WorldWideScience

Sample records for beam spin echo

  1. Development of Instrumentation for Spin-Echo Induced Spatial Beam Modulations

    DEFF Research Database (Denmark)

    Sales, Morten

    Spin-Echo Modulated Small Angle Neutron Scattering in Time-of-Flight mode (ToF SEMSANS) is an emerging technique extending the measurable phase space covered by neutron scattering. Using inclined magnetic field surfaces, (very) small angle scattering from a sample can be mapped into the spin...... orientation of the neutron as it has been shown in Spin-Echo Small Angle Neutron Scattering (SESANS). Taking this technique further we have shown that it is possible to perform quantitative Dark-Field Imaging, where the small angle scattering signal of individual areas in a neutron image can be obtained...

  2. Rotary spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, I. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, BP2, Gif-sur-Yvette (France)

    1959-07-01

    Torrey has observed the free precession of nuclear spins around an r-f field H{sub 1}, fixed in a frame rotating at the Larmor frequency ω{sub 0} = γH{sub 0} around a large d-c magnetic field H{sub 0}. He showed that for an H{sub 1}, much larger than inhomogeneity of H{sub 0}, the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H{sub 1}. We report here on a method of overcoming the inhomogeneity of H{sub 1}, by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H{sub 1}, is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302.

  3. Rotary spin echoes

    International Nuclear Information System (INIS)

    Solomon, I.

    1959-01-01

    Torrey has observed the free precession of nuclear spins around an r-f field H 1 , fixed in a frame rotating at the Larmor frequency ω 0 = γH 0 around a large d-c magnetic field H 0 . He showed that for an H 1 , much larger than inhomogeneity of H 0 , the latter has a negligible effect on the decay of the spin magnetization which is mainly due to the inhomogeneity of H 1 . We report here on a method of overcoming the inhomogeneity of H 1 , by production of echoes in the rotating frame ('rotary echoes'). These echoes are obtained by a 180 deg. phase shift at t = τ on the r-f field so that H 1 , is suddenly reversed, producing a re-focussing of the magnetization vectors at the time t = 2 τ. The rotary echoes so obtained are very similar to the usual spin-echoes with, however some specific features that make them particularly suitable for the measurement of long relaxation times. Reprint of a paper published in Physical Review Letters, vol. 2, no. 7, Apr 1959, p. 301-302

  4. Fast spin-echo imaging

    International Nuclear Information System (INIS)

    Mackey, K.; Zoarski, G.; Bentson, J.R.; Lufkin, R.B.; Melki, P.; Jolesz, F.

    1991-01-01

    This paper reports on a partial radio-frequency (RF) echo-planar pulse sequence called contiguous slice fast spin echo (CSFSE) which is undergoing clinical trials for spine MR imaging. In this variation of rapid acquisition relaxation enhanced (RARE) spin-echo imaging, rapid 180 degrees RF pulse generated refocused echoes, producing T2-weighted images in about one-third the time of conventional double-echo technique. Forty patients with suspected pathology of the spine were imaged with conventional double-echo and closely matched CSFSE techniques on a GE Signa 1.5-T Advantage system. Cases were reviewed by two board-certified neuroradiologists. In all cases the CSFSE images were of equal or superior quality compared with those obtained with the conventional double-echo technique. Pathologic processes that were imaged consisted of inflammatory, neoplastic, posttraumatic, and degenerative conditions

  5. A conception of a new neutron spin echo reflectometer

    International Nuclear Information System (INIS)

    Kali, Gy.

    1999-01-01

    Complete text of publication follows. The tilted field technique in the neutron spin echo (NSE) spectroscopy came into the centre of attention in the recent few years. The method was first proposed by F. Mezei and R. Pynn in 1980. A real measurement for high resolution small angle scattering (SANS) on their resonance spin-echo spectrometer was published by Keller et al. [1]. A conception of a new instrument was proposed by M.T. Rekveldt [2] for SANS and reflectometry, using dc field perpendicular to the neutron beam. By further developing these ideas, the setup of a multitask instrument using the traditional way (dc field parallel to the beam) is discussed. This spectrometer may be best applicable in liquid surface reflectometry combining NSE by separating specular and nonspecular reflection. This instrument setup uses wide wavelength band and/or non-collimated neutron beam. (author) [1] T. Keller et al, Neutron News 6, no 3 (1995) 16.; [2] M.T. Rekveldt, Nuc. Inst. and Meth. in Physics Res. B 114 (1996) 366

  6. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  7. Neutron spin echo scattering angle measurement (SESAME)

    International Nuclear Information System (INIS)

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-01-01

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for

  8. Development of new neutron spin echo spectrometer using multi-layer film spin splitter

    International Nuclear Information System (INIS)

    Tasaki, Seiji; Ebisawa, Toru; Hino, Masahiro; Achiwa, Norio

    2001-01-01

    Neutron spin echo spectrometry is a method using neutron Larmor precession motion in magnetic field, for the measurement of velocity change before and after quasi-elastic scattering of neutron by a sample, such as macromolecules, with high accuracy. The neutron spin echo spectrometer is an interferometer in quantum mechanics, which a neutron is arranged with a parallel or an antiparallel state against magnetic field direction. Intensities of neutron interaction with matters are measured by the superposition of the both spin state components. The contrast losses of interference fringes caused from velocity diversion of incident neutrons are protected by spin echo method, in which a phase shift between the parallel and anti-parallel state neutrons is reduced by reversion of the spin state on the way of neutron path. Neutron beam of high intensity can be measured with a high energy resolution. Strong magnetic field is usually needed to introduce the phase shift between the both spin state components. A multi-layer film spin splitter (MSS) is developed for introducing the phase shift instead of the strong magnetic fields. The MSS consists of three layers, non-magnetic mirror of Ni/Ti, gap layer of Ti (∼1 μm), and magnetic mirror of Permalloy/Ge. Surface roughness of the gap layer leads to diversions of the phase shift, because that the fluctuation of thickness of gap layer is proportional to the phase shift. Characteristics of the MSS are tested as follow: (1) reflectivity of polarized neutron, (2) function check of the MSS, (3) uniformity check of the gap layer, (4) evaluation of the gap layer-thickness. (Suetake, M.)

  9. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    Science.gov (United States)

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  10. Experimental separation of a frequency spin echo signal

    International Nuclear Information System (INIS)

    Bun'kov, Yu.M.; Dmitriev, V.V.

    1981-01-01

    To study systems with bound nuclear-electron precession CsMnF 2 antiferromagnetic light-plane monocrystal was investigated. Crystal orientation was carried out by roentgenoscopy. Measurements were performed at helium temperatures in the 500-700 MHz frequency range. A NMR pulsed spectrometer with generators of both resonance and doubled frequency was used to produce an echo signal (to study by the parametric echo method). It was shown that the theory of the formation of a frequency modulated echo (FM echo) did not fully describe the properties of the echo signals in systems with dynamic frequency shift (DFS). An intense spin echo signal, which formation was apparently connected with other nonlinear properties of the systems with nuclear-electron precession, was observed. The spin echo signal in magnetics with DFS, which properties correspond to notions of the frequency mechanism of echo formation, was experimentally separated. As a result of the investigations it had been possible to settle contradictions between the theory of FM echo formation and the experimental results for the last 9 years. It turned out that the mechanism of FM echo formation in the magnetics with bound nuclear-electron precession was effective only at large delay times between the pulses. In the range of small delays the FM echo is ''jammed'' by a gigantic echo signal of a nature different from that of the traditional FM signal. The constant of gigantic echo intensity drop at increasing delay between the pulses weakly depends on spin-spin relaxation time [ru

  11. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  12. Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yasunaga, Masashi; Tsubota, Makoto

    2009-01-01

    Magnetic resonance, especially NMR and ESR, has been studied in magnetic materials for a long time, having been used in various fields. Spin echo is typical phenomenon in magnetic resonance. The magnetic resonance should be applied to spinor Bose-Einstein condensates (BECs). We numerically study spin echo of a spinor BEC in a gradient magnetic field by calculating the spin-1 two-dimensional Gross-Pitaevskii equations, obtaining the recovery of the signal of the spins, which is called spin echo. We will discuss the relation between the spin echo and the Stern-Gelrach separation in the system.

  13. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  14. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  15. The basics of neutron spin echo

    International Nuclear Information System (INIS)

    Farago, B.

    1999-01-01

    Until 1974 inelastic neutron scattering consisted of producing by some means a neutron beam of known speed and measuring the final speed of the neutrons after the scattering event. The smaller the energy change was, the better the neutron speed had to be defined. As the neutrons come form a reactor with an approximately Maxwell distribution, an infinitely good energy resolution can be achieved only at the expense of infinitely low count rate. This introduces a practical resolution limit around 0.1 μeV on back-scattering instruments. In 1972 F. Mezei discovered the method of Neutron Spin Echo. This method decouples the energy resolution from intensity loss. The basics of this method is presented. (author)

  16. Neutron spin echo: A new concept in polarized thermal neutron techniques

    International Nuclear Information System (INIS)

    Mezei, F.

    1980-01-01

    A simple method to change and keep track of neutron beam polarization non-parallel to the magnetic field is described. It makes possible the establishment of a new focusing effect we call neutron spin echo. The technique developed and tested experimentally can be applied in several novel ways, e.g. for neutron spin flipper of superior characteristics, for a very high resolution spectrometer for direct determination of the Fourier transform of the scattering function, for generalised polarization analysis and for the measurement of neutron particle properties with significantly improved precision. (orig.)

  17. Assessment of diagnosing metastatic bone tumor on T2*-weighted images. Comparison between turbo spin echo (TSE) method and gradient echo (GE) method

    International Nuclear Information System (INIS)

    Hayashi, Takahiko; Sugiyama, Akira; Katayama, Motoyuki

    1996-01-01

    We examined the usefulness of T2 * weighted gradient field echo images for diagnosis for metastatic bone tumors in comparison with T2 weighted turbo spin echo (fast spin echo) images. In T2 * weighted gradient field echo sequence to obtain maximum contrast-to-noise ratio (CNR), we experimentally manipulated flip angle (FA) (5deg-90deg), repetition time (TR) (400, 700 msec), and echo time (TE) (10-50 msec). The best CNR was 16.4 in fast low angle shot (FLASH) (TE: 24 msec, TR: 700 msec, FA: 40deg). Magnetic resonance imaging was carried out in 28 patients with metastatic bone tumors. In addition to conventional T1 weighted spin echo images, T2 weighted turbo spin echo (fast spin echo images) and T2 * weighted gradient field echo images were obtained. T2 * weighted gradient field echo images were superior to T2 weighted turbo spin echo (fast spin echo) images in delineating the tumors, adjacent fat tissues, and bone marrow. (author)

  18. Theory of longitudinal atomic beam spin echo and parity violating Berry-phases in atoms; Theorie des longitudinalen Atomstrahl-Spinechos und paritaetsverletzende Berry-Phasen in Atomen

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, T.F.

    2006-07-19

    We present a nonrelativistic theory for the quantum mechanical description of longitudinal atomic beam spin echo experiments, where a beam of neutral atoms is subjected to static electric and magnetic fields. The atomic wave function is the solution of a matrix-valued Schroedinger equation and can be written as superposition of local (atomic) eigenstates of the potential matrix. The position- and time-dependent amplitude function of each eigenstate represents an atomic wave packet and can be calculated in a series expansion with a master formula that we derive. The zeroth order of this series expansion describes the adiabatic limit, whereas the higher order contributions contain the mixing of the eigenstates and the corresponding amplitude functions. We give a tutorial for the theoretical description of longitudinal atomic beam spin echo experiments and for the so-called Fahrplan model, which is a visualisation tool for the propagation of wave packets of different atomic eigenstates. As an example for the application of our theory, we study parity violating geometric (Berry-)phases. In this context, we define geometric flux densities, which for certain field configurations can be used to illustrate geometric phases in a vector diagram. Considering an example with a specific field configuration, we prove the existence of a parity violating geometric phase. (orig.)

  19. A spin echo study of A15 intermetallic compounds

    International Nuclear Information System (INIS)

    Schoep, G.K.

    1976-01-01

    This thesis mainly concerns the measurement of spin-lattice relaxation times in intermetallic compounds of the bcc lattice structure, having the formula V 3 X (C = Pt, Ir, Os, Pd, Rh, Ni, Co, Au). When, in a spin echo experiment, a two-pulse sequence was applied, several quadrupolar echoes were observed. Special attention is given to the 'forbidden' echoes (absol.(Δm')GT1) in V 3 Au and V 3 Co. In relation to the V 3 X compounds, several characteristics are discussed including temperature dependence and concentration dependence of spin relaxation times, superconductivity and the importance of d-state electrons in determination of the spin relaxation times. Finally, the above characteristics were determined for 6 different samples of the vanadium-gold alloy, V 3 Au, specifically

  20. Workshop on neutron spin-echo

    Energy Technology Data Exchange (ETDEWEB)

    Aynajian, P.; Habicht, K.; Keller, Th.; Keimer, B.; Mezei, F.; Monkenbusch, M.; Allgaier, J.; Richter, D.; Fetters, L.J.; Muller, K.; Kreiling, S.; Dehnicke, K.; Greiner, A.; Ehlers, G.; Arbe, A.; Colmenero, J.; Richter, D.; Farago, B.; Monkenbusch, M.; Ohl, M.; Butzek, M.; Kozielewski, T.; Monkenbusch, M.; Richter, D.; Pappas, C.; Hillier, A.; Manuel, P.; Cywinski, R.; Bentley, P.; Alba, M.; Mezei, F.; Campbell, I.A.; Zimmermann, U.; Ellis, J.; Jobic, H.; Pickup, R.M.; Pappas, C.; Farago, B.; Cywinski, R.; Haussler, W.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Monkenbusch, M.; Allgaier, J.; Richter, D.; Egger, H.; Hellweg, Th.; Malikova, N.; Cadene, A.; Marry, V.; Dubois, E.; Turq, P.; Gardner, J.S.; Ehlers, G.; Bramwell, St.S.; Grigoriev, S.; Kraan, W.; Rekveldt, T.; Bouwman, W.; Van Dijk, N.; Falus, P.; Vorobiev, A.; Major, J.; Felcher, G.P.; Te-velthuis, S.; Dosch, H.; Vorobiev, A.; Dridi, M.H.; Major, J.; Dosch, H.; Falus, P.; Felcher, G.P.; Te Velthuis, S.G.E.; Bleuel, M.; Broell, M.; Lang, E.; Littrell, K.; Gahler, R.; Lal, J.; Lauter, H.; Toperverg, B.; Lauter, V.; Jernenkov, M.; Stueber, S.; Enderle, M.; Janoschek, M.; Keller, Th.; Klimko, S.; Boeni, P.; Nagao, M.; Yamada, N.; Kawabata, Y.; Seto, H.; Takeda, T.; Yoshizawa, H.; Yoshida, K.; Yamaguchi, T.; Bellissent-Funel, M.C.; Longeville, St

    2005-07-01

    This document gathers the abstracts of most papers presented at the workshop. Neutron spin-echo (NSE) spectroscopy is a well established technique with a growing expert user community, the aim of the meeting was to discuss the latest achievements in neutron spin-echo science and instrumentation. One of the applications presented is the investigation on the microscopic scale of the dynamics of water in montmorillonite clays with Na{sup +} and Cs{sup +} ions in monolayer and bilayer states. The NSE technique has been used in the normal and resonance modes. NSE results show consistently slower dynamics (higher relaxation times) than both time-of-flight technique (TOF) and classical molecular dynamics simulations (MD). In the present TOF and NSE experiments, anisotropy of the water motion in the interlayer is almost impossible to detect, due to the use of powder samples and insufficient resolution. (A.C.)

  1. Fast spin echo MRI techniques. Contrast characteristics and clinical potential. Techniques d'IRM en fast spin echo. Caracteristiques de contraste et potentiels cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N. (Harvard Medical School, Boston, MA (United States)); Oshio, K.; Jolesz, F. (Keio Univ., Tokyo (Japan)); Pourcelot, L. (Hopital Bretonneau, 37 - Tours (France)); Einstein, S. (General Electric Medical System, Milwaukee, WI (United States))

    1993-03-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode.

  2. Nanosecond time-resolved EPR in pulse radiolysis via the spin echo method

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Norris, J.R.; Lawler, R.G.

    1979-01-01

    The design and operation of a time-resolved electron spin echo spectrometer suitable for detecting transient radicals produced by 3 MeV electron radiolysis is described. Two modes of operation are available: Field swept mode which generates a normal EPR spectrum and kinetic mode in which the time dependence of a single EPR line is monitored. Techniques which may be used to minimize the effects of nonideal microwave pulses and overlapping sample tube signals are described. The principal advantages of the spin echo method over other time-resolved EPR methods are: (1) Improved time resolution (presently approx.30--50 nsec) allows monitoring of fast changes in EPR signals of transient radicals, (2) Lower susceptibility to interference between the EPR signal and the electron beam pulse at short times, and (3) Lack of dependence of transient signals on microwave field amplitude or static field inhomogeneity at short times. The performance of the instrument is illustrated using CIDEP from acetate radical formed in pulsed radiolysis of aqueous solutions of potassium acetate. The relaxation time and CIDEP enhancement factor obtained for this radical using the spin echo method compare favorably with previous determinations using direct detection EPR. Radical decay rates yield estimates of initial radical concentrations of 10 -4 10 -3 M per electron pulse. The Bloch equations are solved to give an expression for the echo signal for samples exhibiting CIDEP using arbitrary microwave pulse widths and distributions of Larmor frequencies. Conditions are discussed under which the time-dependent signal would be distorted by deviations from an ideal nonselective 90 0 --tau--180 0 pulse sequence

  3. MR imaging of articular cartilage : comparison of magnetization transfer contrast and fat-suppression in multiplanar and 3D gradient-echo, spin-echo, turbo spin-echo techniques

    International Nuclear Information System (INIS)

    Lee, Young Joon; Joo, Eun Young; Eun, Choong Ki

    1999-01-01

    The purpose of this study was to evaluate the effects of magnetization transfer contrast(MTC) and fat-suppression(FS) in variable spin-echo and gradient-echo sequences for articular cartilage imaging and to determine the optimal pulse sequences. Using variable 7-pulse sequences, the knees of 15 pigs were imaged Axial images were obtained using proton density and T2-weighted spin-echo (PDWSE and T2WSE), turbo spin-echo (TSE), multiplanar gradient-echo (MPGR), and 3D steady-state gradient-echo (3DGRE) sequences, and the same pulse sequences were then repeated using MTC. Also T1-weighted spin-echo(T1WSE) and 3D spoiled gradient-echo(3DSPGR) images of knees were also acquired, and the procedure was repeated using FS. For each knee, a total of 14 axial images were acquired, and using a 6-band scoring system, the visibility of and the visibilities of the the articular cartilage was analyzed. The visual effect of MTC and FS was scored using a 4-band scale. For each image, the signal intensities of articular cartilage, subchondral bone, muscles, and saline were measured, and signal-to-noise ratios(SNR) and contrast-to-noise ratios(CNR) were also calculated. Visibility of the cartilage was best when 3DSPGR and T1WSE sequences were used. MTC imaging increased the negative contrast between cartilage and saline, but FS imaging provided more positive contrast. CNR between cartilage and saline was highest when using TSE with FS(-351.1±15.3), though CNR between cartilage and bone then fell to -14.7±10.8. In MTC imaging using MPGR showed the greatest increase of negative contrast between cartilage and saline(CNR change=-74.7); the next highest was when 3DGRE was used(CNR change=-34.3). CNR between cartilage and bone was highest with MPGR(161.9±17.7), but with MTC, the greatest CNR decrease(-81.8) was observed. The greatest CNR increase between cartilage and bone was noted in T1WSE with FS. In all scans, FS provided a cartilage-only positive contrast image, though the absolute

  4. Variable-flip-angle spin-echo imaging (VFSE)

    International Nuclear Information System (INIS)

    Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.

    1990-01-01

    T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)

  5. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    Science.gov (United States)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  6. Fast spin echo MRI techniques. Contrast characteristics and clinical potential

    International Nuclear Information System (INIS)

    Melki, P.; Mulkern, R.V.; Dacher, J.N.; Helenon, O.; Higuchi, N.; Oshio, K.; Jolesz, F.; Pourcelot, L.; Einstein, S.

    1993-01-01

    Based on partial RF echo planar principles, Fast Spin Echo techniques (FSE) were implemented on high field systems. These methods produce image quality and contrast which resemble to conventional spin echo (SE) techniques. By reducing acquisition times by factors between 1.4 and 16 over SE methods, FSE allows for several imaging options usually prohibitive with conventional spin echo (SE) sequences. These include fast scans (especially breathold acquisitions); improved T2 contrast with longer TR intervals; increased spatial resolution with the use of larger image matrices and/or smaller fields of view; and 3D volume imaging with a 3D multislab FSE technique. Contrast features of FSE techniques are directly comparable to those of multiple echo SE sequences using the same echo spacing than FSE methods. However, essential contrast differences existing between the FSE sequences and their routine asymmetric dual SE counterpart can be identified. Decreased magnetic susceptibility effects and increased fat signal present within T2 weighted images compared to conventional dual SE images are due to the use of shorter echo spacings employed in FSE sequences. Off-resonance irradiation inherent to the use of a large number of radio frequency pulses in shown to results in dramatic magnetization contrast transfer effects in FSE images acquired in multislice mode

  7. Application of fast spin-echo T2-weighted imaging for examination of the neurocranium. Comparison with the conventional T2-weighted spin-echo sequence

    International Nuclear Information System (INIS)

    Siewert, C.; Hosten, N.; Felix, R.

    1994-01-01

    T 2 -weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T 2 -weighted imaging (TT 2 ) of the neurocranium in comparison to conventional spin-echo T 2 -weighted imaging (T 2 ). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT 2 than in T 2 (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT 2 , Parkinson patients have to be examined by conventional T 2 . If these limitations are taken into account, fast spin-echo T 2 -weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T 2 -weighting achieved in a short acquisition time. (orig.) [de

  8. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    International Nuclear Information System (INIS)

    Juras, Vladimir; Szomolanyi, Pavol; Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan; Heule, Rahel; Bieri, Oliver; Trattnig, Siegfried

    2016-01-01

    To assess the clinical relevance of T 2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T 2 -mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T 2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T 2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T 2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B 1 and B 0 changes. (orig.)

  9. Depolarization of neutron spin echo by magnetic fluid

    International Nuclear Information System (INIS)

    Achiwa, N.; Sirozu, G.; Nishioka, T.; Ebisawa, T.; Hino, M.; Tasaki, S.; Kawai, T.; Yamazaki, D.

    2001-01-01

    A new method to study the fluctuations of magnetization in magnetic fluids by measuring relations between the phase shift of Larmor precession and the visibility of the neutron spin echo caused by the change of flight path length is studied. Magnetic fluid in which fine particles of magnetite of about 10 nm diameters coated with oleic acid and suspended in water was used. Thickness of the sample was 2 mm. In the dynamics of magnetic fluids, Brownian motions of colloids and the thermal fluctuations of magnetization known as the superparamagnetism are dominant. Isolated ferromagnetic particles of the present size are superparamagnetic but they aggregate to form clusters in a weak magnetic field in the sample of 40% weight density. When neutrons pass the sample, spins process in the magnetic flux density of the clusters fluctuating in time and space. Consequently the Larmor precession phases become distributed and the quantization axes are fluctuated. The result is observed as a decrease of the visibility of the spin echo signals. The change of magnetic flux density in the magnetic fluid is measured from the change of echo visibility of the neutrons, vice versa. In the present experiment, echo was measured at q=0. It is observed that the phase shift changes as a quadratic function of the sample angle reflecting the change of the path length through the sample. Since the number of Larmor precession is proportional to the product of the magnetic field and the length of the flight path, mean flux density in the magnetic fluid is calculated from the phase shift. On the other hand, the decrease of the spin echo amplitude as the function of the sample angle reflects the time and space fluctuations of the flux density in the sample. If the direction of the magnetic flux density vector (quantization axis) changes slowly enough compared to the Larmor precession period while a neutron passes one magnetic domain, the neutron spin rotation in the domain is given by the spin

  10. Four-wave neutron-resonance spin echo

    International Nuclear Information System (INIS)

    Grigoriev, S.V.; Kraan, W.H.; Rekveldt, M.Th.

    2004-01-01

    We develop a technique of scattering from many-body systems. It is based on the principle of the neutron spin echo (SE), where a neutron wave in the magnetic field splits into two waves, which are separated in space or in time after propagation in this field. The neutron thus prepared as a probe passes through the sample to test its properties on a space R or time t scale. This separation in space or in time can be measured using coherence of these two waves as a phase shift φ between them. These two waves are collected or focused and compensated by the SE technique in order to compare their phases after interaction with the sample. In this way one studies interference between these waves and thus can directly measure the pair-correlation function in space or in time. Instead of two-wave SE we propose to realize the four-wave neutron-resonance spin-echo (NRSE). In our experiments, spin precession produced by a couple of the neutron-resonance coils in one arm is compensated by an identical couple of other NR coils in a second arm of a spin-echo machine. The neutron spin-flip probability ρ in the resonance coils is a key parameter of the NRSE arm. The limiting cases, ρ=0 and ρ=1, provide, in quantum terms, a two-level-two-wave k splitting of the neutron and result in the separation of the split waves into two different lengths in space (R 1 ,R 2 ) or in time (t 1 ,t 2 ). These two cases correspond to Larmor precession with phase φ 1 in the static magnetic fields of the NR flippers or to NRSE precession with φ 2 , respectively. The intermediate case, 0 1 ,R 2 ,R 3 ) or in time (t 1 ,t 2 ,t 3 ). The interference of each pair of waves after compensation results in three different echos with phases φ 1 , φ 2 , and φ 3 =(φ 1 +φ 2 )/2. Focusing or compensating all four waves into a single point of the phase-of-waves diagram produces quantum interference of all newly created waves. This task of focusing is experimentally performed. Different options for the

  11. Application of fast spin-echo T[sub 2]-weighted imaging for examination of the neurocranium. Comparison with the conventional T[sub 2]-weighted spin-echo sequence. Die Anwendung der T[sub 2]-gewichteten Turbo-Spin-Echo-Sequenz zur Untersuchung des Neurokraniums. Vergleich mit der konventionellen T[sub 2]-gewichteten Spin-Echo-Sequenz

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, C. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Hosten, N. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Felix, R. (Strahlenklinik und Poliklinik, Universitaets-Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany))

    1994-07-01

    T[sub 2]-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neutrocranium. We evaluated fast spin-echo T[sub 2]-weighted imaging (TT[sub 2]) of the neurocranium in comparison to conventional spin-echo T[sub 2]-weighted imaging (T[sub 2]). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher than TT[sub 2] than in T[sub 2] (with the exception of grey-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT[sub 2], Parkinson patients have to be examined by conventional T[sub 2]. If these limitations are taken into account, fast spin-echo T[sub 2]-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T[sub 2]-weighting achieved in a short acquisition time. (orig.)

  12. Neutron spin echo and high resolution inelastic spectroscopy

    International Nuclear Information System (INIS)

    Mezei, F.; Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)

    1982-01-01

    The principles of neutrons spin echo (NSE) technique are considered. It is shown that the basis of NSE principle is a single step measurement of the change of the neutron velocity in the scattering process. The backscattering soectroscopy and the NSE techniques are compared. The NSF spectrometer is described. It is shown that 0.5 MeV energy resolution achieved in the NSE experiment is about 40 times superior to those achieved by the other techniques. The NSE technique has the unique feature that provides high resolution in neutron energy change independently of the monochromatization of the beam. The NSE instrument not only covers a wider dynamic range on a pulsed source that on a continuous one, but also collects data more efficiently

  13. Beam echoes in the presence of coupling

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Axel [Case Western Reserve U.

    2017-10-03

    Transverse beam echoes could provide a new technique of measuring diusion characteristics orders of magnitude faster than the current methods; however, their interaction with many accelerator parameters is poorly understood. Using a program written in C, we explored the relationship between coupling and echo strength. We found that echoes could be generated in both dimensions, even with a dipole kick in only one dimension. We found that the echo eects are not destroyed even when there is strong coupling, falling o only at extremely high coupling values. We found that at intermediate values of skew quadrupole strength, the decoherence time of the beam is greatly increased, causing a destruction of the echo eects. We found that this is caused by a narrowing of the tune width of the particles. Results from this study will help to provide recommendations to IOTA (Integrable Optics Test Accelerator) for their upcoming echo experiment.

  14. Application of MSS-neutron spin echo spectrometer to pulsed neutron sources

    International Nuclear Information System (INIS)

    Tasaki, S.; Ebisawa, T.; Hino, M.; Kawai, T.

    2001-01-01

    A multilayer spin splitter (MSS) is a neutron device that gives phase difference between field-parallel and -antiparallel spin component of a superposing state. Since the phase difference is equivalent to the Larmor precession angle, MSS enables us to construct a new type of neutron spin echo (NSE) spectrometer. The new NSE spectrometer has its properties that 1. since the phase shift is neutron flight path length, the spectrometer can be drastically small, 2. the neutron spin echo time is proportional to the neutron wavelength. (author)

  15. New spoiled spin-echo technique for three-dimensional MR imaging

    International Nuclear Information System (INIS)

    Darrasse, L.; Mao, L.; Saint-Jalmes, H.

    1989-01-01

    For 3D MR imaging within a convenient scanning time, the authors propose an improved spin-echo technique that permits the use of TRs shorter than 100 msec. They use a two-pulse RF sequence (α-π echo). The echo is read with conventional 3DFT encoding. To avoid steady-state signal refocusing before either α or (imperfect) π pulses, we apply randomized gradient spoilers both before each α pulse and on each side of the π pulse. So the sequence works like standard spin- echo sequences, with the z-magnetization recovery being adjusted by means of α rather than TR. The authors have investigated the method on a new 0.1-T Magnetom system dedicated for 3D MR imaging

  16. Imaging of the brain using the fast-spin-echo and gradient-spin-echo techniques

    International Nuclear Information System (INIS)

    Umek, W.; Ba-Ssalamah, A.; Prokesch, R.; Mallek, R.; Heimberger, K.; Hittmair, K.

    1998-01-01

    The aim of our study was to compare gradient-spin-echo (GRASE) to fast-spin-echo (FSE) sequences for fast T2-weighted MR imaging of the brain. Thirty-one patients with high-signal-intensity lesions on T2-weighted images were examined on a 1.5-T MR system. The FSE and GRASE sequences with identical sequence parameters were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise, contrast-to-noise, and contrast ratios and were determined. The FSE technique demonstrated more lesions than GRASE and with generally better conspicuity. Smaller lesions in particular were better demonstrated on FSE because of lower image noise and slightly weaker image artifacts. Gray-white differentiation was better on FSE. Ferritin and hemosiderin depositions appeared darker on GRASE, which resulted in better contrast. Fatty tissue was less bright on GRASE. With current standard hardware equipment, the FSE technique seems preferable to GRASE for fast T2-weighted routine MR imaging of the brain. For the assessment of hemosiderin or ferritin depositions, GRASE might be considered. (orig.)

  17. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Bratislava (Slovakia); Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Heule, Rahel; Bieri, Oliver [University of Basel Hospital, Division of Radiological Physics, Department of Radiology, Basel (Switzerland); Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria)

    2016-06-15

    To assess the clinical relevance of T{sub 2} relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T{sub 2}-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T{sub 2} mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T{sub 2} values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T{sub 2} values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B{sub 1} and B{sub 0} changes. (orig.)

  18. Contactless friction and the {sup 3}He-{sup 4}He dimer. Studies with the atomic-beam spin-echo spectrometer; Kontaktlose Reibung und das {sup 3}He-{sup 4}He-Dimer. Untersuchungen mit dem Atomstrahlspinechospektrometer

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Matthias

    2016-04-20

    In this thesis the time of flight resolved atomic beam spin echo method (SEToF) is applied to a {sup 3}He-beam for the first time and studied systematically. This method is shown to be superior to the usual atomic beam spin echo technique. With SEToF it is possible to almost completely remove unpolarized background and to reach a beam polarisation close to 100%. The SEToF technique is shown to be crucial for the first experimental proof of the existence of the {sup 3}He-{sup 4}He dimer. This dimer is the weakest bound van-der-Waals-molecule known to date. Furthermore, a drag force between an atom and a dielectric surface is detected originating from the fluctuating dipole moment of the atom. Not only the measured friction coefficients match their theoretical predictions perfectly, but our data also shows the correct temperature dependence. A great many technological renewals and improvements were installed in the apparatus during this thesis work. They have become necessary or sensible due to the relocation of the physics institute. A few of them are documented and motivated in this thesis.

  19. [The use of the T2-weighted turbo-spin-echo sequence in studying the neurocranium. A comparison with the conventional T2-weighted spin-echo sequence].

    Science.gov (United States)

    Siewert, C; Hosten, N; Felix, R

    1994-07-01

    T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.

  20. Investigations on resolution enhancement in EPR by means of electron spin echoes

    International Nuclear Information System (INIS)

    Merks, R.P.J.

    1979-01-01

    The electron spin echo technique has been applied in four types of experiments: the measurement of electric field induced shifts of the EPR line; the detection of electron spin echo ENDOR; a relaxation measurement and the measurement of hyperfine interactions via the nuclear modulation effect. (Auth.)

  1. Design and experimental tests of a novel neutron spin analyzer for wide angle spin echo spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Peter; Farago, Bela; Andersen, Ken H.; Bentley, Phillip M.; Pastrello, Gilles; Sutton, Iain; Thaveron, Eric; Thomas, Frederic [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Moskvin, Evgeny [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Pappas, Catherine [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2009-09-15

    This paper describes the design and experimental tests of a novel neutron spin analyzer optimized for wide angle spin echo spectrometers. The new design is based on nonremanent magnetic supermirrors, which are magnetized by vertical magnetic fields created by NdFeB high field permanent magnets. The solution presented here gives stable performance at moderate costs in contrast to designs invoking remanent supermirrors. In the experimental part of this paper we demonstrate that the new design performs well in terms of polarization, transmission, and that high quality neutron spin echo spectra can be measured.

  2. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage.

    Science.gov (United States)

    Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried

    2016-06-01

    To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.

  3. CISS MR imaging findings of epidermoid tumor : comparison with spin-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Woo; Kim, Hak Jin; Choi, Sang Yoel; Heo, Jin Sam; Jung, Hoon Sik; Lee, Suck Hong; Kim, Byung Soo [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of); Lee, Jong Wha [Ulsan Univ. Hospital, Ulsan (Korea, Republic of)

    1999-03-01

    To evaluate CISS MR imaging findings of epidermoid tumor in comparison with conventional spin-echo images. We studied 6 cases of epidermoid tumor in the subarachnoid space. We used a 1.5T MR unit to obtain CISS images(TR/TE/FA ; 12.3msec/5.9 msec/700) and T1- and T2- weighted spin-echo images. CISS MR imaging findings were evaluated with respect to tumor's signal intensity , contour, and relation with adjacent structures. Conspicuity of the tumor was compared between CISS and spin-echo images. A quantitative analysis was performed by measuring tumor to CSF contrast. In qualitative analysis, three radiologists independently compared CISS image and conventional spin-echo images for visibility of the tumor and graded them into three categories( poor, good, and excellent). Epidermoid tumors were located in the cerebellopontine angle in 4 cases, the prepontine cisstern in 1 case, and the cerebellopontine angle-prepontine cistern in 1 case. The tumors were hyperintense relative to brain parenchyma and hypointense relative to CSF on CISS images, were lobulated, encased adjacent cranial nerve and vessels, and invaginated into brain parenchyma. In qualitative analysis, CISS images showed clear demarcation between tumor and CSF, exact tumor extension, and tumor's relation with cranial nerves and vessels better than conventional spin-echo images. In quantitative analysis, the mean contrast values of tumor to CSF on T1-, T2-weighted images, and CISS images were 0.12, 0.06, and 0.52, respectively. The contrast value for CISS images was significantly higher than that for T1-and T2-weighted images(p<0.05). Epidermoid tumors in the subarachnoid space are better demonstrated on CISS images than on conventional spin-echo images. This special MR sequence can be added as a routine protocol in the diagnosis of subarachnoid epidermoid tumor.

  4. Longitudinal collective echoes in coasting particle beams

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khateeb

    2003-01-01

    Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.

  5. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  6. Gaussian-approximation formalism for evaluating decay of NMR spin echoes

    International Nuclear Information System (INIS)

    Recchia, C.H.; Gorny, K.; Pennington, C.H.

    1996-01-01

    We present a formalism for evaluating the amplitude of the NMR spin echo and stimulated echo as a function of pulse spacings, for situations in which the nuclear spins experience an effective longitudinal magnetic field h z (t) resulting from an arbitrary number of independent sources, each characterized by its own arbitrary time correlation function. The distribution of accumulated phase angles for the ensemble of nuclear spins at the time of the echo is approximated as a Gaussian. The development of the formalism is motivated by the need to understand the transverse relaxation of 89 Y in YBa 2 Cu 3 O 7 , in which the 89 Y experiences 63,65 Cu dipolar fields which fluctuate due to 63,65 Cu T 1 processes. The formalism is applied successfully to this example, and to the case of nuclei diffusing in a spatially varying magnetic field. Then we examine a situation in which the approximation fails emdash the classic problem of chemical exchange in dimethylformamide, where the methyl protons experience a chemical shift which fluctuates between two discrete values. In this case the Gaussian approximation yields a monotonic decay of the echo amplitude with increasing pulse spacing, while the exact solution yields distinct open-quote open-quote beats close-quote close-quote in the echo height, which we confirm experimentally. In light of this final example the limits of validity of the approximation are discussed. copyright 1996 The American Physical Society

  7. Spin-Echo Small-Angle Neutron Scattering Development

    NARCIS (Netherlands)

    Uca, O.

    2003-01-01

    Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas

  8. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-12-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.

  9. MR contrast of ferritin and hemosiderin in the brain: comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences

    International Nuclear Information System (INIS)

    Haque, Tabassum Laz; Miki, Yukio; Kanagaki, Mitsunori; Takahashi, Takahiro; Yamamoto, Akira; Konishi, Junya; Nozaki, Kazuhiko; Hashimoto, Nobuo; Konishi, Junji

    2003-01-01

    Objective: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. Materials and methods: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. Results: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). Conclusion: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation

  10. Comparison between two.magnetic resonance sequences (spin-echo and gradient-echo) in the analysis of lesions of the knee joint meniscus

    International Nuclear Information System (INIS)

    Marti-Bonati, L.; Casillas, C.

    1999-01-01

    To compare the diagnostic reliability, the proportion of common diagnoses and the degree of agreement between the results of two magnetic resonance (MR) sequences in the diagnosis of lesions of the meniscus of the knee. One hundred consecutive patients were studied prospectively by MR (1,5 Teslas). All of them underwent T1-weighted spin-echo and T1 and T2-weighted gradient-echo sequences. The final diagnosis was based on the combined results of four imaging sequences. The sensitivity, specificity, positive predictive value (PPV) and negative predictive (NPV) in terms of the final diagnosis were calculated for each meniscus and MR technique. The chi.squared test and kappa test were employed for the statistical analysis. There were discrepancies between the final diagnosis and the spin-echo sequence in 4 cases and between the final diagnosis and the gradient-echo sequences in 5 Both spin-echo and gradient-echo sequences showed the same diagnostic reliabilities: sensitivity of 0.98, specificity of 0.99, PPV of 0.98 and NPV of 0.99. The correlation between the two sequences was highly significant (chi-squared, p < 0.001) with a very high rate of agreement (kappa=0.84). The two sequences can be considered equally reliable in the study of meniscal lesions. (Author) 7 refs

  11. Theory of electron spin echoes in solids

    CERN Document Server

    Asadullina, N Y; Asadullin, Y Y

    2002-01-01

    We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published resul...

  12. Cardiac T2-mapping using a fast gradient echo spin echo sequence - first in vitro and in vivo experience

    OpenAIRE

    Baessler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C.

    2015-01-01

    Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Ec...

  13. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  14. Spherical neutron polarimetry applied to spin-echo and time-of-flight spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre-Berna, E., E-mail: lelievre@ill.e [Institut Laue Langevin (ILL), 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bentley, P.; Bourgeat-Lami, E.; Thomas, M. [Institut Laue Langevin (ILL), 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Pappas, C. [Helmholtz Centre Berlin for Materials and Energy (HCB), Glienickerstr. 100, 14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Kischnik, R.; Moskvin, E. [Helmholtz Centre Berlin for Materials and Energy (HCB), Glienickerstr. 100, 14109 Berlin (Germany)

    2009-09-01

    The changes in direction of the neutron spin that take place on scattering by a magnetic interaction vector are highly dependent on their relative directions. In some circumstances, without zero-field polarimeter, it is impossible to distinguish between a simple depolarisation and a rotation of the polarisation vector. Motivated by the investigation of chiral magnetic fluctuations, we have implemented the third-generation zero-field polarimeter Cryopad on the neutron spin-echo spectrometer SPAN at the Helmholtz Centre Berlin (HCB). We present the method and the limitations of this novel technique that is now available on IN15 at the ILL. The huge progress accomplished with {sup 3}He neutron spin filters/flippers are going to facilitate the exploitation of polarised beams at spallation sources. Zero-field polarimeters like Cryopad are used routinely at several steady-state sources but their design would be inefficient at a pulse source. We have investigated the possibility to implement a zero-field polarimeter on a time-of-flight spectrometer. We propose a design that would lead to a better efficiency and present the finite element calculations.

  15. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    International Nuclear Information System (INIS)

    Tuite, M.J.; Yandow, D.R.; DeSmet, A.A.; Orwin, J.F.; Quintana, F.A.

    1994-01-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2 * -weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2 * -weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  16. Diagnosis of partial and complete rotator cuff tears using combined gradient echo and spin echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Yandow, D R [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); DeSmet, A A [Dept. of Radiology, Univ. of Wisconsin, Madison, WI (United States); Orwin, J F [Div. of Orthopedic Surgery, Univ. of Wisconsin, Madison, WI (United States); Quintana, F A [Dept. of Biostatistics, Univ. of Wisconsin, Madison, WI (United States)

    1994-10-01

    Most magnetic resonance (MR) studies evaluating the rotator cuff for tears have used T2-weighted imaging in the coronal oblique and sagittal oblique planes. T2{sup *}-weighted gradient echo imaging, however, has advantages over spin echo imaging, including contiguous slices without cross-talk, high contrast around the cuff, and intrinsically shorter imaging times which can be used to increase the number of signals averaged and thus improve the signal-to-noise ratio. We reviewed the shoulder MR scans of 87 consecutive patients who underwent both a MR scan and a shoulder arthroscopy during which the size of tears, if present, was graded. The reviewers were blinded as to the history and arthroscopic results. The MR scans included oblique coronal T2{sup *}-weighted gradient echo and oblique sagittal T2-weighted spin echo images. MR cuff grades were correlated with arthroscopic findings. For complete tears, the sensitivity of MR was 0.91 and the specificity 0.95. For partial tears, the sensitivity was 0.74 and the specificity 0.87. This accuracy is similar to two-plane T2-weighted imaging as previously reported in the literature. There was a statistically significant correlation (p < 0.0005) between the cuff grade as determined by MR and the arthroscopic findings. (orig.)

