WorldWideScience

Sample records for beam size effects

  1. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.

  2. Effects of Transverse Beam Size in Beam Position Monitors

    CERN Document Server

    Kurennoy, S S

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  3. Effects of transverse beam size in beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2001-01-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  4. EFFECTS OF TRANSFERSE BEAM SIZE IN BEAM POSITIONS MONITORS

    Energy Technology Data Exchange (ETDEWEB)

    S.S. KURENNOY

    2001-06-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The non-linearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  5. Size Effects on the Bending Behaviour of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Brincker, Rune; Henriksen, M. S.; Christensen, F. A.;

    1999-01-01

    Load-deformation curves for reinforced concrete beams subjected to bending show size effects due to tensile failure of the concrete at early stages in the failure process and due to compression failure of the concrete when the final failure takes place. In this paper these effects are modelled...

  6. Beam-size or MD-effect at colliders and correlations of particles in a beam

    CERN Document Server

    Kotkin, G L

    2003-01-01

    For several processes at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. In that case, the standard calculations have to be essentially modify. The corresponding formulae for such a beam-size effect were given twenty years ago without taking into account correlations of particle coordinates in the beams. In the present paper we derive formulae which necessary to take into account quantitatively the effect of particle correlations in the spectrum of bremsstrahlung as well as in pair production. Besides, we consider critically recent papers of Baier and Katkov [Phys. Rev. D {\\bf 66}, 053009 (2002) and hep-ph/0305304] in which it was calculated a new additional ``subtraction term'' related to the coherent contribution into beam-size effect. We show that this result is groundless and point out the origin of the mistake.

  7. Physical mechanism of the linear beam-size effect at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, K. [Institut fuer Physik, THEP, Johannes Gutenberg Universitaet, Staudinger weg 7, D 55099 Mainz (Germany); Kotkin, G.L.; Serbo, V.G. [Novosibirsk State University, 630090, Novosibirsk (Russia)

    1996-09-01

    We present a qualitative but precise description of the linear beam-size effect predicted for the processes in which unstable but long-living particles collide with each other. We derive a physically pronounced equation for the event rate which proves that the linear beam-size effect corresponds to the scattering of one beam of particles on the decay products of the other. We compare this linear beam-size effect with the known logarithmic beam-size effect measured in the experiments on a single bremsstrahlung at Novosibirsk{close_quote}s VEPP-4 and DESY HERA. {copyright} {ital 1996 The American Physical Society.}

  8. Physical mechanism of the linear beam-size effect at colliders

    CERN Document Server

    Melnikov, K; Serbo, V G

    1996-01-01

    We present qualitative but precise description of the linear beam-size effect predicted for the processes in which unstable but long--living particles collide with each other. We derive physically pronounced equation for the events rate which proves that the linear beam-size effect corresponds to the scattering of one beam of particles on the decay products of the other. We compare this linear beam-size effect with the known logarithmic beam-size effect measured in the experiments on a single bremsstrahlung at VEPP-4 and HERA.

  9. Nonlinearities and effects of transverse beam size in beam position monitors

    Science.gov (United States)

    Kurennoy, Sergey S.

    2001-09-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by a displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those produced by a pencil beam. The nonlinearities and corrections to BPM signals due to a finite transverse beam size are calculated for an arbitrary chamber cross section. Simple analytical expressions are given for a few particular transverse distributions of the beam current in a circular or rectangular chamber. Of particular interest is a general proof that in an arbitrary homogeneous chamber the beam-size corrections vanish for any axisymmetric beam current distribution.

  10. The effect of laser beam size in a zig-zag collimator on transverse cooling of a krypton atomic beam

    Indian Academy of Sciences (India)

    Vivek Singh; V B Tiwari; S Singh; S R Mishra; H S Rawat

    2014-07-01

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser beam, significantly reduces the value of transverse velocity capture range of the collimator. The experimental observations show the trend similar to that obtained from simulations. Our study can be particularly useful where a small zig-zag collimator is required.

  11. Size Effect Of Glulam Beams In Tension Perpendicular To Grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Odin Clorius, Christian; Damkilde, Lars;

    2007-01-01

    The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents the hypothesis that...

  12. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  13. Duration of Load Effects on Different Sized Timber Beams

    DEFF Research Database (Denmark)

    Andreasen, Lotte; Hoffmeyer, Preben

    1997-01-01

    This is the final report submitted to EC in connection with a project on duration of load. The report contains the results of the experimental work on duration of load for beams and notched beams of LVL and of glulam. The report also contains experimental results from duration of load experiments...

  14. Size effect of glulam beams in tension perpendicular to grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Clorius, Christian Odin; Damkilde, Lars;

    2007-01-01

    that the lower strength is caused by stress concentrations. The stress concentrations arise from the anisotropic structure of wood, and are therefore deterministic. The hypothesis is substantiated through extensive FEM-calculations and experiments. A reasonable agreement between ultimate stresses determined......The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents the hypothesis...

  15. The effect of laser beam size on laser-induced damage performance

    Institute of Scientific and Technical Information of China (English)

    Han Wei; Wang Fang; Zhou Li-Dan; Feng Bin; Jia Huai-Ting; Li Ke-Yu; Xiang Yong; Zheng Wan-Guo

    2012-01-01

    The influence of laser beam size on laser-induced damage performance,especially damage probability and the laser-induced damage threshold (LIDT),is investigated.It is found that damage probability is dependent on beam size when various damage precursors with different potential behaviors are involved.This causes the damage probability and the LIDT to be different between cases under a large-aperture beam and a small-aperture beam.Moreover,the fluence fluctuation of the large-aperture laser beam brings out hot spots,which move randomly across the beam from shot to shot.Thus this leads the most probable maximum fluence after many shots at any location on the optical component to be several times the average beam fluence.These two effects result in the difference in the damage performance of the optical component between the cases under a large-aperture and small-aperture laser.

  16. Effects of transverse electron beam size on transition radiation angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Chiadroni, E., E-mail: enrica.chiadroni@lnf.infn.it [Laboratori Nazionali di Frascati-INFN, via E. Fermi, 40, 00044 Frascati (Italy); Castellano, M. [Laboratori Nazionali di Frascati-INFN, via E. Fermi, 40, 00044 Frascati (Italy); Cianchi, A. [University of Rome ' Tor Vergata' and INFN-Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Honkavaara, K.; Kube, G. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-05-01

    In this paper we consider the effect of the transverse electron beam size on the Optical Transition Radiation (OTR) angular distribution in case of both incoherent and coherent emission. Our results confute the theoretical argumentations presented first in Optics Communications 211, 109 (2002), which predicts a dependence of the incoherent OTR angular distribution on the beam size and emission wavelength. We present here theoretical and experimental data not only to validate the well-established Ginzburg-Frank theory, but also to show the impact of the transverse beam size in case of coherent emission.

  17. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications

    Science.gov (United States)

    Benetou, M. I.; Bouillard, J.-S.; Segovia, P.; Dickson, W.; Thomsen, B. C.; Bayvel, P.; Zayats, A. V.

    2015-11-01

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  18. Effects of Beam Size and Pulse Duration on the Laser Drilling Process

    CERN Document Server

    Afrin, Nazia; Chen, J K; Zhang, Yuwen

    2016-01-01

    A two-dimensional axisymmetric transient laser drilling model is used to analyze the effects of laser beam diameter and laser pulse duration on the laser drilling process. The model includes conduction and convection heat transfer, melting, solidification and vaporization, as well as material removal resulting from the vaporization and melt ejection. The validated model is applied to study the effects of laser beam size and pulse duration on the geometry of the drilled hole. It is found that the ablation effect decrease with the increasing beam diameter due to the effect of increased vaporization rate, and deeper hole is observed for the larger pulse width due to the higher thermal ablation efficiency.

  19. Once Again about Beam-Size or MD-Effect at Colliding Beams

    CERN Document Server

    Kotkin, G L

    2002-01-01

    For several processes at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. In that case, the standard calculations have to be essentially modify. The corresponding formulae were given twenty years ago. In recent paper of Baier and Katkov [17] it was claimed that the previous results about bremsstrahlung spectrum have to be revised and an additional subtraction related to the coherent contribution has to be done. This additional term has been calculated with the result that it may be essential for the performed and future experiments. In the present paper we analyze in detail the coherent and incoherent contributions in the conditions, considered in paper [17]. In contract to above claims, we found out that under these conditions the coherent contribution is completely negligible and, therefore, there is no need to revise the previous results.

  20. Beam-size effect and particle losses at Super$B$ factory developed in Italy

    CERN Document Server

    Kotkin, G L

    2009-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the $e^+ e^- \\to e^+ e^- \\gamma$ process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at Super$B$ factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%.

  1. Beam-size effect and particle losses at B-factories KEKB and PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. E-mail: serbo@math.nsc.ru

    2005-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields}e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at B-factories KEKB and PEP-II. We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  2. Cell size effects for vibration analysis and design of sandwich beams

    Institute of Scientific and Technical Information of China (English)

    Gaoming Dai; Weihong Zhang

    2009-01-01

    In this work, sandwich beams are studied to reveal the underlying size effects of the periodic core cells for the first time within the framework of free vibration analysis of such an advanced lightweight structure. The energy equiv-alence method is formulated as a theoretical approach that takes into account the cell size effect. It is compared with the asymptotic homogenization method and direct finite element method systematically to show their consistence and appli-cability. The accuracy of free vibration responses predicted by the detailed finite element model is used as the standard of comparison. It is shown that the cell size is an important parameter characterizing the cellular core rigidities that influ-ence vibration responses. The homogenization model agrees exactly with the asymptotic solution of the analytical expres-sion of the beam model only whenever the cell size tends to be infinitely small.

  3. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  4. Beam-size effect and particle losses at SuperB factory developed in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G L; Serbo, V G [Novosibirsk State University, 630090, Novosibirsk, Pirogova st., 2 (Russian Federation)], E-mail: serbo@math.nsc.ru

    2009-06-15

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields} e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at SuperB factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%. We perform a critical comparison of our result with that presented in the Conceptual Design Report of the Italian SuperB factory.

  5. Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-07-01

    In this article, buckling behavior of nonlocal magneto-electro-elastic functionally graded (MEE-FG) beams is investigated based on a higher-order beam model. Material properties of smart nanobeam are supposed to change continuously throughout the thickness based on the power-law model. Eringen's nonlocal elasticity theory is adopted to capture the small size effects. Nonlocal governing equations of MEE-FG nanobeam are obtained employing Hamilton's principle and they are solved using the Navier solution. Numerical results are presented to indicate the effects of magnetic potential, electric voltage, nonlocal parameter and material composition on buckling behavior of MEE-FG nanobeams. Therefore, the present study makes the first attempt in analyzing the buckling responses of higher-order shear deformable (HOSD) MEE-FG nanobeams.

  6. The Effect of the Size of Radiotherapy Photon Beams on the Absorbed Dose to an Al2O3 Dosimeter

    Institute of Scientific and Technical Information of China (English)

    陈少文; 张文澜; 范丽仙; 唐强; 刘小伟

    2012-01-01

    The effect of the size of radiotherapy photon beams on the absorbed dose to an Al2O3 dosimeter was investigated using the Monte Carlo method. The EGSnrc/DOSRZnrc program code was used to simulate the absorbed dose to the Al2O3 dosimeter, as well as the absorbed dose to water at the corresponding position in the absence of the dosimeter. The incident beams were 60Co γ and 6 MV with a different beam radius ranging from 0.1 cm to 2 cm. Results revealed that the absorbed dose ratio factor depends on the size of the incident photon beam. When the radius of the incident beam is smaller than that of the dosimeter, the absorbed dose ratio factor decreases as the incident beam size increases. The absorbed dose ratio factor reaches its minimum when the radius of the incident beam is almost the same as that of the dosimeter. When the radius of the incident beam is larger than that of the dosimeter, the absorbed dose ratio factor increases as the incident beam size increases. The maximum difference among these absorbed dose ratio factors can be up to 14% in 60Co γ beams and 23% in 6 MV beams. However, when the size of the incident beam is much larger than that of the dosimeter, the effect of the incident beam size on the absorbed dose ratio factor becomes quite small. The maximum discrepancy between the absorbed dose ratio factors and the average value is not more than 1%.

  7. Effect of Photon Beam Energy, Gold Nanoparticle Size and Concentration on the Dose Enhancement in Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Nahideh Gharehaghaji

    2013-02-01

    Full Text Available Introduction: Gold nanoparticles have been used as radiation dose enhancing materials in recent investigations. In the current study, dose enhancement effect of gold nanoparticles on tumor cells was evaluated using Monte Carlo (MC simulation. Methods: We used MCNPX code for MC modeling in the current study. A water phantom and a tumor region with a size of 1×1×1 cm3 loaded with gold nanoparticles were simulated. The macroscopic dose enhancement factor was calculated for gold nanoparticles with sizes of 30, 50, and 100 nm. Also, we simulated different photon beams including mono-energetic beams (50-120 keV, a Cobalt-60 beam, 6 & 18 MV photon beams of a conventional linear accelerator. Results: We found a dose enhancement factor (DEF of from 1.4 to 3.7 for monoenergetic kilovoltage beams, while the DEFs for megavoltage beams were negligible and less than 3% for all GNP sizes and concentrations. The optimum energy for higher DEF was found to be the 90 keV monoenergetic beam. The effect of GNP size was not considerable, but the GNP concentration had a substantial impact on achieved DEF in GNP-based radiation therapy. Conclusion: The results were in close agreement with some previous studies considering the effect of photon energy and GNP concentration on observed DEF. Application of GNP-based radiation therapy using kilovoltage beams is recommended.

  8. EFFECT OF PARTICLE SIZE AND PACKING RATIO OF PID ON VIBRATION AMPLITUDE OF BEAM

    Directory of Open Access Journals (Sweden)

    P.S. Kachare

    2013-06-01

    Full Text Available Everything in the universe that has mass possesses stiffness and intrinsic damping. Owing to the stiffness property, mass will vibrate when excited and its intrinsic damping property will act to stop the vibration. The particle impact damper (PID is a very interesting damper that affects impact and friction effects of particles by means of energy dissipation. PID is a means for achieving high structural damping by using a particle-filled enclosure attached to a structure. The particles absorb the kinetic energy of the structure and convert it into heat through inelastic collisions between the particles themselves and between the particles and the walls of the enclosure. In this work, PID is measured for a cantilever mild steel beam with an enclosure attached to its free end; copper particles are used in this study. The PID is found to be highly nonlinear. The most useful observation is that for a very small weight penalty (about 7% to 8 %, the maximum damped amplitude of vibration at resonance with a PID, is about 9 to 10 times smaller than that without a PID. It is for more than that of with only intrinsic material damping of a majority of structural metals. A satisfactory comparison of damping with and without particles through experimentation is observed. The effect of the size of the particles on the damping performance of the beam and the effective packing ratio can be identified. It is also shown that as the packing ratio changes, the contributions of the phenomena of impact and friction towards damping also change. It is encouraging that despite its deceptive simplicity, the model captures the essential physics of PID.

  9. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    International Nuclear Information System (INIS)

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET–CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator

  10. Effects of mirror distortion by thermal deformation in an interferometry beam size monitor system at PLS-II

    Science.gov (United States)

    Hwang, Ji-Gwang; Kim, Eun-San; Kim, Changbum; Huang, Jung-Yun; Kim, Dotae

    2016-10-01

    Extraction mirrors installed at the most upstream position of interferometry beam size monitor are frequently used for measuring the beam size in storage rings. These mirrors receive the high power synchrotron radiation and are distorted owing to the heat distribution that depends on the position on the mirror surface. The distortion of the mirror changes the effective separation of the slit in the interferometry beam size monitor. Estimation of the effects of the front-end mirror distortion is important for measuring the beam size accurately. In this paper, we present the result of the numerical simulation of the temperature distribution and thermal expansion of the front-end mirror using ANSYS code, the theoretical basis of the effects of mirror distortion and compare with experimental results from Pohang Light Source II (PLS-II) at the Pohang Accelerator Laboratory (PAL). The equipment in the beam diagnosis line in PLS-II and experimental set-up for measuring the distortion of the front-end mirror using a multi-hole square array Hartmann screen are described.

  11. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    Science.gov (United States)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  12. Influence of the beam-size effect on particle losses at B-factories PEP-II and KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. E-mail: serbo@math.nsc.ru

    2004-01-21

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross-section of the e{sup +}e{sup -}{yields}e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross-section of this process has to be substantially modified. In the present paper such a beam-size is calculated for bremsstrahlung at B-factories PEP-II and KEKB. We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  13. Vertical Beam Size Measurement by Streak Camera under Colliding and Single Beam Conditions in KEKB

    CERN Document Server

    Ikeda, Hitomi; Fukuma, Hitoshi; Funakoshi, Yoshihiro; Hiramatsu, Shigenori; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Uehara, Sadaharu

    2005-01-01

    Beam behavior of KEKB was studied by measurement of the beam size using a streak camera. Effect of the electron-cloud and the parasitic collision on the vertical beam size was examined in beam collision. We intentionally injected a test bunch of positrons after 2 rf buckets of a bunch to enhance the electron cloud effect and changed electron beam conditions to see the beam-beam effect. The beam size was also measured with a single positron beam and compared with that during collision. The result of the measurement is reported in this paper.

  14. The effects of field-of-view and patient size on CT numbers from cone-beam computed tomography

    Science.gov (United States)

    Seet, Katrina Y. T.; Barghi, Arvand; Yartsev, Slav; Van Dyk, Jake

    2009-10-01

    Cone-beam computed tomography (CBCT) is used for patient alignment before treatment and is ideal for use in adaptive radiotherapy to account for tumor shrinkage, organ deformation and weight loss. However, CBCT images are prone to artifacts such as streaking and cupping effects, reducing image quality and CT number accuracy. Our goal was to determine the optimum combination of cone-beam imaging options to increase the accuracy of image CT numbers. Several phantoms with and without inserts of known relative electron densities were imaged using the Varian on-board imaging system. It was found that CT numbers are most influenced by the selection of field-of-view and are dependent on object size and filter type. Image acquisition in half-fan mode consistently produced more accurate CT numbers, regardless of phantom size. Values measured using full-fan mode can differ by up to 7% from planning CT values. No differences were found between CT numbers of all phantom images with low and standard dose modes.

  15. The effects of field-of-view and patient size on CT numbers from cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Seet, Katrina Y T; Barghi, Arvand; Yartsev, Slav; Van Dyk, Jake [London Regional Cancer Program, London Health Sciences Centre, London, Ontario (Canada)], E-mail: slav.yartsev@lhsc.on.ca

    2009-10-21

    Cone-beam computed tomography (CBCT) is used for patient alignment before treatment and is ideal for use in adaptive radiotherapy to account for tumor shrinkage, organ deformation and weight loss. However, CBCT images are prone to artifacts such as streaking and cupping effects, reducing image quality and CT number accuracy. Our goal was to determine the optimum combination of cone-beam imaging options to increase the accuracy of image CT numbers. Several phantoms with and without inserts of known relative electron densities were imaged using the Varian on-board imaging system. It was found that CT numbers are most influenced by the selection of field-of-view and are dependent on object size and filter type. Image acquisition in half-fan mode consistently produced more accurate CT numbers, regardless of phantom size. Values measured using full-fan mode can differ by up to 7% from planning CT values. No differences were found between CT numbers of all phantom images with low and standard dose modes.

  16. Influence of the beam-size or MD-effect on particle losses at B-factories PEP-II and KEKB

    CERN Document Server

    Kotkin, G L

    2004-01-01

    For the $e^+ e^- \\to e^+ e^- \\gamma$ process at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard calculations have to be essentially modify. In the present paper such a beam-size or MD-effect is calculated for bremsstrahlung at B-factories PEP-II and KEKB using the list of nominal parameters from Review of Particle Physics (2002). We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  17. Evaluation of size effect on shear strength of reinforced concrete deep beams using refined strut-and-tie model

    Indian Academy of Sciences (India)

    G Appa Rao; R Sundaresan

    2012-02-01

    This paper reports on development of size-dependent shear strength expression for reinforced concrete deep beams using refined strut-and-tie model. The generic form of the size effect law has been retained considering the merits of Siao’s model and modified Bazant’s size effect law using the large experimental data base reported in the literature. The proposed equation for predicting the shear strength of deep beams incorporates the compressive strength of concrete, ratios of the longitudinal and the web reinforcement, shear span-to-depth ratio and the effective depth.

  18. Shaping micron-sized cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Frédéric, E-mail: Frederic.Ott@cea.fr [CEA, IRAMIS, Laboratoire Léon Brillouin, Gif-sur-Yvette F-91191 (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, Gif-sur-Yvette F-91191 (France); Kozhevnikov, Sergey [Joint Institute for Nuclear Research, ul. Joliot-Curie 6, Dubna, Moscow oblast 141980 (Russian Federation); Thiaville, André [Laboratoire de Physique des Solides, Univ. Paris—Sud, CNRS UMR 8502, 91405 Orsay (France); Torrejón, Jacob [Unité Mixte de Physique, CNRS/Thales, Campus de l’Ecole Polytechnique, 91767 Palaiseau (France); Vázquez, Manuel [Instituto de Ciencia de Materiales, CSIC, 28049 Madrid (Spain)

    2015-07-11

    In the field of neutron scattering, the need for micro-sized (1–50 µm) thermal or cold neutron beams has recently appeared, typically in the field of neutron imaging to probe samples with a high spatial resolution. We discuss various possibilities of producing such micro-sized neutron beams. The advantages and drawbacks of the different techniques are discussed. We show that reflective optics offers the most flexible way of producing tiny neutron beams together with an enhanced signal to background ratio. The use of such micro beams is illustrated by the study of micrometric diameter magnetic wires.

  19. EFFECT OF PARTICLE SIZE AND PACKING RATIO OF PID ON VIBRATION AMPLITUDE OF BEAM

    OpenAIRE

    P.S. Kachare; Bimleshkumar

    2013-01-01

    Everything in the universe that has mass possesses stiffness and intrinsic damping. Owing to the stiffness property, mass will vibrate when excited and its intrinsic damping property will act to stop the vibration. The particle impact damper (PID) is a very interesting damper that affects impact and friction effects of particles by means of energy dissipation. PID is a means for achieving high structural damping by using a particle-filled enclosure attached to a structure. The particles absor...

  20. Effect of surface roughness and size of beam on squeeze-film damping—Molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hojin; Strachan, Alejandro [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-11-28

    We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with prior direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.

  1. Evaluation of the effect of reconstructed image pixel size on defect detectability in Tl-201 fan-beam SPECT by an observer performance study

    Energy Technology Data Exchange (ETDEWEB)

    Gregoriou, G.K.; Tsui, B.M.W. [Univ. of North Carolina, Chapel Hill, NC (United States); Gullberg, G.T. [Univ. of Utah, Salt Lake City, UT (United States)

    1995-08-01

    The effect of reconstructed image pixel size in the fan-beam filtered backprojection method in myocardial defect detection was investigated using an observer performance study and receiver operating characteristics (ROC) analysis. A mathematical phantom of the human torso was used to model the anatomy and Thallium-201 (TI-201) uptake in humans. Realistic projections from the phantom were simulated using a low-energy high resolution fan-beam collimator that incorporated the effects of photon attenuation, spatially varying detector response, scatter, and Poison noise. For a fan beam collimator with a focal length of 55 cm and with a radius of rotation of 25 cm, the magnification at the center of rotation was two and the maximum magnification in the reconstructed region of interest was three. Myocardial defects were simulated as Gaussian-shaped decreases in Tl-201 uptake distribution. By changing the reconstructed image pixel size, five different classes of reconstructed images resulted, with projection bin width to reconstructed image pixel size (PBIP) ratios of 1, 2, 3, 4, and 5. The results from the observer study indicate that the reconstructed image pixel size has a significant effect on myocardial defect detection in reconstructed Tl-201 SPECT images. Moreover, the study indicated that in order to ensure maximum defect delectability the PBIP ratio should be at least as large as the maximum possible magnification within the reconstructed image array.

  2. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  3. Design of a Nanometer Beam Size Monitor for ATF2

    CERN Document Server

    Suehara, Taikan; Yamanaka, Takashi; Yoda, Hakutaro; Nakamura, Tomoya; Kamiya, Yoshio; Honda, Yosuke; Kume, Tatsuya; Tauchi, Toshiaki; Sanuki, Tomoyuki; Komamiya, Sachio

    2008-01-01

    We developed an electron beam size monitor for extremely small beam sizes. It uses a laser interference fringe for a scattering target with the electron beam. Our target performance is < 2 nm systematic error for 37 nm beam size and < 10% statistical error in a measurement using 90 electron bunches for 25 - 6000 nm beam size. A precise laser interference fringe control system using an active feedback function is incorporated to the monitor to achieve the target performance. We describe an overall design, implementations, and performance estimations of the monitor.

  4. Effect of the location and size of a single crack on first fundamental frequency of a cantilever beam using fiber optic polarimetric sensors and characterisation of FBG sensors

    Science.gov (United States)

    Maheshwari, Muneesh; Asundi, A. K.; Tjin, Swee C.

    2013-08-01

    Fiber Optics Polarimetric Sensors (FOPS), utilizing first fundamental frequency mode and its harmonics, have already been used as damage detection tool. The FOPS technology is attractive in damage detection as it facilitates us with real time non-destructive health monitoring of different mechanical and civil structures. In this paper, the effects of the size and the location of a single crack on the frequency of first fundamental mode of a cantilever beam have been studied. A relation between the relative size of a crack and relative change in the first fundamental frequency has been established theoretically and then verified experimentally. Further, it has been shown that the cracks, close to the fixed end of the cantilever beam, have significant effect on the frequency of first fundamental mode and as the crack moves away from the fixed end, the effect on the frequency starts becoming diminished. Also the sensitivity of Fiber Bragg Grating (FBG) sensor against a single crack has been studied along both the directions; parallel to the axis of FBG sensor and perpendicular to the axis of FBG sensor. Experimental results show that the range of sensitivity in both the directions is almost the same bur FBG is more efficient along its axis.

  5. Evaluation of size dependent design shear strength of reinforced concrete beams without web reinforcement

    Indian Academy of Sciences (India)

    G Appa Rao; S S Injaganeri

    2011-06-01

    Analytical studies on the effect of depth of beam and several parameters on the shear strength of reinforced concrete beams are reported. A large data base available has been segregated and a nonlinear regression analysis (NLRA) has been performed for developing the refined design models for both, the cracking and the ultimate shear strengths of reinforced concrete (RC) beams without web reinforcement. The shear strength of RC beams is size dependent, which needs to be evaluated and incorporated in the appropriate size effect models. The proposed models are functions of compressive strength of concrete, percentage of flexural reinforcement and depth of beam. The structural brittleness of large size beams seems to be severe compared with highly ductile small size beams at a given quantity of flexural reinforcement. The proposed models have been validated with the existing popular models as well as with the design code provisions.

  6. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yani, Sitti, E-mail: sitti.yani@s.itb.ac.id [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Akademi Kebidanan Pelita Ibu, Kendari (Indonesia); Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Rhani, Moh. Fadhillah [Tan Tock Seng Hospital (Singapore)

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  7. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important

  8. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  9. Change of the size of vector Bessel beam rings under reflection

    OpenAIRE

    Novitsky, Andrey V.; Novitsky, Denis V.

    2008-01-01

    We theoretically predict the change of the size of Bessel beam rings under reflection. Considered electromagnetic Bessel beam is the superposition of phase shifted TE and TM polarized Bessel beams. Reflection from a semi-infinite medium and from a slab are studied. The sets of parameters maximizing the effect are discussed.

  10. Interferometric measurement of the beam size in the compact storage ring

    CERN Document Server

    Yamamoto, Y; Mitsuhashi, T; Amano, D; Iwasaki, H

    2001-01-01

    The beam size in the compact superconducting storage ring AURORA at Ritsumeikan University was measured using the SR-interferometer. The radiation beam from the bending magnet was passed through the double-slit and an interferogram formed in the visible spectral region was recorded using a CCD camera. The spatial coherence of the beam was derived from the analysis of the intensity profile and its dependence on the spatial frequency has yielded the beam size of 10.5 mu m in the vertical direction. It is unexpectedly small, indicating a high accuracy in the design of magnetic field in the magnet. The beam size could be varied by applying an rf kick electric field and the dependence of the beam lifetime on the size has shown that it is primarily governed by the Tauschek effect.

  11. Focal spot size predictions for beam transport through a gas-filled reactor

    International Nuclear Information System (INIS)

    Results from calculations of focal spot size for beam transport through a gas-filled reactor are summarized. In the converging beam mode, we find an enlargement of the focal spot due to multiple scattering and zeroth order self-field effects. This enlargement can be minimized by maintaining small reactors together with a careful choice of the gaseous medium. The self-focused mode, on the other hand, is relatively insensitive to the reactor environment, but is critically dependent upon initial beam quality. This requirement on beam quality can be significantly eased by the injection of an electron beam of modest current from the opposite wall

  12. Influence of the Spot Size of the Probe Beam on the Detected THz Power Using Electro-Optic Detection Method

    Science.gov (United States)

    Metbulut, Mukaddes Meliz; Güllü, Hasan Hüseyin; Altan, Hakan

    We compared the detected THz power through electro-optic detection for different spot sizes of a probe beam on the ZnTe crystal. We find that there is a proportional relationship between the detected THz power and spot size of the probe beam by theoretically analyzing its effect on the intensity profile of the terahertz beam.

  13. Duration of load behaviour of different sized straight timber beams subjected to bending in variable climate

    DEFF Research Database (Denmark)

    Hanhijärvi, A.; Galimard, P.; Hoffmeyer, Preben

    1998-01-01

    The paper is the second in a series which sums up the results of an extensive project to quantify the duration-of-load (DOL) effect on different sized timber beams in different climates. The paper deals with straight (unnotched) beams. The results of various DOL-tests of stepwise and constant ben...

  14. Profiling of micrometer-sized laser beams in restricted volumes

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Thorsen, Aske;

    2012-01-01

    micrometers across the measuring volume. We characterize the performance of the method and experimentally demonstrate profiling of micrometer-sized laser beams. We discuss the limiting factors and routes toward a further increase of the resolution and beam profiling in even more restricted volumes. Finally......, as an application example, we present profiling of laser beams inside a micro ion trap with integrated optical fibers.......We present a method for determining the three-dimensional intensity distribution of directed laser radiation with micrometer resolution in restricted volumes. Our method is based on the incoupling and guiding properties of optical fibers, with the current version requiring only a few hundred...

  15. Size effect in the strength of concrete structures

    Indian Academy of Sciences (India)

    B L Karihaloo; Q Z Xiao

    2002-08-01

    This paper reports on the range of applicability of the various size effect formulae available in the literature. In particular, the failure loads of three point bend (TPB) beams are analysed according to the size effect formulae of Ba$\\breve{z}$ant and of Karihaloo for notched beams and according to those of Ba$\\breve{z}$ant and of Carpinteri for unnotched beams, and the results of this analysis presented. Improvements to Karihaloo’s size effect formula are also proposed.

  16. Overview of nonintercepting beam-size monitoring with optical diffraction radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, Alex H.; /Fermilab

    2010-08-01

    The initial demonstrations over the last several years of the use of optical diffraction radiation (ODR) as nonintercepting electron-beam-parameter monitors are reviewed. Developments in both far-field imaging and near-field imaging are addressed for ODR generated by a metal plane with a slit aperture, a single metal plane, and two-plane interferences. Polarization effects and sensitivities to beam size, divergence, and position will be discussed as well as a proposed path towards monitoring 10-micron beam sizes at 25 GeV.

  17. Beam-beam effect seen through forced vibration

    International Nuclear Information System (INIS)

    In electron accelerator, tune is measured by giving beam transverse forced vibration caused by RF frequency. It is well known that beam-beam parameter can be measured if beam-beam interaction exists. Generally, small value is chosen as the amplitude of forced vibration, and many researches were done in this case. In this report, we discuss effect of resonance caused by beam-beam interaction in case of amplitude of forced vibration being big. (author)

  18. Quenched effective population size

    CERN Document Server

    Sagitov, Serik; Vatutin, Vladimir

    2010-01-01

    We study the genealogy of a geographically - or otherwise - structured version of the Wright-Fisher population model with fast migration. The new feature is that migration probabilities may change in a random fashion. Applying Takahashi's results on Markov chains with random transition matrices, we establish convergence to the Kingman coalescent, as the population size goes to infinity. This brings a novel formula for the coalescent effective population size (EPS). We call it a quenched EPS to emphasize the key feature of our model - random environment. The quenched EPS is compared with an annealed (mean-field) EPS which describes the case of constant migration probabilities obtained by averaging the random migration probabilities over possible environments.

  19. Control of the size of the coherence area in entangled twin beams

    Science.gov (United States)

    Holtfrerich, M. W.; Marino, A. M.

    2016-06-01

    We study the effect of a change in size and spatial profile of the pump beam in an atomic-based four-wave mixing process on the size of the coherence area of the generated entangled twin beams. We perform experiments and develop a theoretical model to obtain a measure of the linear extent or "radius" of the coherence area from noise measurements of the twin beams as a function of transmission through a variable size slit. Our results show that an increase in the size of the pump reduces the size of the coherence area. More interestingly, we find that the use of a flat-top pump beam of the same size as a Gaussian pump beam leads to a reduction by a factor of more than 2 in the linear extent of the coherence area. This in turn leads to an increase by a factor of more than 4 in the number of spatial modes that make up the twin beams and a resolution enhancement of the entangled images that can be generated with the four-wave mixing process.

  20. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  1. Effect of Building Height on Microstructure and Mechanical Properties of Big-Sized Ti-6Al-4V Plate Fabricated by Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Wang Pan

    2015-01-01

    Full Text Available Electron beam melting (EBM is a layer by layer additive manufacturing technology, which has the capability of producing near-net shaped parts with complex geometries. It is also suitable for handling high melting point and reactive metallic materials, such as Ti alloy, which is widely used in the aerospace and biomedical applications. The present study focused on the relationship between the microstructure and mechanical properties of big-sized Ti-6Al-4V parts. A plate (6mm×180mm×372mm was additively manufactured by EBM. The microstructure evolution and variation of mechanical properties were investigated by using the x-ray diffraction, optical microscope, scanning electron microscope and tensile test. The results revealed that with an increasing in the build height, there was a variation in the microstructure and the mechanical properties of the build plate. Although only α phase and a relatively small fraction of β phase were detected in both the bottom and top specimens of the build plate, yield strength and ultimate tensile strength decreased with an increase of build height. This was attributed to the increase of α lath width which was caused by the different thermal histories along the build height of the plate.

  2. Effect Sizes, Confidence Intervals, and Confidence Intervals for Effect Sizes

    Science.gov (United States)

    Thompson, Bruce

    2007-01-01

    The present article provides a primer on (a) effect sizes, (b) confidence intervals, and (c) confidence intervals for effect sizes. Additionally, various admonitions for reformed statistical practice are presented. For example, a very important implication of the realization that there are dozens of effect size statistics is that "authors must…

  3. Electron beam machining of nanometer-sized tips from multiwalled boron nitride nanotubes

    Science.gov (United States)

    Celik-Aktas, Ayten; Stubbins, James F.; Zuo, Jian-Min

    2007-07-01

    We report here that high energy electron irradiation of multiwalled boron nitride nanotubes can be used to form sharp, crystalline, conical tips, or to cut boron nitride nanotubes by controlling the electron beam size. Electron beam cutting is observed when a focused electron beam with a diameter much smaller than the tube diameter is used. The tip formation is observed when a shaped, disklike, electron beam is used to irradiate the tube; the diameter of the beam in this case is similar to the tube diameter. In situ electron microscopy observation shows that the tip formation effect is driven by layer peeling and the collapse of the inner walls of the nanotube. This is very different from the formation of nanoarches observed during cutting. The combination of shaping and cutting can be used to fabricate atomically sharp tips for field emitters, nanoimaging, and manipulations.

  4. 钢筋混凝土梁受弯破坏机理尺寸效应试验研究%Experimental Study on Size Effect of Bending Failure Mechanism of RC Beams

    Institute of Scientific and Technical Information of China (English)

    周宏宇; 李振宝; 杜修力; 郭二伟

    2012-01-01

    针对尺寸效应特性对梁构件受弯破坏的影响机理,对不同截面尺寸简支梁相似试件开展单调加载试验,测试构件在不同加载阶段的承载力、挠度和截面应变等试验数据.按不同加载阶段分析其力学性能的影响因素,并阐述其破坏机理的尺寸效应.试验分析表明,混凝土材料抗压特性在受弯构件力学性能中表现为负面尺寸效应,这种负面尺寸效应对构件整体力学行为的影响并不显著.相比之下,内力臂和钢筋等因素对试件承载力和延性均产生显著的正面影响.随截面尺寸增大,受弯承载力和延性均呈增长趋势.根据试件在不同尺度上表现出的显著破坏特征和实测数据,推导相关计算参数随试件尺寸的关系,建立考虑尺寸效应的极限承载力计算方程.同时也验证了现有极限承载力计算理论的安全性.%Size effect is concrete inherent characteristic and has an effect on beam bending failure mechanism. Bending experiments based on different section size RC free beams were carried out and test data was collected in different loading stage, including bearing capacity, deflection, section strain etc. Size effect factors and failure mechanism were analyzed according to different loading stage. Concrete compressive properties show negative size effect in bending member mechanical properties, but it is not significant in overall mechanical behaviors. Internal force arm and longitudinal reinforcement have positive effect to flexural bearing capacity and ductility. Flexural bearing capacity and ductility show a growing trend with member size increasing. Failure characteristics and measured data show significant difference in specimen size. Related calculation parameters which have a relationship with section height are derived, and then ultimate bearing capacity calculation equations with size effect related are established. Bearing capacity calculation theories in current specifications

  5. 钢筋混凝土梁抗弯性能尺寸效应试验研究%Experimental Study on the Size Effect on RC Beam Flexural Behaviors

    Institute of Scientific and Technical Information of China (English)

    周宏宇; 李振宝

    2012-01-01

    For the size effect on quasi-brittle materials such as concrete, related researches have been carried out for many years. However, related test studies combined with concrete structures or components are not sufficient. This article is based on experimental studies of 13 reinforced concrete beams, carrying out experimental research on five different section size beams. The section height of the biggest experimental specimen is 1 000 mm. Test data during different loading stages were obtained. Analysis on test results shows that the size effect of flexural behaviors of RC beams mainly reflects in reinforcement yielding stage and concrete crushing stage. Strength and ductility show a growing trend with specimen size increasing. The safety of calculation theory of RC beam bearing capacity in chinese code is verified indirectly.%现阶段钢筋混凝土结构分析方法与计算理论主要基于小尺寸构件试验结果,对大尺寸构件开展尺寸效应的试验研究还不多,相关理论验证尚不充分.文章针对13个钢筋混凝土梁开展尺寸效应试验研究,详细测试并采集不同加载阶段构件的承载力、挠度、钢筋与混凝土应变等试验数据,最大试验梁截面高度1000 mm.研究结果表明:随受弯试件截面尺寸增大,受压区混凝土材料的强度和极限变形能力均呈减小趋势,混凝土材料抗压性能尺寸效应反映到正截面承载性能中,对受弯承载力产生负面尺寸效应;而内力臂和钢筋等影响因素对受弯承载力产生显著的正面尺寸效应.随试件尺寸增大,受弯构件强度和延性储备整体呈现增长趋势,从而间接验证了现阶段受弯承载力计算理论的安全性.

