as γ-surfaces were computed for the (104) surface of ZnTiO3 using energy minimization method with classical effective partial charge potential and verified by using density functional theory first principles calculations for stacking fault energies along certain directions. These two are in qualitative agreement but classical simulations generally overestimate the energies. In addition, the lowest energy path was determined to be along the [451¯] direction and the most favorable glide system is {104} ⟨451¯⟩ that is responsible for the experimentally observed sliding-induced ductility.

  7. Modeling brand choice using boosted and stacked neural networks

    NARCIS (Netherlands)

    R. Potharst (Rob); M. van Rijthoven; M.C. van Wezel (Michiel)

    2005-01-01

    textabstractThe brand choice problem in marketing has recently been addressed with methods from computational intelligence such as neural networks. Another class of methods from computational intelligence, the so-called ensemble methods such as boosting and stacking have never been applied to the

  8. Open Government, Closed Stacks: Onsite Storage of Depository Materials.

    Science.gov (United States)

    Quinn, Aimee C.; Haslam, Michaelyn

    1998-01-01

    Examines the use of automated storage and retrieval systems in industry and in libraries. Highlights include intellectual content; and a system being built for the University of Nevada Las Vegas that takes into account selection criteria, limited stack space, and storage of federal depository materials. (LRW)

  9. Individually addressable cathodes with integrated focusing stack or detectors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.

    2005-07-12

    Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  10. Estimating Earth's modal Q with epicentral stacking method

    Science.gov (United States)

    Chen, X.; Park, J. J.

    2014-12-01

    The attenuation rates of Earth's normal modes are the most important constraints on the anelastic state of Earth's deep interior. Yet current measurements of Earth's attenuation rates suffer from 3 sources of biases: the mode coupling effect, the beating effect, and the background noise, which together lead to significant uncertainties in the attenuation rates. In this research, we present a new technique to estimate the attenuation rates of Earth's normal modes - the epicentral stacking method. Rather than using the conventional geographical coordinate system, we instead deal with Earth's normal modes in the epicentral coordinate system, in which only 5 singlets rather than 2l+1 are excited. By stacking records from the same events at a series of time lags, we are able to recover the time-varying amplitudes of the 5 excited singlets, and thus measure their attenuation rates. The advantage of our method is that it enhances the SNR through stacking and minimizes the background noise effect, yet it avoids the beating effect problem commonly associated with the conventional multiplet stacking method by singling out the singlets. The attenuation rates measured from our epicentral stacking method seem to be reliable measurements in that: a) the measured attenuation rates are generally consistent among the 10 large events we used, except for a few events with unexplained larger attenuation rates; b) the line for the log of singlet amplitudes and time lag is very close to a straight line, suggesting an accurate estimation of attenuation rate. The Q measurements from our method are consistently lower than previous modal Q measurements, but closer to the PREM model. For example, for mode 0S25 whose Coriolis force coupling is negligible, our measured Q is between 190 to 210 depending on the event, while the PREM modal Q of 0S25 is 205, and previous modal Q measurements are as high as 242. The difference between our results and previous measurements might be due to the lower

  11. Multi-Factor Duplicate Question Detection in Stack Overflow

    Institute of Scientific and Technical Information of China (English)

    张芸; David Lo; 夏鑫; 孙建伶

    2015-01-01

    Stack Overflow is a popular on-line question and answer site for software developers to share their experience and expertise. Among the numerous questions posted in Stack Overflow, two or more of them may express the same point and thus are duplicates of one another. Duplicate questions make Stack Overflow site maintenance harder, waste resources that could have been used to answer other questions, and cause developers to unnecessarily wait for answers that are already available. To reduce the problem of duplicate questions, Stack Overflow allows questions to be manually marked as duplicates of others. Since there are thousands of questions submitted to Stack Overflow every day, manually identifying duplicate questions is a di昋cult work. Thus, there is a need for an automated approach that can help in detecting these duplicate questions. To address the above-mentioned need, in this paper, we propose an automated approach named DUPPREDICTOR that takes a new question as input and detects potential duplicates of this question by considering multiple factors. DUPPREDICTOR extracts the title and description of a question and also tags that are attached to the question. These pieces of information (title, description, and a few tags) are mandatory information that a user needs to input when posting a question. DUPPREDICTOR then computes the latent topics of each question by using a topic model. Next, for each pair of questions, it computes four similarity scores by comparing their titles, descriptions, latent topics, and tags. These four similarity scores are finally combined together to result in a new similarity score that comprehensively considers the multiple factors. To examine the benefit of DUPPREDICTOR, we perform an experiment on a Stack Overflow dataset which contains a total of more than two million questions. The result shows that DUPPREDICTOR can achieve a recall-rate@20 score of 63.8%. We compare our approach with the standard search engine of Stack

  12. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  13. Harmonic beam splitter design and fabrication

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Ma(马小凤); Yingjian Wang(王英剑); Zhengxiu Fan(范正修); Jianda Shao(邵建达)

    2004-01-01

    Two problems of half-wave hole and high ripples in the transmittance region for a harmonic beam splitter had been pointed out and analyzed. Based on the application of a half-wavelength control and a new admittance matching methods, a harmonic beam splitter was designed and fabricated. The former method eliminated the half-wave hole fundamentally, and the latter smoothed high ripples in the transmittance region effectively. The matching stack consisted of a symmetrically periodic structure and provided a complete matching at the desired wavelength, i.e., both conditions for the equivalent admittance and phase thickness were fulfilled. Furthermore, both the theoretical and the tested curves had been given, and a good agreement between them was obtained.

  14. Assessment of the Performance of Semblance Weighted Diffraction Stack

    Science.gov (United States)

    Marti, D.; Palomeras, I.; Andara, E.; Carbonell, R.; Zeyen, H.

    2009-04-01

    A variety of seismic reflection data sets has been use to estimate the assessment of a recently developed true amplitude limited-aperture migration based on a modification of the weighting function in the Kirchoff migration operator. Prestack Kirchoff depth migration has become a conventional processing step in seismic reflection imaging. It provides new insights of the reflecting boundaries in crustal studies and it's also an important method for reliable velocity models building. In this migration scheme the weight function on the amplitude part of the diffraction stack algorithm is derived from the semblance of the slant stack of the data. Thus this weight function is exclusively a function of the energy and the direction from which this reflected energy reaches the receiver. The semblance of the slant stack for a particular offset (the receiver offset) represents the total amount of energy that reaches a particular receiver with specific ray parameter (i.e. direction of propagation of the seismic energy). The weight function reduces the diffraction stack to a weighted stack of the amplitudes at a given travel time to every point along a corresponding isochron. This migration scheme is applied to synthetic and real normal incidence seismic reflection data providing a depth images with a better resolution of the sub-vertical structures. For example it provided a depth image of the north dipping Central Unit of the complex suture zone between the Ossa Morena Zone and the Central Iberian Zone of the IBERSEIS Vibroseis seismic profile. Furthermore, this scheme is also successful when migrating wide-angle deep seismic reflection data. In this case a low fold image of the lower crust, Moho and upper mantle across SW-Iberia was obtained by using 6 wide-angle shot gathers. Finally, depth imaging by using VSP's is also a possibility using this migration scheme.

  15. Generic effluent monitoring system certification for AP-40 exhauster stack

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.; Davis, W.E.; Bussell, J.H.; Maughan, A.D.

    1997-09-01

    Tests were conducted to verify that the Generic Effluent Monitoring System (GEMS), as applied to the AP-40 exhauster stack, meets all applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the air sampling probe location and the transport of the sample to the collection devices. The criteria covering air sampling probe location ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in the report. The tests demonstrated that the GEMS/AP-40 system meets all applicable performance criteria. The contaminant mixing tests were conducted by Pacific Northwest National Laboratory (PNNL) at the wind tunnel facility, 331-H Building, using a mockup of the actual stack. The particle sample transport tests were conducted by PNNL at the Numatec Hanford Company`s 305 Building. The AP-40 stack is typical of several 10-in. diameter stacks that discharge the filtered ventilation air from tank farms at the U.S. Department of Energy`s Hanford Site in Richland, Washington. The GEMS design features a probe with a single shrouded sampling nozzle, a sample delivery line, and sample collection system. The collection system includes a filter holder to collect the sample of record and an in-line detector head and filter for monitoring beta radiation-emitting particles. Unrelated to the performance criteria, it was found that the record sample filter holder exhibited symptoms of sample bypass around the particle collection filter. This filter holder should either be modified or replaced with a different type. 10 refs., 8 figs., 6 tabs.

  16. Development and Applications of a Stage Stacking Procedure

    Science.gov (United States)

    Kulkarni, Sameer; Celestina, Mark L.; Adamczyk, John J.

    2012-01-01

    The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure, including a newly defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor used in a power generating gas turbine engine. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to curves as a function of stage inlet flow coefficient and corrected shaft speed. In addition to these blockage curves, the stage stacking procedure utilizes stage characteristics of ideal work coefficient and adiabatic efficiency. These curves are constructed using flow information extracted from computational fluid dynamics (CFD) simulations of groups of stages within the compressor. Performance estimates resulting from the stage stacking procedure are shown to match the results of CFD simulations of the entire compressor to within 1.6% in overall total pressure ratio and within 0.3 points in overall adiabatic efficiency. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressors operating range.

  17. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li

    2014-07-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  18. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Determination of NOX mass emissions... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING NOX Mass Emissions Provisions § 75.72 Determination of NOX mass emissions for common stack and multiple...

  19. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  20. On sixfold coupled vibrations of thin-walled composite box beams

    OpenAIRE

    Vo, Thuc; Lee, Jaehong; Ahn, Namshik

    2009-01-01

    This paper presents a general analytical model for free vibration of thin-walled composite beams with arbitrary laminate stacking sequences and studies the effects of shear deformation over the natural frequencies. This model is based on the first-order shear-deformable beam theory and accounts for all the structural coupling coming from the material anisotropy. The seven governing differential equations for coupled flexural–torsional–shearing vibration are derived from the Hamilton’s princip...

  1. Titanium flue sheets welded by electron beam; Plaques tubulaires en titane soudees par F.E

    Energy Technology Data Exchange (ETDEWEB)

    Bailleul, P.; Lemoine, A. [GEC Alsthom Delas, 92 - Levallois-Perret (France); Tard, J. [Indret, DCN (France); Cherasse, J.M. [Tractebel Energy Engineering (Belgium)

    1997-03-01

    The new PWR steam condenser of the Doel IV nuclear power plant in Belgium is formed with four tube stacks including titanium flue sheets of about 8 meters high: about twice the usual sizes. The metallurgical continuity and the size tolerances had to be imperatively preserved after welding. The electron beam welding has then been chosen. The manufacture constraints are given as well as some concepts of the electron beam welding. (O.M.)

  2. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  3. Image Stacking Method Application for Low Earth Orbit Faint Objects

    Science.gov (United States)

    Tagawa, M.; Matsumoto, H.; Yanagisawa, T.; Kurosaki, H.; Oda, H.; Kitazawa, Y.; Hanada, T.

    2013-09-01

    Space situational awareness is one of the most important actions for safe and sustainable space development and its utilization. Tracking and maintaining debris catalog are the basis of the actions. Current minimum size of objects in the catalog that routinely tracked and updated is approximately 10 cm in the Low Earth Orbit region. This paper proposes collaborative observation of space-based sensors and ground facilities to improve tracking capability in low Earth orbit. This observation geometry based on role-sharing idea. A space-based sensor has advantage in sensitivity and observation opportunity however, it has disadvantages in periodic observation which is essential for catalog maintenance. On the other hand, a ground facility is inferior to space-based sensors in sensitivity however; observation network composed of facilities has an advantage in periodic observation. Whole observation geometry is defined as follows; 1) space-based sensors conduct initial orbit estimation for a target 2) ground facility network tracks the target based on estimated orbit 3) the network observes the target periodically and updates its orbit information. The second phase of whole geometry is based on image stacking method developed by the Japan aerospace exploration agency and this method is verified for objects in geostationary orbit. This method enables to detect object smaller than a nominal size limitation by stacking faint light spot along archived time-series frames. The principle of this method is prediction and searching target's motion on the images. It is almost impossible to apply the method to objects in Low Earth Orbit without proper orbit information because Low Earth Orbit objects have varied orbital characteristics. This paper discusses whether or not initial orbit estimation results given by space-based sensors have enough accuracy to apply image stacking method to Low Earth Orbit objects. Ground-based observation procedure is assumed as being composed of

  4. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing

    2003-03-10

    are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  5. Maskless, resistless ion beam lithography

    International Nuclear Information System (INIS)

    5 keV is also presented. With implantation dose of around 1016 cm-2, the electron concentration is about 2.5 x 1018 cm-3 and electron mobility is around 200 cm2/V·s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput

  6. Rain Sensor with Stacked Light Waveguide Having Tilted Air Gap

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Vehicle sensor to detect rain drop on and above waveguide utilizing light deflection and scattering was realized, keeping wide sensing coverage and sensitivity to detect mist accumulation. Proposed sensor structure under stacked light wave guide consisted of light blocking fixture surrounding photodetector and adjacent light source. Tilted air gap between stacked light waveguide and light blocking fixture played major role to increase sensitivity and to enhance linearity. This sensor structure eliminated complex collimating optics, while keeping wide sensing coverage using simple geometry. Detection algorithm based on time-to-intensity transformation process was used to convert raining intensity into countable raining process. Experimental result inside simulated rain chamber showed distinct different response between light rain and normal rain. Application as automobile rain sensor is expected.