  17. Diagnostic equivalence of conventional and fast spin echo magnetic resonance imaging of the anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Munk, P.L.; Hilborn, M.D.; Vellet, A.D.; University of Calgary, Calgary, Alberta,; Romano, C.C.; University of Calgary, Calgary, Alberta,

    1997-01-01

    Many techniques and pulse sequences have been devised for the assessment of the anterior cruciate ligament. The present study compares fast spin echo (FSE) imaging to conventional spin echo imaging at a field strength of 1.5 T in an effort to determine if these sequences are diagnostically equivalent. Where available, arthroscopy was also done. A total of 52 patients were imaged using both FSE and conventional spin echo sequences. Eight volunteers were used as controls. Arthroscopy was performed on 10 patients. The anterior cruciate ligament was assessed in a blinded fashion by three radiologists. The Kappa statistic was then used to determine the percentage agreement between FSE and conventional spin echo imaging. Fast spin echo sequencing demonstrated a sensitivity of 100%, a specificity of 94.8% and an accuracy of 96.3% when compared to arthroscopy. Conventional spin echo imaging and arthroscopy had a sensitivity of 100%, specificity of 84.6% and an accuracy of 88.9%. The remaining 34 patients who did not undergo arthroscopy were followed clinically because clinical and imaging findings were not suggestive of ACL tears. These demonstrated 72% agreement between FSE and conventional spin echo imaging using the Kappa statistic, with regards to calling ACL normal or having only a low-grade partial tear. Fast spin echo imaging produces images of the anterior cruciate ligament that have similar diagnostic accuracy to conventional spin echo images (P<0.05) within a much shorter scan time. These results however, require further validation in a larger group, preferably with arthroscopic correlation. (author)

  18. Numerical calculation of spin echo amplitude in pulsed NMR: effects of quadrupole interaction

    International Nuclear Information System (INIS)

    Sobral, R.R.

    1986-01-01

    The spin echo obtained by nuclear magnetic resonance, in systems which atomic nuclei interact with magnetic fields and electric field gradients, present oscillations in function of the time interval between two excitations pulses. Using the density matrix formalism, the amplitudes of these echo is calculated, analytically. In this work, echo amplitudes obtained under different excitation conditions for nuclei of different nuclear spin values are calculated. The numerical results are compared with disposable analytical solutions. Applications of this method to the case of electric field gradient without axial symmetry were studied. Within the used approximation limits, an expression for attnuation of oscillatory behaviour of echo amplitude in function of the time interval between experimentally observed pulses was obtained. (M.C.K.) [pt

  19. Comparison of dynamic dual spin-echo and fast-gradient-echo techniques in the evaluation of cardiac diseases

    International Nuclear Information System (INIS)

    Pettigrew, R.I.; Eisner, R.L.; Groen, J.P.; Baron, M.G.

    1987-01-01

    To determine the relative roles of a dynamic spin-echo method and a fast acquisition with multiphase excitations (FAME) technique, ten patients with myocardial infarction (MI), five with myocardial masses, and five healthy patients were studied with both methods. The dynamic dual-spin-echo (DSE) technique allows acquisition of each of seven sections at 14 cardiac phases in 20 minutes. Wall motion abnormalities were seen equally well with both techniques, but FAME usually required a shorter study time (10 minutes). DSE, however, was superior for evaluating cardiac masses and provided superior wall blood contrast. Thus, these techniques are complementary, and both are now a routine part of the authors' study of cardiac patients

  20. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  1. Liver iron content determined by MRI. Spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Juchems, M.S.; Wunderlich, A.P. [Universitaetskliniken Ulm (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Cario, H. [Universitaetskliniken Ulm (Germany). Klinik fuer Kinder- und Jugendmedizin; Schmid, M. [Stadtspital Triemli, Zuerich (Switzerland). Medizinische Onkologie und Haematologie

    2012-05-15

    Purpose: Liver iron content (LIC) measurement plays a central role in the management of patients with transfusional iron overload. Calculating the LIC with data obtained from standardized MRI sequences represents an attractive alternative diagnostic possibility. The purpose of this study was to compare the LIC measurement obtained with gradient-echo (GRE) sequences to the mean liver proton transverse relaxation (R2) acquired with SE sequences. Materials and Methods: 68 patients with iron overload (median age: 24, range: 3 - 88) underwent 1.5 T MRI for liver iron content measurement. All patients received spin-echo (SE) and gradient-echo (GRE) sequences. Results: The two MRI methods revealed different liver iron content results although a significant correlation was found (r = 0.85, p < 0.001). Values evaluated using GRE sequences (median: 260 {mu}mol/g dry weight [d.w.], range: 6 - 732) were generally higher than those obtained by SE examinations (median: 161 {mu}mol /g d.w., range: 5 - 830). Conclusion: In conclusion, our study revealed different results for both MRI measurements, which could lead to different decisions concerning the management of chelation therapy in individual patients. (orig.)

  2. Echo 7: Magnetospheric properties determined by artificial electron beams

    International Nuclear Information System (INIS)

    Nemzek, R.J.

    1990-01-01

    The sounding rocket Echo 7 was launched from the Poker Flat Research Range. An on-board accelerator injected high-power electron beams into the magnetospheric tail near L = 6.5. After mirroring at the southern conjugate point, about 20 percent of the initial beam electrons returned to the North as Conjugate Echoes, where detectors (scintillators and spectrometers) on four subpayloads measured their energy and bounce time. The other 80 percent of the beam was pitch angle diffused by wave near the equatorial plane either into the conjugate atmosphere or up to mirror points above the payload. Comparison of measured values to calculations showed that the actual magnetosphere during the flight was well-described by the Tsyganenko-Usmanov model magnetosphere with a Kp value of 2- or 2+. Analysis of echo energies yielded values for the highly variable magnetospheric convection electric field

  3. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  4. Stimulated nuclear spin echos and spectral diffusion in glasses

    International Nuclear Information System (INIS)

    Borges, N.M.; Engelsberg, M.

    1984-01-01

    Experimental results of stimulated nuclear spin echos decay in glasses are presented. The measurements were performed in B 2 O 3 glasses, at the 23Na and 11 B resonance lines. The data analysis allows the study of Spectral diffusion at an inhomogeneous nuclear magnetic (NMR) resonance line, broadened for a desordered system of nuclear spins. A model is proposed to explain the time constants, and the particular form of the decay. (A.C.A.S.) [pt

  5. Significance of spin-echo intracardiac signal during cine cardiac MR imaging

    International Nuclear Information System (INIS)

    Feiglin, D.H.I.; O'Donnell, J.K.

    1987-01-01

    Thirty patient studies were performed using several multisection spin multi-echo pulse sequences (SEPS) formattable into the cine mode, with repetition time (TR)≤RR interval and 18 msec ≤ echo time (TE) ≤ 64 msec. Thirteen studies were performed in patients with various cardiomyopathies, ten in patients with cardiac tumors, and seven in healthy volunteers. The SEPS in the multi-echo acquisition format differentiated between tumor and stasis in terms of signal behavior. Healthy subjects may exhibit stasis of flow adjacent to the endocardium during the cardiac cycle

  6. Slow flow and mural thrombus in aortic diseases: Spin-echo MR findings and their differentiation

    International Nuclear Information System (INIS)

    Chung, Jin Wook; Park, Jae Hyung; Han, Man Chung

    1993-01-01

    In order to evaluate the ability of spin-echo MR imaging to differentiate slow flow from mural thrombus in aortic diseases, we reviewed the spin-echo MR images of 13 patients with intraaortic thrombus documented by CT (N=11) or aortography (N=2). Six patients had aortic aneurysms and seven had aortic dissections. Intraaortic mural thrombi were accompanied by flow-related intraluminal signal of various pattern and extents in all 13 patients. On 10 gated MR studies, slow flow regions showed ever-echo rephasing phenomenon (N=8), interslice variation of signal intensities of the intraluminal signal (N=7) and flow-related ghost artifact (N=2). However, these MR flow phenomena were obscured on two of three non-gated studies. Seven of 13 intraaortic thrombi remained hyperintense on T2-weighted second-echo images. In these circumstance, a hypointense boundary layer between slow flow and mural thrombus, which was caused by either ' boundary layer dephasing phenomenon' of slow flow or 'paramagnetic T2 shortening' of fresh clot at the edge of mural thrombus, was very useful in discriminating the area of slow flow from that of mural thrombus. Proper interpretation of spin-echo MR images may obviate the need for phase display imaging or gradient-echo imaging in differentiating slow flow and mural thrombus

  7. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  8. Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution; La spectrometrie par echos de spins de neutrons. Application a l'etude de la dynamique des polymeres en solution

    Energy Technology Data Exchange (ETDEWEB)

    Papoular, Robert

    1992-06-15

    This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [French] Ce memoire est centre sur la spectroscopie par echos de spins de neutrons, et plus particulierement, sur le spectrometre a echos de spins MESS que nous avons construit au L.L.B (CE/Saclay). Apres avoir detaille les principes classique et quantique de ce type d'instrument et les avoir illustres par des analogies optiques, nous detaillons un formalisme simple permettant d'interpreter les experiences utilisant les neutrons polarises dans le cas le plus general. Une seconde partie decrit de maniere approfondie le spectrometre MESS de Saclay

  9. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2014-01-01

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo

  10. Characterization of trehalose aqueous solutions by neutron spin echo

    CERN Document Server

    Branca, C; Magazù, S; Maisano, G; Mangione, A; Pappas, C; Triolo, A

    2002-01-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  11. Characterization of trehalose aqueous solutions by neutron spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Magazu' , S.; Maisano, G.; Mangione, A. [Dipartimento di Fisica and INFM, Universita di Messina, PO Box 55, 98166 Messina (Italy); Pappas, C.; Triolo, A. [Hahn-Meitner-Institut, BENSC (NI), Glienicker Strasse, 14109 Berlin (Germany)

    2002-07-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  12. A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions

    International Nuclear Information System (INIS)

    Thorpe, J.W.; Halpin, S.F.; MacManus, D.G.; Barker, G.J.; Kendall, B.E.; Miller, D.H.

    1994-01-01

    Long repetition time (TR) spin-echo (SE) with T 2 - or proton density weighting is the sequence of choice to detect the brain lesions of multiple sclerosis (MS). Fast spin-echo (FSE) permits the generation of T 2 -weighted images with similar contrast to SE but in a fraction of the time. We compared the sensitivity of FSE and SE in the detection of the brain lesions of MS. Six patients with clinically definite MS underwent brain imaging with both dual echo (long TR, long and short echo time (TE) SE and dual echo FSE. The SE and FSE images were first reviewed independently and then compared. A total of 404 lesions was detected on SE and 398 on FSE. Slightly more periventricular lesions were detected using SE than FSE (145 vs 127), whereas more posterior cranial fossa lesions were detected by FSE (77 vs 57). With both SE and FSE the short TE images revealed more lesions than the long echo. These results suggest that FSE could replace SE as the long TR sequence of choice in the investigation of MS. (orig.)

  13. Development of high-spin isomer beams

    International Nuclear Information System (INIS)

    Zhou Xiaohong

    2000-01-01

    The physical motivations with high-spin isomer beams were introduced. Taking HSIB of RIKEN as an example, the methods to produce, separate, transport and purity high-spin isomer beams were described briefly, and the detection of γ rays emitted from the reactions induced by the high-spin isomer beams was presented. Finally, the progress to develop the high-spin isomers in the N = 83 isotones as second beams was stressed

  14. STIR imaging of lymphadenopathy: Advantages over conventional spin-echo techniques

    International Nuclear Information System (INIS)

    Porter, B.A.; Neumann, E.B.; Olson, D.O.; Nyberg, D.A.; Teefy, S.A.; Shields, A.F.

    1987-01-01

    Spin-echo (SE) imaging of lymphadenopathy has been limited by the high signal of surrounding fat. With short TI Inversion Recovery (STIR), fat is cancelled (black), T1 and T2 contrast are additive, and pathologic nodes are white. STIR images (repetition time, 1,400 - 2,400; echo time, 36 or 40; inversion time, 100 or 125) of 69 patients with malignant adenopathy were compared with T1-weighted spin-echo (T1 SE) or intermediate SE and some T2 SE sequences at 0.15 T. Signal-intensity measurements of nodes versus adjacent tissues were used as a measure of contrast. Ratios of these values ranged from 2.5- to more than 17-fold greater for STIR versus T1 or intermediate SE sequences and to more than 40:1 for STIR versus T2 SE images. Some nodes detected on STIR were only identifiable in retrospection CT or T1 SE. In two cases, STIR detected minimally enlarged nodes not detected on CT; biopsy confirmed malignancy. Normal nodes have lower signal than malignant nodes; inflammatory nodes may mimic neoplasm. The authors replaced T2 SE with a combination of T1 SE and STIR, shortening imaging time and enhancing detection of lymphadenopathy

  15. Fast method of NMR imaging based on trains of spin echoes

    International Nuclear Information System (INIS)

    Hennel, F.

    1993-01-01

    A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs

  16. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  17. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R. [University of Melbourne, Parkville, VIC (Australia). Department of Radiology

    1998-08-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet). Images were reviewed by two `blinded` radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient`s hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd 16 refs., 1 fig.

  18. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R.

    1998-01-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet. Images were reviewed by two 'blinded' radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient's hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd

  19. MR cholangiography using a fast spin-echo technique: prospective evaluation in 20 patients

    International Nuclear Information System (INIS)

    Rondeau, Y.; Meduri, B.; Spelle, L.; Gouhiri, M.; Aubert, A.; Scherrer, A.; Soyer, Ph.; Rymer, R.

    1998-01-01

    To evaluate a MR cholangiographic technique using a non breath-hold fast spin-echo technique in patients with suspected bile duct obstruction. Twenty patients with suspected bile duct obstruction were prospectively investigated with MR cholangiography using a T2-weighted non breath-hold fast spin-echo technique (TR 8000-9000 msec, effective TE 120-266 msec, ETL = 16-32, acquisition time = 1-3 min) with a body coil. Results of MR cholangiography were compared to those obtained with endoscopic retrograde cholangiography (n = 20 patients) and endoscopic sonography (n 12 patients) that were considered as reference. MR cholangiography provided high-quality images in 19 out of 20 cases (95 %). MR cholangiography had 100 % sensitivity, 100 % specificity and 73 % accuracy in the diagnosis of bile duct obstruction. MR cholangiography failed to depict small stones (< 3 mm) of the main bile duct in 4 cases in which no bile duct dilation was found. MR cholangiography using a non breath-hold fast spin-echo technique depicts bile duct dilatation with a degree of accuracy comparable to that achieved with endoscopic examination. In the absence of bile duct dilatation, small stones of the main bile duct may be undetected with MR cholangiography. (author)

  20. Low flip angle spin-echo MR imaging to obtain better Gd-DTPA enhanced imaging with ECG gating

    International Nuclear Information System (INIS)

    Sugimura, Kazuro; Kawamitsu, Hideaki; Yoshikawa, Kazuaki; Kasai, Toshifumi; Yuasa, Koji; Ishida, Tetsuya

    1992-01-01

    ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifact. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. In computer simulation, the predicted image contrast and single-to-noise ratio (SNR) obtained for each flip angle (0-180deg) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR=500 msec, TE=20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muslce) 2* 100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38deg was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100deg, and that at 53deg was identical to that with T1-weighted spin-echo. CI on LFSE (74.0±52.0) was significantly higher than CI on CSE (40.9±35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging. (author)

  1. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Sanjay, E-mail: sprabhakar@wlu.ca [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Melnik, Roderick [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bonilla, Luis L. [Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Raynolds, James E. [Drinker Biddle and Reath LLP, Washington, DC 20005 (United States)

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  2. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.; Raynolds, James E.

    2013-01-01

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges

  3. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki [Pusan Paik Hospital, Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1999-12-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging.

  4. Usefulness of fluid attenuated inversion recovery(FLAIR) image in mesial temporal sclerosis : comparison with turbo spin-echo T2-weighted image

    International Nuclear Information System (INIS)

    Son, Seok Hyun; Chang, Seung Kuk; Eun, Choong Ki

    1999-01-01

    To determine the usefulness of fluid attenuated inversion recovery(FLAIR) imaging for the in detection of high signal intensity of hippocampus or amygdala in mesial temporal sclerosis (MTS), compared with that of turbo spin-echo T2-weighted imaging. Two neuroradiologists independently analyzed randomly mixed MR images of 20 lesions of 17 patients in whom MTS had been diagnosed, and ten normal controls. All subjects underwent both who performed both FLAIR and turbo spin-echo T2-weighted imaging, in a blind fashion. In order to determine hippocampal morphology, oblique coronal images perpendicular to the long axis of the hippocampus were obtained. The detection rate of high signal intensity in hippocampus or amygdala, the radiologists' preferred imaging sequence, and intersubject consistency of detection were evaluated. Signal intensity in hippocampus or amygdala was considered high if substantially higher than signal intensity in the cortex of adjacent temporo-parietal lobe. In all normal controls, FLAIR and spin-echo T2-weighted images showed normal signal intensity in hippocampus or amygdala. In MTS, the mean detection rate of high signal intensity in hippocampus or amygdala, as seen on FLAIR images was 93%, compared with 43% on spin-echo T2-weighted images. In all cases in which signal intensity on FLAIR images was normal, signal intensity on spin-echo T2-weighted images was also normal. The radiologists preferred the contrast properties of FLAIR to those of spin-echo T2-weighted images. In the diagnosis of MTS using MRI, FLAIR images are more useful for the detection of high signal intensity of hippocampus or amygdala than are spin-echo T2-weighted images. In the diagnosis of MTS, FLAIR imaging is therefore a suitable alternative to spin-echo T2-weighted imaging

  5. Polarimetric neutron spin echo: Feasibility and first results

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany)], E-mail: pappas@hmi.de; Lelievre-Berna, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); Bourgeat-Lami, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Thomas, M. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Grigoriev, S.; Dyadkin, V. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)

    2008-07-21

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL.

  6. Polarimetric neutron spin echo: Feasibility and first results

    International Nuclear Information System (INIS)

    Pappas, C.; Lelievre-Berna, E.; Bentley, P.; Bourgeat-Lami, E.; Moskvin, E.; Thomas, M.; Grigoriev, S.; Dyadkin, V.

    2008-01-01

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL

  7. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    Science.gov (United States)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus

    2017-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.

  8. Spin-orbit beams for optical chirality measurement

    Science.gov (United States)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  9. IN15 ultra-high-resolution spin-echo project. First experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schleger, P; Hayes, C [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Kollmar, A [Forschungszentrum Juelich GmbH (Germany)

    1997-04-01

    The IN15 project is a collaboration between the ILL, HMI (Berlin), and FZ (Juelich) to construct a spin-echo spectrometer with a fourier time-range surpassing half a microsecond. Three different operational modes are possible: normal, with neutron focusing, and time-of-flight. Present status of the project is described. (author). 3 refs.

  10. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    Science.gov (United States)

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  11. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    International Nuclear Information System (INIS)

    Sales, Morten; Strobl, Markus; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering. (paper)

  12. IFR channel-guiding of spinning beams

    International Nuclear Information System (INIS)

    O'Brien, K.J.

    1986-06-01

    A simple model is adopted to study the Ion Focussed Regime (IFR) laser channel-guiding of a spinning relativistic electron beam. It is discovered that spinning beams precess about the IFR axis as they damp; whereas, nonspinning beams remain planarly polarized

  13. The evaluation of fat saturation fast spin-echo T2W1 for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2W1 for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 than at conventional T2W1. Fat-saturation fast spin-echo T2W1 is useful for the evaluation of patients with mild acute spinal trauma without neurological impairment

  14. Beam Splitter for Spin Waves in Quantum Spin Network

    OpenAIRE

    Yang, S.; Song, Z.; Sun, C. P.

    2005-01-01

    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a $Y$-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.

  15. Usefulness of dual echo volumetric isotropic turbo spin echo acquisition (VISTA) in MR imaging of the temporomandibular joint

    International Nuclear Information System (INIS)

    Sugimori, Yuko; Tanaka, Shigeko; Naito, Yukari; Nishimura, Tetsuya; Yamamoto, Akira; Miki, Yukio; Ohfuji, Satoko; Katsumata, Yasutomo

    2013-01-01

    We investigated the ability to detect the articular disk and joint effusion of the temporomandibular joint (TMJ) of a method of dual echo volumetric isotropic turbo spin echo acquisition (DE-VISTA) additional fusion images (AFI). DE-VISTA was performed in the 26 TMJ of 13 volunteers and 26 TMJ of 13 patients. Two-dimensional (2D) dual echo turbo spin echo was performed in the 26 TMJ of 13 volunteers. On a workstation, we added proton density-weighted images (PDWI) and T 2 weighted images (T 2 WI) of the DE-VISTA per voxel to reconstruct DE-VISTA-AFI. Two radiologists reviewed these images visually and quantitatively. Visual evaluation of the articular disk was equivalent between DE-VISTA-AFI and 2D-PDWI. The sliding thin-slab multiplanar reformation (MPR) method of DE-VISTA-AFI could detect all articular disks. The ratio of contrast (CR) of adipose tissue by the articular disk to that of the articular disk itself was significantly higher in DE-VISTA-AFI than DE-VISTA-PDWI (P 2 WI but in only 3 of those joints in 2D-T 2 WI. The CR of joint effusion to adipose tissue on DE-VISTA-AFI did not differ significantly from that on DE-VISTA-PDWI. However, using DE-VISTA-T 2 WI in addition to DE-VISTA-PDWI, we could visually identify joint effusion on DE-VISTA-AFI that could not be identified on DE-VISTA-PDWI alone. DE-VISTA-AFI can depict the articular disk and a small amount of joint effusion by the required plane of MPR using the sliding thin-slab MPR method. (author)

  16. Neutron spin echo spectrometer at JRR-3M

    International Nuclear Information System (INIS)

    Takeda, Takayoshi; Komura, Shigehiro; Seto, Hideki; Nagai, Michihiro; Kobayashi, Hideki; Yokoi, Eiji; Ebisawa, Tooru; Tasaki, Seiji.

    1993-01-01

    We have designed and have been constructing at C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimized magnets for neutron spin precession, a position sensitive detector (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.01 A -1 to 0.3 A -1 and that of energy E from 30neV to 0.1meV. This spectrometer makes it possible to study a mesoscopic spatial structure of the order of 1-100nm combined with a nanosecond temporal structure of the order of 0.1-100ns corresponding to dynamical behavior of large molecules such as polymer. A test experiment shows that the homogeneity condition of the precession magnet is loosened by means of PSD. (author)

  17. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  18. Spectral narrowing and spin echo for localized carriers with heavy-tailed L evy distribution of hopping times

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Z. [Univ. of Utah, Salt Lake City, UT (United States); Mkhitaryan, Vagharsh [Ames Lab. and Iowa State Univ., Ames, IA (United States); Raikh, M. E. [Univ. of Utah, Salt Lake City, UT (United States)

    2016-02-02

    We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, , are widely spread according to the L evy distribution. The power-law tail ∝ τ-1-∝ in the distribution of does not affect the conventional spectral narrowing for α > 2, but leads to a dramatic acceleration of the free induction decay in the domain 2 > α > 1. The next abrupt acceleration of the decay takes place as becomes smaller than 1. In the latter domain the decay does not follow a simple-exponent law. To capture the behavior of the average spin in this domain, we solve the evolution equation for the average spin using the approach different from the conventional approach based on the Laplace transform. Unlike the free induction decay, the tail in the distribution of the residence times leads to the slow decay of the spin echo. The echo is dominated by realizations of the carrier motion for which the number of sites, visited by the carrier, is minimal.

  19. T2-weighted MR imaging of liver lesions: a prospective evaluation comparing turbo spin-echo, breath-hold turbo spin-echo and half-Fourier turbo spin-echo (HASTE) sequences

    International Nuclear Information System (INIS)

    Martin, J.; Villajos, M.; Oses, M. J.; Veintemillas, M.; Rue, M.; Puig, J.; Sentis, M.

    2000-01-01

    To compare turbo spin-echo (TSE), breath-hold TSE and half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences quantitatively and qualitatively in T2-weighted images of liver lesions. The authors evaluated prospectively 89 liver lesions in 73 patients using a 1.0-T magnetic resonance system to compare TSE, breath-hold TSE and HASTE sequences. The quantitative parameters were: lesion-to-liver contrast and lesion-to-liver contrast-to-noise ratio. The qualitative analysis was performed by two observers in consensus who examined four parameters: respiratory artifacts, lesion edge definition, intrahepatic vessel definition and image quality. Repeated measures analysis of variance was utilized to compare the quantitative variables and Friedman's nonparametric test for the qualitative parameters. In quantitative terms, the lesion-to-liver contrast was similar in TSE and breath-hold TSE sequences (2.45±1.44 versus 2.60±1.66), both of which were significantly better than the HASTE sequence (1.12±0.72; p<0.001). The lesion-to-liver contrast-to-noise ratio was significantly higher in the TSE sequence (62.60±46.40 versus 40.22±25.35 versus 50.90±32.10 for TSE, breath-hold TSE and HASTE sequences, respectively; p<0.001). In the qualitative comparisons, the HASTE sequence was significantly better than the TSE and breath-hold TSE sequences (p<0.001) in terms of artifacts and definition of lesion edge and intrahepatic vessels. Image quality was also significantly greater in the HASTE sequence (p<0.001). In quantitative terms, the TSE sequence is better than the breath-hold TSE and HASTE sequences, but there are no movement artifacts in the HASTE sequence, which is also significantly superior to TSE and breath-hold TSE sequences in qualitative terms and, thus, can be employed for T2-weighted images in liver studies. (Author) 17 refs

  20. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  1. Spin echo SPI methods for quantitative analysis of fluids in porous media.

    Science.gov (United States)

    Li, Linqing; Han, Hui; Balcom, Bruce J

    2009-06-01

    Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the

  2. Magnetic field mapping around metal implants using an asymmetric spin-echo sequence

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Dokoupil, Zdeněk; Gescheidtová, E.

    2006-01-01

    Roč. 17, č. 12 (2006), s. 3293-3300 ISSN 0957-0233 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : nuclear magnetic resonance * spin echo * MRI * B0 mapping * dental material Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.228, year: 2006

  3. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    DEFF Research Database (Denmark)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large...... modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori...... decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first...

  4. The evaluation of fat saturation fast spin-echo T2WI for patients with acute spinal trauma

    International Nuclear Information System (INIS)

    Kim, Sung Gyu; Lee, Chang Jun; Lee, Myung Joon; Kang, Ik Won; Yoo, Jeong Hyun

    2002-01-01

    To determine the usefulness of fat saturation fast spin-echo T2WI for patients with mild acute trauma of the spine. Between July 1998 and June 2002, 36 patients with acute spinal trauma underwent MRI within four months of injury. One, whose clinal symptoms indicated neurological paralysis, was excluded form our study. A superconductive 1.0-T MRI scanner was used, and conventional T1W1, T2W1, and additional fat-saturation fast spin-echo T2W1 were performed. Two radiologists compared conventional T2-weighted sagittal imaging and fat-saturation T2-weighted sagittal imaging in terms of the extension of increased high signal intensities in soft tissue and vertebral bodies, bone marrow signal change, disk herniation, and signal change of the disk. The detection rate of focal high signal intensities in soft tissue and bone marrow was significantly higher at fat-saturation fast spin-echo T2W1 is useful the evaluation of patients with mild acute spinal trauma without neurological impairment

  5. Spin-echo observation of radio frequency induced flux lattice annealing (RIFLA) in a type-II superconductor

    International Nuclear Information System (INIS)

    Clark, W.G.; Hanson, M.E.; Wong, W.H.

    1999-01-01

    We report the annealing of a strained flux line lattice (FLL) in 10 μm diameter type-II superconducting NbTi filaments by an RF magnetic field at 4.2 K in a magnetic field of 1 T. The strained FLL is prepared by slowly changing the direction of the applied magnetic field. When the RF magnetic field used to generate a 93 Nb NMR spin echo anneals the FLL, there is a corresponding reduction in the amplitude of the spin echo. Starting from an annealed condition, a rotation threshold of 3 mr is needed to produce enough FLL strain to be observed in these measurements. (orig.)

  6. Spin flipping a stored polarized proton beam

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Derbenev, Y.S.; Ellison, T.J.P.; Lee, S.Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.J.; von Przewoski, B.; Blinov, B.B.; Chu, C.M.; Courant, E.D.; Crandell, D.A.; Kaufman, W.A.; Krisch, A.D.; Nurushev, T.S.; Phelps, R.A.; Ratner, L.G.; Wong, V.K.; Ohmori, C.

    1994-01-01

    We recently studied the spin flipping of a vertically polarized, stored 139-MeV proton beam. To flip the spin, we induced an rf depolarizing resonance by sweeping our rf solenoid magnet's frequency through the resonance frequency. With multiple spin flips, we found a polarization loss of 0.0000±0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions. Minimizing the depolarization during each spin flip is especially important because frequent spin flipping could significantly reduce the systematic errors in stored polarized-beam experiments

  7. Comparison of gradient-recalled echo and spin-echo echo-planar imaging MR elastography in staging liver fibrosis. A meta-analysis

    International Nuclear Information System (INIS)

    Kim, Yong Seek; Jang, Yu Na; Song, Ji Soo

    2018-01-01

    To compare the diagnostic performance of gradient-recalled echo-based magnetic resonance elastography (GRE-MRE) and spin-echo echo-planar imaging-based MRE (SE-EPI-MRE) in liver fibrosis staging. A systematic literature search was performed to identify studies involving the performance of MRE for the diagnosis of liver fibrosis. Pooled sensitivity, specificity, positive and negative likelihood ratios, the diagnostic odds ratio, and a summary receiver operating characteristic (ROC) curve were estimated by using a bivariate random effects model. Subgroup analyses were performed between different study characteristics. Twenty-six studies with a total of 3,200 patients were included in the meta-analysis. Pooled sensitivity and specificity of GRE-MRE and SE-EPI-MRE did not differ significantly. The area under the summary ROC curve for stage diagnosis of any (F ≥ 1), significant (F ≥ 2), advanced (F ≥ 3), and cirrhosis (F = 4) on GRE-MRE and SE-EPI-MRE were 0.93 versus 0.94, 0.95 versus 0.94, 0.94 versus 0.95, and 0.92 versus 0.93, respectively. Substantial heterogeneity was detected for both sequences. Both GRE and SE-EPI-MRE show high sensitivity and specificity for detection of each stage of liver fibrosis, without significant differences. Magnetic resonance elastography (MRE) may be useful for noninvasive evaluation of liver fibrosis in chronic liver disease. (orig.)

  8. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

    Science.gov (United States)

    Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-10-16

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  9. Contrast-enhanced MR imaging of metastatic brain tumor at 3 Tesla. Utility of T1-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence

    International Nuclear Information System (INIS)

    Komada, Tomohiro; Naganawa, Shinji; Ogawa, Hiroshi

    2008-01-01

    We evaluated the newly developed whole-brain, isotropic, 3-dimensional turbo spin-echo imaging with variable flip angle echo train (SPACE) for contrast-enhanced T 1 -weighted imaging in detecting brain metastases at 3 tesla (T). Twenty-two patients with suspected brain metastases underwent postcontrast study with SPACE, magnetization-prepared rapid gradient-echo (MP-RAGE), and 2-dimensional T 1 -weighted spin echo (2D-SE) imaging at 3 T. We quantitatively compared SPACE, MP-RAGE, and 2D-SE images by using signal-to-noise ratios (SNRs) for gray matter (GM) and white matter (WM) and contrast-to-noise ratios (CNRs) for GM-to-WM, lesion-to-GM, and lesion-to-WM. Two blinded radiologists evaluated the detection of brain metastases by segment-by-segment analysis and continuously-distributed test. The CNR between GM and WM was significantly higher on MP-RAGE images than on SPACE images (P 1 -weighted imaging. (author)

  10. Neutron optics using transverse field neutron spin echo method

    International Nuclear Information System (INIS)

    Achiwa, Norio; Hino, Masahiro; Yamauchi, Yoshihiro; Takakura, Hiroyuki; Tasaki, Seiji; Akiyoshi, Tsunekazu; Ebisawa, Toru.

    1993-01-01

    A neutron spin echo (NSE) spectrometer with perpendicular magnetic field to the neutron scattering plane, using an iron yoke type electro-magnet has been developed. A combination of cold neutron guider, supermirror neutron polarizer of double reflection type and supermirror neutron analyser was adopted for the spectrometer. The first application of the NSE spectrometer to neutron optics by passing Larmor precessing neutrons through gas, solid and liquid materials of several different lengths which are inserted in one of the precession field have been examined. Preliminary NSE spectra of this sample geometry are discussed. (author)

  11. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    Science.gov (United States)

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  12. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Y., E-mail: stslyl@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang, B., E-mail: wangbiao@mail.sysu.edu.cn [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-03-15

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter.

  13. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    International Nuclear Information System (INIS)

    Wang, Y.; Liu, Y.; Wang, B.

    2014-01-01

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter

  14. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  15. Challenges in neutron spin echo spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C., E-mail: c.pappas@tudelft.n [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Lelievre-Berna, E.; Falus, P.; Farago, B. [Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Krist, Th. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Grigoriev, S. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)

    2009-09-01

    With the new brilliant neutron sources and the developments of novel optical elements, neutron spin echo (NSE) spectroscopy evolves to tackle new problems and scientific fields. The new developments pave the way to complex experimental set-ups such as the intensity modulated variant of NSE (IMNSE), a powerful technique which was introduced some 20 years ago but found limited use up to now. With the new compact supermirror or He{sup 3} polarizers IMNSE becomes attractive for a broad range of applications in magnetism, soft matter and biology. A novel development along this line is the polarimetric NSE technique, which combines IMNSE and the zero-field polarimeter Cryopad to access components of the scattered polarization that are transverse to the incoming polarization. Polarimetric NSE is the method of choice for studying chiral fluctuations, as illustrated by new results on the reference helimagnet MnSi.

  16. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  17. Fat-saturated, contrast-enhanced spin echo sequences in magnetic resonance tomographic diagnosis of peritoneal carcinosis

    International Nuclear Information System (INIS)

    Ricke, J.; Hosten, N.; Stroszczynski, C.; Amthauer, H.; Felix, R.; Sehouli, J.; Buchmann, E.; Rieger, J.

    1999-01-01

    Purpose: To evaluate contrast-enhanced, fat-saturated spin echo sequences for the detection of peritoneal carcinosis with MRI. Material and Methods: 61 patients, 35 with and 26 without peritoneal carcinosis, were examined with abdominal MRI. Fat-saturated, T 1 -weighted spin echo sequences were performed before and after administration of Gd-DTPA. In addition, 22 patients with peritoneal carcinosis were examined with contrast-enhanced abdominal CT. Results: 32 of 35 patients with peritoneal carcinosis demonstrated contrast enhancement of the visceral and 30 to 35 enhancement of the parietal peritoneum (91 and 86%, respectively). Wall thickening of the intestine or parietal peritoneum were noted in 21 and 20 of 35 patients (60 and 57%, respectively), ascites in 18 of 35 patients (51%). False positive contrast enhancement of the peritoneum was noted in 4 of 26 patients (15%). In the direct comparison of MRI and CT, 22 of 22 patients versus 7 of 22 patients showed contrast enhancement of the visceral peritoneum (100 and 32%, respectively). For other signs of peritoneal carcinosis (e.g., ascites, peritoneal seedings), no differences in diagnostic reliability were demonstrated. Conclusions: The use of fat-saturated, spin echo sequences facilitates the diagnosis of peritoneal carcinosis by artifact reduction and improved detection of peritoneal contrast enhancement. MRI with fat-saturated sequences was superior to CT. (orig.) [de

  18. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  19. Polarizing a stored proton beam by spin-flip?

    International Nuclear Information System (INIS)

    Oellers, Dieter Gerd Christian

    2010-01-01

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections σ parallel and σ perpendicular to are deduced using the likelihood method. (orig.)

  20. Optimal control design of turbo spin-echo sequences with applications to parallel-transmit systems

    NARCIS (Netherlands)

    Sbrizzi, Alessandro; Hoogduin, Hans; Hajnal, Joseph V; van den Berg, CAT; Luijten, Peter R; Malik, Shaihan J

    PURPOSE: The design of turbo spin-echo sequences is modeled as a dynamic optimization problem which includes the case of inhomogeneous transmit radiofrequency fields. This problem is efficiently solved by optimal control techniques making it possible to design patient-specific sequences online.

  1. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-11-01

    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  2. The neutron spin-echo spectrometer: a new high resolution technique in neutron scattering

    International Nuclear Information System (INIS)

    Nicholson, L.K.

    1981-01-01

    The neutron spin-echo (NSE) spectrometer provides the highest energy resolution available in neutron scattering experiments. The article describes the principles behind the first NSE spectrometer (at the Institute Laue-Langevin, Grenoble, France) and, as an example of one of its applications, some recent results on polymer chain dynamics are presented. (author)

  3. Polarizing a stored proton beam by spin flip?

    International Nuclear Information System (INIS)

    Oellers, D.; Barion, L.; Barsov, S.; Bechstedt, U.; Benati, P.; Bertelli, S.; Chiladze, D.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F.; Dietrich, J.; Dolfus, N.; Dymov, S.; Engels, R.; Erven, W.; Garishvili, A.; Gebel, R.; Goslawski, P.

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin-flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  4. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  5. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    Lehrach, Andreas

    2008-01-01

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  6. Spin echoes of nuclear magnetization diffusing in a constant magnetic field gradient and in a restricted geometry

    International Nuclear Information System (INIS)

    Sen, P.N.; Andre, A.; Axelrod, S.

    1999-01-01

    We study the influence of restriction on Carr - Purcell - Meiboom - Gill spin echoes response of magnetization of spins diffusing in a bounded region in the presence of a constant magnetic field gradient. Depending on three main length scales: L S pore size, L G dephasing length and L D diffusion length during half-echo time, three main regimes of decay have been identified: free, localization and motionally averaging regime. In localization regime, the decay exponent depends on a fractional power (2/3) of the gradient, denoting a strong breakdown of the second cumulant or the Gaussian phase approximation (GPA). In the other two regimes, the exponent depends on the gradient squared, and the GPA holds. We find that the transition from the localization to the motionally averaging regime happens when the magnetic field gradients approach special values, corresponding to branch points of the eigenvalues. Transition from one regime to another as a function of echo number for a certain range of parameters is discussed. In this transition region, the signal shows large oscillations with echo number. For large n, asymptotic behavior sets in as a function of n for the decay exponent per echo. This is true for all values of the parameters L S , L G , and L D . copyright 1999 American Institute of Physics

  7. Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution

    International Nuclear Information System (INIS)

    Papoular, Robert

    1992-06-01

    This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [fr

  8. Conjugate echoes of artifically injected electron beams detected optically by means of new image processing

    International Nuclear Information System (INIS)

    Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Baldridge, J.; Winckler, J.; Malcolm, P.

    1990-01-01

    Following two upward injections of energetic electrons (38 keV and 26 keV) from the Echo 4 rocket-borne electron accelerator, artificial auroral streaks were detected by ground-based low-light-level television. They were delayed relative to the injections by 2.06 s and 2.42 s, respectively. The delays are only 4-5% longer than calculated using a dynamic model of the geomagnetic field. Other field models yielded shorter bounce times. Since the delays were in the inverse ratio of the relativistic velocities calculated for the nominal beam energies, it is concluded that the potential of the payload remained below 1 kV during 45 mA injections at an altitude of 210 km. The echo streaks showed little dispersion in either time or space, indicating that the portion of the beam returning to the northen hemisphere loss cone remained collimated and nearly monoenergetic. But there was a 70% loss in the return flux. A diligent search failed to locate similar echoes from the more powerful injections employed in the Echo 5 and Echo 7 rocket experiments, suggesting flux losses of at least 98% and 92%, respectively. The losses are thought to be due to pitch angle scattering out of the loss cone as the electrons traverse the equatorial region but could also be due to collective beam plasma interactions

  9. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  10. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  11. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  12. A white beam neutron spin splitter

    International Nuclear Information System (INIS)

    Krist, T.; Klose, F.; Felcher, G.P.

    1997-01-01

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co 0.11 Fe 0.89 supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 angstrom -1 , whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths

  13. A white beam neutron spin splitter

    Energy Technology Data Exchange (ETDEWEB)

    Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  14. Comparison of respiratory-triggered 3-D fast spin-echo and single-shot fast spin-echo radial slab MR cholangiopancreatography images in children

    Energy Technology Data Exchange (ETDEWEB)

    Chavhan, Govind B.; Almehdar, Abeer; Gupta, Sumeet [The Hospital for Sick Children and University of Toronto, Department of Diagnostic Imaging, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Babyn, Paul S. [Royal University Hospital, Department of Medical Imaging, Saskatoon (Canada)

    2013-09-15

    The two most commonly performed magnetic resonance cholangiopancreatography (MRCP) sequences, 3-D fast spin-echo (3-D FSE) and single-shot fast spin-echo radial slabs (radial slabs), have not been compared in children. The purpose of this study was to compare 3-D FSE and radial slabs MRCP sequences on a 3-T scanner to determine their ability to show various segments of pancreaticobiliary tree and presence of artifacts in children. We reviewed 79 consecutive MRCPs performed in 74 children on a 3-T scanner. We noted visibility of major ducts on 3-D FSE and radial slabs. We noted the order of branching of ducts in the right and left hepatic ducts and the degree of visibility of the pancreatic duct. Statistical analysis was performed using McNemar and signed rank tests. There was no significant difference in the visibility of major bile ducts and the order of branching in the right hepatic lobe between sequences. A higher order of branching in the left lobe was seen on radial slabs than 3-D FSE (mean order of branching 2.82 versus 2.27; P-value = 0.0002). The visibility of pancreatic duct was better on radial slabs as compared to 3-D FSE (mean value of 1.53 vs. 0.90; P-value < 0.0001). 3-D FSE sequence was artifact-free in 25/79 (31.6%) MRCP exams as compared to radial slabs, which were artifact-free in 18/79 (22.8%) MRCP exams (P-value = 0.0001). There is no significant difference in the visibility of major bile ducts between 3-D FSE and radial slab MRCP sequences at 3-T in children. However, radial slab MRCP shows a higher order of branching in the left hepatic lobe and superior visibility of the pancreatic duct than 3-D FSE. (orig.)

  15. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  16. Fast triple-spin-echo Dixon (FTSED) sequence for water and fat imaging

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Bartušek, Karel; Starčuk jr., Zenon

    2017-01-01

    Roč. 37, APR (2017), s. 164-170 ISSN 0730-725X R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : fast triple-spin-echo Dixon * sequence * MRI * fat fraction * water-fat * ultra-high field * 9.4 T * FTSED Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.225, year: 2016

  17. Spin Depolarization due to Beam-Beam Interaction in NLC

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Kathleen A

    2001-01-04

    Calculations of spin depolarization effects due to the beam-beam interaction are presented for several NLC designs. The depolarization comes from both classical (Bargmann-Michel-Telegdi precession) and quantum (Sokolov-Ternov spin-flip) effects. It is anticipated that some physics experiments at future colliders will require a knowledge of the polarization to better than 0.5% precision. We compare the results of CAIN simulations with the analytic estimates of Yokoya and Chen for head-on collisions. We also study the effects of transverse offsets and beamstrahlung-induced energy spread.

  18. Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI

    International Nuclear Information System (INIS)

    Gass, A.; Moseley, I.F.; Barker, G.J.; Jones, S.; MacManus, D.; McDonald, W.I.; Miller, D.H.