  6. Effective sizes for subdivided populations.

    Science.gov (United States)

    Chesser, R K; Rhodes, O E; Sugg, D W; Schnabel, A

    1993-12-01

    Many derivations of effective population sizes have been suggested in the literature; however, few account for the breeding structure and none can readily be expanded to subdivided populations. Breeding structures influence gene correlations through their effects on the number of breeding individuals of each sex, the mean number of progeny per female, and the variance in the number of progeny produced by males and females. Additionally, hierarchical structuring in a population is determined by the number of breeding groups and the migration rates of males and females among such groups. This study derives analytical solutions for effective sizes that can be applied to subdivided populations. Parameters that encapsulate breeding structure and subdivision are utilized to derive the traditional inbreeding and variance effective sizes. Also, it is shown that effective sizes can be determined for any hierarchical level of population structure for which gene correlations can accrue. Derivations of effective sizes for the accumulation of gene correlations within breeding groups (coancestral effective size) and among breeding groups (intergroup effective size) are given. The results converge to traditional, single population measures when similar assumptions are applied. In particular, inbreeding and intergroup effective sizes are shown to be special cases of the coancestral effective size, and intergroup and variance effective sizes will be equal if the population census remains constant. Instantaneous solutions for effective sizes, at any time after gene correlation begins to accrue, are given in terms of traditional F statistics or transition equations. All effective sizes are shown to converge upon a common asymptotic value when breeding tactics and migration rates are constant. The asymptotic effective size can be expressed in terms of the fixation indices and the number of breeding groups; however, the rate of approach to the asymptote is dependent upon dispersal

  7. Impact of Long Range Beam-Beam Effects on Intensity and Luminosity Lifetimes from the 2015 LHC Run

    CERN Document Server

    Crouch, Matthew; Banfi, Danilo; Barranco, Javier; Bruce, Roderik; Buffat, Xavier; Muratori, Bruno; Pieloni, Tatiana; Pojer, Mirko; Salvachua, Belen; Tambasco, Claudia; Trad, Georges

    2016-01-01

    Luminosity is one of the key parameters that determines the performance of colliding beams in the Large Hadron Collider (LHC). Luminosity can therefore be used to quantify the impact of beam-beam interactions on the beam lifetimes and emittances. The High Luminosity Large Hadron Collider (HL-LHC) project aims to reach higher luminosities, approximately a factor of 7 larger than the nominal LHC at peak luminosity without crab cavities. Higher luminosities are achieved by increasing the bunch populations and reducing the transverse beam sizes. This results in stronger beam-beam effects. Here the LHC luminosity and beam intensity decay rates are analysed as a function of reducing beam separation with the aim of characterising the impact of beam-beam effects on the luminosity and beam lifetime. The analysis and results are discussed with possible application to the HL-LHC upgrade.

  8. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  9. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void......Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...

  10. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    CERN Document Server

    Ryazanov, A I; Vasilyev, Ya S; Ferrari, A

    2014-01-01

    The interaction of 450GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the anal ysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsy stem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron–phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4 , 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6 , 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90 , 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic an...

  11. Size Effect of Shear Capacity of Reinforced Concrete Beams Without Stirrups%钢筋混凝土无腹筋梁受剪承载力尺寸效应研究

    Institute of Scientific and Technical Information of China (English)

    何龙军; 车轶

    2013-01-01

    The finite element software DIANA was used in a finite element model based on fracture mechanics ,and the nonlinear finite element was adopted to analyze the reinforced concrete beams without stirrups .Based on the comparison analysis with test results ,a group of specimens in larger size were selected for modeling in different aggregate size ,con-crete strength ,longitudinal reinforcement ratio and shear span .According to the numerical calculations ,the influence of aggregate size and depth on the ultimate shear strength of reinforced concrete beams without stirrups was discussed ,and the shear design method in the Code for Design of Concrete Structures (GB 50010 -2010) for reinforced concrete mem-bers without stirrups was improved .The results indicate that the change of the maximum aggregate size has no significant impact on the failure shear stress of reinforced concrete beams without stirrups ,and the failure shear stress is gradually reduced with the increase of depth ,but the variation of the shear stress failure is decreased gradually with the increase of depth .The improved shear equation of the members without stirrups can well reflect the size effect for large members .%利用有限元软件 DIANA 中基于断裂力学的有限元模型,对钢筋混凝土无腹筋梁进行了非线性分析。在与试验结果进行对比分析的基础上,选取了其中一组试件,在更大尺寸下变换不同骨料粒径、混凝土强度、截面纵筋配筋率、剪跨比进行建模。通过数值计算,分析了截面高度和骨料粒径对钢筋混凝土无腹筋梁受剪承载力的影响,并且改进了我国混凝土规范无腹筋构件受剪承载力公式。结果表明:最大骨料粒径的变化对无腹筋梁受剪承载力无明显影响;梁的破坏剪应力随截面高度增加而降低,但破坏剪应力的降低幅度随梁高的增大而逐渐减小;改进后的无腹筋构件受剪承载力公式能较好反映大尺寸无

  12. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    Science.gov (United States)

    Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.

    2014-02-01

    The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian

  13. A new non intercepting beam size diagnostics using diffraction radiation from a Slit

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-09-01

    A new non interpreting beam size diagnostic for high charge electron beams is presented. This diagnostics is based on the analysis of the angular distribution of the `diffracted` transition radiation emitted by the beam when crossing a slit cut in metallic foil. It allows a resolution better then the radiation transverse formation zone. Numerical results based on the parameters of the TTF FEL beam are given as example.

  14. Effective Sizes for Subdivided Populations

    OpenAIRE

    Chesser, R. K.; Rhodes-Jr., O. E.; Sugg, D. W.; Schnabel, A.(Physikalisch Technische Bundesanstalt, Berlin, D-10587, Germany)

    1993-01-01

    Many derivations of effective population sizes have been suggested in the literature; however, few account for the breeding structure and none can readily be expanded to subdivided populations. Breeding structures influence gene correlations through their effects on the number of breeding individuals of each sex, the mean number of progeny per female, and the variance in the number of progeny produced by males and females. Additionally, hierarchical structuring in a population is determined b...

  15. Size effect on the static behavior of electrostatically actuated microbeams

    Institute of Scientific and Technical Information of China (English)

    Li Yin; Qin Qian; Lin Wang

    2011-01-01

    We present a new analytical model for electrostatically actuated microbeams to explore the size effect by using the modified couple stress theory and the minimum total potential energy principle. A material length scale parameter is introduced to represent the size-dependent characteristics of microbeams. This model also accounts for the nonlinearities associated with the mid-plane stretching force and the electrostatical force. Numerical analysis for microbeams with clamped-clamped and cantilevered conditions has been performed. It is found that the intensity of size effect is closely associated with the thickness of the microbeam, and smaller beam thickness displays stronger size effect and hence yields smaller deflection and larger pull-in voltage. When the beam thickness is comparable to the material length scale parameter, the size effect is significant and the present theoretical model including the material length scale parameter is adequate for predicting the static behavior of microbeam-based MEMS.

  16. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  17. The influence of Laval nozzle throat size on supersonic molecular beam injection

    Institute of Scientific and Technical Information of China (English)

    Xinkui He; Xianfu Feng; Mingmin Zhong; Fujun Gou; Shuiquan Deng; Yong Zhao

    2014-01-01

    In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular stream peak at different positions along the center axis of the beam, which correspond to local minimums of the molecular densities. With the increase of the throat diam-eter, the first peak of the Mach number increases first and then decreases, while that of the molecular number density increases gradually. Moreover, both first peaks shift pro-gressively away from the throat. At the last part, we discuss the possible applications of our FEA approach to solve some crucial problems met in modern transportations.

  18. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Hugo, E-mail: hugo.bouchard@npl.co.uk; Duane, Simon [Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Kamio, Yuji [Centre hospitalier de l’Université de Montréal (CHUM), 1560 Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada); Palmans, Hugo [Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Medical Physics, EBG MedAustron GmbH, Wiener Neustadt A-2700 (Austria); Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada)

    2015-10-15

    Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano’s theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  19. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  20. Development of a multi-lane X-ray mirror providing variable beam sizes.

    Science.gov (United States)

    Laundy, D; Sawhney, K; Nistea, I; Alcock, S G; Pape, I; Sutter, J; Alianelli, L; Evans, G

    2016-05-01

    Grazing incidence mirrors are used on most X-ray synchrotron beamlines to focus, collimate or suppress harmonics. Increasingly beamline users are demanding variable beam shapes and sizes at the sample position. We have now developed a new concept to rapidly vary the beam size and shape of a focused X-ray beam. The surface of an elliptically figured mirror is divided into a number of laterally separated lanes, each of which is given an additional longitudinal height profile calculated to shape the X-ray beam to a top-hat profile in the focal plane. We have now fabricated two prototype mirrors and present the results of metrology tests and measurements made with one of the mirrors focusing the X-rays on a synchrotron beamline. We envisage that such mirrors could be widely applied to rapid beam-size switching on many synchrotron beamlines.

  1. Beam Size Estimation from Luminosity Scans at the LHC During 2015 Proton Physics Operation

    CERN Document Server

    Hostettler, Michael

    2016-01-01

    As a complementary method for measuring the beam size for high-intensity beams at 6.5 TeV flat-top energy, beam separation scans were done regularly at the CERN Large Hadron Collider (LHC) during 2015 proton physics operation. The luminosities measured by the CMS experiment during the scans were used to derive the convoluted beam size and orbit offset bunch-by-bunch. This contribution will elaborate on the method used to derive plane-by-plane, bunch-by-bunch emittances from the scan data, including uncertainties and corrections. The measurements are then compared to beam size estimations from absolute luminosity, synchrotron light telescopes, and wire scanners. In particular, the evolution of the emittance over the course of several hours in collisions is studied and bunch-by-bunch differences are highlighted.

  2. Fracture size effect: review of evidence for concrete structures

    OpenAIRE

    Bazant, Zdenek P; Ozbolt, Josko; Eligehausen, Rolf

    1994-01-01

    The paper reviews experimental evidence on the size effect caused by energy release due to fracture growth during brittle failures of concrete structures. The experimental evidence has by now become quite extensive. The size effect is verified for diagonal shear failure and torsional failure of longitudinally reinforced beams without stirrups, punching shear failure of slabs, pull-out failures of deformed bars and of headed anchors, failure of short and slender tied columns, double-punch comp...

  3. Material-Independent and Size-Independent Tractor Beams for Dipole Objects

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Lavrinenko, Andrei

    2012-01-01

    , a perturbation of which will make the optical traction go away. In this Letter, we investigate and report on the universality for a Bessel beam to be either a material-independent or size-independent optical tractor beam within the dipolar regime. Moreover, a general condition for a nonparaxial laser...

  4. MECHANICAL PROPERTIES AND SIZE EFFECTS OF SINGLE CRYSTAL SILICON

    Institute of Scientific and Technical Information of China (English)

    HAN Guangping; LIU Kai; WANG Xiuhong

    2006-01-01

    Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle and square section, which are usually applied in MEMS. Nano indentation method used in bending test can be applied to both elastic and plastic materials. Also, some mechanical properties parameters such as the modulus of elasticity, hardness and the bending strength are obtained. The average modulus of elasticity of SCS is 170.295 0±2.485 0 GPa, showing no size effects, but the bending strength ranges from 3.24 GPa to 10.15 GPa, displaying strong size effects,and the average hardness is 9.496 7± 1.753 3 GPa, in which no obvious size effects are observed.

  5. Noninvasive measurement of micron electron beam size of high energy using diffraction radiation

    CERN Document Server

    Naumenko, G A

    2003-01-01

    Treatments of the usage of diffraction radiation from the relativistic electrons moving though a conductive slit for the transverse beam size measurement encounter hard limitation of the method sensitivity for the electron energy larger than 1 GeV. We consider in this article a possibility of application of the artificial phase shift, which can take place when transverse electron position varies. This allows us to realize the measurements of transverse size of supper-relativistic electron beams with the small emittance.

  6. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  7. Long range beam-beam interaction and the effect on the beam and luminosity lifetimes

    CERN Document Server

    Crouch, Matthew; Barranco Garcia, Javier; Banfi, Danilo; Buffat, Xavier; Tambasco, Claudia; Alexahin, Yuri; Bruce, Roderik; Giachino, Rossano; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Trad, Georges; CERN. Geneva. ATS Department

    2016-01-01

    Identifying the minimum crossing angle achievable in the LHC is a key parameter to identify the collider luminosity reach. In this note, we summarise the observations collected during a dedicated experiment performed in 2015, where the strength of the long range beam-beam interaction is varied by reducing the crossing angle at IP1 and IP5. The crossing angle and the impact of the long range beam-beam interaction is analysed with respect to the beam and luminosity lifetimes. The effect of reducing Landau octupoles initially operating at 476 [A] and high chromaticity values (15 units) are also shown. The minimum crossing angle achievable with collisions is identified, together with the impact on beam and luminosity lifetimes

  8. Beam size and position measurement based on logarithm processing algorithm in HLS II

    CERN Document Server

    Cheng, Chaocai; Yang, Yongliang; Zhou, Zeran; Lu, Ping; Wu, Fangfang; Wang, Jigang; Tang, Kai; Luo, Qing; Li, Hao; Zheng, Jiajun; Duan, Qingming

    2015-01-01

    A logarithm processing algorithm to measure beam transverse size and position is proposed and preliminary experimental results in Hefei Light Source II (HLS II) are given. The algorithm is based on only 4 successive channels of 16 anode channels of multianode photomultiplier tube (MAPMT) R5900U-00-L16 which has typical rise time of 0.6 ns and effective area of 0.8x16 mm for a single anode channel. In the paper, we firstly elaborate the simulation results of the algorithm with and without channel inconsistency. Then we calibrate the channel inconsistency and verify the algorithm using general current signal processor Libera Photon in low-speed scheme. Finally we get turn-by-turn beam size and position and calculate the vertical tune in high-speed scheme. The experimental results show that measured values fit well with simulation results after channel differences are calibrated and the fractional part of the tune in vertical direction is 0.3628 which is very close to the nominal value 0.3621.

  9. Study on Size-Dependent Young’s Modulus of a Silicon Nano beam by Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Young’s modulus of a silicon nano beam with a rectangular cross-section is studied by molecular dynamics method. Dynamic simulations are performed for doubly clamped silicon nano beams with lengths ranging from 4.888 to 12.491 nm and cross-sections ranging from 1.22 nm ×1.22 nm to 3.39 nm × 3.39 nm. The results show that Young’s moduli of such small silicon nano beams are much higher than the value of Young’s modulus for bulk silicon. Moreover, the resonant frequency and Young’s modulus of the Si nano beam are strongly dependent not only on the size of the nano beam but also on surface effects. Young’s modulus increases significantly with the decreasing of the thickness of the silicon nano beam. This result qualitatively agrees with one of the conclusions based on a semi continuum model, in which the surface relaxation and the surface tension were taken into consideration. The impacts of the surface reconstruction with (2 ×1) dimmers on the resonant frequency and Young’s modulus are studied in this paper too. It is shown that the surface reconstruction makes the silicon nano beam stiffer than the one without the surface reconstruction, resulting in a higher resonant frequency and a larger Young’s modulus

  10. Effects, causing intensification of synchrotron radiaiton beams

    International Nuclear Information System (INIS)

    Possibility of intensification of synchrotron radiation beams in optical and ultraviolet spectrum range by shift of generation range of the output synchrotron radiation beams from circle sections of electron orbit to the magnetic field of gaps, separating sections of the accelerator electromagnets is discussed. The degree of manifestation of the considered effects in synchrotrons for 0.6 and 7.5 GeV energy is evaluated. The results of their experimental investigati.on in the optical beam of the 0.6 GeV synchrotron radiation are given. The results obtained show that beam intensity in the gap centre between the magnet sections increases 3.2 times. The structure of beam intensity distribution improves simultaneously and vertical direction of radiation increases approximately 2 times. A conclusion is made on applicability of the described method for beam intensification of synchrotron radiation

  11. Size-effect of germanium nanocrystals

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan;

    2011-01-01

    Different sizes of Ge nanocrystals embedded in a SiO2 matrix were formed by PECVD, and analyzed by TEM. Size effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect.......Different sizes of Ge nanocrystals embedded in a SiO2 matrix were formed by PECVD, and analyzed by TEM. Size effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect....

  12. Cavitation erosion size scale effects

    Science.gov (United States)

    Rao, P. V.; Buckley, D. H.

    1984-01-01

    Size scaling in cavitation erosion is a major problem confronting the design engineers of modern high speed machinery. An overview and erosion data analysis presented in this paper indicate that the size scale exponent n in the erosion rate relationship as a function of the size or diameter can vary from 1.7 to 4.9 depending on the type of device used. There is, however, a general agreement as to the values of n if the correlations are made with constant cavitation number.

  13. Size Effects on the Strength of Metals

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2014-01-01

    The grain size effect and the specimen size effect on the strength of metals are briefly reviewed with respect to their history and current status of research. It is revealed that the fundamental strengthening mechanisms responsible for these two types of size effect are to increase the resistanc...

  14. Effect Sizes in Gifted Education Research

    Science.gov (United States)

    Gentry, Marcia; Peters, Scott J.

    2009-01-01

    Recent calls for reporting and interpreting effect sizes have been numerous, with the 5th edition of the "Publication Manual of the American Psychological Association" (2001) calling for the inclusion of effect sizes to interpret quantitative findings. Many top journals have required that effect sizes accompany claims of statistical significance.…

  15. Small size probe for inner profile measurement of pipes using optical fiber ring beam device

    Science.gov (United States)

    Wakayama, Toshitaka; Machi, Kizuku; Yoshizawa, Toru

    2012-11-01

    The requirements of inner profile measurement of pipes and holes become recently larger and larger, and applications of inner profile measurement have rapidly expanded to medical field as well as industrial fields such as mechanical, automobile and heavy industries. We have proposed measurement method by incorporating a ring beam device that produces a disk beam and have developed various probes for different inner profile measurement. To meet request for applying to smaller diameter pipes, we tried to improve the ring beam light source using a conical mirror, optical fiber collimator and a laser diode. At this moment a probe with the size of 5 mm in diameter has been realized.

  16. Transverse beam size measurement system using visible synchrotron radiation at HLS II

    Science.gov (United States)

    Tang, Kai; Sun, Bao-Gen; Yang, Yong-Liang; Lu, Ping; Tang, Lei-Lei; Wu, Fang-Fang; Cheng, Chao-Cai; Zheng, Jia-Jun; Li, Hao

    2016-09-01

    An interferometer system and an imaging system using visible synchrotron radiation (SR) have been installed in the Hefei Light Source (HLS) II storage ring. Simulations of these two systems are given using Synchrotron Radiation Workshop (SRW) code. With these two systems, the beam energy spread and the beam emittance can be measured. A detailed description of these two systems and the measurement method is given in this paper. The measurement results of beam size, emittance and energy spread are given at the end. Supported by National Natural Science Foundation of China (11105141, 11175173) and Upgrade Project of Hefei Light Source

  17. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    Science.gov (United States)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  18. Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere

    CERN Document Server

    O'Flannagain, A; Gallagher, P T

    2014-01-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

  19. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation

    Science.gov (United States)

    Wu, Sujuan; Jiang, Yi; Hu, Lijun; Sun, Jianguo; Wan, Piaopiao; Sun, Lidong

    2016-06-01

    Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non-crystalline one. This is promising for applications in nanofabrication where high quality interfaces are desired between two joining parts.Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non

  20. Free Vibration of Size-Dependent Functionally Graded Microbeams Based on the Strain Gradient Reddy Beam Theory

    Science.gov (United States)

    Ansari, R.; Gholami, R.; Sahmani, S.

    2014-09-01

    The microscale vibration characteristics of microbeams made of functionally graded materials (FGMs) are investigated based on the strain gradient Reddy beam theory capable of capturing the size effect. The non-classical governing differential equations, together with the corresponding boundary conditions, are obtained using Hamilton's principle. Then, the free vibration problem of simply supported FGM microbeams is solved using the Navier solution. The natural frequencies of FGM microbeams are calculated corresponding to a wide range of dimensionless length scale parameters, material property gradient indices, and aspect ratios to illustrate the influences of size effect on the vibrational response of FGM microbeams.

  1. A size-dependent model for beam-like MEMS driven by electrostatic and piezoelectric forces: A variational approach

    Science.gov (United States)

    Yin, Tenghao; Wang, Binglei; Zhou, Shenjie; Zhao, Moli

    2016-10-01

    A size-dependent model of a micro-electromechanical system (MEMS) actuated by both electrostatic and piezoelectric forces is proposed based on the modified couple stress. The governing equation and boundary conditions are derived with the help of the Hamilton principle and solved numerically by employing the Galerkin method and Newton downhill method. A material length scale parameter (MLSP) is incorporated in the model to capture the size effect in microstructures. An excellent agreement is found between the results of the present model and the experimental data, providing the validity of this model. The results reveal that the introduction of the MLSP stiffens the system and increases the pull-in voltage. The size-effect is significant when the dimension of the beam is comparable to the MLSP but it becomes smaller as the beam size increases. Besides, the static characteristic of the micro-switch is studied. It is found that the piezoelectric material attached on the beam can reduce the pull-in voltage remarkably, which may guide the design of the micro-structure when the system is on the order of micron or submicron.

  2. Simulating transient effects of pulsed beams on beam intercepting devices

    International Nuclear Information System (INIS)

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices =BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in order to achieve their best potential. As a consequence of their separate development histories, their combination requires a large amount of work - at the physics limits of their application as well as at the frontier of computing technology. The current work did not touch all different points needed for a full integration, but it is a first step towards their coupling within a feasible time frame. For the simulation of metallic targets irradiated with highly energetic uranium ions different material models have been combined and one parameter describing the damage of the material was varied. In the case of two copper targets, this procedure led to a qualitative agreement between simulations and experimental results. (author)

  3. Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size

    International Nuclear Information System (INIS)

    The aim of this work was to test the suitability of a PTW diamond detector for nonreference condition dosimetry in photon beams of different energy (6 and 25 MV) and field size (from 2.6 cmx2.6 cm to 10 cmx10 cm). Diamond behavior was compared to that of a Scanditronix p-type silicon diode and a Scanditronix RK ionization chamber. Measurements included output factors (OF), percentage depth doses (PDD) and dose profiles. OFs measured with diamond detector agreed within 1% with those measured with diode and RK chamber. Only at 25 MV, for the smallest field size, RK chamber underestimated OFs due to averaging effects in a pointed shaped beam profile. Agreement was found between PDDs measured with diamond detector and RK chamber for both 6 MV and 25 MV photons and down to 5 cmx5 cm field size. For the 2.6 cmx2.6 cm field size, at 25 MV, RK chamber underestimated doses at shallow depth and the difference progressively went to zero in the distal region. PDD curves measured with silicon diode and diamond detector agreed well for the 25 MV beam at all the field sizes. Conversely, the nontissue equivalence of silicon led, for the 6 MV beam, to a slight overestimation of the diode doses in the distal region, at all the field sizes. Penumbra and field width measurements gave values in agreement for all the detectors but with a systematic overestimate by RK measurements. The results obtained confirm that ion chamber is not a suitable detector when high spatial resolution is required. On the other hand, the small differences in the studied parameters, between diamond and silicon systems, do not lead to a significant advantage in the use of diamond detector for routine clinical dosimetry

  4. Variations in cone beam CT numbers as a function of patient size: in vivo demonstration in bladder cancer patients

    International Nuclear Information System (INIS)

    Full text: We determined Hounsfield numbers, using cone beam CT (CBCT), in the bladder of 27 muscle invasive bladder cancer patients treated with online adaptive radiotherapy using a Varian linear accelerator. The CBCT number of urine was found to increase by 130 from the thinnest to the largest patient (249 mm to 346 mm average diameter) demonstrating the effect of patient size on Hounsfield number in CBCT in vivo.

  5. Do class size effects differ across grades?

    DEFF Research Database (Denmark)

    Nandrup, Anne Brink

    This paper contributes to the class size literature by analyzing whether short-run class size effects are constant across grade levels in compulsory school. Results are based on administrative data on all pupils enroled in Danish public schools. Identification is based on a government-imposed class...... size cap that creates exogenous variation in class sizes. Significant (albeit modest) negative effects of class size increases are found for children on primary school levels. The effects on math abilities are statistically different across primary and secondary school. Larger classes do not affect...

  6. Wavefront-sensor-induced beam size error: physical mechanism, sensitivity-analysis and correction method

    NARCIS (Netherlands)

    Koek, W.D.; Zwet, E.J. van

    2015-01-01

    When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders

  7. Accuracy of bone surface size and cortical layer thickness measurements using cone beam computerized tomography

    NARCIS (Netherlands)

    Gerlach, N.L.; Meijer, G.J.; Borstlap, W.A.; Bronkhorst, E.M.; Berge, S.J.; Maal, T.J.J.

    2013-01-01

    OBJECTIVES: The purpose of this study was to determine the accuracy of Cone Beam Computerized Tomography (CBCT) reconstructions in displaying bone surface size and cortical layer thickness. MATERIALS AND METHODS: Two fresh frozen cadaver heads were scanned using a CBCT (i-CAT() 3D Imaging System; Im

  8. Investigation of the effects of beam scattering and beam wandering on laser beams passing thorough the off-gas duct of an Electric Arc Furnace

    Science.gov (United States)

    Alikhanzadeh, Amirhossein

    The project sets to determine the effects of scattering and beam wandering on light that passes through the off-gas of EAF. The effects of light scattering from metallic dust and beam wandering due to temperature gradient and turbulence in the medium are investigated. Using Matlab, a model was developed based on Mie theory to calculate light transmission when the optical properties are known; most importantly refractive index of the dust as well as incident wavelength, particle size and concentration of the particles per cm 3 of the gas. The model was validated and was used to show that as the particle size parameter increases, the scattering losses decreases. Turbulence and temperature gradients in the air cause the laser beam to change shape. Using a big collection lens can minimize the signal fluctuation caused by the beam wandering. A thorough understanding of these phenomena helps in designing optical sensors in the industry.

  9. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    International Nuclear Information System (INIS)

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources

  10. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    O' Flannagain, Aidan M.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Brown, John C. [Astronomy and Astrophysics Group, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.

  11. Fracture energy and size effect studies for nuclear concrete structures

    International Nuclear Information System (INIS)

    The design, analysis and testing of large size nuclear concrete structures pose problems due to varying sizes of the test specimens, models and prototype structures and exhibit the structural size effect. In this paper the structural size effect law for such structures is revisited and is explained through nonlinear fracture mechanics description. The new experimental programme of material characterization for softening behavior of concrete in compression and tension are described. The fracture energy evaluation on notched/unnotched, plain and reinforced Three Point Bend (TPB) beam specimens using conventional instrumentation, acoustic b-value analysis and high resolution image processing systems is presented. Further, a few case studies are presented with numerical finite element cohesive crack and crack band models to illustrate the issues of mesh sensitivity as observed in the classical strength/strain based non-linear finite element theories

  12. Mangrove propagule size and oil contamination effects: Does size matter?

    Science.gov (United States)

    Naidoo, Gonasageran

    2016-09-15

    Three mangroves species with differential propagule size, Avicennia marina (2.5±0.3cm), Bruguiera gymnorrhiza (16±2cm) and Rhizophora mucronata (36±3cm), were subjected to oil contamination. In a series of glasshouse and field experiments, the sediment, propagules, leaves and stems were oiled and growth monitored. Oiling of the propagules, leaves, internodes or sediment reduced plant height, leaf number, leaf chlorophyll content index and induced growth abnormalities, leaf abscission and mortality, with effects being greatest in A. marina, intermediate in R. mucronata and least in B. gymnorrhiza. The results suggest that the greater susceptibility of A. marina to oil is due to early shedding of the protective pericarp and rapid root and shoot development after detachment from the parent tree and not to propagule size. After seedling emergence, micromorphological factors such as presence of trichomes, salt glands and thickness of protective barriers influence oil tolerance. PMID:27342901

  13. Influences of size and position of defects on the fatigue life of electron beam welded-aluminum alloy joints

    Institute of Scientific and Technical Information of China (English)

    LU Li; ZHAO Haiyan; CAI Zhipeng; CUI Xiaofang

    2007-01-01

    Defects such as pores influence the fatigue life of electron beam-welded aluminum alloy joints. In this paper,the influences of pore size and position on the fatigue life of aluminum overlap joint are studied. A finite element model (FEM), combined with experimental data, is established to evaluate the fatigue life of overlap joints. By employing this FE model, the effects of pore size and position on fatigue lives of overlap joints are investigated and discussed. From the present study, when pore position is closer to the weld bead tip or the faying surface, the fatigue life decreases. Also, there is a critical size for the pore; when the pore size is larger than the critical value, the fatigue strength decreases sharply.

  14. Beam Collimation Using an Anisotropic Metamaterial Slab without Any Nanometer-sized Aperture

    CERN Document Server

    Zhang, Shou; Cui, Yanxia; Zhang, Feng; He, Sailing; Hao, Yuying; Zhu, Furong

    2015-01-01

    Plasmonic beam collimation effect has been thoroughly investigated based on the well-known nanometer-scale bull's eye structure formed by complex and high-cost fabrication processes. In this work, we report our effort for attaining beam collimation using an anisotropic metamaterial (AMM) slab that consists of a stack of alternating metal/dielectric layers and an integrated top metal grating. The results show that AMM slab allows creating the beam collimation effect similar to that of the bull's eye structure, an enabling technology for practical application due to its simple architecture and cost benefits. The excitation of surface plasmons at the AMM/air interface is derived. The structure of the AMM slab and its impact on beaming performance were analyzed using the effective medium theory and Finite Element Method.

  15. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  16. Hazards of explosives dusts: Particle size effects

    Energy Technology Data Exchange (ETDEWEB)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  17. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  18. Effect size for dichotomous outcome measures

    Institute of Scientific and Technical Information of China (English)

    Yuanjia WANG; Naihua DUAN

    2011-01-01

    @@ Effect size for continuous outcome measures was discussed in our previous column[1].In this column we discuss several widely used effect size measures for dichotomous (Yes/No) outcome measures such as mortality,relapse,cure,discontinuation of treatment,and so forth.

  19. Experimental Studies of Compensation of Beam-Beam Effects with Tevatron Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; /Fermilab; Alexahin, Yu.; Bishofberger, Kip; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.; /Fermilab /Los Alamos /Novosibirsk, IYF /CERN

    2008-02-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this article we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980-GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron Electron Lenses.

  20. Size effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2006-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  1. Polarization effect in the photon beam collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F. (AN SSSR, Novosibirsk. Inst. Matematiki); Kotkin, G.L.; Panfil' , S.L.; Serbo, V.G. (Novosibirskij Gosudarstvennyj Univ., USSR)

    1983-10-01

    Polarization effects are investigated for collisions of high-energy ..gamma.. beams produced from the Compton scattering of laser light on electrons. To do this, were obtained Stokes parameters Xisub(i), xisub(j) tilde of the ..gamma..-beams, and their average values (xisub(i)), (xisub(j) tilde), as functions of the photon energies and polarizations of the initial beams. The quantities to be measUred in the ..gamma gamma.. collisions are expressed via the average values (xisub(i)xisub(j) tilde), which are in general different from (Hisub(i))(xisub(j) tilde), the fact making the investigation of the polarization effects more complicated. In particular, (xi/sub 3/xi/sub 3/ tilde-xi/sub 11/ tilde) not equal to 0 even if the electron and the laser beams are not Polarized. It is shown that (xisub(i)xisub(j) tilde) approximately (xisub(i))(xisub(j) tilde) for two important limiting cases. Effects due to a correlation between the beams are considered.

  2. Beam-Beam Effect with an External Noise in LHC

    CERN Document Server

    Ohmi, K; Höfle, Wolfgang; Tomás, R; Zimmermann, F

    2007-01-01

    In absence of synchrotron radiation, proton beams do not have any damping mechanism for incoherent betatron motion. A noise, which kicks beam particles in the transverse plane, gives a coherent betatron amplitude. If the system is linear, the coherent motion is maintained in amplitude. Nonlinear force, beam-beam and beam-electron cloud interactions, cause a decoherence of the betatron motion keeping the amplitude of each beam particle, with the result that an emittance growth arises. We focus only on fast noise with a correlation time of 1-100 turns. Slower noise is less serious, because it is regarded as an adiabatic change like a closed orbit change. As sources of the noise, we consider the bunch by bunch feedback system and phase jitter of cavities which turns to transverse noise via a crab cavity.

  3. The lensing effect of trapped particles in a dual-beam optical trap.

    Science.gov (United States)

    Grosser, Steffen; Fritsch, Anatol W; Kiessling, Tobias R; Stange, Roland; Käs, Josef A

    2015-02-23

    In dual-beam optical traps, two counterpropagating, divergent laser beams emitted from opposing laser fibers trap and manipulate dielectric particles. We investigate the lensing effect that trapped particles have on the beams. Our approach makes use of the intrinsic coupling of a beam to the opposing fiber after having passed the trapped particle. We present measurements of this coupling signal for PDMS particles, as well as a model for its dependence on size and refractive index of the trapped particle. As a more complex sample, the coupling of inhomogeneous biological cells is measured and discussed. We show that the lensing effect is well captured by the simple ray optics approximation. The measurements reveal intricate details, such as the thermal lens effect of the beam propagation in a dual-beam trap. For a particle of known size, the model further allows to infer its refractive index simply from the coupling signal. PMID:25836555

  4. Commissioning experience and first results from the new SLS beam size monitor

    CERN Document Server

    Schlott, V; Saa Hernandez, A; Streun, A; Andersson, A; Breunlin, J; Milas, N

    2013-01-01

    In the context of the TIARA work package “SLS vertical emittance tuning” (SVET), an extremely small vertical beam size of 3.6 $\\mu$m, corresponding to a vertical emittance of 0.9 pm, was verified using an optical monitor based on imaging of $\\pi$-polarized light. Since the existing beam size monitor reached its limit of resolution, a new monitor beam line was designed and installed at the 08BD bending magnet of the Swiss Light Source (SLS) storage ring. Larger magnification and operation at shorter wavelength provide improved spatial resolution. Reflective optics enables convenient switching between different wavelengths. An optical table is located in a hutch outside the storage ring tunnel to provide access during operation. Movable obstacles in the beam path create interference patterns and thus provide redundancy of model based analysis of the images. In this paper we report on our commissioning experience and provide a comparison of the different measurement methods at different wavelengths.

  5. Emittance reconstruction from measured beam sizes in ATF2 and perspectives for ILC

    Science.gov (United States)

    Faus-Golfe, A.; Navarro, J.; Fuster Martinez, N.; Resta Lopez, J.; Giner Navarro, J.

    2016-05-01

    The projected emittance (2D) and the intrinsic emittance (4D) reconstruction method by using the beam size measurements at different locations is analyzed in order to study analytically the conditions of solvability of the systems of equations involved in this process. Some conditions are deduced and discussed, and general guidelines about the locations of the measurement stations have been obtained to avoid unphysical results. The special case of the multi-Optical Transition Radiation system (m-OTR), made of four measurement stations, in the Extraction Line (EXT) of Accelerator Test Facility 2 (ATF2) has been simulated in much detail and compared with measurements. Finally a feasibility study of a multi-station system for fast transverse beam size measurement, emittance reconstruction and coupling correction in the Ring to Main Linac (RTML) of International Linear Collider (ILC) Diagnostic sections of the RTML has been discussed in detail.

  6. Effective beam method for element concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Tolhurst, Thomas; Barbi, Mauricio, E-mail: barbi@uregina.ca [University of Regina (Canada); Tokaryk, Tim [Royal Saskatchewan Museum (Canada)

    2015-01-29

    A method to evaluate chemical element concentrations in samples by generating an effective polychromatic beam using as initial input real monochromatic beam data is presented. There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s)

  7. Polarization effects in collisions of. gamma. beams

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Panfil' , S.L.; Serbo, V.G.

    1983-10-01

    We study polarization effects in collisions of high energy ..gamma.. beams obtained in the Compton scattering of laser light on electrons (according to the scheme of I. F. Ginzburg et al., Preprint 81-50, IYaF SO AN SSSR, Novosibirsk, 1981, and JETP Letters 34, 491 (1982)). For this we determine the Stokes parameters of the ..gamma.. beams xi/sub i/ and xi-tilde/sub j/ and their average values and as functions of the photon energy and polarization of the initial beams. The quantities that are measurable in ..gamma gamma.. collisions are expressed in terms of the average values , which, in general, are not equal to , which complicates the study of polarization phenomena. In particular, not =0, even for unpolarized electron and laser beams. It is shown that in two important limiting cases roughly-equal. Effects due to correlation between the beams are studied.

  8. Array size scaling of passive coherent beam combination in fiber laser array

    Institute of Scientific and Technical Information of China (English)

    Yuhao Xue; Bing He; Jun Zhou; Jinchong Xue; Zhen Li; Houkang Liu; Qihong Lou

    2012-01-01

    Array size scaling of passive coherent beam combination is explored theoretically.The Strehl ratio variation with wavelength is simulated in 4-,9-,16-,and 25-channel fiber arrays.The average Strehl ratio and phase error are calculated.The Strehl ratio is found to be near 100% for arrays with less than 5 fibers,but decreases significantly for larger arrays.These results are in good agreement with the recent experimental results.

  9. Wavefront-sensor-induced beam size error: physical mechanism, sensitivity-analysis and correction method

    OpenAIRE

    Koek, W.D.; Zwet, E.J. van

    2015-01-01

    When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders that are required for introducing the shear, but also diffracts significantly into higher orders. Consequently, in the few millimeters of free space propagation between the QWLSI WFS grating and it...

  10. Poly (methyl methacrylate) Composites with Size-Selected Silver Nanoparticles Fabricated using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Juluri, Raghavendra Rao; Chirumamilla, Manohar;

    2016-01-01

    An embedment of metal nanoparticles of well-defined sizes in thin polymer films is of significant interest for a number of practical applications, in particular, for preparing materials with tunable plasmonic properties. In this article, we present a fabrication route for metal–polymer composites...... based on cluster beam technique allowing the formation of monocrystalline size-selected silver nanoparticles with a ±5–7% precision of diameter and controllable embedment into poly (methyl methacrylate). It is shown that the soft-landed silver clusters preserve almost spherical shape with a slight...

  11. Nanocoatings size effect in nanostructured films

    CERN Document Server

    Aliofkhazraei, Mahmood

    2014-01-01

    Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.

  12. Size effect of concrete and sandstone

    NARCIS (Netherlands)

    Van Vliet. M.R.A.; Van Mier, J.G.M.

    2000-01-01

    A series of uniaxial tension experiments has been conducted to investigate the size effect on strength and fracture energy of concrete and sandstone. The experiments were carried on specimens of six different sizes in a scale range of 1:32. Depending on the material and the curing conditions a stron

  13. Nonlinear Beam Dynamics and Effects of Wigglers

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2000-01-01

    We present the applications of variational--wavelet approach for the analytical/numerical treatment of the effects of insertion devices on beam dynamics. We investigate the dynamical models which have polynomial nonlinearities and variable coefficients. We construct the corresponding wavelet representation for wigglers and undulator magnets.

  14. The effect of object shape and laser beam shape on lidar system resolution

    Science.gov (United States)

    Cheng, Hongchang; Wang, Jingyi; Ke, Jun

    2016-06-01

    In a LIDAR system, a pulsed laser beam is propagated to a scene, and then reflected back by objects. Ideally if the beam diameter and the pulse width are close to zero, then the reflected beam in time domain is similar to a delta function, which can accurately locate an object's position. However, in a practical system, the beam has finite size. Therefore, even if the pulse width is small, an object shape will make the reflected beam stretched along the time axis, then affect system resolution. In this paper, we assume the beam with Gaussian shape. The beam can be formulated as a delta function convolved with a shape function, such as a rectangular function, in time domain. Then the reflected beam can be defined as a system response function convolved with the shape function. We use symmetric objects to analyze the reflected beam. Corn, sphere, and cylinder objects are used to find a LIDAR system's response function. The case for large beam size is discussed. We assume the beam shape is similar to a plane wave. With this assumption, we get the simplified LIDAR system response functions for the three kinds of objects. Then we use tiny spheres to emulate an arbitrary object, and study its effect to the returned beam.