  7. Correlated lateral phase separations in stacks of lipid membranes

    International Nuclear Information System (INIS)

    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction

  8. Interactive histology of large-scale biomedical image stacks.

    Science.gov (United States)

    Jeong, Won-Ki; Schneider, Jens; Turney, Stephen G; Faulkner-Jones, Beverly E; Meyer, Dominik; Westermann, Rüdiger; Reid, R Clay; Lichtman, Jeff; Pfister, Hanspeter

    2010-01-01

    Histology is the study of the structure of biological tissue using microscopy techniques. As digital imaging technology advances, high resolution microscopy of large tissue volumes is becoming feasible; however, new interactive tools are needed to explore and analyze the enormous datasets. In this paper we present a visualization framework that specifically targets interactive examination of arbitrarily large image stacks. Our framework is built upon two core techniques: display-aware processing and GPU-accelerated texture compression. With display-aware processing, only the currently visible image tiles are fetched and aligned on-the-fly, reducing memory bandwidth and minimizing the need for time-consuming global pre-processing. Our novel texture compression scheme for GPUs is tailored for quick browsing of image stacks. We evaluate the usability of our viewer for two histology applications: digital pathology and visualization of neural structure at nanoscale-resolution in serial electron micrographs.

  9. Temperature and flow distribution in planar SOFC stacks

    Directory of Open Access Journals (Sweden)

    Monica Østenstad

    1995-07-01

    Full Text Available Simulation of a planar Solid Oxide Fuel Cell stack requires the solution of the mass balances of the chemical species, the energy balances, the charge balance and the channel flow equations in order to compute the species concentrations, the temperature distributions, the current density and the channel flows. The unit cell geometry can be taken into account by combining detailed modeling of a unit cell with a homogenized model of a whole stack. In this study the effect of the asymmetric temperature distribution on the channel flows in a conventional cross-flow design has been investigated. The bidirectional cross-flow design is introduced, for which we can show more directional temperature and flow distributions.

  10. STACKING ON COMMON REFLECTION SURFACE WITH MULTIPARAMETER TRAVELTIME

    Directory of Open Access Journals (Sweden)

    Montes V. Luis A.

    2006-12-01

    Full Text Available Commonly seismic images are displayed in time domain because the model in depth can be known only in well logs. To produce seismic sections, pre and post stack processing approaches use time or depth velocity models whereas the common reflection method does not, instead it requires a set of parameters established for the first layer. A set of synthetic data of an anticline model, with sources and receivers placed on a flat topography, was used to observe the performance of this method. As result, a better reflector recovering compared against conventional processing sequence was observed.
    The procedure was extended to real data, using a dataset acquired on a zone characterized by mild topography and quiet environment reflectors in the Eastern Colombia planes, observing an enhanced and a better continuity of the reflectors in the CRS stacked section.

  11. Pressurized Operation of a Planar Solid Oxide Cell Stack

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune Dalgaard;

    2016-01-01

    (electrode performance) increases for thermodynamic and kinetic reasons, respectively. Further, the summit frequency of the gas concentration impedance arc and the pressure difference across the stack and heat exchangers is seen to decrease with increasing pressure following a power-law expression. Finally......Solid oxide cells (SOCs) can be operated either as fuel cells (SOFC) to convert fuels to electricity or as electrolyzers (SOEC) to convert electricity to fuels such as hydrogen or methane. Pressurized operation of SOCs provide several benefits on both cell and system level. If successfully matured......, pressurized SOEC based electrolyzers can become more efficient both energy- and cost-wise than PEM and Alkaline systems. Pressurization of SOFCs can significantly increase the cell power density and reduce the size of auxiliary components. In the present study, a SOC stack was successfully operated...

  12. Bonded Excimer in Stacked Cytosines: A Semiclassical Simulation Study

    Directory of Open Access Journals (Sweden)

    Weifeng Wu

    2015-01-01

    Full Text Available The formation of a covalent bond between two stacked cytosines, one of which is excited by an ultrafast laser pulse, was studied by semiclassical dynamics simulations. The results show that a bonded excimer is created, which sharply lowers the energy gap between the LUMO and HOMO and consequently facilitates the deactivation of the electronically excited molecule. This is different from the case of two stacked adenines, where the formation of a covalent bond alters the nonadiabatic deactivation mechanism in two opposite ways. It lowers the energy gap and consequently leads to the coupling between the HOMO and LUMO levels, thus enhancing the deactivation of the electronically excited molecule. On the other hand, it leads to restriction of the deformation vibration of the pyrimidine in the excited molecule, because of a steric effect, and this delays the deactivation process of the excited adenine molecule with return to the electronic ground state.

  13. An Exact Method for the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias;

    2010-01-01

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem in which all pickups must be completed before any deliveries can be made. The problem originates from a real-life application where a 40 foot container (configured as 3 columns of 11 rows) is used...... to transport up to 33 pallets from a set of pickup customers to a set of delivery customers. The pickups and deliveries are performed in two separate trips, where each trip starts and ends at a depot and visits a number of customers. The aim of the problem is to produce a stacking plan for the pallets...... and delivery TSP problems and show that previously unsolved instances can be solved within seconds using this approach....

  14. An Exact Method for the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Larsen, Jesper; Lusby, Richard Martin; Ehrgott, Matthias;

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem in which all pickups must be completed before any deliveries can be made. The problem originates from a real-life application where a 40 foot container (configured as 3 columns of 11 rows) is used...... to transport up to 33 pallets from a set of pickup customers to a set of delivery customers. The pickups and deliveries are performed in two separate trips, where each trip starts and ends at a depot and visits a number of customers. The aim of the problem is to produce a stacking plan for the pallets...... and delivery TSP problems and show that previously unsolved instances can be solved within seconds using this approach....

  15. 40 CFR 63.7296 - What emission limitations must I meet for battery stacks?

    Science.gov (United States)

    2010-07-01

    ... for battery stacks? 63.7296 Section 63.7296 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Quenching, and Battery Stacks Emission Limitations and Work Practice Standards § 63.7296 What emission limitations must I meet for battery stacks? You must not discharge to the atmosphere any emissions from...

  16. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...

  17. The Effect of a Sport Stacking Intervention on Handwriting with Second Grade Students

    Science.gov (United States)

    Li, Yuhua; Coleman, Diane; Ransdell, Mary; Coleman, Lyndsie; Irwin, Carol

    2014-01-01

    The present study examined the impact a 14-week sport stacking (cup stacking) exercise intervention would have on children's handwriting quality and speed. Eighty-three second graders were randomly assigned to either an experimental or a control group. The experimental group (n = 42) participated in a 15-min session of sport stacking activities…

  18. Floquet-Bloch vs. Nicolson-Ross-Weir Extraction for Magneto-Dielectric Bragg Stacks

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau; Arslanagic, Samel; Breinbjerg, Olav

    2014-01-01

    We extract and compare the permittivity and permeability from a dielectric and a magnetodielectric Bragg stack with the Floquet-Bloch (FB) method for the infinite stack and the Nicolson-Ross- Weir (NRW) method for the finite stack. While the extracted propagation constants are identical, the wave...

  19. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  20. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  1. Review of the stack discharge active particle contamination problem

    Energy Technology Data Exchange (ETDEWEB)

    Parker, H M

    1948-03-22

    Quantities of the order of ten million to 100 million radioactive particles per month were emitted from the stacks over a period of several months. High activity in the range 0.1 to 3..mu..c was probably confined to large carrier particles of corrosion debris from iron ductwork in the separations plant ventilation air system. This report discusses chemical, physical and radiochemical properties of the particles, and possible biological and health effects of exposure to them. (ACR)

  2. Parameterized Reduced Order Modeling of Misaligned Stacked Disks Rotor Assemblies

    OpenAIRE

    Ganine, Vladislav; Laxalde, Denis; Michalska, Hannah; Pierre, Christophe

    2011-01-01

    Light and flexible rotating parts of modern turbine engines operating at supercritical speeds necessitate application of more accurate but rather computationally expensive 3D FE modeling techniques. Stacked disks misalignment due to manufacturing variability in the geometry of individual components constitutes a particularly important aspect to be included in the analysis because of its impact on system dynamics. A new parametric model order reduction algorithm is presented to achieve this go...

  3. Numerical simulations of flux flow in stacked Josephson junctions

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig

    2005-01-01

    We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...... numerical simulations, we are able to clearly distinguish between triangular and square vortex lattices and to identify the parameters leading to an in-phase vortex configuration....

  4. Energy level alignment in Au/pentacene/PTCDA trilayer stacks

    OpenAIRE

    Sehati, Parisa; Braun, Slawomir; Fahlman, Mats

    2013-01-01

    Ultraviolet photoelectron spectroscopy is used to investigate the energy level alignment and molecular orientation at the interfaces in Au/pentacene/PTCDA trilayer stacks. We deduced a standing orientation for pentacene grown on Au while we conclude a flat lying geometry for PTCDA grown onto pentacene. We propose that the rough surface of polycrystalline Au induces the standing geometry in pentacene. It is further shown that in situ deposition of PTCDA on pentacene can influence the orientati...

  5. Availability Analysis of the Ventilation Stack CAM Interlock System

    International Nuclear Information System (INIS)

    Ventilation Stack Continuous Air Monitor (CAM) Interlock System failure modes, failure frequencies, and system availability have been evaluated for the RPP. The evaluation concludes that CAM availability is as high as assumed in the safety analysis and that the current routine system surveillance is adequate to maintain this availability credited in the safety analysis, nor is such an arrangement predicted to significantly improve system availability

  6. Optimal stacking sequence design of stiffened composite panels with cutouts

    OpenAIRE

    Nagendra, Somanath

    1993-01-01

    The growing use of high performance composite materials has stimulated interest in the development of optimization procedures for the design of laminates. The design of composite structures against buckling presents two major challenges to the structural analyst and designer. First, the problem of laminate stacking sequence design is discrete in nature which complicates the solution process. Second, many local optima with comparable performance may be found. The present work addresses these c...

  7. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs

    OpenAIRE

    Swayamdipta, Swabha; Ballesteros, Miguel; Dyer, Chris; Smith, Noah A.

    2016-01-01

    We present a transition-based parser that jointly produces syntactic and semantic dependencies. It learns a representation of the entire algorithm state, using stack long short-term memories. Our greedy inference algorithm has linear time, including feature extraction. On the CoNLL 2008--9 English shared tasks, we obtain the best published parsing performance among models that jointly learn syntax and semantics.

  8. Fuel consumption for double-stack intermodal trains

    OpenAIRE

    Sastre Arbós, Miquel Onofre

    2014-01-01

    This report paper offers the reader an outline of the development of a MLR model to predict fuel consumption for double-stack intermodal trains in Canada. Results suggested the necessity to classify the data in a non-finished project and design categories for various factors. Furthermore, the conclusion extracted is the requirement to compose small-scale models for specific conditions of track and train in order to obtain the results for an entire railroad section. Whereas the ...