    1996-01-01

    Fast spin-echo (FSE) is a new sequence with acquisition times currently down to one-sixteenth of those obtained with conventional spin-echo sequences, which allows high-resolution (512 x 512 matrix) images to be acquired in an acceptable time. We compared the higher resolution of FSE with the medium resolution of a short inversion-time inversion-recovery (STIR) sequence in depicting the optic nerves of healthy controls and patients with optic neuritis. Optic nerve MRI examinations were performed in 18 patients with optic neuritis and 10 normal controls. Two sequences were obtained coronally: fat-suppressed FSE (FSE TR 3250 ms/TEef 68 ms, echo-train length 16, 4 excitations, 24 cm rectangular field of view, 3 mm interleaved contiguous slices, in-plane resolution 0.5 x 0.5 mm) and STIR (TR 2000 ms/TE 50 ms/TI 175 ms, in-plane resolution 0.8 x 0.8 mm, slice thickness 5 mm). FSE demonstrated much more anatomical detail than STIR, e. g. distinction of optic nerve and sheath. Lesions were seen in 20 of 21 symptomatic nerves using FSE and in 18 of 21 using STIR. Nerve swelling or partial cross-sectional lesions of the optic nerve were each seen only on FSE in 3 cases. Fat-suppressed FSE imaging of the optic nerve improves anatomical definition and increases lesion detection in optic neuritis. (orig.). With 5 figs

  19. Diagnostic accuracy of dynamic contrast-enhanced MR imaging of renal masses with rapid-acquisition spin-echo technique

    International Nuclear Information System (INIS)

    Eilenberg, S.S.; Lee, J.K.T.; Brown, J.J.; Heiken, J.P.; Mirowitz, S.A.

    1990-01-01

    This paper compares the diagnostic accuracy of Gd-DTPA-enhanced rapid-acquisition spin-echo (RASE) imaging with standard spin-echo techniques for detecting renal cysts and solid renal neoplasms. RASE imaging combines a short TR (275 msec)/short TE (10 msec), single excitation pulse sequence with half-Fourier data sampling. Eighteen patients with CT evidence of renal masses were first evaluated with standard T1-and T2-weighted SE sequences. Pre- and serial postcontrast (Cd-DTPA, 0.1 mmol./kg) RASE sequences were then performed during suspended respiration. A final set of postcontrast images was obtained with the standard T1-weighted SE sequence. Each set of MR images was first reviewed separately (ie, T1, T2, pre- and post-contrast RASE, etc)

  20. Spin polarisation with electron Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Schattschneider, P., E-mail: schattschneider@ifp.tuwien.ac.at [Institut für Festkörperphysik, Technische Universität Wien, A-1040 Wien (Austria); USTEM, Technische Universität Wien, A-1040 Wien (Austria); Grillo, V. [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco delle Scienze 37a, I-43100 Parma (Italy); Aubry, D. [Centrale Supelec, MSSMast CNRS 8579, F-92295 Châtenay-Malabry (France)

    2017-05-15

    The theoretical possibility to use an electron microscope as a spin polarizer is studied. It turns out that a Bessel beam passing a standard magnetic objective lens is intrinsically spin polarized when post-selected on-axis. In the limit of infinitely small detectors, the spin polarisation tends to 100 %. Increasing the detector size, the polarisation decreases rapidly, dropping below 10{sup −4} for standard settings of medium voltage microscopes. For extremely low voltages, the Figure of Merit increases by two orders of magnitude, approaching that of existing Mott detectors. Our findings may lead to new desings of spin filters, an attractive option in view of its inherent combination with the electron microscope, especially at low voltage. - Highlights: • TEM round magnetic lenses can act as spin polarizers when a Bessel beam is sent through. • This is found on theoretical grounds and demonstrated numerically for a few cases. • The effect is small, but can reach a Figure of Merit similar to existing Mott detectors. • This opens the possibility to construct nanometer-sized spin filters or detectors.

  1. Dynamical scaling in polymer solutions investigated by the neutron spin echo technique

    International Nuclear Information System (INIS)

    Richter, D.; Ewen, B.

    1979-01-01

    Chain dynamics in polymer solutions was investigated by means of the recently developed neutron spin echo spectroscopy. - By this technique, it was possible for the first time to verify unambiguously the scaling predictions of the Zimm model in the case of single chain behaviour and to observe the cross over to many chain behaviour. The segmental diffusion of single chains exhibits deviations from a simple exponential law, indicating the importance of memory effects. (orig.) [de

  2. Theory and optical design of x-ray echo spectrometers

    Science.gov (United States)

    Shvyd'ko, Yuri

    2017-08-01

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016), 10.1103/PhysRevLett.116.080801] is developed here further with a focus on questions of practical importance, which could facilitate optical design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. Examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.

  3. An approach towards solving refraction problems in EM1002 multi-beam echo-sounder system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.

    Multi-beam echo-sounding is the technique in which multiple beams of acoustic in nature are sent down to seabed and upon reflection, they are received back and processed to give depths values. The report is focused to give a brief idea about EM1002...

  4. Neutron spin-echo spectroscopy for diffusion in crystalline solids

    International Nuclear Information System (INIS)

    Kaisermayr, M.; Rennhofer, M.; Vogl, G.; Pappas, C.; Longeville, S.

    2002-01-01

    Neutron spin-echo spectroscopy (NSE) offers unprecedented opportunities in the investigation of diffusion in crystalline systems due to its outstanding energy resolution. NSE not only enables measurements at lower diffusivities than the established techniques of neutron spectroscopy, but it also gives a very immediate access to the different time scales involved in the diffusion process. This is demonstrated in detail on the example of the binary alloy NiGa where the Ni atoms hop between regular sites on the Ni sublattice and anti-sites on the Ga sublattice. Experiments on two different NSE instruments are compared to measurements using neutron backscattering spectroscopy. The potential of NSE for the investigation of jump diffusion and experimental requirements are discussed

  5. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    Science.gov (United States)

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  6. Electron spin echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel

    OpenAIRE

    Cieslak, John A.; Focia, Pamela J.; Gross, Adrian

    2010-01-01

    Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential ...

  7. MR STIR imaging versus spin-echo imaging of the breast

    International Nuclear Information System (INIS)

    Zobel, B.B.; Tella, S.; Patrizio, G.; Confalone, D.; D'Archivio, C.; Passariello, R.

    1989-01-01

    A valid tissue characterization of human breast diseases with conventional spin-echo (SE) sequences has not been achieved yet. In spite of experimental works showing that fibroadenomas have a small but significant difference in T1 relaxation time, T1- and T2-weighted SE sequences are not always able to differentiate them. We tried to solve the problem employing two different short T1 inversion-recovery (STIR) sequences with T1 values adequate to nullify the signal of glandular and fatty tissues. This paper reports on twenty-five nodules, including cysts, fibroadenomas, phylloids, and adenocarcinomas, examined with both STIR sequences performed on a superconductive 0.5-T unit

  8. Comparison of spin echo T1-weighted sequences versus fast spin-echo proton density-weighted sequences for evaluation of meniscal tears at 1.5 T

    International Nuclear Information System (INIS)

    Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.

    2009-01-01

    At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)

  9. On the dynamics of polymers in dense systems - Results of neutron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Richter, D.

    1997-01-01

    One of the basic problems in the dynamics of polymers concerns the importance of geometrical or topological interactions which are directly related to the large scale molecular structures. In the famous reptation model these constraints are pictured in terms of a tube of localization following the average chain profile and confining the chain motion to the curve-linear tube. Recently studying the dynamic structure factor of a single labeled chain in a polymer melt by means of neutron spin echo spectroscopy (NSE) led to a direct observation of these tube constraints. Here I shall summarize these neutron spin echo experiments. I shall address the NSE technique, present results on the entropy driven segmental chain dynamics, discuss the dynamics of single chains in the melt where the chain length is increased through the transition to 'reptation' dynamics and display NSE measurements on long chain systems which revealed the molecular existence of the entanglement distance. Their magnitudes agree very well with tube diameters derived from dynamical mechanical measurements on the basis of the reptation model proving thereby the basic assumption of this Nobel Price winning concept

  10. Magnetic resonance imaging of lumbar spine. Comparison of multiple spin echo and low flip angle gradient echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Takamichi; Fujita, Norihiko; Harada, Koushi; Kozuka, Takahiro (Osaka Univ. (Japan). Faculty of Medicine)

    1989-07-01

    Sixteen patients including 13 cases with disk herniation and 3 cases with spondylosis of lumbar spine were examined on a resistive MRI system operating at 0.1 T. All lesions were studied with both multiple spin echo (MSE) and low flip angle gradient echo (LF) techniques to evaluate which technique is more effective in detecting the disk degeneration and the indentation on subarachnoid space. MSE images were obtained with repetition time (TR) of 1100-1500 ms or cardiac gating, an echo time (TE) of 30, 60, 90, 120, 150, and 180 ms symmetrical 6 echoes, and total acquisition time of more than 281 sec. LF images were obtained with TR of 500, 250, and 100 ms, TE of 18 ms, a flip angle of 30 degree, and total acquisition time of 128 sec. Eleven lesions of spinal disk degeneration and 12 of indentation on subarachnoid space were detected with LF. On the other hand, 26 lesions of spinal disk degeneration and 38 of indentation on subarachnoid space were detected with MSE. Although the parameters of LF employed in this study were relatively effective to emphasize T2{sup *}-based contrast, the ability of LF in detection of spinal disk degeneration and indentation on subarachnoid space is less than that of MSE. Signal contrast to noise ratios for normal disk and degenerative disk, epidural-fat and disk herniated material, CSF and disk herniated material, and epidural-fat and CSF were less than 4 with LF, but more than 4 with MSE. This difference of contrast to noise ratio between MSE and LF was one of the main causes of the difference of the detection rate of spinal disk degeneration and indentation on subarachnoid space. (author).

  11. Spin dynamics of electron beams in circular accelerators

    International Nuclear Information System (INIS)

    Boldt, Oliver

    2014-04-01

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  12. Electron spin resonance and electron spin echo modulation spectroscopic studies on the structure and reactivity of Pd(I) species in SAPO-11 molecular sieves

    International Nuclear Information System (INIS)

    Chul Wee Lee; Jong-Sung Yu; Kevan, L.

    1992-01-01

    This paper explores the possibility of using Pd ions in SAPO-11 by adding [Pd(NH 3 ) 4 ] 2+ during the synthesis of SAPO-11 to form PdSAPO-11, which is compared with solid-state ion exchange PdSAPO-11 and impregnation PdH-SAPO-11 in which palladium is in an extraframework position. Electron spin resonance and electron spin echo modulation spectroscopies are used to determine if the palladium position in PdSAPO-11 is located in a framework or extraframework

  13. Observation of undulation motion of lipid bilayers by neutron spin echo

    International Nuclear Information System (INIS)

    Yamada, Norifumi L.; Seto, Hideki; Hishida, Mafumi

    2010-01-01

    Aqueous solutions of synthesized phospholipids have been well investigated as model biomembranes. These lipids usually self-assemble into regular stacks of bilayers with a characteristic repeat distance on the order of nm, whereas real biomembrane exist as single bilayers. The key phenomenon in understanding the formation of single isolated bilayers in 'unbinding' of lipid bilayers, in which the inter-bilayer distance of lipid bilayers diverges by the steric interaction due to the membrane undulation. In this paper, we show some results of neutron spin-echo (NSE) experiments to investigate the effect of the steric interaction on unbinding and related phenomena. (author)

  14. Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T

    NARCIS (Netherlands)

    Koopmans, P.J.; Boyacioglu, R.; Barth, M.; Norris, David Gordon

    2012-01-01

    This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power

  15. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    International Nuclear Information System (INIS)

    Hopper, M.A.; Robinson, P.; Grainger, A.J.

    2011-01-01

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  16. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512x358 matrix size

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, M.A.; Robinson, P. [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Grainger, A.J., E-mail: andrew.grainger@leedsth.nhs.u [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)

    2011-04-15

    Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.

  17. Detection and assignment of phosphoserine and phosphothreonine residues by {sup 13}C-{sup 31}P spin-echo difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Lawrence P., E-mail: mcintosh@chem.ubc.ca; Kang, Hyun-Seo; Okon, Mark [University of British Columbia, Department of Biochemistry (Canada); Nelson, Mary L.; Graves, Barbara J. [University of Utah, Department of Oncological Sciences, Huntsman Cancer Institute (United States); Brutscher, Bernhard [CNRS, CEA, UJF, Institut de Biologie Structurale Jean-Pierre Ebel (France)], E-mail: bernhard.brutscher@ibs.fr

    2009-01-15

    A simple NMR method is presented for the identification and assignment of phosphorylated serine and threonine residues in {sup 13}C- or {sup 13}C/{sup 15}N-labeled proteins. By exploiting modest ({approx}5 Hz) 2- and 3-bond {sup 13}C-{sup 31}P scalar couplings, the aliphatic {sup 1}H-{sup 13}C signals from phosphoserines and phosphothreonines can be detected selectively in a {sup 31}P spin-echo difference constant time {sup 1}H-{sup 13}C HSQC spectrum. Inclusion of the same {sup 31}P spin-echo element within the {sup 13}C frequency editing period of an intraHNCA or HN(CO)CA experiment allows identification of the amide {sup 1}H{sup N} and {sup 15}N signals of residues (i) for which {sup 13}C{sup {alpha}}(i) or {sup 13}C{sup {alpha}}(i - 1), respectively, are coupled to a phosphate. Furthermore, {sup 31}P resonance assignments can be obtained by applying selective low power cw {sup 31}P decoupling during the spin-echo period. The approach is demonstrated using a PNT domain containing fragment of the transcription factor Ets-1, phosphorylated in vitro at Thr38 and Ser41 with the MAP kinase ERK2.

  18. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    Science.gov (United States)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  19. High-field spin-echo MR imaging of superficial and subependymal siderosis secondary to neonatal intraventricular hemorrhage

    International Nuclear Information System (INIS)

    Gomori, J.M.; Grossman, R.I.; Goldberg, H.I.; Zimmerman, R.A.; Bilaniuk, L.T.

    1987-01-01

    Two cases of superficial siderosis with subependymal siderosis, secondary to neonatal intraventricular hemorrhage, are presented. High-field spin-echo MR imaging (1.5 Tesla) showed marginal hypointensity of the ventricular walls as well as of the subpial regions. These findings were most evident on T 2 weighted images, characteristic of hemosiderotic deposits. (orig.)

  20. Note: A new design for a low-temperature high-intensity helium beam source

    Science.gov (United States)

    Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.

    2013-02-01

    A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.

  1. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    NARCIS (Netherlands)

    Iashina, E.G.; Bouwman, W.G.; Duif, C.P.; Filatov, M.V.; Grigoriev, S. V.

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei

  2. Determination of the amounts of C, CH, CH/sub 2/, and CH fragments by the spin echo method

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Latyshev, V.P.

    1984-01-01

    A new method has been developed for the quantitative determination of the amounts of primary, secondary, tertiary, and quaternary carbon atoms in soluble products of coal origin which is based on pulsed sequence of /sup 13/C NMR spin echo.

  3. Fast spin-echo MR imaging of the eye

    International Nuclear Information System (INIS)

    Hosten, N.; Lemke, A.J.; Bornfeld, N.; Wassmuth, R.; Schweiger, U.; Terstegge, K.; Felix, R.

    1996-01-01

    Magnetic resonance imaging of the eye usually includes T2-weighted images both for screening purposes and for characterization of melanoma. Conventional T2-weighted spin-echo (SE) imaging suffers both from long acquisition times and incomplete recovery of the virteous' signal. A fast SE sequence was therefore compared prospectively with conventional sequences in 29 consecutive patients with lesions of the eye. Fast SE images delineated melanoma and other lesions of the eye from vitreous better than conventional T2-weighted images. Image quality and lesion conspicuity were improved on the fast sequence. Whereas melanoma appeared hypointense to vitreous on both types of images, subretinal effusion was hypointense on fast images and hyperintense on conventional T2-weighted images. Ghosting of the globe, which, however, did not decrease diagnostic value, was more pronounced on fast images. Conventional T2-weighted images may be replaced by fast SE images in MR studies of the eye with a gain in lesion conspicuity and significant time saving. (orig.)

  4. Polarization of a stored beam by spin filtering

    International Nuclear Information System (INIS)

    Weidemann, C.

    2014-01-01

    In 2011 the PAX Collaboration has performed a successful spin-filtering test using protons at Tp = 49.3 MeV at the COSY ring, which confirms that spin filtering is a viable method to polarize a stored beam and that the present interpretation of the mechanism in terms of the proton-proton interaction is correct. The equipment and the procedures to produce stored polarized beams was successfully commissioned and are established. The outcome of the experiment is of utmost importance in view of the possible application of the method to polarize a beam of stored antiprotons. (author)

  5. Spin-flipping a stored polarized proton beam with an rf dipole

    International Nuclear Information System (INIS)

    Blinov, B.B.; Derbenev, Ya.S.; Kageya, T.; Kantsyrev, D.Yu.; Krisch, A.D.; Morozov, V.S.; Sivers, D.W.; Wong, V.K.; Anferov, V.A.; Schwandt, P.; Przewoski, B. von

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet's frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole's field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical

  6. A quasi-elastic neutron scattering and neutron spin-echo study of hydrogen bonded system

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Magazu, S.; Maisano, G.; Mangione, A

    2004-07-15

    This work reports neutron spin echo results on aqueous solutions of trehalose, a naturally occurring disaccharide of glucose, showing an extraordinary bioprotective effectiveness against dehydration and freezing. We collected data using the SPAN spectrometer (BENSC, Berlin) on trehalose aqueous solutions at different temperature values. The obtained findings are compared with quasi-elastic neutron scattering results in order to furnish new results on the dynamics of the trehalose/water system on the nano and picoseconds scale.

  7. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-07-15

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site.

  8. Utility of two types of MR cisternography for patency evaluation of aqueduct and third ventriculostomy site: Three dimentsional sagittal fast spin echo sequence and steady-state coherent fast gradient echo sequence

    International Nuclear Information System (INIS)

    Park, Jung Hyun; Kim, Eun Hee; Park, Jong Bin; Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheol Kyu; Bae, Yun Jung; Lee, Kyung Mi

    2015-01-01

    We aimed to evaluate the utility of two types of MR cisternography [fast spin echo sequence and steady-state coherent gradient echo (GRE) sequence] in addition to phase contrast-cine imaging (PC-cine), for assessing patency at the aqueduct and third ventriculostomy site. 43 patients (35 patients with suspected aqueductal stenosis and 8 patients with third ventriculostomy) were retrospectively analyzed. PC-cine, 3 dimensional sagittal fast spin echo sequence [driven-equilibrium imaging (DRIVE) or volumetric isotrophic T2-weighted acquisition (T2 VISTA)] and steady-state coherent fast GRE sequence (balanced turbo field echo; bTFE) imaging were performed in all patients. The patency of the aqueduct or third ventriculostomy site was scored. Some pitfalls of each sequence were also analyzed in individual cases. 93% of all cases showed consistent scores in PC-cine, DRIVE/T2 VISTA, and bTFE imaging. DRIVE/T2 VISTA imaging provided functional information of cerebrospinal fluid flow with flow-related artifacts, while bTFE imaging allowed direct visualization of the aqueduct or ventriculostomy site. However, evaluation of anatomical structures was difficult in three cases with strong flow-related artifacts on DRIVE/T2 VISTA and in 2 cases with susceptibility artifacts on bTFE. Both DRIVE/T2 VISTA and bTFE imaging have complementary roles in evaluating the patency of the aqueduct and 3rd ventriculostomy site

  9. A neutron spin echo spectrometer with two optimal field shape coils for neutron spin precession

    International Nuclear Information System (INIS)

    Takeda, T.; Ebisawa, T.; Tasaki, S.; Ito, Y.; Takahashi, S.; Yoshizawa, H.

    1995-01-01

    We have designed and have been constructing at the C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimal field shape (OFS) coils for neutron spin precession with the maximum field integral of 0.22 T m, an assembly of position sensitive detectors (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.005 A -1 to 0.2 A -1 and that of energy hω from 10 neV to 30 μeV. Performance tests of the OFS coils show that the inhomogeneity of the magnetic field integral in the OFS coils with the spiral coils is so small that the NSE signal amplitude decreases little even for the neutron cross section of 30 mm diameter as the Fourier time t increases up to 25 ns, though the precession coils are close to iron covers of the neighboring neutron guide. This verifies that the OFS precession coils are appropriate for this NSE spectrometer. Another test experiment shows that the homogeneity condition of the precession magnet is loosened by use of PSD. (orig.)

  10. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion......, GE-EPI under the present condition was superior to SE-EPI in monitoring cerebral vascular changes...

  11. Improved visualization of collateral ligaments of the ankle: multiplanar reconstructions based on standard 2D turbo spin-echo MR images

    International Nuclear Information System (INIS)

    Duc, Sylvain R.; Mengiardi, Bernard; Pfirrmann, Christian W.A.; Hodler, Juerg; Zanetti, Marco

    2007-01-01

    The purpose of the study was to evaluate the visualization of the collateral ankle ligaments on multiplanar reconstructions (MPR) based on standard 2D turbo spin-echo images. Coronal and axial T2-weighted turbo spin-echo and MPR angled parallel to the course of the ligaments of 15 asymptomatic and 15 symptomatic ankles were separately analyzed by two musculoskeletal radiologists. Image quality was assessed in the asymptomatic ankles qualitatively. In the symptomatic ankles interobserver agreement and reader confidence was determined for each ligament. On MPR the tibionavicular and calcaneofibular ligaments were more commonly demonstrated on a single image than on standard MR images (reader 1: 13 versus 0, P=0.002; reader 2: 14 versus 1, P=0.001 and reader 1: 13 versus 2, P=0.001; reader 2: 14 versus 0, P<0.001). The tibionavicular ligament was considered to be better delineated on MPR by reader 1 (12 versus 3, P=0.031). In the symptomatic ankles, reader confidence was greater with MPR for all ligaments except for the tibiocalcanear ligament (both readers) and the anterior and posterior talofibular ligaments (for reader 2). Interobserver agreement was increased with MPR for the tibionavicular ligament. Multiplanar reconstructions of 2D turbo spin-echo images improve the visualization of the tibionavicular and calcaneofibular ligaments and strengthen diagnostic confidence for these ligaments. (orig.)

  12. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; SATOGATA, T.; TOMAS, R.

    2005-01-01

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time τ after the dipole kick, the beam re-cohered at time 2τ thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering

  13. Correction of inhomogeneous RF field using multiple SPGR signals for high-field spin-echo MRI

    International Nuclear Information System (INIS)

    Ishimori, Yoshiyuki; Monma, Masahiko; Yamada, Kazuhiro; Kimura, Hirohiko; Uematsu, Hidemasa; Fujiwara, Yasuhiro; Yamaguchi, Isao

    2007-01-01

    The purpose of this study was to propose a simple and useful method for correcting nonuniformity of high-field (3 Tesla) T 1 -weighted spin-echo (SE) images based on a B1 field map estimated from gradient recalled echo (GRE) signals. The method of this study was to estimate B1 inhomogeneity, spoiled gradient recalled echo (SPGR) images were collected using a fixed repetition time of 70 ms, flip angles of 45 and 90 degrees, and echo times of 4.8 and 10.4 ms. Selection of flip angles was based on the observation that the relative intensity changes in SPGR signals were very similar among different tissues at larger flip angles than the Ernst angle. Accordingly, spatial irregularity that was observed on a signal ratio map of the SPGR images acquired with these 2 flip angles was ascribed to inhomogeneity of the B1 field. Dual echo time was used to eliminate T 2 * effects. The ratio map that was acquired was scaled to provide an intensity correction map for SE images. Both phantom and volunteer studies were performed using a 3T magnetic resonance scanner to validate the method. In the phantom study, the uniformity of the T 1 -weighted SE image improved by 23%. Images of human heads also showed practically sufficient improvement in the image uniformity. The present method improves the image uniformity of high-field T 1 -weighted SE images. (author)

  14. A fast random walk algorithm for computing the pulsed-gradient spin-echo signal in multiscale porous media.

    Science.gov (United States)

    Grebenkov, Denis S

    2011-02-01

    A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Moderately T2-weighted images obtained with the single-shot fast spin-echo technique. Differentiating between malignant and benign urinary obstructions

    International Nuclear Information System (INIS)

    Obuchi, Masao; Sugimoto, Hideharu; Kubota, Hayato; Yamamoto, Wakako; Kinebuchi, Yuko; Honda, Minoru; Takahara, Taro

    2002-01-01

    The purpose of this study was to determine whether a distinction could be made between benign and malignant urinary obstructions in moderately T 2 -weighted images obtained with the single-shot fast spin-echo technique. Forty-four lesions in 39 patients with urinary obstruction were evaluated with the single-shot fast spin-echo (SSFSE) technique with an effective TE of 90-100 ms and without fat saturation. Benign and malignant lesions were compared for the presence of ureteral wall thickening and a signal intensity relative to the proximal ureteral wall. Statistically significant differences were found between benign and malignant lesions in both morphologic change (P 2 -weighted SSFSE technique without fat saturation can accurately distinguish between benign and malignant urinary obstructions. (author)

  16. Determination of the amounts of C, CH, CH/sub 2/ and CH/sub 3/ fragments by the spin echo method

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Latyshev, V.P.

    1984-01-01

    A new method is presented for the quantitative determination of primary, secondary, tertiary and quarternary carbon atoms in soluble coal products. The method is based on pulsed spin echo of /sup 13/C nuclear magnetic resonance.

  17. Echo-Interleaved-Spiral MR Imaging

    International Nuclear Information System (INIS)

    Rosenthal, Shirrie; Azhari, Haim; Montag, Avram

    1998-01-01

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors)

  18. Fullerene-containing polymeric stars in bulk and solution by neutron spin-echo

    CERN Document Server

    Lebedev, V T; Toeroek, G; Cser, L; Bershtein, V A; Zgonnik, V N; Melenevskaya, E Y; Vinogradova, L V

    2002-01-01

    Stars with C sub 6 sub 0 fullerene core and poly (styrene) (PS) arms have been studied in benzene and in the bulk by neutron spin echo (NSE). Behaviours of stars (six arms, each with a mass M=5.10 sup 3) at momentum transfer q=0.2-0.6 nm sup - sup 1 in the time range t=0.01-20 ns at temperatures T=20-60 C were compared with dynamics of free PS chains. Displaying depressed molecular mobility, the stars did not obey the usual dynamic Zimm or Rouse model. The fullerene polymer interaction at a specific molecular architecture results in oscillating dynamics. (orig.)

  19. Spin flipping a stored polarized proton beam at the IUCF cooler ring

    International Nuclear Information System (INIS)

    Phelps, R.A.

    1995-01-01

    We recently studied the spin flip of a vertically polarized 139 MeV proton beam stored in the IUCF Cooler Ring. We used an rf solenoid to induce a depolarizing resonance in the ring; we flipped the spin by varying the solenoid field's frequency through this resonance. We found a polarization loss after multiple spin flips less than 0.1% per flip; we also found that this loss increased for very slow frequency changes. This spin flip could reduce systematic errors in stored polarization beam experiments by allowing frequent beam polarization reversals during the experiment. copyright 1995 American Institute of Physics

  20. Reducing contrast contamination in radial turbo-spin-echo acquisitions by combining a narrow-band KWIC filter with parallel imaging.

    Science.gov (United States)

    Neumann, Daniel; Breuer, Felix A; Völker, Michael; Brandt, Tobias; Griswold, Mark A; Jakob, Peter M; Blaimer, Martin

    2014-12-01

    Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting dataset is undersampled and, therefore, an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared with Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. © 2014 Wiley Periodicals, Inc.

  1. Echo-Interleaved-Spiral MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Shirrie; Azhari, Haim [Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Montag, Avram [Elscint Ltd., MRI division, Haifa (Israel)

    1999-12-31

    Interleaved-Spiral imaging is an efficient method for MRI fast scans. However, images suffer from blurring and artifacts due to field inhomogeneities and the long readout times. In this paper, we combine interleaved-spirals with spin-echo for 3D scans. The refocusing RF-pulses (echoes) refocus off-resonance spins, thus allowing longer acquisition times per excitation, by limiting inhomogeneity effects. The total number of excitations for a 3D scan is reduced by half. The 3D Fourier transform of an object is divided into pairs of slices, one slice is scanned in an outgoing interleaved-spiral, initiated after a 90 degree pulse has been applied. The second slice is scanned in an ingoing interleaved-spiral, after a 180 degree pulse has been applied, thus reaching the slice origin at the echo time. (authors) 4 refs., 3 figs.

  2. Comparison of a conventional cardiac-triggered dual spin-echo and a fast STIR sequence in detection of spinal cord lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Bot, J.C.J.; Barkhof, F.; Lycklama a Nijeholt, G.J.; Bergers, E.; Castelijns, J.A.; Polman, C.H.; Ader, H.J.

    2000-01-01

    The current optimal imaging protocol in spinal cord MR imaging in patients with multiple sclerosis includes a long TR conventional spin-echo (CSE) sequence, requiring long acquisition times. Using short tau inversion recovery fast spin-echo (fast STIR) sequences both acquisition time can be shortened and sensitivity in the detection of multiple sclerosis (MS) abnormalities can be increased. This study compares both sequences for the potential to detect both focal and diffuse spinal abnormalities. Spinal cords of 5 volunteers and 20 MS patients were studied at 1.0 T. Magnetic resonance imaging included cardiac-gated sagittal dual-echo CSE and a cardiac-gated fast STIR sequence. Images were scored regarding number, size, and location of focal lesions, diffuse abnormalities and presence/hindrance of artifacts by two experienced radiologists. Examinations were scored as being definitely normal, indeterminate, or definitely abnormal. Interobserver agreement regarding focal lesions was higher for CSE (κ=0.67) than for fast STIR (κ=0.57) but did not differ significantly. Of all focal lesions scored in consensus, 47 % were scored on both sequences, 31 % were only detected by fast STIR, and 22 % only by dual-echo CSE (n. s.). Interobserver agreement for diffuse abnormalities was lower with fast STIR (κ=0.48) than dual-echo CSE (κ=0.65; n. s.). After consensus, fast STIR showed in 10 patients diffuse abnormalities and dual-echo CSE in 3. After consensus, in 19 of 20 patients dual-echo CSE scans were considered as definitely abnormal compared with 17 for fast STIR. The fast STIR sequence is a useful adjunct to dual-echo CSE in detecting focal abnormalities and is helpful in detecting diffuse MS abnormalities in the spinal cord. Due to the frequent occurrence of artifacts and the lower observer concordance, fast STIR cannot be used alone. (orig.)

  3. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Kakite, Suguru, E-mail: sugkaki@med.tottori-u.ac.jp [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Fujii, Shinya [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kurosaki, Masamichi [Department of Neurosurgery, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan); Kanasaki, Yoshiko; Matsusue, Eiji; Kaminou, Toshio; Ogawa, Toshihide [Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago 683-8503 (Japan)

    2011-07-15

    Introduction: To clarify whether a three-dimensional-gradient echo (3D-GRE) or spin echo (SE) sequence is more useful for evaluating sellar lesions on contrast-enhanced T1-weighted MR imaging at 3.0 Tesla (T). Methods: We retrospectively assessed contrast-enhanced T1-weighted images using 3D-GRE and SE sequences at 3.0 T obtained from 33 consecutive patients with clinically suspected sellar lesions. Two experienced neuroradiologists evaluated the images qualitatively in terms of the following criteria: boundary edge of the cavernous sinus and pituitary gland, border of sellar lesions, delineation of the optic nerve and cranial nerves within the cavernous sinus, susceptibility and flow artifacts, and overall image quality. Results: At 3.0 T, 3D-GRE provided significantly better images than the SE sequence in terms of the border of sellar lesions, delineation of cranial nerves, and overall image quality; there was no significant difference regarding the boundary edge of the cavernous sinus and pituitary gland. In addition, the 3D-GRE sequence showed fewer pulsation artifacts but more susceptibility artifacts. Conclusion: Our results indicate that 3D-GRE is the more suitable sequence for evaluating sellar lesions on contrast-enhanced T1-weighted imaging at 3.0 T.

  4. Anteroinferior tears of the glenoid labrum: fat-suppressed fast spin-echo T2 versus gradient-recalled echo MR images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); De Smet, A A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Norris, M A [Department of Radiology, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States); Orwin, J F [Department of Orthopedic Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792 (United States)

    1997-05-01

    Objective. To compare fat-suppressed fast spin-echo (FSE) T2-weighted images with gradient-recalled echo (GRE) T2*-weighted images in the evaluation of anteroinferior labral tears. Design. MR images were retrospectively reviewed by two radiologists masked to the history and arthroscopic findings. They separately interpreted the anteroinferior labrum as torn or intact, first on one pulse sequence and then, 4 weeks later, on the other sequence. The MR interpretations were correlated with the arthroscopic findings. Patients. Nine patients with anteroinferior labral tears, and nine similarly-aged patients with normal, labra were studied. Results and conclusions. Observer 1 had a sensitivity of 0.56 on the GRE images and 0.67 on the FSE images (P>0.5), with a specificity of 1.0 for both sequences. Observer 2 had a sensitivity of 0.78 and a specificity of 0.89 for both sequences. In this small study there is no significant difference between GRE and fat-suppressed FSE images in their ability to diagnose anteroinferior labral tears. When evaluating the labrum with conventional MRI, axial fat-suppressed FSE T2-weighted images can be used in place of GRE images without a loss of accuracy. (orig.). With 3 figs., 1 tab.

  5. MRI in neuro-Behcet's syndrome: comparison of conventional spin-echo and FLAIR pulse sequences

    International Nuclear Information System (INIS)

    Jaeger, H.R.; Albrecht, T.; Curati-Alasonatti, W.L.; Williams, E.J.; Haskard, D.O.

    1999-01-01

    We compared the sensitivity of a fluid-attenuated inversion-recovery (FLAIR) sequence with that of a conventional dual-echo spin-echo (SE) sequence to brain lesions in 20 patients with Behcet's syndrome. They underwent 25 MRI examinations. The images were independently analysed for the number, type and anatomical location of lesions shown. There were 18 abnormal studies (13 initial and 5 follow-up). The FLAIR sequence detected significantly more lesions than the SE TE 80 (P < 0.05) and SE TE 20 (P < 0.01) sequences. It was particularly useful for demonstrating lesions in the juxtacortical white matter, which accounted for over half the lesions detected on the FLAIR images. Of patients presenting with nonspecific symptoms such as headache, seven had normal and five had abnormal studies. All patients presenting with focal neurological signs had abnormal imaging. We found supratentorial and, in particular, juxtacortical lesions to be more frequent than previously described. (orig.)

  6. Spin Hall effect of a light beam in left-handed materials

    International Nuclear Information System (INIS)

    Luo Hailu; Wen Shuangchun; Shu Weixing; Tang Zhixiang; Zou Yanhong; Fan Dianyuan

    2009-01-01

    We establish a general propagation model to describe the spin Hall effect of light beam in left-handed materials (LHMs). A spin-dependent shift of the beam centroid perpendicular to the refractive index gradient for the light beam through an air-LHM interface is demonstrated. For a certain circularly polarized component, whether the transverse shift is positive or negative depends on the magnitude of the refractive index gradient. Very surprisingly, the spin Hall effect in the LHM is unreversed, although the sign of refractive index gradient is reversed. The physics underlying this counterintuitive effect is that the spin angular momentum of photons is unreversed. Further, we reveal that the angular shift in the LHM is reversed due to the negative diffraction. These findings provide alternative evidence for that the linear momentum of photons is reversed, while the spin angular momentum is unreversed in the LHM.

  7. Dynamics of polymers in elongational flow studied by the neutron spin-echo technique

    International Nuclear Information System (INIS)

    Rheinstaedter, Maikel C.; Sattler, Rainer; Haeussler, Wolfgang; Wagner, Christian

    2010-01-01

    The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2 O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.

  8. A spin-transport system for a longitudinally polarized epithermal neutron beam

    International Nuclear Information System (INIS)

    Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.

    2001-01-01

    The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed

  9. Evaluation of turbo spin echo sequences for MRI of focal liver lesions at 0.5 T

    International Nuclear Information System (INIS)

    Kreft, B.; Layer, G.; Steudel, A.; Spiller, L.; Heuck, A.; Mueller, A.; Gieseke, J.; Reiser, M.F.

    1994-01-01

    To determine whether turbo spin echo (TSE) sequences can replace conventional T2-weighted spin echo (SE) sequences in MRI of the liver, 40 patients with focal liver lesions were imaged at 0.5 T. A T2-weighted SE sequence (TR/TE 1800/90 ms, number of signals averaged [NEX] = 2, scan time 7:16 min), a TSE sequence (TR/TE 1800/90 ms, NEX = 4, number of echos per excitation = 13, echo spacing = 12.9 ms, scan time = 4:16 min) and a T1-weighted SE sequence (TR/TE 350/15 ms, NEX = 2, scan time = 4:21 min) were obtained and image quality, lesion detectability and lesion differentiation were evaluated qualitatively by subjective assessment using scores and quantitatively by lesion-liver contrast-to-noise (CNR) and tumour/liver signal intensity (SI) ratios. The image quality of the TSE sequence was substantially better compared with the T2-weighted SE sequence due to a reduction in motion artefacts and better delineation of anatomical details. Of a total of 158 visible lesions the T1-weighted SE, TSE and T2-weighted SE sequences showed 91 %, 81 % and 65 % of the lesions, respectively. Thus the TSE sequence depicted 24 % (P < 0.001) more lesions than the T2-weighted SE sequence. In all types of pathology the lesion-liver CNR of the TSE sequence was significantly (P < 0.001) higher compared to the CNR of the T2-weighted SE sequence ( +55-65 %), indicating superior lesion conspicuity. Lesion characterization was equally good on the two T2-weighted sequences with no difference in the tumour/liver SI ratio. Using a criterion of tumour/liver SI ratio equal to or higher than 2, haemangiomas larger than 1 cm in diameter could be differentiated from other lesions with a sensitivity and specificity of 95 % and 96 %, respectively. Our results indicate that the TSE sequence is suitable for replacing the conventional T2-weighted SE sequence in MRI of focal liver lesions. (orig.)

  10. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane.

    Science.gov (United States)

    Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E

    2017-02-01

    To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (pT2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Fast fluid-attenuated inversion-recovery MR image in the intracranial tumors: comparison with fast spin-echo image

    International Nuclear Information System (INIS)

    Choi, Hye Young; Kwang, Hyoen Joo; Baek, Seoung Yeon; Lee, Sun Wha

    1997-01-01

    To evaluate the significance of fluid-attenuated inversion recovery(FLAIR) magnetic resonance(MR) images for the diagnosis of intracranial tumors. MR imaging was used to study 15 patients with various intracranial tumors and were compared the findings according to fast spin echo and fast FLAIR images. In 12 of 15 patients, tumor signal intensities on FLAIR images were consistent with those shown on T2-weighted(T2W) images. In seven of eight patients who had cystic or necrotic components within the mass, FLAIR images showed isosignal intensity and in the other patient, high signal intensity was seen. There was variation in the signal intensity from cerebrospinal fluid(CSF). In 12 of 13 patients in whom edema was associated with tumor, FLAIR images were clearer than T2W images as their signal intensity was brighter. In eight patients, however, FLAIR and T2W images provided a similar definition of the margin between edema and tumor. In six patients with intratumoral hemorrhage except the chronic cystic stage. We concluded that in the diagnosis of intracranial tumors, FLAIR images can supplement conventional spin-echo images

  12. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging

    International Nuclear Information System (INIS)

    Noguchi, K.; Ogawa, T.; Inugami, A.; Fujita, H.; Hatazawa, J.; Shimosegawa, E.; Okudera, T.; Uemura, K.; Seto, H.

    1997-01-01

    Fluid-attenuated inversion-recovery (FLAIR) sequences have been reported to provide high sensitivity to a wide range of central nervous system diseases. To our knowledge, however, FLAIR sequences have not been used to study patients with acute cerebral infarcts. We evaluated the usefulness of FLAIR sequences in this context. FLAIR sequences were acquired on a 0.5 T superconducting unit within 8 h of the onset in 19 patients (aged 26-80 years) with a total of 23 ischaemic lesions. The images were reviewed retrospectively by three neuroradiologists, and the FLAIR images were compared with T2-weighted fast spin-echo images. All but one of the ischaemic lesions involving grey matter was clearly demonstrated on FLAIR images as increased signal intensity in cortical or central grey matter. FLAIR images were particularly useful for detecting the hyperacute cortical infarcts within 3 h of onset, which were not readily detected on the spin-echo images. In 9 of 11 patients with complete proximal occlusion, the distal portion of the cerebral artery was visible as an area of high signal intensity on FLAIR images. (orig.). With 4 figs., 1 tab

  13. Three-dimensional fast recovery fast spin-echo imaging of the inner ear and the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, K.; Morikawa, M.; Ishimaru, H.; Ochi, M.; Hayashi, K. [Department of Radiology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501 (Japan); Kabasawa, H. [GE Yokogawa Medical Systems, Tokyo (Japan)

    2002-11-01

    The aim of this study was to assess the performance of three-dimensional fast recovery fast spin-echo (3DFRFSE) for imaging of the inner ear as well as the facial and vestibulocochlear nerves. We evaluated 3DFRFSE sequences, comparing it with 3D fast spin-echo (3DFSE) in a water phantom and in 12 normal volunteers. We also examined 66 patients using 3DFRFSE sequence and assessed the visualization of their pathologies. In a water phantom study, signal intensity (SI) on 3DFRFSE was higher than that on 3DFSE at the same TR ranging from 1500 to 6000 ms. In normal volunteers, 3DFRFSE with TR of 2800 ms showed comparable SI, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) superior to those on 3DFSE with TR of 5000 ms. In clinical setting, 3DFRFSE was useful in demonstrating anatomic details in the labyrinth and pathologic findings of inner ear. The 3DFRFSE can provide high-resolution heavily T2-weighted images (T2WI) with shorter scan time than 3DFSE without significant disadvantage. The 3DFRFSE is a beneficial technique for evaluation of lesions in the inner ear as well as the facial and vestibulocochlear nerves. (orig.)

  14. Differential diagnosis of extra-axial intracranial tumours by dynamic spin-echo MRI

    International Nuclear Information System (INIS)

    Joo, Y.G.; Korogi, Y.; Hirai, T.; Sakamoto, Y.; Sumi, M.; Takahashi, M.; Ushio, Y.

    1995-01-01

    Dynamic MRI was performed on 22 patients with extra-axial intracranial tumours. Serial images were obtained every 30 s for 3 min using a spin-echo sequence (TR 200, TE 15 ms) after rapid injection of Gd-DTPA, 0.1 mmol/kg body weight. The contrast medium enhancement ratio (CER) was correlated with the histology of the tumours. Meningiomas and extra-axial metastases showed a sharp rise, then a gradual decline. Although both had a definite early peak of CER, metastases showed a more rapid decline. Neuromas and extra-axial lymphoma showed a slow, steady increase with no peak within 180 s. This study indicates that the CER is helpful in the differentiation of extra-axial tumours. (orig.)

  15. Spin transfer matrix formulation and snake resonances for polarized proton beams

    International Nuclear Information System (INIS)

    Tepikian, S.