  15. Modelling of Beam-Beam Effects in Multiscales

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2001-01-01

    We present the applications of nonlinear local harmonic analysis methods to the modelling of beam-beam interaction. Our approach is based on methods provided the possibility to work with dynamical beam localization in phase space. The consideration of Fokker-Planck or Vlasov-Maxwell models is based on a number of anzatzes, which reduce initial problems to a number of dynamical systems (with constraints) and on variational-wavelet approach to polynomial/rational approximations for reduced nonlinear dynamics. We calculate contribution to full dynamics (partition function) from all underlying subscales via nonlinear eigenmodes decomposition.

  16. Long-term effects of class size

    OpenAIRE

    Fredriksson, Peter; Öckert, Björn; Oosterbeek, Hessel

    2012-01-01

    This paper evaluates the long-term effects of class size in primary school. We use rich administrative data from Sweden and exploit variation in class size created by a maximum class size rule. Smaller classes in the last three years of primary school (age 10 to 13) are not only beneficial for cognitive test scores at age 13 but also for non-cognitive scores at that age, for cognitive test scores at ages 16 and 18, and for completed education and wages at age 27 to 42. The estimated effect on...

  17. Long-Term Effects of Class Size

    OpenAIRE

    Fredriksson, Peter; Öckert, Björn; Oosterbeek, Hessel

    2011-01-01

    This paper evaluates the long-term effects of class size in primary school. We use rich administrative data from Sweden and exploit variation in class size created by a maximum class size rule. Smaller classes in the last three years of primary school (age 10 to 13) are not only beneficial for cognitive test scores at age 13 but also for non-cognitive scores at that age, for cognitive test scores at ages 16 and 18, and for completed education and wages at age 27 to 42. The estimated effect on...

  18. Long-term effects of class size

    OpenAIRE

    Fredriksson, Peter; Öckert, Björn; Oosterbeek, Hessel

    2011-01-01

    This paper evaluates the long-term effects of class size in primary school. We use rich administrative data from Sweden and exploit variation in class size created by a maximum class size rule. Smaller classes in the last three years of primary school (age 10 to 13) are not only beneficial for cognitive test scores at age 13 but also for non-cognitive scores at that age, for cognitive test scores at ages 16 and 18, and for completed education and wages at age 27 to 42. The estimated effect on...

  19. Long-term effects of class size

    OpenAIRE

    Fredriksson, Peter; Öckert, Björn; Oosterbeek, Hessel

    2012-01-01

    This paper evaluates the long-term effects of class size in primary school. We use rich data from Sweden and exploit variation in class size created by a maximum class size rule. Smaller classes in the last three years of primary school (age 10 to 13) are beneficial for cognitive and non-cognitive ability at age 13, and improve achievement at age 16. Most importantly, we find that smaller classes have positive effects on completed education, wages, and earnings at age 27 to 42. The estimated ...

  20. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Han [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiong, Yongqian, E-mail: yqxiong@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Pei, Yuanji [National Synchrotron Radiation laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

    2014-11-11

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  1. Minimal interference beam size/profile measurement techniques applicable to the Collider

    International Nuclear Information System (INIS)

    The imaging of synchrotron radiation (SR) has been suggested as a technique for providing a continuous, non-interfering monitor of the beam profile in the Collider rings at the Superconducting Super Collider. A closer examination has raised questions concerning the applicability of SR imaging in this case because of the diffraction broadening of the image, the requirements for axial space and location in the lattice, and the complexity of the system. We have surveyed the known, alternative, minimal interference techniques for measuring beam size and have evaluated them for possible Collider usage. We conclude that of the approaches that appear feasible, all require at least some development for our usage and that the development of an electron beam probe offers the best promise. We recommend that flying wires be used for cross-checking and calibrating the electron beam probe diagnostic and for luminosity measurements when the highest accuracy is required, but flying wires should not be used as the primary diagnostic because of their limited lifetime

  2. Minimal interference beam size/profile measurement techniques applicable to the Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nexsen, W.; Dutt, S.; Kauffmann, S.; Lebedev, V.; Maschke, A.; Mokhov, N.; Richardson, R.; Tsyganov, E.; Zinchenko, A.

    1993-05-01

    The imaging of synchrotron radiation (SR) has been suggested as a technique for providing a continuous, non-interfering monitor of the beam profile in the Collider rings at the Superconducting Super Collider. A closer examination has raised questions concerning the applicability of SR imaging in this case because of the diffraction broadening of the image, the requirements for axial space and location in the lattice, and the complexity of the system. We have surveyed the known, alternative, minimal interference techniques for measuring beam size and have evaluated them for possible Collider usage. We conclude that of the approaches that appear feasible, all require at least some development for our usage and that the development of an electron beam probe offers the best promise. We recommend that flying wires be used for cross-checking and calibrating the electron beam probe diagnostic and for luminosity measurements when the highest accuracy is required, but flying wires should not be used as the primary diagnostic because of their limited lifetime.

  3. Novel probe for determining the size and position of a relativistic electron beam

    International Nuclear Information System (INIS)

    In order to determine the size and position of a relativistic electron beam inside the wiggler magnetic field of a Free Electron Laser (FEL), we have developed a new probe which intercepts the electron beam on a high Z target and monitors the resulting bremsstrahlung radiation. The probe is designed to move along the entire three meters of the wiggler. This FEL is designed to operate in the microwave region (2 to 8 mm) and the interaction region is an oversized waveguide with a cross section 3 cm x 9.8 cm. The axial probe moves inside this waveguide. The probe stops the electron beam on a Tantalum target and the resulting x-rays are scattered in the forward direction. A scintillator behind the beam stop reacts to the x-rays and emits visible light in the region where the x-rays strike. An array of fiber optics behind the scintillator transmits the visible light to a Reticon camera system which images the visible pattern from the scintillator. Processing the optical image is done by digitizing and storing the image and/or recording the image on video tape. Resolution and performance of this probe will be discussed

  4. In-beam evaluation of a medium-size Resistive-Plate WELL gaseous particle detector

    CERN Document Server

    Moleri, L; Arazi, L; Azevedo, C D R; Breskin, A; Coimbra, A E C; Oliveri, E; Pereira, F A; Renous, D Shaked; Schaarschmidt, J; dos Santos, J M F; Veloso, J F C A; Bressler, S

    2016-01-01

    In-beam evaluation of a fully-equipped medium-size 30$\\times$30 cm$^2$ Resistive Plate WELL (RPWELL) detector is presented. It consists here of a single element gas-avalanche multiplier with Semitron ESD225 resistive plate, 1 cm$^2$ readout pads and APV25/SRS electronics. Similarly to previous results with small detector prototypes, stable operation at high detection efficiency (>98%) and low average pad multiplicity (~1.2) were recorded with 150 GeV muon and high-rate pion beams, in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$). This is an important step towards the realization of robust detectors suitable for applications requiring large-area coverage; among them Digital Hadron Calorimetry.

  5. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  6. Board Size Effects in Closely Held Corporations

    DEFF Research Database (Denmark)

    Bennedsen, Morten; Kongsted, H.C.; Meisner Nielsen, Kasper

    2004-01-01

    Previous work on board size effects in closely held corporationshas established a negative correlation between board size and firm performance.We argue that this work has been incomplete in analysing the causalrelationship due to lack of ownership information and weak identificationstrategies...... in simultanous equation analysis. In the present paper we reexaminethe causal relationship between board size and firm performance using adataset of more than 5,000 small and medium sized closely held corporationswith complete ownership information and detailed accounting data. We testthe potential endogeneity...... effects in the typical range of threeto six board members. Finally, we find a significantly negative board sizeeffect in the minority of closely held firms which have comparatively largeboards of seven or more members....

  7. Measuring wage effects of plant size

    DEFF Research Database (Denmark)

    Albæk, Karsten; Arai, Mahmood; Asplund, Rita;

    1998-01-01

    There are large plant size–wage effects in the Nordic countries after taking into account individual and job characteristics as well as systematical sorting of the workers into various plant-sizes. The plant size–wage elasticities we obtain are, in contrast to other dimensions of the wage distrib......–wage elasticity. Our results indicate that using size–class midpoints yields essentially the same results as using exact measures of plant size...

  8. Understanding the effect size and its measures.

    Science.gov (United States)

    Ialongo, Cristiano

    2016-01-01

    The evidence based medicine paradigm demands scientific reliability, but modern research seems to overlook it sometimes. The power analysis represents a way to show the meaningfulness of findings, regardless to the emphasized aspect of statistical significance. Within this statistical framework, the estimation of the effect size represents a means to show the relevance of the evidences produced through research. In this regard, this paper presents and discusses the main procedures to estimate the size of an effect with respect to the specific statistical test used for hypothesis testing. Thus, this work can be seen as an introduction and a guide for the reader interested in the use of effect size estimation for its scientific endeavour.

  9. Sizing Single Cantilever Beam Specimens for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure

    Science.gov (United States)

    Ratcliffe, James G.

    2010-01-01

    This paper details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. The specific test method selected for the standardized test procedure utilizes a single cantilever beam (SCB) specimen configuration. The objective of the current work is to develop a method for establishing SCB specimen dimensions. This is achieved by imposing specific limitations on specimen dimensions, with the objectives of promoting a linear elastic specimen response, and simplifying the data reduction method required for computing the critical strain energy release rate associated with debonding. The sizing method is also designed to be suitable for incorporation into a standardized test protocol. Preliminary application of the resulting sizing method yields practical specimen dimensions.

  10. Relativistic Beaming Effect in Fermi Blazars

    Indian Academy of Sciences (India)

    J. H. Fan; D. Bastieri; J. H. Yang; Y. Liu; D. X. Wu; S. H. Li

    2014-09-01

    The most identified sources observed by Fermi/LAT are blazars, based on which we can investigate the emission mechanisms and beaming effect in the -ray bands for blazars. Here, we used the compiled around 450 Fermi blazars with the available X-ray observations to estimate their Doppler factors and compared them with the integral -ray luminosity in the range of 1–100 GeV. It is interesting that the integral -ray luminosity is closely correlated with the estimated Doppler factor, log = (2.95 ± 0.09) log + 43.59 ± 0.08 for the whole sample. When the dependence of the correlation between them and the X-ray luminosity is removed, the correlation is still strong, which suggests that the -ray emissions are strongly beamed.

  11. Effects on focused ion beam irradiation on MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.N.; Peterson, K.A.; Fleetwood, D.M.; Soden, J.M.

    1997-04-01

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 {mu}m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga{sup +} focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.

  12. Size-effects in porous metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    The intrinsic size-effect for porous metals is investigated. The analyses are carried out numerically using a finite strain generalization of a higher order strain gradient plasticity model. Results for plane strain growth of cylindrical voids are presented in terms of response curves and curves...

  13. Size Effect in Tension Perpendicular to Grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Clorius, Christian Odin; Hoffmeyer, Preben;

    2004-01-01

    The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents a hypothesis where ...

  14. Finite size effects in isobaric ratios

    CERN Document Server

    Souza, S R

    2011-01-01

    The properties of isobaric ratios, between nuclei produced in the same reaction, are investigated using the canonical and grand-canonical statistical ensembles. Although the grand-canonical for- mulae furnish a means to correlate the ratios with the liquid drop parameters, finite size effects make it difficult to obtain their actual values from fitting nuclear collision data.

  15. Investigations of initiation spot size effects

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Steven A [Los Alamos National Laboratory; Akinci, Adrian A [Los Alamos National Laboratory; Leichty, Gary [Los Alamos National Laboratory; Schaffer, Timothy [Los Alamos National Laboratory; Murphy, Michael J [Los Alamos National Laboratory; Munger, Alan [Los Alamos National Laboratory; Thomas, Keith A [Los Alamos National Laboratory

    2010-01-01

    As explosive components become smaller, a greater understanding of the effect of initiation spot size on detonation becomes increasingly critical. A series of tests of the effect of initiation spot size will be described. A series of DOI (direct optical initiation) detonators with initiation spots sizes from {approx}50 um to 1000um have been tested to determine laser parameters for threshold firing of low density PETN pressings. Results will be compared with theoretical predictions. Outputs of the initiation source (DOI ablation) have been characterized by a suite of diagnostics including PDV and schlieren imaging. Outputs of complete detonators have been characterized using PDV, streak, and/or schlieren imaging. At present, we have not found the expected change in the threshold energy to spot size relationship for DOI type detonators found in similar earlier for projectiles, slappers and EBWs. New detonators designs (Type C) are currently being tested that will allow the determination of the threshold for spot sizes from 250 um to 105um, where we hope to see change in the threshold vs. spot size relationship. Also, one test of an extremely small diameter spot size (50um) has resulted in preliminary NoGo only results even at energy densities as much as 8 times the energy density of the threshold results presented here. This gives preliminary evidence that 50um spot may be beyond the critical initiation diameter. The constant threshold energy to spot size relationship in the data to date does however still give some insight into the initiation mechanism of DOI detonators. If the DOI initiation mechanism were a 1D mechanism similar to a slapper or a flyer impact, the expected inflection point in the graph would have been between 300um and 500um diameter spot size, within the range of the data presented here. The lack of that inflection point indicates that the DOI initiation mechanism is more likely a 2D mechanism similar to a sphere or rod projectile. We expect to

  16. Effective beam method for element concentrations.

    Science.gov (United States)

    Tolhurst, Thomas; Barbi, Mauricio; Tokaryk, Tim

    2015-03-01

    There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s). PMID:25723941

  17. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    Zheng Jiao; Xiaojuan Wan; Bing Zhao; Huijiao Guo; Tiebing Liu; Minghong Wu

    2008-02-01

    In this paper, the effects of electron beam irradiation on the gas sensing performance of tin dioxide thin films toward H2 are studied. The tin dioxide thin films were prepared by ultrasonic spray pyrolysis. The results show that the sensitivity increased after electron beam irradiation. The electron beam irradiation effects on tin dioxide thin films were simulated and the mechanism was discussed.

  18. Effective dose range for dental cone beam computed tomography scanners

    International Nuclear Information System (INIS)

    Objective: To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. Materials and methods: Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. Results: Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. Conclusions: The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements.

  19. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    CERN Document Server

    Alexander, J P; Conolly, C; Edwards, E; Ehrlichman, M P; Flanagan, J W; Fontes, E; Heltsley, B K; Lyndaker, A; Peterson, D P; Rider, N T; Rubin, D L; Seeley, R; Shanks, J

    2014-01-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of $10-100~\\mu$m on a turn-by-turn, bunch-by-bunch basis at $e^\\pm$ beam energies of $\\sim2-5~$GeV. X-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  20. The effect of particle size on fracture properties and size effect of concrete

    NARCIS (Netherlands)

    Schlangen, E.; Lim, H.S.; Weerheijm, J.

    2005-01-01

    In the study the effect of scaling the material structure on the fracture behaviour of concrete is investigated. Next to this the size effect of concrete fracture strength and fracture energy is studied. The fracture mechanism of concrete made with different size aggregates are tested numerically. A

  1. Operation of the CESR-TA vertical beam size monitor at $E_{\\rm b}$=4 GeV

    CERN Document Server

    Alexander, J P; Edwards, E; Flanagan, J W; Fontes, E; Heltsley, B K; Lyndaker, A; Peterson, D P; Rider, N T; Rubin, D L; Seeley, R; Shanks, J

    2015-01-01

    We describe operation of the CESR-TA vertical beam size monitor (xBSM) with $e^\\pm$ beams with $E_{\\rm b}$=4 GeV. The xBSM measures vertical beam size by imaging synchrotron radiation x-rays through an optical element onto a detector array of 32 InGaAs photodiodes with 50 $\\mu$m pitch. The device has previously been successfully used to measure vertical beam sizes of 10-100 $\\mu$m on a bunch-by-bunch, turn-by-turn basis at $e^\\pm$ beam energies of $\\sim$2 GeV and source magnetic fields below 2.8 kG, for which the detector required calibration for incident x-rays of 1-5 keV. At $E_{\\rm b}=4.0$ GeV and $B$=4.5 kG, however, the incident synchrotron radiation spectrum extends to $\\sim$20 keV, requiring calibration of detector response in that regime. Such a calibration is described and then used to analyze data taken with several different thicknesses of filters in front of the detector. We obtain a relative precision of better than 4% on beam size measurement from 15-100 $\\mu$m over several different ranges of x...

  2. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    International Nuclear Information System (INIS)

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  3. Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition.

    Science.gov (United States)

    Wang, Haolin; Zhang, Xingwang; Liu, Heng; Yin, Zhigang; Meng, Junhua; Xia, Jing; Meng, Xiang-Min; Wu, Jinliang; You, Jingbi

    2015-12-22

    Large-sized single-crystal h-BN domains with a lateral size up to 100 μm are synthesized on Ni foils by ion-beam sputtering deposition. The nucleation density of h-BN is dramatically decreased by reducing the concentrations of both active sites and species on the Ni surface through a brief in situ pretreatment of the substrate and optimization of the growth parameters, enabling the growth of large-sized domains.

  4. Size effects in plastic hinges of reinforced concrete members

    NARCIS (Netherlands)

    Bigaj-van Vliet, A.J.; Walraven, J.C.

    2002-01-01

    Reasons for size dependence of rotation capacity of plastic hinges are discussed. The increase of ductility with decreasing member size is interpreted from the viewpoint of fracture mechanics of concrete. The results of the introductory test series on simply supported slender beams loaded in three-p

  5. Size Effects in Plastic Hinges of Reinforced Concrete Members

    NARCIS (Netherlands)

    Bigaj, A.; Walraven, J.C.

    2002-01-01

    Reasons for size dependence of rotation capacity of plastic hinges are discussed. The increase of ductility with decreasing member size is interpreted from the viewpoint of fracture mechanics of concrete. The results of the introductory test series on simply supported slender beams loaded in three-p

  6. Relativistic beaming and orientation effects in core-dominated quasars

    International Nuclear Information System (INIS)

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core- dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-ll radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor, γopt ∼6-16, and also highly anisotropic, with an average viewing angle, ∼ 9 deg. - 16 deg. Furthermore, the largest boosting occurs within a critical cone angle of ∼ 4 deg. - 10 deg. The results suggest that relativistic bulk flow appears to extend to kilo-parsec scales in these sources. (author)

  7. The size effect in metal cutting

    Indian Academy of Sciences (India)

    Milton C Shaw

    2003-10-01

    When metal is removed by machining there is substantial increase in the specific energy required with decrease in chip size. It is generally believed this is due to the fact that all metals contain defects (grain boundaries, missing and impurity atoms, etc.), and when the size of the material removed decreases, the probability of encountering a stress-reducing defect decreases. Since the shear stress and strain in metal cutting is unusually high, discontinuous microcracks usually form on the metal-cutting shear plane. If the material being cut is very brittle, or the compressive stress on the shear plane is relatively low, microcracks grow into gross cracks giving rise to discontinuous chip formation. When discontinuous microcracks form on the shear plane they weld and reform as strain proceeds, thus joining the transport of dislocations in accounting for the total slip of the shear plane. In the presence of a contaminant, such as CCl4 vapour at a low cutting speed, the rewelding of microcracks decreases, resulting in decrease in the cutting force required for chip formation. A number of special experiments are described in the paper that support the transport of microcracks across the shear plane, and the important role compressive stress plays on the shear plane. Relatively recently, an alternative explanation for the size effect in cutting was provided based on the premise that shear stress increases with increase in strain rate. When an attempt is made to apply this to metal cutting by Dinesh et al (2001) it is assumed in the analysis that the von Mises criterion pertains to the shear plane. This is inconsistent with the experimental findings of Merchant. Until this difficulty is taken care of, together with the promised experimental verification of the strain rate approach, it should be assumed that the strain rate effect may be responsible for some notion of the size effect in metal cutting. However, based on the many experiments discussed here, it is

  8. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof;

    2008-01-01

    The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... and strain gradient plasticity formulations predict a negligible size effect under shear loading. By contrast, under equi-biaxial loading both plasticity formulations predict a strong size dependence with the flow strength approximately scaling inversely with the void spacing. Excellent agreement is obtained...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  9. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof;

    The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... gradient plasticity formulations predict a negligible size effect under shear loading. By contrast, under equi-biaxial loading both plasticity formulations predict a strong size dependence with the flow strength scaling approximately inversely with the void-spacing. Excellent agreement is obtained between...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  10. Minimization effects on scintillations of sinusoidal Gaussian beams in strong turbulence

    International Nuclear Information System (INIS)

    Minimization effects on the on-axis scintillation index of cos Gaussian (cG) and cosh Gaussian (chG) beams are studied in strong turbulence. In our formulation, the unified solution of the Rytov method, which imposes spatial filtering to extend the solution to the strong turbulence regime, is applied. Our solution correctly reduces to the weak turbulence sinusoidal beam scintillations and the strong turbulence Gaussian beam scintillations. The conditions to minimize the scintillations are found to be focused chG beams. Small scale scintillations mainly determine the overall scintillations of cG and chG beams in strong turbulence. In strong turbulence, increase in the source size decreases the scintillations of collimated cG beams but does not change the scintillations of focused cG beams. Collimated cG beams having larger displacement parameters and large focal lengths show smaller scintillations in the strong regime. Change in the displacement parameters for collimated and focused chG beams and the focal length of focused chG beams do not considerably vary their scintillations in strong turbulence

  11. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Bincheng, E-mail: bcli@uestc.ac.cn [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-12-07

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.

  12. Size effects in lithium ion batteries

    Science.gov (United States)

    Hu-Rong, Yao; Ya-Xia, Yin; Yu-Gao, Guo

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000).

  13. Stern-Gerlach Effect for Electron Beams

    International Nuclear Information System (INIS)

    The conflict between Bohr close-quote s assertion that the magnetic moment of the electron cannot be measured with experiments based on the concept of classical trajectories, and the measurement of the magnetic moment of electrons in a modified Penning trap by Dehmelt et al.has led us to reevaluate other implications of Bohr close-quote s assertion. We show that, contrary to the analysis of Bohr and Pauli, the assumption of classical trajectories in a Stern-Gerlach endash like device can result in a high degree of spin separation for an electron beam. This effect may persist within a fully quantum-mechanical analysis. The magnetic fields considered are such that a tabletop Stern-Gerlach electron spin filter is feasible. copyright 1997 The American Physical Society

  14. Thermal effects in orthotropic porous elastic beams

    Science.gov (United States)

    Iaşan, D.

    2009-01-01

    This paper is concerned with the linear theory of anisotropic porous elastic bodies. The extension and bending of orthotropic porous elastic cylinders subjected to a plane temperature field is investigated. The work is motivated by the recent interest in the using of the orthotropic porous elastic solid as model for bones and various engineering materials. First, the thermoelastic deformation of inhomogeneous beams whose constitutive coefficients are independent of the axial coordinate is studied. Then, the extension and bending effects in orthotropic cylinders reinforced by longitudinal rods are investigated. The three-dimensional problem is reduced to the study of two-dimensional problems. The method is used to solve the problem of an orthotropic porous circular cylinder with a special kind of inhomogeneity.

  15. Size effect in nanoadhesion of fibrillar structure

    Institute of Scientific and Technical Information of China (English)

    WANG ShiJi

    2007-01-01

    The gecko has incredible climbing ability for its nanoscale hierarchical fibrillar structure foot-hair. Can we fabricate a new type of adhesive by mimicking the gecko mechanism? In this paper, we consider a simplified case of an elastic cylinder with hemispherical shape terminals adhering to a rigid substrate. By using the classical JKR model to calculate the adhesive strength, we find that the strong size effect arises when the cylinder's radius is in nanoscale. This finding may help us to design a biomemetic adhesive.

  16. Simulation of fluid-structure interaction in a microchannel using the lattice Boltzmann method and size-dependent beam element on a graphics processing unit

    International Nuclear Information System (INIS)

    Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified couple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Wavelength, beam size and type dependences of cerebral low-level light therapy: A Monte Carlo study on visible Chinese human

    Science.gov (United States)

    Li, Ting; Zhao, Yue; Duan, Meixue; Sun, Yunlong; Li, Kai

    2014-02-01

    Low level light therapy (LLLT) has been clinically utilized for many indications in medicine requiring protection from cell/tissue death, stimulation of healing and repair of injuries, pain reduction, swelling and inflammation. Presently, use of LLLT to treat stroke, traumatic brain injury, and cognitive dysfunction is attracting growing interest. Near-infrared light can penetrate into the brain tissue, allowing noninvasive treatment to be carried out with few treatment-related adverse events. Optimization of LLLT treatment effect is one key issue of the field; however, only a few experimental tests on mice for wavelength selection have been reported. We addressed this issue by low-cost, straightforward and quantitative comparisons on light dosage distribution in Visible Chinese human head with Monte Carlo modeling of light propagation. Optimized selection in wavelength, beam type and size were given based on comparisons among frequently-used setups (i.e., wavelengths: 660 nm, 810 nm, 980 nm; beam type: Gaussian and flat beam; beam diameter: 2 cm, 4 cm, 6cm).This study provided an efficient way to guide optimization of LLLT setup and selection on wavelength, beam type and size for clinical brain LLLT.

  18. Mechanisms underlying the portion-size effect.

    Science.gov (United States)

    Peter Herman, C; Polivy, Janet; Pliner, Patricia; Vartanian, Lenny R

    2015-05-15

    The portion-size effect (PSE) refers to the fact that people eat more when served larger portions. This effect is neither obvious nor artifactual. We examine the prevailing explanations (or underlying mechanisms) that have been offered for the PSE. The dominant candidate mechanism is "appropriateness"; that is, people accept the portion that they are served as being of an appropriate size and eat accordingly. Because people do not necessarily finish the portion that they are served, variations on the basic appropriateness mechanism have been suggested. We also consider some evidence that is inconsistent with an appropriateness explanation, including the appearance of the PSE in children as young as two years of age. We also examine other mechanisms that do not rely on appropriateness norms. Visual food cues may assist in assessing appropriateness but may also drive food intake in a more mindless fashion. Larger portions induce larger bites, which may increase intake by reducing oral exposure time and sensory-specific satiety. We consider further research questions that could help to clarify the mechanisms underlying the PSE. PMID:25802021

  19. Scaling of TNSA-accelerated proton beams with laser energy and focal spot size

    Energy Technology Data Exchange (ETDEWEB)

    Obst, Lieselotte; Metzkes, Josefine; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Technische Universitaet Dresden, Dresden (Germany); Zeil, Karl; Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany)

    2014-07-01

    We investigate the acceleration of high energy proton pulses generated by relativistic laser-plasma interaction. The scope of this work was the systematic investigation of the scaling of the laser proton acceleration process in the ultra-short pulse regime in order to identify feasible routes towards the potential medical application of this accelerator technology for the development of compact proton sources for radiation therapy. We present an experimental study of the proton beam properties under variation of the laser intensity irradiating thin foil targets. This was achieved by employing different parabolic mirrors with various focal lengths. Hence, in contrast to moving the target in and out of focus, the target was always irradiated with an optimized focal spot. By observing the back reflected light of the laser beam from the target front side, pre-plasma effects on the laser absorption could be investigated. The study was performed at the 150 TW Draco Laser facility of the Helmholtz-Zentrum Dresden-Rossendorf with ultrashort (30 fs) laser pulses of intensities of about 8 . 10{sup 20} W/cm{sup 2}.

  20. Effective plasmonic mode-size converter.

    Science.gov (United States)

    Park, Hae-Ryeong; Park, Jong-Moon; Kim, Min-su; Ju, Jung Jin; Son, Jung-Han; Lee, Myung-Hyun

    2011-10-24

    Plasmonic mode-size converters (PMSCs) for long-range surface plasmon polaritons (LR-SPPs) at the wavelength of 1.55 μm are presented. The PMSC is composed of an insulator-metal-insulator waveguide (IMI-W), a laterally tapered insulator-metal-insulator-metal-insulator waveguide (LT-IMIMI-W), and an IMIMI-W in series. The mode-intensity sizes of the LR-SPPs for the IMI-W and the IMIMI-W were not only calculated using a finite element method but were also experimentally measured. The propagation losses of the IMI-W and the IMIMI-W as well as the coupling losses between them were analyzed by the cut-back method to investigate the effect of LT-IMIMI-Ws. By using the PMSC with a ~27 ° angled LT-IMIMI-W, the coupling loss between a polarization-maintaining fiber and a 3 μm-wide IMIMI-W was reduced by ~3.4 dB. Moreover, the resulting mode-intensity in the output of the PMSC was squeezed to ~35% of the mode-intensity in the input IMI-W. The PMSC may be potentially useful for bridging micro- to nano-plasmonic integrated circuits. PMID:22109009

  1. Finite-size effects from giant magnons

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail: g.arutyunov@phys.uu.nl; Frolov, Sergey [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: frolovs@aei.mpg.de; Zamaklar, Marija [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: marzam@aei.mpg.de

    2007-08-27

    In order to analyze finite-size effects for the gauge-fixed string sigma model on AdS{sub 5}xS{sup 5}, we construct one-soliton solutions carrying finite angular momentum J. In the infinite J limit the solutions reduce to the recently constructed one-magnon configuration of Hofman and Maldacena. The solutions do not satisfy the level-matching condition and hence exhibit a dependence on the gauge choice, which however disappears as the size J is taken to infinity. Interestingly, the solutions do not conserve all the global charges of the psu(2,2-vertical bar4) algebra of the sigma model, implying that the symmetry algebra of the gauge-fixed string sigma model is different from psu(2,2-vertical bar4) for finite J, once one gives up the level-matching condition. The magnon dispersion relation exhibits exponential corrections with respect to the infinite J solution. We also find a generalisation of our one-magnon configuration to a solution carrying two charges on the sphere. We comment on the possible implications of our findings for the existence of the Bethe ansatz describing the spectrum of strings carrying finite charges.

  2. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos, E-mail: ludmilapedroso@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia; Garcia, Robson Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Medicina Oral; Leles, Jose Luiz Rodrigues [Universidade Paulista (UNIP), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Cirurgia; Leles, Claudio Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Prevencao e Reabilitacao Oral

    2013-11-15

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p < 0.05). The final sample comprised 95 implants in 27 patients, distributed over the maxilla and mandible. Agreement in implant length was 50.5% between initial and final planning, and correct prediction of the actual implant length was 40.0% and 69.5%, using PAN and CBCT exams, respectively. Agreement in implant width assessment ranged from 69.5% to 73.7%. A paired comparison of the frequency of changes between initial or final planning and implant placement (McNemmar test) showed greater frequency of changes in initial planning for implant length (p < 0.001), but not for implant width (p = 0.850). The frequency of changes was not influenced by implant location at any stage of implant planning (chi-square test, p > 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  3. Size effects in ductile cellular solids. Part I : modeling

    NARCIS (Netherlands)

    Onck, P.R.; Andrews, E.W.; Gibson, L.J.

    2001-01-01

    In the mechanical testing of metallic foams, an important issue is the effect of the specimen size, relative to the cell size, on the measured properties. Here we analyze size effects for the modulus and strength of regular, hexagonal honeycombs under uniaxial and shear loadings. Size effects for in

  4. Palm-top size X-ray microanalyzer using a pyroelectric focused electron beam with 100-micro-meter diameter

    International Nuclear Information System (INIS)

    We have developed a palm-top size EPMA (electron probe X-ray microanalyzer), operated by 3 V electric battery except for a rotary vacuum pump. The electron beam was generated by a pyroelectric single crystal, LiTaO3. A needle was used to make a focused electron beam. The smallest beam size was 100 μm on the sample surface. The X-ray spectra were measured through a Kapton window by a Si-PIN detector for a model specimen containing TiO2 and MnO2 particles, which was an aerosol model specimen, where TiO2 and MnO2 particles of size about 100-200 μm were separated by a few hundreds micrometers. By moving the sample stage manually, the X-ray spectra were measured for 300 s each by 300 μm e-beam, and the measured X-ray intensities were strong enough for identification of the major element in individual 100-200 μm size aerosol particles.

  5. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  6. Biofuel Manufacturing from Woody Biomass: Effects of Sieve Size Used in Biomass Size Reduction

    OpenAIRE

    Meng Zhang; Xiaoxu Song; Deines, T. W.; Pei, Z. J.; Donghai Wang

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yie...

  7. Reactive flow and the size effect

    Energy Technology Data Exchange (ETDEWEB)

    Clark Souers, P.; Anderson, S.; McGuire, E.; Murphy, M.J.; Vitello, P. [Lawrence Livermore National Lab., CA (United States)

    2001-02-01

    The detonation reaction rate in {mu}s{sup -1} is derived from size effect data using the relation - DU{sub s}({partial_derivative}U{sub s}/{partial_derivative}y){sup -1}, where y = 1/R{sub o}, where U{sub s} is the detonation velocity for a ratestick of radius R{sub o} and D is the infinite-radius detonation velocity. These rates are generally not constant with radius and have pressure exponents ranging from <-5 to >5. JWL++, a simple reactive flow code, is run with one rate constant on many samples to compare its rates. JWL++'s pressure exponents vary from about 0.5 to 2.5, and failure occurs outside this range. There are three classes of explosives: (1) those for which the pressure exponent is between 1 and 2 and the rate is nearly constant (e.g. porous urea nitrate); (2) higher pressure explosives with a concave-down shape and large positive pressure exponents (dense TNT); and (3) explosives with negative pressure exponents and concave-up shapes (porous PETN). JWL++ fits only the first class well and has the most trouble with class 3. The pressure exponent in JWL++ is shown to be set by the shape of the size effect curve - a condition that arises in order to keep a constant reaction rate for all radii. Some explosives have too much bend to be modeled with one rate constant, e.g. Comp. B near failure. A study with creamed TNT shows that the rate constant need not be changed to account for containment. These results may well be pertinent to a larger consideration of the behavior of reactive flow models. (orig.)

  8. Beam Effects on the Cryogenic System of LEP2

    CERN Document Server

    Gayet, P; Winkler, G

    1998-01-01

    The LEP collider was operated during 1996 for the first time with superconducting cavities at the four interaction points. During operation for physics it was observed that the dissipated heat in the cavities is not only a function of the acceleration gradient, but depends also on beam characteristics such as intensity, bunch length and beam current. These beam effects had not been foreseen in the original heat budget of the LEP cryogenic system. The observations indicating the beam effect and its origin are presented. The available capacity of the refrigerators demonstrates that cryogenics might become a limiting factor for the performance of the LEP collider.

  9. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  10. Size-specific dose estimates (SSDE) for a prototype orthopedic cone-beam CT system

    Science.gov (United States)

    Richard, Samuel; Packard, Nathan; Yorkston, John

    2014-03-01

    Patient specific dose evaluation and reporting is becoming increasingly important for x-ray imaging systems. Even imaging systems with lower patient dose such as CBCT scanners for extremities can benefit from accurate and size-specific dose assessment and reporting. This paper presents CTDI dose measurements performed on a prototype CBCT extremity imaging system across a range of body part sizes (5, 10, 16, and 20 cm effective diameter) and kVp (70, 80, and 90 kVp - with 0.1 mm Cu added filtration). The ratio of the CTDI measurements for the 5, 10, and 20 cm phantoms to the CTDI measurements for the 16 cm phantom were calculated and results were compared to size-specific dose estimates conversion factors (AAPM Report 204), which were evaluated on a conventional CT scanner. Due to the short scan nature of the system (220 degree acquisition angle), the dependence of CTDI values on the initial angular orientation of the phantom with respect to the imager was also evaluated. The study demonstrated that for a 220 degree acquisition sequence, the initial angular position of the conventional CTDI phantom with respect to the scanner does not significantly affect CTDI measurements (varying by less than 2% overall across the range of possible initial angular positions). The size-specific conversion factor was found to be comparable to the Report 204 factors for the large phantom size (20 cm) but lower, by up to 12%, for the 5 cm phantom (i.e., 1.35 for CBCT vs 1.54 for CT). The factors dependence on kVp was minimal, but dependence on kVp was most significant for smaller diameters. These results indicate that specific conversion factors need to be used for CBCT systems with short scans in order to provide more accurate dose reporting across the range of body sizes found in extremity scanners.

  11. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    Institute of Scientific and Technical Information of China (English)

    GAO Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC Ⅱ. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.

  12. A Simplified Analysis of the Brazier Effect in Composite Beams

    DEFF Research Database (Denmark)

    Damkilde, Lars; Lund, B.

    2009-01-01

    In the design of windturbine blades composite beams are often used as the load bearing element. The beam is primarily subjected to bending moments, and the deformations are relatively large. The large displacements result in a kind of ovalization of the beam section, the so-called Brazier effect....... The paper describes a simplified analysis of the Brazier stresses, and the results are compared with a full non-linear Finite Element analysis....

  13. Using narrow beam profiles to quantify focal spot size, for accurate Monte Carlo simulations of SRS/SRT systems

    Science.gov (United States)

    Kairn, T.; Crowe, S. B.; Charles, P. H.; Trapp, J. V.

    2014-03-01

    This study investigates the variation of photon field penumbra shape with initial electron beam diameter, for very narrow beams. A Varian Millenium MLC (Varian Medical Systems, Palo Alto, USA) and a Brainlab m3 microMLC (Brainlab AB. Feldkirchen, Germany) were used, with one Varian iX linear accelerator, to produce fields that were (nominally) 0.20 cm across. Dose profiles for these fields were measured using radiochromic film and compared with the results of simulations completed using BEAMnrc and DOSXYZnrc, where the initial electron beam was set to FWHM = 0.02, 0.10, 0.12, 0.15, 0.20 and 0.50 cm. Increasing the electron-beam FWHM produced increasing occlusion of the photon source by the closely spaced collimator leaves and resulted in blurring of the simulated profile widths from 0.24 to 0.58 cm, for the MLC, from 0.11 to 0.40 cm, for the microMLC. Comparison with measurement data suggested that the electron spot size in the clinical linear accelerator was between FWHM = 0.10 and 0.15 cm, encompassing the result of our previous output-factor based work, which identified a FWHM of 0.12 cm. Investigation of narrow-beam penumbra variation has been found to be a useful procedure, with results varying noticeably with linear accelerator spot size and allowing FWHM estimates obtained using other methods to be verified.

  14. Preparation of a beam quality indicator for effective energy determinations of continuum beams: establishment of traceability

    CERN Document Server

    Matsubayashi, M; Kobayashi, H

    1999-01-01

    A new beam quality indicator (BQI) was designed and fabricated to determine effective energies of beams extracted from neutron radiography facilities. Performances of the five new BQIs were compared with the original BQI which was recently proposed and tested by various beams. Non-filtered thermal neutrons, filtered thermal neutrons, and cold neutrons from a guide tube were used in the performance test program. The new BQIs were also examined by four different detection systems using a combination of a Gd converter and a X-ray film, a neutron imaging plate, a cooled charge coupled device camera, and a silicon intensified target tube camera.

  15. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  16. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  17. Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode

    Science.gov (United States)

    Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens

    2016-08-01

    To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between ~30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of ~100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization.

  18. Effect of particle size on the thermo-optic properties of gold nanofluids - A thermal lens study

    Science.gov (United States)

    Kumar, B. Rajesh; Basheer, N. Shemeena; Kurian, Achamma; George, Sajan D.