  9. Brody's theorem for Deligne-Mumford analytic stacks

    CERN Document Server

    Borghesi, Simone

    2012-01-01

    The classical Brody's theorem asserts the equivalence between two notions of hyperbolicity for compact complex spaces, one named after Kobayashi and one expressed in terms of lack of non constant holomorphic entire functions (compactness is only used to prove the harder implication). We extend this theorem to Deligne-Mumford analytic stacks, by first providing definitions of what we think of Kobayashi and Brody hyperbolicity for such objects and then proving the equivalence of these concepts under an assumption of compactness.

  10. Learning from Synthetic Data Using a Stacked Multichannel Autoencoder

    OpenAIRE

    Zhang, Xi; Fu, Yanwei; Jiang, Shanshan; Sigal, Leonid; Agam, Gady

    2015-01-01

    Learning from synthetic data has many important and practical applications. An example of application is photo-sketch recognition. Using synthetic data is challenging due to the differences in feature distributions between synthetic and real data, a phenomenon we term synthetic gap. In this paper, we investigate and formalize a general framework-Stacked Multichannel Autoencoder (SMCAE) that enables bridging the synthetic gap and learning from synthetic data more efficiently. In particular, we...

  11. Real-time Dynamic MRI Reconstruction using Stacked Denoising Autoencoder

    OpenAIRE

    Majumdar, Angshul

    2015-01-01

    In this work we address the problem of real-time dynamic MRI reconstruction. There are a handful of studies on this topic; these techniques are either based on compressed sensing or employ Kalman Filtering. These techniques cannot achieve the reconstruction speed necessary for real-time reconstruction. In this work, we propose a new approach to MRI reconstruction. We learn a non-linear mapping from the unstructured aliased images to the corresponding clean images using a stacked denoising aut...

  12. 3-D Numerical Simulations of Twisted Stacked Tape Cables

    OpenAIRE

    Krüger, Philipp A. C.; Zermeño, Victor M. R.; Takayasu, Makoto; Grilli, Francesco

    2014-01-01

    Different magnet applications require compact high current cables. Among the proposed solutions, the Twisted Stacked Tape Cable (TSTC) is easy to manufacture and has very high tape length usage efficiency. In this kind of cables the tapes are closely packed, so that their electromagnetic interaction is very strong and determines the overall performance of the cable. Numerical models are necessary tools to precisely evaluate this interaction and to predict the cable's behavior, e.g. in terms o...

  13. Collaboration between SAML Federations and OpenStack Clouds

    OpenAIRE

    Héder, Mihály; Tenczer, Szabolcs; Biancini, Andrea

    2015-01-01

    In this paper, we present the design process of a novel solution for enabling the collaboration between OpenStack cloud systems in SAML federations with standalone attribute authorities, such as national research and education federations or eduGAIN. The software solution that realizes the integration of systems serves as a case study to show how abstract desirable engineering properties fixed at the beginning of the design process can be implemented during the development phase. An analysis ...

  14. Optimum Stack Position Within a Bottle-shaped Thermoacoustic Engine

    Science.gov (United States)

    Bassett, Elwin; Andersen, Bonnie

    2009-10-01

    Thermoacoustics involves turning heat energy into acoustic energy, or using sound to pump heat. A thermoacoustic engine with a transducer could be used, for example, to convert solar energy incident on a satellite into sound and then into electricity. This research focused on the optimization of stack placement within a bottle-shaped 1.4 kHz engine to achieve maximum acoustic pressure. The prime mover consisted of two connected cylinders: the bottle neck, 5 cm long and 1 cm in radius, and a cavity, 10 cm long and 2 cm in radius, with the stack located within the middle of the neck. Sound intensity is a function of both pressure and velocity; therefore, maximum intensity should be found in between their nodes. However, a phase shift is introduced for the velocity due to the thermoacoustic effect and the optimum position will not be exactly between the nodes. Therefore, 9 different stack positions within the neck were tested to determine the optimum location. The optimum was found to be 39% away from the closed end of the neck, which improved acoustic pressure by 50%. Further testing is planned, to verify the results and test different configurations.

  15. Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods

    CERN Document Server

    Shin, H; Yoo, Y H

    2003-01-01

    Strain fields in truncated and un-truncated InAs quantum dots with the same height and base length have been compared numerically when the dots are vertically stacked in a GaAs matrix at various stacking periods. The compressive hydrostatic strain in truncated dots decreases slightly as compared with the un-truncated dots without regard to the stacking period studied. However, the reduction in tensile biaxial strain, compressive radial strain and tensile axial strain was salient in the truncated dot and the reduction increased with decreasing stacking period. From such changes in strain, changes in the band gap and related properties are anticipated.

  16. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  17. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a

  18. Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking

    DEFF Research Database (Denmark)

    Mitzel, Jens; Gülzow, Erich; Kabza, Alexander;

    2016-01-01

    This paper is focused on the identification of critical parameters and on the development of reliable methodologies to achieve comparable benchmark results. Possibilities for control sensor positioning and for parameter variation in sensitivity tests are discussed and recommended options for the ......This paper is focused on the identification of critical parameters and on the development of reliable methodologies to achieve comparable benchmark results. Possibilities for control sensor positioning and for parameter variation in sensitivity tests are discussed and recommended options...... for the control strategy are summarized. This ensures result comparability as well as stable test conditions. E.g., the stack temperature fluctuation is minimized to about 1 °C. The experiments demonstrate that reactants pressures differ up to 12 kPa if pressure control positions are varied, resulting...... in an average cell voltage deviation of 21 mV. Test parameters simulating different stack applications are summarized. The stack demonstrated comparable average cell voltage of 0.63 V for stationary and portable conditions. For automotive conditions, the voltage increased to 0.69 V, mainly caused by higher...

  19. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  20. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  1. Ion beam diagnosis

    International Nuclear Information System (INIS)

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  2. Beam induced heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Baudrenghien, P; Bracco, C; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Esteban Mueller, J; Gentini, L; Goddar, B; Grudiev, A; Henrist, B; Jones, R; Lanza, G; Lari, L; Mastoridis, T; Métral, E; Mounet, N; Nougaret, J L; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Sapinski, M; Shaposhinkova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wollmann, D

    2012-01-01

    In 2011, the rapid increase of the luminosity performance of LHC came at the expense of increased temperature and pressure readings on several near-beam LHC equipments. In some cases, this beam induced heating was suspected to cause beam dumps and even degradation of the equipment. This contribution aims at gathering the observations of beam induced heating due to beam coupling impedance, their current level of understanding and possible actions that could be implemented during the winter stop 2011-2012.

  3. Occurrence and implications of voltage reversal in stacked microbial fuel cells.

    Science.gov (United States)

    An, Junyeong; Lee, Hyung-Sool

    2014-06-01

    Voltage reversal in stacked microbial fuel cells (MFCs) is a significant challenge that must be addressed, and the information on its definite cause and occurrence process is still obscure. In this work, we first demonstrated that different anodic reaction rates caused voltage reversal in a stacked MFC. Sluggish reaction rates on the anode in unit 1 of the stacked MFC resulted in a significantly increased anode overpotential of up to 0.132 V, as compared to negligible anode overpotential (0.0247 V) in unit 2. This work clearly verified the process of voltage reversal in the stacked MFC. As the current was gradually increased in the stacked MFC, the voltage in the stacked unit 1 decreased to 0 V prior to that of the stacked unit 2. Then, when the voltage in unit 1 became 0 V, it was converted from a galvanic cell to an electrochemical cell powered by unit 2. We found that the stacked unit 2 provided electrical energy for the stacked unit 1 as a power supply. Finally, the anode potential of the stacked unit 1 significantly increased over cathode potential as current increased further, which caused voltage reversal in unit 1. Voltage reversal occurs in stacked MFCs as a result of non-spontaneous anode overpotential in a unit MFC that has sluggish anode kinetics compared to the other unit MFCs.

  4. Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks.

    Science.gov (United States)

    Cong, W L; Pei, Z J; Treadwell, C

    2014-08-01

    Reported drilling methods for CFRP/Ti stacks include twist drilling, end milling, core grinding, and their derived methods. The literature does not have any report on drilling of CFRP/Ti stacks using rotary ultrasonic machining (RUM). This paper, for the first time, reports a study on drilling of CFRP/Ti stacks using RUM. It also compares results on drilling of CFRP/Ti stacks using RUM with reported results on drilling of CFRP/Ti stacks using other methods. When drilling CFRP/Ti stacks using RUM, cutting force, torque, and CFRP surface roughness were lower, hole size variation was smaller, CFRP groove depth was smaller, tool life was longer, and there was no obvious Ti exit burr and CFRP entrance delamination. Ti surface roughness when drilling of CFRP/Ti stacks using RUM was about the same as those when using other methods.

  5. Calibration of a proton beam energy monitor.

    Science.gov (United States)

    Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E

    2007-06-01

    Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  6. Investigations of stacking fault density in perpendicular recording media

    Energy Technology Data Exchange (ETDEWEB)

    Piramanayagam, S. N., E-mail: prem-SN@dsi.a-star.edu.sg; Varghese, Binni; Yang, Yi; Kiat Lee, Wee; Khume Tan, Hang [Data Storage Institute, A*STAR (Agency for Science, Technology and Research), 5 Engineering Drive 1, Singapore 117608 (Singapore)

    2014-06-28

    In magnetic recording media, the grains or clusters reverse their magnetization over a range of reversal field, resulting in a switching field distribution. In order to achieve high areal densities, it is desirable to understand and minimize such a distribution. Clusters of grains which contain stacking faults (SF) or fcc phase have lower anisotropy, an order lower than those without them. It is believed that such low anisotropy regions reverse their magnetization at a much lower reversal field than the rest of the material with a larger anisotropy. Such clusters/grains cause recording performance deterioration, such as adjacent track erasure and dc noise. Therefore, the observation of clusters that reverse at very low reversal fields (nucleation sites, NS) could give information on the noise and the adjacent track erasure. Potentially, the observed clusters could also provide information on the SF. In this paper, we study the reversal of nucleation sites in granular perpendicular media based on a magnetic force microscope (MFM) methodology and validate the observations with high resolution cross-section transmission electron microscopy (HRTEM) measurements. Samples, wherein a high anisotropy CoPt layer was introduced to control the NS or SF in a systematic way, were evaluated by MFM, TEM, and magnetometry. The magnetic properties indicated that the thickness of the CoPt layer results in an increase of nucleation sites. TEM measurements indicated a correlation between the thickness of CoPt layer and the stacking fault density. A clear correlation was also observed between the MFM results, TEM observations, and the coercivity and nucleation field of the samples, validating the effectiveness of the proposed method in evaluating the nucleation sites which potentially arise from stacking faults.

  7. The Lockman Hole project: gas and galaxy properties from a stacking experiment

    CERN Document Server

    Geréb, K; Oosterloo, T A; Guglielmino, G; Prandoni, I

    2013-01-01

    We perform an HI stacking analysis to study the relation between HI content and optical/radio/IR properties of galaxies located in the Lockman Hole area. In the redshift range covered by the observations (up to z = 0.09), we use the SDSS to separate galaxies with different optical characteristics, and we exploit the deep L-band radio continuum image (with noise 11 \\mu Jy/beam) to identify galaxies with radio continuum emission. Infrared properties are extracted from the Spitzer catalog. We detect HI in blue galaxies, but HI is also detected in the group of red galaxies - albeit with smaller amounts than for the blue sample. We identify a group of optically inactive galaxies with early-type morphology that does not reveal any HI and ionized gas. These inactive galaxies likely represent the genuine red and dead galaxies depleted of all gas. Unlike inactive galaxies, HI is detected in red LINER-like objects. Galaxies with radio continuum counterparts mostly belong to the sub-mJy population, whose objects are tho...

  8. Goos-Hänchen shifts in AA-stacked bilayer graphene superlattices

    Science.gov (United States)

    Zahidi, Youness; Redouani, Ilham; Jellal, Ahmed

    2016-07-01

    The quantum Goos-Hänchen shifts of the transmitted electron beam through an AA-stacked bilayer graphene superlattices are investigated. We found that the band structures of graphene superlattices can have more than one Dirac point, their locations do not depend on the number of barriers. It was revealed that any n-barrier structure is perfectly transparent at normal incidence around the Dirac points created in the superlattices. We showed that the Goos-Hänchen shifts display sharp peaks inside the transmission gap around two Dirac points (E =VB + τ, E =VW + τ), which are equal to those of transmission resonances. The obtained Goos-Hänchen shifts are exhibiting negative as well as positive behaviors and strongly depending on the location of Dirac points. It is observed that the maximum absolute values of the shifts increase as long as the number of barriers is increased. Our analysis is done by considering four cases: single, double barriers, superlattices without and with defect.