    1986-01-01

    The polarization of a spin polarized proton beam in a circular accelerator is described by a spin transfer matrix. Using this method, they investigate three problems: (1) the crossing of multiple spin resonances, (2) resonance jumping and (3) an accelerator with Siberian snakes. When crossing two (or more) spin resonances, there are no analytic solutions available. However, they can obtain analytic expressions if the two spin resonances are well separated (nonoverlapping) or very close together (overlapping). Between these two extremes they resort to numerical solution of the spin equations. Resonance jumping can be studied using the tools developed for analyzing the cross of multiple spin resonances. These theoretical results compare favorably with experimental results obtained from the AGS at Brookhaven. For large accelerators, resonance jumping becomes impractical and other methods such as Siberian snakes must be used to keep the beam spin polarized. An accelerator with Siberian snakes and isolated spin resonances can be described with a spin transfer matrix. From this, they find a new type of spin depolarizing resonance, called snake resonances

  16. Magnetic resonance findings in amyotrophic lateral sclerosis using a spin echo magnetization transfer sequence: preliminary report

    Directory of Open Access Journals (Sweden)

    ROCHA ANTÔNIO JOSÉ DA

    1999-01-01

    Full Text Available We present the magnetic resonance (MR findings of five patients with amyotrophic lateral sclerosis (ALS using a spin-echo sequence with an additional magnetization transfer (MT pulse on T1-weighted images (T1 SE/MT. These findings were absent in the control group and consisted of hyperintensity of the corticospinal tract. Moreover we discuss the principles and the use of this fast but simple MR technique in the diagnosis of ALS

  17. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2016-01-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas. - Highlights: • Optical nondiffracting nonparaxial fractional Bessel vortex beam is considered. • Negative spin torque on an absorptive dielectric Rayleigh sphere is predicted numerically. • Negative spin torque occurs as the sphere departs from the center of the beam.

  18. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  19. Echo III: The study of electric and magnetic fields with conjugate echoes from artificial electron beams injected into the auroral zone ionosphere

    International Nuclear Information System (INIS)

    Hendrickson, R.A.; Winckler, J.R.; Arnoldy, R.L.

    1976-01-01

    The third in a series of rocket flights carrying large electron guns for electron beam-plasma analysis and magnetosphere probing has been carried out from the Poker Flat rocket range near Fairbanks, Alaska at L=6. Echoes from the injected electrons mirroring at the southern hemisphere conjugate point were observed on the rocket by particle detectors and in the nearby ionosphere by photometers on board the rocket. The bounce time and drift velocities of the echoes were measured using the known trajectory and aspect of the rocket. Ionospheric electric fields near the rocket were inferred from drift motion of the ambient ion population measured by two techniques, electrostatic analyzers on board the rocket and incoherent backscatter radar from the ground. Using model magnetic fields, gradient and curvature drift and bound times have been computed under the conditions appropriate for this experiment. Assuming that field lines are equipotentials, the addition of the observed ionospheric electric field drift to the model-independent gradient and curvature drifts predicts a net echo drift velocity that is in agreement with the observations, provided the Mead-Fairfield 1972--73 model is used. The observed bounce time constitutes an independent model check and is in better agreement with the Olson-Pfitzer model. Echo spatial and temporal fluctuations reflected the turbulence associated with the diffuse aurora into which the rocket was launched

  20. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  1. Using multi-beam echo sounder backscatter data for sediment classification in very shallow water environments

    NARCIS (Netherlands)

    Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G.

    2009-01-01

    In a recent work described in Ref. [1], an angle-independent methodology was developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed sediment classification. The method employs the backscatter data at a certain angle to obtain the number of sediment classes and to

  2. Usefulness of turbo spin-echo MR imaging in meniscal tears of the knee

    International Nuclear Information System (INIS)

    Jeong, Gun Young; Choi, Chang Lak; Chung, Jin Young; Han, Tae Il; Jang, Hong Im; Kim, Ji Min; Han, Hyun Young; Song, Mun Kab; Yang, Chang Kyu

    1998-01-01

    To evaluate the usefulness and diagnostic accuracy of turbo spin-echo(TSE) proton-density and T2-weighted images of meniscal tears of the knee. We retrospectively evaluated the sensitivity, specificity, and accuracy of TSE proton density and T2-weighted images of meniscal tears confirmed arthroscopically or surgically in 47 patients(98 menisci). The routine TSE parameters used in all patients were the dual echo sequence with sagittal proton density and T2-weighed images(4000/16, 90/5/2 [TR/effectiveTE/ETL/NEX]), and fat-suppressed coronal proton density and T2-weighted images. The chi-square test was used for statistical analysis. The sensitivity, specificity, and accuracy of TSE proton density images for the detection of meniscal tears were 93.9%, 93.8%, and 93.9%, respectively, in the medial meniscus, and 92.9%, 91.4%, and 91.8% in the lateral. On T2-weighted images the corresponding figures were 87.9%, 8%, and 89.8%, respectively, in the medial meniscus, and 64.3%, 91.4%, and 83.7% in the lateral. With regard to sensitivity and accuracy, TSE proton density images of meniscal tears were superior to TSE T2-weighted images.=20

  3. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  4. Spatial resolution properties in 3D fast spin-echo using variable refocusing flip angles

    International Nuclear Information System (INIS)

    Ozaki, Masanori; Mizukami, Shinya; Hata, Hirofumi; Sato, Mayumi; Komi, Syotaro; Miyati, Tosiaki; Nozaki, Atsushi

    2011-01-01

    A new 3-dimensional fast spin-echo (3D FSE) method that uses a variable refocusing flip angle technique has recently been applied to imaging. The imaging pulse sequence can inhibit T 2 decay by varying the refocusing flip angle. Use of a long echo train length allows acquisition of 3D T 2 -weighted images with less blurring in a short scan time. The smaller refocusing flip angle in the new 3D FSE method than in the conventional method can reduce the specific absorption rate. However, T 2 decay differs between the new and conventional 3D FSE methods, so the resolution properties of the 2 methods may differ. We investigated the resolution properties of the new 3D FSE method using a variable refocusing flip angle technique. Varying the refocusing flip angle resulted in different resolution properties for the new 3D FSE method compared to the conventional method, a difference particularly noticeable when the imaging parameters were set for obtaining proton density weighted images. (author)

  5. POLARIZED BEAMS: 1 - Longitudinal electron spin polarization at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-09-15

    Wednesday 4 May marked a turning point in the art of the manipulation of spins in electron storage rings: longitudinal electron spin polarization (with the spins oriented along the electrons' direction of motion) was established in the electron ring of HERA, the electronproton collider at DESY in Hamburg. A polarization level of about 55% was obtained and polarizations of over 60% were reproducibly obtained in the following days. The beam energy was 27.52 GeV, corresponding to half integer spin tune of 62.5.

  6. Comparison of fast spin echo, fast multiplanner spoiled gradient recalled and conventional T1 and T2 weighted imaging for experimentally induced hepatic tumors in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Jin; Lee, Jong Tae; Suh, Jin Suk; Choi, Pil Sik; Lee, Yeon Hee; Yoo, Hyung Sik; Kim, Ki Whang [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1994-10-15

    To compare the ability of tumor detection and the lesion conspicuity between T1- and T2-weighted fast scanning sequence and T1- and T2-weighted conventional spin echo techniques in MR imaging of hepatic tumors. Hepatic tumors were induced on 13 male Sprague-Dawley rats by feeding 3'-methyl-dimethylethyl aminoazobenzene mixed with Miller's III formula for 12 weeks. MR images were obtained with 1.5 T magnet with dual TMJ coil(Sigma, GE Medical systems, Milwaukee, USA). Animals were anesthetized with 150 mg/kg of ketamine hydrochloride. T2 weighted fast spin echo(FSE), conventional spin echo(CSE) T2- and T1WI, fast multiplanner spoiled gradient recalled(FMPSPGR) imaging were obtained. Number of detected tumors and contrast-to-noise ratio of the tumors were compared for each sequence. Overall 110 tumors were developed. 75% of the tumors were detected on FSE. 65% on FMPSPGR, 41% on conventional T2WI, and 41% on T1WI images. For tumors more than 5 mm in diameter, sensitivity was 88% on FMPSPGR, 65% on conventional T2WI, and 81% on T1WI images respectively. CNR of the tumor was 28.94 {+-} 21.6 on FSE, 13.57 {+-} 8.64 on FMPSPGR, 12.62 {+-} 10.65 on CSE T2WI, and 9.47 {+-} 8.05 on CSE T1WI images, which was significantly high on FSE(p<0.05). Fast spin echo T2WI shows highest sensitivity and tumor-to-liver contrast. FMPSPGR imaging is also favorably comparable with conventional T1WI. Therefore, these two pulse sequences can be useful in clinical condition for hepatic MR imaging.

  7. Short echo time, fast gradient-echo imaging

    International Nuclear Information System (INIS)

    Haacke, E.M.; Lenz, G.W.

    1987-01-01

    Present fast-gradient-echoes schemes can acquire volume data rapidly and are flexible in T1 or T1/T2 contrast behavior. However, sequences used to date employ echo time (TE) values of about 15 ms +- 5 and, because of in vivo field inhomogeneities (short T2), they suffer badly from signal loss near sinuses and tissue boundaries. The authors implemented sequences with TE = 4-6 ms and found significant improvement in image quality, especially at high fields. Examples with long TEs vs. short TEs are given in the knee, spine, head, and orbits. Further advantages include (1) faster repetition times (15 ms), (2) higher-quality spin-density or T1-weighted images, and (3) reduction of blood motion artifacts

  8. Self-diffusion imaging by spin echo in Earth's magnetic field.

    Science.gov (United States)

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.

  9. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... was the effect of repeated bolus injections. CBF, cerebral blood volume (CBV), and mean transit time (MTT) were calculated by singular value decomposition (SVD) and by deconvolution using an exponential function as kernel. The results showed no dependency on calculation method. GE-EPI measured a significant...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion...

  10. Fast FLAIR MR imaging finidngs of cerebral infarction : comparison with T2-weighted spin echo imaging

    International Nuclear Information System (INIS)

    Kong, Keun Young; Choi, Woo Suk; Kim, Eui Jong

    1997-01-01

    To evaluate the utility of FLAIR(Fluid Attenuated Inversion Recovery) MR imaging in cerebral infarction by comparing its results with those of T2-weighted spin-echo imaging. We retrospectively evaluated fast FLAIR images and conventional spin echo images of 82 patients (47 men and 20 women ; median age 60.9 years) with cerebral infarction. MR imaging used a 1.5T MR unit with conventional T2(TR 3900, TE 90) and fast FLAIR sequence (TR 8000, TE 105, TI 2400). We analysed the size of the main lesion and number of lesions, and discrimination between old and new lesions and between small infarction and perivascular space. When T2-weighted and FLAIR imaging were compared, the latter showed that the main lesion was larger in 38 cases (46%), similar in 38 (46%), and smaller in six (7%). The number of lesions was greater in 23 cases(28%), similar in 52 (63%), and fewer in seven (9%). FLAIR images discriminated between old and new lesions in 31 cases ; perivascular space and small infarotion were differentiated in eight cases, and CSF inflowing artifact was observed in 66 (80%). In the diagnosis of cerebral infaretion, fast FLAIR provides images that are equal or superior to T2-weighted images. The fast FLAIR sequence may therefore be used as a part of routine MR brain study in the diagnosis of cerebral infarction

  11. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  12. Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping.

    Science.gov (United States)

    Lankford, Christopher L; Does, Mark D

    2018-02-01

    Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.

  14. NMR multiple-echo phase-contrast blood flow imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1986-01-01

    A method is described for magnetic resonance imaging of fluid flow in a sample, comprising the steps of: (a) immersing the sample in a static magnetic field disposed in a first direction; (b) applying a first sequence of magnetic field gradients and radio-frequency signals to the sample to both define a slab, of the sample to be imaged, in a plane substantially orthogonal to a selected direction for which flow velocity is to be measured, and to obtain a plurality N of spin-echo response signals form that slab; (c) processing the plurality of first sequence spin-echo signals to obtain a complex value A/sub 1/(X,Y,Z) relating both the spin density rho'(X,Y,Z),... and the phase rotation phi(X,Y,Z), induced by the first sequence, for each of a selected number of sequential locations (X,Y,Z) in the sample slab; (d) applying a second sequence of magnetic field gradient and radio-frequency signals to both define the same sample slab as in step (b) and to obtain another plurality N of spin-echo response signals from that slab; (e) including a waveform in at least one of the magnetic field gradient and radio-frequency signals applied in step (d) for imparting to each of the spin-echo signal components from each slab location having a flowing material therein a phase rotation dependent upon the magnitude of the flow velocity therein in the selected direction; (f) processing the plurality of second sequence spin-echo signals to obtain a complex value A/sub 2/(X,Y,Z) relating the spin density rho'(X,Y,Z) and the imparted phase rotation of the sample material along the selected flow measurement direction for each of the sequential locations (X,Y,Z) in the sample slab; and (g) processing the complex values A/sub 1/(X,Y,Z) and A/sub 2/(X,Y,Z) for each sample location to obtain a differential phase-contrast value related to the velocity of the flowing material therein in the selected measurement direction

  15. Comparison of intravoxel incoherent motion diffusion-weighted imaging between turbo spin-echo and echo-planar imaging of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Mikayama, Ryoji; Yabuuchi, Hidetake; Nagatomo, Kazuya; Kimura, Mitsuhiro; Kumazawa, Seiji [Kyushu University, Department of Health Sciences, Graduate School of Medical Sciences, Fukuoka (Japan); Sonoda, Shinjiro; Kobayashi, Koji [Kyushu University Hospital, Division of Radiology, Department of Medical Technology, Fukuoka (Japan); Kawanami, Satoshi; Kamitani, Takeshi; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2018-01-15

    To compare image quality, apparent diffusion coefficient (ADC), and intravoxel incoherent motion (IVIM)-derived parameters between turbo spin-echo (TSE)-diffusion-weighted imaging (DWI) and echo-planar imaging (EPI)-DWI of the head and neck. Fourteen volunteers underwent head and neck imaging using TSE-DWI and EPI-DWI. Distortion ratio (DR), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), ADC and IVIM-derived parameters were compared between the two techniques. Bland-Altman analysis was performed to analyse reproducibility between the quantitative parameters of TSE-DWI and EPI-DWI. DR of TSE-DWI was significantly smaller than that of EPI-DWI. SNR and CNR of TSE-DWI were significantly higher than those of EPI-DWI. ADC and IVIM-derived parameters of TSE-DWI showed higher values than those of EPI-DWI, although the difference was not significant. Bland-Altman analysis showed wide limits of agreement between the two sequences. TSE-DWI can produce better image quality than EPI-DWI, while TSE-DWI possibly exhibits different values of quantitative parameters. Therefore, TSE-DWI could be a good alternative to EPI-DWI for patients sensitive to distortion. However, it is not recommended to use both TSE-DWI and EPI-DWI on follow-up. (orig.)

  16. Spin-echo based diagonal peak suppression in solid-state MAS NMR homonuclear chemical shift correlation spectra

    Science.gov (United States)

    Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang

    2018-02-01

    The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.

  17. Magnetic resonance urography in pediatrics: utilization of ultrafast single-shot spin echo sequences

    International Nuclear Information System (INIS)

    Martin, C.; Martin, J.; Duran, C.; Rigol, S.; Rojo, J. C.

    1999-01-01

    To determine the value of magnetic resonance urography (MRU) using ultrafast single-shot (SS) rapid acquisition with relaxation enhancement (RARE) and half-Fourier (HF) SS-RARE (SS-HF-RARE or HASTE) in the evaluation of congenital urinary tract anomalies in pediatric patients, and their possible application as alternatives to intravenous urography (IVU). Eighteen children (11 boys and 7 girls) aged 2 months to 15 years (mean: 5 years) with a total of 19 congenital urinary tract anomalies were studies by MU using SS-RARE and HASTE sequences in a 1 Tesla scanner. All the patients had previously been studies by ultrasound (US) and IVU. Twelve patients required anesthesia. The images were acquired by means of a HASTE sequence with multisection technique (TR, infinite; TE e f, 87 msec; echo train, 128; interval between echoes, 10.9 msec; total acquisition time, 13 sections/12 seconds), and SS-RARE (TR, infinite; TE e f, 1.100 msec; echo train, 240, and acquisition time, 7 seconds). Four radiologists evaluated the images independently; two who reviewed the IV images in consensus and two who reviewed the MRU images in consensus. The images were evaluated to assess the dilatation of the urinary tract and their utility in detecting the level and cause of the obstruction. MRU images revealed the urinary tract dilation, the level of the obstruction and the type of anomaly in 18 patients (100%), while IVU provided this information in only 10 [ sensitivity, 53%, 95% confidence interval (29%, 76%)]. The mean time required for MRU was 20 minutes (range: 7 to 30 minutes), while that of IVU was 1,242 minutes (range: 45 to 1,440 minutes). MRU using ultrafast single-short spin echo sequences is a rapid and effective technique that permits and excellent evaluation of congenital urinary tract anomalies in pediatric patients and does not require the administration of contrast media or ionizing radiation. (Author) 10 refs

  18. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease.

    Science.gov (United States)

    Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T

    2017-03-01

    Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.

  19. Coupled-spin filtered MR imaging in a low field

    International Nuclear Information System (INIS)

    Baudouin, C.J.; Bryant, D.J.; Coutts, G.A.; Bydder, G.M.; Young, I.R.

    1990-01-01

    This paper investigates the use of an editing method of imaging using spin-echo sequences with differing radio-frequency (RF) pulses for lipid imaging in poor fields and to compare it with solvent-suppression methods. A technique of echo difference imaging (EDI) has been described in which two data sets are acquired: a normal spin-echo sequence (90-180) and a 90-90 spin-echo sequence. The intrinsic signal of uncoupled spins in the EDI method is one-half that of the conventional sequence, so that subtracting twice the EDI signal from the conventional signal should result in signal cancellation. With coupled spins, the application of the second 90 degrees pulse results in coherence transfer, and echo magnitude will not be one-half that of the 90-180 echo. This method of lipid imaging may be less vulnerable to field inhomogeneity than are solvent-suppression methods. Phantom and in vivo studies were performed at 0.15 T (TE = 44 msec and various TRs)

  20. Polarizing a stored proton beam by spin flip? - A high statistic reanalysis

    International Nuclear Information System (INIS)

    Oellers, Dieter

    2011-01-01

    Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. A reanalysis of the data leeds to a reduced statistical errors resulting in a factor of 4 reduced upper limit for the spin flip cross section. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam.

  1. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  2. Long distance propagation of a polarized neutron beam in zero magnetic field

    International Nuclear Information System (INIS)

    Schmidt, U.; Bitter, T.; El-Muzeini, P.

    1992-01-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)

  3. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    International Nuclear Information System (INIS)

    Price, R.

    2015-01-01

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  4. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. [Vanderbilt Medical Center (United States)

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  5. Neutron spin echo studies of the effects of temperature and pressure in a ternary microemulsion

    CERN Document Server

    Kawabata, Y; Seto, H; Takeda, T; Komura, S; Schwahn, D

    2002-01-01

    In order to clarify the self-assembling mechanisms in complex fluids involving amphiphiles, we have investigated dynamic features of amphiphilic membranes and droplets at high temperature and at high pressure in a ternary microemulsion, consisting of AOT, water, and n-decane. A high-pressure cell for neutron spin echo (NSE) experiments has been improved, and the static and dynamic features of droplets are observed in detail by means of small angle neutron scattering and NSE. It is found that the size fluctuation and the diffusion of droplets are enhanced by increasing temperature, while they are suppressed by increasing pressure. (orig.)

  6. Comparison of axial T1 spin-echo and T1 fat-saturation magnetic resonance imaging techniques in the diagnosis of chondromalacia patellae.

    Science.gov (United States)

    Vanarthos, W J; Pope, T L; Monu, J U

    1994-12-01

    To test the diagnostic value of T1 spin-echo and T1 fat-saturated magnetic resonance images (MRIs), we reviewed axial T1-weighted images with and without fat saturation in 20 patients with clinically suspected chondromalacia of the patella. All scans were obtained on 1.5-MR units. The scans were randomly ordered and reviewed independently at different times by two radiologists without knowledge of the arthroscopy results. The sensitivity of the individual techniques for detecting grade 3 or 4 chondromalacia patellae was 92% for fat-saturated axial T1-weighted images alone, and 67% for axial T1-weighted images without fat saturation. The sensitivity of the combined techniques was 100% for grades 3 and 4 and 90% for all grades (0 to 4). Chondromalacia patellae is diagnosed more accurately by using T1 fat saturation than by using T1 spin-echo images. With a combination of the two techniques, accuracy is 90% to 100%.

  7. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  8. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams

    Science.gov (United States)

    Singh, Ankit Kumar; Saha, Sudipta; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2018-04-01

    We study the effect of focusing of the radially and azimuthally polarized vector beams on the spin angular momentum (SAM) density and Poynting vector of scattered waves from a Mie particle. Remarkably, the study reveals that the SAM density of the scattered field is solely transverse in nature for radially and azimuthally polarized incident vector beams; however, the Poynting vector shows the usual longitudinal character. We also demonstrate that the transverse SAM density can further be tuned with wavelength and focusing of the incident beam by exploiting the interference of different scattering modes. These results may stimulate further experimental techniques to detect the transverse spin and Belinfante's spin-momentum densities.

  9. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  10. Determination of the spin polarization of a 4He+ ion beam

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamauchi, Y.

    2008-01-01

    It was demonstrated that the spin polarization of a 4 He + ion beam (P He + ) can be determined from the spin dependence of the electron emission in the deexcitation process of spin-polarized He metastable atoms (He*, 2 3 S 1 ) and spin-polarized He + ions on Fe (100) surfaces. On Fe (100) surfaces, both He* and He + deexcite via Auger neutralization, and therefore, the spin asymmetry obtained from spin-polarized He + ion neutralization spectroscopy should be equal to that from spin-polarized metastable He* deexcitation spectroscopy. The spin polarization of He* was obtained from Stern-Gerlach measurements. P He + was finally determined to be 0.19±0.02

  11. Clinical utility of partial flip angle T2-weighted spin-echo imaging of the brain

    International Nuclear Information System (INIS)

    Chang, K.H.; Yi, J.G.; Han, M.H.; Han, M.C.; Kim, C.W.; Cho, M.H.; Cho, Z.H.

    1990-01-01

    To assess the clinical usefulness of partial flip angle (PFA) spin-echo (SE) brain imaging, a total of eighty patients were examined with both conventional double echo T2-weighted SE (2500/30, 80/90deg/one excitation) and PFA double echo SE (1200/30, 70/45deg/two excitations) on 2.0T system. Two comparative studies were performed: (1) In 65 patients PFA SE technique was compared with conventional SE without flow compensating gradients, and (2) in 15 patients the former was compared with the latter with flow compensating gradients. Imaging time was nearly identical in each sequence. In both studies we found that PFA T2-weighted SE images were almost identical to those obtained with the conventional SE technique in the contrast characteristics and the detection rate of the abnormalities (100%, 85/85 lesions), and more importantly, PFA SE revealed few flow artifacts in the brain stem, temporal lobes and basal ganglia which were frequently seen on conventional SE without flow compensating gradients. Additionally, PFA SE images demonstrated no suppression of CSF flow void in the aqueduct which was commonly seen on conventional SE with flow compensating gradients. In overall image quality, the PFA SE images, particularly the second echo images, were almost comparable with those of conventional SE with flow compensating gradients. A flip angle of 45deg seems to be close to Ernst angle, the angle at which maximum signal occurs, for a given TR of 1200 msec for CSF and most of the abnormalities containing higher water content. In conclusion, PFA SE sequence (i.e. 1200/30, 70/45deg/2) appears to be useful as a primary or an adjunctive technique in certain clinical circumstances, particularly in imaging of hydrocephalic patients for assessing aqueductal patency. (orig.)

  12. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  13. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil.

    Science.gov (United States)

    Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich

    2014-03-01

    Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  15. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI).

    Science.gov (United States)

    Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M

    2018-04-06

    To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2  = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2  = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2  = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis

    International Nuclear Information System (INIS)

    Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano

    1997-01-01

    Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation

  17. Spin Flipping and Polarization Lifetimes of a 270 MeV Deuteron Beam

    International Nuclear Information System (INIS)

    Morozov, V.S.; Crawford, M.Q.; Etienne, Z.B.; Kandes, M.C.; Krisch, A.D.; Leonova, M.A.; Sivers, D.W.; Wong, V.K.; Yonehara, K.; Anferov, V.A.; Meyer, H.O.; Schwandt, P.; Stephenson, E.J.; Przewoski, B. von

    2003-01-01

    We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid's frequency through an rf-induced spin resonance and observed the effect on the beam's vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid's voltage to its maximum value, we obtained a spin-flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin-flip of the tensor polarization. We then used the rf-induced resonance to measure the vector and tensor polarizations' lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4

  18. Value of MR cisternography using three-dimensional half-fourier single-shot fast spin-echo sequences in the diagnosis of diseases related to cranial nerves VII and VIII

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Norio [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-05-01

    The purpose of this study was to evaluate the value of MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences in the diagnosis of diseasea related to cranial nerves VII and VIII. With a 0.5-T imager, the most appropriate setting of echo time and section thickness was first assessed in five volunteers. This resulted in echo time of 250 msec and section thickness of 2 mm as the most effective parameters. Second, using echo time of 120 msec and section thickness of 1.5 mm that were available from the beginning of this study, the demonstration of four nerves within the audistory canal was assessed in seven volunteers. In all of the volunteers, the facial, cochlear, and vestibular nerves were determined with demonstration of each of superior and inferior vestibular nerves in four of them. Next, MR cisternography using the same echo time and section thickness was applied in 368 patients with suspicion of acoustic neurinoma and 14 with hemifacial spasm. In 28 of the 368 patients, MR cisternograms depicted an acoustic neurinoma that was confirmed on postcontrast T1-weighted images. Meanwhile, in five of the 14 patients with hemifacial spasm, MR cisternograms revealed a vessel compressing the root exit zone of the affected facial nerve. It is concluded that MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences can be a useful means for demonstrating nerves within the auditory nerve as well as for the screening of acoustic neurionoma. (author)

  19. Value of MR cisternography using three-dimensional half-fourier single-shot fast spin-echo sequences in the diagnosis of diseases related to cranial nerves VII and VIII

    International Nuclear Information System (INIS)

    Yamakami, Norio

    1999-01-01

    The purpose of this study was to evaluate the value of MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences in the diagnosis of diseasea related to cranial nerves VII and VIII. With a 0.5-T imager, the most appropriate setting of echo time and section thickness was first assessed in five volunteers. This resulted in echo time of 250 msec and section thickness of 2 mm as the most effective parameters. Second, using echo time of 120 msec and section thickness of 1.5 mm that were available from the beginning of this study, the demonstration of four nerves within the audistory canal was assessed in seven volunteers. In all of the volunteers, the facial, cochlear, and vestibular nerves were determined with demonstration of each of superior and inferior vestibular nerves in four of them. Next, MR cisternography using the same echo time and section thickness was applied in 368 patients with suspicion of acoustic neurinoma and 14 with hemifacial spasm. In 28 of the 368 patients, MR cisternograms depicted an acoustic neurinoma that was confirmed on postcontrast T1-weighted images. Meanwhile, in five of the 14 patients with hemifacial spasm, MR cisternograms revealed a vessel compressing the root exit zone of the affected facial nerve. It is concluded that MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences can be a useful means for demonstrating nerves within the auditory nerve as well as for the screening of acoustic neurionoma. (author)

  20. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors. Comparison of echo-planar, HASTE, and spin-echo sequences

    International Nuclear Information System (INIS)

    Abe, Yasuko; Yamashita, Yasuyuki; Tang, Yi; Namimoto, Tomohiro; Takahashi, Mutsumasa

    2000-01-01

    The purpose of this study was to evaluate the accuracy of T2 calculation from single shot imaging sequences such as echo-planar imaging (EPI) and half-Fourier single shot turbo spin-echo (HASTE) imaging. For the phantom study, we prepared vials containing different concentrations of agarose, copper sulfate, and nickel chloride. The temperature of the phantom was kept at 22 deg C. MR images were obtained with a 1.5-Tesla superconductive magnet. Spin-echo (SE)-type EPI and HASTE sequences with different TEs were obtained for T2 calculation, and the T2 values were compared with those obtained from the Carr-Purcell-Meiborm-Gill (CPMG) sequence. The clinical study group consisted of 30 consecutive patients referred for MR imaging to characterize focal liver lesions. A total of 40 focal liver lesions were evaluated, including 25 primary or metastatic solid masses and 15 non-solid lesions. Single shot SE-type EPI and HASTE were both performed with TEs of 64 and 90 msec. In the phantom study, the T2 values obtained from both single shot sequences showed significant correlations with those from the CPMG sequence (T2 on EPI vs. T2 on CPMG: r=0.98, p<0.01; T2 on HASTE vs. T2 on CPMG: r=0.99, p<0.01). In the clinical study, mean T2 values for liver calculated from EPI (42 msec) were significantly shorter than those calculated from the HASTE sequence (58 msec) (p<0.001). Mean T2 values for solid tumors were 95 msec with HASTE and 72 msec with EPI, and mean T2 values for non-solid lesions were 128 msec with HASTE and 159 msec with EPI. Although mean T2 values between solid and non-solid lesions were significantly different for both EPI and HASTE sequences (p=0.01 for HASTE, p<0.001 for EPI), the overlap of solid and non-solid lesions was less frequent in EPI than in HASTE. With single shot sequences, it is possible to obtain the T2 values that show excellent correlation with the CPMG sequence. Although both HASTE and EPI are useful to calculate T2 values, EPI appears to be more

  1. Spin dynamics of electron beams in circular accelerators; Spindynamik von Elektronenstrahlen in Kreisbeschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Oliver

    2014-04-15

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  2. Comparison of Turbo Spin Echo and Echo Planar Imaging for intravoxel incoherent motion and diffusion tensor imaging of the kidney at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Wech, Tobias; Neubauer, Henning; Veldhoen, Simon; Bley, Thorsten Alexander; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2017-10-01

    Echo Planar Imaging (EPI) is most commonly applied to acquire diffusion-weighted MR-images. EPI is able to capture an entire image in very short time, but is prone to distortions and artifacts. In diffusion-weighted EPI of the kidney severe distortions may occur due to intestinal gas. Turbo Spin Echo (TSE) is robust against distortions and artifacts, but needs more time to acquire an entire image compared to EPI. Therefore, TSE is more sensitive to motion during the readout. In this study we compare diffusion-weighted TSE and EPI of the human kidney with regard to intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI). Images were acquired with b-values between 0 and 750 s/mm{sup 2} with TSE and EPI. Distortions were observed with the EPI readout in all volunteers, while the TSE images were virtually distortion-free. Fractional anisotropy of the diffusion tensor was significantly lower for TSE than for EPI. All other parameters of DTI and IVIM were comparable for TSE and EPI. Especially the main diffusion directions yielded by TSE and EPI were similar. The results demonstrate that TSE is a worthwhile distortion-free alternative to EPI for diffusion-weighted imaging of the kidney at 3 Tesla.

  3. Superconducting magnetic Wollaston prism for neutron spin encoding

    Energy Technology Data Exchange (ETDEWEB)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ∼30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ∼98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  4. Superconducting magnetic Wollaston prism for neutron spin encoding

    Science.gov (United States)

    Li, F.; Parnell, S. R.; Hamilton, W. A.; Maranville, B. B.; Wang, T.; Semerad, R.; Baxter, D. V.; Cremer, J. T.; Pynn, R.

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ˜30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ˜98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  5. Frozen concentration fluctuations in a poly(N-isopropyl acrylamide) gel studied by neutron spin echo and small-angle neutron scattering

    CERN Document Server

    Koizumi, S; Richter, D; Schwahn, D; Faragó, B; Annaka, M

    2002-01-01

    By employing neutron spin echo and small-angle neutron scattering, we determined the structure factor of the frozen concentration fluctuations on nano-length scales in a swollen poly(N-isopropyl acrylamide) gel. The frozen contribution, showing a plateau at the low scattering wavenumber q (0.02 A sup - sup 1), is intimately related to the abnormal butterfly scattering pattern appearing at low q under deformation. (orig.)

  6. Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility

    Science.gov (United States)

    Zangara, Pablo R.; Pastawski, Horacio M.

    2017-03-01

    If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in

  7. Comparison of spin-echo echoplanar imaging and gradient recalled echo-based MR elastography at 3 Tesla with and without gadoxetic acid administration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seek [Chonbuk National University Medical School and Hospital, Department of Radiology, Jeonju, Chonbuk (Korea, Republic of); Song, Ji Soo [Chonbuk National University Medical School and Hospital, Department of Radiology, Jeonju, Chonbuk (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Chonbuk (Korea, Republic of); Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk (Korea, Republic of); Kannengiesser, Stephan [Siemens Healthcare, MR Applications Development, Erlangen (Germany); Seo, Seung Young [Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Chonbuk (Korea, Republic of); Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Chonbuk (Korea, Republic of); Chonbuk National University Medical School and Hospital, Department of Internal Medicine, Jeonju (Korea, Republic of)

    2017-10-15

    To compare spin-echo echoplanar imaging (SE-EPI) and gradient recalled echo (GRE) MR elastography (MRE) at 3 T with and without gadoxetic acid administration. We included 84 patients who underwent MRE before and after gadoxetic acid administration, each time using SE-EPI and GRE sequences. Diagnostic performance for predicting clinical liver cirrhosis and high-risk oesophageal varices was assessed using the area under the receiver-operating characteristic curve (AUC). The relationships between T2* and success of MRE, and correlations of liver stiffness (LS) values between the two sequences or before and after gadoxetic acid administration, were investigated. SE-EPI-MRE resulted in a significantly lower failure rate than GRE-MRE (1.19% vs. 10.71%, P = 0.018). Increased T2* was related to higher probability of successful LS measurement (odds ratio, 1.426; P = 0.004). The AUC of SE-EPI-MRE was comparable to that of GRE-MRE for the detection of clinical liver cirrhosis (0.938 vs. 0.948, P = 0.235) and high-risk oesophageal varices (0.839 vs. 0.752, P = 0.354). LS values were not significantly different before and after gadoxetic acid administration. SE-EPI-MRE can substitute for GRE-MRE for the detection of clinical liver cirrhosis and high-risk oesophageal varices. SE-EPI-MRE is particularly useful in patients with iron deposition, with lower failure rates than GRE-MRE. (orig.)

  8. MR cisternography with three-dimensional fast advanced spin-echo (FASE)

    International Nuclear Information System (INIS)

    Ohgi, Kazuyuki; Yamamoto, Hidefumi; Yokote, Hiroyuki

    2000-01-01

    To evaluate the usefulness of MR cisternography (MRC) combined with various postprocessing techniques and three-dimensional (3D) time-of-flight (TOF) MR angiography, MR cisternograms in 212 patients with various cranial nerve symptoms were retrospectively evaluated. MR examinations were performed with a 1.5 T MR imager using a 3D fast advanced spin-echo (FASE) sequence. Maximum intensity projection (MIP) had the advantage of demonstrating fluid-filled structures such as cerebrospinal fluid (CSF)-internal auditory canal (IAC) and Meckel's cave. Minimum intensity projection (Min IP) was especially useful in delineating neurovascular structures (NVS) in wide CSF space. Addition provided the most well-balanced images of NVS, and was superior to Min IP in the depiction of NVS in narrow CSF space. Virtual endoscopy and volume rendering had the potential to provide additional information in the evaluation of the three-dimensional relationships of NVS. Combination of 3D TOF MRA with MRC was helpful in differentiating arteries, veins, and nerves. With the judicious use of various postprocessing techniques and combined MRA, the value of MRC in the evaluation of patients with various cranial nerve symptoms can be further strengthened. (author)

  9. MR cisternography with three-dimensional fast advanced spin-echo (FASE)

    Energy Technology Data Exchange (ETDEWEB)

    Ohgi, Kazuyuki; Yamamoto, Hidefumi; Yokote, Hiroyuki [Japanese Red-Cross Medical Center, Tokyo (Japan)] [and others

    2000-06-01

    To evaluate the usefulness of MR cisternography (MRC) combined with various postprocessing techniques and three-dimensional (3D) time-of-flight (TOF) MR angiography, MR cisternograms in 212 patients with various cranial nerve symptoms were retrospectively evaluated. MR examinations were performed with a 1.5 T MR imager using a 3D fast advanced spin-echo (FASE) sequence. Maximum intensity projection (MIP) had the advantage of demonstrating fluid-filled structures such as cerebrospinal fluid (CSF)-internal auditory canal (IAC) and Meckel's cave. Minimum intensity projection (Min IP) was especially useful in delineating neurovascular structures (NVS) in wide CSF space. Addition provided the most well-balanced images of NVS, and was superior to Min IP in the depiction of NVS in narrow CSF space. Virtual endoscopy and volume rendering had the potential to provide additional information in the evaluation of the three-dimensional relationships of NVS. Combination of 3D TOF MRA with MRC was helpful in differentiating arteries, veins, and nerves. With the judicious use of various postprocessing techniques and combined MRA, the value of MRC in the evaluation of patients with various cranial nerve symptoms can be further strengthened. (author)

  10. MR imaging characteristics of intracranial hemorrhage using gradient-echo signal acquisition at 1.5 T: Comparison with spin-echo imaging and clinical applications

    International Nuclear Information System (INIS)

    Atlas, S.W.; Grossman, R.I.; Gomori, J.M.; Hackney, D.B.; Goldberg, H.I.; Bilaniuk, L.T.; Zimmerman, R.A.

    1987-01-01

    Evolving paramagnetic blood-breakdown products create static local magnetic susceptibility gradients, which induce rapid phase dispersion on the basis of T2/sup */ shortening. The authors evaluated 30 patients with 50 separate hemorrhagic intracranial lesions with both spin-echo (SE) and gradient echo signal acquisition (GESA) MR imaging at 1.5 T. GESA sequences used repetition time (TR) of 200-750 msec, echo time (TE) of 50-80 msec, and flip angles of 10 0 to 15 0 to emphasize T2/sup */-based contributions to contrast. SE sequences in all cases utilized both short and long TR (600 and 2,500-3,000 msec), with TE of 20-120 msec. Advantages of GESA imaging with Long TE and short flip angles in the evaluation of intracranial hemorrhage include (1) increased sensitivity to susceptibility-induced phase loss from T2/sup */ shortening, resulting in detection of hemorrhagic lesions not seen on conventional long TR/long TE SE images, and (2) very rapid acquisition of images with T2/sup */-based contrast. Limitations of this sequence include (1) severe diamagnetic susceptibility-induced artifacts, especially near air-brain interfaces, which often obscure large portions of the brain and occasionally simulate serious pathology, (2) characteristic internal signal intensity patterns demonstrated by SE imaging, such as in evolving hematomas, occult vascular malformations, and hemorrhagic malignancies, are often obscured by marked hypointensity on GESA images, and (3) reduced signal-noise ratio. The authors conclude that, although images with marked sensitivity to T2/sup */ effects can be rapidly generated by GESA, there is only a limited role for this sequence when evaluating intracranial hemorrhage at 1.5 T, and, in fact, significant information is lost when compared to SE images

  11. High-resolution T2-weighted MR imaging of the inner ear using a long echo-train-length 3D fast spin-echo sequence

    International Nuclear Information System (INIS)

    Naganawa, S.; Yamakawa, K.; Fukatsu, H.; Ishigaki, T.; Nakashima, T.; Sugimoto, H.; Aoki, I.; Miyazaki, M.; Takai, H.

    1996-01-01

    The purpose of this study was to assess the value of a long echo-train-length 3D fast spin-echo (3D-FSE) sequence in visualizing the inner ear structures. Ten normal ears and 50 patient ears were imaged on a 1.5T MR unit using a head coil. Axial high-resolution T2-weighted images of the inner ear and the internal auditory canal (IAC) were obtained in 15 min. In normal ears the reliability of the visualization for the inner ear structures was evaluated on original images and the targeted maximum intensity projection (MIP) images of the labyrinth. In ten normal ears, 3D surface display (3D) images were also created and compared with MIP images. On the original images the cochlear aqueduct, the vessels in the vicinity of the IAC, and more than three branches of the cranial nerves were visualized in the IAC in all the ears. The visibility of the endolympathic duct was 80%. On the MIP images the visibility of the three semicircular canals, anterior and posterior ampulla, and of more than two turns of the cochlea was 100%. The MIP images and 3D images were almost comparable. The visibility of the endolymphatic duct was 80% in normal ears and 0% in the affected ears of the patients with Meniere's disease (p<0.001). In one patient ear a small intracanalicular tumor was depicted clearly. In conclusion, the long echo train length T2-weighted 3D-FSE sequence enables the detailed visualization of the tiny structures of the inner ear and the IAC within a clinically acceptable scan time. Furthermore, obtaining a high contrast between the soft/bony tissue and the cerebrospinal/endolymph/perilymph fluid would be of significant value in the diagnosis of the pathologic conditions around the labyrinth and the IAC. (orig.)

  12. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus.

    Science.gov (United States)

    Gao, Qing; Srinivasan, Girish; Magin, Richard L; Zhou, Xiaohong Joe

    2011-05-01

    To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2600 s/mm(2). For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β, and μ values and the goodness-of-fit in three specific regions of interest (ROIs) in white matter, gray matter, and cerebrospinal fluid, respectively, were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. The diffusion-induced signal attenuation in a TRSE pulse sequence

  13. Neutron beam effects on spin-exchange-polarized 3He.

    Science.gov (United States)

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  14. Subjective and objective image qualities: a comparison of sagittal T2 weighted spin-echo and turbo-spin-eco sequences in magnetic resonance imaging of the spine by use of a subjective ranking system

    Energy Technology Data Exchange (ETDEWEB)

    Goerres, G. [Institut fuer diagnostische Radiologie, Departement Radiologie, Universitaetskliniken, Kantonsspital Basel (Switzerland); Mader, I. [Radiologische Gemeinschaftspraxis Dres. Siems, Grossmann, Bayreuth (Germany); Proske, M. [Klinikum Rosenheim (Germany). Inst. fuer Diagnostische Radiologie

    1998-12-31

    We evaluated the subjective image impression of two different magnetic resonance (MR) sequences by using a subjective ranking system. This ranking system was based on 20 criteria describing several tissue characteristics such as the signal intensity of normal anatomical structures and the changes of signal intensities and shape of lesions as well as artefacts. MR of the vertebral spine was performed in 48 female and 52 male patients (mean age 44.8 years) referred consecutively for investigation of a back problem. Ninety-six pathologies were found in 82 patients. Sagittal and axial T1 weighted spin-echo before and after administration of Gadolinium (Gd-DOTA), and sagittal T2 weighted spin-echo (T2wSE) and Turbo-spin-echo (TSE) sequences were performed by means of surface coils. Using the subjective ranking system the sagittal T2wSE and sagittal TSE were compared. Both sequences were suitable for identification of normal anatomy and pathologic changes and there was no trend for increased detection of disease by one imaging sequence over the other. We found that sagittal TSE sequences can replace sagittal T2wSE sequences in spinal MR and that artefacts at the cervical and lumbar spine are less frequent using TSE, thus confirming previous studies. In this study, our ranking system reveiled, that there are differences between the subjective judgement of image qualities and objective measurement of SNR. However, this approach may not be helpful to compare two different MR sequences as it is limited to the anatomical area investigated and is time consuming. The subjective image impression, i.e. the quality of images, may not always be represented by physical parameters such as a signal-to-noise ratio (SNR), radiologists should try to define influences of image quality also by subjective parameters. (orig.)

  15. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  16. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  17. Application of velocity imaging and gradient-recalled echo in neuroimaging

    International Nuclear Information System (INIS)

    Boyko, O.B.; Pelc, N.J.; Shimakawa, A.

    1990-01-01

    This paper describes the initial clinical experience with imaging blood flow at 1.5 T by means of a phase-sensitive gradient refocused pulse sequence. A spin-echo flow-encoding technique was modified to a gradient recalled acquisition in a steady state sequence, producing a velocity imaging and gradient recalled echo (VIGRE) sequence (TR = 24 msec, TE = 13 msec, flip angle = 45 degrees, 24-cm field of view, 7 mm contiguous sections). Two views per phase-encoding step are acquired; one using the first-moment flow-compensation gradient waveform and the second having a (selectable) nonzero first moment. A phase subtraction image is obtained where the signal is dependent on the direction and velocity of flow. The sequence was done following routine spin-echo imaging in 35 patients

  18. Spinning Earth and its Coriolis effect on the circuital light beams ...

    Indian Academy of Sciences (India)

    2016-10-06

    Oct 6, 2016 ... spinning motion between ether and Earth at and near its surface and has reached the well-known formula of. Sagnac effect for the circuital opposing light beams on the surface of the spinning Earth as given above. But unfortunately, the same formula arises in the case of electromagnetic fields (originating ...