    2014-01-01

    Spherical gold nanoparticles having particle size in the range 30 to 50 nm are prepared using citrate reduction of gold chloride trihydrate in water. The influence of particle size on the thermal diffusivity value of gold nanofluid is measured using dual beam thermal lens technique. The present study shows that the particle size influences the effective thermal diffusivity value of the nanofluid substantially and the value decreases with decrease in particle size for the investigated samples.

  19. Effect of particle size on the thermo-optic properties of gold nanofluids – A thermal lens study

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Rajesh; Basheer, N. Shemeena; Kurian, Achamma [Photonics Lab, Department of Physics, Catholicate College, Pathanamthitta (India); George, Sajan D., E-mail: sajan.george@manipal.edu [Centre for Atomic and Molecular Physics, Manipal University, Manipal, Karnataka (India)

    2014-01-28

    Spherical gold nanoparticles having particle size in the range 30 to 50 nm are prepared using citrate reduction of gold chloride trihydrate in water. The influence of particle size on the thermal diffusivity value of gold nanofluid is measured using dual beam thermal lens technique. The present study shows that the particle size influences the effective thermal diffusivity value of the nanofluid substantially and the value decreases with decrease in particle size for the investigated samples.

  20. Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy

    CERN Document Server

    Yarmand, Hamed

    2013-01-01

    In radiation therapy, mathematical methods have been used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to critical surrounding structures minimal. This optimization problem can be modeled using mixed integer programming (MIP) whose solution gives the optimal beam orientation as well as optimal beam intensity. The challenge, however, is the computation time for this large scale MIP. We propose and investigate two novel heuristic approaches to reduce the computation time considerably while attaining high-quality solutions. We introduce a family of heuristic cuts based on the concept of 'adjacent beams' and a beam elimination scheme based on the contribution of each beam to deliver the dose to the tumor in the ideal plan in which all potential beams can be used simultaneously. We show the effectiveness of these heuristics for intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) on a clinical liver case.

  1. Effects of Electron Beam Irradiation on the Electrospinning of Polyacrylonitrile.

    Science.gov (United States)

    Jeun, Joon-Pyo; Kim, Hyun-Bin; Oh, Seung-Hwan; Park, Jung-Ki; Kang, Phil-Hyun

    2015-08-01

    Electron beam (e-beam) irradiation of polyacrylonitrile (PAN) was performed to investigate the effects of radiation on the electrospinning process. For this study, polyacrylonitrile powder was subjected to e-beam irradiation with different doses of up to 100 kGy under an N2 atmosphere. Polymer solutions were prepared by dissolving PAN in N,N-dimethyl-formamide (DMF) at a 1:9 ratio by weight. The prepared PAN/DMF solutions showed different colors with different e-beam doses. The resulting structures in solutions contained conjugated C=N bonds, which caused the observed color formation. In addition, the conductivity of the PAN/DMF solution increased with an increase in e-beam irradiation dose. In the DSC spectra of electrospun PAN fibers, the peak temperature of the exothermic reactions was observed to decrease with an increase in the e-beam irradiation strength. PMID:26369176

  2. Quantum size effects in spherical semiconductor microcrystals

    Science.gov (United States)

    Nair, Selvakumar V.; Sinha, Sucharita; Rustagi, K. C.

    1987-03-01

    The size dependence of the lowest electron-hole state in semiconductor microcrystals is calculated using the variational principle with a three-parameter Hylleraas-type wave function. For very small particles the Coulomb interaction may be treated as a perturbation. For larger particles the size dependence of the energy is much sharper than that expected in previous work.

  3. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju;

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...

  4. Finite size effect of harmonic measure estimation in a DLA model: Variable size of probe particles

    OpenAIRE

    Menshutin, Anton Yu.; Shchur, Lev N.; Vinokour, Valery M.

    2008-01-01

    A finite size effect in the probing of the harmonic measure in simulation of diffusion-limited aggregation (DLA) growth is investigated. We introduce a variable size of probe particles, to estimate harmonic measure and extract the fractal dimension of DLA clusters taking two limits, of vanishingly small probe particle size and of infinitely large size of a DLA cluster. We generate 1000 DLA clusters consisting of 50 million particles each, using an off-lattice killing-free algorithm developed ...

  5. [Effect sizes, statistical power and sample sizes in "the Japanese Journal of Psychology"].

    Science.gov (United States)

    Suzukawa, Yumi; Toyoda, Hideki

    2012-04-01

    This study analyzed the statistical power of research studies published in the "Japanese Journal of Psychology" in 2008 and 2009. Sample effect sizes and sample statistical powers were calculated for each statistical test and analyzed with respect to the analytical methods and the fields of the studies. The results show that in the fields like perception, cognition or learning, the effect sizes were relatively large, although the sample sizes were small. At the same time, because of the small sample sizes, some meaningful effects could not be detected. In the other fields, because of the large sample sizes, meaningless effects could be detected. This implies that researchers who could not get large enough effect sizes would use larger samples to obtain significant results.

  6. Interferometric measurement of beam size at Hefei Light Source%合肥光源上采用干涉方法测量束流截面

    Institute of Scientific and Technical Information of China (English)

    张红霞; 张超; 蒋诗平; 邹成刚; 王秋平; 贾大功; 张以谟

    2011-01-01

    The measurement of beam size is important for optimizing system parameters and ensuring stable operation of synchrotron radiation light sources. An interferometric method was adopted to measure the vertical size of beam section at Hefei Light Source. Based on the theory of Cittert-Zernike, the size of beam section can be calculated according to the double-slit inter-ferogram contrast. The interferometric system consists of interference imaging system and image processing system. The results of the five experiments conducted agree well with the theoretical value, verifying the effectiveness of the interferometric method.%束流截面尺寸测量对优化系统参数、确保光源运行至关重要.采用干涉法测量合肥同步辐射光源束流截面垂直方向的尺寸.基于Cittert-Zernike定理,利用双缝干涉条纹的对比度得出相干度和柬流截面尺寸.测量系统由干涉成像与图像处理系统组成.进行了5组试验,试验结果证明了干涉法测量合肥同步辐射束流截面尺寸的可行性.

  7. The effect of neighborhood size on effective population size in theory and in practice.

    Science.gov (United States)

    Nunney, L

    2016-10-01

    The distinction between the effective size of a population (Ne) and the effective size of its neighborhoods (Nn) has sometimes become blurred. Ne reflects the effect of random sampling on the genetic composition of a population of size N, whereas Nn is a measure of within-population spatial genetic structure and depends strongly on the dispersal characteristics of a species. Although Nn is independent of Ne, the reverse is not true. Using simulations of a population of annual plants, it was found that the effect of Nn on Ne was well approximated by Ne=N/(1-FIS), where FIS (determined by Nn) was evaluated population wide. Nn only had a notable influence of increasing Ne as it became smaller (⩽16). In contrast, the effect of Nn on genetic estimates of Ne was substantial. Using the temporal method (a standard two-sample approach) based on 1000 single-nucleotide polymorphisms (SNPs), and varying sampling method, sample size (2-25% of N) and interval between samples (T=1-32 generations), estimates of Ne ranged from infinity to <0.1% of the true value (defined as Ne based on 100% sampling). Estimates were never accurate unless Nn and T were large. Three sampling techniques were tested: same-site resampling, different-site resampling and random sampling. Random sampling was the least biased method. Extremely low estimates often resulted when different-site resampling was used, especially when the population was large and the sample fraction was small, raising the possibility that this estimation bias could be a factor determining some very low Ne/N that have been published. PMID:27553453

  8. In vitro comparison of cone beam computed tomography with different voxel sizes for detection of simulated external root resorption.

    Science.gov (United States)

    Neves, Frederico S; de Freitas, Deborah Q; Campos, Paulo S F; de Almeida, Solange M; Haiter-Neto, Francisco

    2012-09-01

    The present study compared the efficacy of cone beam computed tomography using different voxel sizes in the diagnosis of simulated external root resorption. The presence or absence of simulated defects on buccal, mesial and distal root surfaces of 20 premolars was evaluated. The defects were small (0.26 mm in diameter and 0.08 mm deep), medium (0.62 mm in diameter and 0.19 mm deep) and large (1.05 mm in diameter and 0.24 mm deep), equally distributed on each root surface. Images were obtained using Classic i-CAT cone beam computed tomography with different voxel sizes: 0.12, 0.20, 0.25 and 0.30 mm. Five oral radiologists evaluated the images. Accuracy, sensitivity, specificity, positive and negative predictive values were determined. The sensitivity decreased and specificity increased as voxel size increased. Accuracy values were the highest for the smallest voxel size (0.12 mm). The results for voxel sizes 0.20 mm and 0.25 mm were similar. Positive and negative predictive values were similar in all protocols, except with 0.30 mm, in which they were the lowest. In conclusion, external root resorption was more easily diagnosed when a smaller voxel size was used.

  9. Calculating Confidence Intervals for Effect Sizes Using Noncentral Distributions.

    Science.gov (United States)

    Norris, Deborah

    This paper provides a brief review of the concepts of confidence intervals, effect sizes, and central and noncentral distributions. The use of confidence intervals around effect sizes is discussed. A demonstration of the Exploratory Software for Confidence Intervals (G. Cuming and S. Finch, 2001; ESCI) is given to illustrate effect size confidence…

  10. How to Estimate and Interpret Various Effect Sizes

    Science.gov (United States)

    Vacha-Haase, Tammi; Thompson, Bruce

    2004-01-01

    The present article presents a tutorial on how to estimate and interpret various effect sizes. The 5th edition of the Publication Manual of the American Psychological Association (2001) described the failure to report effect sizes as a "defect" (p. 5), and 23 journals have published author guidelines requiring effect size reporting. Although…

  11. Size Effect on Magnesium Alloy Castings

    Science.gov (United States)

    Li, Zhenming; Wang, Qigui; Luo, Alan A.; Zhang, Peng; Peng, Liming

    2016-06-01

    The effect of grain size on tensile and fatigue properties has been investigated in cast Mg alloys of Mg-2.98Nd-0.19Zn (1530 μm) and Mg-2.99Nd-0.2Zn-0.51Zr (41 μm). The difference between RB and push-pull fatigue testing was also evaluated in both alloys. The NZ30K05-T6 alloy shows much better tensile strengths (increased by 246 pct in YS and 159 pct in UTS) and fatigue strength (improved by ~80 pct) in comparison with NZ30-T6 alloy. RB fatigue testing results in higher fatigue strength compared with push-pull fatigue testing, mainly due to the stress/strain gradient in the RB specimen cross section. The material with coarse grains could be hardened more in the cyclic loading condition than in the monotonic loading condition, corresponding to the lower σ f and the higher σ f/ σ b or σ f/ σ 0.2 ratio compared to the materials with fine grains. The fatigue crack initiation sites and failure mechanism are mainly determined by the applied stress/strain amplitude. In LCF, fatigue failure mainly originates from the PSBs within the surface or subsurface grains of the samples. In HCF, cyclic deformation and damage irreversibly caused by environment-assisted cyclic slip is the crucial factor to influence the fatigue crack. The Coffin-Manson law and Basquin equation, and the developed MSF models and fatigue strength models can be used to predict fatigue lives and fatigue strengths of cast magnesium alloys.

  12. Electron beam effects on gelatin polymer

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Shimazaki, Kleber; Souza, Clecia de M.; Moura, Esperidiana A.B.; Mastro, Nelida L. del, E-mail: patyoko@yahoo.co [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Colombo, Maria A., E-mail: mascolombo@yahoo.com.b [Faculdade de Tecnologia da Zona Leste, Sao Paulo, SP (Brazil)

    2009-07-01

    The main field of electron-beam radiation processing applications is the modification of polymeric material. Polymer development includes new pathways to produce natural polymers with better mechanical and barrier properties and thermal stability. The aim of this paper was to investigate the behavior of a gelatin/acrylamide polymer treated by electron-beam radiation. Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular mass derived by hydrolytic action from animal collagen, a fibrous insoluble protein, which is widely found in nature as the major constituent of skin, bones and connective tissue. Hydrolyzed collagen is composed of a unique sequence of amino acids, characterized particularly by the high content of glycine, proline and hydroxyproline. Among biomaterials, gelatin is an interesting material because is a partially crystalline polymer and has a relatively low melting point. Samples of gelatin together with glycerin as plasticizer and acrylamide as copolymer were irradiated with doses of 10 kGy and 40 kGy, using an electron beam accelerator, dose rate 22.41kGy/s, at room temperature in presence of air. After irradiation, some preliminary analyses were done like viscometry, texture analyses and colorimetry. The results of the diverse tests showed changes that can be ascribed to radiation-induced crosslinking. The electron-beam processed acrylamide-gelatin polymer using glycerin as plasticizer must be first extensively characterized before to be used for general applications. (author)

  13. Effect of Particle Size on Shear Stress of Magnetorheological Fluids

    Directory of Open Access Journals (Sweden)

    Chiranjit Sarkar

    2015-05-01

    Full Text Available Magnetorheological fluids (MRF, known for their variable shear stress contain magnetisable micrometer-sized particles (few micrometer to 200 micrometers in a nonmagnetic carrier liquid. To avoid settling of particles, smaller sized (3-10 micrometers particles are preferred, while larger sized particles can be used in MR brakes, MR clutches, etc. as mechanical stirring action in those mechanisms does not allow particles to settle down. Ideally larger sized particles provide higher shear stress compared to smaller sized particles. However there is need to explore the effect of particle sizes on the shear stress. In the current paper, a comparison of different particle sizes on MR effect has been presented. Particle size distributions of iron particles were measured using HORIBA Laser Scattering Particle Size Distribution Analyser. The particle size distribution, mean sizes and standard deviations have been presented. The nature of particle shapes has been observed using scanning electron microscopy. To explore the effect of particle sizes, nine MR fluids containing small, large and mixed sized carbonyl iron particles have been synthesized. Three concentrations (9%, 18% and 36% by volume for each size of particles have been used. The shear stresses of those MRF samples have been measured using ANTON PAAR MCR-102 Rheometer. With increase in volume fraction of iron particles, the MR fluids synthesized using “mixed sized particles” show better shear stress compared to the MR fluids containing “smaller sized spherical shaped particles” and “larger sized flaked shaped particles” at higher shear rate.

  14. Critical size effect of sand particles on cavitation damage

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; GOU Wen-juan

    2013-01-01

    The critical size of the sand particles in liquid is determined by means of the special vibratory apparatus,and it is related to various effects on the cavitation damage.The increase of the sand size or concentration would aggravate the cavitation damage if their sizes are larger than this critical size,conversely,this damage would be relieved.

  15. The causal effect of board size in the performance of small and medium-sized firms

    DEFF Research Database (Denmark)

    Bennedsen, Morten; Kongsted, Hans Christian; Meisner Nielsen, Kasper

    2008-01-01

    Empirical studies of large publicly traded firms have shown a robust negative relationship between board size and firm performance. The evidence on small and medium-sized firms is less clear; we show that existing work has been incomplete in analyzing the causal relationship due to weak...... identification strategies. Using a rich data set of almost 7000 closely held corporations we provide a causal analysis of board size effects on firm performance: We use a novel instrument given by the number of children of the chief executive officer (CEO) of the firms. First, we find a strong positive...... correlation between family size and board size and show this correlation to be driven by firms where the CEO's relatives serve on the board. Second, we find empirical evidence of a small adverse board size effect driven by the minority of small and medium-sized firms that are characterized by having...

  16. Incoherent beam-beam effect---The relationship between tune-shift, bunch length and dynamic aperture

    International Nuclear Information System (INIS)

    Simulation studies of the influence of long bunches on the beam-beam effect in particle colliders suggest that, despite the risk from synchro-betatron resonances, the attainable luminosity may be greater than that obtained for short bunches

  17. Size effects of effective Young's modulus for periodic cellular materials

    Institute of Scientific and Technical Information of China (English)

    DAI GaoMing; ZHANG WeiHong

    2009-01-01

    With the wide demands of cellular materials applications in aerospace and civil engineering, research effort sacrificed for this type of materials attains nowadays a higher level than ever before. This paper is focused on the prediction methods of effective Young's modulus for periodical cellular materials. Based on comprehensive studies of the existing homogenization method (HM), the G-A meso-me-chanice method (G-A MMM) and the stretching energy method (SEM) that are unable to reflect the size effect, we propose the bending energy method (BEM) for the first time, and a comparative study of these four methods is further made to show the generality and the capability of capturing the size effect of the BEM method. Meanwhile, the underlying characteristics of each method and their relations are clarified. To do this, the detailed finite element computing and existing experimental results of hex-agonal honeycombs from the literature are adopted as the standard of comparison for the above four methods. Stretch and bending models of periodical cellular materials are taken into account, respec-tively for the comparison of stretch and flexural displacements resulting from the above methods. We conclude that the BEM has the strong ability of both predicting the effective Young's modulus and re- vealing the size effect. Such a method is also able to predict well the variations of structural displace-ments in terms of the cell size under stretching and bending loads including the non-monotonous variations for the hexagonal cell. On the contrary, other three methods can only predict the limited re- sults whenever the cell size tends to be infinitely small.

  18. GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    OpenAIRE

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there i...

  19. Resurrecting the size effect : Firm size, profitability shocks, and expected stock returns

    NARCIS (Netherlands)

    K. Hou (Kewei); M.A. van Dijk (Mathijs)

    2010-01-01

    textabstractRecent studies report that the size effect in the cross-section of stock returns has disappeared after the early 1980s. This paper shows that the disappearance of the size effect from realized returns can be attributed to unexpected shocks to the profitability of small and big firms. We

  20. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de; Feder, R.; Gerlach, J.W.; Neumann, H.

    2014-01-31

    Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles.

  1. Interpreting and Reporting Effect Sizes in Research Investigations.

    Science.gov (United States)

    Tapia, Martha; Marsh, George E., II

    Since 1994, the American Psychological Association (APA) has advocated the inclusion of effect size indices in reporting research to elucidate the statistical significance of studies based on sample size. In 2001, the fifth edition of the APA "Publication Manual" stressed the importance of including an index of effect size to clarify research…

  2. Beam-Induced Multipactoring and Electron-Cloud Effects in Particle Accelerators

    CERN Document Server

    Caspers, Friedhelm; Scandale, Walter; Zimmermann, F

    2009-01-01

    In the beam pipe of high-energy proton or positron accelerators an “electron cloud” can be generated by a variety of processes, e.g. by residual-gas ionization, by photoemission from synchrotron radiation, and, most importantly, by secondary emission via a beam-induced multipactoring process. The electron cloud commonly leads to a degradation of the beam vacuum by several orders of magnitude, to fast beam instabilities, to beam-size increases, and to fast or slow beam losses. At the Large Hadron Collider (LHC), the cloud electrons could also give rise to an additional heat load inside cold superconducting magnets. In addition to the direct heat deposition from incoherently moving electrons, a potential “magnetron effect” has been conjectured, where electrons would radiate coherently when moving in a strong magnetic field under the simultaneous influence of a beam-induced electric “wake” field that may become resonant with the cyclotron frequency. Electron-cloud effects are already being observed w...

  3. Effect of specimen size on the tensile strength of WC-Co hard metal

    Energy Technology Data Exchange (ETDEWEB)

    Kluensner, T., E-mail: thomas.kluensner@mcl.at [Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben (Austria); Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstrasse 12, 8700 Leoben (Austria); Wurster, S. [Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstrasse 12, 8700 Leoben (Austria); Supancic, P. [Institut fuer Struktur- und Funktionskeramik, Montanuniversitaet Leoben, Peter Tunner Strasse 5, 8700 Leoben (Austria); Ebner, R. [Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben (Austria); Jenko, M. [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Glaetzle, J.; Pueschel, A. [Ceratizit Austria GmbH, Metallwerk-Plansee-Strasse 71, 6600 Reutte (Austria); Pippan, R. [Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, Jahnstrasse 12, 8700 Leoben (Austria)

    2011-06-15

    The fracture behaviour of an ultrafine grained WC-Co hard metal was investigated in tensile and bending tests using different specimen sizes and test arrangements in order to study the size effect on the tensile strength, by varying the effectively tested volume over a range of roughly 10 orders of magnitude. Mechanical testing of centimetre sized specimens was performed by means of tensile tests using an hour glass shaped specimen. Millimetre sized specimens were tested in four point and three point bending test set-ups. Micrometre sized specimens, rectangular beams produced via focused ion beam milling, were loaded in situ in a scanning electron microscope utilizing a piezo-electrically controlled cube corner micro-indenter. The resulting fracture surfaces were examined in order to identify crack origins. The main result of the present work is that strength values are found to increase from about 2500 to about 6000 MPa when the size of the effectively loaded volume is varied from about 100 to about 10{sup -8} mm{sup 3}. This kind of behaviour is typical for brittle materials in which strength is defect controlled and can be explained by a size effect according to Weibull theory. In the case of the micrometre sized specimens no defects were found on the fracture surfaces. Estimations of critical defect sizes in these specimens based on linear elastic fracture mechanics give values in the order of magnitude of the submicron sized tungsten carbide particles. It is therefore expected that the high strength values found in these specimens are close to the inherent material strength.

  4. Effect of electron beam irradiation on pollen mother cells of gladiolus 'chaoji'

    International Nuclear Information System (INIS)

    In order to test the effects of various doses of electron beam on M1 generation pollen mother cells (PMC), the corm of gladiolus 'chaoji' was irradiated by electron beam with 3 MeV energy. Some abnormalities of meiosis of pollen mother cells were studied and the bands of protein subunit were analyzed by SDS-PAGE for the irradiated corm. The genetic damage at meiosis of gladiolus is observed, and the types of chromosomal aberrations are laggard chromosomes, chromosomal bridge, chromosome outside nucleus, unequal separation of chromosome, micronuclei and so on. Some trispores and paraspores are viewed at tetraspore period. The shape and size of the microspores vary in some treated materials, and most of microspores display little volume. The statistic of aberrance types and frequencies in PMCs show that aberrance types are chromosome outside nucleus and micronuclei mostly. The SDS-PAGE result shows that protein expression of M1 generation pollen is obviously changed by electron beam irradiation. Low dose of electron beam has obvious effects, and some special proteins subunit bands are found among varieties of irradiation dosage respectively. The protein bands are absent at the dose more than 160 Gy compared to low dose of electron beam. The results indicate that electron beam irradiation is an effective way for gladiolus breeding. (authors)

  5. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; WEI Long; YU Zhong-Qiang; FU Guo-Tao; SUN Cui-Li; WANG Yan-Fang; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; TANG Xiao; SHI Rong-Jian

    2011-01-01

    In this paper,we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution.Due to the polychromatic character of the X-ray spectrum used,cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images,causing reduced image quality.In addition,enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect.The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space.Thus,in the CT images with beam hardening artifacts,enhanced ERFs will be extracted to calculate the modulation transfer function (MTF),obtaining a better spatial resolution that deviates from the real value.Reasonable spatial resolution can be obtained after reducing the artifacts.The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  6. Effects of aberration on paraxial wave beams: beam tracing versus quasi-optical solutions

    Energy Technology Data Exchange (ETDEWEB)

    Maj, O [Max-Planck-Institut fuer Sonnensystemforschung, Katlenburg-Lindau (Germany); Balakin, A A [Institute of Applied Physics RAS, Nizhny Novgorod (Russian Federation); Poli, E, E-mail: omaj@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, Garching bei Muenchen (Germany)

    2010-08-15

    This paper aims to clarify the role of aberration effects on the propagation and absorption of wave beams in inhomogeneous dispersive and dissipative media. We consider models in which aberration effects can be caused by the presence of either caustics or spatially dispersive absorption, with reference to the propagation near a cut-off or to the electron-cyclotron (EC) resonance, respectively. For such models, the standard beam tracing description of paraxial wave beams and the recently proposed quasi-optical method, which accounts for aberration, are compared and verified on the basis of the analytical exact solutions. We find that the presence of a cut-off implies no significant aberration of the beam, while significant aberration is found when dispersive absorption is so strong that different wavenumbers in the beam spectrum are damped at different locations. This phenomenon is well described by the quasi-optical method. Finally, an extrapolation of this simple two-dimensional model to the case of the ITER upper EC port is addressed with the result that the broadening of the power deposition profiles never exceeds 10%.

  7. Effect size estimates: current use, calculations, and interpretation.

    Science.gov (United States)

    Fritz, Catherine O; Morris, Peter E; Richler, Jennifer J

    2012-02-01

    The Publication Manual of the American Psychological Association (American Psychological Association, 2001, American Psychological Association, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect size are useful for determining the practical or theoretical importance of an effect, the relative contributions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article reported a confidence interval for an effect size. The most often reported analysis was analysis of variance, and almost half of these reports were not accompanied by effect sizes. Partial η2 was the most commonly reported effect size estimate for analysis of variance. For t tests, 2/3 of the articles did not report an associated effect size estimate; Cohen's d was the most often reported. We provide a straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis. PMID:21823805

  8. Effect size estimates: current use, calculations, and interpretation.

    Science.gov (United States)

    Fritz, Catherine O; Morris, Peter E; Richler, Jennifer J

    2012-02-01

    The Publication Manual of the American Psychological Association (American Psychological Association, 2001, American Psychological Association, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect size are useful for determining the practical or theoretical importance of an effect, the relative contributions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article reported a confidence interval for an effect size. The most often reported analysis was analysis of variance, and almost half of these reports were not accompanied by effect sizes. Partial η2 was the most commonly reported effect size estimate for analysis of variance. For t tests, 2/3 of the articles did not report an associated effect size estimate; Cohen's d was the most often reported. We provide a straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis.

  9. A novel method for sub-micrometer transverse electron beam size measurements using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aryshev, A; Boogert, S T; Karataev, P [John Adams Institute at Royal Holloway, Egham, Surrey, TW20 0EX (United Kingdom); Howell, D [John Adams Institute at Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Terunuma, N; Urakawa, J, E-mail: alar@post.kek.j [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-06-01

    Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the monitor is defined by so-called Point Spread Function (PSF), source distribution generated by a single electron and projected by an optical system onto a screen. In this paper we represent the development of a novel sub-micrometre electron beam profile monitor based on the measurements of the PSF structure. The first experimental results are presented and future plans on the optimization of the monitor are discussed

  10. The pack size effect: Influence on consumer perceptions of portion sizes.

    Science.gov (United States)

    Hieke, Sophie; Palascha, Aikaterini; Jola, Corinne; Wills, Josephine; Raats, Monique M

    2016-01-01

    Larger portions as well as larger packs can lead to larger prospective consumption estimates, larger servings and increased consumption, described as 'portion-size effects' and 'pack size effects'. Although related, the effects of pack sizes on portion estimates have received less attention. While it is not possible to generalize consumer behaviour across cultures, external cues taken from pack size may affect us all. We thus examined whether pack sizes influence portion size estimates across cultures, leading to a general 'pack size effect'. We compared portion size estimates based on digital presentations of different product pack sizes of solid and liquid products. The study with 13,177 participants across six European countries consisted of three parts. Parts 1 and 2 asked participants to indicate the number of portions present in a combined photographic and text-based description of different pack sizes. The estimated portion size was calculated as the quotient of the content weight or volume of the food presented and the number of stated portions. In Part 3, participants stated the number of food items that make up a portion when presented with packs of food containing either a small or a large number of items. The estimated portion size was calculated as the item weight times the item number. For all three parts and across all countries, we found that participants' portion estimates were based on larger portions for larger packs compared to smaller packs (Part 1 and 2) as well as more items to make up a portion (Part 3); hence, portions were stated to be larger in all cases. Considering that the larger estimated portions are likely to be consumed, there are implications for energy intake and weight status.

  11. Simulating Electron Cloud Effects in Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Stray electrons can be introduced in heavy ion fusion accelerators as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize here results from several studies of electron-cloud accumulation and effects: (1) Calculation of the electron cloud produced by electron desorption from computed beam ion loss; the importance of ion scattering is shown; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics. We find electron cloud variations that are resonant with the breathing mode of the beam have the biggest impact on the beam (larger than other resonant and random variations), and that the ion beam is surprisingly robust, with an electron density several percent of the beam density required to produce significant beam degradation in a 200-quadrupole system. We identify a possible instability associated with desorption and resonance with the breathing mode. (3) Preliminary investigations of a long-timestep algorithm for electron dynamics in arbitrary magnetic fields

  12. Effect of astigmatism on spectral switches of partially coherent beams

    Institute of Scientific and Technical Information of China (English)

    Zhao Guang-Pu; Xiao Xi; Lü Bai-Da

    2004-01-01

    A detailed study of the spectrum of partially coherent beams diffracted at an astigmatic aperture lens is performed.Considerable attention is paid to the effect of astigmatism on spectral switches of polychromatic Gaussian Schell-model beams. It is shown that the spectral switch can also take place in the vicinity of intensity minimum in a geometrical focal plane for the astigmatic case, but the astigmatism of the lens and the spatial correlation of the beam affect the critical position uc, spectral minimum Smin, and transition height △ of spectral switches.

  13. Hall-Petch effect: Another manifestation of size effect

    Science.gov (United States)

    Li, Yuan; Dunstan, David; Bushby, Andy

    In the 1950s, Hall and Petch first established a quantitative relationship, expressed by the famous Hall-Petch equation: σd =σ0 +kHP/√{ d} There is a very large body of experimental data in the literature reinforcing this dependence in a very wide range of metals. Recently, we presented some of the classic data sets which have been considered to confirm the Hall-Petch equation and showed they are equally well consistent with the equation ɛel (d) =ɛ0 +kln/(d) d Eq. 2 is based on critical thickness theory. Fitting to Eq.1 with the exponent 0.5 replaced by the free fitting parameter x, the confidence interval for the exponent is 0.5 size of each study. The normalised kHP are widely scattered. However, the lower bound of the scatter shows a clear dependence on grain size. The Hall-Petch dependence of the strength on grain size, if it obeys Eq.2, is another manifestation of the size effect.

  14. Simple and cost-effective fabrication of size-tunable zinc oxide architectures by multiple size reduction technique

    Directory of Open Access Journals (Sweden)

    Hyeong-Ho Park, Xin Zhang, Seon-Yong Hwang, Sang Hyun Jung, Semin Kang, Hyun-Beom Shin, Ho Kwan Kang, Hyung-Ho Park, Ross H Hill and Chul Ki Ko

    2012-01-01

    Full Text Available We present a simple size reduction technique for fabricating 400 nm zinc oxide (ZnO architectures using a silicon master containing only microscale architectures. In this approach, the overall fabrication, from the master to the molds and the final ZnO architectures, features cost-effective UV photolithography, instead of electron beam lithography or deep-UV photolithography. A photosensitive Zn-containing sol–gel precursor was used to imprint architectures by direct UV-assisted nanoimprint lithography (UV-NIL. The resulting Zn-containing architectures were then converted to ZnO architectures with reduced feature sizes by thermal annealing at 400 °C for 1 h. The imprinted and annealed ZnO architectures were also used as new masters for the size reduction technique. ZnO pillars of 400 nm diameter were obtained from a silicon master with pillars of 1000 nm diameter by simply repeating the size reduction technique. The photosensitivity and contrast of the Zn-containing precursor were measured as 6.5 J cm−2 and 16.5, respectively. Interesting complex ZnO patterns, with both microscale pillars and nanoscale holes, were demonstrated by the combination of dose-controlled UV exposure and a two-step UV-NIL.

  15. HOLLOW ELECTRON BEAM COLLIMATION FOR HL-LHC - EFFECT ON THE BEAM CORE

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papadopoulou, S. [CERN; Papotti, G. [CERN; Pellegrini, D. [CERN; Pellegrini, S. [CERN; Valuch, D. [CERN; Wagner, J. F. [CERN

    2016-10-05

    Collimation with hollow electron beams or lenses (HEL) is currently one of the most promising concepts for active halo control in HL-LHC. In previous studies it has been shown that the halo can be efficiently removed with a hollow electron lens. Equally important as an efficient removal of the halo, is also to demonstrate that the core stays unperturbed. In this paper, we present a summary of the experiment at the LHC and simulations in view of the effect of the HEL on the beam core in case of a pulsed operation.

  16. Beam-beam effects in the high-pile-up tests of the LHC

    CERN Document Server

    Trad, G

    2014-01-01

    Investigating the beam-beam limit in the LHC is of great importance, since identifying its source is crucial for the luminosity optimization scenario. Several experiments were carried out to search for this limit and check whether it is dominated by the head-on (HO) or the long-range (LR) interactions. In this paper only the HO collision effects will be considered, tracking the evolution of the maximum tune shift achieved during the dedicated machine developments and the special high pile-up fills.

  17. Beam-beam effects in the high-pile-up tests of the LHC

    OpenAIRE

    Trad, G.

    2014-01-01

    Investigating the beam-beam limit in the LHC is of great importance, since identifying its source is crucial for the luminosity optimization scenario. Several experiments were carried out to search for this limit and check whether it is dominated by the head-on (HO) or the long-range (LR) interactions. In this paper only the HO collision effects will be considered, tracking the evolution of the maximum tune shift achieved during the dedicated machine developments and the special high pile-up ...

  18. SIZE EFFECT ON THE BENDING AND TENSILE STRENGTH OF MICROMACHINED POLYSILICON FILMS FOR MEMS

    Institute of Scientific and Technical Information of China (English)

    DingJianning; YangJichang; WenShizhu

    2004-01-01

    The bending strength of microfabricated polysilicon beams was measured by beam bending using a nanoindenter. Also, the tensile strength of microfabricated polysilicon thin films was measured by tensile testing with a new microtensile test device. It was found that the bending strength and tensile strength of polysilicon microstructures exerts size effect on the size of the specimens. In such cases, the size effect can be traced back to the ratio of surface area to volume as the governing parameter. A statistical analysis of the bending strength for various specimen sizes shows that the average bending strength of polysilicon microcantilever beams is 2.885±0.408 GPa. The measured average value of Young's modulus, 164±1.2 GPa, falls within the theoretical bounds. The average fracture tensile strength is 1.36 GPa with a standard deviation of 0.14 GPa, and the Weibull modulus is 10.4-11.7, respectively. The tensile testing of 40 specimens on failure results in a recommendation for design that the nominal strain be maintained below 0.0057.

  19. Effects of beam velocity and density on an ion-beam pulse moving in magnetized plasmas

    CERN Document Server

    Zhao, Xiao-ying; Zhao, Yong-tao; Qi, Xin; Yang, Lei

    2016-01-01

    The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated by particle-in-cell (PIC) simulations. The effects of beam velocity and density on the wake and stopping power are discussed. In the presence of magnetic field, it is found that beside the longitudinal conversed V-shaped wakes, the strong whistler wave are observed when low-density and low-velocity pulses moving in plasmas. The corresponding stopping powers are enhanced due to the drag of these whistler waves. As beam velocities increase, the whistler waves disappear, and only are conversed V-shape wakes observed. The corresponding stopping powers are reduced compared with these in isotropic plasmas. When high-density pulses transport in the magnetized plasmas, the whistler waves are greatly inhibited for low-velocity pulses and disappear for high-velocity pulses. Additionally, the magnetic field reduces the stopping powers for all high-density cases.

  20. Investigating size effects of complex nanostructures through Young-Laplace equation and finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei, E-mail: shiwei.zhou@rmit.edu.au [Centre for Innovative Structures and Materials, School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne 3001 (Australia); Li, Qing [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia)

    2015-11-28

    Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational results are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape.

  1. Application of size effect to compressive strength of concrete members

    Indian Academy of Sciences (India)

    Jin-Keun Kim; Seong-Tae Yi

    2002-08-01

    It is important to consider the effect of size when estimating the ultimate strength of a concrete member under various loading conditions. Well known as the size effect, the strength of a member tends to decrease when its size increases. Therefore, in view of recent increased interest in the size effect of concrete this research focuses on the size effect of two main classes of compressive strength of concrete: pure axial compressive strength and flexural compressive strength. First, fracture mechanics type size effect on the compressive strength of cylindrical concrete specimens was studied, with the diameter, and the height/diameter ratio considered as the main parameters. Theoretical and statistical analyses were conducted, and a size effect equation was proposed to predict the compressive strength specimens. The proposed equation showed good agreement with the existing test results for concrete cylinders. Second, the size, length, and depth variations of a flexural compressive member have been studied experimentally. A series of -shaped specimens subjected to axial compressive load and bending moment were tested. The shape of specimens and the test procedures used were similar to those by Hognestad and others. The test results are curve-fitted using Levenberg-Marquardt’s least squares method (LSM) to obtain parameters for the modified size effect law (MSEL) by Kim and co workers. The results of the analysis show that the effect of specimen size, length, and depth on ultimate strength is significant. Finally, more general parameters for MSEL are suggested.

  2. Beam divergence effects on high power optical parametric oscillation

    Institute of Scientific and Technical Information of China (English)

    Li Hui-Qing; Geng Ai-Cong; Bo Yong; Wu Ling-An; Cui Da-Fu; Xu Zu-Yan

    2005-01-01

    The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a Particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB3O5 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency.The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.

  3. Size effect on compressive strength of reactive powder concrete

    Institute of Scientific and Technical Information of China (English)

    AN Ming-zhe; ZHANG Li-jun; YI Quan-xin

    2008-01-01

    In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experiments. They indicate that RPC without fiber behaves quite the same as normal or high strength concrete. The size effect on compressive strength is more prominent in RPC containing fiber. Bazant's size effect formula of compressive strength applies to RPC. A formula is given to predict the compressive strength of cubic RPC specimens 100 mm on a side where the fiber dosage ranges from 0-2%.

  4. Orbital properties of micron-size dust determined using the Arecibo 430 MHz dual-beam radar

    Science.gov (United States)

    Janches, Diego; Meisel, David D.; Nolan, Michael C.; Bartlett, Brent D.; Mathews, John D.; Zhou, Qihou H.; Moser, Danielle E.

    Orbital results derived from radar observations of micron-size dust entering the earth's atmosphere are presented and discussed. These observations are performed using the 430 MHz Arecibo Observatory (AO) dual-beam radar system in Puerto Rico - a unique ground-base tool for the study of dust. The AO radar daily daily thousands of decelerating particles in the size range 0.5-100 microns for which precise altitude; instantaneous Doppler velocity and (linear) deceleration are obtained. These results help bridge the gap between spacecraft dust measurements and traditional meteor radar capabilities. During 2002, monthly micrometeor radar observations were performed. Each month, a minimum of one, 14 hour interval of observations (18:00-08:00 hrs LT) were carried out. During this year-long observing campaign, the antenna line feed was pointing vertically while the Gregorian feed was pointed at a zenith angle of 15 degrees. The off-vertical radar beam was initially placed pointing north and every 30 minutes was rotated 180 degrees. Preliminary results show an assymetry on the orbital properties of dust at 1 AU and indicate that the traditional idea of sporadic meteor sources may be too simplistic to describe the sporadic micrometeor complex, at least for the particle sizes detected by AO.

  5. Biological Effects on Fruit Fly by N+ ion Beam Implantation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mutation induced by low energy ion beam implantation has beenapplied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm. In this study, Pupae of fruit fly were irradiated with different dosage N+ ions at energy 20 KeV to study the biological effect of ion beam on animal. The results showed a saddle-like curve exists between incubate rate and dosage. Damage of pupae by ion beam implantation was observed using scanning electron microscope. Some individuals with incomplete wing were obtained after implantation but no similar character was observed in their offspring. Furthermore, about 5.47% mutants with wide variation appeared in M1 generation. Therefore, ion beam implantation could be widely used for mutation breeding.