  9. Design of a stacked array antenna system integrated with low temperature co-fired ceramics (LTCC)

    Science.gov (United States)

    Ji, Taeksoo; Yoon, Hargsoon; Jose, K. A.; Varadan, Vijay K.

    2005-05-01

    In this paper, we presents a 4×4 stacked phased array antenna system operating at 15GHz, which can be used for commercial as well as military applications including low earth orbiting (LEO) satellites communications and airborne defense system. The phased array antenna consists of 4 subarrays having 4 tapered slot antennas, phase shifters, power dividers, and high voltage controllers. Each component is constructed on low temperature co-fired ceramics (LTCC) that is a multilayer electronic packaging technology and has a unique ability to integrate passive components such as resistors, capacitors and inductors in to a monolithic package. The phase shifter we have developed herein using barium strontium titanate (BST) thin films shows continuous phase shifts of 0°~90° at 15GHz when DC bias voltages are applied up to 300 V between the ground and signal line. By controlling the voltages independently applied to each phase shifters, the beam shape and direction radiated from the array antenna can be changed and steered.

  10. Carrier transfer in vertically stacked quantum ring-quantum dot chains

    Science.gov (United States)

    Mazur, Yu. I.; Lopes-Oliveira, V.; de Souza, L. D.; Lopez-Richard, V.; Teodoro, M. D.; Dorogan, V. G.; Benamara, M.; Wu, J.; Tarasov, G. G.; Marega, E.; Wang, Z. M.; Marques, G. E.; Salamo, G. J.

    2015-04-01

    The interplay between structural properties and charge transfer in self-assembled quantum ring (QR) chains grown by molecular beam epitaxy on top of an InGaAs/GaAs quantum dot (QD) superlattice template is analyzed and characterized. The QDs and QRs are vertically stacked and laterally coupled as well as aligned within each layer due to the strain field distributions that governs the ordering. The strong interdot coupling influences the carrier transfer both along as well as between chains in the ring layer and dot template structures. A qualitative contrast between different dynamic models has been developed. By combining temperature and excitation intensity effects, the tuning of the photoluminescence gain for either the QR or the QD mode is attained. The information obtained here about relaxation parameters, energy scheme, interlayer and interdot coupling resulting in creation of 1D structures is very important for the usage of such specific QR-QD systems for applied purposes such as lasing, detection, and energy-harvesting technology of future solar panels.

  11. Carrier transfer in vertically stacked quantum ring-quantum dot chains

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Yu. I., E-mail: ymazur@uark.edu; Dorogan, V. G.; Benamara, M.; Salamo, G. J. [Arkansas Institute for Nanoscale Materials Science and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Lopes-Oliveira, V.; Lopez-Richard, V.; Teodoro, M. D.; Marques, G. E. [Departamento de Fisica, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Souza, L. D. de [Departamento de Fisica, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Arkansas Institute for Nanoscale Materials Science and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Wu, J.; Wang, Z. M. [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China); Tarasov, G. G. [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev 03028 (Ukraine); Marega, E. [Instituto de Fisica de São Carlos, Universidade de São Paulo, 13.566-590 São Carlos, São Paulo (Brazil)

    2015-04-21

    The interplay between structural properties and charge transfer in self-assembled quantum ring (QR) chains grown by molecular beam epitaxy on top of an InGaAs/GaAs quantum dot (QD) superlattice template is analyzed and characterized. The QDs and QRs are vertically stacked and laterally coupled as well as aligned within each layer due to the strain field distributions that governs the ordering. The strong interdot coupling influences the carrier transfer both along as well as between chains in the ring layer and dot template structures. A qualitative contrast between different dynamic models has been developed. By combining temperature and excitation intensity effects, the tuning of the photoluminescence gain for either the QR or the QD mode is attained. The information obtained here about relaxation parameters, energy scheme, interlayer and interdot coupling resulting in creation of 1D structures is very important for the usage of such specific QR–QD systems for applied purposes such as lasing, detection, and energy-harvesting technology of future solar panels.

  12. Improved DNA clamps by stacking to adjacent nucleobases

    DEFF Research Database (Denmark)

    Fatthalla, M.I.; Pedersen, Erik Bjerregaard

    2012-01-01

    Three or four aromatic rings interconnected by acetylene bridges form a stiff conjugated system with sufficient conformational freedom to make it useful to link together the two strands of a DNA clamp. Upon targeting a ssDNA, the conformational flexibility allows better stacking of the linker to...... the underlying non-planar base triplet in the formed triplex. This type of triplexes has a substantially higher thermal melting temperature which can be further improved by inserting locked nucleic acids (LNAs) in the Hoogsteen part of the clamp. An extremely high sensitivity to mismatches is observed...

  13. Energy level alignment in Au/pentacene/PTCDA trilayer stacks

    Science.gov (United States)

    Sehati, P.; Braun, S.; Fahlman, M.

    2013-09-01

    Ultraviolet photoelectron spectroscopy is used to investigate the energy level alignment and molecular orientation at the interfaces in Au/pentacene/PTCDA trilayer stacks. We deduced a standing orientation for pentacene grown on Au while we conclude a flat lying geometry for PTCDA grown onto pentacene. We propose that the rough surface of polycrystalline Au induces the standing geometry in pentacene. It is further shown that in situ deposition of PTCDA on pentacene can influence the orientation of the surface pentacene layer, flipping part of the surface pentacene molecules into a flat lying geometry, maximizing the orbital interaction across the pentacene-PTCDA heterojunction.

  14. CaPiTo: protocol stacks for services

    DEFF Research Database (Denmark)

    Gao, Han; Nielson, Flemming; Nielson, Hanne Riis

    2011-01-01

    CaPiTo allows the modelling of service-oriented applications using process algebras at three levels of abstraction. The abstract level focuses on the key functionality of the services; the plug-in level shows how to obtain security using standardised protocol stacks; finally, the concrete level a...... for ensuring the absence of security flaws. The method used is based on static analysis of the corresponding LySa specifications. We illustrate the development on two industrial case studies; one taken from the banking sector and the other a single sign-on protocol....

  15. Testing Gravity with the Stacked Phase Space around Galaxy Clusters

    CERN Document Server

    Lam, Tsz Yan; Schmidt, Fabian; Takada, Masahiro

    2012-01-01

    In General Relativity, the average velocity field of dark matter around galaxy clusters is uniquely determined by the mass profile. The latter can be measured through weak lensing. We propose a new method of measuring the velocity field (phase space density) by stacking redshifts of surrounding galaxies from a spectroscopic sample. In combination with lensing, this yields a direct test of gravity on scales of 1-30 Mpc. Using N-body simulations, we show that this method can improve upon current constraints by several orders of magnitude when applied to upcoming imaging and redshift surveys.

  16. Stacked-Gate FET's For Analog Memory Elements

    Science.gov (United States)

    Thakoor, Anilkumar P.; Moopenn, Alexander W.

    1991-01-01

    Three-terminal, double-stacked-gate field-effect transistor (FET), developed as analog memory element. Particularly suited for use as synapse with variable connection strength in electronic neural network. Provides programmable, nonvolatile resistive connection, somewhat in manner of porous-gate FET described in "Porous-Floating-Gate Field-Effect Transistor" (NPO-17532). Resembles commercial erasable programmable read-only memory (EPROM) device, except for thickness of layers of silicon dioxide electrically isolating gates. Either p-channel or n-channel device.

  17. A heuristic for the minimization of open stacks problem

    OpenAIRE

    Fernando Masanori Ashikaga; Nei Yoshihiro Soma

    2009-01-01

    It is suggested here a fast and easy to implement heuristic for the minimization of open stacks problem (MOSP). The problem is modeled as a traversing problem in a graph (Gmosp) with a special structure (Yanasse, 1997b). It was observed in Ashikaga (2001) that, in the mean experimental case, Gmosp has large cliques and high edge density. This information was used to implement a heuristic based on the extension-rotation algorithm of Pósa (1976) for approximation of Hamiltonian Circuits. Additi...

  18. Wideband Coaxial Fed Rotated Stacked Patch Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    D. Ujwala

    2014-03-01

    Full Text Available A novel circularly polarized coaxial fed rotated stacked patch antenna is proposed and its performance characteristics are presented in the current work. The antenna consisting of four parasitic patch, each one being rotated by 300 relative to its adjacent patches. The proposed antenna is giving return loss less than -10 dB with VSWR<2 and bandwidth 700 MHz (5.8 to 6.5 GHz with axial ratio less than 3dB. The analysis of the antenna is explained through parametric study and HFSS simulation results are presented in the current work.

  19. Magnetoband structures of AB-stacked zigzag nanographite ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.P.; Chiu, C.W.; Shyu, F.L.; Chen, R.B.; Lin, M.F

    2002-12-30

    Magnetoband structures of AB-stacked zigzag nanographite ribbons are studied by the tight-binding model. The magnetic field changes band width, energy space, and energy dispersions (the produce of Landau subbands and Landau levels). It causes many zero energy points. Such points and corresponding localized states are studied in detail. There are certain important differences between localized states and edge states. Oscillation period of Landau subbands are determined by these points. The interribbon interactions also affect magnetoband structures, such as energy dispersions, band width, oscillation period of Landau subbands, and flux dependence of Hofstadter butterflies.

  20. Holographic shell model: Stack data structure inside black holes?

    Science.gov (United States)

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  1. Symmetry and resonant modes in platonic grating stacks

    CERN Document Server

    Haslinger, Stewart G; Movchan, Natasha V; McPhedran, Ross C

    2013-01-01

    We study the flexural wave modes existing in finite stacks of gratings containing rigid, zero-radius pins. We group the modes into even and odd classes, and derive dispersion equations for each. We study the recently discovered EDIT (elasto-dynamically inhibited transmission) phenomenon, and relate it to the occurrence of trapped waves of even and odd symmetries being simultaneously resonant. We show how the EDIT interaction may be steered over a wide range of frequencies and angles, using a strategy in which the single-grating reflectance is kept high, so enabling the quality factors of the even and odd resonances to be kept large.

  2. An Exact Method for the Double TSP with Multiple Stacks

    OpenAIRE

    Larsen, Jesper; Lusby, Richard Martin; Ehrgott, Matthias; Ryan, David

    2009-01-01

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem in which all pickups must be completed before any deliveries can be made. The problem originates from a real-life application where a 40 foot container (configured as 3 columns of 11 rows) is used to transport up to 33 pallets from a set of pickup customers to a set of delivery customers. The pickups and deliveries are performed in two separate trips, where each trip starts and ends at a depo...

  3. Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy

    Science.gov (United States)

    Wu, Y.; Zhou, D. Q.; Song, W. L.; Wang, H.; Zhang, Z. Y.; Ma, D.; Wang, X. L.; Lu, Z. P.

    2012-12-01

    Martensitic transformation was successfully introduced to bulk metallic glasses as the reinforcement micromechanism. In this Letter, it was found that the twinning property of the reinforcing crystals can be dramatically improved by reducing the stacking fault energy through microalloying, which effectively alters the electron charge density redistribution on the slipping plane. The enhanced twinning propensity promotes the martensitic transformation of the reinforcing austenite and, consequently, improves plastic stability and the macroscopic tensile ductility. In addition, a general rule to identify effective microalloying elements based on their electronegativity and atomic size was proposed.

  4. Nanocomposite Materials of Alternately Stacked C60 Monolayer and Graphene

    Directory of Open Access Journals (Sweden)

    Makoto Ishikawa

    2010-01-01

    Full Text Available We synthesized the novel nanocomposite consisting alternately of a stacked single graphene sheet and a C60 monolayer by using the graphite intercalation technique in which alkylamine molecules help intercalate large C60 molecules into the graphite. Moreover, it is found that the intercalated C60 molecules can rotate in between single graphene sheets by using C13 NMR measurements. This preparation method provides a general way for intercalating huge fullerene molecules into graphite, which will lead to promising materials with novel mechanical, physical, and electrical properties.