  19. MODELING AND ANALYSIS OF COUPLED FLEXURAL-TORSIONAL SPINNING BEAMS WITH UNSYMMETRICAL CROSS SECTIONS

    OpenAIRE

    Wang, Jie; Li, Dongxu; Jiang, Jianping

    2017-01-01

    The structural modeling and dynamic properties of a spinning beam with an unsymmetrical cross section are studied. Due to the eccentricity and spinning, transverse deflections along the two principal directions and the torsional motion about the longitudinal axis are coupled. The structural model of the beam is established based on the Hamilton principle and by incorporating the torsional inertia. Moreover, because of its significant influence on characteristics for the non-circular cross-sec...

  20. Duel frequency echo data acquisition system for sea-floor classification

    Digital Repository Service at National Institute of Oceanography (India)

    Navelkar, G.S.; Desai, R.G.P.; Chakraborty, B.

    An echo data acquisition system is designed to digitize echo signal from a single beam shipboard echo-sounder for use in sea-floor classification studies using a 12 bit analog to digital (A/D) card with a maximum sampling frequency of 1 MHz. Both 33...

  1. Echo 2: a study of electron beams injected into the high-latitude ionosphere from a large sounding rocket

    International Nuclear Information System (INIS)

    Winckler, J.R.; Arnoldy, R.L.; Hendrickson, R.A.

    1975-01-01

    The Black Brant V-C Echo 2 rocket was launched at Fort Churchill on September 25, 1972, and it injected 64-ms pulses of electron beams of 80-mA current and 45-keV voltage into the ionosphere. This paper studies the responses of on-board electrostatic deflection and solid state detectors to injected electrons after motion in the near ionosphere and atmosphere. It is shown that it was only through some form of scattering that the detectors could sense the injected beam electrons. By means of 'phase maps' of injection and detection pitch angles a number of distinct regions are found corresponding to a rocket scattering halo, an atmospheric scattering halo, a region of weak responses, and a source of strong scattering above the rocket. The atmospheric scattering has been compared with the theoretical and experimental results of the Echo 1 experiment, and it is found to be in reasonable agreement. The rocket halo is discussed qualitatively; but no explanation is found for the backscatter from above the rocket, which may be associated with an occasional violent beam instability. This analysis has been carried out to better understand the complexities of electron motion observed near large rockets carrying artifical electron accelerators as a guide in the planning of future experiments

  2. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  3. Access to long-term optical memories using photon echoes retrieved from semiconductor spins

    Science.gov (United States)

    Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2014-11-01

    The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.

  4. Testing proton spin models with polarized beams

    International Nuclear Information System (INIS)

    Ramsey, G.P.

    1991-01-01

    We review models for spin-weighted parton distributions in a proton. Sum rules involving the nonsinglet components of the structure function xg 1 p help narrow the range of parameters in these models. The contribution of the γ 5 anomaly term depends on the size of the integrated polarized gluon distribution and experimental predictions depend on its size. We have proposed three models for the polarized gluon distributions, whose range is considerable. These model distributions give an overall range is considerable. These model distributions give an overall range of parameters that can be tested with polarized beam experiments. These are discussed with regard to specific predictions for polarized beam experiments at energies typical of UNK

  5. The effect of strong pitch angle scattering on the use of artificial auroral streaks for echo detection - Echo 5

    International Nuclear Information System (INIS)

    Swanson, R.L.; Steffen, J.E.; Winckler, J.R.

    1986-01-01

    During the Echo 5 experiment launched 13 November 1979 from the Poker Flat Research Range (Fairbanks, Alaska), a 0.75 A, 37 keV electron beam was injected both up and down the field line to test the use of optical and X-ray methods to detect the beam as it interacted with the atmosphere below the rocket for both the downward injections (markers) and the upward injected electrons which mirrored at the Southern Hemisphere and returned echoes. The artificial auroral streaks created by the markers were easily visible on the ground TV system but the large intensity of photons produced around the rocket masked any response to the markers by the on-board photometers and X-ray detectors. No echoes were detected with any of the detection systems although the power in some of the upward injections was 7.6 times the power in a detected downward injection thus setting an upper limit on the loss-cone echo flux. The magnitude of the bounce averaged pitch angle diffusion coefficient necessary to explain the lack of observable echoes was found to be 4 x 10 -4 S -1 . It was found that an equatorial wave electric field of 11 mVm -1 would account for the lack of echoes. Such fields should cause strong pitch angle scattering of up to 10 keV natural electrons and thus be consistent with the presence of diffuse aurora on the Echo 5 trajectory. (author)

  6. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.

  7. Beam Stability and Nonlinear Dynamics. Proceedings

    International Nuclear Information System (INIS)

    Parsa, Z.

    1997-01-01

    These proceedings represent papers presented at the Beam Stability and Nonlinear Dynamics symposium held in Santa Barbara in December 1996. The symposium was sponsored by the National Science Foundation as part of the United States long term accelerator research. The focus of this symposium was on nonlinear dynamics and beam stability. The topics included single-particle and many-particle dynamics, and stability in large circular accelerators such as the Large Hadron Collider(LHC). Other subjects covered were spin dynamics, nonlinear aberration correction, collective effects in the LHC, sawtooth instability and Landau damping in the presence of strong nonlinearity. There were presentations concerning plasma physics including the effect of beam echo. There are 17 papers altogether in these proceedings and 8 of them have been abstracted for the Energy Science and Technology database

  8. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    Science.gov (United States)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  9. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    Science.gov (United States)

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  10. Single-shot echo-planar imaging of multiple sclerosis: effects of varying echo time

    International Nuclear Information System (INIS)

    Wolansky, L.J.; Chong, S.; Liu, W.C.; Kang, E.; Simpson, S.W.; Karimi, S.; Akbari, H.

    1999-01-01

    Our aim was to determine the relative merits of short and long echo times (TE) with single-shot echo-planar imaging for imaging cerebral lesions such as multiple sclerosis. We examined seven patients with clinically definite multiple sclerosis were imaged at 1.5 T. Patients were scanned with spin-echo, single-shot echo-planar imaging, using TEs of 45, 75, 105, and 135 ms. Region of interest (ROI) measurements were performed on 36 lesions at or above the level of the corona radiata. The mean image contrast (IC) was highest (231.1) for a TE of 45 ms, followed by 75 ms (218.9), 105 ms (217.9), and 135 ms (191.6). When mean contrast-to-noise ratios (C/N) were compared, the value was again highest (29.7) for TE 45 ms, followed by 75 ms (28.9), 105 ms (28.5), and 135 ms (26.3). In a lesion-by-lesion comparison, TE 45 ms had the highest IC and C/N in the largest number of cases (50 % and 47.2 %, respectively). IC and C/N for TE 45 ms were superior to those of 75 ms in 64 % and 58 %, respectively. These results support the use of relatively short TEs for single-shot echo-planar imaging in the setting of cerebral lesions such as multiple sclerosis. (orig.) (orig.)

  11. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    International Nuclear Information System (INIS)

    Jung, Jee Young; Yoon, Young Cheol; Jung, Jin Young; Choe, Bong-Keun

    2013-01-01

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  12. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  13. Velocities of Auroral Coherent Echoes At 12 and 144 Mhz

    Science.gov (United States)

    Koustov, A. V.; Danskin, D. W.; Makarevitch, R. A.; Uspensky, M. V.; Janhunen, P.; Nishitani, N.; Nozawa, N.; Lester, M.; Milan, S.

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at 144 MHz and 12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5 providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider one event when STARE radar echoes are detected t the same ranges as CUTLASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and elec- tron density behavior at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS- CAT measurements) while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUTLASS velocities agree well with the convection component along the CUTLASS radar beam while STARE velocities are sometimes smaller by a factor of 2-3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on range. Plasma physics of E- and F-region irregularities is dis- cussed in attempt to explain inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  14. Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T2 mapping across multiple systems.

    Science.gov (United States)

    van Houdt, Petra J; Agarwal, Harsh K; van Buuren, Laurens D; Heijmink, Stijn W T P J; Haack, Søren; van der Poel, Henk G; Ghobadi, Ghazaleh; Pos, Floris J; Peeters, Johannes M; Choyke, Peter L; van der Heide, Uulke A

    2018-03-01

    To evaluate the performance of a multi-echo spin-echo sequence with k-t undersampling scheme (k-t T 2 ) in prostate cancer. Phantom experiments were performed at five systems to estimate the bias, short-term repeatability, and reproducibility across all systems expressed with the within-subject coefficient of variation (wCV). Monthly measurements were performed on two systems for long-term repeatability estimation. To evaluate clinical repeatability, two T 2 maps (voxel size 0.8 × 0.8 × 3 mm 3 ; 5 min) were acquired at separate visits on one system for 13 prostate cancer patients. Repeatability was assessed per patient in relation to spatial resolution. T 2 values were compared for tumor, peripheral zone, and transition zone. Phantom measurements showed a small bias (median = -0.9 ms) and good short-term repeatability (median wCV = 0.5%). Long-term repeatability was 0.9 and 1.1% and reproducibility between systems was 1.7%. The median bias observed in patients was -1.1 ms. At voxel level, the median wCV was 15%, dropping to 4% for structures of 0.5 cm 3 . The median tumor T 2 values (79 ms) were significantly lower (P < 0.001) than in the peripheral zone (149 ms), but overlapped with the transition zone (91 ms). Reproducible T 2 mapping of the prostate is feasible with good spatial resolution in a clinically reasonable scan time, allowing reliable measurement of T 2 in structures as small as 0.5 cm 3 . Magn Reson Med 79:1586-1594, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Comparison of spin-echo and gradient recalled echo T1 weighted MR images for quantitative voxel-based clinical brain research

    International Nuclear Information System (INIS)

    Barnden, L.R.; Crouch, B.

    2010-01-01

    Full text: New methods to normalise inter-subject global variations in T 1 -weighted MR (T I w) signal levels have permitted their use in voxel based population studies of brain dysfunction. Here we address the question of whether a spin-echo (SE) or a gradient recalled echo (GRE) T I w sequence is better for this purpose. GRE images are commonly referred to as 3D MRL SE has superior signal/noise properties to GRE but is slower to acquire so that typical slice thicknesses are 3-5 mm compared to 1-2 mm for GRE. GRE has better grey/white matter contrast which should permit better spatial normalization. However, unlike SE, GRE is affected by subject-specific magnetic field inhomogeneities that distort the images. We acquired T I brain images for 25 chronic fatigue syndrome (CFS) patients and 25 normal controls (NC) with TRITE/flip-angle of 600 ms/l5 ms/90 deg for SE and 5.76 ms/1.9 ms/9 deg for GRE. For GRE, the magnetic field inhomogeneity related signal level distortions could be corrected, but not the spatial distortions. After spatial normalization we subjected them to voxel-based statistical analysis with adjustment for global signal level using the SPM5 package. Initially, the same spatial normalization deformations were applied to both SE and GRE after coregistering them. Although the SPM regressions of SE and GRE yielded similar spatial distributions of significance, the SE regressions were consistently statistically stronger. For example, in one strong regression, the corrected cluster P value was twenty times stronger (I.Oe-5 versus I.Oe-3). T I w SE have proved better than T I GRE images in quantitative analysis in a clinical research study. (author)

  16. Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight

    Science.gov (United States)

    Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael

    Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.

  17. Measurement of vortex motion in a type-II superconductor: A novel use of the neutron spin-echo technique

    Science.gov (United States)

    Forgan; Kealey; Johnson; Pautrat; Simon; Lee; Aegerter; Cubitt; Farago; Schleger

    2000-10-16

    We have used the neutron spin-echo technique to measure the small energy change of neutrons which are diffracted by a moving vortex lattice in a low-pinning Nb-Ta superconducting sample. A transport current was passed in the mixed state to cause flux line movement. In the case of uniform motion, the flux velocity v(L) was given as expected by the values of electric and magnetic fields, via E = -v(L)wedgeB. We show that with a nonuniformly moving vortex lattice, one can measure the dispersion of the velocities, opening up new possibilities for investigating moving vortex lines.

  18. Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Serai, Suraj D.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Quinn, Charles T. [Cincinnati Children' s Hospital Medical Center, Division of Hematology, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States); Podberesky, Daniel J. [Nemours Children' s Health System Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States)

    2015-10-15

    Serial surveillance of liver iron concentration (LIC) provides guidance for chelation therapy in patients with iron overload. The diagnosis of iron overload traditionally relies on core liver biopsy, which is limited by invasiveness, sampling error, cost and general poor acceptance by pediatric patients and parents. Thus noninvasive diagnostic methods such as MRI are highly attractive for quantification of liver iron concentration. To compare two MRI-based methods for liver iron quantification in children. 64 studies on 48 children and young adults (age range 4-21 years) were examined by gradient recalled echo (GRE) R2* and spin-echo R2 MRI at 1.5T to evaluate liver iron concentration. Scatter plots and Bland-Altman difference plots were generated to display and assess the relationship between the methods. With the protocols used in this investigation, Bland-Altman agreement between the methods is best when LIC is <20 mg/g dry tissue. Scatter plots show that all values with LIC <20 mg/g dry tissue fall within the 95% prediction limits. Liver iron concentration as determined by the R2* and R2 MR methods is statistically comparable, with no statistical difference between these methods for LIC <20 mg/g. (orig.)

  19. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    Science.gov (United States)

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Assessment of the characteristics of MRI coils in terms of RF non-homogeneity using routine spin echo sequences

    International Nuclear Information System (INIS)

    Oghabian, M. A.; Mehdipour, Sh.; RiahicAlam, N.; Rafie, B.; Ghanaati, H.

    2005-01-01

    One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged. In this study, RF field non-homogeneity of surface and volume coils is measured using an oil phantom. The method employed in this work is based on a routine Spin Echo based sequence as proposed by this group previously. Materials and Methods: For the determination of RF non-uniformity, a method based on Spin Echo sequence (8θ-180) was used as reported previously by the same author. In this method, several images were obtained from one slice using different flip angles while keeping all other imaging parameters constant. Then, signal intensity at a ROI from all of these images were measured and fitted to the MRI defined mathematical model. Since this mathematical model describes the relation between signal intensity and flip angle in a (8θ-180) Spin Echo sequence, it is possible to obtain the variation in receive and transmit sensitivity in terms of the variation of signal intensity from the actual expected values. Since surface coils are functioning as only receiver (RF transmission is done by Body coil), first the results of receive coil homogeneity is measured, then characteristic of transmit coil (for the body coil) is evaluated Results: The coefficient of variation (C.V.) found for T(r) value obtained from images using head coils was in the order of 0.6%. Since the head coil is functioning as both transmitter and receiver, any non-uniformity in either transmit or receive stage can lead to non-homogeneity in RF field. A part from the surface coils, the amount of non-homogeneity due to receive coil was less than that of the transmit coil. In the case of the surface coils the variation in receive

  1. A study of the luminosity produced by an electron beam-emitting rocket in the polar ionosphere: ECHO 7

    International Nuclear Information System (INIS)

    Franz, R.C.

    1991-01-01

    Optical observations made during the ECHO 7 experiment show for the first time the luminous manifestations of the Beam-Plasma-Interaction in a space environment. The optical observations were made using photometers and a low-light-level television camera over an altitude range of 90 to 290 km. Imagery, obtained for the first time in the ECHO series, show the luminous spatial characteristics of the BPI including the formation of diffuse luminous columns extending along the magnetic field in the same and opposite directions as beam propagation. The beam-plasma-discharge (BPD) evolved from the BPI, igniting first about 140 km, and quenching at 115 km. The BPD appeared as discrete enhancements in the intensity of portions of the diffuse columns extending 200 to 225 m along the magnetic field line. Relaxations oscillations, or non-steady BPD with frequencies between 20 and 45 Hz were observed prior to BPD initiation. At 108 km, the distinct Larmor spiral structure of the beam became visible for distance of about 300 meters along the field. Periodic attitude control system (ACS) Nitrogen gas releases producing spectacular luminosity patterns were seen during the gun operation throughout the flight. The injected gas affected the vehicle neutralization current flow pattern causing current to be concentrated in the gas plume as it flowed toward the MAIN payload. In the absence of ACS gas, the luminosity pattern surrounding the MAIN payload showed an asymmetry, being brighter at the opposite end of the MAIN away from the electron gun

  2. Magnetic resonance cisternography using the fast spin echo method for the evaluation of vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Shigeru; Yokoyama, Tetsuo; Uemura, Kenichi [Hamamatsu Univ. School of Medicine, Shizuoka (Japan)

    1999-04-01

    Neuroimaging of vestibular schwannoma was performed with the fat-suppression spoiled gradient recalled acquisition in the steady state (SPGR) method and magnetic resonance (MR) cisternography, which is a fast spin echo method using a long echo train length, for the preoperative evaluation of the lateral extension of the tumor in the internal auditory canal, and the anatomical identification of the posterior semicircular canal and the nerves in the canal distal to the tumor. The SPGR method overestimated the lateral extension in eight cases, probably because of enhancement of the nerves adjacent to the tumor in the canal. The posterior semicircular canal could not be clearly identified, and the cranial nerves in the canal were shown only as a nerve bundle. In contrast, MR cisternography showed clear images of the lateral extension of the tumor and the facial and cochlear nerves adjacent to the tumor in the internal auditory canal. The anatomical location of the posterior semicircular canal was also clearly shown. These preoperative findings are very useful to plan the extent to which the internal auditory canal can be opened, and for intraoperative identification of the nerves in the canal. MR cisternography is less invasive since no contrast material or radiation is required, as with thin-slice high-resolution computed tomography (CT). MR cisternography should replace high-resolution CT for the preoperative neuroradiological evaluation of vestibular schwannoma. (author)

  3. Antihydrogen atom formation in a CUSP trap towards spin polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, N., E-mail: kuroda@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Enomoto, Y. [RIKEN Advanced Science Institute (Japan); Michishio, K. [Tokyo University of Science, Department of Physics (Japan); Kim, C. H. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Higaki, H. [Hiroshima University, Graduate School of Advanced Science of Matter (Japan); Nagata, Y.; Kanai, Y. [RIKEN Advanced Science Institute (Japan); Torii, H. A. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Venturelli, L.; Zurlo, N. [Universita di Brescia and Instituto Nazionale di Fisica Nucleare, Dipartimento di Chimica e Fisica per l' Ingegneria e per i Materiali (Italy); Fujii, K.; Ohtsuka, M.; Tanaka, K. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Imao, H. [RIKEN Nishina Center for Accelerator-Based Science (Japan); Nagashima, Y. [Tokyo University of Science, Department of Physics (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Juhasz, B. [Stefan Meyer Institut fuer Subatomare Physik (Austria); and others

    2012-12-15

    The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.

  4. Spontaneous cerebral microbleeds on gradient echo MR imaging in the stroke patients

    International Nuclear Information System (INIS)

    Kwak, Seong Ho; Song, Chang June; Kim, Dae Bong; Jeong, Geum Chae

    2003-01-01

    To investigate the spontaneous cerebral microbleeding occurring at gradient-echo MRI, and its relationship with associated stroke lesions and risk factors. Between September 2001 and December, 2002, 32 patients (21 men and 11 women; mean age 63 years) in whom cerebral microbleeding occurred at gradient-echo MRI were retrospectively investigated. Using a 1.5T MR imager, spin-echo T1-weighted, fast spin-echo T2-weighted, diffusion-weighted, and gradient-echo images were obtained. The number and location of microbleeds seen on gradient echo images, patients data, and associated stroke lesions such as intracerebral hemorrhage and lacunar and territorial infarction were assessed. Among the 32 patients, 563 microbleeds and between 1 and 66 (mean, 17.6) were noted at gradient-echo imaging. Microbleeding occurred in the cortical/subcortical area (n=216), the basal ganglia (n=173), thalamus (n=92), cerebellum (n=41), brainstem (n=36) and corpus callosum (n=1), and in 20 patients was bilateral. Patients had a history of hypertension (n=26), hypertriglycemia (n=12), heart disease (n=4), and diabetes mellitus (n=3). Stroke lesions were seen in 27 patients, intracerebral hemorrhage in ten, lacunar infarction in 24, and territorial infarction in four. The incidence and number of microbleeds was greater in older patients and in those with hypertension, hypertriglycemia, and stroke lesions such as intracerebral hemorrhage or lacunar infarction. The detection of microbleeding at gradient-echo imaging is helpful, since it predicts the possibility of cerebral hemorrhage in these patients

  5. Sudden transition and sudden change from open spin environments

    International Nuclear Information System (INIS)

    Hu, Zheng-Da; Xu, Jing-Bo; Yao, Dao-Xin

    2014-01-01

    We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at the high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed

  6. In vitro and in vivo spin echo diffusion imaging characteristics of synovial fluid: potential non-invasive differentiation of inflammatory and degenerative arthritis

    International Nuclear Information System (INIS)

    Eustace, S.; DiMasi, M.; Adams, J.; Ward, R.; Caruthers, S.; McAlindon, T.

    2000-01-01

    Objective. This study was undertaken to analyse the diffusion characteristics of synovial fluid in degenerative and inflammatory arthropathies.Design and patients. Ten in vitro specimens of synovial fluid from patients with both degenerative and inflammatory arthropathy were studied at body temperature with a navigator-corrected spin echo diffusion sequence (B values 0-512 s/mm 2 ), on a Philips 1.5-T Gyroscan. Subsequently synovial fluid from knee joint effusions of 25 patients (10 patients with osteoarthritis, 10 patients with effusions following trauma and 5 patients with effusions secondary to inflammatory arthritis) was evaluated with the same navigator-corrected spin echo diffusion sequence.Results. Both in vitro and in vivo study demonstrated decreased diffusion in patients with effusions secondary to degenerative joint disease (less than 2.40 x 10 -5 cm 2 /s) relative to patients with effusions accompanying knee trauma (greater than 2.75 x 10 -5 cm 2 /s) and inflammatory arthritis (in vitro and in vivo greater than 3.00 x 10 -5 cm 2 /s).Conclusion. Synovial fluid in degenerative arthritis shows less diffusion or free water movement than synovial fluid in inflammatory arthritis. Diffusion characteristics of synovial fluid may be used to predict the nature of the underlying form of arthritis in patients presenting with knee joint effusions. (orig.)

  7. Whole heart cine MR imaging of pulmonary veins in patients with congenital heart disease. Comparison with Spin Echo MR imaging

    International Nuclear Information System (INIS)

    Mitsui, Hideaki; Saito, Haruo; Ishibashi, Tadashi; Takahashi, Shoki; Zuguchi, Masayuki; Yamada, Shogo

    2002-01-01

    We evaluated the accuracy of Whole Heart Cine (WHC) magnetic resonance (MR) imaging in the depiction of pulmonary veins (PVs) in patients with congenital heart disease (CHD) compared to that of spin echo (SE) MR imaging. Among our 35 patients, 4 patients had anomalous PV return. Detectability of four PVs on each MR examination images were evaluated. MR imaging is an effective modality for the clarification of PVs, and WHC MR imaging is more useful in delineating PV anomalies than SE MR imaging. (author)

  8. Neutron spin-echo investigation of the microemulsion dynamics. in bicontinuous lamellar and droplet phases

    CERN Document Server

    Mihailescu, M; Endo, H; Allgaier, J; Gompper, G; Stellbrink, J; Richter, D; Jakobs, B; Sottmann, T; Faragó, B

    2002-01-01

    Using neutron spin-echo (NSE) spectroscopy in combination with dynamic light scattering (DLS), we performed an extensive investigation of the bicontinuous phase in ternary water-surfactant-oil microemulsions, with extension to lamellar and droplet phases. The dynamical behavior of surfactant monolayers of decyl-polyglycol-ether (C sub 1 sub 0 E sub 4) molecules, or mixtures of surfactant with long amphiphilic block-copolymers of type poly-ethylene propylene/poly-ethylene oxide (PEP-PEO) was studied, under comparable conditions. The investigation techniques provide access to different length scales relative to the characteristic periodicity length of the microemulsion structure. Information on the elastic bending modulus is obtained from the local scale dynamics in view of existing theoretical descriptions and is found to be in accordance with small angle neutron scattering (SANS) studies. Evidence for the modified elastic properties and additional interaction of the amphiphilic layers due to the polymer is mo...

  9. Semicircular canal dehiscence: comparison of T2-weighted turbo spin-echo MRI and CT

    Energy Technology Data Exchange (ETDEWEB)

    Krombach, G.A.; Schmitz-Rode, T.; Haage, P.; Guenther, R.W. [Department of Diagnostic Radiology, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); DiMartino, E. [Department of Otorhinolaryngology, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); Prescher, A. [Department of Anatomy, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany); Kinzel, S. [Department of Experimental Veterinary Medicine, University of Technology, Pauwelstrasse 30, 52057, Aachen (Germany)

    2004-04-01

    We assessed the value of MRI for delineation of dehiscence of the superior or posterior semicircular canal, as compared with CT, the current standard study for this entity. We reviewed heavily T2-weighted fast spin-echo images and high-resolution CT of the temporal bones of 185 patients independently semicircular canal dehiscence and its extent. In 30 patients (19 men, 11 women) we identified dehiscence of the bone over the superior and/or posterior semicircular canal on MRI. In 27 of these cases CT also showed circumscribed bone defects. In one patient dehiscence of the superior semicircular canal was initially overlooked on MRI, but seen on CT. MRI imaging thus had a sensitivity of 96% and specificity of 98%. Knowledge of the appearances of this entity on MRI may contribute to early diagnosis in patients with vertigo due to semicircular canal dehiscence. (orig.)

  10. Semicircular canal dehiscence: comparison of T2-weighted turbo spin-echo MRI and CT

    International Nuclear Information System (INIS)

    Krombach, G.A.; Schmitz-Rode, T.; Haage, P.; Guenther, R.W.; DiMartino, E.; Prescher, A.; Kinzel, S.

    2004-01-01

    We assessed the value of MRI for delineation of dehiscence of the superior or posterior semicircular canal, as compared with CT, the current standard study for this entity. We reviewed heavily T2-weighted fast spin-echo images and high-resolution CT of the temporal bones of 185 patients independently semicircular canal dehiscence and its extent. In 30 patients (19 men, 11 women) we identified dehiscence of the bone over the superior and/or posterior semicircular canal on MRI. In 27 of these cases CT also showed circumscribed bone defects. In one patient dehiscence of the superior semicircular canal was initially overlooked on MRI, but seen on CT. MRI imaging thus had a sensitivity of 96% and specificity of 98%. Knowledge of the appearances of this entity on MRI may contribute to early diagnosis in patients with vertigo due to semicircular canal dehiscence. (orig.)

  11. Electron spin-echo envelope modulation (ESEEM) reveals water and phosphate interactions with the KcsA potassium channel.

    Science.gov (United States)

    Cieslak, John A; Focia, Pamela J; Gross, Adrian

    2010-02-23

    Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that (31)P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the (31)P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.

  12. Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging.

    Science.gov (United States)

    Lee, S H; Suh, J S; Cho, J; Kim, S J; Kim, S J

    2001-03-01

    The purpose of our study was to assess the accuracy of inversion recovery-fast spin-echo (IR-FSE) imaging for the evaluation of chondromalacia of the patella. Eighty-six patients were included, they underwent magnetic resonance (MR) examination and subsequent knee arthroscopy. Medial and lateral facets of the patella were evaluated separately. Axial images were obtained by using IR-FSE (TR/TE/TI = 3000/25/150 msec; echo train length, 8; 4-mm thickness; 12-cm field of view; 512 x 256 matrix; two, number of excitations) with a 1.5-T MR machine. MR interpretation of chondromalacia was made on the basis of the arthroscopic grading system. Of a total of 172 facets graded, arthroscopy revealed chondromalacia in 14 facets with various grades (G0, 158; G1, 1; G2, 3; G3, 6; G4, 4). Sensitivity, specificity, and accuracy in the chondromalacia grades were 57.1%, 93.0%, and 90.1%, respectively. There was one false-negative case (G4) and 11 false-positive cases (G1, eight; G2, two; G3, one). Sensitivity and specificity corrected by one grade difference were improved to 85.7% and 98.1%, respectively. When cartilage changes were grouped into early (corresponding to grade 1 and 2) and advanced (grade 3 and 4) diseases, sensitivity and specificity of the early and advanced diseases were 75% and 94% and 80% and 99%, respectively. IR-FSE imaging of the knee revealed high specificity but low sensitivity for the evaluation of chondromalacia of the patella.

  13. Neutron spin echo investigation of elementary excitations in superfluid 4He

    International Nuclear Information System (INIS)

    Mezei, F.

    1980-01-01

    The present work represents the first experimental evidence for the application of Neutron Spin Echo (NSE) in high resolution study of both optical-like (non dispersive) and dispersive elementary excitations. The results obtained proved to be relevant contributions concerning the temperature dependence of the energy and linewidth of the roton excitation between 0.96 and 1.4 K; the temperature dependence of the linewidth of the 1.1 A -1 and 1.72 A -1 phonons and the suggested onset of three-phonon decay between 2.1 A -1 and 2.4 A -1 . The energy transfer resolution achieved in this work was 10-40 times superiour to those in previous similar neutron scattering experiments. In this paper most of the attention will be paid to the experimental aspects. In the first section the details of the NSE experiment are described, with particular emphasis on the first demonstration of the general scheme of NSE focussing, which involves the tuning of both the ratio of the precession fields H 0 /H 1 and their geometrical assymetry ('tilt angle'). The second section gives the experimental results without, however, a detailed discussion of their significance for the understanding of superfluid 4 He, which will be published elsewhere. (orig.)

  14. A case of Marchiafava-Bignami disease: MRI findings on spin-echo and fluid attenuated inversion recovery (FLAIR) images

    International Nuclear Information System (INIS)

    Yamamoto, Takashi; Ashikaga, Ryuichiro; Araki, Yutaka; Nishimura, Yasumasa

    2000-01-01

    Marchiafava-Bignami disease (MBD) was diagnosed in a 56-year-old man. Spin-echo (SE) magnetic resonance imaging (MRI) at the acute phase showed normal signal areas in the central layer of the corpus callosum (CC), although the intensity of these areas revealed abnormal hyperintensity on fluid attenuated inversion recovery (FLAIR). On follow-up SE MRI at the late phase, the central layer of the CC showed fluid-like intensity. On FLAIR MRI, the lesions of the CC turned into hypointense cores surrounded by hyperintense rims indicating central necrosis and peripheral demyelination. Degenerative changes of the CC in MBD were clearly demonstrated by FLAIR MRI

  15. The facial nerve in the temporal bone as visualised via thin-layer paratransversal and sagittal MR tomographic images by means of T1 spin-echo and FLASH sequences

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.; Jaeger, L.J.E.; Bruegel, F.J.; Grevers, G.; Reiser, M.F.

    1995-01-01

    It is difficult to effect visualization and delineation of the facial nerve and its neighbouring structures in the temporal bone with conventional MRI examination protocols. We tested temporal bone MRI with 2 mm slices and compared T 1 -weighted FLASH (T R =400 ms, T E =10 ms, 90 flip angle) and spin-echo (T R =540 ms, T E =15 ms) sequences. 5 volunteers and 14 patients were examined with the head coil of a 1.0 T whole body MRI scanner (Impact, Siemens, Erlangen) with para-transversal images orientated parallel to the inferior outline of the clivus and sagittal images orientated along the brainstem. The facial nerve and its neighbouring structures could be reliably visualized and differentiated along its entire course. The FLASH sequence was superior to the spin-echo sequence. 8 of 11 patients with peripheral facial nerve palsy showed contrast enhancement. In two patients, local swelling of the affected facial nerve was evident. (orig./MG) [de

  16. The Impact of Dissociator Cooling on the Beam Intensity and Velocity in the SpinLab ABS

    Science.gov (United States)

    Stancari, M.; Barion, L.; Bonomo, C.; Capiluppi, M.; Contalbrigo, M.; Ciullo, G.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L.; Statera, M.; Wang, M.

    2007-06-01

    At the SpinLab laboratory (University of Ferrara, Italy), a three stage cooling system was installed along the dissociator tube of an atomic beam source (ABS). With this tool, it is possible to observe correlations between the measured temperatures and the atomic beam intensity. The existence of such correlations is suggested by the larger intensity of the RHIC ABS, the only other source with additional cooling stages. An increased intensity at lower cooling temperatures was observed in SpinLab, while no change in the beam's velocity distribution was observed.

  17. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    Energy Technology Data Exchange (ETDEWEB)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao [Hamamatsu Univ. School of Medicine, Shizuoka (Japan); Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-03-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  18. Kinematic MRI using short TR single shot fast spin echo (SSFSE) in evaluating swallowing

    International Nuclear Information System (INIS)

    Isogai, Satoshi; Takehara, Yasuo; Isoda, Haruo; Kodaira, Nami; Masunaga, Hatsuko; Ozawa, Fukujirou; Kaneko, Masao; Nozaki, Atsushi; Kabasawa, Hiroyuki

    1999-01-01

    The utility of short TR single shot fast spin echo (SSFSE) MR imaging for evaluating swallowing was determined. Five healthy volunteers underwent kinematic MR imaging of swallowing with a 1.5 T MR scanner using the short TR (300 ms) SSFSE sequence. Twenty phases of sagittal sections were acquired within 6 sec, where the temporal resolution was 300 ms. For oral contrast medium, we used prune yogurt juice with Fe added. The image contrast of short TR SSFSE was found to be somewhere like that of T1-weighted images. In all cases, both the buccal and pharyngeal stages of swallowing were successfully depicted. The Fe-added prune yogurt juice performed as a positive contrast medium and helped determine anatomical structures in the buccal stage. Short TR (300 ms) SSFSE was useful in evaluating swallowing. The combined use of Fe-added prune yogurt juice was helpful in enhancing the surface of the oropharynx. (author)

  19. Meteor head echoes - observations and models

    Directory of Open Access Journals (Sweden)

    A. Pellinen-Wannberg

    2005-01-01

    Full Text Available Meteor head echoes - instantaneous echoes moving with the velocities of the meteors - have been recorded since 1947. Despite many attempts, this phenomenon did not receive a comprehensive theory for over 4 decades. The High Power and Large Aperture (HPLA features, combined with present signal processing and data storage capabilities of incoherent scatter radars, may give an explanation for the old riddle. The meteoroid passage through the radar beam can be followed with simultaneous spatial-time resolution of about 100m-ms class. The current views of the meteor head echo process will be presented and discussed. These will be related to various EISCAT observations, such as dual-frequency target sizes, altitude distributions and vector velocities.

  20. Spin Tracking Studies for Beam Polarization Preservation in the NLC Main Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Bates, Daniel

    2004-01-01

    We report results from studies of spin dynamics in the NLC Main Damping. Our studies have been based on spin tracking particles through the lattice under a range of conditions. We find that there are a number of spin resonances close to the nominal operating energy of 1.98 GeV; however, the effects of the resonances are weak, and the widths are narrow. We do not expect that any significant depolarization of the beam will occur during the store time

  1. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    International Nuclear Information System (INIS)

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  2. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Barth, Eugene D.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. Results: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above∼100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. Conclusions: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors. PMID:21626937

  3. Diagnostic performance of the three-dimensional fast spin echo-Cube sequence in comparison with a conventional imaging protocol in evaluation of the lachrymal drainage system

    International Nuclear Information System (INIS)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li; Liu, Rong; Xiong, Wei

    2015-01-01

    To compare the three-dimensional (3D)-fast spin-echo (FSE)-Cube with a conventional imaging protocol in evaluation of dacryostenosis. Thirty-three patients with epiphora underwent examinations using Cube magnetic resonance dacryocystography (MRD) and a conventional protocol, which included 3D fast-recovery fast spin-echo (FRFSE) MRD and two-dimensional (2D)-FSE sequences at 3.0 T. Using lachrymal endoscopic findings as the reference standard, we calculated the sensitivity and specificity of both protocols for detecting lachrymal drainage system (LDS) obstruction and their accuracies in depicting the level of obstruction. Comparable coronal and axial images were selected for bot sequences. Two neuroradiologists graded paired images for blurring, artefacts, anatomic details, and overall image quality. The two methods showed no significant difference in sensitivity (89.5 % vs. 94.7 %; p =0.674), specificity (64.3 %; p =1) or accuracy (86.8 %; p =1) in detecting or depicting LDS obstruction. Blurring and artefacts were significantly better on 2D-FSE images (p 0.05). In comparison with the conventional protocol, Cube MRD demonstrates satisfactory image quality and similar diagnostic capability for cases of possible LDS disease. (orig.)

  4. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    Science.gov (United States)

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  5. Bell-like inequality for the spin-orbit separability of a laser beam

    International Nuclear Information System (INIS)

    Borges, C. V. S.; Hor-Meyll, M.; Khoury, A. Z.; Huguenin, J. A. O.

    2010-01-01

    In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the nonseparability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and nonseparable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 160401 (2007). As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for nonseparable modes. The inequality is discussed in both the classical and quantum domains.

  6. Magnetic resonance imaging of the sacroiliac joints in patients with suspected spondyloarthritis. Comparison of turbo spin-echo and gradient-echo sequences for the detection of structural alterations

    International Nuclear Information System (INIS)

    Dornia, C.; Hoffstetter, P.; Asklepios Klinikum, Bad Abbach; Fleck, M.; Asklepios Klinikum, Bad Abbach; Hartung, W.; Niessen, C.; Stroszczynski, C.

    2015-01-01

    Magnetic resonance imaging (MRI) is the method of choice for the evaluation of spondyloarthritis (SpA). According to the guidelines of the Assessment of Spondyloarthritis International Society (ASAS) and Outcome Measures in Rheumatology (OMERACT), MRI findings in SpA of the spine and the sacroiliac joints (SIJ) are classified as inflammatory and structural alterations. Modern gradient-echo sequences (GRE) are recommended for optimized detection of structural alterations of the SIJ. We assess the benefit of GRE in the detection of structural alterations of the SIJ in comparison to conventional turbo spin-echo sequences (TSE). Retrospective study of 114 patients who received MRI of the SIJ for the evaluation of SpA. Structural alterations of the SIJ were assessed by two blinded readers separately for T1 TSE and T2 * GRE. The findings were classified according to a previously published chronicity score separately for both sides and sequences. Interobserver reliability was calculated with Cohen's Kappa, and the significance of findings was assessed with the Wilcoxon test. P-values * GRE showed a high interobserver reliability in the detection of structural alterations in patients with SpA. However, T2 * GRE detected significantly more structural alterations than T1 TSE and should be an integral part of a modern MRI protocol for the diagnostic workup of patients with suspected SpA.

  7. T2-weighted MR imaging of liver lesions: a prospective evaluation comparing turbo spin-echo, breath-hold turbo spin-echo and half-Fourier turbo spin-echo (HASTE) sequences; Estudio de lesiones hepaticas con imagenes de resonancia magnetica potenciadas en T2: evaluacion prospectiva comparando secuencias turbo eco del espin, turbo eco del espin con respiracion sostenida y half-Fourier turbo eco del espin (HASTE)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.; Villajos, M.; Oses, M. J.; Veintemillas, M.; Rue, M.; Puig, J.; Sentis, M. [Fundacion Parc Tauli. Sabadell (Spain)

    2000-07-01

    To compare turbo spin-echo (TSE), breath-hold TSE and half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences quantitatively and qualitatively in T2-weighted images of liver lesions. The authors evaluated prospectively 89 liver lesions in 73 patients using a 1.0-T magnetic resonance system to compare TSE, breath-hold TSE and HASTE sequences. The quantitative parameters were: lesion-to-liver contrast and lesion-to-liver contrast-to-noise ratio. The qualitative analysis was performed by two observers in consensus who examined four parameters: respiratory artifacts, lesion edge definition, intrahepatic vessel definition and image quality. Repeated measures analysis of variance was utilized to compare the quantitative variables and Friedman's nonparametric test for the qualitative parameters. In quantitative terms, the lesion-to-liver contrast was similar in TSE and breath-hold TSE sequences (2.45{+-}1.44 versus 2.60{+-}1.66), both of which were significantly better than the HASTE sequence (1.12{+-}0.72; p<0.001). The lesion-to-liver contrast-to-noise ratio was significantly higher in the TSE sequence (62.60{+-}46.40 versus 40.22{+-}25.35 versus 50.90{+-}32.10 for TSE, breath-hold TSE and HASTE sequences, respectively; p<0.001). In the qualitative comparisons, the HASTE sequence was significantly better than the TSE and breath-hold TSE sequences (p<0.001) in terms of artifacts and definition of lesion edge and intrahepatic vessels. Image quality was also significantly greater in the HASTE sequence (p<0.001). In quantitative terms, the TSE sequence is better than the breath-hold TSE and HASTE sequences, but there are no movement artifacts in the HASTE sequence, which is also significantly superior to TSE and breath-hold TSE sequences in qualitative terms and, thus, can be employed for T2-weighted images in liver studies. (Author) 17 refs.

  8. Letter to the Editor: Complete maps of the aspect sensitivity of VHF atmospheric radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    1999-08-01

    Full Text Available Using the MU radar at Shigaraki, Japan (34.85°N, 136.10°E, we measure the power distribution pattern of VHF radar echoes from the mid-troposphere. The large number of radar beam-pointing directions (320 allows the mapping of echo power from 0° to 40° from zenith, and also the dependence on azimuth, which has not been achieved before at VHF wavelengths. The results show how vertical shear of the horizontal wind is associated with a definite skewing of the VHF echo power distribution, for beam angles as far as 30° or more from zenith, so that aspect sensitivity cannot be assumed negligible at any beam-pointing angle that most existing VHF radars are able to use. Consequently, the use of VHF echo power to calculate intensity of atmospheric turbulence, which assumes only isotropic backscatter at large beam zenith angles, will sometimes not be valid.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; instruments and techniques

  9. Horizontal maps of echo power in the lower stratosphere using the MU radar

    Directory of Open Access Journals (Sweden)

    M. Hirono

    2004-03-01

    Full Text Available In recent works, zenithal and azimuthal angle variations of echo power measured by VHF Stratosphere-Troposphere (ST radars have been analyzed in detail using different radar multi-beam configurations. It was found that the azimuthal angle corresponding to maximum echo power is closely related to the direction of the horizontal wind shear. These properties indicate that local wind shear affects the tilt of the scatterers. Moreover, horizontal maps of echo power collected using a large set of beams steered pulse-to-pulse up to 40 degrees off zenith revealed that the power distribution pattern in the troposphere is often skewed. In this work, a three-dimensional description of echo power variations up to 24 degrees off zenith is shown for measurements in the lower stratosphere (i.e. up to approximately 20km using a "sequential multi-beam" (SMB configuration. Such a description was not possible above the tropopause with classical multi-beam configurations because of the loss of radar sensitivity due to the limited integration time by the use of a large number of beams. This work attempts to complete previous descriptions of the phenomenon by some observations in the lower stratosphere discussed in association with complementary balloon measurements. Key words. Meteorology and atmospheric dynamics (turbulence – Radio Science (remote sensing

  10. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe...... particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field....