  6. Single beam collective effects in FCC-ee due to beam coupling impedance

    CERN Document Server

    Belli, Eleonora; Persichelli, Serena; Zobov, Mikhail

    2016-01-01

    The Future Circular Collider study, hosted by CERN to design post-LHC particle accelerator options in a worldwide context, is focused on proton-proton high-energy and electron-positron high-luminosity frontier machines. This new accelerator complex represents a great challenge under several aspects, which involve R&D on beam dynamics and new technologies. One very critical point in this context is represented by collective effects, generated by the interaction of the beam with self-induced electromagnetic fields, called wake fields, which could produce beam instabilities, thus reducing the machines performance and limiting the maximum stored current. It is therefore very important to be able to predict these effects and to study in detail potential solutions to counteract them. In this paper the resistive wall and some other important geometrical sources of impedance for the FCC electron-positron accelerator are identified and evaluated, and their impact on the beam dynamics, which in some cases could lea...

  7. Single beam collective effects in FCC-ee due to beam coupling impedance

    CERN Document Server

    Belli, Eleonora; Persichelli, Serena; Zobov, Mikhail

    2016-01-01

    The Future Circular Collider study, hosted by CERN to design post-LHC particle accelerator options in a worldwide context, is focused on proton-proton high-energy and electron-positron high-luminosity frontier machines. This new accelerator complex represents a great challenge under several aspects, which involve R&D on beam dynamics and new technologies. One very critical point in this context is represented by collective effects, generated by the interaction of the beam with self-induced electromagnetic fields, called wake fields, which could produce beam instabilities, thus reducing the machines performance and limiting the maximum stored current. It is therefore very important to be able to predict these effects and to study in detail potential solutions to counteract them. In this paper the resistive wall and some other important geometrical sources of impedance for the FCC electron-positron accelera- tor are identified and evaluated, and their impact on the beam dynamics, which in some cases could l...

  8. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    OpenAIRE

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck c...

  9. Finite size effect of harmonic measure estimation in a DLA model: Variable size of probe particles

    Science.gov (United States)

    Menshutin, Anton Yu.; Shchur, Lev N.; Vinokour, Valery M.

    2008-11-01

    A finite size effect in the probing of the harmonic measure in simulation of diffusion-limited aggregation (DLA) growth is investigated. We introduce a variable size of probe particles, to estimate harmonic measure and extract the fractal dimension of DLA clusters taking two limits, of vanishingly small probe particle size and of infinitely large size of a DLA cluster. We generate 1000 DLA clusters consisting of 50 million particles each, using an off-lattice killing-free algorithm developed in the early work. The introduced method leads to unprecedented accuracy in the estimation of the fractal dimension. We discuss the variation of the probability distribution function with the size of probing particles.

  10. Size Effect for Normal Strength Concrete in Uniaxial Tension

    Institute of Scientific and Technical Information of China (English)

    李庆斌; 尹玉先

    2004-01-01

    This paper presents a new size effect model for normal strength concrete subjected to uniaxial tension. The model is based on two extremes, sand cement paste in uniaxial tension and a sand-cement-paste/rock interface in uniaxial tension. Uniaxial tension tests with normal strength concrete measuring the tensile strength of normal strength concrete specimens with different geometrical shapes and different ratios of the aggregate size to the characteristic dimension of the concrete specimen show a significant size effect. The theoretical size effect law prediction agrees well with the experimental data.

  11. Vertical beam size measurement in the CESR-TA $e^+e^-$ storage ring using x-rays from synchrotron radiation

    CERN Document Server

    Alexander, J P; Conolly, C; Edwards, E; Ehrlichman, M P; Fontes, E; Heltsley, B K; Hopkins, W; Lyndaker, A; Peterson, D P; Rider, N T; Rubin, D L; Savino, J; Seeley, R; Shanks, J; Flanagan, J W

    2013-01-01

    We describe the construction and operation of an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of $10-100~\\mu$m on a turn-by-turn, bunch-by-bunch basis at $e^\\pm$ beam energies of $\\sim2~$GeV. At such beam energies the xBSM images x-rays of $\\epsilon\\approx$1-10$~$keV ($\\lambda\\approx 0.1-1$ nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50$~\\mu$m pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1$~$mA ($2.5\\times10^9$ particles) per bunch and inter-bunch spacing of as little as 4$~$ns. At $E_{\\rm b}=2.1 $GeV, systematic precision of $\\sim 1~\\mu$m is achieved for a beam size of $\\sim12~\\mu$m; this is expected to scale as $\\propto 1/\\sigma_{\\rm b}$ and $\\propto 1/E_{\\rm b}$. Achieving this precision requires compr...

  12. Quantum size effects in InP inner film fiber

    Institute of Scientific and Technical Information of China (English)

    WANG Ting-yun; WANG Ke-xin; LU Jun

    2005-01-01

    Based on the semiconductor amplifiing properties and the structure of optical fiber wave guide an InP inner fiber is developed.The InP inner film fiber can be employed as a small size,broadband,and ultra-short fiber amplifier.The quantum size effects of the fiber are emphatically investigated in the work.Using the experimental data,we compare the effective mass approximation (EMA) with effective parameterization within the tight binding (EPTB) models for the accurate description of the quantum size effects in InP.The results show that the EPTB model provides an excellent description of band gap variation over a wide range of sizes.The Bohr diameter and the effective Rydberg energy of InP are calculated.Finally,the amplifiing properties of the InP inner film fiber are discussed due to the quantum size effects.

  13. Some Finite Size Effects in Simulations of Glass Dynamics

    OpenAIRE

    Horbach, J.; Kob, W; Binder, K.; Angell, C.A.

    1996-01-01

    We present the results of a molecular dynamics computer simulation in which we investigate the dynamics of silica. By considering different system sizes, we show that in simulations of the dynamics of this strong glass former surprisingly large finite size effects are present. In particular we demonstrate that the relaxation times of the incoherent intermediate scattering function and the time dependence of the mean squared displacement are affected by such finite size effects. By compressing...

  14. An Effect Size for Regression Predictors in Meta-Analysis

    Science.gov (United States)

    Aloe, Ariel M.; Becker, Betsy Jane

    2012-01-01

    A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…

  15. Multiple helical scans and the reconstruction of over FOV-sized objects in cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    Han Yu; Yan Bin; Li Lei; Yu Chao-Qun; Li Jian-Xin; Bao Shang-Lian

    2012-01-01

    In cone-beam computed tomography (CBCT),there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)).To acquire the complete projection data for OFS objects,some scan modes have been developed for long objects and short but over-wide objects.However,these modes still cannot meet the requirements for both longitudinally long and transversely wide objects.In this paper,we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects.The simulation results show that our model can deal with the problem and that the results are acceptable,while the OFS object is twice as long compared with the FOV in the same latitude.

  16. Effect of Processing and Aging on Particle Size of Explosives

    Institute of Scientific and Technical Information of China (English)

    舒远杰; 刘世俊; 董海山; 郝莹; 詹春红; 陈捷

    2003-01-01

    Influence of such processes as molding powder production, pel-lets pressing and aging under different condit/ons on particle size of TATB ( 1,3,S-trlamino-2,4,6-trinltrobenzene ) and HMX (cyclotetramethylenetetranitramine) was experimentally studied. The results showed that parflele size of these explosives was greatly changed before and airier moldinu powder produc-tion, but for different size grade of explosive this change was not the same; pressing process had also great effect on explosive particle size, but before and after ageing process explosive par-tide size did not change seriously.

  17. Effect of reconstruction parameters on defect detection in fan-beam SPECT

    Science.gov (United States)

    Gregoriou, George K.

    2002-05-01

    The effect of reconstruction parameters on the fan-beam filtered backprojection method in myocardial defect detection was investigated using an observer performance study and receiver operating characteristics (ROC) analysis. A mathematical phantom of the human torso was used to model the anatomy and Thallium-201 (Tl-201) uptake in humans. Half-scan fan-beam realistic projections were simulated using a low-energy high resolution (LEHR) collimator that incorporated the effects of photon attenuation, spatially varying detector response, scatter, and Poison noise. A focal length of 55 cm and a radius of rotation of 25 cm were used, which resulted to a magnification of two at the center of rotation and a maximum magnification of three in the reconstructed region of interest. By changing the reconstruction pixel size, five different projection bin width to reconstruction pixel size (PBWRPS) ratios were obtained which resulted in five classes of reconstructed images. Myocardial defects were simulated as Gaussian-shaped decreases in Tl-201 uptake distribution. The total projection count per 3 mm image slice was 44,000. A total of 96 reconstructed transaxial images from each one of the five classes were shown to eight observers for evaluation. The results indicate that the reconstruction pixel size has a significant effect on the quality of fan-beam SPECT images. Moreover, the study indicated that in order to ensure best image quality the PBWRPS ratio should be at least as large as the maximum possible magnification inside the reconstructed image array.

  18. Simulation of Proton Beam Effects in Thin Insulating Films

    Directory of Open Access Journals (Sweden)

    Ljubinko Timotijevic

    2013-01-01

    Full Text Available Effects of exposing several insulators, commonly used for various purposes in integrated circuits, to beams of protons have been investigated. Materials considered include silicon dioxide, silicon nitride, aluminium nitride, alumina, and polycarbonate (Lexan. The passage of proton beams through ultrathin layers of these materials has been modeled by Monte Carlo simulations of particle transport. Parameters that have been varied in simulations include proton energy and insulating layer thickness. Materials are compared according to both ionizing and nonionizing effects produced by the passage of protons.

  19. Size-effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  20. Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors

    Directory of Open Access Journals (Sweden)

    V. A. Neumann

    2015-09-01

    Full Text Available An ongoing limitation of terahertz spectroscopy is that the technique is generally limited to the study of relatively large samples of order 4 mm across due to the generally large size of the focal beam spot. We present a nested concentric parabolic reflector design which can reduce the terahertz focal spot size. This parabolic reflector design takes advantage of the feature that reflected rays experience a relative time delay which is the same for all paths. The increase in effective optical path for reflected light is equivalent to the aperture diameter itself. We have shown that the light throughput of an aperture of 2 mm can be increased by a factor 15 as compared to a regular aperture of the same size at low frequencies. This technique can potentially be used to reduce the focal spot size in terahertz spectroscopy and enable the study of smaller samples.

  1. Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, V. A., E-mail: v.a.neumann@student.utwente.nl [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, 21218 (United States); Faculty of Science & Technology, University of Twente, 7500 AE Enschede (Netherlands); Laurita, N. J.; Pan, LiDong; Armitage, N. P., E-mail: npa@pha.jhu.edu [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, 21218 (United States)

    2015-09-15

    An ongoing limitation of terahertz spectroscopy is that the technique is generally limited to the study of relatively large samples of order 4 mm across due to the generally large size of the focal beam spot. We present a nested concentric parabolic reflector design which can reduce the terahertz focal spot size. This parabolic reflector design takes advantage of the feature that reflected rays experience a relative time delay which is the same for all paths. The increase in effective optical path for reflected light is equivalent to the aperture diameter itself. We have shown that the light throughput of an aperture of 2 mm can be increased by a factor 15 as compared to a regular aperture of the same size at low frequencies. This technique can potentially be used to reduce the focal spot size in terahertz spectroscopy and enable the study of smaller samples.

  2. Moessbauer Effect applications using intense radioactive ion beams

    International Nuclear Information System (INIS)

    The Moessbauer Effect is reviewed as a promising tool for a number of new solid state studies when used in combination with radioactive beam/implantation facilities. The usual Moessbauer Effect involves long-lived radioactive parents (days to years) that populate low-lying nuclear excited states that subsequently decay to the ground state. Resonant emission/absorption of recoil-free gamma rays from these states provide information on a number of properties of the host materials. Radioactive ion beams (RIB) produced on-line allow new Moessbauer nuclei to be studied where there is no suitable parent. The technique allows useful sources to be made having extremely low local concentrations. The ability to separate the beams in both Z and A should provide high specific activity ''conventional'' sources, a feature important in some applications such as Moessbauer studies in diamond anvil high pressure cells. Exotic chemistry is proposed using RIB and certain Krypton and Xenon Moessbauer isotopes

  3. Microfocusing of the FERMI@Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code

    International Nuclear Information System (INIS)

    FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization

  4. Internal target effects in ion storage rings with beam cooling

    International Nuclear Information System (INIS)

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  5. Multi-beam raindrop size distribution retrievals on the Doppler spectra

    NARCIS (Netherlands)

    Unal, C.M.H.

    2012-01-01

    Acquiring the raindrop size distribution from radar data is still a challenge. Generally this distribution is retrieved using the reflectivity, Z, and the differential reflectivity, Zdr, at S-band. The specific differential phase, Kdp, provides a third radar observable in the case of heavy precipita

  6. Size effect of sandstone after high temperature under uniaxial compression

    Institute of Scientific and Technical Information of China (English)

    SU Hai-jian; JING Hong-wen; MAO Xian-biao; ZHAO Hong-hui; YIN Qian; WANG Chen

    2015-01-01

    Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the density, longitudinal wave velocity, peak strength, average modulus and secant modulus of sandstone decrease with the increase of temperature, however, peak strain increases gradually. With the increase of ratio of height to diameter, peak strength of sandstone decreases, which has an obvious size effect. A new theoretical model of size effect of sandstone material considering the influence of temperature is put forward, and with the increase of temperature, the size effect is more apparent. The threshold decreases gradually with the increase of temperature, and the deviations of the experimental values and the theoretical values are between 0.44% and 6.06%, which shows quite a credibility of the theoretical model.

  7. Experiments investigating the generation and transport of 10--12 MeV, 30-kA, mm-size electron beams with linear inductive voltage adders

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1997-06-01

    The authors present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: 8--12 MeV, 35--50 kA, 30--60 ns FWHM, and 0.5-mm rms beam radius. The accelerators utilized are SABRE and HERMES III. Both are linear inductive voltage adders modified to higher impedance and fitted with magnetically immersed foil less electron diodes. In the strong 20--50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelop by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30-kA, 1.5-mm FWHM electron beams, while the HERMES-III experiments are on-going.

  8. Different effects of laser contrast on proton emission from normal large foils and transverse-size-reduced targets

    Science.gov (United States)

    Fang, Yuan; Ge, Xulei; Yang, Su; Wei, Wenqing; Yu, Tongpu; Liu, Feng; Chen, Min; Liu, Jingquan; Yuan, Xiaohui; Sheng, Zhengming; Zhang, Jie

    2016-07-01

    We report experimental results on the effects of laser contrast on beam divergence and energy spectrum of protons emitted from ultrashort intense laser interactions with normal large foils and transverse-size-reduced targets. Correlations between beam divergence and spectral shape are found. Large divergence and near-plateau shape energy spectrum are observed for both types of targets when the laser pulse contrast is low. With high contrast laser irradiation, proton beam divergence is remarkably reduced and the energy spectral shape is changed to exponential for large foil targets. In comparison, a similar large divergence and the near-plateau spectral shape remain for transverse-size-reduced targets. The results could be explained by the preplasma formation and target deformation at different laser contrasts and modified accelerating sheath field evolution in transverse-size-reduced target, which were supported by the 2D hydrodynamic and PIC simulations.

  9. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  10. Effects of Titanium Dioxide Nanoparticle Aggregate Size on Gene Expression

    OpenAIRE

    Junko Okuda-Shimazaki; Saiko Takaku; Koki Kanehira; Shuji Sonezaki; Akiyohshi Taniguchi

    2010-01-01

    Titanium dioxide (titania) nanoparticle aggregation is an important factor in understanding cytotoxicity. However, the effect of the aggregate size of nanoparticles on cells is unclear. We prepared two sizes of titania aggregate particles and investigated their biological activity by analyzing biomarker expression based on mRNA expression analysis. The aggregate particle sizes of small and large aggregated titania were 166 nm (PDI = 0.291) and 596 nm (PDI = 0.417), respectively. These two siz...

  11. Beam-beam interaction and pacman effects in the SSC with momentum oscillation

    International Nuclear Information System (INIS)

    In order to find the combined effects of beam-beam interaction (head-on and long-range) and random nonlinear multipoles in dipole magnets, the transverse oscillations of ''regular'' as well as ''pacman'' particles are traced for 256 synchrotron oscillation periods (corresponding to 135K revolutions) in the proposed SSC. Results obtained in this study do not show any obvious reduction of dynamic or linear apertures for pacman particles when compared with regular particles for (Δp/p) = 0. There are some indications of possible sudden or gradual increases in the oscillation amplitude, for pacman as well as regular particles, when the amplitude of momentum oscillation is as large as 3σ. 4 refs., 7 figs

  12. E-Beam Effects on CMOS Active Pixel Sensors

    International Nuclear Information System (INIS)

    Three different CMOS active pixel structures manufactured in a deep submicron process have been evaluated with electron beam. The devices were exposed to 1 MeV electron beam up to 5kGy. Dark current increased after E-beam irradiation differently at each pixel structure. Dark current change is dependent on CMOS pixel structures. CMOS image sensors are now good candidates in demanding applications such as medical image sensor, particle detection and space remote sensing. In these situations, CISs are exposed to high doses of radiation. In fact radiation is known to generate trapped charge in CMOS oxides. It can lead to threshold voltage shifts and current leakages in MOSFETs and dark current increase in photodiodes. We studied ionizing effects in three types of CMOS APSs fabricated by 0.25 CMOS process. The devices were irradiated by a Co60 source up to 50kGy. All irradiation took place at room temperature. The dark current in the three different pixels exhibits increase with electron beam exposure. From the above figure, the change of dark current is dependent on the pixel structure. Double junction structure has shown relatively small increase of dark current after electron beam irradiation. The dark current in the three different pixels exhibits increase with electron beam exposure. The contribution of the total ionizing dose to the dark current increase is small here, since the devices were left unbiased during the electron beam irradiation. Radiation hardness in dependent on the pixel structures. Pixel2 is relatively vulnerable to radiation exposure. Pixel3 has radiation hardened structure

  13. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  14. LTRACK: Beam-transport calculation including wakefield effects

    International Nuclear Information System (INIS)

    LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described

  15. Effect of coherence and polarization on the polychromatic partially coherent dark hollow beam generated from axicon-lens system

    International Nuclear Information System (INIS)

    An experimental study is carried out to investigate the effect of coherence and polarization on the polychromatic partially coherent dark hollow beam (PCDHB). The experimental results show that the spatial coherence and source polarization affect the dark region of the generated hollow beam. The study shows that by varying the source degree of polarization (DOP), we get a tunable dark region. We find that the longer the spatial coherence length of the input beam, the larger the central dark size of the resultant PCDHB. Further, it is shown that polychromatic PCDHB with low spatial coherence travel a longer distance without being distorted than a beam with a high spatial coherence. These kinds of polychromatic beams may find potential application in the field of polychromatic light based free-space optical (FSO) communications. (papers)

  16. Investigation of effect of electron beam on various polyethylene blends

    CERN Document Server

    Morshedian, J

    2003-01-01

    With regards to the expanding usage of electron beams irradiation in polymer industries such as sterilization of polymeric disposable medical products; cable manufacturing; pipes, heat shrinkable materials, etc. In this project the effect of electron beam on polyethylene used in manufacturing of pipe and heat shrinkable products was studied. Results showed that by increasing the applied dose on samples; the crosslink density would increase and polymers with tertiary carbon atoms in their backbone structure tend to crosslink more readily. The melting temperature and crystallinity percent decreased and degradation temperature increased. Density in low doses decreased and in high doses increased.

  17. Effect of beam-pointing errors on bistatic SAR imaging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors.Based on the moving geometry configuration of aero bistatic SAR,a model of beam pointing errors is built.Based on this,the azimuth Doppler frequency center estimation caused by these errors and the limitation to the beam pointing synchronization error are studied,and then the imaging result of different errors are analyzed.The computer's simulations are provided to prove the validity of the above analysis.

  18. Effects of Titanium Dioxide Nanoparticle Aggregate Size on Gene Expression

    Directory of Open Access Journals (Sweden)

    Junko Okuda-Shimazaki

    2010-06-01

    Full Text Available Titanium dioxide (titania nanoparticle aggregation is an important factor in understanding cytotoxicity. However, the effect of the aggregate size of nanoparticles on cells is unclear. We prepared two sizes of titania aggregate particles and investigated their biological activity by analyzing biomarker expression based on mRNA expression analysis. The aggregate particle sizes of small and large aggregated titania were 166 nm (PDI = 0.291 and 596 nm (PDI = 0.417, respectively. These two size groups were separated by centrifugation from the same initial nanoparticle sample. We analyzed the gene expression of biomarkers focused on stress, inflammation, and cytotoxicity. Large titania aggregates show a larger effect on cell viability and gene expression when compared with the small aggregates. This suggests that particle aggregate size is related to cellular effects.

  19. Effect sizes for research univariate and multivariate applications

    CERN Document Server

    Grissom, Robert J

    2005-01-01

    The goal of this book is to inform a broad readership about a variety of measures and estimators of effect sizes for research, their proper applications and interpretations, and their limitations. Its focus is on analyzing post-research results. The book provides an evenhanded account of controversial issues in the field, such as the role of significance testing. Consistent with the trend toward greater use of robust statistical methods, the book pays much attention to the statistical assumptions of the methods and to robust measures of effect size.Effect Sizes for Research

  20. Effect of electron beam irradiation on seed germination

    International Nuclear Information System (INIS)

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber

  1. Effect of electron beam irradiation on seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghee; Bae, Youngmin [Changwon Univ., Changwon (Korea, Republic of)

    2013-07-01

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber.

  2. Review of Surface Roughness Effect on Beam Quality

    Science.gov (United States)

    Mostacci, A.; Palumbo, L.; Alesini, D.

    2003-12-01

    In recent years a strong attention arose around the problem of the e.m. interaction of an ultra-relativistic beam with the residual roughness inside a beam tube, in particular in the framework of future 4th generation coherent light sources. The main concern was the effect of the wake-fields on the relative energy spread of the beam which has to be of the order of 10-4, as for example in the LCLS and TESLA case. Although the real roughness has a stochastic feature, most studies dealt with periodic structure, or dielectric-equivalent layer which are considered to be conservative with respect the stochastic case. In this paper we will review the main theoretical models, and the most significant measurements trying to provide to the reader a complete picture of the present status of understanding.

  3. Effect of bubble size on nanofiber diameter in bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Ren Zhong-Fu

    2016-01-01

    Full Text Available Polymer bubbles are widely used for fabrication of nanofibers. Bubble size affects not only bubble's surface tension, but also fiber's morphology. A mathematical model is established to reveal the effect of bubble size on the spinning process, and the experiment verification shows the theoretical analysis is reliable.

  4. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Science.gov (United States)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  5. Analysis of the variation of the attenuation curve in function of the radiation field size for k Vp X-ray beams using the MCNP-5C code

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)

  6. Effect of electron-beam irradiation on graphene field effect devices

    OpenAIRE

    Childres, I.; Jauregui, L A; Foxe, M.; Tian, J. F.; R. Jalilian; Jovanovic, I; Chen, Y P

    2010-01-01

    Electron beam exposure is a commonly used tool for fabricating and imaging graphene-based devices. Here, we present a study of the effects of electron-beam irradiation on the electronic transport properties of graphene and the operation of graphene field-effect transistors (GFETs). Exposure to a 30 keV electron-beam caused negative shifts in the charge-neutral point (CNP) of the GFET, interpreted as due to n-dopin...

  7. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  8. Correction of beam-beam effects in luminosity measurement at ILC

    CERN Document Server

    Lukic, S

    2015-01-01

    Three methods for handling beam-beam effects in luminosity measurement at ILC are tested and evaluated in this work. The first method represents an optimization of the LEPtype asymmetric selection cuts that reduce the counting biases. The second method uses the experimentally reconstructed shape of the √ s ′ spectrum to determine the Beamstrahlung component of the bias. The last, recently proposed, collision-frame method relies on the reconstruction of the collision-frame velocity to define the selection function in the collision frame both in experiment and in theory. Thus the luminosity expression is insensitive to the difference between the CM frame of the collision and the lab frame. The collision-frame method is independent of the knowledge of the beam parameters, and it allows an accurate reconstruction of the luminosity spectrum above 80% of the nominal CM energy. However, it gives no precise infromation about luminosity below 80% of the nominal CM energy. The compatibility of diverse selection cut...

  9. The effects of meal size, body size and temperature on gastric evacuation in pikeperch

    DEFF Research Database (Denmark)

    Koed, Anders

    2001-01-01

    Prey size had no effect on the gastric evacuation rate of pikeperch Stizostedion lucioperca. The gastric evacuation was adequately described applying an exponent of 0.5 in the power model. Applying length instead of weight of pikeperch in the gastric evacuation model resulted in a change...

  10. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Y.C. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Jan, M.L. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Chen, K.W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Cheng, Y.D. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Chuang, K.S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Fu, Y.K. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China)]. E-mail: fufrank@iner.gov.tw

    2006-12-20

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET'' (registered) R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of 'cupping' in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  11. Electron beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Electron irradiation effects on aromatic polymers having various molecular structures were studied to elucidate the following subjects; (1) relation between radiation stability and molecular structure of repeating units, (2) mechanism of deterioration and (3) adaptability to matrix resin for radiation resistant FRP. Results are summarized as follows: (1) An order of radiation stability of units is; imide ring > diphenyl ether, diphenyl ketone > aromatic amide >> bis-phenol A > diphenyl sulphone. (2) Poly (ether-ether-ketone) and most polyimide are crosslinkable but polysulphones and polyarylate are chain degradation type polymers. (3) Newly developed thermoplastic polyimides have possibilities for use as matrix materials in radiation resistant FRP. (author)

  12. Developer molecular size dependence of pattern formation of polymer type electron beam resists with various molecular weights

    Science.gov (United States)

    Takayama, Tomohiro; Asada, Hironori; Kishimura, Yukiko; Ochiai, Shunsuke; Hoshino, Ryoichi; Kawata, Atsushi

    2016-05-01

    The sensitivity and the resolution are affected by not only the nature of the resist such as a chemical structure and a molecular weight but also the developing process such as a developer molecular size. Exposure characteristics of positive-tone polymer resists having various molecular weights (Mw's) ranging from 60 k to 500 k are investigated using different ester solvents as a developer. The line-and-space (L/S) patterns are exposed by the electron beam writing system with an acceleration voltage of 50 kV and the samples are developed by amyl acetate, hexyl acetate and heptyl acetate. The pattern shape becomes better and the surface of the resist also becomes smoother with increasing developer molecular size, though the exposure dose required for the formation of the L/S pattern increases. The dose margin of pattern formation is also wider in all the resists having the different molecular weights. The dissolution in the unexposed portions of the 60k-Mw resist for heptyl acetate is reduced significantly compared with those for amyl acetate and hexyl acetate. The improvement of the pattern shape and the increasing of dose margin are remarkable in the low molecular weight resist. The 3σ of line width roughness tends to be smaller in the higher molecular weight resist and with the larger molecular size developer. Exposure experiment of the 35 nm pitch pattern using the 500k-Mw resist developed at the room temperature is presented.

  13. MODE II FRACTURE PARAMETERS FOR VARIOUS SIZES OF BEAMS IN PLAIN CONCRETE

    Directory of Open Access Journals (Sweden)

    Darsigunta Seshaiah

    2015-11-01

    Full Text Available Blended aggregate in concrete and arriving at the structural properties of blended aggregate concrete is a thrust area. Pumice is very light and porous igneous rock that is formed during volcanic eruptions.Cinder is a waste material obtained from steel manufacturing units. Shear strength is a property of major significance for wide range of civil engineering materials and structures. Shear and punching shear failures particularly in deep beams, in corbels and in concrete flat slabs are considered to be more critical and catastrophic than other types of failures. This area has received greater attention in recent years. For investigating shear type of failures, from the literature it is found that double central notched (DCN specimen geometry proposed by Prakash Desai and V.Bhaskar Desai is supposed the best suited geometry. In this present experimental investigation an attempt is made to study the Mode-II fracture property of light weight blended aggregate cement concrete combining both the pumice and cinder in different proportions, and making use of DCN test specimen geometry . By blending the pumice and cinder in different percentages of 0, 25, 50, 75 and 100 by volumeof concrete, a blended light weight aggregate concrete is prepared. By using this the property such as in plane shear strength is studied. Finally an analysis is carried out regarding Mode-II fracture properties of blended concrete. It is concluded that the Ultimate load in Mode-II is found to decrease continuously with the percentage increase in Pumice aggregate content. It is also observed that the ultimate stress in Mode II is found to increase continuously with percentage increase in cinder aggregate content.

  14. Size effect in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars;

    1999-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is an explanation relying on an increased probability of encountering a strength reducing flaw when the volume of the ...... that the size effect can be explained on a deterministic basis. Arguments for such a simple deterministic explanation of size effect is found in finite element modelling using the orthotropic stiffness characteristics in the transverse plane of wood....... of the material under stress is increased. This paper presents a small experimental investigation on specimens with well defined structural orientation of the material. The experiments exhibit a larger size effect than expected and furthermore the data and the nature of the failures encountered suggest...

  15. Montelukast in Adenoid Hypertrophy: Its Effect on Size and Symptoms

    Directory of Open Access Journals (Sweden)

    Farshid Shokouhi

    2015-11-01

    Conclusion:  Montelukast chewable tablets achieved a significant reduction in adenoid size and improved the related clinical symptoms of AH and can therefore be considered an effective alternative to surgical treatment in children with adenoid hypertrophy.

  16. Economic Effects of Increased Control Zone Sizes in Conflict Resolution

    Science.gov (United States)

    Datta, Koushik

    1998-01-01

    A methodology for estimating the economic effects of different control zone sizes used in conflict resolutions between aircraft is presented in this paper. The methodology is based on estimating the difference in flight times of aircraft with and without the control zone, and converting the difference into a direct operating cost. Using this methodology the effects of increased lateral and vertical control zone sizes are evaluated.

  17. Cohesive stresses and size effect in quasi-brittle materials

    Indian Academy of Sciences (India)

    V E Saouma; D Natekar

    2002-08-01

    A novel approach to the derivation of Ba$\\breve{z}$ant’s size effect law is presented. Contrarily to the original Lagrangian derivation which hinged on energetic consideration, a Newtonian approach based on local stress intensity factors is presented. Through this approach, it is shown that Ba$\\breve{z}$ant’s size effect law is the first (and dominant) term in a series expansion for the nominal stress. Furthermore, analytical expressions for are derived for selected specimen geometries.

  18. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    CERN Document Server

    Gu, Xuejun; Li, Jinsheng; Jia, Xun; Jiang, Steve B

    2011-01-01

    Targeting at developing an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against MCSIM Monte Carlo dose calculations are conducted on 10 IMRT treatment plans with heterogeneous treatment regions (5 head-and-neck cases and 5 lung cases). For head and neck cases, when cavities exist near the target, the improvement with the 3D-density correction over the conventional FSPB algorithm is significant. However, when there are high-density dental filling materials in beam paths, the improvement is small and the accuracy of the new algorithm is still unsatisfactory. On the other hand, significant improvement of dose calculation accuracy is observed in all lung cases. Especially when the target is in the m...

  19. Biological effect of carbon beams on cultured human cells

    International Nuclear Information System (INIS)

    This study was performed to determine the biological effect of carbon beams on 13 human tumor cells, in comparison with 200 KVp X-rays. Carbon beams were generated by the Riken Ring Cyclotron. The RBE (relative biological effectiveness) values were distributed from 1.46 to 2.20 for LET of 20 keV/μm, and 2.29-3.54 for 80 keV/μm. The RBEs were increased in all cell lines as the LET of carbon beams was increased from 20 to 80 keV/μm. There was no significant difference in radiosensitivity between cells from adenocarcinoma and those from squamous cell carcinoma. The relationship between the radiosensitivity of cells to X-rays and RBE was analyzed, but no significant correlation was suggested. Several survival curves of 20-40 keV/μm carbon beam irradiation showed the initial shoulders and the recovery ratios between two split doses were determined. Recovery was observed for LET of 2O keV/μm but not for that of 40 keV/μm. Furthermore, recovery ratios were 1.0-1.8, smaller than those for X-rays (1.5-2.4). (author)

  20. Relativistic Beaming and Orientation Effects in BL Lacertae Objects

    Indian Academy of Sciences (India)

    F. C. Odo; A. A. Ubachukwu; A. E. Chukwude

    2012-09-01

    We use the correlation between the core-to-lobe radio luminosity ratio () and the linear size () of a sample of BL Lacertae objects to investigate the relativistic beaming and radio source orientation paradigm for high peaked and low-peaked BL Lacs (X-ray and radio selected BL Lacs respectively) and to constrain relativistic beaming model for this extreme class of active galactic nuclei. We show that the - distributions of the BL Lac populations contradict blazar orientation sequence, with the X-ray selected BL Lacs (XBLs) being more consistent with the beaming and orientation model. On the premise that Fanaroff-Riley Type I radio galaxies are the unbeamed parent population of these objects, we derive the bulk Lorentz factor of the jets, ∼ 7-20 corresponding to a critical cone angle for optimum boosting, c of ∼ 1° - 4°, while on average, these objects are inclined at 5° - 12° to the line-of-sight. The implications of these results for the blazar unification sequence are discussed.

  1. Effect of Proton Beam on Cancer Progressive and Metastatic Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H.; Nam, K. S.; Oh, Y. H.; Kim, M. K.; Kim, M. Y.; Jang, J. S. [Dongguk University, Seoul (Korea, Republic of)

    2008-04-15

    The purpose of this study was to investigate the effect of proton beam on enzymes for promotion/progression of carcinogenesis and metastasis of malignant tumor cells to clarify proton beam-specific biological effects. The changes of cancer chemopreventive enzymes in human colorectal adenocarcinoma HT-29 cells irradiated with proton beams were tested by measuring the activities of quinine reductase (QR), glutathione S-transferase (GST), and ornithine decarboxylase (ODC), glutathione (GSH) levels, and expression of cyclooxygenase-2 (COX-2). We also examined the effect of proton beam on the ODC activity and expression of COX-2 in human breast cancer cell. We then assessed the metastatic capabilities of HT-29 and MDA-MB-231 cells irradiated with proton beam by measuring the invasiveness of cells through Matrigel-coated membrane and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP activity in MDA-MB-231 and HT-29 cells. QR activity of irradiated HT-29 cells was slightly increased. Proton irradiation at dose of 32 Gy in HT-29 cells increased GST activity by 1.23-fold. In addition GSH levels in HT-29 cells was significantly increased 1.23- (p<0.05), 1.32- (p<0.01) and 1.34-fold (p<0.01) with the proton irradiation at doses of 8, 16 and 32 Gy, respectively. These results suggest that colon cancer chemopreventive activity was increased with the proton irradiation by increasing QR and GST activities and GSH levels and inhibiting ODC activity. Proton ion irradiation decreased the invasiveness of TPA-treated HT-29 cells and MDA-MB-231 cells through Matrigel-coated membrane. Proton ion irradiation pretreatment decreased TPA-induced MMP activity in MDA-MB-231 and HT-29 cells. Further studies are necessary to investigate if these findings could be translated to in vivo situations

  2. Thermal effects in high power cavities for photoneutralization of D- beams in future neutral beam injectors

    Science.gov (United States)

    Fiorucci, Donatella; Feng, Jiatai; Pichot, Mikhaël; Chaibi, Walid

    2015-04-01

    Photoneutralization may represent a key issue in the neutral beam injectors for future fusion reactors. In fact, photodetachment based neutralization combined with an energy recovery system increase the injector overall efficiency up to 60%. This is the SIPHORE injector concept in which photoneutralization is realized in a refolded cavity [1]. However, about 1 W of the several megaWatts intracavity power is absorbed by the mirrors coatings and gives rise to important thermoelastic distortions. This is expected to change the optical behavior of the mirrors and reduce the enhancement factor of the cavity. In this paper, we estimate these effects and we propose a thermal system to compensate it.

  3. Magnetic heating effect of nanoparticles with different sizes and size distributions

    International Nuclear Information System (INIS)

    We present a comparative study of dynamic and quasistatic magnetic properties of iron oxide nanoparticles. The samples are prepared by different wet chemical precipitation methods resulting in different sizes and size distributions. The structural characterization was performed by X-ray diffraction and transmission electron microscopy. The heating effect in an ac field in the range 0-30 kA/m at 210 kHz was measured calorimetrically. In addition, a vibrating sample magnetometer was used for hysteresis and remanence curve measurements. - Highlights: ► Preparation of 4 different types of magnetic nanoparticles with mean sizes from 10–20 nm. ► Basic characterization by X-ray diffraction and vibrating sample magnetometry. ► Determination of sizes and size distributions from X-ray and TEM data. ► Calorimetric measurements of the specific heating power in an ac field of 210 kHz and field amplitudes up to 30 kA/m.

  4. Modeling the effect of finite size gratings on scatterometry measurements

    Science.gov (United States)

    Kenyon, Elizabeth; Cresswell, Michael W.; Patrick, Heather J.; Germer, Thomas A.

    2008-03-01

    The interpretation of scatterometry measurements generally assumes that the grating extends over an area large enough to intercept all the illumination provided by an incident beam. However, in practice, the gratings used in scatterometry are relatively small. Thus, the detected light also includes both that scattered by the grating as well as that from a region surrounding the grating because, generally, the incident beam illuminates both the grating and the surrounding region. To model the effects of such real structures, simulations of the effective reflectance were performed whereby the reflection from the grating was considered to be the sum of the diffraction by the grating and the diffraction of the surrounding region, taking into account the beam profile. To demonstrate the model, the illumination field was assumed to be Gaussian. Results are shown for a specific target design consisting of a 50 μm square measured by normal incidence reflectometry. Significant errors occur when the incident profile has wings that fall outside of the profile and when the scattered light is partially apertured.