  5. Optical conductivity of ABA-stacked trilayer graphene

    Institute of Scientific and Technical Information of China (English)

    Zhu Guo-Bao; Zhang Peng

    2013-01-01

    The optical conductivity of a trilayer graphene is studied using the Kubo-Greenwood formula.We calculate the real part of the diagonal optical conductivity of an ABA-stacked trilayer graphene with different Fermi energies.The optical conductivity arises from interband matrix elements of the electric current operator involving the transitions from the occupied states to the unoccupied ones.We study the dependence of the real part of the diagonal optical conductivity on the photon energy,and the role of the transitions.

  6. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  7. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  8. Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack

    International Nuclear Information System (INIS)

    Highlights: • A Monte Carlo simulation of a SOFC stack model is conducted for sensitivity analysis. • The non-isothermal stack model allows fast computation for statistical modeling. • Modeling parameters are ranked in view of their correlations with stack performance. • Rankings are different when varying the parameters simultaneously and individually. • Rankings change with the variability of the parameters and positions in the stack. - Abstract: The development of fuel cells has progressed to portable applications recently. This paper conducts a Monte Carlo simulation (MCS) of a spatially-smoothed non-isothermal model to correlate the performance of a 3D 5-cell planar solid oxide fuel cell (P-SOFC) stack with the variability of modeling parameters regarding material and geometrical properties and operating conditions. The computationally cost-efficient P-SOFC model for the MCS captures the leading-order transport phenomena and electrochemical mechanics of the 3D stack. Sensitivity analysis is carried out in two scenarios: first, by varying modeling parameters individually, and second by varying them simultaneously. The stochastic parameters are ranked according to the strength of their correlations with global and local stack performances. As a result, different rankings are obtained for the two scenarios. Moreover, in the second scenario, the rankings change with the nominal values and variability of the stochastic parameters as well as local positions within the stack, because of compensating or reinforcing effects between the varying parameters. Apart from the P-SOFCs, the present MCS can be extended to other types of fuel cells equipped with parallel flow channels. The fast stack model allows statistical modeling of a large stack of hundreds of cells for high-power applications without a prohibitive computational cost

  9. Contemporary sample stacking in CE: a sophisticated tool based on simple principles.

    Science.gov (United States)

    Malá, Zdena; Krivánková, Ludmila; Gebauer, Petr; Bocek, Petr

    2007-01-01

    Sample stacking is a general term for methods in CE which are used for on-line concentration of diluted analytes. During the stacking process, analytes present at low concentrations in a long injected sample zone are concentrated into a short zone (stack). The stacked analytes are then separated and individual zones are detected. Thus stacking provides better separation efficiency and detection sensitivity. Many papers have been published on stacking till now, various procedures have been described, and, many names have been proposed for stacking procedures utilizing the same principles. This contribution brings an easy and unified view on stacking, describes the basic principles utilized, makes a list of recognized operational principles and brings an overview of principal current procedures. Further, it surveys selected recent practical applications ordered according to their operational principles and includes the terms, nicknames, and acronyms used for these actual stacking procedures. This contribution may help both newcomers and experts in the field of CE to orient themselves in the already quite complex topic of sample stacking.

  10. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  11. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  12. Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, Peter James, E-mail: p.carrington@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Mahajumi, Abu Syed [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Wagener, Magnus C.; Botha, Johannes Reinhardt [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Zhuang Qian; Krier, Anthony [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-05-15

    We report on the fabrication of GaAs based p-i-n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.

  13. UV pulse trains by α-BBO crystal stacking for the production of THz-rap-rate electron bunches

    Science.gov (United States)

    Yan, Li-Xin; Hua, Jian-Fei; Du, Ying-Chao; Huang, Yuan-Fang; You, Yan; Wang, Dan; Huang, Wen-Hui; Tang, Chuan-Xiang; Tang

    2012-08-01

    Ultrashort electron bunch trains can be used for plasma wake field acceleration (PWFA) to overcome the limit of transformer ratio of a single electron bunch, or high-power terahertz (Thz) radiation production by various radiation mechanisms. Basic facility for high-power THz radiation development based on ultrashort electron beam has been set up at accelerator lab of TUB. Using birefringent crystal serials, ultraviolet (UV) pulse shaping for photocathode radio frequency gun to produce THz-repetition-rate pulse train was realized. Driven by such pulses, ultrashort electron bunch train with picosecond (ps) spacing was obtained for THz production. Measurement of the stacked UV pulse trains was done by difference frequency generation (DFG), and the measured group velocity mismatch of α-BBO crystal at 266.7-nm wavelength was 0.8 ps/mm. This method may also be applied to form ramped electron bunch trains for PWFA.

  14. Laser-Beam Separator

    Science.gov (United States)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  15. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  16. Space charge dominated beams

    International Nuclear Information System (INIS)

    After an introductory section on the relationship between emittance and beam Coulomb energy we discuss the properties of space charge dominated beams in progressive steps: from uniformly charged bunched beams to non-uniformly charged beams to correlation effects between particles (simulation beams or 'crystalline' beams). A practical application can be found in the beam dynamics of a high-current injector. The concept of correlation energy is of practical interest in computer simulation of high-brilliance beams, where one deals with an artificially enhanced two-particle Coulomb energy, if many real particles are combined into one simulation super-particle. This can be a source of non-physical emittance growth. (orig./HSI)

  17. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  18. Calculated stacking-fault energies of elemental metals

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1993-01-01

    We have performed ab initio calculations of twin, intrinsic, and extrinsic face-centered-cubic stacking faults for all the 3d, 4d, and 5d transition metals by means of a Green's-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approxima......We have performed ab initio calculations of twin, intrinsic, and extrinsic face-centered-cubic stacking faults for all the 3d, 4d, and 5d transition metals by means of a Green's-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic...... in the three transition series vary with atomic number essentially as the calculated structural energy differences between the face-centered-cubic and the hexagonal-close-packed phases. In addition we find that the simple relationships between the different types of fault energies predicted by models based...... on the local atomic coordination are obeyed to a high degree of accuracy....

  19. Correlated lateral phase separations in stacks of lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Takuma, E-mail: hoshino-takuma@ed.tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Komura, Shigeyuki, E-mail: komura@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Andelman, David, E-mail: andelman@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

    2015-12-28

    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, T{sub c}, for larger inter-layer interaction. When the temperature ratio, T/T{sub c}, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.

  20. Galaxy Cluster Mass Estimation from Stacked Spectroscopic Analysis

    CERN Document Server

    Farahi, Arya; Rozo, Eduardo; Rykoff, Eli S; Wechsler, Risa H

    2016-01-01

    We use simulated galaxy surveys to study: i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and ii) the accuracy of a mean dynamical cluster mass, $M_\\sigma(\\lambda)$, derived from stacked pairwise spectroscopy of clusters with richness $\\lambda$. Using $\\sim\\! 130,000$ galaxy pairs patterned after the SDSS redMaPPer cluster sample study of Rozo et al. (2015 RMIV), we show that the pairwise velocity PDF of central--satellite pairs with $m_i < 19$ in the simulation matches the form seen in RMIV. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes $\\sim 60\\%$ of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. (2008) to the velocity normalization matches, to within a few percent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with mis-centering and galaxy velocity bias...

  1. Super Resolution from Hyperview Image Stack by Spatial Multiplexing

    Science.gov (United States)

    Grasnick, Armin

    2016-09-01

    An image stack for a hyperview representation could contain millions of different perspective views with extreme image similarity. The recording of all views from a computational 3d model implicates a lateral displacement of the virtual camera. Because of the huge number of views, the offset in between two adjoining camera positions can be very minor. If such a virtual setup reproduces a real hyperview screen setup, the offset can be below the wavelength of the visible light. But even with such small changes, there is an intrinsic probability for a measurable difference in between two neighbour images. Such image dissimilarity can be proofed successfully also in very basic 3d scenes. By using a quantity of juxtapositional images from the hyperview image stack, the resolution of the rendered images can be considerably improved, which is commonly known as super resolution. The utilisation of super resolution images in hyperview could cut the necessity of full frame computing and will reduce the effective render time.

  2. In-situ infrared detection of stack gases

    Science.gov (United States)

    Stuart, Derek D.

    1993-03-01

    Infrared measurement using gas-filter correlation (GFC) detection offers an accurate, sensitive, and highly selective technique for the quantitative detection of a number of common industrial gases. A radiative transfer model based on the HITRAN database has been developed to permit the response function of such an instrument to be calculated. The model has been applied to a number of gases, calculating the instrument response to both the target gas and selected interferent species over a broad range of stack temperatures. An optical probe GFC detector has been designed for in-stack measurements of CO and HCl from incinerators and thermal power stations. The probe can be purged with clean air for a true baseline check and a calibration chamber is provided which allows the instrument to be calibrated using bottled gas mixtures. The instrument has completed a successful plant trial during which it measured CO emissions from a coal-fired power station, showing a detection sensitivity of 5 ppm. Detection of HCl has also been demonstrated in the laboratory.

  3. Air plasma treated chitosan fibers-stacked scaffolds

    International Nuclear Information System (INIS)

    Chitosan is a nontoxic, biodegradable and biocompatible polymer. Rapid prototyped chitosan scaffolds were manufactured by liquid-frozen deposition of chitosan fibers in this study. To investigate if the air plasma (AP) treatment could be used to improve the surface properties of these scaffolds for cell attachment, chitosan films were first prepared and treated with AP under different conditions. Under the optimized condition, the water contact angle of chitosan films was significantly reduced from 90 ± 1° to 19 ± 1° after AP treatment. On the other hand, the surface charge and nanometric roughness of chitosan films increased after AP treatment. X-ray photoelectron spectroscopy measurement on AP-treated three-dimensional chitosan scaffolds showed that nitrogen and oxygen increased at each location inside the scaffolds as compared to the untreated ones, which indicated that AP could permeate through the fibrous stacks of the scaffolds and effectively modify the interior (visible) surface of the scaffolds. Moreover, AP treatment enabled the migration of MC3T3-E1 cells into the scaffolds, facilitated their proliferation and promoted the bone mineral deposition. These results suggested that fibers-stacked chitosan scaffolds may be produced by liquid-frozen deposition and treated with AP for bone tissue engineering applications. (paper)

  4. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  5. Proton beam writing

    OpenAIRE

    Frank Watt; Breese, Mark B H; Bettiol, Andrew A; Jeroen A. van Kan

    2007-01-01

    Proton beam (p-beam) writing is a new direct-writing process that uses a focused beam of MeV protons to pattern resist material at nanodimensions. The process, although similar in many ways to direct writing using electrons, nevertheless offers some interesting and unique advantages. Protons, being more massive, have deeper penetration in materials while maintaining a straight path, enabling p-beam writing to fabricate three-dimensional, high aspect ratio structures with vertical, smooth side...

  6. Welding by laser beam

    International Nuclear Information System (INIS)

    A laser which does not require a vacuum and the beam from which can be projected over a distance without loss of power is sited outside a welding zone and the beam projected through a replaceable laser transparent window. The window is designed and shaped to facilitate access of the beam of workpiece items to be welded in containment. Either the workpiece or the laser beam may be moved during welding. (author)

  7. Slow kaon beams

    International Nuclear Information System (INIS)

    A short description is given of considerations for the design of low-momentum kaon beam lines. Relevant data for the performance of seven existing and decommissioned slow kaon beams are presented. For single-stage separated beams the observed ratio all/K- is greater than 50 for momenta less than 500 MeV/c. We recommend a two-stage separated beam with perhaps an upstream cleanup section for maximal purity

  8. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  9. PARTICLE BEAM TRACKING CIRCUIT

    Science.gov (United States)

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  10. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  11. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  12. Beams 92: Proceedings

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere

  13. Accelerating nondiffracting beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  14. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  15. Klystron beam bunching

    International Nuclear Information System (INIS)

    A detailed description of electron-beam bunching phenomena in klystrons is presented. Beam harmonic current is defined, both space-charge and ballistic bunching are analyzed, Ramo's theorem is used to describe how a bunched beam drives a cavity, and a general cavity model including external coupling is provided. (author)

  16. Vibration mode analysis of the proton exchange membrane fuel cell stack

    Science.gov (United States)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  17. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  18. Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip

    Science.gov (United States)

    Carson, John C. (Inventor); Indin, Ronald J. (Inventor); Shanken, Stuart N. (Inventor)

    1994-01-01

    A computer module is disclosed in which a stack of glued together IC memory chips is structurally integrated with a microprocessor chip. The memory provided by the stack is dedicated to the microprocessor chip. The microprocessor and its memory stack may be connected either by glue and/or by solder bumps. The solder bumps can perform three functions--electrical interconnection, mechanical connection, and heat transfer. The electrical connections in some versions are provided by wire bonding.