  11. Utility of dual echo T2-weighted turbo spin echo MR imaging for differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions

    International Nuclear Information System (INIS)

    Yang, Dal Mo; Yoon, Myung Hwan; Kim, Hak Soo; Lee, Eun Joo; Kim, Jong Ho; Kim, Hyung Sik; Chung, Jin Woo

    1999-01-01

    To evaluate the additive value of multiphasic contrast-enhanced dynamic MR imaging as a supplement to dual-echo T2-weighted TSE MR imaging for the differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions. Two radiologists retrospectively reviewed dual-echo T2-weighted TSE MR images and gadolinium-enhanced MR images in 51 patients with hepatic lesions (28 malignant, 69 benign). For the differentiation of malignant from benign lesions, as seen on dual-echo T2-weighted TSE MR images, we evaluated sensitivity, specificity, and accuracy, and compared with the results with those for dual echo T2-weighted MR images plus multiphasic contrast-enhanced dynamic MR images. In addition, Az values for dual echo T2-weighted MR images were compared with those for dual echo T2-weighted MR images plus multiphasic contrast-enhanced dynamic MR images. For the differentiation of malignant from benign hepatic lesions, as seen on dual-echo T2-weighted TSE images, sensitivity, specificity, and accuracy were 80.0%, 97.5%, and 93.9%, respectively, for lesions less than 3cm in diameter, and 92.3%, 95.0%, and 93.5%, respectively, for those that were 3cm or larger. The results for dual-echo T2-weighted MR imaging plus multiphasic contrast-enhanced dynamic MR imaging were 86.7%, 100.0%, and 97.3%, respectively, for lesions less than 3cm, and 92.3%, 100.0%, and 95.7%, respectively for those that were 3cm or larger. There were no significant differences in sensitivity, specificity, or accuracy between the results obtained using dual-echo T2-weighted MR imaging and those obtained with dual-echo T2-weighted MR imaging plus multiphasic contrast-enhanced dynamic MR imaging. Nor were these statistically significant differences in Az values between the two groups. For the differentiation of solid, malignant hepatic lesions from nonsolid, benign hepatic lesions, there is no difference in accuracy between dual-echo T2-weighted TSE MR imaging and the additional use of

  12. Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria

    Science.gov (United States)

    van Heijkamp, Léon F.; Sevcenco, Ana-Maria; Abou, Diane; van Luik, Remko; Krijger, Gerard C.; Hagedoorn, Peter-Leon; de Schepper, Ignatz M.; Wolterbeek, Bert; Koning, Gerben A.; Bouwman, Wim G.

    2010-10-01

    Two types of liposomes, commonly used in drug delivery studies, and E. coli bacteria, all prepared in H2O, were resuspended in D2O and measured with Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed using correlation functions for solid spheres and hollow spheres. The signal strength and curve shape were more indicative of hollow particles, indicating that the H2O-D2O exchange occurred too fast to be observed with the available time resolution. Fitting the particle diameter and membrane thickness of the hollow sphere model to the data, gave results which were in good agreement with Dynamic Light Scattering (DLS) data and literature, showing as a proof-of-principle that SESANS is able to investigate such systems. SESANS may become a good alternative to conventional tritium studies or a tool with which to study intracellular vesicle transport phenomena, with possible in vivo applications. Calculations show that a substantial change in numbers of a mixed system of small and large biological particles should be observable. A possible application is the destruction by external means of great numbers of liposomes in the presence of tumor cells for triggered drug release in cancer treatment. Since SESANS is both non-invasive and non-destructive and can handle relatively thick samples, it could be a useful addition to more conventional techniques.

  13. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  14. MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Hurwitz, Shelley [Departments of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Bakshi, Rohit, E-mail: rbakshi@bwh.harvard.edu [Departments of Neurology, Brigham and Women' s Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA (United States); Departments of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2015-08-15

    Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE

  15. MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo

    International Nuclear Information System (INIS)

    Dupuy, Sheena L.; Tauhid, Shahamat; Kim, Gloria; Chu, Renxin; Tummala, Subhash; Hurwitz, Shelley; Bakshi, Rohit

    2015-01-01

    Highlights: • Compared T1SE and T1GE in detecting hypointense brain lesions in MS patients. • T1GE detected a higher cerebral lesion volume and number than T1SE. • T1SE correlated significantly with disability, while T1GE did not. • Hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. - Abstract: Objective: Compare T1 spin-echo (T1SE) and T1 gradient-echo (T1GE) sequences in detecting hypointense brain lesions in multiple sclerosis (MS). Background: Chronic hypointense lesions on T1SE MRI scans are a surrogate of severe demyelination and axonal loss in MS. The role of T1GE images in the detection of such lesions has not been clarified. Design/methods: In 45 patients with MS [Expanded Disability Status Scale (EDSS) score (mean ± SD) 3.5 ± 2.0; 37 relapsing-remitting (RR); 8 secondary progressive (SP)], cerebral T1SE, T1GE, and T2-weighted fluid-attenuated inversion-recovery (FLAIR) images were acquired on a 1.5 T MRI scanner. Images were re-sampled to axial 5 mm slices before directly comparing lesion detectability using Jim (v.7, Xinapse Systems). Statistical methods included Wilcoxon signed rank tests to compare sequences and Spearman correlations to test associations. Results: Considering the entire cohort, T1GE detected a higher lesion volume (5.90 ± 6.21 vs. 4.17 ± 4.84 ml, p < 0.0001) and higher lesion number (27.82 ± 20.66 vs. 25.20 ± 20.43, p < 0.05) than T1SE. Lesion volume differences persisted when considering RR and SP patients separately (both p < 0.01). A higher lesion number by T1GE was seen only in the RR group (p < 0.05). When comparing correlations between lesion volume and overall neurologic disability (EDSS score), T1SE correlated with EDSS (Spearman r = 0.29, p < 0.05) while T1GE (r = 0.23, p = 0.13) and FLAIR (r = 0.24, p = 0.12) did not. Conclusion: Our data suggest that hypointense lesions on T1SE and T1GE are not interchangeable in patients with MS. Based on these results, we hypothesize that T1GE

  16. Two-pulse and stimulated nuclear-quadrupole-resonance echoes in YAlO3:Pr3+

    International Nuclear Information System (INIS)

    Erickson, L.E.

    1991-01-01

    The dephasing of trivalent praseodymium dilute in yttrium aluminum oxide (YAlO 3 ) in the ground electronic state 3 H 4 state is evaluated using an optically detected method, to measure two-rf-pulse- and three-rf-pulse-stimulated nuclear quadrupole echoes. The magnitude of the echo is obtained by detecting the weak Raman optical field generated by the interaction of the magnetic moment of the echo and a light beam resonant with the 3 H 4 (0 cm 1 ) to 1 D 2 (16 374 cm -1 ) optical transition. This same light beam is used as an optical pump (37-ms duration) prior the rf-pulse sequence to increase the population difference of the hyperfine energy levels, thereby improving the echo signal. The light is turned off 9 ms before the rf-pulse sequence and remains off until the echo to avoid optical-pumping effects on the measured nuclear-quadrupole-resonance (NQR) echo lifetime. The dephasing time T 2 from two-pulse nuclear-quadrupole-echo measurement is found to be 366±29 μs

  17. Gadolinium-Enhanced Three-Dimensional Magnetization - Prepared Rapid Gradient-Echo (3D MP-RAGE) Imaging is Superior to Spin-Echo Imaging in Delineating Brain Metastases

    International Nuclear Information System (INIS)

    Takeda, T.; Takeda, A.; Nagaoka, T.; Kunieda, E.; Takemasa, K.; Watanabe, M.; Hatou, T.; Oguro, S.; Katayama, M.

    2008-01-01

    Background: Precisely defining the number and location of brain metastases is very important for establishing a treatment strategy for malignancies. Although magnetic resonance imaging (MRI) is now considered the best modality, various improvements in sequences are still being made. Purpose: To prospectively compare the diagnostic ability of three-dimensional, magnetization-prepared rapid gradient-echo (3D MP-RAGE) imaging in detecting metastatic brain tumors, with that of two-dimensional spin-echo (2D SE) T1-weighted imaging. Material and Methods: A total of 123 examinations were included in this study, and 119 examinations from 88 patients with known malignancies were analyzed. All patients underwent T1- and T2-weighted 2D SE transverse imaging, followed by gadolinium-enhanced T1-weighted transverse and coronal 2D SE imaging and 3D MP-RAGE transverse imaging. Four radiologists interpreted the images to compare the accuracy and the time required for interpretation for each imaging. Results: 3D MP-RAGE imaging was significantly better than 2D SE imaging for detecting metastatic brain lesions, regardless of the readers' experience. The sensitivities of the 3D MP-RAGE and 2D SE imaging for all observers were 0.81 vs. 0.80 (P>0.05), specificities were 0.93 vs. 0.87 (P 0.05), and accuracies were 0.84 vs. 0.78 (P<0.05), respectively. There was no significant difference in the time required for image interpretation between the two modalities (15.6±4.0 vs. 15.4±4.1 min). Conclusion: 3D MP-RAGE imaging proved superior to 2D SE imaging in the detection of brain metastases

  18. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aymerich, F.X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Universitat Politecnica de Catalunya - Barcelona Tech (UPC), Department of Automatic Control (ESAII), Barcelona (Spain); Auger, C.; Alcaide-Leon, P.; Pareto, D.; Huerga, E.; Corral, J.F.; Mitjana, R.; Rovira, A. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, MR Unit. Department of Radiology (IDI), Barcelona (Spain); Sastre-Garriga, J.; Montalban, X. [Hospital Universitari Vall d' Hebron, Universitat Autonoma de Barcelona, Centre d' Esclerosi Multiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Barcelona (Spain)

    2017-04-15

    To compare the sensitivity of enhancing multiple sclerosis (MS) lesions in gadolinium-enhanced 2D T1-weighted gradient-echo (GRE) and spin-echo (SE) sequences, and to assess the influence of visual conspicuity and laterality on detection of these lesions. One hundred MS patients underwent 3.0T brain MRI including gadolinium-enhanced 2D T1-weighted GRE and SE sequences. The two sets of contrast-enhanced scans were evaluated in random fashion by three experienced readers. Lesion conspicuity was assessed by the image contrast ratio (CR) and contrast-to-noise ratio (CNR). The intracranial region was divided into four quadrants and the impact of lesion location on detection was assessed in each slice. Six hundred and seven gadolinium-enhancing MS lesions were identified. GRE images were more sensitive for lesion detection (0.828) than SE images (0.767). Lesions showed a higher CR in SE than in GRE images, whereas the CNR was higher in GRE than SE. Most misclassifications occurred in the right posterior quadrant. The gadolinium-enhanced 2D T1-weighted GRE sequence at 3.0T MRI enables detection of enhancing MS lesions with higher sensitivity and better lesion conspicuity than 2D T1-weighted SE. Hence, we propose the use of gadolinium-enhanced GRE sequences rather than SE sequences for routine scanning of MS patients at 3.0T. (orig.)

  19. Fast spin-echo MR assessment of patients with poor outcome following spinal cervical surgery

    International Nuclear Information System (INIS)

    Wu, W.; Thuomas, K.AA.; Hedlund, R.; Leszniewski, W.; Vavruch, L.

    1996-01-01

    The aim of the investigation was to evaluate poor outcome following spinal cervical surgery. A total of 146 consecutive patients operated with anterior discectomy and fusion (ADF) with the Cloward technique were investigated. Clinical notes, plain radiography, CT, and fast spin-echo (FSE) images were retrospectively evaluated. Some 30% of the patients had unsatisfactory clinical results within 12 months after surgery; 13% had initial improvement followed by deterioration of the preoperative symptoms, while 14.4% were not improved or worsened. Disc herniation and bony stenosis above, below, or at the fused level were the most common findings. In 45% of patients, surgery failed to decompress the spinal canal. In only 4 patients was no cause of remaining myelopathy and/or radiculopathy found. FSE demonstrated a large variety of pathological findings in the patients with poor clinical outcome after ADF. Postoperatively, patients with good clinical outcome had a lower incidence of pathological changes. FSE is considered the primary imaging modality for the cervical spine. However, CT is a useful complement in the axial projection to visualize bone changes. (orig.)

  20. Horizontal maps of echo power in the lower stratosphere using the MU radar

    Directory of Open Access Journals (Sweden)

    M. Hirono

    2004-03-01

    Full Text Available In recent works, zenithal and azimuthal angle variations of echo power measured by VHF Stratosphere-Troposphere (ST radars have been analyzed in detail using different radar multi-beam configurations. It was found that the azimuthal angle corresponding to maximum echo power is closely related to the direction of the horizontal wind shear. These properties indicate that local wind shear affects the tilt of the scatterers. Moreover, horizontal maps of echo power collected using a large set of beams steered pulse-to-pulse up to 40 degrees off zenith revealed that the power distribution pattern in the troposphere is often skewed. In this work, a three-dimensional description of echo power variations up to 24 degrees off zenith is shown for measurements in the lower stratosphere (i.e. up to approximately 20km using a "sequential multi-beam" (SMB configuration. Such a description was not possible above the tropopause with classical multi-beam configurations because of the loss of radar sensitivity due to the limited integration time by the use of a large number of beams. This work attempts to complete previous descriptions of the phenomenon by some observations in the lower stratosphere discussed in association with complementary balloon measurements.

    Key words. Meteorology and atmospheric dynamics (turbulence – Radio Science (remote sensing

  1. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  2. Application of diffusion-weighted echo planar imaging for diagnosis of small acute and subacute brain ischemic lesions

    International Nuclear Information System (INIS)

    Enomoto, Kyoko; Watanabe, Tsuneya; Amanuma, Makoto; Heshiki, Atsuko

    1997-01-01

    The aim of this study was to determine the utility of diffusion-weighted echo planar imaging (DW-EPI) for detecting acute and subacute brain ischemic foci less than 2 cm in size. Thirty patients underwent DW-EPI on a 1.5 T super-conducting unit using a SE-EPI sequence with an arbitrary pair of Stejskal-Tanner gradients applied along the imaging axes. DW-EPI demonstrated all the mast recent ischemic lesions as areas of decreased diffusion, providing greater conspicuity and larger size than conventional spin-echo imaging. DW-EPI is a promising method to detect within a subsecond early ischemia and reversible ischemic changes that are not demonstrate on routine spin-echo images. (author)

  3. Silver atom solvation and desolvation in ice matrices: study of solvation shell geometry by electron spin resonance and electron spin echo methods

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, L; Narayana, P A

    1978-01-01

    Results of studies of the solvation shell structure of silver atoms in ice matrix at 4/sup 0/K by electron spin resonance (ESR) and electron spin echo spectrometry are reported. Drastic change in the hyperfine coupling constant of the silver atom was noted when the silver atom initially produced at 4/sup 0/K was warmed to 77/sup 0/K and reexamined by ESR at 4/sup 0/K. This suggested a very drastic rearrangement of the water molecules surrounding the silver atom. The geometric arrangement of water molecules around the silver atom produced at 4/sup 0/K was what would be expected for a solvated silver ion, indicating that no rearrangement had occurred after the silver atom formed. The addition of a little thermal excitation (heating to 77/sup 0/K) results in the geometry changes than can be explained by assuming either that a water molecule rotates around one of its OH bands or by the development of a hydrogen bond between the silver atom and one of the first solvation shell water molecules. Optical excitation in the absorption band of the silver atom in the ice matrix at 400nm resulted in desolvation of the silver ion or a reversion to the structure originally obtained by reaction of solver salts in ic matrix with radiation produced electrons. This was best explained by a charge transfer mechanism. (BLM)

  4. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3 T system scientific research

    International Nuclear Information System (INIS)

    Milewski, Matthew D.; Smitaman, Edward; Moukaddam, Hicham; Katz, Lee D.; Essig, David A.; Medvecky, Michael J.; Haims, Andrew H.

    2012-01-01

    Highlights: ► Compared 3D to 2D MR sequences for articular cartilage in the knee. ► 3D imaging acquired in a single plane, 2D acquired in 3 separate planes. ► No significant difference in accuracy between 3D and 2D sequences. - Abstract: Purpose: We sought to retrospectively compare the accuracy of a three-dimensional fat-suppressed, fast spin-echo sequences acquired in the sagittal plane, with multiplanar reconstructions to that of two-dimensional fat-suppressed, fast spin echo sequences acquired in three planes on a 3 T MR system for the evaluation of articular cartilage in the knee. Materials and methods: Our study group consisted of all patients (N = 34) that underwent 3 T MR imaging of the knee at our institution with subsequent arthroscopy over an 18-month period. There were 21 males and 13 females with an average age of 36 years. MR images were reviewed by 3 musculoskeletal radiologists, blinded to operative results. 3D and 2D sequences were reviewed at different sittings separated by 4 weeks to prevent bias. Six cartilage surfaces were evaluated both with MR imaging and arthroscopically with a modified Noyes scoring system and arthroscopic results were used as the gold standard. Sensitivity, specificity, and accuracy were calculated for each reader along with Fleiss Kappa assessment agreement between the readers. Accuracies for each articular surface were compared using a difference in proportions test with a 95% confidence interval and statistical significance was calculated using a Fisher's Exact Test. Results: Two hundred and four articular surfaces were evaluated and 49 articular cartilage lesions were present at arthroscopy. For the patellofemoral surfaces, the sensitivity, specificity, and accuracy were 76.5%, 83%, and 78.2% for the 3D sequences and were 82.3%, 76%, and 82% respectively for the 2D sequences. For the medial compartment surfaces, the sensitivity, specificity, and accuracy were 81.1%, 65.1%, and 78.5% for the 3D sequences and were

  5. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  6. Photon Echoes in the 3P0 ← 3H4 Transition of Pr3+/LaF3

    NARCIS (Netherlands)

    Morsink, Jos B.W.; Wiersma, Douwe A.

    1979-01-01

    Photon-echo quantum beats observed in the two-pulse and three-pulse photon echo of the 3P0 ← 3H4 transition in Pr3+/LaF3 were used to determine the excited-state spin-hamiltonian. In addition we report on the anomalous stimulated photon echo observed in the same transition which in a magnetic field

  7. Partial flip angle spin-echo imaging to obtain T1 weighted images with electrocardiographic gating

    International Nuclear Information System (INIS)

    Kawamitsu, Hideaki; Sugimura, Kazuro; Kasai, Toshifumi; Kimino, Katsuji

    1993-01-01

    ECG-gated spin-echo (SE) imaging can reduce physiologic motion artifact. However, it does not provide strong T 1 -weighted images, because the repetition time (TR) depends on heart rate (HR). For odd-echo SE imaging, T 1 contrast can be maximized by using a smaller flip angle (FA) of initial excitation RF pulses. We investigated the usefulness of partial FA SE imaging in order to obtain more T 1 -dependent contrast with ECG gating and determined the optimal FA at each heart rate. In computer simulation and phantom study, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each FA (0∼180deg) and each HR (55∼90 beats per minute (bpm)) were compared with those obtained with conventional T 1 -weighted SE imaging (TR=500 ms, TE=20 ms, FA=90deg). The optimal FA was decreased by reducing HR. The FA needed to obtain T 1 -dependent contrast identical to that with T 1 -weighted SE imaging was 43deg at a HR of 65 bpm, 53deg at 70 bpm, 60deg at 75 bpm. This predicted FA were in excellent agreement with that obtained with clinical evaluation. The predicted SNR was decreased by reducing FA. The SNR of partial FA SE imaging at HR of 65 bpm (FA=43deg) was 80% of that with conventional T 1 -weighted SE imaging. However, this imaging method presented no marked clinical problem. ECG-gated partial FA SE imaging provides better T 1 -dependent contrast than conventional ECG-gated SE imaging, especially for Gd-DTPA enhanced imaging. (author)

  8. The Usefulness of Fast-Spin-Echo T2-Weighted MR Imaging in Nutcracker Syndrome: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Heong Leng; Chen, Matt Chiung Yu; Wu, Cgek Siung; Fu, Kuo An; Lin, Cheng Hao [Yuan' s General Hospital, Kaohsiung (China); Weng, Mei Jui; Liang, Huei Lung; Pan, Huay Ben [National Yang-Ming University, Taipei (Korea, Republic of)

    2010-06-15

    Nutcracker syndrome occurs when the left renal vein (LRV) is compressed between the superior mesenteric artery and the aorta, and this syndrome is often characterized by venous hypertension and related pathologies. However, invasive studies such as phlebography and measuring the reno-caval pressure gradient should be performed to identify venous hypertension. Here we present a case of Nutcracker syndrome where the LRV and intra-renal varicosities appeared homogeneously hyperintense on magnetic resonance (MR) fast-spin-echo T2- weighted imaging, which suggested markedly stagnant intravenous blood flow and the presence of venous hypertension. The patient was diagnosed and treated without obtaining the reno-caval pressure gradient. The discomfort of the patient lessened after treatment. Furthermore, on follow-up evaluation, the LRV displayed a signal void, and this was suggestive of a restoration of the normal LRV flow and a decrease in LRV pressure.

  9. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  10. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  11. Beam-spin asymmetries from semi-inclusive pion electroproduction

    Science.gov (United States)

    Gohn, W.; Avakian, H.; Joo, K.; Ungaro, M.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Forest, T.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, Mohammad; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stoler, P.; Strakovsky, I. I.; Stepanyan, S.; Strauch, S.; Tang, W.; Tkachenko, S.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2014-04-01

    We have measured the moment ALUsinϕ corresponding to the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering. ALUsinϕ is a twist-3 quantity providing information about quark-gluon correlations. Data were taken with the CLAS Spectrometer at Jefferson Lab using a 5.498 GeV longitudinally polarized electron beam and an unpolarized liquid hydrogen target. All three pion channels (π+, π0 and π-) were measured simultaneously over a large range of kinematics within the virtuality range Q2≈ 1.0-4.5 GeV2. The observable was measured with better than 1% statistical precision over a large range of z, PT, xB, and Q2, which permits comparison with several reaction models. The discussed measurements provide an upgrade in statistics over previous measurements, and serve as the first evidence for the negative sign of the π- sinϕ moment.

  12. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Fellner, Franz A. [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria) and Zentrales Radiologie Institut, Allgemeines Krankenhaus der Stadt Linz, Krankenhausstr. 9, 4020 Linz (Austria)]. E-mail: franz.fellner@akh.linz.at; Fellner, Claudia [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria); Aichner, Franz T. [Abteilung fuer Neurologie, Landes-Nervenklinik Wagner-Jauregg, Linz (Austria); Moelzer, Guenther [Institut fuer Radiologie, Landes-Nervenklinik Wagner Jauregg, Linz (Austria)

    2005-11-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 {mu}s, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis.

  13. Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis

    International Nuclear Information System (INIS)

    Fellner, Franz A.; Fellner, Claudia; Aichner, Franz T.; Moelzer, Guenther

    2005-01-01

    We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 μs, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis

  14. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Comparison of single-shot fast spin-echo sequence and T2-weighted fast spin-echo sequence in MR imaging of the brain

    International Nuclear Information System (INIS)

    Cha, Sung Ho; Seo, Jeong Jin; Jeong, Gwang Woo; Kim, Jae Kyu; Kim, Yun Hyeon; Jeong, Yong Yeon; Kang, Heoung Keun; Oh, Hee Yeon; Yoon, Jong Hoon

    1998-01-01

    The purpose of this study was to evaluate the usefulness of the single-shot fast spinecho (SS-FSE) sequence in comparison with the T2-weighted fast spin-echo (T2-FSE) sequence in brain MR imaging. In 41 patients aged 15-75 years with intracranial lesion, both SS-FSE and T2-FES images were obtained using a 1.5-T MR system. Lesions included cerebral ischemia or infarcts (n=3D23), tumors (n=3D10), hemorrhages (n=3D3), inflammatory diseases (n=3D2), arachnoid cysts(n=3D2), and vascular disease (n=3D1), and the MR images were retrospectively evaluated. To calculate contrast-to-noise ratio (CNR), percentage contrast, and signal-to-noise ratio (SNR)-and thus make a quantitative comparison-the mean signal intensities of lesions, normal brain tissue, and noise out-side the patient were measured. For qualitative comparison, the visibility, margin, and extent of the lesions were rated using a five-grade system, and the degree of MR artifacts was also evaluated. Wilcoxon's signed ranks test was used for statistical analysis. The mean CNR of lesions was significantly higher on SS-FSE (31.3) than on T2-FSE images (27.5) (p=3D0.0131). Mean percentage contrast was also higher on SS-FSE (159.0) than on T2-FSE images (108.5) (p=3D0.0222), but mean SNR was higher on T2-FSE (80.3) than on SS-FSE images (53.5) (p=3D0.0000). No significant differences in lesion visibility were observed between the two imaging sequences, though margin and extent of the lesion were worse on SS-FSE images. For MR artifacts, no significant differences were demonstrated. For the evaluation of most intracranial lesions, MR imaging using the SS-FSE sequence appears to be slightly inferior to the T2-FSE sequence, but may be useful where patients are ill or uncooperative, or where children require sedation.=20

  16. The use of electron beams as probes of the distant magnetosphere

    International Nuclear Information System (INIS)

    Winckler, J.R.

    1982-01-01

    This chapter reports on experiments in which electron beams have been injected into the magnetosphere in order to diagnose plasma processes at a great distance by measurements made in the ionosphere. Topics considered include the beam injecting rocket system in the ionosphere; beam detection and analysis; echo detection by particle counters; echo analysis; the structure of echoes; the atmosphere as a detector; radio and radar methods; perturbation of the distant magnetosphere by beam injection; changes in the injected beam in the near-rocket region; some observations of the distant magnetosphere by beams; the comparison of distant and local electric fields; electron diffusion; the distant magnetic field; and future possibilities. Conjugate locations, field line lengths, electric and magnetic drifts, field fluctuations, and electron scattering and diffusion are analyzed. Echo detection by particle counters on some of the ECHO rocket series is discussed in detail

  17. T2-weighted MR imaging of the liver: Qualitative and quantitative comparison of SPACE MR imaging with turbo spin-echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dohan, Anthony, E-mail: anthony.dohan@lrb.aphp.fr [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); UMR INSERM 965, Hôpital Lariboisière, 2 Rue Amboise Paré, 75010 Paris (France); Gavini, Jean-Philippe, E-mail: jpgavini@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); Placé, Vinciane, E-mail: vinciane.place@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Sebbag, Delphine, E-mail: delphinesebbag@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); Vignaud, Alexandre, E-mail: alexandre.vignaud@cea.fr [LRMN, Neurospin, CEA-SACLAY, Bâtiment 145, 91 191 Gif-sur-Yvette Cedex (France); and others

    2013-11-01

    Objective: To qualitatively and quantitatively compare T2-weighted MR imaging of the liver using volumetric spin-echo with sampling perfection with application-optimized contrast using different flip angle evolutions (SPACE) with conventional turbo spin-echo (TSE) sequence for fat-suppressed T2-weighted MR imaging of the liver. Materials and methods: Thirty-three patients with suspected focal liver lesions had SPACE MR imaging and conventional fat-suppressed TSE MR imaging. Images were analyzed quantitatively by measuring the lesion-to-liver contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) of main focal hepatic lesions, hepatic and splenic parenchyma and qualitatively by evaluating the presence of vascular, respiratory motion and cardiac artifacts. Wilcoxon signed rank test was used to search for differences between the two sequences. Results: SPACE MR imaging showed significantly greater CNR for focal liver lesions (median = 22.82) than TSE MR imaging (median = 14.15) (P < .001). No differences were found for SNR of hepatic parenchyma (P = .097), main focal hepatic lesions (P = .35), and splenic parenchyma (P = .25). SPACE sequence showed less artifacts than TSE sequence (vascular, P < .001; respiratory motion, P < .001; cardiac, P < .001) but needed a longer acquisition time (228.4 vs. 162.1 s; P < .001). Conclusion: SPACE MR imaging provides a significantly increased CNR for focal liver lesions and less artifacts by comparison with the conventional TSE sequence. These results should stimulate further clinical studies with a surgical standard of reference to compare the two techniques in terms of sensitivity for malignant lesions.

  18. High-spin nuclear structure studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  19. Probing the magnetsophere with artificial electron beams

    International Nuclear Information System (INIS)

    Winckler, J.R.

    1981-01-01

    An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection

  20. Elucidation of spin echo small angle neutron scattering correlation functions through model studies.

    Science.gov (United States)

    Shew, Chwen-Yang; Chen, Wei-Ren

    2012-02-14

    Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics

  1. Softening of phospholipid membranes by the adhesion of silica nanoparticles - as seen by neutron spin-echo (NSE)

    Science.gov (United States)

    Hoffmann, Ingo; Michel, Raphael; Sharp, Melissa; Holderer, Olaf; Appavou, Marie-Sousai; Polzer, Frank; Farago, Bela; Gradzielski, Michael

    2014-05-01

    The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon binding of the nanoparticles. This surprising finding may be a relevant aspect for the further understanding of the effects that nanoparticles have on phospholipid bilayers.The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon

  2. Suppressing magnetization exchange effects in stimulated-echo diffusion experiments.

    Science.gov (United States)

    Pagès, Guilhem; Dvinskikh, Sergey V; Furó, István

    2013-09-01

    Exchange of nuclear magnetization between spin pools, either by chemical exchange or by cross-relaxation or both, has a significant influence on the signal attenuation in stimulated-echo-type pulsed field gradient experiments. Hence, in such cases the obtained molecular self-diffusion coefficients can carry a large systematic error. We propose a modified stimulated echo pulse sequence that contains T2-filters during the z-magnetization store period. We demonstrate, using a common theoretical description for chemical exchange and cross-relaxation, that these filters suppress the effects of exchange on the diffusional decay in that frequent case where one of the participating spin pools is immobile and exhibits a short T2. We demonstrate the performance of this experiment in an agarose/water gel. We posit that this new experiment has advantages over other approaches hitherto used, such as that consisting of measuring separately the magnetization exchange rate, if suitable by Goldman-Shen type experiments, and then correcting for exchange effects within the framework of a two-site exchange model. We also propose experiments based on selective decoupling and applicable in systems with no large T2 difference between the different spin pools. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Solid-state NMR spin-echo investigation of the metalloproteins parvalbumin, concanavalin A, and pea and lentil lectins, substituted with cadmium-113

    Science.gov (United States)

    Marchetti, Paul S.; Bhattacharyya, Lokesh; Ellis, Paul D.; Brewer, C. Fred

    Solid-state 113Cd NMR spectroscopy of static powder samples of 113Cd-substituted metalloproteins, parvalbumin, concanavalin A, and pea and lentil lectins, was carried out. Cross polarization followed by application of a train of uniformly spaced π pulses was employed to investigate the origin of residual cadmium NMR linewidths observed previously in these proteins. Fourier transformation of the resulting spin-echo train yielded spectra consisting of uniformly spaced lines having linewidths of the order of 1-2 ppm. The observed linewidths were not influenced by temperature as low as -50°C or by extent of protein hydration. Since the echo-train pulse sequence is able to eliminate inhomogeneous but not homogeneous contributions to the linewidths, there is a predominant inhomogeneous contribution to cadmium linewidths in the protein CP/MAS spectra. However, significant changes in spectral intensities were observed with change in temperature and extent of protein hydration. These intensity changes are attributed for parvalbumin and concanavalin A to changes in cross-polarization efficiency with temperature and hydration. For pea and lentil lectins, this effect is attributed to the elimination of static disorder at the pea and lentil S2 metal-ion sites due to sugar binding.

  4. Electron spin echo studies of the internal motion of radicals in crystals: Phase memory vs correlation time

    International Nuclear Information System (INIS)

    Kispert, L.D.; Bowman, M.K.; Norris, J.R.; Brown, M.S.

    1982-01-01

    An electron spin echo (ESE) study of the internal motion of the CH 2 protons in irradiated zinc acetate dihydrate crystals shows that quantitative measurements of the motional correlation time can be obtained quite directly from pulsed measurements. In the slow motional limit, the motional correlation time is equal to the phase memory time determined by ESE. In the fast motional limit, the motional correlation time is proportional to the no motion spectral second moment divided by the ESE phase memory time. ESE offers a convenient method of studying motion, electron transfer, conductivity, etc. in a variety of systems too complicated for study by ordinary EPR. New systems for study by ESE include biological samples, organic polymers, liquid solutions of radicals with unresolved hyperfine, etc. When motion modulates large anisotropic hyperfine couplings, ESE measurements of the phase memory time are sensitive to modulation of pseudosecular hyperfine interactions

  5. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    International Nuclear Information System (INIS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed

  6. A new and unifying approach to spin dynamics and beam polarization in storage rings

    International Nuclear Information System (INIS)

    Heinemann, K.; Ellison, J.A.

    2014-09-01

    With this paper we extend our studies on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them. We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrices describing statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way.

  7. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  8. Pulsed EPR study of low-dose irradiation effects in L-alanine crystals irradiated with γ-rays, Ne and Si ion beams

    International Nuclear Information System (INIS)

    Rakvin, B.; Maltar-Strmecki, N.; Nakagawa, K.

    2007-01-01

    Low-dose irradiation effects in L-alanine single crystals irradiated with γ-rays, Ne and Si ion beams have been investigated by means of a two-pulse electron spin echo (ESE) technique. An effective phase memory time, T M , was measured from the first stable L-alanine radical, SAR1, and its complex relaxation mechanism is discussed. Both spectral and instantaneous diffusion contributions to the total effective relaxation rate have been extrapolated through the detection of the two-pulse ESE signal as a function of turning angle. The local microscopic concentration of paramagnetic centers C(ions)/C(γ-ray) for low-dose heavy-ion irradiation has been deduced from the corresponding spin-spin interaction

  9. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    Science.gov (United States)

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate

  10. Comparison of a T1-weighted inversion-recovery-, gradient-echo- and spin-echo sequence for imaging of the brain at 3.0 Tesla

    International Nuclear Information System (INIS)

    Stehling, C.; Niederstadt, T.; Kraemer, S.; Kugel, H.; Schwindt, W.; Heindel, W.; Bachmann, R.

    2005-01-01

    Purpose: The increased T1 relaxation times at 3.0 Tesla lead to a reduced T1 contrast, requiring adaptation of imaging protocols for high magnetic fields. This prospective study assesses the performance of three techniques for T1-weighted imaging (T1w) at 3.0 T with regard to gray-white differentiation and contrast-to-noise-ratio (CNR). Materials and Methods: Thirty-one patients were examined at a 3.0 T system with axial T1 w inversion recovery (IR), spin-echo (SE) and gradient echo (GE) sequences and after contrast enhancement (CE) with CE-SE and CE-GE sequences. For qualitative analysis, the images were ranked with regard to artifacts, gray-white differentiation, image noise and overall diagnostic quality. For quantitative analysis, the CNR was calculated, and cortex and basal ganglia were compared with the white matter. Results: In the qualitative analysis, IR was judged superior to SE and GE for gray-white differentiation, image noise and overall diagnostic quality, but inferior to the GE sequence with regard to artifacts. CE-GE proved superior to CE-SE in all categories. In the quantitative analysis, CNR of the based ganglia was highest for IR, followed by GE and SE. For the CNR of the cortex, no significant difference was found between IR (16.9) and GE (15.4) but both were superior to the SE (9.4). The CNR of the cortex was significantly higher for CE-GE compared to CE-SE (12.7 vs. 7.6, p<0.001), but the CNR of the basal ganglia was not significantly different. Conclusion: For unenhanced T1w imaging at 3.0 T, the IR technique is, despite increased artifacts, the method of choice due to its superior gray-white differentiation and best overall image quality. For CE-studies, GE sequences are recommended. For cerebral imaging, SE sequences give unsatisfactory results at 3.0 T. (orig.)

  11. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    International Nuclear Information System (INIS)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio

    2002-01-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  12. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  13. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    International Nuclear Information System (INIS)

    Van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R; Smink, Jouke

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T 2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  14. Novel method for the production of spin-aligned RI beams in projectile fragmentation reaction with the dispersion matching technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y., E-mail: yuichikawa@phys.titech.ac.jp [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Ishii, Y. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yoshimi, A. [Okayama University, Research Core for Extreme Quantum World (Japan); Kameda, D.; Watanabe, H.; Aoi, N. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Balabanski, D. L. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Chevrier, R.; Daugas, J. M. [CEA, DAM, DIF (France); Fukuda, N. [RIKEN Nishina Center (Japan); Georgiev, G. [CSNSM, IN2P3-CNRS, Universite Paris-sud (France); Hayashi, H.; Iijima, H. [Tokyo Institute of Technology, Department of Physics (Japan); Inabe, N. [RIKEN Nishina Center (Japan); Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Ishihara, M.; Kubo, T. [RIKEN Nishina Center (Japan); and others

    2013-05-15

    A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of {sup 32}Al with spin alignment of 8(1) % was successfully produced from a primary beam of {sup 48}Ca, with {sup 33}Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.

  15. Beam spin asymmetry in deep and exclusive pi0 electroproduction

    International Nuclear Information System (INIS)

    R. De Masi

    2007-01-01

    The beam spin asymmetry (BSA) in the exclusive reaction ep->ep pi0 was measured with the CEBAF 5.77 GeV polarized electron beam and Large Acceptance Spectrometer(CLAS). The xB, Q2, t and phi dependences of the pi0 BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sin(phi) function and their amplitudes are extracted. Overall, they are of the order of 0.04 - 0.11 and roughly independent of t. This is the signature of a non-zero longitudinal-transverse interference. The implications concerning the applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge formalism at high photon virtualities, are discussed

  16. Beam and spin dynamics in the fast ramping storage ring ELSA: Concepts and measures to increase beam energy, current and polarization

    Science.gov (United States)

    Hillert, Wolfgang; Balling, Andreas; Boldt, Oliver; Dieckmann, Andreas; Eberhardt, Maren; Frommberger, Frank; Heiliger, Dominik; Heurich, Nikolas; Koop, Rebecca; Klarner, Fabian; Preisner, Oliver; Proft, Dennis; Pusch, Thorsten; Roth, André; Sauerland, Dennis; Schedler, Manuel; Schmidt, Jan Felix; Switka, Michael; Thiry, Jens-Peter; Wittschen, Jürgen; Zander, Sven

    2017-01-01

    The electron accelerator facility ELSA has been operated for almost 30 years serving nuclear physics experiments investigating the sub-nuclear structure of matter. Within the 12 years funding period of the collaborative research center SFB/TR 16, linearly and circularly polarized photon beams with energies up to more than 3 GeV were successfully delivered to photoproduction experiments. In order to fulfill the increasing demands on beam polarization and intensity, a comprehensive research and upgrade program has been carried out. Beam and spin dynamics have been studied theoretically and experimentally, and sophisticated new devices have been developed and installed. The improvements led to a significant increase of the available beam polarization and intensity. A further increase of beam energy seems feasible with the implementation of superconducting cavities.

  17. Fast-gradient-echo variable-flip-angle imaging of the cervical spine

    International Nuclear Information System (INIS)

    Van Dyke, C.W.; Ross, J.S.; Masaryk, T.J.; Tkach, J.; Beale, S.; Hueftle, M.G.; Kaufman, B.; Modic, M.T.

    1987-01-01

    Two hundred consecutive patients were studied with 4-mm sagittal and axial T1-weighted images and gradient echo sequences with 6-msec or 13-msec echo time (TE) and 10 0 or 60 0 flip angles to evaluate cervical extradural disease. Images were independently evaluated for contrast behavior and anatomy, then directly compared for conspicuity of lesions. FLASH sequences produced better conspicuity of disease in half the imaging time. T1-weighted spin-echo (SE) sequences were more sensitive to marrow changes and intradural disease. Shorter TEs produced overall image improvement and reduced susceptibility effects. A fast and sensitive cervical examination combines sagittal T1-weighted SE with sagittal and axial FLASH 10 0 sequences with 6-msec TE

  18. Abnormal intraluminal signal within the pulmonary arteries on MR imaging: Differentiation between slow blood flow and thrombus using an ECG-gated; multiphasic: Spin-echo technique

    International Nuclear Information System (INIS)

    White, R.D.; Higgins, C.B.

    1986-01-01

    The authors evaluated abnormal MR imaging signal patterns in the pulmonary arteries of 22 patients with pulmonary hypertension (n = 13), pulmonary embolus (n = 4), or both (n = 5). Using multiphasic (five or six phases; 19 patients) or standard (three patients with pulmonary embolus) ECG-gated, double spin-echo techniques, they were able to differentiate between causes of such abnormal signal patterns. The pattern of slow blood flow (abnormal signal in systole with fluctuating distribution during cardiac cycle, and intensity increasing visually from first to second echo) was noted in 89% of patients with pulmonary hypertension alone or in combination with pulmonary embolism, and was characteristic of high systolic pulmonary pressures (12 of 12 patients with pressure > 80 mm Hg, vs. 3 of 5 patients with pressure 55 mm Hg vs. 5 of 7 patients with pressures <55 mm Hg). This pattern was differentiated from that of thrombus (persistent signal with fixed distribution during cardiac cycle, and little to no visible intensity change from first to second echo), which was noted in six of seven proved embolus cases. Thus, gated multiphase MR imaging shows potential for the noninvasive visualization of pulmonary embolus and the differentiation of this entity from the slow blood flow of pulmonary hypertension

  19. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shiyuan, E-mail: redaple@bit.edu.cn; Sun, Haoyu, E-mail: redaple@bit.edu.cn; Xu, Chunguang, E-mail: redaple@bit.edu.cn; Cao, Xiandong, E-mail: redaple@bit.edu.cn; Cui, Liming, E-mail: redaple@bit.edu.cn; Xiao, Dingguo, E-mail: redaple@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China NO.5 Zhongguancun South Street, Haidian District, Beijing 100081 (China)

    2015-03-31

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  20. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  1. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE MRI.

    Directory of Open Access Journals (Sweden)

    Noam Shemesh

    Full Text Available Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE, can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.

  2. Externally placed vs intravaginally positioned radio frequency coils for quantitative spin-spin relaxometry of ovarian follicular fluid

    International Nuclear Information System (INIS)

    Sarty, G.E.; Baerwald, A.R.; Loewy, J.; Pierson, R.A.

    2005-01-01

    To evaluate different imaging protocols, especially with respect to radio frequency (RF) receiver coil location, for Their suitability in providing least squares derived quantitative T 2 values of ovarian follicular fluid for investigations of basic ovarian physiology. Methods: The ovaries of 10 women were imaged via magnetic resonance imaging (MRI) using externally positioned and intravaginally placed RF receiver coils. Half-Fourier acquisition with single-shot turbo spin-echo (HASTE), multiple-echo T 2 , Dixon, turbo spin-echo, and 3-dimensional (3D) fast imaging with steady-state precession (FISP) and time-reversed FISP (PSIF) sequences were used. Quantitative T 2 nuclear spin relaxation rate information from the ovarian follicles between data acquired with the external and intravaginal coils were compared. Additionally, the amount of ovarian follicle and corpora lutea structural detail visible was qualitatively assessed. Results: The T 2 computations indicated that there was no difference in the follicular fluid T 2 values or in the heterogeneity (spatial variance) of the T 2 values between data acquired with the external RF coil and date acquired with the intravaginal RF coil. The best sequences for the visualization of ovarian internal structure were the 3D PSIF sequences and the multiple-echo T 2 -weighted images, confirming our earlier imaging work on excised cow ovaries. Conclusion: It is best to use an externally placed RF coil for quantitative MRI study of ovarian physiology given the lack of difference in quantitative T 2 information and the difficulty associated with imaging the ovaries using an intravaginal RF probe. (author)

  3. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    Science.gov (United States)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  4. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    International Nuclear Information System (INIS)

    Iashina, E G; Grigoriev, S V; Bouwman, W G; Duif, C P; Filatov, M V

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrometer length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei which is well fitted by the exponential function G ( z ) = exp(− z / ξ ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3 μ m). The exponential decay of G ( z ) corresponds to the logarithmic pair correlation function γ ( r ) = ln( ξ / r ). As the sensitivity of the SESANS signal depends on the neutron wavelength, we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å. Such option allows one to study in great detail the internal structure of the biological cell in the length scale from 10 −2 μ m to 10 μ m. (paper)

  5. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    Science.gov (United States)

    Iashina, E. G.; Bouwman, W. G.; Duif, C. P.; Filatov, M. V.; Grigoriev, S. V.