  5. Source size and time dependence of multifragmentation induced by GeV {sup 3}He beams

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Kwiatkowski, K.; Bracken, D.S.; Renshaw Foxford, E.; Hsi, W.; Morley, K.B.; Viola, V.E.; Yoder, N.R. [Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, Indiana 47405 (United States); Volant, C.; Legrain, R.; Pollacco, E.C. [DAPNIA/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Korteling, R.G. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, (Canada) V5A 156; Friedman, W.A. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Botvina, A. [INFN and Department of Physics, University of Bologna, 40126 Bologna (Italy); Brzychczyk, J. [Institute of Physics, Jagiellonian University, Krakow (Poland); Breuer, H. [Department of Physics, University of Maryland, College Park, Maryland 20740 (United States)

    1999-07-01

    To investigate the source size and time dependence of multifragmentation reactions, small- and large-angle relative velocity correlations between coincident complex fragments have been measured for the 1.8{endash}4.8 GeV {sup 3}He+{sup nat}Ag, {sup 197}Au systems. The results support an evolutionary scenario for the fragment emission process in which lighter IMFs (Z{approx_lt}6) are emitted from a hot, more dense source prior to breakup of an expanded residue. For the most highly excited residues, for which there is a significant yield of fragments with very soft energy spectra (E/A{le}3 MeV), comparisons with an {ital N}-body simulation suggest a breakup time of {tau}{approximately}50 fm/c for the expanded residue. Comparison of these data with both the evolutionary expanding emitting source model and the Copenhagen statistical multifragmentation model shows good agreement for heavier IMF{close_quote}s formed in the final breakup stage, but only the evolutionary model is successful in accounting for the lighter IMFs. thinsp {copyright} {ital 1999} {ital The American Physical Society}

  6. Source size and time dependence of multifragmentation induced by GeV 3He beams

    International Nuclear Information System (INIS)

    To investigate the source size and time dependence of multifragmentation reactions, small- and large-angle relative velocity correlations between coincident complex fragments have been measured for the 1.8 - 4.8 GeV 3He+natAg, 197Au systems. The results support an evolutionary scenario for the fragment emission process in which lighter IMFs (Z approx-lt 6) are emitted from a hot, more dense source prior to breakup of an expanded residue. For the most highly excited residues, for which there is a significant yield of fragments with very soft energy spectra (E/A≤3 MeV), comparisons with an N-body simulation suggest a breakup time of τ∼50 fm/c for the expanded residue. Comparison of these data with both the evolutionary expanding emitting source model and the Copenhagen statistical multifragmentation model shows good agreement for heavier IMF close-quote s formed in the final breakup stage, but only the evolutionary model is successful in accounting for the lighter IMFs. copyright 1999 The American Physical Society

  7. Source size and time dependence of multifragmentation induced by GeV [sup 3]He beams

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Kwiatkowski, K.; Bracken, D.S.; Renshaw Foxford, E.; Hsi, W.; Morley, K.B.; Viola, V.E.; Yoder, N.R. (Departments of Chemistry and Physics and IUCF, Indiana University, Bloomington, Indiana 47405 (United States)); Volant, C.; Legrain, R.; Pollacco, E.C. (DAPNIA/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette (France)); Korteling, R.G. (Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, (Canada) V5A 156); Friedman, W.A. (Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)); Botvina, A. (INFN and Department of Physics, University of Bologna, 40126 Bologna (Italy)); Brzychczyk, J. (Institute of Physics, Jagiellonian University, Krakow (Poland)); Breuer, H. (Department of Physics, University of Maryland, College Park, Maryland 20740 (United States))

    1999-07-01

    To investigate the source size and time dependence of multifragmentation reactions, small- and large-angle relative velocity correlations between coincident complex fragments have been measured for the 1.8[endash]4.8 GeV [sup 3]He+[sup nat]Ag, [sup 197]Au systems. The results support an evolutionary scenario for the fragment emission process in which lighter IMFs (Z[approx lt]6) are emitted from a hot, more dense source prior to breakup of an expanded residue. For the most highly excited residues, for which there is a significant yield of fragments with very soft energy spectra (E/A[le]3 MeV), comparisons with an [ital N]-body simulation suggest a breakup time of [tau][approximately]50 fm/c for the expanded residue. Comparison of these data with both the evolutionary expanding emitting source model and the Copenhagen statistical multifragmentation model shows good agreement for heavier IMF[close quote]s formed in the final breakup stage, but only the evolutionary model is successful in accounting for the lighter IMFs. thinsp [copyright] [ital 1999] [ital The American Physical Society

  8. Interviewer Effects on a Network-Size Filter Question

    Directory of Open Access Journals (Sweden)

    Josten Michael

    2016-06-01

    Full Text Available There is evidence that survey interviewers may be tempted to manipulate answers to filter questions in a way that minimizes the number of follow-up questions. This becomes relevant when ego-centered network data are collected. The reported network size has a huge impact on interview duration if multiple questions on each alter are triggered. We analyze interviewer effects on a network-size question in the mixed-mode survey “Panel Study ‘Labour Market and Social Security’” (PASS, where interviewers could skip up to 15 follow-up questions by generating small networks. Applying multilevel models, we find almost no interviewer effects in CATI mode, where interviewers are paid by the hour and frequently supervised. In CAPI, however, where interviewers are paid by case and no close supervision is possible, we find strong interviewer effects on network size. As the area-specific network size is known from telephone mode, where allocation to interviewers is random, interviewer and area effects can be separated. Furthermore, a difference-in-difference analysis reveals the negative effect of introducing the follow-up questions in Wave 3 on CAPI network size. Attempting to explain interviewer effects we neither find significant main effects of experience within a wave, nor significantly different slopes between interviewers.

  9. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    Science.gov (United States)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  10. Effects of anisotropic turbulence on average polarizability of Gaussian Schell-model quantized beams through ocean link.

    Science.gov (United States)

    Li, Ye; Zhang, Yixin; Zhu, Yun; Chen, Minyu

    2016-07-01

    Based on the spatial power spectrum of the refractive index of anisotropic turbulence, the average polarizability of the Gaussian Schell-model quantized beams and lateral coherence length of the spherical wave propagating through the ocean water channel are derived. Numerical results show that, in strong temperature fluctuation, the depolarization effects of anisotropic turbulence are inferior to isotropic turbulence, as the other parameters of two links are the same. The depolarization effects of salinity fluctuation are less than the effects of the temperature fluctuation; the average polarizability of beams increases when increasing the inner scale of turbulence and the source's transverse size; and the larger rate of dissipation of kinetic energy per unit mass of fluid enhances the average polarizability of beams. The region of the receiving radius is smaller than the characteristic radius and the average polarizability of beams in isotropy turbulence is smaller than that of beams in anisotropy turbulence. However, the receiving radius region is larger than a characteristic radius and the average polarizability of beams in isotropy turbulence is larger than that of beams in anisotropy turbulence.

  11. Effects of anisotropic turbulence on average polarizability of Gaussian Schell-model quantized beams through ocean link.

    Science.gov (United States)

    Li, Ye; Zhang, Yixin; Zhu, Yun; Chen, Minyu

    2016-07-01

    Based on the spatial power spectrum of the refractive index of anisotropic turbulence, the average polarizability of the Gaussian Schell-model quantized beams and lateral coherence length of the spherical wave propagating through the ocean water channel are derived. Numerical results show that, in strong temperature fluctuation, the depolarization effects of anisotropic turbulence are inferior to isotropic turbulence, as the other parameters of two links are the same. The depolarization effects of salinity fluctuation are less than the effects of the temperature fluctuation; the average polarizability of beams increases when increasing the inner scale of turbulence and the source's transverse size; and the larger rate of dissipation of kinetic energy per unit mass of fluid enhances the average polarizability of beams. The region of the receiving radius is smaller than the characteristic radius and the average polarizability of beams in isotropy turbulence is smaller than that of beams in anisotropy turbulence. However, the receiving radius region is larger than a characteristic radius and the average polarizability of beams in isotropy turbulence is larger than that of beams in anisotropy turbulence. PMID:27409215

  12. Development and Clinical Implementation of a Universal Bolus to Maintain Spot Size During Delivery of Base of Skull Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Both, Stefan, E-mail: Stefan.Both@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Shen, Jiajian [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona (United States); Kirk, Maura; Lin, Liyong; Tang, Shikui; Alonso-Basanta, Michelle; Lustig, Robert; Lin, Haibo; Deville, Curtiland; Hill-Kayser, Christine; Tochner, Zelig; McDonough, James [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-09-01

    Purpose: To report on a universal bolus (UB) designed to replace the range shifter (RS); the UB allows the treatment of shallow tumors while keeping the pencil beam scanning (PBS) spot size small. Methods and Materials: Ten patients with brain cancers treated from 2010 to 2011 were planned using the PBS technique with bolus and the RS. In-air spot sizes of the pencil beam were measured and compared for 4 conditions (open field, with RS, and with UB at 2- and 8-cm air gap) in isocentric geometry. The UB was applied in our clinic to treat brain tumors, and the plans with UB were compared with the plans with RS. Results: A UB of 5.5 cm water equivalent thickness was found to meet the needs of the majority of patients. By using the UB, the PBS spot sizes are similar with the open beam (P>.1). The heterogeneity index was found to be approximately 10% lower for the UB plans than for the RS plans. The coverage for plans with UB is more conformal than for plans with RS; the largest increase in sparing is usually for peripheral organs at risk. Conclusions: The integrity of the physical properties of the PBS beam can be maintained using a UB that allows for highly conformal PBS treatment design, even in a simple geometry of the fixed beam line when noncoplanar beams are used.

  13. Electron beam welding in the fabrication of thick-walled large-size pipes of C-Mn steels. Final report; Elektronenstrahlschweissen bei der Fertigung von dickwandigen Grossrohren aus C-Mn-Staehlen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Woeste, K.

    2001-11-01

    This research project investigates electron beam welding as a method of fabrication of large-size pipes with longitudinal welds. The effects of the welding speed on the mechanical and technological properties of the weld are investigated. From the economic view, electron beam welding is much more favourable than submerged-arc welding. [German] Dieses Forschungsprojekt soll dazu beitragen, das Elektronenstrahlschweissen als Fertigungsverfahren fuer laengsnahtgeschweisste Grossrohre zu qualifizieren. Dabei wird der Einfluss der Schweissgeschwindigkeit auf die mechanisch-technologischen Eigenschaften der Schweissung untersucht. Im Wirtschaftlichkeitsvergleich schneidet Elektronenstrahlschweissverfahren gegenueber dem Unterpulverschweissverfahren eindeutig besser ab.

  14. Limiting of the spot size of intense relativistic electronic beams in a solenoidal field%螺线管场下强流相对论电子束焦斑尺寸的限制

    Institute of Scientific and Technical Information of China (English)

    石金水; 林郁正; 丁伯南

    2001-01-01

    分析了螺线管场下影响强流相对论电子束聚焦的主要因素,并给出了各影响因素所限制的最小焦斑。计算结果表明,当发射度和能散度的值分别控制在0.397mm*rad和1%以内, 单个螺线管磁轴的偏心不大于0.54mrad;初始注入束偏心不大于1mrad时,对于20MeV、3kA的电子束和15MeV、2.5kA的电子束,最终打靶束焦斑均可小于1.5mm。%High-resolution X-ray photographing needs to focus intense relativistic electron beams of several thousand amperes on the bremsstrahlung converter target, thereon forming a small and stable spot. In the ideal case, electron beams cn be focused to a point. However, due to the influence of such factrs as the space charge effect, the beam emittance, the spherical aberration of the lens, and the chromatic aberration, the minimization of the spot size of electron beams is limited. Furthermore, the corkscrew oscillation of the beam centroid not only leads to the increase of the spot size but also to the distortion of the spot shape.The effects of solenoidal field on the spot size of intense relativistic electronic beams are analyzed and the minimal spot sizes limited by various factors are given. The results of the numerical calculation show that if the emittance ≤0.397mm*rad and the energy sweep ≤1%,the ultimate minimal spot size for 20MeV, 3kA and 15MeV, 3kA intense beams is less than 1.5mm when the tilt of each solenoid ≤1mrad and the injection tilt of beams ≤1mrad.

  15. Origin of size effect on efficiency of organic photovoltaics

    DEFF Research Database (Denmark)

    Manor, Assaf; Katz, Eugene A.; Tromholt, Thomas;

    2011-01-01

    on the voltage dependence of photocurrent and dark current is the key to understanding size limitation of the organic photovoltaics (OPV) efficiency. Practical methods to overcome this limitation as well as the possibility of producing concentrator OPV cells operating under sunlight concentrations higher than 10......It is widely accepted that efficiency of organic solar cells could be limited by their size. However, the published data on this effect are very limited and none of them includes analysis of light intensity dependence of the key cell parameters. We report such analysis for bulk heterojunction solar...... cells of various sizes and suggest that the origin of both the size and the light intensity effects should include underlying physical mechanisms other than conventional series resistance dissipation. In particular, we conclude that the distributed nature of the ITO resistance and its influence...

  16. Long-Term Effects of School Size on Students' Outcomes

    DEFF Research Database (Denmark)

    Humlum, Maria Knoth; Smith, Nina

    school size and alternative measures of long-term success in the educational system and the labor market. The positive impact of school size seems mainly to be driven by boys, students from families with a low educational level and students attending schools in urban areas.......We estimate the effect of school size on students' long-term outcomes such as high school completion, being out of the labor market, and earnings at the age of 30. We use rich register data on the entire population of Danish children attending grade 9 in the period 1986-2004. This allows us to...... compare the results of different fixed effect and instrumental variables estimators. We use the natural population variation in the residentail catchment areas and school openings and closures to instrument for actual school size. We find a robust positive but numerically fairly small relationship between...

  17. Size and shape effects on Curie temperature of ferromagnetic nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simplified model was developed to describe the Curie temperature suppression of ferromagnetic nanoparticles. Based on a size and shape dependent model of cohesive energy, the critical temperature variations of ferromagnetic nanoparticles were deduced. It is predicted that the Curie temperature of nanoparticles depends on both size and shape conditions, among which the temperature suppression is strongly influenced by the particle size and the shape effect is comparably minor. The calculation values for freestanding nanoparticles are in good agreement with other theoretical model and the experimental results. The model is also potential for predictions for the nanoparticles embedded in different substrates.

  18. Effect of electron beam irradiation on surgical rubber gloves

    International Nuclear Information System (INIS)

    This paper outlines the effects of electron beam irradiation on surgical rubber gloves. The tensile strength, elongation at break and modulus were evaluated as function of dose range 20-100 kGy minimum dose, dose uniformity ratio, 3.1, and both, accelerated and normal aging, were used to study the stability of the irradiated gloves after irradiation. The surgical gloves were found to be useful up to the highest dose tested. (orig.)

  19. Portfolio effects and firm size distribution : carbonated soft drinks

    OpenAIRE

    Whelan, Ciara; Patrick P. Walsh

    2002-01-01

    PUBLISHED We use rich brand level retail data to demonstrate that the firm size distribution in Carbonated Soft Drinks is mainly an outcome of the degree to which firms own a portfolio of brands across segments of the market, and not from performance within segments. In addition, while the number of firms in each segment is limited by segment size relative to sunk cost and competition in a segment, idiosyncratic firm effects make some firms more likely to participate in any given segment. ...

  20. Effects of Container Size on Overconsumption of Carbonated Soft Drinks

    OpenAIRE

    Zheng, Xiaoyong; Zhen, Chen; Wohlgenant, Michael K.

    2008-01-01

    We take a structural approach to examine the effects of larger container size on consumption of carbonated soft drinks---using Nielsen Company's Homescan data on household purchases for the years 2004 through 2006. Our results show that by removing the price discount implicit in packages with larger container size, the average unit price the two households pay for CSD products increase and hence both households (both the low income and the high income) reduce their annual consumption of soft ...

  1. The dose delivery effect of the different Beam ON interval in FFF SBRT: TrueBEAM

    Science.gov (United States)

    Tawonwong, T.; Suriyapee, S.; Oonsiri, S.; Sanghangthum, T.; Oonsiri, P.

    2016-03-01

    The purpose of this study is to determine the dose delivery effect of the different Beam ON interval in Flattening Filter Free Stereotactic Body Radiation Therapy (FFF-SBRT). The three 10MV-FFF SBRT plans (2 half rotating Rapid Arc, 9 to10 Gray/Fraction) were selected and irradiated in three different intervals (100%, 50% and 25%) using the RPM gating system. The plan verification was performed by the ArcCHECK for gamma analysis and the ionization chamber for point dose measurement. The dose delivery time of each interval were observed. For gamma analysis (2%&2mm criteria), the average percent pass of all plans for 100%, 50% and 25% intervals were 86.1±3.3%, 86.0±3.0% and 86.1±3.3%, respectively. For point dose measurement, the average ratios of each interval to the treatment planning were 1.012±0.015, 1.011±0.014 and 1.011±0.013 for 100%, 50% and 25% interval, respectively. The average dose delivery time was increasing from 74.3±5.0 second for 100% interval to 154.3±12.6 and 347.9±20.3 second for 50% and 25% interval, respectively. The same quality of the dose delivery from different Beam ON intervals in FFF-SBRT by TrueBEAM was illustrated. While the 100% interval represents the breath-hold treatment technique, the differences for the free-breathing using RPM gating system can be treated confidently.

  2. Specimen size effect of explosive sensitivity under low velocity impact

    Science.gov (United States)

    Ma, Danzhu; Chen, Pengwan; Dai, Kaida; Zhou, Qiang

    2014-05-01

    Low velocity impact may ignite the solid high explosives and cause undesired explosion incidents. The safety of high explosives under low velocity impact is one of the most important issues in handling, manufacture, storage, and transportation procedures. Various evaluation tests have been developed for low velocity impact scenarios, including, but not limited to the drop hammer test, the Susan test, the Spigot test, and the Steven test, with a charge mass varying from tens of milligrams to several kilograms. The effects of specimen size on explosive sensitivity were found in some impact tests such as drop hammer test and Steven tests, including the threshold velocity/height and reaction violence. To analyse the specimen size effects on explosive sensitivity under low velocity impacts, we collected the impact sensitivity data of several PBX explosives in the drop hammer test, the Steven test, the Susan test and the Spigot test. The effective volume of explosive charge and the critical specific mechanical energy were introduced to investigate the size-effect on the explosive reaction thresholds. The effective volumes of explosive charge in Steven test and Spigot test were obtained by numerical simulation, due to the deformation localization of the impact loading. The critical specific mechanical energy is closely related to the effective volume of explosive charge. The results show that, with the increase of effective volume, the critical mechanical energy needed for explosive ignition decreases and tends to reach a constant value. The mechanisms of size effects on explosive sensitivity are also discussed.

  3. A multiscale gradient-dependent plasticity model for size effects

    Science.gov (United States)

    Lyu, Hao; Taheri-Nassaj, Nasrin; Zbib, Hussein M.

    2016-06-01

    The mechanical behaviour of polycrystalline material is closely correlated to grain size. In this study, we investigate the size-dependent phenomenon in multi-phase steels using a continuum dislocation dynamic model coupled with viscoplastic self-consistent model. We developed a dislocation-based strain gradient plasticity model and a stress gradient plasticity model, as well as a combined model, resulting in a theory that can predict size effect over a wide range of length scales. Results show that strain gradient plasticity and stress gradient plasticity are complementary rather than competing theories. The stress gradient model is dominant at the initial strain stage, and is much more effective for predicting yield strength than the strain gradient model. For larger deformations, the strain gradient model is dominant and more effective for predicting size-dependent hardening. The numerical results are compared with experimental data and it is found that they have the same trend for the yield stress. Furthermore, the effect of dislocation density at different strain stages is investigated, and the findings show that the Hall-Petch relation holds for the initial strain stage and breaks down for higher strain levels. Finally, a power law to describe the size effect and the transition zone between the strain gradient and stress gradient dominated regions is developed.

  4. Correction of the Long-Range Beam-Beam Effect in LHC using Electro-Magnetic Lenses

    CERN Document Server

    Koutchouk, Jean-Pierre

    2001-01-01

    The beams in LHC collide head-on in at most four experimental points. Due to the small bunch spacing, the beams experience more than one hundred 'near-misses' on either side of the collision points. The transverse beam separation at these places, limited by the quadrupole aperture, is in the range of 7 to 13 sigma. The non-linear part of these 'long-range' interactions appears to be the dominant mechanism for beam blow-up or beam loss in simulation. A simple non-linear model of the long-range interactions can be devised. It shows that the latter may be locally corrected with good accuracy using wires as correcting lenses. The non-linearity measured by the tune footprint is reduced by one order of magnitude. Pulsing the correcting lenses cancels the so-called PACMAN effect.

  5. Experimental Effects on IR Reflectance Spectra: Particle Size and Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Beiswenger, Toya N.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Ertel, Alyssa B.; Tonkyn, Russell G.; Szecsody, James E.; Johnson, Timothy J.; Smith, Milton; Lanker, Cory

    2016-05-23

    For geologic and extraterrestrial samples it is known that both particle size and morphology can have strong effects on the species’ infrared reflectance spectra. Due to such effects, the reflectance spectra cannot be predicted from the absorption coefficients alone. This is because reflectance is both a surface as well as a bulk phenomenon, incorporating both dispersion as well as absorption effects. The same spectral features can even be observed as either a maximum or minimum. The complex effects depend on particle size and preparation, as well as the relative amplitudes of the optical constants n and k, i.e. the real and imaginary components of the complex refractive index. While somewhat oversimplified, upward-going amplitude in the reflectance spectrum usually result from surface scattering, i.e. rays that have been reflected from the surface without penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. While the effects are well known, we report seminal measurements of reflectance along with quantified particle size of the samples, the sizing obtained from optical microscopy measurements. The size measurements are correlated with the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. We report results for both sodium sulfate Na2SO4 as well as ammonium sulfate (NH4)2SO4; the optical constants have been measured for (NH4)2SO4. To go a step further from the field to the laboratory we explore our understanding of particle size effects on reflectance spectra in the field using standoff detection. This has helped identify weaknesses and strengths in detection using standoff distances of up 160 meters away from the Target. The studies have

  6. Effect of Electron beam on Prepared HAP-Gel Composition

    Directory of Open Access Journals (Sweden)

    Naima A. El Gendy*,Tawfik M. S.**, and Asma M. Nour

    2014-04-01

    Full Text Available Background: Polyvinyl alcohol liquid PVAl was used as the organic carrier for Hydroxylapatite-gel (Hap-gel composite. PVAl has the ability to form a nano- hydroxylapatite polyvinyl alcohol composite gel which has a wide range of uses in different environmental and medical applications. Prepared Hap-gel is known to have a very similar composition to human bone and is used as a substitute for bones in compound fractures and artificial dentures. Matreia and Methods: In this work prepared HAP- gel was exposed to a high ionizing radiation electron beam (5 kilo Gray and an aqueous solution containing aluminum ions (Al+. Some investigations were done to illustrate the effect of radiation exposure and aluminum contamination on prepared Hap-gel. Results: Energy dispersive X-ray analysis (EDx showed that the electron beam used caused an obvious increase in the calcium ions (Ca++ content of the prepared Hap-gel from 60% to 65.69 % with a prominent decrease in phosphorus ions (P + content from 40 % to 34.31 % in addition to an increase in the Ca/P ratio from 1.5 to 1.91. Exposure of the pre-irradiated Hap-gel samples to aluminium ions (Al+ resulted in a noticeable decrease in Ca++ content from 65.69 atomic % to 32.14 % atomic % and a further noticeable decrease in P+ content from 34.31 % atomic % to 13 atomic % as well as an increase in the Ca/P ratio from 1.91 to 2.47. The levels for the original prepared Hap-gel were Ca++; 60 atomic % and P+; 40 atomic %. It was deduced that exposure of the Hap-gel to Al+ had a further damaging effect on the pre-irradiated Hap-gel composition in addition to the damaging effect that the electron beam used induced on the samples. Conclusions: it could be concluded that electron beams and Al+ have an injurious effect on human bone tissue taking into consideration the similarity in composition between Hap-gel and bones. Therefore, this study could be beneficial in the field of osteoporosis research and assist the

  7. Nanoindentation Size Effect on Type 316 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    YAOYuan; QIAOLi-jie; QiangShi-san; CAOXian-kun; CHUWu-yan

    2004-01-01

    Nanoinlentation size effect was investigated under very low loads on type 316 stainless steel.Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pytamidal diamond in-denter applying loads in the range of 25-1000μN. Simultaneously, AFM images of the sample surface were recorded before and after indentation process. For type 316 stairdess steel, the indentation size effect was found.The results were discussed in the terms of the model of geometrically necessary dislocations proposed to interpret the indentation size effect. It can be seen that the square of the nanohardness, H2, vs the ineerse of indentation depth, 1/h, is linearly dependent on the indented depth in the range of 25-150nm, which is a good qualitative agreement with the predictions of the model. However, for shallow indents, the slope of the line severely changes.Some possible mechanisms for this change were proposed.

  8. The Size Effects on Process Design of Micro Deep Drawing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper suggested to reformulate cylindrical deep drawing parameters with dimensionless form. A diagram, in which a feasible zone is drawn to bound both the maximal allowable tension and compression stress during the deep drawing process, was established. Since it is presented in a dimensionless form, it may be applied for both conventional and micro deep drawing. Cylindrical cup deep drawing was taken as an example to show the dimensionless process design method. In addition, the size effects should be taken into account. Two kinds of size effects on micro deep drawing were investigated, which can be explained by surface layer model and strain gradient model. Numerical simulations were carried out to compare the strain distribution with or without consideration of size effect.

  9. Infrared Polarization and Beaming Effect for BL Lac Objects

    Institute of Scientific and Technical Information of China (English)

    MEI Dong-Cheng; XIE Guang-Zhong

    2001-01-01

    With the idea of the beaming models, we derive a relation between the observed polarization and Dopplercorrected magnitude; that is, the observed polarization is in anti-correlation with the Doppler-corrected magnitude. Making use of the infrared data observed simultaneously by Impey et al. [Mon. Not. R. Astron. Soc.200 (1982) 19; 209 (1984) 245] and Holmes et al. [ibid. 210 (1984) 961] we found that: (1) there is a significant correlation between the observed maximum polarization and Doppler-corrected magnitude but the polarization is not in anti-correlation with the Doppler-corrected magnitude; (2) the maximum infrared polarization is strongly correlated with the maximum optical polarization. Our conclusion is that the infrared polarization depends only on the degree of ordering of the magnetic field in the synchrotron emission regions and not on the beaming effect.Both infrared and optical emissions originate from the synchrotron radiation.

  10. Beam-Shape Effects in Nonlinear Compton and Thomson Scattering

    CERN Document Server

    Heinzl, T; Kämpfer, B

    2009-01-01

    We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus are the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzing the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focussing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focussing, hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electro...

  11. Effects of electron beam irradiation on cut flowers and mites

    Energy Technology Data Exchange (ETDEWEB)

    Dohino, Toshiyuki; Tanabe, Kazuo [Yokohama Plant Protection Station (Japan)

    1994-08-01

    Two spotted spider mite, Tetranychus urticae KOCH were irradiated with electron beams (2.5MeV) to develop an alternative quarantine treatment for imported cut flowers. The tolerance of eggs increased with age (1-5-day-old). Immature stages (larva-teleiochrysalis) irradiated at 0.4-0.8kGy increased tolerance with their development. Mated mature females irradiated at 0.4kGy or higher did not produce viable eggs, although temporary recovery was observed at 0.2kGy. Adult males were sterilized at 0.4kGy because non-irradiated virgin females mated with yielded female progeny malformed and sterilized. Various effects of electron beam irradiation were observed when nine species of cut flowers were irradiated in 5MeV Dynamitron accelerator. Chrysanthemum and rose were most sensitive among cut flowers. (author).

  12. Effects of modulated electron beams and cavities on reditrons

    Science.gov (United States)

    Kwan, T. J. T.; Davis, H. A.; Fulton, R. D.; Sherwood, E. G.

    The virtual cathode, when formed in a cavity, can generate microwaves at different cavity modes depending on the geometry of the cavity. We found that the formation and the oscillation frequency of the virtual cathode in a reditron can be significantly influenced by cavity designs. The length of a cavity can play a role in frequency and mode selection. Our simulations showed that TM sub 012 and TM sub 033 were excited for cavity lengths of 15.0 cm and 22.5 cm, respectively. In addition to the cavity effects on reditrons, we discovered that highly modulated electron beams can be produced in reditrons. Full modulation (100 percent) of the transmitted electron beam current has been confirmed in our simulations. We further showed that incorporation of an inverse diode configuration can achieve microwave production efficiency of 26 percent.

  13. Effects of modulated electron beams and cavities on reditrons

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, T.J.T.; Davis, H.A.; Fulton, R.D.; Sherwood, E.G.

    1988-01-01

    The virtual cathode, when formed in a cavity, can generate microwaves at different cavity modes depending on the geometry of the cavity. We found that the formation and the oscillation frequency of the virtual cathode in a reditron can be significantly influenced by cavity designs. The length of a cavity can play a role in frequency and mode selection. Our simulations showed that TM/sub 012/ and TM/sub 033/ were excited for cavity lengths of 15.0 cm and 22.5 cm, respectively. In addition to the cavity effects on reditrons, we discovered that highly modulated electron beams can be produced in reditrons. Full modulation (100/percent/) of the transmitted electron beam current has been confirmed in our simulations. We further showed that incorporation of an inverse diode configuration can achieve microwave production efficiency of 26/percent/. 11 refs., 8 figs.

  14. Effects of cell size on compressive properties of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    CAO Xiao-qing; WANG Zhi-hua; MA Hong-wei; ZHAO Long-mao; YANG Gui-tong

    2006-01-01

    The effects of cell size on the quasi-static and dynamic compressive properties of open cell aluminum foams produced by infiltrating process were studied experimentally. The quasi-static and dynamic compressive tests were carried out on MTS 810 system and SHPB(split Hopkinson pressure bar) respectively. It is found that the elastic moduli and compressive strengths of the studied aluminum foam are not only dependent on the relative density but also dependent on the cell size of the foam under both quasi-static loading and dynamic loading. The foams studied show a significant strain rate sensitivity, the flow strength can be improved as much as 112%, and the cell size also has a sound influence on the strain rate sensitivity of the foams. The foams of middle cell size exhibit the highest elastic modulus, the highest flow strength and the most significant strain rate sensitivity.

  15. Finite size effect on classical ideal gas revisited

    Science.gov (United States)

    Ghosh, P.; Ghosh, S.; Mitra, J.; Bera, N.

    2015-09-01

    Finite size effects on classical ideal gas are revisited. The micro-canonical partition function for a collection of ideal particles confined in a box is evaluated using Euler-Maclaurin’s as well as Poisson's summation formula. In Poisson's summation formula there are some exponential terms which are absent in Euler-Maclaurin’s formula. In the thermodynamic limit the exponential correction is negligibly small but in the macro/nano dimensions and at low temperatures they may have a great significance. The consequences of finite size effects have been illustrated by redoing the calculations in one and three dimensions keeping the exponential corrections. Global and local thermodynamic properties, diffusion driven by the finite size effect, and effect on speed of sound have been discussed. Thermo-size effects, similar to thermoelectric effects, have been described in detail and may be a theoretical basis with which to design nano-scaled devices. This paper can also be very helpful for undergraduate and graduate students in physics and chemistry as an instructive exercise for a good course in statistical mechanics.

  16. Size effect of welded thin-walled tubular joints

    OpenAIRE

    Mashiri, Fidelis Rutendo; Zhao, Xiao-Ling; Hirt, Manfred A.; NUSSBAUMER, Alain

    2007-01-01

    This paper clarifies the terminologies used to describe the size effect on fatigue behaviour of welded joints. It summarizes the existing research on size effect in the perspective of newly defined terminologies. It identifies knowledge gaps in designing tubular joints using the hot spot stress method, i.e. thin-walled tubular joints with wall thickness less than 4 mm and thick-walled tubular joints with wall thickness larger than 50 mm or diameter to thickness ratio less than 24. It is the t...

  17. Stiction of a Nano-Beam with Surface Effect

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Lin; XIA Re; ZHOU Yue-Ting

    2011-01-01

    Nanowire stiction is a cruciai bottleneck for the development of M/NEMS devices. We present a model of a nano-beam stuck to te substrate in consideration of both surface elasticity and residual surface stress. The critical detachment length can be derived from the transversality condition using the variational method. The effects of the surface parameters on the adhesion of the nano-beam are discussed in detail. These analyses provide some suggestions for engineers in the design and fabrication of more accurate M/NEMS instruments.%Nanowire stiction is a crucial bottleneck for the development of M/NEMS devices.We present a model of a nano-beam stuck to the substrate in consideration of both surface elasticity and residual surface stress.The critical detachment length can be derived from the transversality condition using the variational method.The effects of the surface parameters on the adhesion of the nano-beam are discussed in detail.These analyses provide some suggestions for engineers in the design and fabrication of more accurate M/NEMS instruments.In the bottom-up approach,nanowires and nanobelts are widely used as the building blocks of micro/nano devices,such as micro-sensors,resonators,probes,transistors and actuators in micro/nanoelectro-mechanical systems (M/NMES).[1-3] Unfortunately,the stiction failure caused by spontaneous adhesion between M/NEMS structures has become a major limitation to push better application of these novel devices and this problem has been highlighted as a hot topic in the past decades.[4,5] The main reason of stiction is that in the small spacings,slender structures with high compliance are easily brought into contact with a substrate with strong surface energy.

  18. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  19. Interactions, particle size and surface effects in magnetic nanoparticle systems

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Mantecon, M

    2000-02-01

    This work has involved the study of the magnetic behaviour of small magnetic nanoparticle systems. Due to the reduced size of magnetic nanoparticles they present distinctive properties, such as size and surface effects, that have been analysed in this work, as well as the effect of interactions in such systems. The samples chosen for the study were magnetite particles in the form of a ferrofluid and Co nanoclusters in a nonmagnetic matrix of Cu. Both systems present very narrow particle size distributions, which facilitates the interpretation of the data. The samples have been subjected to basic characterisation, which includes the determination of the distribution of magnetic particle sizes using the magnetisation curves at room temperatures, TEM microscopy and X-ray diffraction, in the case of the ferrofluid samples. For the nanoclusters, a time of flight spectrometer has been used to obtain the number of atoms per cluster. Many of the measurements have been performed at low temperatures, where thermal effects are minimised. For such measurements the samples have been frozen in a zero applied field, so that they have a random distribution of magnetic moments prior to the measurement. The energy barrier distributions have been calculated via the temperature decay of remanence (TDR). From this study, an effective anisotropy constant has been calculated. For the study of the interactions, surface and size effects, magnetisation, susceptibility (ZFC), remanence and delta-M curves, as well as the time dependence of magnetisation have been studied. The attempt frequency of the different particle size systems has been calculated using different techniques. The basic magnetic behaviour can be explained on the basis of the Neel blocking model. It has been found that the systems with the smaller particles have significant surface effects, which are enhanced at lower temperatures. Interactions, which are weak due to the low concentration of magnetic material in the samples

  20. Modeling of dynamic effects of a low power laser beam

    Science.gov (United States)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  1. Effects of beam and pulse trawling on the benthic ecosystem

    OpenAIRE

    Teal, L.R.; Depestele, J.; O'Neill, B; Craeymeersch, J.A.M.; Denderen, van, A.C.; Parker, R.; Perdon, K.J.; H. POLET; Rasenberg, M.M.M.; Vanelslander, B.; Rijnsdorp, A.D.

    2014-01-01

    Here we study the effects of fishing trawl gear on the seabed and benthic organisms. A BACI-design experiment was used to examine the effects of a traditional beam trawl gear and the pulse trawl gear. The pulse trawl gear is gaining popularity amongst Dutch fishers in recent years due to reduced fuel costs and good sole catches.The research was carried out in the northern part of the Dutch Voordelta (southern North Sea coastal zone area, 15 – 22m deep, sandy habitat) in June 2013. In this exp...

  2. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  3. Modelling beam transport and biological effectiveness to develop treatment planning for ion beam radiotherapy

    CERN Document Server

    Grzanka, Leszek

    2014-01-01

    Radiation therapy with carbon ions is a novel technique of cancer radiotherapy, applicable in particular to treating radioresistant tumours at difficult localisations. Therapy planning, where the medical physicist, following the medical prescription, finds the optimum distribution of cancer cells to be inactivated by their irradiation over the tumour volume, is a basic procedure of cancer radiotherapy. The main difficulty encountered in therapy planning for ion radiotherapy is to correctly account for the enhanced radiobiological effectiveness of ions in the Spread Out Bragg Peak (SOBP) region over the tumour volume. In this case, unlike in conventional radiotherapy with photon beams, achieving a uniform dose distribution over the tumour volume does not imply achieving uniform cancer cell inactivation. In this thesis, an algorithm of the basic element (kernel) of a treatment planning system (TPS) for carbon ion therapy is developed. The algorithm consists of a radiobiological part which suitably corrects for ...

  4. Numerical modeling of size effect in micro hydromechanical deep drawing

    Science.gov (United States)

    Sato, Hideki; Manabe, Ken-ichi; Wei, Dongbin; Jiang, Zhengyi

    2013-12-01

    A modeling of tribological size effects in micro deep drawing (MDD) and micro hydromechanical deep drawing (MHDD) is a main focus in this study. The inner and outer pockets in which the different friction coefficients can be applied at different lubrication conditions are considered on the blank surface. The ratio of the area of outer pockets to inner pockets is changed with the decrease in the size. The low friction coefficient at the outer pockets is assumed in MHDD by considering the lubrication effect of fluid medium. The numerical analysis is performed under six lubrication conditions. The analytical results of punch force-stroke curves are in good agreement with the experimental values. The friction force decreases in MHDD with the decrease in the size although it increases in MDD. The friction coefficient at die shoulder significantly influences the friction force due to high contact pressure in MHDD.

  5. Core size effects on safety performances of LMRs

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byung Chan; Hahn, Do Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    An oxide fuel small size core (1200 MWt) was analyzed in comparison with a large size core (3600 MWt) in order to evaluate the size effects on transient safety performances of liquid-metal reactors (LMRs). In the first part of the study, main static safety parameters (i.e., Doppler coefficient, sodium void effect, etc.) of the two cores were characterized, and the second part of the study was focused on the dynamic behavior of the cores in two representative transient events: the unprotected loss-of-flow (ULOF) and the unprotected transient overpower (UTOP). Margins to fuel melting and sodium boiling have been evaluated for these representative transients. Results show that the small core has a generally better or equivalent level of safety performances during these events. 6 refs., 4 figs., 2 tabs. (Author)

  6. SU-D-213-02: Characterization of the Effect of a New Commercial Transmission Detector On Radiotherapy Beams

    International Nuclear Information System (INIS)

    Purpose: To evaluate the influence of a new commercial transmission detector on radiotherapy beams of various energies. Methods: A transmission detector designed for online treatment monitoring was characterized on a TrueBeam STx linear accelerator with 6MV, 6FFF, 10MV, and 10FFF beams. Measurements of beam characteristics including percentage depth doses (PDDs), inplane and crossplane off-axis profiles at different depths, transmission factors, and skin dose were acquired at field sizes of 3×3cm, 5×5m, 10×10cm, and 20×20cm at 100cm and 80cm source-to-surface distance (SSD). All measurements were taken with and without the transmission detector in the path of the beam. A CC04 chamber was used for all profile and transmission factor measurements. Skin dose was assessed at 100cm, 90cm, and 80cm SSD and using a variety of detectors (Roos and Markus parallel-plate chambers, and OSLD). Results: The PDDs showed small differences between the unperturbed and perturbed beams for both 100cm and 80cm SSD (≤4mm dmax difference and <1.2% average profile difference). The differences were larger for the flattened beams and at larger field sizes. The off-axis profiles showed similar trends. The penumbras looked similar with and without the transmission detector. Comparisons in the central 80% of the profile showed a maximum average (maximum) profile difference between all field sizes of 0.756% (1.535%) and 0.739% (3.682%) for 100cm and 80cm SSD, respectively. The average measured skin dose at 100cm (80cm) SSD for 10×10cm field size was <4% (<35%) dose increase for all energies. For 20×20cm field size, this value increased to <10% (≤45%). Conclusion: The transmission detector has minimal effect on the clinically relevant radiotherapy beams for IMRT and VMAT (field sizes 10×10cm and less). For larger field sizes, some perturbations are observable which would need to be assessed for clinical impact. The authors of this publication has research support from IBA Dosimetry

  7. SU-D-213-02: Characterization of the Effect of a New Commercial Transmission Detector On Radiotherapy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, J; Morin, O [University of California San Francisco, San Francisco, CA (United States)

    2015-06-15

    Purpose: To evaluate the influence of a new commercial transmission detector on radiotherapy beams of various energies. Methods: A transmission detector designed for online treatment monitoring was characterized on a TrueBeam STx linear accelerator with 6MV, 6FFF, 10MV, and 10FFF beams. Measurements of beam characteristics including percentage depth doses (PDDs), inplane and crossplane off-axis profiles at different depths, transmission factors, and skin dose were acquired at field sizes of 3×3cm, 5×5m, 10×10cm, and 20×20cm at 100cm and 80cm source-to-surface distance (SSD). All measurements were taken with and without the transmission detector in the path of the beam. A CC04 chamber was used for all profile and transmission factor measurements. Skin dose was assessed at 100cm, 90cm, and 80cm SSD and using a variety of detectors (Roos and Markus parallel-plate chambers, and OSLD). Results: The PDDs showed small differences between the unperturbed and perturbed beams for both 100cm and 80cm SSD (≤4mm dmax difference and <1.2% average profile difference). The differences were larger for the flattened beams and at larger field sizes. The off-axis profiles showed similar trends. The penumbras looked similar with and without the transmission detector. Comparisons in the central 80% of the profile showed a maximum average (maximum) profile difference between all field sizes of 0.756% (1.535%) and 0.739% (3.682%) for 100cm and 80cm SSD, respectively. The average measured skin dose at 100cm (80cm) SSD for 10×10cm field size was <4% (<35%) dose increase for all energies. For 20×20cm field size, this value increased to <10% (≤45%). Conclusion: The transmission detector has minimal effect on the clinically relevant radiotherapy beams for IMRT and VMAT (field sizes 10×10cm and less). For larger field sizes, some perturbations are observable which would need to be assessed for clinical impact. The authors of this publication has research support from IBA Dosimetry.