  19. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2010-10-15

    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  20. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    OpenAIRE

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of...

  1. Pushing the limits - beam

    CERN Document Server

    Métral, E

    2011-01-01

    Many collective effects were observed in 2010, first when the intensity per bunch was increased and subsequently when the number of bunches was pushed up and the bunch spacing was reduced. After a review of the LHC performance during the 2010 run, with a particular emphasis on impedances and related single-beam coherent instabilities, but mentioning also beam-beam and electron cloud issues, the potential of the LHC for 2011 will be discussed. More specifically, the maximum bunch/beam intensity and the maximum beam brightness the LHC should be able to swallow will be compared to what the injectors can provide.

  2. Recent Progress and Spectral Robustness Study for Mechanically Stacked Multi-junction Solar Cells

    Science.gov (United States)

    Zhao, Lu; Flamand, Giovanni; Poortmans, Jef

    2010-10-01

    Multi-terminal mechanically stacked multi-junction solar cells are an attractive candidate for terrestrial concentrator photovoltaics applications. Unlike monolithically integrated multi-junction solar cells which require current matching, all the available photon currents can be fully extracted from each junction of a mechanically stacked solar cell. Therefore, it has a high performance potential, and more importantly is less sensitive to spectrum variations. Lower losses due to current mismatch translate into a higher annual energy output for the mechanical stack. This paper presents the baseline processing developed at imec for the mechanical stacking process, and the most recent cell results by means of this technology. A GaAs-Ge dual-junction mechanically stacked multi-junction solar cell is demonstrated, with 24.7% plus 2.52% under AM1.5g, and 27.7% plus 4.42% under 30Suns concentration. In addition, spectral sensitivity is studied for both monolithically stacked and mechanically stacked solar cells, to learn the influence of spectrum variations on multi-junction solar cell performance. SMARTS model is used to predict the spectral irradiances, with solar radiation and meteorological elements from typical meteorological year 3 (TMY3) data set. The generated spectra are then fed into TCAD numerical simulation tool, to simulate the device performance. The simulation results show a reduced spectral sensitivity for mechanically stacked cell, and there is a 6% relative gain in annual energy production for the site studied (Las Vegas), compared with the monolithic stack.

  3. Development of a polymer electrolyte membrane fuel cell stack for an underwater vehicle

    Science.gov (United States)

    Han, In-Su; Kho, Back-Kyun; Cho, Sungbaek

    2016-02-01

    This paper presents a polymer electrolyte membrane (PEM) fuel cell stack that is specifically designed for the propulsion of an underwater vehicle (UV). The stack for a UV must be continuously operated in a closed space using hydrogen and pure oxygen; it should meet various performance requirements such as high hydrogen and oxygen utilizations, low hydrogen and oxygen consumptions, a high ramp-up rate, and a long lifetime. To this end, a cascade-type stack design is employed and the cell components, including the membrane electrode assembly and bipolar plate, are evaluated using long-term performance tests. The feasibility of a fabricated 4-kW-class stack was confirmed through various performance evaluations. The proposed cascade-type stack exhibited a high efficiency of 65% and high hydrogen and oxygen utilizations of 99.89% and 99.68%, respectively, resulting in significantly lesser purge-gas emissions to the outside of the stack. The load-following test was successfully performed at a high ramp-up rate. The lifetime of the stack was confirmed by a 3500-h performance test, from which the degradation rate of the cell voltage was obtained. The advantages of the cascade-type stack were also confirmed by comparing its performance with that of a single-stage stack operating in dead-end mode.

  4. ZPEG: a hybrid DPCM-DCT based approach for compression of Z-stack images.

    Science.gov (United States)

    Khire, Sourabh; Cooper, Lee; Park, Yuna; Carter, Alexis; Jayant, Nikil; Saltz, Joel

    2012-01-01

    Modern imaging technology permits obtaining images at varying depths along the thickness, or the Z-axis of the sample being imaged. A stack of multiple such images is called a Z-stack image. The focus capability offered by Z-stack images is critical for many digital pathology applications. A single Z-stack image may result in several hundred gigabytes of data, and needs to be compressed for archival and distribution purposes. Currently, the existing methods for compression of Z-stack images such as JPEG and JPEG 2000 compress each focal plane independently, and do not take advantage of the Z-signal redundancy. It is possible to achieve additional compression efficiency over the existing methods, by exploiting the high Z-signal correlation during image compression. In this paper, we propose a novel algorithm for compression of Z-stack images, which we term as ZPEG. ZPEG extends the popular discrete-cosine transform (DCT) based image encoder to compress Z-stack images. This is achieved by decorrelating the neighboring layers of the Z-stack image using differential pulse-code modulation (DPCM). PSNR measurements, as well as subjective evaluations by experts indicate that ZPEG can encode Z-stack images at a higher quality as compared to JPEG, JPEG 2000 and JP3D at compression ratios below 50∶1.

  5. Continued maturing of SOFC cell production technology and development and demonstration of SOFC stacks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-15

    The overall objective of the 6385 project was to develop stack materials, components and stack technology including industrial relevant manufacturing methods for cells components and stacks. Furthermore, the project should include testing and demonstration of the stacks under relevant operating conditions. A production of 6.829 cells, twenty 75-cell stacks and a number of small stacks was achieved. Major improvements were also made in the manufacturing methods and in stack design. Two test and demonstration activities were included in the project. The first test unit was established at H.C. OErsted power plant at the Copenhagen waterfront in order to perform test of SOFC stacks. The unit will be used for tests in other projects. The second demonstration unit is the alpha prototype demonstration in a system running on natural gas in Finland. The alpha prototype demonstration system with 24 TOFC (Topsoe Fuel Cell) stacks was established and started running in October 2007 and operational experience was gained in the period from October 2007 to February 2008. (auther)

  6. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system...... is managed by running the stack at a high stoichiometric air flow. This is possible because of the polybenzimidazole (PBI) fuel cell membranes used and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle, and end...

  7. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  8. Modeling and simulation of a reformate supplied PEM fuel cell stack, application to fault detection

    OpenAIRE

    Najafi, Masoud; Dipenta, Damiano; Bencherif, Karim; Sorine, Michel

    2007-01-01

    A method to reduce the model of a nonlinear dynamic fuel cell stack, which is suitable for control and fault detection studies, is presented. In order to model the fuel cell stack, we have assumed that the fuel cells are arranged in a stack, electrically in series, with thermal and electrical contacts. Since in practical applications a stack may be composed of several (at least fifty) fuel cells, such model will be a large set of differential equations which may be difficult to simulate espec...

  9. Calculation of AC losses in HTS stacks and coils for large scale applications

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Abrahamsen, Asger Bech; Mijatovic, Nenad;

    2012-01-01

    operation. Calculating these losses is fundamental for performance evaluation and design. In many cases, this boils down to computing AC losses in stacks of tapes that are subjected to transport current and/or applied magnetic field. In this work, we present a homogenization method to model a stack of HTS...... tapes. The idea is to find an anisotropic bulk equivalent for the stack of tapes: “washing out” the geometric internal features of the stack while keeping its overall electromagnetic behavior. Our work extends the anisotropic bulk model originally presented by Clem et al. and later refined by Prigozhin...

  10. Cluster ion beam evaporation

    International Nuclear Information System (INIS)

    Cluster ions can be made by the supercooling due to adiabatic expansion of substances to be vaporized which are ejected from a nozzle. This paper is described on the recent progress of studies concerning the cluster beam. The technique of cluster ion beam has been applied for the studies of thermonuclear plasma, the fabrication of thin films, crystal growth and electronic devices. The density of cluster ion beam is larger than that of atomic ion beam, and the formation of thin films can be easily done in high vacuum. This method is also useful for epitaxial growth. Metallic vapour cluster beam was made by the help of jetting rare gas beam. Various beam sources were developed. The characteristics of these sources were measured and analyzed. (Kato, T.)

  11. Dynamic Stability of Cylindrical Shells under Moving Loads by Applying Advanced Controlling Techniques—Part II: Using Piezo-Stack Control

    Directory of Open Access Journals (Sweden)

    Khaled M. Saadeldin Eldalil

    2009-01-01

    Full Text Available The load acting on the actively controlled cylindrical shell under a transient pressure pulse propelling a moving mass (gun case has been experimentally studied. The concept of using piezoelectric stack and stiffener combination is utilized for damping the tube wall radial and circumferential deforming vibrations, in the correct meeting location timing of the moving mass. The experiment was carried out by using the same stiffened shell tube of the experimental 14 mm gun tube facility which is used in part 1. Using single and double stacks is tried at two pressure levels of low-speed modes, which have response frequencies adapted with the used piezoelectric stacks characteristics. The maximum active damping ratio is occurred at high-pressure level. The radial circumferential strains are measured by using high-frequency strain gage system in phase with laser beam detection system similar to which used in part 1. Time resolved strain measurements of the wall response were obtained, and both precursor and transverse hoop strains have been resolved. A complete comparison had been made between the effect of active controlled and stepped structure cases, which indicate a significant attenuation ratio especially at higher operating pressures.

  12. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    CERN Document Server

    Reinhart, Anna Merle; Jakubek, Jan; Martisikova, Maria

    2016-01-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, already small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live monitoring system of the beam delivery within the patient is therefore highly desirable and could improve patient treatment. We present a novel three-dimensional imaging method of the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack, a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximisation. We demonstrate the applicability of the new method in an irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of 226MeV/u. The beam image in the phantom is reconstructed from a set of 9 discrete detector positions between -80 and 50 degrees from the bea...

  13. Radioisotopic composition of yellowcake: an estimation of stack release rates

    International Nuclear Information System (INIS)

    Uranium concentrate (yellowcake) composites from four mills (Anaconda, Kerr-McGee, Highland, and Uravan) were analyzed for U-238, U-235, U-234, Th-230, Ra-226, and Pb-210. The ratio of specific activities of U-238 to U-234 in the composites suggested that secular radioactive equilibrium exists in the ore. The average activity ratios in the yellowcake were determined to be 2.7 x 10-3 (Th-230/U-238), 5 x 10-4 (Ra-226/U-238) and 2 x 10-4 (Pb-210/U-238). Based on earlier EPA measurements of the release rates from the stacks, the amount of yellowcake released was determined to be 0.1% of the amount processed

  14. Fade to Green: A Biodegradable Stack of Microbial Fuel Cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Stinchcombe, Andrew; Walter, X Alexis; Greenman, John; Ieropoulos, Ioannis

    2015-08-24

    The focus of this study is the development of biodegradable microbial fuel cells (MFCs) able to produce useful power. Reactors with an 8 mL chamber volume were designed using all biodegradable products: polylactic acid for the frames, natural rubber as the cation-exchange membrane and egg-based, open-to-air cathodes coated with a lanolin gas diffusion layer. Forty MFCs were operated in various configurations. When fed with urine, the biodegradable stack was able to power appliances and was still operational after six months. One useful application for this truly sustainable MFC technology includes onboard power supplies for biodegradable robotic systems. After operation in remote ecological locations, these could degrade harmlessly into the surroundings to leave no trace when the mission is complete.

  15. Composite piezoelectric spinal fusion implant: Effects of stacked generators.

    Science.gov (United States)

    Goetzinger, Nathan C; Tobaben, Eric J; Domann, John P; Arnold, Paul M; Friis, Elizabeth A

    2016-01-01

    Spinal fusion surgeries have a high failure rate for difficult-to-fuse patients. A piezoelectric spinal fusion implant was developed to overcome the issues with other adjunct therapies. Stacked generators were used to improve power generation at low electrical load resistances. The effects of the number of layers on average maximum power and the optimal electrical load resistance were characterized. The effects of mechanical preload, load frequency, and amplitude on maximum power and optimal electrical load resistance were also characterized. Increasing the number of layers from one to nine was found to lower the optimal electrical load resistance from 1.00 GΩ to 16.78 MΩ while maintaining maximum power generation. Mechanical preload did not have a significant effect on power output or optimal electrical load resistance. Increases in mechanical loading frequency increased average maximum power, while decreasing the optimal electrical load resistance. Increases in mechanical loading amplitude increased average maximum power output without affecting the optimal electrical load resistance.