    2017-06-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei which is well fitted by the exponential function G(z) = exp(-z/ξ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3 μm). The exponential decay of G(z) corresponds to the logarithmic pair correlation function γ(r) = ln(ξ/r). As the sensitivity of the SESANS signal depends on the neutron wavelength, we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å. Such option allows one to study in great detail the internal structure of the biological cell in the length scale from 10-2 μm to 10 μm.

  6. Evaluation with fat-suppression fast spin-echo T2-weighted images for bone and soft tissue disorders

    International Nuclear Information System (INIS)

    Kakitsubata, Yousuke; Watanabe, Katsushi; Kakitsubata, Sachiko; Shimizu, Tokiyoshi.

    1997-01-01

    One hundred and sixty-four magnetic resonance (MR) studies of bone or soft tissue disorders were evaluated with T2-weighted fast spin echo (FSE) imaging and T2-weighted fat-suppressed FSE (FS-FSE) imaging. Fifty-two patients with bone contusion of the knee were also evaluated with conventional T2-weighted SE imaging and T2-weighted FS-FSE imaging. In 50 of 71 patients (70.4%), areas of high signal intensity in bone marrow were more clearly demonstrated on T2-weighted FS-FSE images than on T2-weighted FSE image. Edema or inflammation of soft tissues were also clearly revealed on T2-weighted FS-FSE images. In 27 of 32 patients (84%), bone contusions were more apparently shown on T2-weighted FS-FSE images than on conventional T2-weighted SE image. T2-weighted FS-FSE imaging is a sensitive method of evaluating the long T2 lesions of bone or soft tissue disorders. (author)

  7. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.

    Science.gov (United States)

    Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P

    2018-05-29

    Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.

  8. Parallel electric fields detected via conjugate electron echoes during the Echo 7 sounding rocket flight

    Science.gov (United States)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.

  9. Observations of fast magnetospheric echoes of artificially injected electrons above an auroral arc

    International Nuclear Information System (INIS)

    Wilhelm, K.; Becker, C.; Schmidt, R.

    1984-04-01

    Electron beam experiments using rocket-borne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. These experiments were jointly carried out by the University of Minnesota, the National Research Council of Canada and the Max-Planck-Institut fuer Aeronomie. A total of 234 echoes have been observed in a pitch angle range from 0 0 to 110 0 at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by approximately 50 ms. No echoes have been found in the 7.9 keV-detector channels. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is briefly discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection. Two consequences of this interaction, namely, strong energy and pitch angle diffusion and electron acceleration are illustrated with several examples. (orig.) [de

  10. Evaluation of crosstalk effect on spin-echo images at 1.5 and 3 T

    International Nuclear Information System (INIS)

    Kajisako, Masaaki; Taniguchi, Masahiro; Koizumi, Koji; Hiraga, Akira; Miyati, Tosiaki; Syakudo, Yuko; Miki, Yukio

    2011-01-01

    The purpose of this study is to evaluate the crosstalk effect on spin-echo (SE) images at 1.5 and 3 T MRI. We examined the influence of crosstalk by comparing the full width at half-maximum (FWHM) and slice profile of images of a wedge-shaped phantom for various slice gaps. We also assessed crosstalk effect in the brain by comparing image contrast among healthy volunteers (n=8). Among the subjects, the shapes of the slice profiles at 1.5 T were similar to those at 3 T for long repetition times (TRs); however, at shorter TRs, differences in slice profiles were observed among the subjects and were more apparent at 3 than at 1.5 T. The relative contrast between white matter and gray matter on T 1 -weighted images was lower at 3 than at 1.5 T. The crosstalk effect was strongest when the TR of the excitation pulse was short. The influence of the adjacent excitation pulse is important in the process of T 1 relaxation because T 1 values are greater at 3 T. In conclusion, the influence of crosstalk on SE T 1 -weighted images is greater at 3 than at 1.5 T. (author)

  11. Seafloor characterisation using echo peak amplitudes of multibeam hydrosweep system - A preliminary study at Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Sudhakar, T.

    In this paper an interface to acquire 59-beams echo peak amplitudes of the Hydrosweep Multibeam system is established. The echo peak amplitude values collected at varying seabed provinces of Arabian sea are presented. The study reveals...

  12. Definition and characterization of focused beams. Practical aspects

    International Nuclear Information System (INIS)

    Vadder, D. de; Saglio, R.; Birac, A.M.

    1982-08-01

    Characterization of ultrasonic beams by means of echos coming back from targets is very often used. Results are not independent of shape and size of those targets. Measuring echos from inclined disk-like targets let appear fluctuating results in the very front part of beams

  13. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  14. 3D hybrid profile order technique in a single breath-hold 3D T2-weighted fast spin-echo sequence: Usefulness in diagnosis of small liver lesions.

    Science.gov (United States)

    Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    2018-01-01

    We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.

  15. Comparative study between the Spin-echo and 3-D fast imaging techniques in the Knee evaluation with magnetic resonance

    International Nuclear Information System (INIS)

    Oleaga Zufiria, L.; Ibanez Zubiarrain, A.; Grande Icaran, J.; Vela Martin, A.C.; Cintora Leon, E.; Grau Garcia, M.; Grande Icaran, D.

    1993-01-01

    We have carried out a retrospective analysis of the results of magnetic resonance (MR) studies in 20 patients, comparing two different sequences. We compared a 2-D spin-echo (SE2D) sequence with a 3-D fast imaging with steady-state precession (FISP3D) sequence in the attempt to compare the reliability of each in the detection of knee injuries. Arthroscopy was employed as a control technique. Our study revealed no statistically significant difference between the two sequences, although the overall sensitivity for the detection of meniscal lesions was slightly greater with the FISP3D sequence; however, the reliability in the detection of ruptures of the posterior cruciate ligament is less with this sequence than with the SE2D sequence. Both sequences showed very low sensitivity in the detection of hyaline cartilage injuries. (Author) 14 refs

  16. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    International Nuclear Information System (INIS)

    Jing, Zhang; Lang, Chen; Qiu-Xia, Wang; Rong, Liu; Xin, Luo; Wen-Zhen, Zhu; Li-Ming, Xia; Jian-Pin, Qi; He, Wang

    2013-01-01

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery

  17. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    Science.gov (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2018-06-01

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  18. DrSPINE - New approach to data reduction and analysis for neutron spin echo experiments from pulsed and reactor sources

    International Nuclear Information System (INIS)

    Zolnierczuk, P.A.; Ohl, M.; Holderer, O.; Monkenbusch, M.

    2015-01-01

    Neutron spin echo (NSE) method at a pulsed neutron source presents new challenges to the data reduction and analysis as compared to the instruments installed at reactor sources. The main advantage of the pulsed source NSE is the ability to resolve the neutron wavelength and collect neutrons over a wider bandwidth. This allows us to more precisely determine the symmetry phase and measure the data for several Q-values at the same time. Based on the experience gained at the SNS NSE - the first, and to date the only one, NSE instrument installed at a pulsed spallation source, we propose a novel and unified approach to the NSE data processing called DrSPINE. The goals of the DrSPINE project are: -) exploit better symmetry phase determination due to the broader bandwidth at a pulsed source; -) take advantage of larger Q coverage for TOF instruments; -) use objective statistical criteria to get the echo fits right; -) provide robust reduction with report generation; -) incorporate absolute instrument calibration; and -) allow for background subtraction. The software must be able to read the data from various instruments, perform data integrity, consistency and compatibility checks and combine the data from compatible sets, partial scans, etc. We chose to provide a console-based interface with the ability to process macros (scripts) for batch evaluation. And last and not the least, a good software package has to provide adequate documentation. DrSPINE software is currently under development

  19. T2-Weighted Dixon Turbo Spin Echo for Accelerated Simultaneous Grading of Whole-Body Skeletal Muscle Fat Infiltration and Edema in Patients With Neuromuscular Diseases.

    Science.gov (United States)

    Schlaeger, Sarah; Klupp, Elisabeth; Weidlich, Dominik; Cervantes, Barbara; Foreman, Sarah C; Deschauer, Marcus; Schoser, Benedikt; Katemann, Christoph; Kooijman, Hendrik; Rummeny, Ernst J; Zimmer, Claus; Kirschke, Jan S; Karampinos, Dimitrios C

    2018-04-02

    The assessment of fatty infiltration and edema in the musculature of patients with neuromuscular diseases (NMDs) typically requires the separate performance of T1-weighted and fat-suppressed T2-weighted sequences. T2-weighted Dixon turbo spin echo (TSE) enables the generation of T2-weighted fat- and water-separated images, which can be used to assess both pathologies simultaneously. The present study examines the diagnostic performance of T2-weighted Dixon TSE compared with the standard sequences in 10 patients with NMDs and 10 healthy subjects. Whole-body magnetic resonance imaging was performed including T1-weighted Dixon fast field echo, T2-weighted short-tau inversion recovery, and T2-weighted Dixon TSE. Fatty infiltration and intramuscular edema were rated by 2 radiologists using visual semiquantitative rating scales. To assess intermethod and interrater agreement, weighted Cohen's κ coefficients were calculated. The ratings of fatty infiltration showed high intermethod and high interrater agreement (T1-weighted Dixon fast field echo vs T2-weighted Dixon TSE fat image). The evaluation of edematous changes showed high intermethod and good interrater agreement (T2-weighted short-tau inversion recovery vs T2-weighted Dixon TSE water image). T2-weighted Dixon TSE imaging is an alternative for accelerated simultaneous grading of whole-body skeletal muscle fat infiltration and edema in patients with NMDs.

  20. Analysis of multibeam-hydrosweep echo peaks for seabed characterisation

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Schenke, H.W.; Kodagali, V.N.; Hagen, R.

    , in general, Gaussian in nature except in the case of the Kainan Maru seamount summit (area D). The outer beams of the Enderby abyssal plain (area C) echo-peak PDF statistics reveal the highest possible large-scale feature dominance. Interestingly, Extremal...

  1. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  2. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  3. Comparison of Echo 7 field line length measurements to magnetospheric model predictions

    International Nuclear Information System (INIS)

    Nemzek, R.J.; Winckler, J.R.; Malcolm, P.R.

    1992-01-01

    The Echo 7 sounding rocket experiment injected electron beams on central tail field lines near L = 6.5. Numerous injections returned to the payload as conjugate echoes after mirroring in the southern hemisphere. The authors compare field line lengths calculated from measured conjugate echo bounce times and energies to predictions made by integrating electron trajectories through various magnetospheric models: the Olson-Pfitzer Quiet and Dynamic models and the Tsyganenko-Usmanov model. Although Kp at launch was 3-, quiet time magnetic models est fit the echo measurements. Geosynchronous satellite magnetometer measurements near the Echo 7 field lies during the flight were best modeled by the Olson-Pfitzer Dynamic Model and the Tsyganenko-Usmanov model for Kp = 3. The discrepancy between the models that best fit the Echo 7 data and those that fit the satellite data was most likely due to uncertainties in the small-scale configuration of the magnetospheric models. The field line length measured by the conjugate echoes showed some temporal variation in the magnetic field, also indicated by the satellite magnetometers. This demonstrates the utility an Echo-style experiment could have in substorm studies

  4. Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2+ADC) in the Heart With Motion-Compensated Spin Echo Diffusion-Weighted Imaging

    Science.gov (United States)

    Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.

    2018-01-01

    Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485

  5. Differentiation between hepatic haemangiomas and cysts with an inversion recovery single-shot turbo spin-echo (SSTSE) sequence using the TI nulling value of hepatic haemangioma with sensitivity encoding

    International Nuclear Information System (INIS)

    Katada, Yoshiaki; Nozaki, Miwako; Yasumoto, Mayumi; Ishii, Chikako; Tanaka, Hiroshi; Nakamoto, Kazuya; Ohashi, Isamu

    2010-01-01

    To evaluate the additional value of inversion recovery (IR) single-shot turbo spin-echo (SSTSE) imaging with sensitivity encoding (SENSE) using the inversion time (TI) value of hepatic haemangioma as a supplement to conventional T2-weighted turbo spin-echo (TSE) imaging for the discrimination of hepatic haemangiomas and cysts. A total of 134 lesions (77 hepatic haemangiomas, 57 hepatic cysts) in 59 patients were evaluated. Three readers evaluated these images and used a five-point scale to evaluate the lesion status. A receiver operating characteristic (ROC) analysis and 2 x 2 table analysis were used. The ROC analysis for all the readers and all the cases revealed a significantly higher area under the curve (AUC) for the combination of moderately and heavily T2-weighted TSE with IR-SSTSE images (0.945) than for moderately and heavily T2-weighted TSE images alone (0.894) (P < 0.001). For the combination of T2-weighted TSE with IR-SSTSE versus T2-weighted TSE alone, the 2 x 2 table analysis revealed a higher true-positive rate; this difference was statistically significant (P < 0.0001). The introduction of IR-SSTSE with SENSE sequences significantly improves the diagnostic accuracy of the differentiation of hepatic haemangioma and cysts while increasing the time required for routine abdominal imaging by only 20 s. (orig.)

  6. Neutron spin optics: Fundamentals and verification

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pleshanov_nk@pnpi.nrcki.ru

    2017-05-01

    Neutron spin optics (NSO) based on quantum aspects of the neutron interaction with magnetically anisotropic layers signifies transition in polarized neutron optics from 1D (spin selection) to 3D (spin manipulations). It may essentially widen the functionality of neutron optics. Among the advantages of NSO are compactness, zero-field option (guide fields are optional) and multi-functionality (beam spectrum, beam divergence and spin manipulations can be handled at the same time). Prospects in improving and developing neutron mirror spin turners (incl. flippers) are discussed. Two approaches to measurement of the efficiency of mirror flippers are introduced. The efficiency of a multilayer-backed neutron mirror flipper for monochromatic beams was found to be 97.5±0.5%. Such mirror flippers can combine monochromatization of a polarized beam with flipping spins of the monochromatized neutrons. To improve their performance, account of the spin-dependent refraction in the magnetic layer should be taken. For a monochromatic beam, supermirror-backed flippers are shown to be more advantageous, with a gain in intensity up to 4 times.

  7. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    Science.gov (United States)

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p T2-weighted SE MRI.

  8. Gradient-echo imaging of intervertebral disk degeneration and facet joint disease

    International Nuclear Information System (INIS)

    Berns, D.H.; Kormos, D.; Modic, M.T.; Carter, J.; Masaryk, T.J.; Ross, J.S.

    1988-01-01

    The purpose of this study was to evaluate the accuracy of gradient-echo, partial-flip angle images in the evaluation of components of degenerative spine disease. First, cadaveric spines were studied with plain radiographs, high-resolution CT, T1-weighted spin-echo (SE) MR images (repetition time msec/echo time msec=500/17). T2-weighted SE images (2,000/30-90), and fast low-angle shot (FLASH) images (200/10.50 0 ) before and after intradiskal injection of air (0.1-1cc). Second, lumbar spine MR images were retrospectively evaluated to compare gradient-echo and SE sequences. Results indicate that the signal intensity changes of the intervertebral disk related to degeneration were best appreciated on T2-weighted SE studies in both groups. Vacuum phenomenon and calcification were most accurately assessed with FLASH imaging (based on susceptibility changes) and CT images. SE images appeared more sensitive to adjacent marrow change. In the facet joints, CT was more accurate for changes in the subarticular bone, but FLASH images were more sensitive to change in the articular cartilage

  9. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  10. Neutron spin echo measurements of monolayer and capillary condensed water in MCM-41 at low temperatures

    International Nuclear Information System (INIS)

    Yoshida, K; Yamaguchi, T; Kittaka, S; Bellissent-Funel, M-C; Fouquet, P

    2012-01-01

    Neutron spin echo measurements of monolayer and capillary condensed heavy water (D 2 O) confined in MCM-41 C10 (pore diameter 2.10 nm) were performed in a temperature range of 190-298 K. The intermediate scattering functions were analyzed by the Kohlrausch-Williams-Watts stretched exponential function. The relaxation times of confined D 2 O in the capillary condensed state follow remarkably well the Vogel-Fulcher-Tammann equation between 298 and 220 K, whereas below 220 K they show an Arrhenius type behavior. That is, the fragile-to-strong (FTS) dynamic crossover occurs, which has never been seen in experiments on bulk water. On the other hand, for monolayer D 2 O, the FTS dynamic crossover was not observed in the temperature range measured. The FTS dynamic crossover observed in capillary condensed water would take place in the central region of the pore, not near the pore surface. Because the tetrahedral-like water structure in the central region of the pore is more preserved than that near the pore surface, the FTS dynamic crossover would be concerned with the tetrahedral-like water structure. (paper)

  11. Fast spin-echo T2-weighted MR imaging of tongue cancer; the value of fat-suppression

    International Nuclear Information System (INIS)

    Kim, Zu Byoung; Na, Dong Gyu; Ryoo, Jae Wook; Kim, Kyeong Ah; Byun, Hong Sik; Baek, Chung Whan; Son, Yong Ik

    2000-01-01

    To compare the diagnostic efficacy of fast spin-echo (FSE) T2-weighted MR imaging with and without fat suppression. Twelve patients (7 men and 5 women; mean age, 48 years) with pathologically proven cancer of the tongue were included in this study. In all of these, FSE T2-weighted MR images with and without fat suppression were obtained in the same imaging planes before surgery or biopsy. Two radiologists visually compared the images thus obtained in terms of detection, extent, and conspicuity of the tumor, and the contrast-to-noise ratio (CNR) of each tumor was also calculated. In all patients, both imaging modalities were equal in terms of tumor detection. In 4 of 12(33%), the extent of the tumor was greater with fat suppression, while in eight (67%), it was almost the same both with and without. In ten patients (83%), the tumor was more conspicuous with fat suppression, and percentage CNRs were significantly higher with fat suppression than without (180±70% and 113±61%, respectively; p=0.02). For the evaluation of patients with tongue cancer, fat-suppressed FSE T2-weighted MR imaging is superior to its conventional equivalent

  12. MR imaging of the gastrointestinal tract with half-fourier single-shot fast spin echo (SSFSE)

    International Nuclear Information System (INIS)

    Boku, Houjun; Takehara, Yasuo; Isoda, Haruo; Isogai, Satoshi; Kaneko, Masao

    1999-01-01

    Our objective was to implement a non-invasive magnetic resonance imaging (MRI) technique combined with concentrated milk ingestion for depicting the gastrointestinal (GI) tract and detecting gastrointestinal motility and transit. The half-Fourier SSFSE (single-shot fast spin echo) sequence was optimized on the basis of a phantom study. In order to determine the feasibility of milk ingestion as a substitute for contrast medium, ten human volunteers were examined with SSFSE after two types of liquid ingestion (i.e., milk and water). The snapshot images provided subsecond data acquisition for each coronal plane, allowing visualization of peristalsis in the gastrointestinal tract in an almost real-time fashion, without motion-related image degradation, as would normally be seen using conventional MRI. There was no significant difference between concentrated milk and water in terms of depiction of the upper gastrointestinal tract; however, 10 min and 30 min after ingestion, concentrated milk showed better delineation of the intestine than that observed after water ingestion (p<0.01). MR gastrointestinal imaging is a non-invasive method that allows gastrointestinal depiction as well as analysis of motility and passage. Especially with concentrated milk ingestion, the distal intestines were well depicted with adequate contrast filling and distention. (author)

  13. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering

    International Nuclear Information System (INIS)

    Biederer, J.; Reuter, M.; Both, M.; Grimm, J.; Heller, M.; Muhle, C.; Graessner, J.

    2002-01-01

    The aim of this study was to evaluate feasibility and limitations of two MR sequences for imaging of the lung using a semi-quantitative rating scale. Ten healthy volunteers were assessed with a breath-hold T1-weighted gradient-recalled-echo (TR/TE=129/2.2 ms, matrix 173 x 256) and a T2-weighted turbo spin-echo (TSE) sequence with respiratory triggering (TR/TE=3000-5000/120 ms, matrix 270 x 512) in axial 6-mm slices. The T1-weighted GRE protocol included a pre-saturation pulse over the mediastinal structures. Artefacts and resolution of vessel/airway structures in each lung segment were evaluated by two observers (10 volunteers, 180 segments). Cardiac and vessel pulsation artefacts predominated on T1-weighted GRE, respiration artefacts on T2-weighted TSE (lingula and middle lobe). Pre-saturation of the mediastinum reduced pulsation artefacts on T1-weighted GRE. T1-weighted GRE images were improved by bright flow signal of vessels, whereas image quality of T2-weighted TSE was reduced by black-blood effects in central parts of the lung. Delineation of lung periphery and the mediastinum was superior with T2-weighted TSE. Segmental/sub-segmental vessels (up to fourth/fifth order) and bronchi (up to third order) were identified. All 180 lung segments were imaged in diagnostic quality with at least one of the two sequences (T1-weighted GRE not diagnostic in 9 of 180, T2-weighted TSE in 4 of 180). Both sequences were found to be complementary: superior identification of gross lung anatomy with T1-weighted GRE and higher detail resolution in the periphery and the mediastinum with T2-weighted TSE. (orig.)

  14. MR Imaging of the Spine at 3.0T with T2-Weighted IDEAL Fast Recovery Fast Spin-Echo Technique

    International Nuclear Information System (INIS)

    Ren, Ai Jun; Guo, Yong; Tian, Shu Ping; Shi, Li Jing; Huang, Min Hua

    2012-01-01

    To compare the iterative decomposition of water and fat with echo asymmetry and the least-squares estimation (IDEAL) method with a fat-saturated T2-weighted (T2W) fast recovery fast spin-echo (FRFSE) imaging of the spine. Images acquired at 3.0 Tesla (T) in 35 patients with different spine lesions using fat-saturated T2W FRFSE imaging were compared with T2W IDEAL FRFSE images. Signal-to-noise ratio (SNR)-efficiencies measurements were made in the vertebral bodies and spinal cord in the mid-sagittal plane or nearest to the mid-sagittal plane. Images were scored with the consensus of two experienced radiologists on a four-point grading scale for fat suppression and overall image quality. Statistical analysis of SNR-efficiency, fat suppression and image quality scores was performed with a paired Student's t test and Wilcoxon's signed rank test. Signal-to-noise ratio-efficiency for both vertebral body and spinal cord was higher with T2W IDEAL FRFSE imaging (p < 0.05) than with T2W FRFSE imaging. T2W IDEAL FRFSE demonstrated superior fat suppression (p < 0.01) and image quality (p < 0.01) compared to fat-saturated T2W FRFSE. As compared with fat-saturated T2W FRFSE, IDEAL can provide a higher image quality, higher SNR-efficiency, and consistent, robust and uniform fat suppression. T2W IDEAL FRFSE is a promising technique for MR imaging of the spine at 3.0T.

  15. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  16. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, Joel M., E-mail: jweisber@carleton.edu [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States); Paglen, Trevor, E-mail: trevor@paglen.com

    2012-10-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.

  17. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    International Nuclear Information System (INIS)

    Weisberg, Joel M.; Paglen, Trevor

    2012-01-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.

  18. Endometrial cancer: preoperative staging using three-dimensional T2-weighted turbo spin-echo and diffusion-weighted MR imaging at 3.0 T: a prospective comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Masatoshi; Kim, Tonsok; Onishi, Hiromitsu; Nakamoto, Atsushi; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Radiology, Suita, Osaka (Japan); Imaoka, Izumi; Kagawa, Yuki; Murakami, Takamichi [Kinki University School of Medicine, Department of Radiology, Osaka (Japan); Ueguchi, Takashi; Tatsumi, Mitsuaki [Osaka University Hospital, Department of Radiology, Osaka (Japan); Enomoto, Takayuki [Osaka University Graduate School of Medicine, Department of Obstetrics and Gynecology, Osaka (Japan); Niigata University School of Medicine, Department of Obstetrics and Gynecology, Niigata (Japan); Kimura, Tadashi [Osaka University Graduate School of Medicine, Department of Obstetrics and Gynecology, Osaka (Japan)

    2013-08-15

    To prospectively assess the efficacy of 3-T magnetic resonance (MR) imaging using the three-dimensional turbo spin-echo T2-weighted and diffusion-weighted technique (3D-TSE/DW) compared with that of conventional imaging using the two-dimensional turbo spin-echo T2-weighted and dynamic contrast-enhanced technique (2D-TSE/DCE) for the preoperative staging of endometrial cancer, with pathological analysis as the reference standard. Seventy-one women with endometrial cancer underwent MR imaging using 3D-TSE/DW (b = 1,000 s/mm{sup 2}) and 2D-TSE/DCE. Two radiologists independently assessed the two imaging sets. Accuracy, sensitivity, and specificity for staging were analysed with the McNemar test; the areas under the receiver operating characteristic curve (Az) were compared with a univariate z-score test. The results for assessing deep myometrial invasion, accuracy, sensitivity, specificity and Az, respectively, were as follows: 3D-TSE/DW - observer 1, 87 %, 95 %, 85 % and 0.96; observer 2, 92 %, 84 %, 94 % and 0.95; 2D-TSE/DCE - observer 1, 80 %, 79 %, 81 % and 0.89; observer 2, 86 %, 84 %, 87 % and 0.86. Most of the values were higher with 3D-TSE/DW without significant differences (P > 0.12). For assessing cervical stromal invasion, there were no significant differences in those values for both observers (P > 0.6). Accuracy of 3D-TSE/DW was at least equivalent to that of the conventional technique for the preoperative assessment of endometrial cancer. (orig.)

  19. LISS: Planning for spin physics with multi-GeV nucleon beams at IUCF

    International Nuclear Information System (INIS)

    Vigdor, S.E.

    1995-01-01

    The technology developed in recent years to facilitate experiments with stored, cooled polarized beams bombarding internal targets (including polarized gaseous targets) has natural and novel applications at multi-GeV energies. At IUCF we are preparing a proposal for a Light-Ion Spin Synchrotron (LISS) that would adapt this technology to the exploration of nucleon spin physics in the non-perturbative QCD regime from 1 endash 20 GeV. I will describe the research goals of such a facility, with emphasis on a few contemplated experiments, chosen to illustrate both the range of physics issues to be addressed and the considerable advantages offered by storage ring techniques. copyright 1995 American Institute of Physics

  20. Discrimination of fish layers using the three-dimensional information obtained by a split-beam echo-sounder

    DEFF Research Database (Denmark)

    Pedersen, Jens

    1996-01-01

    separation angle between neighbours around a reference fish was 68 degrees and 74 degrees, respectively. The estimated mean target strength (TS) was found to be significantly different for the two layers and conforms to the theoretical TS calculated from the diurnal species and size composition of the layers......This study attempts to illustrate the three-dimensional pattern of a ''pelagic'' and a ''benthic'' layer of fish using single- target information obtained using a split-beam echo-sounder. Parameters such as the nearest-neighbour distance and separation angle between the two nearest neighbours...... around a reference fish were used to discriminate between the two layers. The parameters estimated were found to be significantly different between the two layers. The mean nearest-neighbour distance estimated was 6.3 m and 5.8 m for the ''benthic'' and the ''pelagic'' layers, respectively, and the mean...

  1. Theoretical and experimental study of trapped particle echoes in a magnetic mirror machine. Application to diffusion study

    International Nuclear Information System (INIS)

    Chatelier, Michel.

    1976-01-01

    A simple mechanical model is used to investigate the various physical mechanisms originating the echoes. The model is applied to nuclear spins and echoes from particles trapped in a magnetostatic well. The theory of echoes from trapped ions in a magnetic machine is developed. The effects that may be observed when two magnetic perturbations are applied to the plasma are described. Diffusion effects in the velocity space are then taken into account when the diffusion is due either to Coulomb collisions or to a microturbulence at the ion cyclotron frequency. The experimental results obtained with the DECA II B machine are described. Emphasis is put upon the effects observed when magnetic perturbations are applied to the plasma and echoes observation independently of the diffusion study, as it is the first time that trapped particle echoes are observed in a hot plasma [fr

  2. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo

    NARCIS (Netherlands)

    te Boekhorst, B. C. M.; Bovens, S. M.; van de Kolk, C. W. A.; Cramer, M. J. M.; Doevendans, P. A. F. M.; ten Hove, M.; van der Weerd, L.; Poelmann, R.; Strijkers, G. J.; Pasterkamp, G.; van Echteld, C. J. A.

    2010-01-01

    Single fast spin echo scans covering limited time frames are mostly used for contrast-enhanced MRI of atherosclerotic plaque biomarkers. Knowledge on inter-scan variability of the normalized enhancement ratio of plaque (NER(plaque)) and relation between NER(plaque) and gadolinium content for

  3. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-05-02

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  4. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  5. Increased flow sensitivity from gradient recalled echoes and short TRs

    International Nuclear Information System (INIS)

    Hearshen, D.O.; Froelich, J.W.; Wehrli, F.W.; Haggar, A.M.; Shimakawa, A.

    1986-01-01

    Time-of-flight effects from flow have been characterized in spin-echo images. ''Paradoxical'' enhancement and flow void are observed. Similar enhancement is seen on GRASS images. With no flow void and gradients existing throughout the volume, spins experiencing radio-frequency pulses will give rise to signals even for fast flow, providing a greater velocity sensitivity. GRASS images were obtained from a volunteer with a blood pressure cuff placed over the right thigh. With the cuff inflated, flow in the popliteal vein results in signal saturation. Increasing TR increases intensity in the popliteal vein relative to other vessels. This suggests a clinical role for the technique in assessment of slow flow

  6. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    Energy Technology Data Exchange (ETDEWEB)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Espinosa, Norman [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland)

    2017-08-15

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  7. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    International Nuclear Information System (INIS)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja; Espinosa, Norman

    2017-01-01

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  8. MR imaging findings of diffuse axonal injury: comparison of T2-weighted gradient images and T1- and T2-weighted spin-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seo Young; Lee, Ghi Jai; Kim, Jeong Seok; Shim, Jae Chan; Kim, Ho Kyun [Inje Univ. College of Medicine, Seoul (Korea, Republic of)

    1998-10-01

    To compare T2-weighted images with spin-echo T1- and turbo spin-echo (TSE) T2-weighted images in patients with diffuse axonal injury(DAI). Using a 1.0T MR unit, SE T1-, TSE T2-, and and FLASH T2-weighted images were obtained from 69 patients with a history of head trauma. In 18MR images of 17 patients with imaging findings of DAI, T2-weighted images were retrospectively compared with SE T1- and TSE T2-weighted images. The interval between trauma and MR scan varied from 5 days to 24(mean, 11) months. Focusing on the number of lesions, and their location and signal intensity, as weel as associated findings, three images were simultaueously evaluated. In 18 MR images of 17 patients with MR imaging findings of DAI, 21 lesions were detected on T1-weighted images, 28 on TSE T2-weighted images, and 70 on T2-weighted images;the last of these revealed all lesions detected on the other two. Most lesions were hypointense on T1-weighted images(17/21), hyperintense on TSE T2-weighted (21/28), and hypointense on T2-weighted (63/70). Common locations for DAI were the frontal lobe (n=3D35) and corpus callosum (n=3D22). Associated brain injuries were cortical contusion (n=3D5), brainstem injury (n=3D3), deep gray matter injury (n=3D2), and subdural hematoma(n=3D1). In patients with DAI. T2-weighted images can detect more lesions and associated petechial hemorrhage than can TSE T2-weighted images. This modality is thus useful for the evaluation of patients with head trauma.=20.

  9. Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning

    International Nuclear Information System (INIS)

    Macfarlane, R.M.; Sun, Y.; Sellin, P.B.; Cone, R.L.

    2007-01-01

    Two-pulse and stimulated photon echoes and spectral hole burning were measured on the transition from the lowest component of the 4 I 15/2 manifold to the lowest component of 4 I 13/2 of Er 3+ in a silicate optical fiber at 1.6 K. The two-pulse echo decays gave decoherence times as long as 230 ns for magnetic fields above 2 T. A large field dependent contribution to the homogeneous line width of >2 MHz was found and interpreted in terms of coupling to magnetic tunneling modes (TLS) in the glass. The stimulated echoes measured at 2 T showed spectral diffusion of 0.8 MHz/decade of time between 0.4 and 500 μs. Spectral diffusion in this high field region is attributed to coupling to elastic TLS modes which have a distribution of flip rates in glasses. Time-resolved spectral hole burning at very low field showed stronger spectral diffusion of 5.7 MHz/decade of time, attributed to coupling to magnetic spin-elastic TLS modes

  10. Differential diagnosis of pituitary adenomas and Rathke's cleft cysts by diffusion-weighted MRI using single-shot fast spin echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Takumi; Izumiyama, Hitoshi; Fukuda, Ataru; Tanioka, Daisuke; Kunii, Norihiko; Komatsu, Daisuke; Fujita, Shogo; Ukisu, Ryutaro; Moritani, Toshio [Showa Univ., Tokyo (Japan). School of Medicine

    2002-09-01

    The purpose of the present study was to prospectively evaluate the diagnostic ability of diffusion-weighted magnetic resonance imaging (DWI) using single-shot fast spin echo (SSFSE) technique to discriminate pituitary adenomas from Rathke's cleft cysts. DWIs were obtained from 40 patients with pathologically proven pituitary macroadenomas and 15 patients with proven Rathke's cleft cysts. Pituitary adenomas were divided into 27 cases with solid components alone, five with non-hemorrhagic large cysts, and eight with intratumoral hemorrhage. On SSFSE DWI, solid components of pituitary adenomas revealed iso or slightly increased intensity and intratumoral hemorrhage showed higher intensity than normal brain parenchyma, whereas Rathke's cleft cysts and intratumoral cysts demonstrated very low intensity. SSFSE DWI did not display the susceptibility artifacts that are seen close to the skull base and sinonasal cavities on echo planar diffusion imaging. On the basis of our preliminary findings, DWI may enable us to differentiate pituitary adenomas with only solid components and hemorrhagic pituitary adenomas appearing hyperintense on T1-weighted images from Rathke's cleft cysts without administration of gadolinium-DTPA. SSFSE DWI appears to be a useful technique for characterizing pituitary diseases without the susceptibility artifacts. Our study is the first report to demonstrate the identification of pituitary disorders on SSFSE DWI. (author)

  11. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  12. Feasibility and applications of the spin-echo modulation option for a small angle neutron scattering instrument at the European Spallation Source

    Science.gov (United States)

    Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.

    2017-06-01

    We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.

  13. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    Science.gov (United States)

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  14. Acoustic noise reduction in T 1- and proton-density-weighted turbo spin-echo imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Breuer, Felix; Grodzki, David; Heismann, Björn; Jakob, Peter

    2016-02-01

    To reduce acoustic noise levels in T 1-weighted and proton-density-weighted turbo spin-echo (TSE) sequences, which typically reach acoustic noise levels up to 100 dB(A) in clinical practice. Five acoustic noise reduction strategies were combined: (1) gradient ramps and shapes were changed from trapezoidal to triangular, (2) variable-encoding-time imaging was implemented to relax the phase-encoding gradient timing, (3) RF pulses were adapted to avoid the need for reversing the polarity of the slice-rewinding gradient, (4) readout bandwidth was increased to provide more time for gradient activity on other axes, (5) the number of slices per TR was reduced to limit the total gradient activity per unit time. We evaluated the influence of each measure on the acoustic noise level, and conducted in vivo measurements on a healthy volunteer. Sound recordings were taken for comparison. An overall acoustic noise reduction of up to 16.8 dB(A) was obtained by the proposed strategies (1-4) and the acquisition of half the number of slices per TR only. Image quality in terms of SNR and CNR was found to be preserved. The proposed measures in this study allowed a threefold reduction in the acoustic perception of T 1-weighted and proton-density-weighted TSE sequences compared to a standard TSE-acquisition. This could be achieved without visible degradation of image quality, showing the potential to improve patient comfort and scan acceptability.

  15. MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases

    International Nuclear Information System (INIS)

    Allgayer, B.; Lukas, P.; Loos, W.; Kersting-Sommerhoff, B.

    1993-01-01

    One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T 1 weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied -26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.) [de

  16. Comparison of multi-echo and single-echo gradient-recalled echo sequences for SPIO-enhanced Liver MRI at 3 T

    International Nuclear Information System (INIS)

    Choi, J.S.; Kim, M.-J.; Kim, J.H.; Choi, J.-Y.; Chung, Y.E.; Park, M.-S.; Kim, K.W.

    2010-01-01

    Aim: To assess the utility of a T2*-weighted, multi-echo data imaging combination sequenced on superparamagnetic iron oxide (SPIO)-enhanced liver magnetic resonance imaging (MRI) using a 3 T system. Materials and methods: Fifty patients underwent SPIO-enhanced MRI at 3 T using T2*-weighted, single-echo, gradient-recalled echo (GRE) sequences [fast imaging with steady precession; repetition time (TR)/echo time (TE), 126 ms/9 ms; flip angle, 30 o ] and multi-echo GRE (multi-echo data image combination) sequences (TR/TE, 186 ms/9 ms; flip angle, 30 o ). Three radiologists independently reviewed the images in a random order. The sensitivity and accuracy for the detection of focal hepatic lesions (a total of 76 lesions in 33 patients; 48 solid lesions, 28 non-solid lesions) were compared by analysing the area under the receiver operating characteristic curves. Image artefacts (flow artefacts, susceptibility artefacts, dielectric artefacts, and motion artefacts), lesion conspicuity, and overall image quality were evaluated according to a four-point scale: 1, poor; 2, fair; 3, good; 4, excellent. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the lesions were compared. Results: Image artefacts were more frequent with single-echo GRE (p < 0.05). The mean scale of image quality assessment for flow, susceptibility, dielectric, and motion artefacts were 2.76, 3.13, 3.42, and 2.89 with singe-echo, respectively, compared with 3.47, 3.43, 3.47, and 3.39, respectively, with multi-echo GRE. There was no significant difference in lesion conspicuity between single-echo (3.15) and multi-echo (3.30) GRE sequences. The overall image quality was significantly (p < 0.05) better with multi-echo (3.37) than with single-echo GRE (2.89). The mean SNR and CNR of the lesions were significantly (p < 0.05) higher on multi-echo (79 ± 23 and 128 ± 59, respectively) images than on single-echo (38 ± 11 and 102 ± 44, respectively) images. Lesion detection accuracy and

  17. Independence of echo-threshold and echo-delay in the barn owl.

    Directory of Open Access Journals (Sweden)

    Brian S Nelson

    Full Text Available Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound.

  18. Zonal asymmetry of daytime 150-km echoes observed by Equatorial Atmosphere Radar in Indonesia

    Directory of Open Access Journals (Sweden)

    T. Yokoyama

    2009-03-01

    Full Text Available Multi-beam observations of the daytime ionospheric E-region irregularities and the so-called 150-km echoes with the 47-MHz Equatorial Atmosphere Radar (EAR in West Sumatra, Indonesia (0.20° S, 100.32° E, 10.36° S dip latitude are presented. 150-km echoes have been frequently observed by the EAR, and their characteristics are basically the same as the equatorial ones, except for an intriguing zonal asymmetry; stronger echoes in lower altitudes in the east directions, and weaker echoes in higher altitudes in the west. The highest occurrence is seen at 5.7° east with respect to the magnetic meridian, and the altitude gradually increases as viewing from the east to west. Arc structures which return backscatter echoes are proposed to explain the asymmetry. While the strength of radar echoes below 105 km is uniform within the wide coverage of azimuthal directions, the upper E-region (105–120 km echoes also show a different type of zonal asymmetry, which should be generated by an essentially different mechanism from the lower E-region and 150-km echoes.

  19. The echo-enabled harmonic generation options for FLASH II

    International Nuclear Information System (INIS)

    Deng, Haixiao; Decking, Winfried; Faatz, Bart

    2011-03-01

    FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed. (orig.)

  20. Spin pumping in ion-beam sputtered C o2FeAl /Mo bilayers: Interfacial Gilbert damping

    Science.gov (United States)

    Husain, Sajid; Kumar, Ankit; Barwal, Vineet; Behera, Nilamani; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2018-02-01

    The spin-pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered C o2FeAl (CFA)/Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin-current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data have been analyzed using spin-pumping theory in terms of spin current pumped through the ferromagnet/nonmagnetic metal interface to deduce the real spin-mixing conductance and the spin-diffusion length, which are estimated to be 1.56 (±0.30 ) ×1019m-2 and 2.61 (±0.15 )nm , respectively. The damping constant is found to be 8.8 (±0.2 ) ×10-3 in the Mo(3.5 nm)-capped CFA(8 nm) sample corresponding to an ˜69 % enhancement of the original Gilbert damping 5.2 (±0.6 ) ×10-3 in the Al-capped CFA thin film. This is further confirmed by inserting the Cu dusting layer which reduces the spin transport across the CFA/Mo interface. The Mo layer thickness-dependent net spin-current density is found to lie in the range of 1 -4 MA m-2 , which also provides additional quantitative evidence of spin pumping in this bilayer thin-film system.

  1. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  2. Bone marrow lesions: evaluation with fat-suppression turbo spin echo MR imaging at 0.5T

    International Nuclear Information System (INIS)

    Chrysikopoulos, H.; Papazoglou, A.; Roussakis, A.; Andreou, J.

    1996-01-01

    The purpose of this study was the assessment of the diagnostic value of fat-suppression T2-weighted images for a variety of bone marrow lesions. We performed 40 studies of the axial or appendicular skeleton in 33 patients (age range 4-80 years) with neoplastic, inflammatory or traumatic lesions with a 0.5 T system (Gyroscan T5, Philips Medical Systems, Best, The Netherlands). Fat-suppression T2-weighted images [turbo spin echo (TSE) with spectral presaturation with inversion recovery (SPIR)] were obtained in addition to the routine T1-weighted SE and T2-weighted TSE sequences. Fat-suppression TSE T2-weighted images were better than standard TSE T2-weighted images in 25 studies. In 11 of them demonstration and characterization of the lesions (known from T1-weighted images) was possible only after fat suppression. In the other 14 patients demonstration of the full extent of the lesion especially to the nearby soft tissues was possible only after fat suppression. In 13 studies no advantage was conferred by SPIR, whereas in two instances T2-weighted images were better. Fat-suppression T2-weighted images are diagnostically useful in a variety of lesions of the musculoskeletal system, but their limitations should be known. (orig.)

  3. WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia

    Energy Technology Data Exchange (ETDEWEB)

    Pooley, R. [Mayo Clinic (United States)

    2016-06-15

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  4. Echo

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Dustin Yewell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-25

    This document is a white paper marketing proposal for Echo™ is a data analysis platform designed for efficient, robust, and scalable creation and execution of complex workflows. Echo’s analysis management system refers to the ability to track, understand, and reproduce workflows used for arriving at results and decisions. Echo improves on traditional scripted data analysis in MATLAB, Python, R, and other languages to allow analysts to make better use of their time. Additionally, the Echo platform provides a powerful data management and curation solution allowing analysts to quickly find, access, and consume datasets. After two years of development and a first release in early 2016, Echo is now available for use with many data types in a wide range of application domains. Echo provides tools that allow users to focus on data analysis and decisions with confidence that results are reported accurately.