  8. Beam-shape effects in nonlinear Compton and Thomson scattering

    International Nuclear Information System (INIS)

    We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus is on the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzing the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane-wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focusing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focusing, and hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of intensity-induced spectral red shift, higher harmonics, and their substructure becomes feasible.

  9. Influence of orientation on the size effect in bcc pillars with different critical temperatures

    International Nuclear Information System (INIS)

    Research highlights: → Crystallographic orientation has no effect on the stress-strain behavior of bcc micro-and nanopillars. → Size dependence of bcc pillars correlates with the material specific critical temperature. → Dependence on critical temperature shows importance of screw dislocation mobility. → Contribution of screw dislocations is verified by the loading rate dependence of the yield stress and calculated activation volumes. - Abstract: The size effect in body-centered cubic metals is comprehensively investigated through micro/nano-compression tests performed on focused ion beam machined tungsten (W), molybdenum (Mo) and niobium (Nb) pillars, with single slip [2 3 5] and multiple slip [0 0 1] orientations. The results demonstrate that the stress-strain response is unaffected by the number of activated slip systems, indicating that dislocation-dislocation interaction is not a dominant mechanism for the observed diameter dependent yield strength and strain hardening. Furthermore, the limited mobility of screw dislocations, which is different for each material at ambient temperature, acts as an additional strengthening mechanism leading to a material dependent size effect. Nominal values and diameter dependence of the flow stress significantly deviate from studies on face-centered cubic metals. This is demonstrated by the correlation of size dependence with the material specific critical temperature. Activation volumes were found to decrease with decreasing pillar diameter further indicating that the influence of the screw dislocations decreases with smaller pillar diameter.

  10. Electron beam irradiation effects on some packaged dried food items

    International Nuclear Information System (INIS)

    For radical sports practitioners, small nutritious snack foods are needed. At the same time, food preparation must guarantee long shelf life and be compact or lightweight for easiness of carrying. Commercial individually packaged foods can be used either for sports practitioners like adventure racing or eventually as military rations. Irradiation processing of foods is an important preservation technology. High-voltage electron beams generated from linear accelerators are an alternative to radioisotope generators as they require much shorter exposure times (seconds vs. hours for γ irradiation) to be effective and are currently used to pasteurize meat products among others food items. This work describes the application of electron beam irradiation on some food items used in sport training diets: fiber rich cookies, fruit cereal bars, instant dehydrated asparagus soup and instant Brazilian corn pudding. Each kind of sample contained 3 groups of 15 units each. Irradiation was performed with an electron beam accelerator Dynamitron (Radiation Dynamics Inc.) model JOB 188, with doses of 5 and 10 kGy. For the evaluation of irradiated samples a methodology based on the Analytical Norms of the Instituto Adolfo Lutz, one of the South America Reference Laboratories was employed. The microbiological and sensory analyses of the diverse irradiated samples are presented. Electron beam irradiation resulted in significant reduction of the fungus and yeast load but caused dose dependent differences of some sensory characteristics. A careful dose choice and special irradiation conditions must be used in order to achieve sensory requirements needed for the commercialization of these irradiated food items. (author)

  11. Simulation of grain size effects in nanocrystalline shape memory alloys

    Science.gov (United States)

    Ahluwalia, Rajeev; Quek, Siu Sin; Wu, David T.

    2015-06-01

    Recently, it has been demonstrated that martensitic transformation in nanocrystalline shape memory alloys can be suppressed for small grain sizes. Motivated by these results, we study the grain size dependence of martensitic transformations and stress-strain response of nanocrystalline shape memory alloys within the framework of the Ginzburg-Landau (GL) theory. A GL model for a square to rectangle transformation in polycrystals is extended to account for grain boundary effects. We propose that an inhibition of the transformation in grain boundary regions can occur, if the grain boundary energy of the martensite is higher than that of the austenite phase. We show that this inhibition of transformation in grain boundary regions has a strong influence on domain patterns inside grains. Although the transformation is inhibited only at the grain boundaries, it leads to a suppression of the transformation even inside the grains as grain size is decreased. In fact, below a critical grain size, the transformation can be completely suppressed. We explain these results in terms of the extra strain gradient cost associated with grain boundaries, when the transformation is inhibited at grain boundaries. On the other hand, no significant size effects are observed when transformation is not inhibited at grain boundaries. We also study the grain size dependence of the stress strain curve. It is found that when the transformation is inhibited at grain boundaries, a significant reduction in the hysteresis associated with stress-strain curves during the loading-unloading cycles is observed. The hysteresis for this situation reduces even further as the grain size is reduced, which is consistent with recent experiments. The simulations also demonstrate that the mechanical behavior is influenced by inter-granular interactions and the local microstructural neighbourhood of a grain has a stronger influence than the orientation of the grain itself.

  12. Confidence Intervals for Effect Sizes: Applying Bootstrap Resampling

    Science.gov (United States)

    Banjanovic, Erin S.; Osborne, Jason W.

    2016-01-01

    Confidence intervals for effect sizes (CIES) provide readers with an estimate of the strength of a reported statistic as well as the relative precision of the point estimate. These statistics offer more information and context than null hypothesis statistic testing. Although confidence intervals have been recommended by scholars for many years,…

  13. Size-effects in plane strain sheet-necking

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Redanz, Pia

    2004-01-01

    A finite strain generalization of the strain gradient plasticity theory by Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001a) 2245) is proposed and used to study size effects in plane strain necking of thin sheets using the finite element method. Both sheets with rigid grips at the ends and...

  14. Size-effects in plane strain sheet-necking

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Redanz, Pia

    2003-01-01

    A finite strain generalization of the strain gradient plasticity theory by Fleck and Hutchinson (2001) is proposed and used to study size effects in plane strain necking of thin sheets using the finite element method. Both sheets with rigid grips at the ends and specimens with shear free ends are...

  15. Reporting Confidence Intervals and Effect Sizes: Collecting the Evidence

    Science.gov (United States)

    Zientek, Linda Reichwein; Ozel, Z. Ebrar Yetkiner; Ozel, Serkan; Allen, Jeff

    2012-01-01

    Confidence intervals (CIs) and effect sizes are essential to encourage meta-analytic thinking and to accumulate research findings. CIs provide a range of plausible values for population parameters with a degree of confidence that the parameter is in that particular interval. CIs also give information about how precise the estimates are. Comparison…

  16. Effect size, confidence intervals and statistical power in psychological research.

    Directory of Open Access Journals (Sweden)

    Téllez A.

    2015-07-01

    Full Text Available Quantitative psychological research is focused on detecting the occurrence of certain population phenomena by analyzing data from a sample, and statistics is a particularly helpful mathematical tool that is used by researchers to evaluate hypotheses and make decisions to accept or reject such hypotheses. In this paper, the various statistical tools in psychological research are reviewed. The limitations of null hypothesis significance testing (NHST and the advantages of using effect size and its respective confidence intervals are explained, as the latter two measurements can provide important information about the results of a study. These measurements also can facilitate data interpretation and easily detect trivial effects, enabling researchers to make decisions in a more clinically relevant fashion. Moreover, it is recommended to establish an appropriate sample size by calculating the optimum statistical power at the moment that the research is designed. Psychological journal editors are encouraged to follow APA recommendations strictly and ask authors of original research studies to report the effect size, its confidence intervals, statistical power and, when required, any measure of clinical significance. Additionally, we must account for the teaching of statistics at the graduate level. At that level, students do not receive sufficient information concerning the importance of using different types of effect sizes and their confidence intervals according to the different types of research designs; instead, most of the information is focused on the various tools of NHST.

  17. An Introductory Summary of Various Effect Size Choices.

    Science.gov (United States)

    Cromwell, Susan

    This paper provides a tutorial summary of some of the many effect size choices so that members of the Southwest Educational Research Association would be better able to follow the recommendations of the American Psychological Association (APA) publication manual, the APA Task Force on Statistical Inference, and the publication requirements of some…

  18. Investigation of the size effect for photonic crystals

    Science.gov (United States)

    Liu, M.; Xu, W.; Bai, J.; Chua, C. K.; Wei, J.; Li, Z.; Gao, Y.; Kim, D. H.; Zhou, K.

    2016-10-01

    Three types of photonic crystal (PC) thin films have been prepared for the investigation of their deformation behaviors by nanoindentation tests at the microscale and nanoscale. Each type of PC thin film was composed of poly(methyl methacrylate) (PMMA) nanoparticles with a uniform size. Another type of thin film was prepared by assembling nanoparticles with three different sizes. It was exciting to observe that the hardness and Young’s modulus were significantly improved (more than 15 times) in well-ordered PC thin films than disordered ones. Furthermore, size-dependent mechanical properties were observed for the three types of PCs. Such a size effect phenomenon can be attributed to the special polycrystalline material having a periodical face-centered cubic structure of PC thin films. Furthermore, the indentation size effect that shows that the indentation hardness decreases with an increasing indentation depth has also been observed for all four types of thin films. It is conjectured that the application of the PC structure to other functional materials may enhance their mechanical properties.

  19. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Science.gov (United States)

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-06-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.

  20. Coherent beam-beam effects observation and mitigation at the RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    White S.; Fischer, W.; Luo, Y.

    2012-05-20

    In polarized proton operation in RHIC coherent beam-beam modes are routinely observed with beam transfer function measurements in the vertical plane. With the existence of coherent modes a larger space is required in the tune diagram than without them and stable conditions can be compromised for operation with high intensity beams as foreseen for future luminosity upgrades. We report on experiments and simulations carried out to understand the existence of coherent modes in the vertical plane and their absence in the horizontal plane, and investigate possible mitigation strategies.

  1. Preliminary study on the size effect of composite materials subjected to bending

    Directory of Open Access Journals (Sweden)

    Yusof M.Z.

    2014-03-01

    Full Text Available The purpose of this paper is to evaluate the effect of size or dimension changes of reinforced concrete structures, in terms of structural performance and serviceability limit states. A theoretical and design study was carried out to evaluate the structural performance and serviceability of reinforced concrete structures using the European Code of Practice (EC2 and British Code of Practice (BS8110. The analysis required nine different sizes of reinforced concrete beams, with dimension between 150mm × 250mm and 350mm × 250mm. The study showed that dimension changes significantly affected the load-carrying capacity and deflection of reinforced concrete members; regardless of their depth/width ratio. The analysis results also produced an equation (presented here to assess the performance of reinforced concrete members, based on the codes of practice.

  2. Establishment of dosimetric references for high energy X-ray beams of very small field sizes (≤ 1 cm2) used in radiotherapy

    International Nuclear Information System (INIS)

    The French primary standard dosimetry laboratory 'Laboratoire National Henri Becquerel' is in charge of the establishment of dosimetric standards for ionizing radiation beams. Absolute dose measurements are thus available for X-Ray beams used in radiotherapy for field sizes between 10 and 2 cm. Since the miniaturization of absolute dosimeters is not possible for smaller field sizes, a dose area product (DAP) has been suggested as a substitute to the absorbed dose at a point.In order to measure a DAP with dosimeters which sensitive surface is larger than the beam, a graphite calorimeter with a sensitive surface of 3 cm diameter was designed, built and tested. An ionization chamber with the same diameter was realized and tested to transfer the dosimetric references to the end users. Its calibration factor in terms of DAP was determined in circular beams of 2, 1 and 0.75 cm diameter with an uncertainty smaller than 0.7 %. The two-Dimension relative dose distribution was measured thanks to a diamond dosimeter, a PinPoint ionization chamber and gafchromic films, using a specific protocol. Both approaches, respectively based on a PDS and an absorbed dose to water at a point, were in good agreement in the 2 cm beam. Correction factors determined from Monte Carlo simulations and measured dose distributions were needed for this comparison. The calibration factor of the large ionization chamber in the 1 and 0.75 cm diameter beams were in good agreement within the uncertainties but a gap of -2.6 % was found with the one established in the 2 cm diameter beam. As a result, the DAP can be used if the sensitive surface is much larger than the beam section. (author)

  3. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    Science.gov (United States)

    Safdar, Shakeel; Li, Lin; Sheikh, M. A.

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data.

  4. Influence of nuclear quantum effects on frozen phonon simulations of electron vortex beam HAADF-STEM images.

    Science.gov (United States)

    Löfgren, André; Zeiger, Paul; Kocevski, Vancho; Rusz, Ján

    2016-05-01

    We have evaluated atomic resolution high-angle annular dark field images with ordinary beams and electron vortex beams for thin crystals of bcc iron, explicitly considering the atomic vibrations using molecular dynamics. The shape of the image representing an atomic column depends on the orbital angular momentum, sample thickness and temperature. For electron vortex beams we observe characteristic doughnut-shaped images of atomic columns. It is shown how the thermal diffuse scattering reduces the depth of their central minima, which get further smeared by finite source size effects. In addition, it is shown that in calculations of HAADF-STEM images at low temperatures one has to explicitly consider the nuclear quantum effects (zero point vibrations), otherwise the effect of atomic vibrations is strongly underestimated. PMID:26852870

  5. Effect of Ammonium Nitrate on Nanoparticle Size Reduction

    Directory of Open Access Journals (Sweden)

    Kalyana C. Pingali

    2008-01-01

    Full Text Available Ammonium nitrate was added to the spraying solution as a foaming agent to reduce the particle size of nanoparticles synthesized in the spray-pyrolysis process. Ammonium nitrate was effective in breaking the aerosol droplet size and generating nanoparticles that were of approximately one order-of-magnitude (from 200 to 20 nm smaller diameter than those created in the absence of ammonium nitrate in the feed solution. This technique makes it possible to control the particle diameter of metallic nanoparticles below 20 nm.

  6. Physics-Based Reactive Burn Model: Grain Size Effects

    Science.gov (United States)

    Lu, X.; Hamate, Y.; Horie, Y.

    2007-12-01

    We have been developing a physics-based reactive burn (PBRB) model, which was formulated based on the concept of a statistical hot spot cell. In the model, essential thermomechanics and physiochemical features are explicitly modeled. In this paper, we have extended the statistical hot spot model to explicitly describe the ignition and growth of hot spots. In particular, grain size effects are explicitly delineated through introduction of grain size-dependent, thickness of the hot-region, energy deposition criterion, and specific surface area. Besides the linear relationships between the run distance to detonation and the critical diameter with respect to the reciprocal specific surface area of heterogeneous explosives (HE), which is based on the original model and discussed in a parallel paper of this meeting, parametric studies have shown that the extended PBRB model can predict a non-monotonic variation of shock sensitivity with grain size, as observed by Moulard et al.

  7. Finite size effects in Neutron Star and Nuclear matter simulations

    CERN Document Server

    Molinelli, P A Giménez

    2014-01-01

    In this work we study molecular dynamics simulations of symmetric nuclear matter using a semi-classical nucleon interaction model. We show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the ``nuclear pasta'' phases expected in Neutron Star Matter simulations, but shaped by artificial aspects of the simulations. We explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. We find that different cells may yield different solutions for the same physical conditions (i.e. density and temperature). The particular shape of the solution at a given density can be predicted analytically by energy minimization. We also show that even if this behavior is due to finite size effects, it does not mean that it vanishes for very large systems and it actually is independent of the system size: The system size sets the only characteristic length scale for the inhomogeneitie...

  8. The Effect of Size and Ecology on Extinction Susceptibility

    Science.gov (United States)

    Huynh, C.; Yuan, A.; Heim, N.; Payne, J.

    2015-12-01

    Although life on Earth first emerged as prokaryotic organisms, it eventually evolved into billions of different species. However, extinctions on Earth, especially the five mass extinctions, have decimated species. So what leads to a species survival or demise during a mass extinction? Are certain species more susceptible to extinctions based on their size and ecology? For this project, we focused on the data of marine animals. To examine the impact of size and ecology on a species's likelihood of survival, we compared the sizes and ecologies of the survivors and victims of the five mass extinctions. The ecology, or life mode, of a genus consists of the combination of tiering, motility, and feeding mechanism. Tiering refers to the animal's typical location in the water column and sediments, motility refers to its ability to move, and feeding mechanism describes the way the organism eats; together, they describe the animal's behavior. We analyzed the effect of ecology on survival using logistic regression, which compares life mode to the success or failure of a genus during each mass extinction interval. For organism size, we found the extinct organisms' mean size (both volume and length) and compared it with the average size of survivors on a graph. Our results show that while surviving genera of mass extinctions tended to be slightly larger than those that went extinct, there was no significant difference. Even though the Permian (Changhsingian) and Triassic (Rhaetian) extinctions had larger surviving species, likewise the difference was small. Ecology had a more obvious impact on the likelihood of survival; fast-moving, predatory pelagic organisms were the most likely to go extinct, while sedentary, infaunal suspension feeders had the greatest chances of survival. Overall, ecology played a greater role than size in determining the survival of a species. With this information, we can use ecology to predict which species would survive future extinctions.

  9. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence. PMID:26560908

  10. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence.

  11. Grain size effects on He bubbles distribution and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Gao, X.; Gao, N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, M.H.; Wei, K.F.; Yao, C.F.; Sun, J.R.; Li, B.S.; Zhu, Y.B.; Pang, L.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Y.F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, E.Q. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-02-15

    Highlights: • SMAT treated T91 and conventional T91 were implanted by 200 keV He{sup 2+} to 1 × 10{sup 21} He m{sup −2} at room temperature and annealed at 450 °C for 3.5 h. • He bubbles in nanometer-size-grained T91 are smaller in as-implanted case. • The bubbles in the matrix of nanograins were hard to detect and those along the nanograin boundaries coalesced and filled with the grain boundaries after annealing. • Brownian motion and coalescence and Ostwald ripening process might lead to bubbles morphology presented in the nanometer-size-grained T91 after annealing. - Abstract: Grain boundary and grain size effects on He bubble distribution and evolution were investigated by He implantation into nanometer-size-grained T91 obtained by Surface Mechanical Attrition Treatment (SMAT) and the conventional coarse-grained T91. It was found that bubbles in the nanometer-size-grained T91 were smaller than those in the conventional coarse-grained T91 in as-implanted case, and bubbles in the matrix of nanograins were undetectable while those at nanograin boundaries (GBs) coalesced and filled in GBs after heat treatment. These results suggested that the grain size of structural material should be larger than the mean free path of bubble’s Brownian motion and/or denuded zone around GBs in order to prevent bubbles accumulation at GBs, and multiple instead of one type of defects should be introduced into structural materials to effectively reduce the susceptibility of materials to He embrittlement and improve the irradiation tolerance of structural materials.

  12. Influence of bulk pre-straining on the size effect in nickel compression pillars

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.S., E-mail: Andreas.schneider@inm-gmbh.de [INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbruecken (Germany); Kiener, D. [University of Leoben, Department of Materials Physics, Jahnstr. 12, 8700 Leoben (Austria); Yakacki, C.M. [Department of Mechanical Engineering, University of Colorado Denver, Denver 80217 (United States); Maier, H.J. [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33098 Paderborn (Germany); Gruber, P.A. [Karlsruhe Institute of Technology, Institute for Applied Materials, Kaiserstr. 12, 76131 Karlsruhe (Germany); Tamura, N.; Kunz, M. [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Minor, A.M. [Department of Materials Science and Engineering, University of California, Berkeley, and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Frick, C.P. [University of Wyoming, Mechanical Engineering Department, 1000 East University Avenue, Laramie, WY 82071 (United States)

    2013-01-01

    Micro-compression tests were performed on pre-strained nickel (Ni) single crystals in order to investigate the influence of the initial dislocation arrangement on the size dependence of small-scale metal structures. A bulk Ni sample was grown using the Czochralski method and sectioned into four compression samples, which were then pre-strained to nominal strains of 5, 10, 15 and 20%. Bulk samples were then characterized using transmission electron microscopy (TEM), micro-Laue diffraction, and electron backscatter diffraction. TEM results show that a dislocation cell structure was present for all deformed samples, and Laue diffraction demonstrated that the internal strain increased with increased amount of pre-straining. Small-scale pillars with diameters from 200 nm to 5 {mu}m were focused ion beam (FIB) machined from each of the four deformed bulk samples and further compressed via a nanoindenter equipped with a flat diamond punch. Results demonstrate that bulk pre-straining inhibits the sample size effect. For heavily pre-strained bulk samples, the deformation history does not affect the stress-strain behavior, as the pillars demonstrated elevated strength and rather low strain hardening over the whole investigated size range. In situ TEM and micro-Laue diffraction measurements of pillars confirmed little change in dislocation density during pillar compression. Thus, the dislocation cell walls created by heavy bulk pre-straining become the relevant internal material structure controlling the mechanical properties, dominating the sample size effect observed in the low dislocation density regime.

  13. [The effect of group size on salience of member desirability].

    Science.gov (United States)

    Sugimori, S

    1993-04-01

    This study tested the hypothesis that undesirable members are salient in a small group, while desirable members become salient in a larger group. One hundred and forty-five students were randomly assigned to twelve conditions, and read sentences desirably, undesirably, or neutrally describing each member of a college student club. The twelve clubs had one of three group sizes: 13, 39, or 52, and the proportion of the desirable or undesirable to the neutral was either 11:2 or 2:11, forming a three-way (3 x 2 x 2) factorial. Twelve subjects each were asked to make proportion judgments and impression ratings. Results indicated that proportion of the undesirable members was over estimated when the group size was 13, showing negativity bias, whereas proportion of the desirable was overestimated when the size was 52, displaying positivity bias. The size 39 showed neither positivity nor negativity bias. These results along with those from impression ratings suggested that salience of member desirability interacted with group size. It is argued that illusory correlation and group cognition studies may well take these effects into consideration.

  14. Effect of Pour Size on Concrete Placing Productivity in Nigeria

    Directory of Open Access Journals (Sweden)

    Olaoluwa Olatunde

    2012-06-01

    Full Text Available Pour size as one of the site factors affecting concreting was examined to determine its effects on concreting productivity. A total of 167 separate concrete pours were observed on 25 building construction sites in Lagos, Nigeria,comprising 35 pours placed by crane and skip; 26 pours placed by dumper; 58 pours placed by wheelbarrow; 37 pours placed by head pan; and 11 pours placed jointly by pump, wheelbarrow and head pan. Data collected from the daily concrete pours were analyzed to determine operational productivity rates. The relationship between concreting productivity and pour size was examined using regression analyses to develop a model relating productivity to pour size. The results showed that irrespective of placing method, productivity generally increased by 1.1 m3/h for every 10 m3 increase in pour size. It was recommended that the obtained index of productivity increase per pour size be standardised for use in improving on-site productivity in the Nigerian construction industry.

  15. [The effect of group size on salience of member desirability].

    Science.gov (United States)

    Sugimori, S

    1993-04-01

    This study tested the hypothesis that undesirable members are salient in a small group, while desirable members become salient in a larger group. One hundred and forty-five students were randomly assigned to twelve conditions, and read sentences desirably, undesirably, or neutrally describing each member of a college student club. The twelve clubs had one of three group sizes: 13, 39, or 52, and the proportion of the desirable or undesirable to the neutral was either 11:2 or 2:11, forming a three-way (3 x 2 x 2) factorial. Twelve subjects each were asked to make proportion judgments and impression ratings. Results indicated that proportion of the undesirable members was over estimated when the group size was 13, showing negativity bias, whereas proportion of the desirable was overestimated when the size was 52, displaying positivity bias. The size 39 showed neither positivity nor negativity bias. These results along with those from impression ratings suggested that salience of member desirability interacted with group size. It is argued that illusory correlation and group cognition studies may well take these effects into consideration. PMID:8355426

  16. Effect of a spectrometer magnet on the beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, M; Parzen, G

    1981-01-01

    The presence of experimental apparatus in the interaction regions of an intersecting beam accelerator changes the configuration of the crossing beams. This changes the space-charge forces with respect to the standard, magnet-free crossing. The question is: what is the maximum allowable perturbation caused by the spectrometer magnet that can be tolerated from the point of view of the beam dynamics. This paper is limited to the perturbations that the curved trajectories cause the beam-beam space charge nonlinearities. The question has arisen of how one defines the strength of the perturbation. The only solution is to compute the strength of the most important nonlinear resources. In what follows, the computational method used in calculating these resonances is described, and compared with those induced by random orbit errors.

  17. Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE

    CERN Document Server

    Fraser, M A

    2013-01-01

    With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.

  18. Finite-size effects in nanocomposites: experimental and computational studies

    Science.gov (United States)

    Clarke, L. I.; Roman, M. P.; Skau, E. W.; Stevens, D. R.; Downen, L. N.; Hoffman, T. J.; Bochinski, J. R.

    2012-02-01

    Many proposed applications for electrically-conducting composite materials (smart textiles, e-m shielding coatings, tissue scaffolds) are nanostructured - that is, characteristic sample length scales may be similar to at least one dimension of the embedded particle. This is particularly true for long aspect-ratio particles such as nanotubes where the length of the particle can approach or exceed the thickness of a thin nanocomposite film or a nanofiber diameter. In these cases, the formation of a particle network and thus the electrical conductivity enhancement is affected by finite size effects, that is, percolation thresholds and the width of the transition to percolation differ with sample size [Stevens et al., Phys. Rev. E 84, 021126 (2011)]. We present experimental electrical conductivity and 3-D continuum Monte-Carlo simulation results on such finite-sized percolation effects for particles with aspect ratios of 1 to 1000 and discuss proposed scaling laws and techniques to improve conductance in the finite-size regime.

  19. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    single structure per cell while the cubic and truncated octahedron show consistent results, with more than one structure per cell. For systems of the size studied in this work these effects are still noticeable, but we find evidence to support that the dependence of the results on the cell geometry becomes smaller as the system size is increased. When the Coulomb interaction is present, the competition between opposing interactions of different range results in a proper, physically meaningful length scale that is independent of the system size and periodic cell of choice. Only under these conditions “finite size effects” will vanish for large enough systems (i.e. cells much larger than this characteristic length). Larger simulations are in order, but our computational capabilities forbid it for the time being.

  20. Does screen size matter for smartphones? Utilitarian and hedonic effects of screen size on smartphone adoption.

    Science.gov (United States)

    Kim, Ki Joon; Sundar, S Shyam

    2014-07-01

    This study explores the psychological effects of screen size on smartphone adoption by proposing an extended Technology Acceptance Model (TAM) that integrates an empirical comparison between large and small screens with perceived control, affective quality, and the original TAM constructs. A structural equation modeling analysis was conducted on data collected from a between-subjects experiment (N=130) in which users performed a web-based task on a smartphone with either a large (5.3 inches) or a small (3.7 inches) screen. Results show that a large screen, compared to a small screen, is likely to lead to higher smartphone adoption by simultaneously promoting both the utilitarian and hedonic qualities of smartphones, which in turn positively influence perceived ease of use of-and attitude toward-the device respectively. Implications and directions for future research are discussed.

  1. Chemical effects of heavy ion beams on organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Hitoshi E-mail: koizumih@eng.hokudai.ac.jp; Ichikawa, Tsuneki; Taguchi, Mitsumasa; Kobayashi, Yasuhiko; Namba, Hideki

    2003-05-01

    Effects of ion beam irradiation on {alpha}-alanine, adipic acid and polydimethylsiloxane were examined. Stable radicals were generated in the radiolysis of solids of {alpha}-alanine and adipic acid by {gamma}-ray, 220 MeV C ions, 350 MeV Ne ions and 175 MeV Ar ions. The G-value decreases in this order. The G-value for adipic acid decreases more than that for {alpha}-alanine. The decreases in the G-value are ascribed to high local dose in the ion tracks. Effective G-value of the radicals for {gamma}-irradiations decreases at high doses. The local dose in the ion tracks exceeds those doses, and the G-values for the ion irradiation are hence smaller than the G-value for {gamma}-irradiations. The difference in the dependence of the G-values for {alpha}-alanine and adipic acid on the ion beams is due to difference in the dose-yield relationship for radical formation. The high local dose in the ion tracks exceeds the gelation dose of some of polymers. Formation of gel strings of polydimethylsiloxanes generated in heavy ion tracks was observed by atomic force microscopy.

  2. Effect of 8 MeV electron beam irradiation on the structural and optical properties of CeO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Babitha, K.K.; Priyanka, K.P. [Nanoscience Research Centre (NSRC), Department of Physics, Nirmala College, Muvattupuzha, 686 661, Kerala (India); Sreedevi, A. [Department of Applied Science and Humanities, Thejus Engineering College, Thrissur, 680584 Kerala (India); Ganesh, S. [Microtron Centre, Mangalore University, Mangalagangotri, 574 199 Karnataka (India); Varghese, Thomas, E-mail: nanoncm@gmail.com [Nanoscience Research Centre (NSRC), Department of Physics, Nirmala College, Muvattupuzha, 686 661, Kerala (India)

    2014-12-15

    The effect of 8 MeV electron beam irradiation on the structural and optical properties of cerium oxide nanoparticles was investigated. Ceria nanoparticles were synthesized by chemical precipitation method, and characterized by X-ray diffraction, transmission electron microscopy, ultraviolet–visible, photoluminescence and Raman spectroscopy. Ultraviolet–visible absorption spectra, photoluminescence and Raman spectra of beam irradiated samples were modified, and shifted to blue region, which were attributed to quantum size effect. Systematic observations found that nonstoichiometry, defects and size reduction caused by beam irradiation have great influence on optical band gap, blue shift, photoluminescence and Raman band modifications. Moreover, electron beam irradiation is a suitable technique to enhance the structural and optical properties of nanoceria by controlling the particle size, which may lead to potentially useful technological applications. - Highlights: • Investigated effect of beam irradiation on CeO{sub 2} nanoparticles • Beam irradiation caused size reduction and surface modification. • It increases microstrain, decreases d-spacing and broadens XRD peaks. • It also modifies optical band gap, absorption, PL and Raman bands.

  3. Inner scale effect on scintillation index of flat-topped beam in non-Kolmogorov weak turbulence.

    Science.gov (United States)

    Zeng, Zhihong; Luo, Xiujuan; Xia, Aili; Zhang, Yu; Cao, Bei

    2015-04-01

    A simpler generalized expression of irradiance fluctuation for flat-topped beams is presented based on the Born and Rytov perturbation methods. The theoretical expression of the on-axis scintillation index in non-Kolmogorov weak atmospheric optics links is developed using the generalized von Kármán spectrum model, and using the equivalent structure constant that is different for all power-law exponents. The effect of the inner scale on the on-axis scintillation index is examined comprehensively. It is observed that flat-topped beams happen to possess smaller scintillation indices at larger inner scale. The effects of the power law, flat-topped order, source size of the fundamental Gaussian beam, propagation distance, and wavelength are also analyzed.

  4. Alzheimer's disease: rare variants with large effect sizes.

    Science.gov (United States)

    Del-Aguila, Jorge L; Koboldt, Daniel C; Black, Kathleen; Chasse, Rachel; Norton, Joanne; Wilson, Richard K; Cruchaga, Carlos

    2015-08-01

    Recent advances in sequencing technology and novel genotyping arrays (focused on low-frequency and coding variants) have made it possible to identify novel coding variants with large effect sizes and also novel genes (TREM2, PLD3, UNC5C, and AKAP9) associated with Alzheimer's disease (AD) risk. The major advantages of these studies over the classic genome-wide association studies (GWAS) include the identification of the functional variant and the gene-driven association. In addition to the large effect size, these studies make it possible to model these variants and genes using cell and animal systems. On the other hand, the underlying population-variability of these very low allele frequency variants poses a great challenge to replicating results. Studies that include very large datasets (>10,000 cases and controls) and combine sequencing and genotyping approaches will lead to the identification of novel genes for Alzheimer's disease. PMID:26311074

  5. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    Science.gov (United States)

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-06-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs.

  6. Effective number of breeders, effective population size and their relationship with census size in an iteroparous species, Salvelinus fontinalis.

    Science.gov (United States)

    Ruzzante, Daniel E; McCracken, Gregory R; Parmelee, Samantha; Hill, Kristen; Corrigan, Amelia; MacMillan, John; Walde, Sandra J

    2016-01-27

    The relationship between the effective number of breeders (Nb) and the generational effective size (Ne) has rarely been examined empirically in species with overlapping generations and iteroparity. Based on a suite of 11 microsatellite markers, we examine the relationship between Nb, Ne and census population size (Nc) in 14 brook trout (Salvelinus fontinalis) populations inhabiting 12 small streams in Nova Scotia and sampled at least twice between 2009 and 2015. Unbiased estimates of Nb obtained with individuals of a single cohort, adjusted on the basis of age at first maturation (α) and adult lifespan (AL), were from 1.66 to 0.24 times the average estimates of Ne obtained with random samples of individuals of mixed ages (i.e. [Formula: see text]). In turn, these differences led to adjusted Ne estimates that were from nearly five to 0.7 times the estimates derived from mixed-aged individuals. These differences translate into the same range of variation in the ratio of effective to census population size [Formula: see text] within populations. Adopting [Formula: see text] as the more precise and unbiased estimates, we found that these brook trout populations differ markedly in their effective to census population sizes (range approx. 0.3 to approx. 0.01). Using AgeNe, we then showed that the variance in reproductive success or reproductive skew varied among populations by a factor of 40, from Vk/k ≈ 5 to 200. These results suggest wide differences in population dynamics, probably resulting from differences in productivity affecting the intensity of competition for access to mates or redds, and thus reproductive skew. Understanding the relationship between Ne, Nb and Nc, and how these relate to population dynamics and fluctuations in population size, are important for the design of robust conservation strategies in small populations with overlapping generations and iteroparity. PMID:26817773

  7. Effects of Kurozu concentrated liquid on adipocyte size in rats

    OpenAIRE

    Nakamura Kumi; Kondo Yoshie; Udono Miyako; Tanaka Yasutake; Baba Sanae; Kawamura Sayaka; Katakura Yoshinori; Tong Li-Tao; Imaizumi Katsumi; Sato Masao

    2010-01-01

    Abstract Background Kurozu concentrated liquid (KCL) is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats. Methods Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneo...

  8. Size Effect of Electromagnetic Constitutive Characteristics of Ultrathin Al Films

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The ultrathin aluminum films with thickness in the range of 2~60 nm have been deposited by dc magnetron sputtering apparatus. Reflectance and transmittance of the obtained samples were measured with a WFZ-900-D4 UV/VIS spectrophotometer. The optical constant (n, k) and permittivity (ε', e") were determined by applying Newton-Simpson recurrent substitution method. The results indicate that the electromagnetic constitutive characteristic of ultrathin aluminum films is a function of thickness and has obvious size effect.

  9. Effect of Pour Size on Concrete Placing Productivity in Nigeria

    OpenAIRE

    Olaoluwa Olatunde; Ojo Stephen Okunlola; Adesanya David Abiodun

    2012-01-01

    Pour size as one of the site factors affecting concreting was examined to determine its effects on concreting productivity. A total of 167 separate concrete pours were observed on 25 building construction sites in Lagos, Nigeria,comprising 35 pours placed by crane and skip; 26 pours placed by dumper; 58 pours placed by wheelbarrow; 37 pours placed by head pan; and 11 pours placed jointly by pump, wheelbarrow and head pan. Data collected from the daily concrete pours were analyzed to determine...

  10. Response to recurrent selection under small effective population size

    Directory of Open Access Journals (Sweden)

    Souza Jr. Cláudio Lopes de

    2000-01-01

    Full Text Available A formula was derived for the prediction of the response to recurrent selection when the effective population size (Ne is small. Usually, responses to selection have been estimated by Rs = icsigma²A/sigmaPh, where i, c, sigma²A, and sigmaPh stand for standardized selection differential, parental control, additive variance, and phenotypic standard deviation, respectively. This expression, however, was derived under the assumption of infinite population size. By introducing the effects of finite population size, the expression derived was Rs = [ic(sigma²A + deltaFD1/sigmaPh] - DFID, where deltaF, ID and D1 are the changes in the inbreeding coefficient, the inbreeding depression, and the covariance of additive and homozygous dominance effects, respectively. Thus, the predicted responses to selection based on these expressions will be smaller than those based on the standard procedures for traits with a high level of dominance such as yield. Responses to five cycles of half-sib selection were predicted for maize by both expressions, considering that 100 progenies were evaluated and 10 S1 progenies were recombined, which corresponds to Ne = 10 for each cycle. The accumulated response to selection estimated with the new expression was about 47 and 28% smaller than that based on the standard expression for yield and plant height, respectively. Thus, the expression usually used overestimates the responses to selection, which is in agreement with reported results, because it does not take into account the effective population size that is generally small in recurrent selection programs

  11. Effect of eating rate on binge size in Bulimia Nervosa

    OpenAIRE

    Kissileff, Harry R.; Zimmerli, Ellen J.; Torres, Migdalia I; Devlin, Michael J.; Walsh, B. Timothy

    2007-01-01

    Effect of eating rate on binge size in bulimia nervosa. Bulimia Nervosa (BN) is an eating disorder characterized by recurrent episodes of binge eating. During binge eating episodes, patients often describe the rapid consumption of food, and laboratory studies have shown that during binges patients with BN eat faster than normal controls (NC), but the hypothesis that a rapid rate of eating contributes to the excessive intake of binge meals has not yet been experimentally tested. The aim of thi...

  12. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  13. Serving size guidance for consumers: is it effective?

    Science.gov (United States)

    Faulkner, G P; Pourshahidi, L K; Wallace, J M W; Kerr, M A; McCrorie, T A; Livingstone, M B E

    2012-11-01

    Larger portion sizes (PS) may be inciting over-eating and contributing to obesity rates. Currently, there is a paucity of data on the effectiveness of serving size (SS) guidance. The aims of the present review are to evaluate SS guidance; the understanding, usability and acceptability of such guidance, its impact on consumers and potential barriers to its uptake. A sample of worldwide SS guidance schemes (n 87) were identified using targeted and untargeted searches, overall these were found to communicate various inconsistent and often conflicting messages about PS selection. The available data suggest that consumers have difficulty in understanding terms such as 'portion size' and 'serving size', as these tend to be used interchangeably. In addition, discrepancies between recommended SS and those present on food labels add to the confusion. Consumers generally understand and visualise SS best when expressed in terms of household measures rather than actual weights. Only a limited number of studies have examined the direct impact of SS guidance on consumer behaviour with equivocal results. Although consumers recognise that guidance on selecting SS would be helpful, they are often unwilling to act on such guidance. The challenge of achieving consumer adherence to SS guidance is formidable due to several barriers including chronic exposure to larger PS, distorted consumption norms and perceptions, the habit of 'cleaning one's plate' and language barriers for ethnic minorities. In conclusion, the impact of SS guidance on consumers merits further investigation to ensure that future guidance resonates with consumers by being more understandable, usable and acceptable.