  16. Fade to Green: A Biodegradable Stack of Microbial Fuel Cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Stinchcombe, Andrew; Walter, X Alexis; Greenman, John; Ieropoulos, Ioannis

    2015-08-24

    The focus of this study is the development of biodegradable microbial fuel cells (MFCs) able to produce useful power. Reactors with an 8 mL chamber volume were designed using all biodegradable products: polylactic acid for the frames, natural rubber as the cation-exchange membrane and egg-based, open-to-air cathodes coated with a lanolin gas diffusion layer. Forty MFCs were operated in various configurations. When fed with urine, the biodegradable stack was able to power appliances and was still operational after six months. One useful application for this truly sustainable MFC technology includes onboard power supplies for biodegradable robotic systems. After operation in remote ecological locations, these could degrade harmlessly into the surroundings to leave no trace when the mission is complete. PMID:26212495

  17. Monte Carlo simulations of ABC stacked kagome lattice films

    Science.gov (United States)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  18. Fast static field CIPT mapping of unpatterned MRAM film stacks

    International Nuclear Information System (INIS)

    While investigating uniformity of magnetic tunnel junction (MTJ) stacks we find experimentally and analytically that variation in the resistance area product (RA) is more important to monitor as compared to the tunnel magnetoresistance (TMR), which is less sensitive to MTJ variability. The standard Current In-Plane Tunneling (CIPT) method measures both RA and TMR, but the usefulness for uniformity mapping, e.g. for tool optimization, is limited by excessive measurement time. Thus, we develop and demonstrate a fast complementary static magnetic field method focused only on measurement of RA. We compare the static field method to the standard CIPT method and find perfect agreement between the extracted RA values and measurement repeatability while the static field method is several times faster. The static field CIPT method is demonstrated for 200 mm wafer mapping showing radial as well as asymmetrical variations related to the MTJ deposition conditions. (paper)

  19. Slow wave cavity resonance in periodic stacks of anisotropic layers

    CERN Document Server

    Figotin, Alex

    2007-01-01

    We consider Fabry-Perot cavity resonance in periodic layered structures involving birefringent layers. Previously we have shown that the presence of birefringent layers with misaligned in-plane anisotropy can dramatically enhance the performance of the photonic-crystal cavity. It allows to reduce the size of a Fabry-Perot resonator by an order of magnitude without compromising on its performance. The key characteristic of the enhanced photonic-crystal cavity is that its Bloch dispersion relation displays a degenerate photonic band edge, rather than only regular ones. This can be realized in specially arranged stacks of misaligned anisotropic layers. On the down side, the presence of birefringent layers results in the Fabry-Perot resonance being coupled only with one (elliptic) polarization component of the incident wave, while the other polarization component is reflected back to space. In this paper we show how a small modification of the periodic layered array can solve the above fundamental problem and pro...

  20. Intrinsic superconductivity in ABA-stacked trilayer graphene

    Directory of Open Access Journals (Sweden)

    Haiwen Liu

    2012-12-01

    Full Text Available We study the phonon-mediated superconductivity in light doped ABA-stacked trilayer graphene system by means of two theoretical models. We find superconducting transition temperature TC can be greatly enlarged by tuning the Fermi energy away from neutral point. Utilizing realistic parameters, we find Tc is approximately 1 K even under weak doping condition EF = 0.1 eV. Specifically, we give out the analytical expression for superconductivity gap △ and superconducting transition temperature Tc for negative-U Hubbard model. Further, we consider the thermal fluctuation and calculate the Berezinskii-Kosterlitz-Thouless critical temperature TBKT. Besides, we consider a two-band BCS model in comparision with the negative-U Hubbard model. The results for both models are qualitatively consistent. Our study provides a promising possibility for realizing intrinsic superconductivity in multilayer graphene systems.

  1. Implementing inverted master-slave 3D semiconductor stack

    Science.gov (United States)

    Coteus, Paul W.; Hall, Shawn A.; Takken, Todd E.

    2016-03-08

    A method and apparatus are provided for implementing an enhanced three dimensional (3D) semiconductor stack. A chip carrier has an aperture of a first length and first width. A first chip has at least one of a second length greater than the first length or a second width greater than the first width; a second chip attached to the first chip, the second chip having at least one of a third length less than the first length or a third width less than the first width; the first chip attached to the chip carrier by connections in an overlap region defined by at least one of the first and second lengths or the first and second widths; the second chip extending into the aperture; and a heat spreader attached to the chip carrier and in thermal contact with the first chip for dissipating heat from both the first chip and second chip.

  2. Iris Matching Based On a Stack Like Structure Graph Approach

    Directory of Open Access Journals (Sweden)

    Roushdi Mohamed FAROUK

    2012-12-01

    Full Text Available In this paper, we present the elastic bunch graph matching as a new approach for iris recognition. The task is difficult because of iris variation in terms of position, size, and partial occlusion. We have used the circular Hough transform to determine the iris boundaries. Individual segmented irises are represented as labeled graphs. We have combined a representative set of individual model graphs into a stack like structure called an iris bunch graph (IBG. Finally, a bunch graph similarity function is proposed to compare a test graph with the IBG. Recognition results are given for galleries of irises from CASIA version and UBIRIS databases. The numerical results show that, the elastic bunch graph matching is an effective technique for iris matching. We also compare our results with previous results and find that, the elastic bunch graph matching is an effective matching performance.

  3. Stacking dependent electronic structures of transition metal dichalcogenides heterobilayer

    Science.gov (United States)

    Lee, Yea-Lee; Park, Cheol-Hwan; Ihm, Jisoon

    The systematic study of the electronic structures and optical properties of the transition metal dichalcogenides (TMD) heterobilayers can significantly improve the designing of new electronic and optoelectronic devices. Here, we theoretically study the electronic structures and optical properties of TMD heterobilayers using the first-principles methods. The band structures of TMD heterobilayer are shown to be determined by the band alignments of the each layer, the weak interlayer interactions, and angle dependent stacking patterns. The photoluminescence spectra are investigated using the calculated band structures, and the optical absorption spectra are examined by the GW approximations including the electron-hole interaction through the solution of the Bethe-Salpeter equation. It is expected that the weak interlayer interaction gives rise to the substantial interlayer optical transition which will be corresponding to the interlayer exciton.

  4. Ab initio engineering of materials with stacked hexagonal tin frameworks

    Science.gov (United States)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  5. Stacked, filtered multi-channel X-ray diode array

    Science.gov (United States)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  6. Fermi LAT Stacking Analysis of Swift Localized GRBs

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bhat, P. N.; Bissaldi, E.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D’Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Focke, W. B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jóhannesson, G.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Larsson, S.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Schaal, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; von Kienlin, A.; Werner, M.; Wood, K. S.

    2016-05-01

    We perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of γ-ray bursts (GRBs) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instrument’s field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a burst’s prompt γ-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swift’s X-ray Telescope at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the burst’s afterglow brightness lend further support to the external forward shock origin of the late-time emission detected by the LAT. These results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing to instrumental threshold effects.

  7. Examination of tyrosine/adenine stacking interactions in protein complexes.

    Science.gov (United States)

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S

    2013-11-14

    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  8. ‘Venetian blinds’-type stacked neutron mirrors

    Science.gov (United States)

    Apostolopoulos, G.; Mergia, K.; Messoloras, S.

    2008-02-01

    The properties of neutron optical devices consisting of a repetition of macroscopic substrates with a top reflecting layer ('venetian blinds') are discussed. The reflection and transmission of such a system are calculated analytically taking into account multiple scattering events. It is shown that these devices exhibit total neutron reflection at certain conditions of incoming beam angle and wavelength. Possible applications are discussed.

  9. Colliding Crystalline Beams

    International Nuclear Information System (INIS)

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then over-lapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong coding, although theoretically achievable, is a challenge in practice

  10. Beam-beam effect seen through forced vibration

    International Nuclear Information System (INIS)

    In electron accelerator, tune is measured by giving beam transverse forced vibration caused by RF frequency. It is well known that beam-beam parameter can be measured if beam-beam interaction exists. Generally, small value is chosen as the amplitude of forced vibration, and many researches were done in this case. In this report, we discuss effect of resonance caused by beam-beam interaction in case of amplitude of forced vibration being big. (author)

  11. Effect of stacking sequence on R-curve behavior of glass/epoxy DCB laminates with 0{sup o}//0{sup o} crack interface

    Energy Technology Data Exchange (ETDEWEB)

    Shokrieh, M.M., E-mail: shokrieh@iust.ac.ir [Composites Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Heidari-Rarani, M. [Composites Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of)

    2011-11-25

    Highlights: {yields} Interlaminar fracture toughness in MD laminates. {yields} Effect of remote lay-ups on delamination toughness. {yields} R-curve behavior of delaminated laminates with 0//0 interface. - Abstract: In this study, the influence of stacking sequence on mode I delamination resistance (R-curve) behavior of E-glass/epoxy laminated composites with an initial delamination between 0{sup o}//0{sup o} interface is experimentally investigated. To this end, symmetric double cantilever beam (DCB) specimens of stacking sequences; [0{sup o}{sub 12}]{sub s}, [(0{sup o}/90{sup o}){sub 3}]{sub 2s} and [0{sup o}/90{sup o}/ {+-} 45{sup o}/90{sup o}/0{sup o}]{sub 2s} with two initial crack lengths are used. A pronounced R-curve behavior is observed on all stacking sequences due to locating delamination between two similar layers. Comparison of R-curve behavior of cross-ply and quasi-isotropic DCB specimens with unidirectional (UD) one reveals the significant effect of the non-dimensional coupling parameter, D{sub c}=D{sub 12}{sup 2}/D{sub 11}D{sub 22}, on the R-curves. Thus, three main outputs of R-curves could be summarized as; (a) the initiation delamination toughness (G{sub Ic-init}) of multidirectional (MD) laminates are much lower than that of UD one, (b) stacking sequence has no effect on the fiber bridging length in DCB specimens, and (c) the greater the D{sub c} value of a laminate, the higher the steady-state propagation toughness (G{sub Ic-prop}) is.

  12. Dual-frequency dual-polarized stacked patch microstrip arrays: An investigation of their suitability for soil-moisture remote-sensing applications

    Science.gov (United States)

    Kona, Keerti Sruta

    The objective of this research is to develop design and analysis procedures for dual-frequency dual-polarized microstrip arrays applicable to future spaceborne remote sensing missions. In particular this thesis focuses on two main applications: Application 1. Design of light-weight L-band standalone planar array for soil moisture and sea-surface salinity measurements. We then investigate the possibility of a stacked patch array topology with L-band array elements for use as feed to 12m offset reflector. Application 2. Development of feed array concept for 30m symmetric reflector. The principal contributions of this research has been investigation of novel dual-band and dual-polarization array designs that can comply with the demanding specifications. Novel probe feeding methods for microstrip elements to achieve the best array performance are identified. Most importantly, "proof-of-concept" scaled models of the array designs were experimentally and numerically verified for a given set of specifications. A sixteen element microstrip stacked patch array with combined L-band active (radar) and passive (radiometer) frequencies for use in airborne sensors operating on standalone aircrafts has been optimized, fabricated and tested for application 1. Sub-cell FDTD method was applied for accurately modeling thin radomes and multilayer dielectrics covering such aperture type antennas in space applications. From the design and performance study of the L-band array, we have shown that it is feasible to use optimized stacked patch arrays as alternatives to conventionally used feed horns for offset reflectors. For application 2, a dual-stack patch array feed is identified that can synthesize long rectangular apertures with matched beams for two frequencies on the reflector surface. An experimental prototype scaled feed was designed, built and also integrated with a scaled 3.65m reflector antenna thus demonstrating the overall system feasibility.

  13. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  14. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove;

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  15. Model and Design of a Power Driver for Piezoelectric Stack Actuators

    Directory of Open Access Journals (Sweden)

    Chiaberge M

    2010-01-01

    Full Text Available A power driver has been developed to control piezoelectric stack actuators used in automotive application. An FEM model of the actuator has been implemented starting from experimental characterization of the stack and mechanical and piezoelectric parameters. Experimental results are reported to show a correct piezoelectric actuator driving method and the possibility to obtain a sensorless positioning control.