  5. Spatial variability of the aspect sensitivity of VHF radar echoes in the troposphere and lower stratosphere during jet stream passages

    Directory of Open Access Journals (Sweden)

    J. G. Yoe

    Full Text Available The aspect sensitivity of SOUSY-VHF-radar oblique-beam echoes from the troposphere and lower stratosphere has been examined for a number of jet stream passages during the years 1990 - 1992. When the core of the jet is overhead or nearly so, vertical profiles of the aspect sensitivity display two notable features. First, the distinction between mainly isotropic and strongly aspect-sensitive echoes in the troposphere and the lower stratosphere, respectively, often reported for measurements made during calm conditions, does not necessarily prevail in the vicinity of the jet stream. Second, echoes obtained at altitudes near the height of the horizontal wind maximum are found to be more aspect sensitive for beams directed parallel to the horizontal flow or nearly so, than for other beam directions. It is demonstrated that time-averaged horizontal wind speeds estimated from the radar data, taking into account the reduced effective oblique-beam zenith angle resulting from aspect sensitivity, may exceed uncorrected wind speeds by as much as 10 m s-1 in these circumstances. Implications for wind profiling and for describing the backscattering process are discussed. Doppler spectral widths examined for one jet stream passage are found to be narrower in a beam aligned with the horizontal wind at heights near the wind speed maximum than corresponding widths measured in a beam projected at right angles to the jet. The narrowest spectra thus coincide with the most aspect-sensitive echoes, consistent with the hypothesis that such returns result from specular backscattering processes.

  6. Overview of spin physics

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1992-01-01

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, π-nucleon physics looked attractive, since the determination of spin and parity of possible πp resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy

  7. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  8. MRI of intracranial vertebral artery dissection: evaluation of intramural haematoma using a black blood, variable-flip-angle 3D turbo spin-echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Koichi; Yamashita, Shinnichi; Kuwabara, Yasuo; Yoshimitsu, Kengo [Fukuoka University, Department of Radiology, Faculty of Medicine, Fukuoka-shi, Fukuoka (Japan); Takemoto, Koichiro; Inoue, Tooru [Fukuoka University, Department of Neurosurgery, Faculty of Medicine, Fukuoka (Japan)

    2013-07-15

    We investigated the efficacy of three-dimensional black blood T1-weighted imaging (3D-BB-T1WI) using a variable refocusing flip angle turbo spin-echo sequence in the diagnosis of intracranial vertebral artery dissection (VAD). Sixteen consecutive patients diagnosed with intracranial VAD underwent magnetic resonance imaging that included 3D time-of-flight-MRA, axial spin-echo T1-weighted images (SE-T1WI) and oblique coronal 3D-BB-T1WI sequences. The visualization, morphology and extent of intramural haematomas were assessed and compared among the sequences. Results obtained by digital subtraction angiography (DSA), 3D-angiography and/or 3D-CT angiography (CTA) were used as standards of reference. 3D-BB-T1WI revealed intramural haematomas in all cases, whereas SE-T1WI and magnetic resonance angiography (MRA) failed to reveal a haematoma in one case and three cases, respectively. The mean visualization grading score for the intramural haematoma was the highest for 3D-BB-T1WI, and there was a statistically significant difference among the sequences (p < 0.001). At least a portion of the intramural haematoma was distinguishable from the lumen on 3D-BB-T1WI, whereas the haematomas were entirely indistinguishable from intraluminal signals on MRA in two cases (12.5 %) and on SE-T1WI in one case (6.3 %). 3D-BB-T1WI revealed the characteristic crescent shape of the intramural haematoma in 14 cases (87.5 %), whereas SE-T1WI and MRA revealed a crescent shape in only 7 cases (43.8 %) and 8 cases (50 %), respectively. In a consensus reading, 3D-BB-T1WI was considered the most consistent sequence in representing the extent and morphology of the lesion in 14 cases (87.5 %), compared to DSA and CTA. 3D-BB-T1WI is a promising method to evaluate intramural haematoma in patients with suspected intracranial VAD. (orig.)

  9. Morphology effects on spin-dependent transport and recombination in polyfluorene thin films

    Science.gov (United States)

    Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.

    2016-12-01

    We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled

  10. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  11. Measurement of ep-->ep[pi]0 beam spin asymmetries above the resonance region

    Energy Technology Data Exchange (ETDEWEB)

    De Masi, Rita; Garcon, Michel; Zhao, Bo; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Ball, J.P.; Ball, Jacques; Ball, James; Baltzell, Nathan; Baturin, Vitaly; Battaglieri, Marco; Bedlinskiy, Ivan; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Bertin, Pierre; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Bultmann, S.; Bueltmann, Stephen; Bultmann, S.; Bueltmann, Stephen; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crede, Volker; Dashyan, Natalya; De Sanctis, Enzo; De Vita, Raffaella; Degtiarenko, Pavel; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Djalali, Chaden; Dodge, Gail; Donnelly, Joseph; Doughty, David; Dugger, Michael; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Fradi, Ahmed; Funsten, Herbert; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gonenc, Atilla; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Lee, Tsung-Shung; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; Mazouz, Malek; McKinnon, Bryan; Mecking, Bernhard; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Michel, Bernard; Mikhaylov, Konstantin; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Procureur, Sebastien; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Tur, Clarisse; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Voutier, Eric; Watts, Daniel; Weinstein, Lawrence; Weygand, Dennis; Williams, Michael; Wolin, Elliott; Wood, Michael; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Jixie; Zhao, Zhiwen

    2008-04-01

    The beam spin asymmetry (BSA) in the exclusive reaction e-vector p-->eppi0 was measured with the CEBAF 5.77 GeV polarized electron beam and Large Acceptance Spectrometer (CLAS). The xB,Q2,t, and phi dependences of the pi0 BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sinphi function and their amplitudes are extracted. Overall, they are of the order of 0.04â 0.11 and roughly independent of t. This is the signature of a nonzero longitudinal-transverse interference. The implications concerning the applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge formalism at high photon virtualities, are discussed.

  12. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  13. Optimal MR pulse sequences for hepatic hemangiomas : comparison of T2-weighted turbo-spin-echo, T2-weighted breath-hold turbo-spin-echo, and T1-weighted FLASH dynamic imaging

    International Nuclear Information System (INIS)

    Wang, Wen Chao; Choi, Byung Ihn; Han, Joon Koo; Kim, Tae Kyoung; Cho, Soon Gu

    1997-01-01

    To optimize MR imaging pulse sequences in the imaging of hepatic hemangioma and to evaluate on dynamic MR imaging the enhancing characteristics of the lesions. Twenty patients with 35 hemangiomas were studied by using Turbo-spin-echo (TSE) sequence (T2-weighted, T2- and heavily T2-weighted breath-hold) and T1-weighted FLASH imaging acquired before, immediately on, and 1, 3 and 5 minutes after injection of a bolus of Gd-DTPA (0.1mmol/kg). Phased-array multicoil was employed. Images were quantitatively analyzed for lesion-to-liver signal difference to noise ratios (SD/Ns), and lesion-to-liver signal ratios (H/Ls), and qualitatively analyzed for lesion conspicuity. The enhancing characteristics of the hemangiomas were described by measuring the change of signal intensity as a curve in T1-weighted FLASH dynamic imaging. For T2-weighted images, breath-hold T2-weighted TSE had a slightly higher SD/N than other pulse sequences, but there was no statistical difference in three fast pulse sequences (p=0.211). For lesion conspicuity, heavily T2-weighted breath-hold TSE images was superior to T2-weighted breath-hold or non-breath-hold TSE (H/L, 5.75, 3.81, 2.87, respectively, p<0.05). T2-weighted breath-hold TSE imaging was more effective than T2-weighted TSE imaging in removing lesion blurring or lack of sharpness, and there was a 12-fold decrease in acquisition time (20sec versus 245 sec). T1-weighted FLASH dynamic images of normal liver showed peak enhancement at less than 1 minute, and of hemangioma at more than 3 minutes;the degree of enhancement for hemangioma decreased after a 3 minute delay. T2-weighed breath-hold TSE imaging and Gd-DTPA enhanced FLASH dynamic imaging with 5 minutes delay are sufficient for imaging hepatic hemangiomas

  14. Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo.

    Directory of Open Access Journals (Sweden)

    David Milford

    Full Text Available T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach.Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset. We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time.The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings.The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.

  15. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    Science.gov (United States)

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  16. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  17. Long-range interaction between spins

    International Nuclear Information System (INIS)

    Naik, P.C.; Pradhan, T.

    1981-01-01

    It is shown that invariance of Lagrangian field theory under a class of the coordinate-dependent Lorentz group of transformations requires the introduction of a massless axial vector gauge field which gives rise to a super-weak long-range spin-spin force between particles in vacuum. Recent experiments demonstrating repulsion and attraction between circularly polarised laser beams are interpreted to be due to such a force enhanced by spin polarisation of sodium vapour, through which these beams pass. (author)

  18. Pulsed EPR study of spin coherence time of P donors in isotopically controlled Si

    International Nuclear Information System (INIS)

    Abe, Eisuke; Isoya, Junichi; Itoh, Kohei M.

    2006-01-01

    We investigate spin coherence time of electrons bound to phosphorus donors in silicon single crystals. The samples are isotopically controlled so that they may possess various concentrations (from 4.7% to 99.2%) of 29 Si, which is the only non-zero-spin stable isotope of silicon. The orientation dependence of electron-spin coherence times are presented, and electron spin echo envelope modulation is analyzed in time-frequency space

  19. Beam Manipulation with an RF Dipole

    International Nuclear Information System (INIS)

    Bai, M.

    1999-01-01

    Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, they have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function

  20. Exact suppression of depolarisation by beam-beam interaction in an electron ring

    International Nuclear Information System (INIS)

    Buon, J.

    1983-03-01

    It is shown that depolarisation due to beam-beam interaction can be exactly suppressed in an electron storage ring. The necessary ''spin matching'' conditions to be fulfilled are derived for a planar ring. They depend on the ring optics, assumed linear, but not on the features of the beam-beam force, like intensity and non-linearity. Extension to a ring equipped with 90 0 spin rotators is straightorward

  1. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 -2.3 GeV

    Science.gov (United States)

    Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-05-01

    The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  2. Inhomogeneity in the spin channel of ferromagnetic CMR manganites

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, R.H.; Sonier, J.E.; MacLaughlin, D.E.; Nieuwenhuys, G.J.; Mezei, F.; Ehlers, G.; Mitchell, J.F.; Cheong, S.-W

    2003-02-01

    Colossal magnetoresistance manganites are archetypes in which to study the strong coupling between spin, charge and lattice degrees of freedom in materials. We present muon spin-lattice relaxation data in ferromagnetic (FM) ground state materials from the manganite series La{sub 1-x}Ca{sub x}MnO{sub 3} and La{sub 1-x-y}Pr{sub y}Ca{sub x}MnO{sub 3}. These measurements reveal several characteristic relaxation modes arising from the strong spin-charge-lattice interactions. We also present results from neutron-spin-echo spectroscopy, which directly measures the spin-spin correlation function in a time domain comparable to {mu}SR. A qualitative model for the FM transition in the manganites involving microscopic phase separation is suggested by these data.

  3. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  4. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)

    1999-07-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  5. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    International Nuclear Information System (INIS)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C.; Hasboun, D.; Bazin, B.; Samson, S.; Baulac, M.

    1999-01-01

    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  6. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  7. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  8. Zero-field NMR study on a spin glass: iron-doped 2H-niobium diselenide

    International Nuclear Information System (INIS)

    Chen, M.C.

    1982-01-01

    Spin echoes are used to study the 93 Nb NQR in 2H-NbSe 2 Fe/sub x/. Measured are (intensity) x (temperature), and T/sub 1P/ (spin-lattice relaxation parameter) and T 2 (spin-spin relaxation time) as a function of temperature. Data reveal dramatic differences between non-spin glass samples (x = 0, 0.25%, 1% and 5%) and spin glass samples (x = 8%, 10% and 12%). All of the NQR results and the model calculation of the correlation times of Fe spins are best described by the phase transition picture of spin glasses

  9. Initial study of stability and repeatability of measuring R2' and oxygen extraction fraction values in the healthy brain with gradient-echo sampling of spin-echo sequence

    International Nuclear Information System (INIS)

    Hui Lihong; Zhang Xiaodong; He Chao; Xie Sheng; Xiao Jiangxi; Zhang jue; Wang Xiaoying; Jiang Xuexiang

    2010-01-01

    Objective: To evaluate the stability and repeatability of gradient-echo sampling of spin- echo (GESSE) sequence in measuring the R 2 ' value in volunteers, by comparison with traditional GRE sequence (T 2 * ]nap and T 2 map). Methods: Eight normal healthy volunteers were enrolled in this study and written informed consents were obtained from all subjects. MR scanning including sequences of GESSE, T 2 map and T 2 * map were performed in these subjects at resting status. The same protocol was repeated one day later. Raw data from GESSE sequence were transferred to PC to conduct postprocessing with the software built in house. R 2 ' map and OEF map were got consequently. To obtain quantitative R 2 ' and OEF values in the brain parenchyma, six ROIs were equally placed in the anterior, middle and posterior part of bilateral hemispheres. Both mean and standard deviation of R 2 ' and OEF were recorded. All images from T 2 * map and T 2 map were transferred to the Workstation for postprocessing. The ROIs were put at the same areas as those for GESSE sequence. R 2 ' is defined as R 2 ' = R 2 * - R 2 , R 2 * = 1/T 2 * . The R 2 ' value of GESSE sequence were compared with that of GRE sequence. Results: The mean R 2 ' values of GESSE at the first and second scan and those of the GRE were (4.21±0.92), (4.45±0.94) Hz and (7.37±1.47), (6.42±2.33) Hz respectively. The mean OEF values of GESSE at the first and second scan is 0.327±0.036 and 0.336± 0.035 respectively. The R 2 ' value and OEF value obtained from GESSE were not significantly different between the first and second scan (t=-0.83, -1.48, P>0.05). The R 2 ' value of first GRE imaging had significantly statistical difference from that of second GRE imaging (t=1.80, P 2 ' value of GESSE sequence was less than that of GRE sequence, and there was significantly statistical difference between them (t=1.71, P<0.05). Conclusion: The GESSE sequence has good stability and repeatability with promising clinical practicability

  10. ECHO Gov Login | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181

    Science.gov (United States)

    Shi, Detang

    The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.

  12. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  13. Cartilage destruction in small joints by rheumatoid arthritis: assessment of fat-suppressed three-dimensional gradient-echo MR pulse sequences in vitro

    International Nuclear Information System (INIS)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M.; Ihling, C.; Conca, W.

    1998-01-01

    Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.)

  14. Cartilage destruction in small joints by rheumatoid arthritis: assessment of fat-suppressed three-dimensional gradient-echo MR pulse sequences in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M.; Allmann, K.H.; Hauer, M.P.; Langer, M. [Department of Diagnostic Radiology, University Hospital Freiburg (Germany); Ihling, C. [Department of Pathology, University Hospital Freiburg, Freiburg (Germany); Conca, W. [Department of Rheumatology, University Hospital Freiburg (Germany)

    1998-12-01

    Purpose. To assess the accuracy of different MR sequences for the detection of articular cartilage abnormalities in rheumatoid arthritis. Design and patients. Ten metacarpophalangeal joints and 10 metatarsophalangeal joints (specimens from arthritis patients undergoing ablative joint surgery) were examined with a fat-suppressed (FS) 3D FLASH, a FS 3D FISP, a FS 2D fast spin-echo T2-weighted, and a 2D FS spin-echo T1-weighted sequence. Each cartilage lesion and each cortical lesion was graded from 0 to 4 (modified Outerbridge staging system). Subsequently, the results of each sequence were compared with the macroscopic findings and statistically tested against each other. Results. The study shows that 3D gradient-echo sequences with fat suppression were best for imaging and grading of cartilage lesions in arthritis of the small joints of the hands and feet. Using 3D techniques, all grade 2, grade 3, and grade 4 lesions of cartilage or cortical bone were detected. Conclusion. FS 3D gradient-echo techniques were best for the detection and grading of hyaline cartilage and subchondral bone lesions in rheumatoid arthritis. MRI has a great potential as an objective method of evaluating cartilage damage and bone erosions in rheumatoid arthritis. (orig.) With 5 figs., 19 refs.

  15. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  16. Minimization of spin tune spread by matching dispersion prime at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-31

    At RHIC, the spin polarization is preserved with a pair of Siberian snakes on the oppo- site sides in each ring. The polarized proton beam with finite spin tune spread might cross spin resonances multiple times in two cases, one is when beam going through strong spin intrinsic resonances during acceleration, the other is when sweeping spin flipper’ frequency across the spin tune to flip the direction of spin polarization. The consequence is loss of spin polarization in both cases. Therefore, a scheme of min- imizing the spin tune spread by matching the dispersion primes at the two snakes was introduced based on the fact that the spin tune spread is proportional to the difference of dispersion primes at the two snakes. The scheme was implemented at fixed energies for the spin flipper study and during beam acceleration for better spin polarization transmission efficiency. The effect of minimizing the spin tune spread by matching the dispersion primes was observed and confirmed experimentally. The principle of minimizing the spin tune spread by matching the dispersion primes, the impact on the beam optics, and the effect of a narrower spin tune spread are presented in this report.

  17. Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda Klamp [Northwestern U.

    1996-12-01

    Coherent nonlinear longitudinal phenomena are studied in proton and antiproton synchrotron beams. Theoretical development done in the eld of plasma physics for resonant wave-wave coupling is applied to the case of a particle beam. Results are given from experiments done to investigate the nature of the weakly nonlinear three-wave coupling processes known as parametric coupling and echoes. Storage ring impedances are shown to amplify the parametric coupling process, underlining the possibility that machine impedances might be extracted from coupling events instigated by external excitation. Echo amplitudes are demonstrated to be sensitive to diusion processes, such as intrabeam scattering, which degrade a beam. The result of a fast diusion rate measurement using echo amplitudes is presented. In addition to the wave-wave interactions, observations of moderately nonlinear waveparticle interactions are also included. The manifestations of these interactions that are documented include nonlinear Landau damping, higher harmonic generation, and signs of the possible formation of solitons.

  18. ECHO virus

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  19. Possible measurements of the spin one observables in elastic dN, dd collisions at the NICA deuteron beams

    International Nuclear Information System (INIS)

    Sharov, V I

    2016-01-01

    The report shows the possibilities of studying the spin one observables in the elastic dN and dd interactions at the NICA collider of the VBLHEP JINR. The use of the colliding deuteron beams would allow us to carry out the measurements of the differential cross sections I 0 (dN, dd) of the elastic scattering of unpolarized deuterons and the differential cross sections I pol (dN,dd) and the vector A y (Ed,θ) and tensor A yy (Ed,θ) and A xx (E d .θ) analyzing powers in elastic collisions of the vector and tensor polarized deuterons. The planned luminosity of the colliding polarized deuteron beams will provide sufficiently high elastic events counting rate. The use of the colliding beams of the polarized deuterons for the spin one >dN and dd observables research has a number of significant advantages in comparison with the experiments with the “fixed” target. The angular acceptance of the collider detector covers the full solid angle 4π radians while the wide ranges of the energies of the dN, dd interactions and the 4-momentum transfer squared are available. (paper)

  20. Diffusion-weighted echo-planar MRI of lacunar infarcts

    International Nuclear Information System (INIS)

    Noguchi, K.; Nagayoshi, T.; Watanabe, N.; Kanazawa, T.; Toyoshima, S.; Morijiri, M.; Shojaku, H.; Shimizu, M.; Seto, H.

    1998-01-01

    We studied 35 patients with lacunar infarcts, using diffusion-weighted echo-planar imaging (DW-EPI) at 1.5 T. The relative apparent diffusion coefficient ratio (ADCR) of each lesion was calculated and lesion conspicuity on DW-EPI was compared to that on images aquired with fast fluid-attenuated inversion recovery and T2-weighted fast spin-echo sequences. Acute small infarcts (within 3 days) were identified with DW-EPI as an area of decreased ADCR (range 0.33-0.87; mean 0.67) and high signal, subacute small infarcts (4-30 days) as a high-signal or isointense areas of decreased or nearly normal ADCR (0.54-0.98; 0.73), and chronic small infarcts (> 30 days) as low- or high-signal areas of nearly normal or increased ADCR (0.97-1.92; 1.32). In three patients, small infarcts of the brain stem in the hyperacute phase (within 6 h) were seen only with DW-EPI. In five patients, fresh small infarcts adjacent to multiple old infarcts could be distinguished only with DW-EPI. (orig.)

  1. Observation of a new coherent transient in NMR - nutational two-pulse stimulated echo in the angular distribution of gamma-radiation from oriented nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shakhmuratova, L.N.; Hutchison, W.D.; Isbister, D.J.; Chaplin, D.H. [University of New South Wales, Australian Defence Force Academy, School of Physics, University College (Australia)

    1997-07-15

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system {sup 60}CoFe using resonant perturbations on the directional emission of anisotropic gamma-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.

  2. Observation of a new coherent transient in NMR - nutational two-pulse stimulated echo in the angular distribution of gamma-radiation from oriented nuclei

    International Nuclear Information System (INIS)

    Shakhmuratova, L.N.; Hutchison, W.D.; Isbister, D.J.; Chaplin, D.H.

    1997-01-01

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60 CoFe using resonant perturbations on the directional emission of anisotropic gamma-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data

  3. Observation of a new coherent transient in NMR -- nutational two-pulse stimulated echo in the angular distribution of γ-radiation from oriented nuclei

    Science.gov (United States)

    Shakhmuratova, L. N.; Hutchison, W. D.; Isbister, D. J.; Chaplin, D. H.

    1997-07-01

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60CoFe using resonant perturbations on the directional emission of anisotropic γ-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.

  4. Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance.

    Science.gov (United States)

    Jenista, Elizabeth R; Stokes, Ashley M; Branca, Rosa Tamara; Warren, Warren S

    2009-11-28

    A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.

  5. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  6. Contrast-enhanced turbo spin-echo(TSE) T1-weighted imaging: improved contrast of enhancing lesions

    International Nuclear Information System (INIS)

    Choi, Sung Wook; Lee, Ghi Jai; Shim, Jae Chan; Lee, Young Ju; Jeong, Se Hyung; Kim, Ho kyun

    1997-01-01

    The purpose of this study was to evaluate the effect of contrast improvement of enhancing brain lesions by inherent magnetization transfer effect in turbo spin-echo(TSE)T1-weighted MR imaging. Twenty-six enhancing lesions of 19 patients were included in this study. Using a 1.0T superconductive MR unit, contrast-enhanced SE T1-weighted images(TR=3D600 msec, TE=3D12 msec, NEX=3D2, acquistition time=3D4min 27sec) and contrast-enhanced TSE T1-weighted images(TR=3D600 msec, TE=3D12, acquistition time=3D1min 44sec) were obtained. Signal intensities at enhancing lesions and adjacent white matter were measured in the same regions of both images. Signal-to-noise ratio(SNR) of enhancing lesions and adjacent white matter, and con-trast-to-noise ratio(CNR) and lesion-to-background contrast (LBC) of enhancing lesions were calculated and statistically analysed using the paired t-test. On contrast-enhanced TSE T1-weighted images, SNR of enhancing lesions and adjacent white matter decreased by 18%(p<0.01) and 32%(p<0.01), respectively, compared to contrast-enhanced SE T1-weighted images. CNR and LBC of enhancing lesions increased by 16%(p<0.05) and 66%(p<0.01), respectively. Due to the proposed inherent magnetization transfer effects in TSE imaging, con-trast-enhanced T1-weighted TSE images demonstrated a statistically significant improvement in CNR and LBC, compared to conventional contrast-enhanced T1-weighted SE images, and scan time was much shorter

  7. FLAIR imaging in the follow-up of low-grade gliomas: time to dispense with the dual-echo?

    Energy Technology Data Exchange (ETDEWEB)

    Bynevelt, M.; Britton, J.; Seymour, H.; MacSweeney, E.; Sandhu, K. [Atkinson Morley' s Hospital, London (United Kingdom). Dept. of Neuroradiology; Thomas, N. [Dept. of Neurosurgery, Atkinson Morley' s Hospital, London (United Kingdom)

    2001-02-01

    Fluid-attenuated inversion-recovery (FLAIR) imaging has established its utility in neuroimaging. We propose this imaging sequence as a replacement for proton density (PD) and T2-weighted spin-echo sequences in the follow-up of low-grade glioma. 26 MRI examinations of 18 patients with such tumours were reviewed by three neuroradiologists and a neurosurgeon. FLAIR was found to be superior for appreciation of the lesion (91 % of studies) and for demonstration of its margin (92 %). FLAIR was also better at showing different tumour components, particularly in regions difficult to demonstrate in some planes, such as the vertex in axial imaging. The sequence also defines the postoperative cavity, shows the least amount of susceptibility effect associated with surgical clips, and demonstrates local spread (to white matter tracts, subependymal and capsular) more distinctly. We conclude that FLAIR can replace PD and T2-weighted spin-echo imaging in radiological follow-up of low-grade glioma. (orig.)

  8. Non-classical neutron beams for fundamental and solid state research

    International Nuclear Information System (INIS)

    Rauch, H.

    2008-01-01

    The curious dual nature of the neutron, sometimes a particle, sometimes a wave, is wonderfully manifested in the various non-local interference and quantum contextuality effects observed in neutron interferometry. Non-classical states may become useful for novel fundamental and solid state research. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single particle system demonstrate quantum contextuality. In all cases of interactions, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state would, in principle, be impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. Recently, it has been shown that an entanglement between external and internal degrees of freedom exists even in single particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. The path towards advanced neutron quantum optics will be discussed. (author)

  9. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  10. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: a feasibility study

    Science.gov (United States)

    Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.

    2017-05-01

    The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p  =  0.015). The quantitative measurements were a diameter of 16.3  ±  2.8 mm and wall distensibility of 2.0  ±  0.4 mm (12.5  ±  3.4%) and 0.7  ±  0.3 mm (4.1  ±  1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35  ±  15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.

  11. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  12. Spin Filters as High-Performance Spin Polarimeters

    International Nuclear Information System (INIS)

    Rougemaille, N.; Lampel, G.; Peretti, J.; Drouhin, H.-J.; Lassailly, Y.; Filipe, A.; Wirth, T.; Schuhl, A.

    2003-01-01

    A spin-dependent transport experiment in which hot electrons pass through a ferromagnetic metal / semiconductor Schottky diode has been performed. A spin-polarized free-electron beam, emitted in vacuum from a GaAs photocathode, is injected into the thin metal layer with an energy between 5 and 1000 eV above to the Fermi level. The transmitted current collected in the semiconductor substrate increases with injection energy because of secondary - electron multiplication. The spin-dependent part of the transmitted current is first constant up to about 100 eV and then increases by 4 orders of magnitude. As an immediate application, the solid-state hybrid structure studied here leads to a very efficient and compact device for spin polarization detection

  13. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin

    2018-05-01

    We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.

  14. Modified echo peak correction for radial acquisition regime (RADAR).

    Science.gov (United States)

    Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta

    2009-01-01

    Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B(0), some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial aquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T(1)- and T(2)-weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences.

  15. Modified echo peak correction for radial acquisition regime (RADAR)

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta

    2009-01-01

    Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B 0 , some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial acquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T 1 -and T 2 -weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences. (author)

  16. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    International Nuclear Information System (INIS)

    Huang, Z.

    2009-01-01

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp

  17. Grating stimulated echo

    International Nuclear Information System (INIS)

    Dubetsky, B.; Berman, P.R.; Sleator, T.

    1992-01-01

    A theory of a grating simulated echo (GTE) is developed. The GSE involves the sequential excitation of atoms by two counterpropagating traveling waves, a standing wave, and a third traveling wave. It is shown that the echo signal is very sensitive to small changes in atomic velocity, much more sensitive than the normal stimulated echo. Use of the GSE as a collisional probe or accelerometer is discussed

  18. Magnetic resonance imaging in cadaver dogs with metallic vertebral implants at 3 Tesla: evaluation of the WARP-turbo spin echo sequence.

    Science.gov (United States)

    Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C

    2013-11-15

    Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (implantation with stainless steel implants. N/A.

  19. Diffusional behavior of n-paraffins with various chain lengths in urea adduct channels by pulsed field-gradient spin-echo NMR spectroscopy

    International Nuclear Information System (INIS)

    Kim, Sunmi; Kuroki, Shigeki; Ando, Isao

    2006-01-01

    The diffusion coefficients (D) of n-paraffin molecules (n-C n H 2n+2 ) with various chain-lengths (n = 8, 12, 21, 26, 28 and 32) in the long channels of a deuterated urea-d 4 adduct have been measured at 25 deg. C by means of pulsed field-gradient spin-echo 1 H NMR method. The aim is to clarify diffusional behavior of the n-paraffin molecules in the urea adduct channels. From the experimental results, it is found that n-paraffin molecules are diffusing in the long channels and have two kinds of diffusion components, namely a fast (D ∼ 10 -10 m 2 /s) and a slow diffusion component (D ∼ 10 -11 m 2 /s). The diffusing-time (Δ) dependence of the diffusion coefficients of the n-paraffins shows some likely evidence of restricted diffusion since the n-paraffin molecules are confined in the urea channel. The diffusion coefficients (D) decrease as the carbon number increases from 8 to 28, and very slowly decreases as the carbon number increases from 28 to 32

  20. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    Science.gov (United States)

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H; Fatemi, A [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy. The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.

  2. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast

    International Nuclear Information System (INIS)

    Hodgson, R.J.; Emery, P.; Grainger, A.J.; O'Connor, P.J.; Evans, R.; Coates, L.; Marzo-Ortega, H.; Helliwell, P.; McGonagle, D.; Robson, M.D.

    2011-01-01

    To compare conventional MRI, ultrashort echo time MRI and ultrasound for assessing the extent of tendon abnormalities in spondyloarthritis. 25 patients with spondyloarthritis and Achilles symptoms were studied with MRI and ultrasound. MR images of the Achilles tendon were acquired using T1-weighted spin echo, gradient echo and ultrashort echo time (UTE) sequences with echo times (TE) between 0.07 and 16 ms, before and after intravenous contrast medium. Greyscale and power Doppler ultrasound were also performed. The craniocaudal extent of imaging abnormalities measured by a consultant musculoskeletal radiologist was compared between the different techniques. Abnormalities were most extensive on spoiled gradient echo images with TE=2 ms. Contrast enhancement after intravenous gadolinium was greatest on the UTE images (TE=0.07 ms). Fewer abnormalities were demonstrated using unenhanced UTE. Abnormalities were more extensive on MRI than ultrasound. Contrast enhancement was more extensive than power Doppler signal. 3D spoiled gradient echo images with an echo time of 2 ms demonstrate more extensive tendon abnormalities than the other techniques in spondyloarthritis. Abnormalities of vascularity are best demonstrated on enhanced ultrashort echo time images. (orig.)

  3. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    Science.gov (United States)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  4. Electron spin resonance and electron spin echo modulation studies of Cu(II) ions in the aluminosilicate chabazite: A comparison of Cu(II) cation location and adsorbate interaction with isostructural silicoaluminophosphate-34

    International Nuclear Information System (INIS)

    Zamadics, M.; Kevan, L.

    1992-01-01

    This study focuses on Cu(II) ions exchanged in the aluminosilicate zeolite chabazite. The various Cu(II) species formed after dehydration, rehydration, and exposure to adsorbates are characterized by electron spin resonance and electron spin echo modulation spectroscopies. These results are interpreted in terms of Cu(II) ion location and adsorbate interaction. The results of this study are compared to the results found earlier for SAPO-34, chabazite's structural analog from the silicoaluminophosphate group. In a hydrated sample of chabazite the Cu(II) ions are found to be in a near octahedral environment coordinated to three nonequivalent water molecules and three framework oxygens. The most probable location of the Cu(II) ion in a hydrated sample is above the plane of the six-membered ring slightly displaced into the ellipsoidal cavity. A somewhat similar location and coordination is found for Cu(II) ions in H-SAPO-34. A feature common to both CuH-chabazite and CuH-SAPO-34 is the generation of two distinct Cu(II) species upon dehydration. It is found that Cu(II) cations in chabazite interact with the various adsorbate molecules in a similar manner as Cu(II) cation in H-chabazite and three molecules of ethanol and three propanol molecules. Only the Cu(II) ions located in the hexagonal rings after dehydration were found to complex with ethylene. The differences observed in the interaction of the Cu(II) in with water, propanol, and ehtylene between SAPO-34 and chabazite can be related to the differing cation densities of these two materials. 32 refs., 7 figs., 21 tabs

  5. Spin Physics at COMPASS

    International Nuclear Information System (INIS)

    Schill, Christian

    2012-01-01

    The COMPASS experiment is a fixed target experiment at the CERN SPS using muon and hadron beams for the investigation of the spin structure of the nucleon and hadron spectroscopy. The main objective of the muon physics program is the study of the spin of the nucleon in terms of its constituents, quarks and gluons. COMPASS has accumulated data during 6 years scattering polarized muons off longitudinally or transversely polarized deuteron ( 6 LiD) or proton (NH 3 ) targets. Results for the gluon polarization are obtained from longitudinal double spin cross section asymmetries using two different channels, open charm production and high transverse momentum hadron pairs, both proceeding through the photon-gluon fusion process. Also, the longitudinal spin structure functions of the proton and the deuteron were measured in parallel as well as the helicity distributions for the three lightest quark flavours. With a transversely polarized target, results were obtained with proton and deuteron targets for the Collins and Sivers asymmetries for charged hadrons as well as for identified kaons and pions. The Collins asymmetry is sensitive to the transverse spin structure of the nucleon, while the Sivers asymmetry reflects correlations between the quark transverse momentum and the nucleon spin. Recently, a new proposal for the COMPASS II experiment was accepted by the CERN SPS which includes two new topics: Exclusive reactions like DVCS and DVMP using the muon beam and a hydrogen target to study generalized parton distributions and Drell-Yan measurements using a pion beam and a polarized NH 3 target to study transverse momentum dependent distributions.

  6. Hemodynamic analysis of bladder tumors using T1-dynamic contrast-enhanced fast spin-echo MRI

    International Nuclear Information System (INIS)

    Kanazawa, Yuki; Miyati, Tosiaki; Sato, Osamu

    2012-01-01

    Objectives: To evaluate the hemodynamics of bladder tumors, we developed a method to calculate change in R 1 value (ΔR 1 ) from T 1 -dynamic contrast-enhanced fast spin-echo magnetic resonance imaging (T 1 DCE-FSE-MRI). Materials and methods: On a 1.5-T MR system, T 1 DCE-FSE-MRI was performed. This study was applied to 12 patients with urinary bladder tumor, i.e. urothelial carcinoma. We compared ΔR 1 –time and ΔSI–time between a peak in the ΔR 1 –time and ΔSI–time curve occurred during the first pass within 60 s. Next, we assessed the slope of increase for 180 s after CA injection (Slope 0–180 ). Results: The mean slope of the first pass was significantly higher for bladder tumors on both the ΔR 1 –time and the ΔSI–time curve compared with normal bladder walls. Moreover, a significant difference was apparent between bladder tumors and normal bladder walls on the mean Slope 0–180 in the ΔR 1 -time curve. However, no significant difference in the mean Slope 0–180 was observed on the ΔSI-time curve between bladder tumors and normal bladder walls. Conclusion: T 1 DCE-FSE-MRI offers three advantages: quantitative analysis; high-quality (i.e., artifact-free) images; and high temporal resolution even for SE images. Use of ΔR 1 analysis with T 1 DCE-FSE-MRI allows more detailed information on the hemodynamics of bladder tumors to be obtained and assists in differentiation between bladder tumors and the normal bladder wall.

  7. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences

    Energy Technology Data Exchange (ETDEWEB)

    Altahawi, Faysal F.; Blount, Kevin J.; Omar, Imran M. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Morley, Nicholas P. [Marshfield Clinic, Department of Radiology, Marshfield, WI (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-01-15

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 x 0.5 x 3 mm{sup 3}; ∝10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci. (orig.)

  8. Proton spin tracking with symplectic integration of orbit motion

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  9. Quantum dynamics of spin qubits in optically active quantum dots

    International Nuclear Information System (INIS)

    Bechtold, Alexander

    2017-01-01

    lead to a relatively fast but incomplete nonmonotonic relaxation of the qubit's spin polarization. This observation changes our understanding of spin qubit decoherence mechanisms, as quadrupolar effects were already known but as yet not associated to an additional source of decoherence. It is found that the strength of the quadrupolar coupling is approximately twice as large as the hyperfine coupling. At microsecond timescales and low external magnetic fields (<1.5 T), the combined effect of quadrupolar coherent nuclear spin dynamics and incoherent hyperfine interaction induce a stage with monotonic relaxation and with almost complete loss of coherence, in contrast to earlier theoretical predictions where quadrupolar effects were not taken into account. By applying an in-plane magnetic field we also implemented an optical phase gate that enabled the coherent control of the qubit's state. This is used to perform spin echo experiments in order to remove the inhomogeneous dephasing and uncover the electron spin's intrinsic coherence time T 2 . By performing such spin echo measurements, it is found that at low magnetic fields the intrinsic coherence time of the electron is drastically reduced due to combined effects of hyperfine and quadrupolar interactions, reducing T 2 to a value of √(T * 2 T Q ) corresponding to ∝40 ns. Only by applying a magnetic field exceeding the quadrupolar interaction strength in the quantum dot (>1.5 T) these effects could be removed and an increase of the coherence time to T 2 =1.3 μs is observed. A long spin echo lifetime T 2 , however, does not necessarily predicate the ability of quantum dot spin qubits to process quantum information. Spin echo is a classical effect in the sense that it can be fully explained in terms of a classical measurement and the behavior of classical spins changing the axis of precession under the action of a properly applied control pulse. How long such an electron spin qubit can store quantum

  10. Polarized target as analyzer of polarization of particle beam with spin Ssub(B)=1/2

    International Nuclear Information System (INIS)

    Golovin, V.M.; Golubeva, M.B.; Gornushkin, Yu.A.

    1982-01-01

    A possibility of using a polarized target as a target analyzer of beam particle polarization (Ssub(T)=1/2 Psub(T) vector) so that all the components of beam polarization Ssub(B)=1/2 anti Psub(B) should be determined in one experiment, is revealed. A proton polarization target is considered as a polarization target-analyzer. Asub(SK) and Asub(kk) asymmetry tensors are considered for elastic pp and pn scatterings by amplitudes of NN scattering which attain the values of 0.3-0.9 at 95-400 MeV. Asub(kk)(pp) and Asub(sk)(pp) are experimentally measured in the 445-576 MeV range. It is found that their highest absolute values are equal to 0.4-0.5 and 0.2-0.3 respectively. Elastic proton scattering on polarized electrons may be another variant of using polarized target for measuring proton beam polarization. Asub(sk) and Asub(kk) components of asymmetry tensor of elastic pe scattering are graphically presented. A possibility of using a polarized charge with spin I=1/2 as a target-analyzer of particle beam polarization is marked

  11. Evaluation of MR cisternography of the cerebellopontine angle using a balanced fast-field-echo sequence: preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Kazuhiro; Aoki, Chinatsu; Hachiya, Junichi [Department of Radiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, 181-8611, Tokyo (Japan)

    2004-02-01

    We evaluated the feasibility of MR cisternography by the balanced fast-field-echo (bFFE) sequence, comparing with that by a turbo-spin-echo (TSE) sequence, for cerebellopontine angle lesions on a 1.5-T imager (Gyroscan Intera, Philips, Best, The Netherlands). The bFFE MR cisternograms depicted target cranial nerves with less cerebrospinal fluid pulsation artifacts than TSE cisternograms and visualized an acoustic schwannoma in 6 of 44 patients with suspicion and a causative vessel of hemifacial spasm in all of 3 patients in a short scanning time (1 min 53 s). The bFFE sequence can be promising for MR cisternography in the diagnosis of cerebellopontine angle lesions. (orig.)

  12. Detection of cerebrospinal fluid leakage: initial experience with three-dimensional fast spin-echo magnetic resonance myelography.

    Science.gov (United States)

    Tomoda, Y; Korogi, Y; Aoki, T; Morioka, T; Takahashi, H; Ohno, M; Takeshita, I

    2008-03-01

    The pathogenesis of cerebrospinal fluid (CSF) hypovolemia is supposed to be caused by CSF leakage through small dural defects. To compare source three-dimensional (3D) fast spin-echo (FSE) images of magnetic resonance (MR) myelography with radionuclide cisternography findings, and to evaluate the feasibility of MR myelography in the detection of CSF leakage. A total of 67 patients who were clinically suspected of CSF hypovolemia underwent indium-111 radionuclide cisternography, and 27 of those who had direct findings of CSF leakage were selected for evaluation. MR myelography with 3D FSE sequences (TR/TE 6000/203 ms) was performed at the lumbar spine for all patients. We evaluated source images and maximum intensity projection (MIP) images of MR myelography, and the findings were correlated with radionuclide cisternography findings. MR myelography of five healthy volunteers was used as a reference. The MR visibility of the CSF leakage was graded as definite (leakage clearly visible), possible (leakage poorly seen), or absent (not shown). CSF leakage was identified with source 3D FSE images in 22 (81.5%) of 27 patients. Of the 22 patients, 16 were graded as definite and six were graded as possible. For the definite cases, 3D FSE images clearly showed the extent of the leaked CSF in the paraspinal structures. In the remaining five patients with absent findings, radionuclide cisternography showed only slight radionuclide activity out of the arachnoid space. Source 3D FSE images of MR myelography seem useful in the detection of CSF leakage. Invasive radionuclide cisternography may be reserved for equivocal cases only.

  13. MR fingerprinting using the quick echo splitting NMR imaging technique.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A

    2017-03-01

    The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum

    International Nuclear Information System (INIS)

    Lee, Marc J.; Motamedi, Kambiz; Chow, Kira; Seeger, Leanne L.

    2008-01-01

    The purpose of this study was to determine the utility of fat-suppressed gradient-recalled echo (GRE) compared with conventional spin echo T1-weighted (T1W) sequences in direct shoulder MR arthrography for evaluating labral tears. Three musculoskeletal radiologists retrospectively reviewed MR arthrograms performed over a 12-month period for which surgical correlation was available. Of 180 serial arthrograms, 31 patients had surgery with a mean of 48 days following imaging. Paired coronal oblique and axial T1W or GRE sequences were analyzed by consensus for labral tear (coronal oblique two-dimensional multi-echo data image combination, 2D MEDIC; and axial three-dimensional double-echo steady-state, 3D DESS; Siemens MAGNETOM Sonata 1.5-T MR system). Interpretations were correlated with operative reports. Of 31 shoulders, 25 had labral tears at surgery. The GRE sequences depicted labral tears in 22, while T1W images depicted tears in 16 (sensitivity 88% versus 64%; p 0.7). Specificities were somewhat lower for GRE. Thin section GRE sequences are more sensitive than T1W for the detection of anterior and posterior labral tears. As the specificity of GRE was lower, it should be considered as an adjunctive imaging sequence that may improve depiction of labral tears, particularly smaller tears, in routine MR arthrography protocols. (orig.)

  15. ECHO-UseFY17.png | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Help Content for ECHO Reports | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    Science.gov (United States)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  18. Beam-spin asymmetry of pion, kaon, proton and antiproton production in semi-inclusive deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zagrebelnyy, Vitaly [DESY Hamburg Notkestrasse 85 (Germany)

    2014-07-01

    Beam-spin asymmetries in the azimuthal distribution of pions, kaons, protons and antiprotons in semi-inclusive deep inelastic scattering (SIDIS) extracted from 2000-2007 HERMES data are presented. The asymmetries were measured in the kinematic region Q{sup 2}>1 GeV{sup 2}, W{sup 2} > 10 GeV{sup 2}, 0.1 spin-orbit correlations inside the nucleon and orbital angular momentum of quarks.

  19. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    Science.gov (United States)

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images

  20. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    Science.gov (United States)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.