  16. The stacking dependent electronic structure and optical properties of bilayer black phosphorus.

    Science.gov (United States)

    Shu, Huabing; Li, Yunhai; Niu, Xianghong; Wang, Jinlan

    2016-02-17

    By employing density-functional theory, the G0W0 method and Bethe-Salpter equation, we explore quasi-particle energy bands, optical responses and excitons of bilayer black phosphorus (BBP) with four different stacking patterns. All the structures are direct band gap semiconductors and the band gap is highly dependent on the stacking pattern, with a maximum of 1.31 eV for AB-stacking and a minimum of 0.92 eV for AD-stacking. Such dependence can be well understood by the tight-binding model in terms of the interlayer hopping. More interestingly, stacking sensitive optical absorption and exciton binding energy are observed in BBPs. For x-polarized light, more red-shift of optical adsorption appears in AA-stacking and the strong exciton binding energy in the AA-stacking bilayer can be as large as 0.82 eV, that is ∼1.7 times larger than that of AD-stacking bilayer. PMID:26845322

  17. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  18. Test impact on the overall die-to-wafer 3D stacked IC cost

    NARCIS (Netherlands)

    Taouil, M.; Hamdioui, S.; Beenakker, K.; Marinissen, E.J.

    2011-01-01

    One of the key challenges in 3D Stacked-ICs (3D-SIC) is to guarantee high product quality at minimal cost. Quality is mostly determined by the applied tests and cost trade-offs. Testing 3D-SICs is very challenging due to several additional test moments for the mid-bond stacks, i.e., partially create

  19. Measuring the effect of demagnetization in stacks of gadolinium plates using the magnetocaloric effect

    DEFF Research Database (Denmark)

    Lipsø, Hans Kasper Wigh; Nielsen, Kaspar Kirstein; Christensen, Dennis;

    2011-01-01

    The effect of demagnetization in a stack of gadolinium plates is determined experimentally by using spatially resolved measurements of the adiabatic temperature change due to the magnetocaloric effect. The number of plates in the stack, the spacing between them and the position of the plate...

  20. Maximum supercurrent in two Josephson-junction stacks: Theory and experiment

    DEFF Research Database (Denmark)

    Carapella, G; Costabile, G; Sakai, S;

    1998-01-01

    The interaction between two long Josephson junctions in a stack is investigated experimentally in the absence of applied magnetic field. Mutual interaction is observed when both junctions or only one junction in the stack is in the zero voltage state. To account for the observed phenomena we prop...

  1. High-voltage switching by means of a stack of thyristors

    NARCIS (Netherlands)

    Meddens, B. J. H.; Delmee, P. F. M.; van Amersfoort, P. W.

    1996-01-01

    The use of a stack of 32 thyristors for production of a 20-kV pulse is reported. The pulse power is 50 MW and the pulse duration is 25 mu s. The thyristor stack serves as a line swith for a pulse-forming network which provides the input power for a 20-MW klystron. The klystron provides the rf power

  2. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Høgh, Jens Valdemar Thorvald; Nielsen, Karsten Agersted;

    2011-01-01

    Electrolysis of steam and co-electrolysis of steam and carbon dioxide was studied in Solid Oxide Electrolysis Cell (SOEC) stacks composed of Ni/YSZ electrode supported SOECs. The results of this study show that long-term electrolysis is feasible without notable degradation in these SOEC stacks. T...

  3. Self-Organizing Surface-Initiated Polymerization of Multicomponent Photosystems: Stack Exchange with Fullerenes

    OpenAIRE

    Bolag, Altan; Hayashi, Hironobu; Charbonnaz, Pierre; Sakai, Naomi; Matile, Stefan

    2013-01-01

    Like beads on a string: A synthetic method for the directional construction of strings of spherical fullerenes along stacks of planar oligothiophenes is described. The key to success was the preparation of fullerenes with two solubilizing tri(ethylene glycol) tails (bold) and an aromatic aldehyde for covalent capture by hydrazides along the oligothiophene stacks (red).

  4. Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚

    2005-01-01

    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  5. Image transfer by cascaded stack of photonic crystal and air layers

    NARCIS (Netherlands)

    Shen, C.; Michielsen, K.; Raedt, H. De

    2006-01-01

    We demonstrate image transfer by a cascaded stack consisting of two and three triangular-lattice photonic crystal slabs separated by air. The quality of the image transfered by the stack is sensitive to the air/photonic crystal interface termination and the frequency. Depending on the frequency and

  6. The effect of stacking arrangement on the conjugation in azochromophores revealed by combination of Raman spectroscopy and DFT calculations

    Science.gov (United States)

    Fominykh, Olga D.; Balakina, Marina Yu.; Burganov, Timur I.; Katsyuba, Sergey A.

    2016-08-01

    Conjugation in azochromophores DR, DO3, DR1, and their stacking dimers was studied to clarify physical factors underlying strong influence of stacking dimerization on first hyperpolarizability β of the chromophores revealed earlier. Raman spectroscopy and quantum-chemical computations were employed for this purpose. Characteristic features of Raman spectra of three different types of stacked dimers are revealed. It is shown that conjugation in the studied azochromophores is essentially deteriorated by stacking dimerization, while formation of shifted stacked dimers strengthens conjugation. These findings suggest conjugational origin of influence of the stacking pairing of the chromophores on first hyperpolarizability β.

  7. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  8. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  9. Hyperon beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.S.

    1996-03-01

    This report reviews the present status and recent results in hyperon physics concentrating on results from high energy hyperon beam experiments performed at Fermilab over the past several years. The report focuses on hyperon production polarization, precision hyperon magnetic moment measurements and radiative decay studies. Modern charged hyperon beam experiments are characterized by {approx}100m long apparatus and hyperon beams with {gamma}{sub Y}{approx}100 and hyperon fluxes in the 1-100 kHz range.

  10. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  11. Semiconductor laser beam bending

    OpenAIRE

    YILDIRIM, REMZİ; ÇELEBİ, FATİH VEHBİ

    2015-01-01

    This study is about a single-component cylindrical structured lens with a gradient curve that was used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independently of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single-piece cylindrical lens that can bend laser beams was developed. Lenses are made of transparent, tinted, or colored glass and are used to undermine or absorb the energy of...

  12. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  13. The Lockman Hole project: gas and galaxy properties from a stacking experiment

    Science.gov (United States)

    Geréb, K.; Morganti, R.; Oosterloo, T. A.; Guglielmino, G.; Prandoni, I.

    2013-10-01

    We perform an H I stacking analysis to study the relation between H I content and optical/radio/IR properties of galaxies located in the Lockman Hole area. In the redshift range covered by the observations (up to z = 0.09), we use the SDSS to separate galaxies with different optical characteristics, and we exploit the deep L-band radio continuum image (with noise 11 μJy beam-1) to identify galaxies with radio continuum emission. Infrared properties are extracted from the Spitzer catalog. We detect H I in blue galaxies, but H I is also detected in the group of red galaxies - albeit with smaller amounts than for the blue sample. We identify a group of optically inactive galaxies with early-type morphology that does not reveal any H I and ionized gas. These inactive galaxies likely represent the genuine red and dead galaxies depleted of all gas. Unlike inactive galaxies, H I is detected in red LINER-like objects. Galaxies with radio continuum counterparts mostly belong to the sub-mJy population, whose objects are thought to be a mixture of star-forming galaxies and low-power AGNs. After using several AGN diagnostics, we conclude that the radio emission in the majority of our sub-mJy radio sources stems from star formation. LINERs appear to separate into two groups based on IR properties and H I content. LINERs with a 24 μm detection show relatively large amounts of H I and are also often detected in radio continuum as a result of ongoing star formation. The LINER galaxies which are not detected at 24 μm are more like the optically inactive galaxies by being depleted of H I gas and having no sign of star formation. Radio LINERs in the latter group are the best candidates for hosting low-luminosity radio AGN.

  14. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  15. Investigation of the breakpoint region in stacks with a finite number of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.; Pedersen, N. F.

    2007-03-01

    We study the breakpoint region on the outermost branch of the current-voltage characteristics of stacks with different numbers of intrinsic Josephson junctions. We show that at periodic boundary conditions the breakpoint region is absent for stacks with an even number of junctions. For stacks with an odd number of junctions and for stacks with nonperiodic boundary conditions the breakpoint current increases with the number of junctions and saturates at a value corresponding to the periodic boundary conditions. The region of saturation and the saturated value depend on the coupling between the junctions. We explain the results by the parametric resonance at the breakpoint and excitation of a longitudinal plasma wave by Josephson oscillations. A method for diagnostics of the junctions in the stack is proposed.

  16. On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels – A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Schibli, Raluca, E-mail: raluca.stoenescu@gmail.com; Schäublin, Robin

    2013-11-15

    Irradiated austenitic stainless steels, because of their low stacking fault energy and high shear modulus, should exhibit a high ratio of stacking fault tetrahedra relative to the overall population of radiation induced nanometric defects. Experimental observations of stacking fault tetrahedra by transmission electron microscopy in commercial-purity stainless steels are however scarce, while they abundantly occur in high-purity or model austenitic alloys irradiated at both low and high temperatures, but not at around 673 K. In commercial alloys, the little evidence of stacking fault tetrahedra does not follow such a trend. These contradictions are reviewed and discussed. Reviewing the three possible formation mechanisms identified in the literature, namely the Silcox and Hirsch Frank loop dissociation, the void collapse and the stacking fault tetrahedra growth, it seems that the later dominates under irradiation.

  17. Uniform trapped fields produced by stacks of HTS coated conductor tape

    Science.gov (United States)

    Mitchell-Williams, T. B.; Baskys, A.; Hopkins, S. C.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.; Patel, A.

    2016-08-01

    The trapped magnetic field profile of stacks of GdBa2Cu3O7‑x superconducting tape was investigated. Angled stacks of superconducting tape were magnetized and found to produce very uniform trapped field profiles. The angled stacks were made of 12 mm × 24 mm solder coated tape pieces and were bonded together following a brief consolidation heat treatment. Layering multiple stacks together and adding a ferromagnetic plate beneath the samples were both found to enhance the magnitude and uniformity of the trapped field profiles. Stationary and time-dependent critical state finite element models were also developed to complement the experimental results and investigate the magnetization process. The size and shapes possible with the angled stacks make them attractive for applications requiring uniform magnetic fields over larger areas than can be achieved with existing bulk rings or tape annuli.

  18. Piezoelectric two-layer stacks of cellular polypropylene ferroelectrets: transducer response at audio and ultrasound frequencies.

    Science.gov (United States)

    Wegener, Michael; Bergweiler, Steffen; Wirges, Werner; Pucher, Andreas; Tuncer, Enis; Gerhard-Multhaupt, Reimund

    2005-09-01

    Piezoelectric cellular polypropylene films, so-called ferroelectrets, are assembled in a stack with two active transducer layers. The stack is characterized with respect to its linear and quadratic response in a frequency range from 1 kHz to 80 kHz. A relatively smooth frequency response in the sound-pressure level is found for the individual layers as well as for both layers driven in phase. The piezoelectric response of the two-layer stack is twice the response of an individual layer over a rather broad frequency range. Furthermore, the influence of the preparation conditions on the resonance frequency and the effect of the quadratic distortion on the radiated sound are investigated both for the individual transducer films in the stack and for the stack system as a whole. PMID:16285459

  19. Performance of transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient

    CERN Document Server

    Thompson, Stephen C; Markley, Douglas C

    2013-01-01

    Underwater acoustic transducers often include a stack of thickness polarized piezoelectric material pieces of alternating polarity interspersed with electrodes, bonded together and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency, so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, stack segmentation has no significant effect on the mechanical behavior of the device. However, when a high coupling coefficient material such as PMN-PT is used to achieve a wider bandwidth, the difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater acoustic transducers, particularly tonpilz transducer elements. Included is discussion of transduce...

  20. Exact and heuristic solutions to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Archetti, Claudia; Madsen, Oli B.G.;

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem where pickups and deliveries are separated, such that all pickup operations are performed before the first delivery takes place. All operations are carried out by one vehicle and no reloading...... is allowed. The vehicle provides several separated (horizontal) stacks/rows for the transportation of the orders, such that each stack is accessed using a LIFO principle, independently of the other stacks. In a real-life setting the dimensions of the problem is 33 orders each consisting of one euro......-pallet, which can be loaded in 3 stacks in a standard 40 foot container. Different exact and heuristic solution approaches to the DTSPMS have been implemented and tested. The exact approaches are based on different mathematical formulations of the problem which are solved using branch-and-cut. One formulation...