  14. Size and shape effects on magnetic properties of Ni nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xuemin He; Huigang Shi

    2012-01-01

    Pure Ni nanoparticles ranging in size from 24 to 200nm are prepared via thermal decomposition of nickel acetylacetonate in oleylamine.The as-prepared Ni particles change from spherical to dendritic or starlike with increasing precursor concentration.The particles are stable because the organic coating occurs in situ.Magnetic measurement reveals that all the Ni nanoparticles are ferromagnetic and show ferromagnetic-paramagnetic transitions at their Curie points.The saturation magnetization Ms is sizedependent,with a maximum value of 52.01 and 82.31 emu/g at room temperature and 5 K,respectively.The coercivity decreases at first and then increases with increasing particle size,which is attributed to the competition between size effect and shape anisotropy.The Curie temperature Tc is 593,612,622,626 and 627 K for the 24,50,96,165 and 200 nm Ni nanoparticles,respectively.A theoretical model is proposed to explain the size-dependence of Ni nanoparticle Curie temperature.

  15. Effect of beam oscillation on borated stainless steel electron beam welds

    International Nuclear Information System (INIS)

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  16. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  17. Effect of blocking mass on characteristics of beam lateral vibration

    International Nuclear Information System (INIS)

    The lateral vibration equation is established by setting up two separate co-coordinate systems of the mass-beam system, and the non-dimensional coefficients implying the position and mass radio of the mass in the system are presented in the paper. The effect on the vibration frequencies of changing the position and the mass radio in the system is numerically discussed, and the modes of the system with different mass radio and position are considered. The result shows that the frequencies decrease as increasing the mass radio, but the frequencies fluctuate with position changing, and there exists some positions that the frequencies do not vary after the mass radio increases except the first frequency, also that the effects on the vibration characteristic as increasing the mass radio can be decreased by modulating the position of the mass. (authors)

  18. Effect of Desiccation of Marine Environment on Beam Structure

    Institute of Scientific and Technical Information of China (English)

    CHEN Da; WANG Na; HOU Li-jun; LIAO Ying-di

    2013-01-01

    This paper presents the study on the effect of desiccation for different part of offshore structure corresponding to the water level.A coupled elastoplastic damage model is proposed to describe the mechanical behavior of cement-based materials under external loading and desiccation,in which both the plastic and damage behaviors under multi-axial stress are considered in composition with the desiccation effect.The comparison between numerical simulation and experimental data indicates that the proposed model can well predict the mechanical characteristics of cement-based materials with different saturations.In addition,a series of small beams subjected to desiccation are further analyzed to reveal the response of structure in the drying process.

  19. On the Relativistic Beaming and Orientation Effects in Core-Dominated Quasars

    Indian Academy of Sciences (India)

    A. A. Ubachukwu; A. E. Chukwude

    2002-09-01

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core-dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of core- to lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-II radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor, opt ∼ 6—16, and also highly anisotropic, with an average viewing angle, ∼ 9°-16°. Furthermore, the largest boosting occurs within a critical cone angle of ≈ 4°-10°.

  20. The damaging effects of nitrogen ion beam implantation on upland cotton (Gossypium hirsutum L.) pollen grains

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yanjie [College of Agronomy, Nanjing Agricultural University, Nanjing Jiangsu 210095 (China); Wu Lijun; Wu Yuejin [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang Qingya [College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095 (China); Tang Canming [College of Agronomy, Nanjing Agricultural University, Nanjing Jiangsu 210095 (China)], E-mail: tang20@jlonline.com

    2008-09-15

    With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar 'Sumian 22' pollen grains were irradiated in vacuum (7.8 x 10{sup -3} Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 x 10{sup 16} to 0.78 x 10{sup 16} N{sup +}/cm{sup 2}. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N{sup +} ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton.

  1. The damaging effects of nitrogen ion beam implantation on upland cotton (Gossypium hirsutum L.) pollen grains

    International Nuclear Information System (INIS)

    With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar 'Sumian 22' pollen grains were irradiated in vacuum (7.8 x 10-3 Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 x 1016 to 0.78 x 1016 N+/cm2. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N+ ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton

  2. The damaging effects of nitrogen ion beam implantation on upland cotton ( Gossypium hirsutum L.) pollen grains

    Science.gov (United States)

    Yu, Yanjie; Wu, Lijun; Wu, Yuejin; Wang, Qingya; Tang, Canming

    2008-09-01

    With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar "Sumian 22" pollen grains were irradiated in vacuum (7.8 × 10-3 Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 × 1016 to 0.78 × 1016 N+/cm2. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N+ ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton.

  3. Effect of Size Polydispersity on Melting of Charged Colloidal Systems

    Institute of Scientific and Technical Information of China (English)

    陈勇

    2003-01-01

    We introduce simple prescriptions of the Yukawa potential to describe the effect of size polydispersity and macroion shielding effect in charged colloidal systems. The solid-liquid phase boundaries were presented with the Lindemann criterion based on molecular dynamics simulations. Compared with the Robbins-Kremer-Grest simulation results, a deviation of melting line is observed at small λ, which means large macroion screening length. This deviation of phase boundary is qualitatively consistent with the simulation result of the nonlinear Poisson-Boltzmann equation with full many-body interactions. It is found that this deviation of the solid-liquid phase behaviour is sensitive to the screening parameter.

  4. Size-effects on yield surfaces for micro reinforced composites

    DEFF Research Database (Denmark)

    Azizi, Reza; Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2011-01-01

    Size effects in heterogeneous materials are studied using a rate independent higher order strain gradient plasticity theory, where strain gradient effects are incorporated in the free energy of the material. Numerical studies are carried out using a finite element method, where the components...... conditions. The homogenized response of a material with cylindrical reinforcing fibers is analyzed for different values of the internal material length scale and homogenized yield surfaces are presented. While the main focus is on initial yield surfaces, subsequent yield surfaces are also presented...

  5. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.

    Science.gov (United States)

    Parsons, Drew F; Boström, Mathias; Lo Nostro, Pierandrea; Ninham, Barry W

    2011-07-21

    The classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloids, and corresponding theories of electrolytes, are unable to explain ion specific forces between colloidal particles quantitatively. The same is true generally, for surfactant aggregates, lipids, proteins, for zeta and membrane potentials and in adsorption phenomena. Even with fitting parameters the theory is not predictive. The classical theories of interactions begin with continuum solvent electrostatic (double layer) forces. Extensions to include surface hydration are taken care of with concepts like inner and outer Helmholtz planes, and "dressed" ion sizes. The opposing quantum mechanical attractive forces (variously termed van der Waals, Hamaker, Lifshitz, dispersion, nonelectrostatic forces) are treated separately from electrostatic forces. The ansatz that separates electrostatic and quantum forces can be shown to be thermodynamically inconsistent. Hofmeister or specific ion effects usually show up above ≈10(-2) molar salt. Parameters to accommodate these in terms of hydration and ion size had to be invoked, specific to each case. Ionic dispersion forces, between ions and solvent, for ion-ion and ion-surface interactions are not explicit in classical theories that use "effective" potentials. It can be shown that the missing ionic quantum fluctuation forces have a large role to play in specific ion effects, and in hydration. In a consistent predictive theory they have to be included at the same level as the nonlinear electrostatic forces that form the skeletal framework of standard theory. This poses a challenge. The challenges go further than academic theory and have implications for the interpretation and meaning of concepts like pH, buffers and membrane potentials, and for their experimental interpretation. In this article we overview recent quantitative developments in our evolving understanding of the theoretical origins of specific ion, or Hofmeister effects. These are demonstrated

  6. In-vivo dosimetry for field sizes down to 6 × 6 mm2 in shaped beam radiosurgery with microMOSFET.

    Science.gov (United States)

    Sors, A; Cassol, E; Latorzeff, I; Duthil, P; Sabatier, J; Lotterie, J A; Redon, A; Berry, I; Franceries, X

    2014-09-01

    The aim of this study is to evaluate microMOSFET as in-vivo dosimeter in 6 MV shaped-beam radiosurgery for field sizes down to 6 × 6 mm2. A homemade build-up cap was developed and its use with microMOSFET was evaluated down to 6 × 6 mm2. The study with the homemade build-up cap was performed considering its influence on field size over-cover occurring at surface, achievement of the overall process of electronic equilibrium, dose deposition along beam axis and dose attenuation. An optimized calibration method has been validated using MOSFET in shaped-beam radiosurgery for field sizes from 98 × 98 down to 18 × 18 mm2. The method was detailed in a previous study and validated in irregular field shapes series measurements performed on a head phantom. The optimized calibration method was applied to microMOSFET equipped with homemade build-up cap down to 6 × 6 mm2. Using the same irregular field shapes, dose measurements were performed on head phantom. MicroMOSFET results were compared to previous MOSFET ones. Additional irregular field shapes down to 8.8 × 8.8 mm2 were studied with microMOSFET. Isocenter dose attenuation due to the homemade build-up cap over the microMOSFET was near 2% irrespective of field size. Our results suggested that microMOSFET equipped with homemade build-up cap is suitable for in-vivo dosimetry in shaped-beam radiosurgery for field sizes down to 6 × 6 mm2 and therefore that the required build-up cap dimensions to perform entrance in-vivo dosimetry in small-fields have to ensure only partial charge particle equilibrium.

  7. Finite size effects in simulations of protein aggregation.

    Directory of Open Access Journals (Sweden)

    Amol Pawar

    Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.

  8. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  9. Effects of injection beam parameters and foil scattering for CSNS/RCS

    Science.gov (United States)

    Huang, Ming-Yang; Wang, Sheng; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2013-06-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.

  10. Shaking and Blending Effect on Microalgae Concentrates Size

    Directory of Open Access Journals (Sweden)

    LUDI PARWADANI AJI

    2012-03-01

    Full Text Available Microalgae concentrates (paste can be used as an alternative feed to replace live microalgae for aquaculture due to its nutritional value and convenience. However, the clumping of cells and negative buoyancy of algae concentrate can affect bivalve culture as bivalves only capture particles in suspension and ingest a certain size range of particles. This study investigated the effect of shaking and blending treatments on the preparation of food suspensions prepared from algae concentrates (Isochrysis and Pavlova. The results indicated that the higher the shaking time (5, 10, and 15 times or blending time (10, 30, and 60 seconds, the smaller was the diameter of the resulting algae particles. Moreover, the greater the volume of algae concentrate used in preparation, the larger the diameter of algae particles produced. Shaking may be the best option because it is cheaper and simpler. However, all the treatments provided a suitable particle size range for ingestion by bivalves.

  11. Fast and accurate determination of modularity and its effect size

    CERN Document Server

    Treviño, Santiago; Del Genio, Charo I; Bassler, Kevin E

    2014-01-01

    We present a fast spectral algorithm for community detection in complex networks. Our method searches for the partition with the maximum value of the modularity via the interplay of several refinement steps that include both agglomeration and division. We validate the accuracy of the algorithm by applying it to several real-world benchmark networks. On all these, our algorithm performs as well or better than any other known polynomial scheme. This allows us to extensively study the modularity distribution in ensembles of Erd\\H{o}s-R\\'enyi networks, producing theoretical predictions for means and variances inclusive of finite-size corrections. Our work provides a way to accurately estimate the effect size of modularity, providing a $z$-score measure of it and enabling a more informative comparison of networks with different numbers of nodes and links.

  12. Effects of picture size reduction and blurring on emotional engagement.

    Directory of Open Access Journals (Sweden)

    Andrea De Cesarei

    Full Text Available The activity of basic motivational systems is reflected in emotional responses to arousing stimuli, such as natural pictures. The manipulation of picture properties such as size or detail allows for investigation into the extent to which separate emotional reactions are similarly modulated by perceptual changes, or, rather, may subserve different functions. Pursuing this line of research, the present study examined the effects of two types of perceptual degradation, namely picture size reduction and blurring, on emotional responses. Both manipulations reduced picture relevance and dampened affective modulation of skin conductance, possibly because of a reduced action preparation in response to degraded or remote pictures. However, the affective modulation of the startle reflex did not vary with picture degradation, suggesting that the identification of these degraded affective cues activated the neural circuits mediating appetitive or defensive motivation.

  13. Structural asymmetries, relativistic beaming and orientation effects in Lobe-Dominated Quasars

    Science.gov (United States)

    Onuchukwu, C. C.; Ubachukwu, A. A.

    2013-03-01

    We have examined statistically, structural asymmetries and simple relativistic beaming/source orientation in a sample of Lobe-Dominated Quasars (LDQs) using the source size D as orientation parameter; relative core strength R as beaming parameter; arm-length ratio Q, apparent flux ratio R ∗, and bending angle Φ as asymmetric parameters. Our result for Q>1.5, based on the median value data is inconsistent with beaming scenario, where we expect stronger negative correlation for more asymmetric sources, between our beaming parameter R and orientation parameter D than for less asymmetric sources Q≤1.5. This observation indicates that structural asymmetries may depend more on intrinsic factors than beaming. Our kinematic asymmetric model of extra galactic radio sources suggests that larger (possibly older) sources are less asymmetric, which may be interpreted to be indicative of other factors other than beaming as responsible for the observed asymmetries in radio sources.

  14. The Effect of Pretreatment by using Electron Beam Irradiation on Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    A. Kristiani

    2016-04-01

    Full Text Available Oil palm empty fruit bunch (OPEFB is a potential type of lignocellulosic biomass for second-generation bioethanol production. The pretreatment process is an important process in the series of processes to produce bioethanol. This research aims to study the effects of pretreatment process by using electron beam irradiation to OPEFB’s characterization as raw materials for the hydrolysis reaction to produce monomer sugars which will be fermented into ethanol. The untreated and treated OPEFB are characterized in terms of their physical and chemical properties. Analysis results of the compositional analysis by using NREL/TP-510-42618 method show that after pretreatment by using electron beam irradiation, OPEFB's total lignin content is changed little while its cellulose and hemicellulose contents tend to decrease with increasing irradiation dose. X-ray diffraction (XRD analysis shows that there is a decrease of crystallinity compared to untreated OPEFB, except for 200-kGy irradiated OPEFB. The highest decrease of crystallinity was shown by 300-kGy irradiated OPEFB. Further, crystallite sizes of treated OPEFBs are not significantly different from the untreated, except for the 200-kGy irradiated OPEFB. Irradiation pretreatment also increases specific surface area, pore volume, and pore size. The IR spectra analysis show the absorption of cellulose, hemicellulose, and lignin.

  15. Size-effect features on the magnetothermopower of bismuth nanowires

    International Nuclear Information System (INIS)

    Full text: In this work we have studied the magnetic field dependence of the thermopower (TEP) and resistance of glass-coated Bi wires with diameter (d) from 100 nm to at 1.5 μm below 80 K. Nanowires have anomalously large values of the thermopower (+100 μV K.1) and relatively high effective resistivities, but their frequencies of SdH oscillations remain those of bulk Bi. The TEP stays positive in longitudinal magnetic fields up to 15 T, where the surface scattering of charge carriers is negligible. Our analysis shows that the anomalous thermopower has a diffusion origin and is a consequence of the microstructure rather than the result of the strong scattering of electrons by the wire walls. The intensities of field at which the size-effect features appear on the magnetothermopower curves correspond to a value at which the diameter of the hole cyclotron orbit equals d. Size-effect features were observed only for set of nanowires with d = 100-350 nm, where diffusion TEP is dominant. The contribution of the phonon-drag effect was observed in a wire with diameter larger than 400 nm and becomes dominant at diameter of 1 μm. (authors)

  16. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  17. Electron beam irradiation effect on GaN HEMT

    International Nuclear Information System (INIS)

    In this work, GaN HEMTs (High Electron Mobility Transistor) were irradiated by 0.8 and 1.2 MeV electron beams, and the irradiation effects were investigated. The results show that the device damage caused by 0.8 MeV electrons is more serious than that by 1.2 MeV electrons. Saturation drain current increase and threshold voltage negative shift are due to trapped positive charge from ionization in the AlGaN layer and N, Ga vacancy from non-ionizing energy loss in the GaN layer. Electron traps and trapped positive charges from non-ionizing in the AlGaN layer act as trap-assisted-tunneling centers that increase the gate leakage current.(authors)

  18. Modeling the light-travel-time effect on the far-infrared size of IRC +10216

    Science.gov (United States)

    Wright, Edward L.; Baganoff, Frederick K.

    1995-01-01

    Models of the far-infrared emission from the large circumstellar dust envelope surrounding the carbon star IRC +10216 are used to assess the importance of the light-travel-time effect (LTTE) on the observed size of the source. The central star is a long-period variable with an average period of 644 +/- 17 days and a peak-to-peak amplitude of two magnituds, so a large light-travel-time effect is seen at 1 min radius. An attempt is made to use the LTTE to reconcile the discrepancy between the observations of Fazio et al. and Lester et al. regarding the far-infrared source size. This discrepancy is reviewed in light of recent, high-spatial-resolution observations at 11 microns by Danchi et al. We conclude that IRC +10216 has been resolved on the arcminute scale by Fazio et al. Convolution of the model intensity profile at 61 microns with the 60 sec x 90 sec Gaussian beam of Fazio et al. yields an observed source size full width at half maximum (FWHM) that ranges from approximately 67 sec to 75 sec depending on the phase of the star and the assumed distance to the source. Using a simple r(exp -2) dust distribution and the 106 deg phase of the Fazio et al. observations, the LTTE model reaches a peak size of 74.3 sec at a distance of 300 pc. This agrees favorably with the 78 sec x 6 sec size measured by Fazio et al. Finally, a method is outlined for using the LTTE as a distance indicator to IRC +10216 and other stars with extended mass outflows.

  19. Dose calculation of Acuros XB and Anisotropic Analytical Algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size

    International Nuclear Information System (INIS)

    The study aimed to appraise the dose differences between Acuros XB (AXB) and Anisotropic Analytical Algorithm (AAA) in stereotactic body radiotherapy (SBRT) treatment for lung cancer with flattening filter free (FFF) beams. Additionally, the potential role of the calculation grid size (CGS) on the dose differences between the two algorithms was also investigated. SBRT plans with 6X and 10X FFF beams produced from the CT scan data of 10 patients suffering from stage I lung cancer were enrolled in this study. Clinically acceptable treatment plans with AAA were recalculated using AXB with the same monitor units (MU) and identical multileaf collimator (MLC) settings. Furthermore, different CGS (2.5 mm and 1 mm) in the two algorithms was also employed to investigate their dosimetric impact. Dose to planning target volumes (PTV) and organs at risk (OARs) between the two algorithms were compared. PTV was separated into PTV-soft (density in soft-tissue range) and PTV-lung (density in lung range) for comparison. The dose to PTV-lung predicted by AXB was found to be 1.33 ± 1.12% (6XFFF beam with 2.5 mm CGS), 2.33 ± 1.37% (6XFFF beam with 1 mm CGS), 2.81 ± 2.33% (10XFFF beam with 2.5 mm CGS) and 3.34 ± 1.76% (10XFFF beam with 1 mm CGS) lower compared with that by AAA, respectively. However, the dose directed to PTV-soft was comparable. For OARs, AXB predicted a slightly lower dose to the aorta, chest wall, spinal cord and esophagus, regardless of whether the 6XFFF or 10XFFF beam was utilized. Exceptionally, dose to the ipsilateral lung was significantly higher with AXB. AXB principally predicts lower dose to PTV-lung compared to AAA and the CGS contributes to the relative dose difference between the two algorithms

  20. Modeling an elastic beam with piezoelectric patches by including magnetic effects

    CERN Document Server

    Ozer, A O

    2014-01-01

    Models for piezoelectric beams using Euler-Bernoulli small displacement theory predict the dynamics of slender beams at the low frequency accurately but are insufficient for beams vibrating at high frequencies or beams with low length-to-width aspect ratios. A more thorough model that includes the effects of rotational inertia and shear strain, Mindlin-Timoshenko small displacement theory, is needed to predict the dynamics more accurately for these cases. Moreover, existing models ignore the magnetic effects since the magnetic effects are relatively small. However, it was shown recently \\cite{O-M1} that these effects can substantially change the controllability and stabilizability properties of even a single piezoelectric beam. In this paper, we use a variational approach to derive models that include magnetic effects for an elastic beam with two piezoelectric patches actuated by different voltage sources. Both Euler-Bernoulli and Mindlin-Timoshenko small displacement theories are considered. Due to the magne...

  1. Study of effective dose of various protocols in equipment cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M. R.; Maia, A. F. [Universidade Federale de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Batista, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Caldas, L. V. E.; Lara, P. A., E-mail: mrs2206@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  2. Collective effects on the wakefield and stopping power of an ion beam pulse in plasmas

    International Nuclear Information System (INIS)

    A two-dimensional (2D) particle-in-cell simulation is carried out to study the collective effects on the wakefield and stopping power for a hydrogen ion beam pulse propagation in hydrogen plasmas. The dependence of collective effects on the beam velocity and density is obtained and discussed. For the beam velocity, it is found that the collective effects have the strongest impact on the wakefield as well as the stopping power in the case of the intermediate beam velocities, in which the stopping power is also the largest. For the beam density, it is found that at low beam densities, the collective contribution to the stopping power increase linearly with the increase of the beam density, which corresponds well to the results calculated using the dielectric theory. However, at high beam densities, our results show that after reaching a maximum value, the collective contribution to the stopping power starts to decrease significantly with the increase of the beam density. Besides, at high beam densities, the wakefield loses typical V-shaped cone structures, and the wavelength of the oscillation wakefield increases as the beam density increases

  3. Rolling induced size effects in elastic–viscoplastic sheet metals

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2015-01-01

    Rolling processes for which the characteristic length scale reaches into the range where size effects become important are receiving increased interest. In particularly, this is owed to the roll-molding process under development for high-throughput of micron-scale surface features. The study...... presented revolves around the rolling induced effect of visco-plasticity (ranging hot and cold rolling) in combination with strain gradient hardening – including both dissipative and energetic contributions. To bring out first order effects on rolling at small scale, the modeling efforts are limited to flat...... sheet rolling, where a non-homogeneous material deformation takes place between the rollers. Large strain gradients develop where the rollers first come in contact with the sheet, and a higher order plasticity model is employed to illustrate their influence at small scales. The study reveals...

  4. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Gang, E-mail: baigang@njupt.edu.cn [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Zhiguo [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xie, Qiyun; Guo, Yanyan; Li, Wei [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Yan, Xiaobing [College of Electronic and information Engineering, Hebei University, Baoding 071002 (China)

    2015-09-15

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba{sub 0.67}Sr{sub 0.33}TiO{sub 3} above T{sub c} similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  5. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    International Nuclear Information System (INIS)

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties

  6. The effect of nanocrystalline magnetite size on arsenic removal

    Directory of Open Access Journals (Sweden)

    J.T. Mayo et al

    2007-01-01

    Full Text Available Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III and As(V. Finally, this material can be produced with nanoscale dimensions, which enhance both its capacity and removal. The objective of this study is to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe3O4 nanoparticles. We focus on the effect of Fe3O4 particle size on the adsorption and desorption behavior of As(III and As(V. The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 to 12 nm the adsorption capacities for both As(III and As(V increase nearly 200 times. Interestingly, such an increase is more than expected from simple considerations of surface area and suggests that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process, however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for Fe3O4 nanoparticles. This work suggests that Fe3O4 nanocrystals and magnetic separations offer a promising method for arsenic removal.

  7. Effect Sizes for Research Univariate and Multivariate Applications

    CERN Document Server

    Grissom, Robert J

    2011-01-01

    Noted for its comprehensive coverage, this greatly expanded new edition now covers the use of univariate and multivariate effect sizes. Many measures and estimators are reviewed along with their application, interpretation, and limitations. Noted for its practical approach, the book features numerous examples using real data for a variety of variables and designs, to help readers apply the material to their own data. Tips on the use of SPSS, SAS, R, and S-Plus are provided. The book's broad disciplinary appeal results from its inclusion of a variety of examples from psychology, medicine, educa

  8. Application of fractal theory to size effect of disordered materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For disordered materials it is impossible to measure constantmaterial properties using the Euclidian geometrical dimension of the test specimens. Based on the theory of fractal geometry, the fractal dimension of the damaged microstructure is applied to measure the strength and fracture toughness of imitation marbles, which turn out to be scale-invariant material constants. In this paper, the experimental data are treated and interpreted by the theory of fractal geometry. Reasonable results are obtained and the size effects on strength and fracture energy are observed.

  9. Effect of filler size on wear resistance of resin cement.

    Science.gov (United States)

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test.

  10. Extension-matrix representation theory of light beams and Beauregard effect

    CERN Document Server

    Li, Chunfang

    2007-01-01

    A light beam in free space is found to be representable by an integral over a vectorial angular spectrum that is expressed in terms of a two-form angular spectrum and an extension matrix. There exists one freedom to be chosen for the general extension matrix. Two types are considered. In the paraxial approximation, one describes uniformly polarized beams, and the other describes non-uniformly polarized beams, including the axially symmetric polarized beam as a special case. It is shown that the non-uniformly polarized beams bear the Beauregard effect that was speculated more than 40 years ago.

  11. Two-proton small-angle correlations in central heavy-ion collisions: A beam-energy- and system-size-dependent study

    Energy Technology Data Exchange (ETDEWEB)

    Kotte, R. [Forschungszentrum Rossendorf, IKH, PF 510119, Dresden (Germany); Alard, P.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P. [IN2P3/CNRS and Universite Blaise Pascal, Laboratoire de Physique Corpusculaire, Clermont-Ferrand (France); Andronic, A.A. [Institute for Nuclear Physics and Engineering, Bucharest (Romania); Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Basrak, Z.; Caplar, R.; Dzelalija, M.; Gasparic, I. [Rudjer Boskovic Institute Zagreb, Zagreb (Croatia); Benabderrahmane, M.L.; Cordier, E.; Herrmann, N. [Physikalisches Institut der Universitaet Heidelberg, Heidelberg (Germany); Fodor, Z. [Central Research Institute for Physics, Budapest (Hungary); Gobbi, A.; Hartmann, O.N.; Hildenbrand, K.D. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Grishkin, Y. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Hong, B. [Korea University, Seoul (Korea); Kecskemeti, J.; Kim, Y.J.; Kirejczyk, M.; Koczon, P.; Korolija, M.; Kress, T.; Lebedev, A.; Leifels, Y.; Lopez, X.; Merschmeyer, M.; Moesner, J.; Neubert, W.; Pelte, P.; Petrovici, M.; Rami, F.; Reisdorf, W.; De Schauenburg, B.; Schuettauf, A.; Seres, Z.; Sikora, B.; Sim, K.S.; Simion, V.; Siwek-Wilczynska, K.; Smolyankin, V.; Stoicea, G.; Tyminski, Z.; Wagner, P.; Wisniewski, K.; Wohlfarth, D.; Xiao, Z.G.; Yushmanov, Y.; Zhilin, A.

    2005-02-01

    Small-angle correlations of pairs of protons emitted in central collisions of Ca+Ca, Ru+Ru and Au+Au at beam energies from 400 to 1500 MeV per nucleon are investigated with the FOPI detector system at SIS/GSI Darmstadt. Dependences on system size and beam energy are presented which extend the experimental data basis of pp correlations in the SIS energy range substantially. The size of the proton-emitting source is estimated by comparing the experimental data with the output of a final-state interaction model which utilizes either static Gaussian sources or the one-body phase-space distribution of protons provided by the BUU transport approach. The trends in the experimental data, i.e.system size and beam energy dependences, are well reproduced by this hybrid model. However, the pp correlation function is found rather insensitive to the stiffness of the equation of state entering the transport model calculations. (orig.)

  12. Effect of ion and electron beam irradiation on surface morphology and optical properties of PVA

    Institute of Scientific and Technical Information of China (English)

    HM Eyssa; MO sman; SAK andil; MMA bdelrahman

    2015-01-01

    Polyvinyl alcohol (PVA) is a well-known friendly polymer for paper-making, textiles, and a variety of coat-ings, biomedical applications such as artificial pancreas, synthetic vitreous body, wound dressing, artificial skin, and cardiovascular device. In this paper, ion/electron beam is employed to get insight into the irradiation effect on surface morphology and optical properties of PVA polymer. UV-Vis spectra are recorded to investigate the effect of induced defects on the optical band gap and the formed carbon clusters size. Scanning electron microscopy (SEM) is used to relate and investigate surface morphology and optical properties of the target poly-mer with different doses (15, 30 and 60 min). Also, PVA polymer is subjected to theoretical studies by using semi-empirical PM7 quantum chemical method.

  13. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  14. Effects of Ga ion-beam irradiation on monolayer graphene

    International Nuclear Information System (INIS)

    The effects of Ga ion on the single layer graphene (SLG) have been studied by Raman spectroscopy (RS), SEM, and field-effect characterization. Under vacuum conditions, Ga ion-irradiation can induce disorders and cause red shift of 2D band of RS, rather than lattice damage in high quality SLG. The compressive strain induced by Ga ion decreases the crystalline size in SLG, which is responsible for the variation of Raman scattering and electrical properties. Nonlinear out-put characteristic and resistance increased are also found in the I-V measurement. The results have important implications during CVD graphene characterization and related device fabrication

  15. TU-A-BRE-01: The Relative Biological Effectiveness of Proton Beams Relative to Photon Beams

    Energy Technology Data Exchange (ETDEWEB)

    Paganetti, H [Massachusetts General Hospital ' Harvard Medical School, Boston, MA (United States); Stewart, R [University of Washington, Seattle, WA (United States); Carabe-Fernandez, A [Hospital of the University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-15

    Proton therapy patients receive a 10% lower physical dose than the dose administered using photons, i.e. the proton relative biological effectiveness (RBE) is 1.1 in comparison to high-energy photons. The use of a generic, spatially invariant RBE within tumor targets and normal tissue structures disregards a large body of evidence indicating that proton RBE tends to increase with increasing linear energy transfer (LET). Because the doseaveraged proton LET in the distal edge of a spread out Bragg peak (SOBP) is larger than the LET in the plateau region or proximal edge of a SOBP, the use of a spatially invariant RBE is not well justified from a mechanistic point of view. On the other hand, the available clinical data on local tumor control rates and early or late side effects do not provide strong evidence against the continued use of a constant and spatially invariant clinical RBE. The only potential downside to the ongoing use of a constant RBE of 1.1 seems to be that we are missing a potential opportunity to enhance the therapeutic ratio, i.e., design proton therapy treatments in ways that exploit, rather than mitigate, spatial variations in proton RBE. Speakers in this symposium will: 1-review the laboratory and clinical evidence for and against the continued use of a spatially invariant RBE of 1.1, 2-examine some of the putative mechanisms connecting spatial variations in particle LET to estimates of the proton RBE at the molecular, cellular and tissue levels 3-assess the possible clinical significance of incorporating models for spatial variations in proton RBE into treatment planning systems. 4-discuss treatment planning and delivery techniques that will exploit the spatial variations of RBE within proton beams. Learning Objectives: To review laboratory and clinical evidence for and against the continued use of a constant RBE of 1.1 To understand major mechanisms connecting proton LET to RBE at the molecular, cellular and tissue levels. To quantify the

  16. Effect of precipitation procedure and detection technique on particle size distribution of CaCO 3

    Science.gov (United States)

    Martos, C.; Coto, B.; Peña, J. L.; Rodríguez, R.; Merino-Garcia, D.; Pastor, G.

    2010-09-01

    The deposition of inorganic salts ("scales") such as calcium carbonate is an important flow assurance problem during crude oil production. The knowledge of the features of the precipitated solids, mainly the particle size and morphology, is crucial to understand the nature of the solids and to avoid or reduce the effect of their deposition. For instance, the use of additives is one of the most usual procedures to mitigate this problem. Additives interact with scale-forming substances either by increasing the induction time, or by inhibiting crystal growth, changing the morphology of solids. In this work, CaCO 3 was precipitated by two different experimental methods: by mixing sodium carbonate and calcium chloride at 25 °C (method 1), and by changing the pH (method 2). Precipitated solids were analyzed by means of the following techniques: laser diffraction (LD), focused-beam reflectance measurement (FBRM), scanning electron microscopy (SEM), and X-ray diffraction (XRD), in order to select a method for the determination of particle size of solids similar to scales, in order to study these deposits at the beginning of their formation and to evaluate the effect of additives in the scales particle size. Results were compared to those of scale deposits extracted from crude oil pipelines. SEM and XRD characterization showed that both the precipitation methods lead to calcium carbonate as a mixture of calcite, aragonite and vaterite, with rhombohedral morphology for method 1 and spherical for method 2. The effects of temperature, kinetics and Mg 2+ presence in the morphology of CaCO 3 were evaluated. Thus, the solids obtained by static bottle test and real scales are mainly formed by long needle-shaped aragonite. The comparison of the several particle size characterization methods determinates that an LD is a fast and sensitive technique for spherical and non-spherical solids, and it is a convenient technique for the analysis of scales extracted from oil pipelines.

  17. 100-nm-size ferroelectric-gate field-effect transistor with 108-cycle endurance

    Science.gov (United States)

    Van Hai, Le; Takahashi, Mitsue; Zhang, Wei; Sakai, Shigeki

    2015-08-01

    The fabrication process of 100-nm-size ferroelectric-gate field-effect transistors (FeFETs) with high endurance was reported. The FeFETs had Pt/Sr0.8Ca0.2Bi2Ta2O9 (SCBT)/HfO2/Si stacks where the Pt gate length was 100 nm. The FeFETs were successfully fabricated by integrating many technologies such as fine patterning of etching masks by electron-beam lithography, precise anisotropic etching of the gate stacks, well-controlled ion implantation for gate-self-aligned sources and drains, and the sidewall-cover process that we had developed. Good performances of the FeFETs were characterized by the endurance of 108 program-and-erase cycles with negligible threshold-voltage shift and good drain-current retention for 3.98 × 105 s.

  18. The dependence of the gravity effect in elliptic neutron guides on the source size

    International Nuclear Information System (INIS)

    Elliptic neutron guides are expected to be widely used for construction of long neutron beamlines at the future European Spallation Source and other facilities due to their superiour transmission properties compared to conventional straight guides. At the same time, neutrons traveling long distances are subject to the action of gravity that can significantly modify their flight paths. In this work, the influence of gravity on a neutron beam propagating through elliptic guides is studied for the first time in a systematic way with Monte-Carlo simulations. It is shown that gravity leads to significant distortions of the phase space during propagation through long elliptic guides, but this effect can be recovered by a sufficiently large source size. The results of this analysis should be taken into account during design of long neutron instruments at the ESS and other facilities.

  19. Effects of Kurozu concentrated liquid on adipocyte size in rats

    Directory of Open Access Journals (Sweden)

    Nakamura Kumi

    2010-11-01

    Full Text Available Abstract Background Kurozu concentrated liquid (KCL is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats. Methods Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneous adipose tissue, lipid levels in the serum and liver, and the rate of fatty acid excretion were determined. Effects of KCL on pancreatic lipase activity and 3T3-L1 preadipocyte differentiation were investigated in vitro. Results In the KCL group, the average adipocyte size in subcutaneous and perirenal adipose tissues was significantly reduced. The KCL-administered rats displayed greater numbers of small adipocytes in the subcutaneous, perirenal and mesenteric adipose tissues than did rats from the other groups. In the KCL group, the DNA content in subcutaneous adipose tissue was significantly increased. The rate of fatty acid excretion was significantly increased in the KCL group. Furthermore, KCL significantly inhibited pancreatic lipase activity in vitro, and also significantly inhibited fat accumulation and mRNA expression of fatty acid binding protein 2 (aP2 and peroxisome proliferator-activated γ (PPARγ in 3T3-L1 preadipocyte. The levels of serum and liver lipids, the concentration of serum glucose, and the levels of adiponectin were similar among the 3 groups. Conclusion Oral administration of KCL decreases the adipocyte size via inhibition of dietary fat absorption and reductions of PPARγ and aP2 mRNA expression levels in adipocytes.

  20. Effect of body size on toxicity of zinc in neonates of four differently sized Daphnia species

    NARCIS (Netherlands)

    Vesela, S.; Vijverberg, J.

    2007-01-01

    The sensitivity of neonates of four Daphnia species to zinc was tested in relation to their mean body size. These mean sizes of these four Daphnia spp were: D. magna, 0.813 ± 0.055 mm, D.␣pulicaria, 0.745 ± 0.063 mm, D. pulex, 0.645 ± 0.044 mm and D. galeata, 0.611 ± 0.058 mm. A positive relationshi

  1. Size effects in MgO cube dissolution.

    Science.gov (United States)

    Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver

    2015-03-10

    Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution. PMID:25668706

  2. Substructure location and size effects on decentralized model updating

    Science.gov (United States)

    Dong, Xinjun; Zhu, Dapeng; Wang, Yang

    2015-04-01

    To improve the simulation accuracy of the finite-element (FE) model of an as-built structure, measurement data from the actual structure can be utilized for updating the model parameters, which is termed as FE model updating. During the past few decades, most efforts on FE model updating intend to update the entire structure model altogether, while using measurement data from sensors installed throughout the structure. When applied on large and complex structural models, the typical model updating approaches may fail due to computational challenges and convergence issues. In order to reduce the computational difficulty, this paper studies a decentralized FE model updating approach that intends to update one substructure at a time. The approach divides the entire structure into a substructure (currently being instrumented and updated) and the residual structure. The Craig-Bampton transform is adopted to condense the overall structural model. The optimization objective is formulated to minimize the modal dynamic residuals from the eigenvalue equations in structural dynamics involving natural frequencies and mode shapes. This paper investigates the effects of different substructure locations and sizes on updating performance. A space frame example, which is based on an actual pedestrian bridge on Georgia Tech campus, is used to study the substructure location and size effects. Keywords: substructure

  3. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets.

    Science.gov (United States)

    Sichert, Jasmina A; Tong, Yu; Mutz, Niklas; Vollmer, Mathias; Fischer, Stefan; Milowska, Karolina Z; García Cortadella, Ramon; Nickel, Bert; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Urban, Alexander S; Feldmann, Jochen

    2015-10-14

    Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites. PMID:26327242

  4. Preservation effect of high energy electron beam on kyoho grape

    International Nuclear Information System (INIS)

    The Kyoho grapes were kept in cold storage of-0.5 degree C ∼ 0.5 degree C, RH 85% ∼ 95% after irradiation of 400, 700, 1000, 1500, 2500 Gy and SO2 treatment, and the antiseptic effect and storage quality were studied. The result showed that high energy electron beam could control the growth of bacteria, mould, yeast, coliform, alleviate the deterioration of grapes during storage. Irradiation below the dose 1000 Gy can decrease the respiration intensity, prevent the decreasing of titratable acid, ascorbic acid content, and keep higher activity of SOD enzyme. The Vc content was 3.79 mg /100 g after 700 Gy irradiation 90 days, the titratable acid and total soluble sugar content were 0.348%, 11.44%, and the activity of SOD was 14.89 U /g, which was higher than the control significantly (P 2 bleaching spot. Integrate the effects on microorganism control and grape quality, treatment of 700 Gy had the best preservation effect in this study. After preserved for 98 d, the good fruit rate of 700 Gy treatment was 93.33% , significantly higher than other treatments (P < 0.05). (authors)

  5. Computation of Effect Size for Moderating Effects of Categorical Variables in Multiple Regression

    Science.gov (United States)

    Aguinis, Herman; Pierce, Charles A.

    2006-01-01

    The computation and reporting of effect size estimates is becoming the norm in many journals in psychology and related disciplines. Despite the increased importance of effect sizes, researchers may not report them or may report inaccurate values because of a lack of appropriate computational tools. For instance, Pierce, Block, and Aguinis (2004)…

  6. Effect Size: A guide for researchers and users

    Directory of Open Access Journals (Sweden)

    Robert Coe

    2003-06-01

    Full Text Available The present article describes a method to quantify the magnitude of the differences between two measures and/or the degree of the effect of a variable about criteria, and it is named likethe effect size measure, d. Use it use in research and applied contexts provides a quitedescriptive complementary information, improving the interpretation of the results obtained bythe traditional methods that emphasize the statistical significance. Severa forms there are of interpreting the d, and an example taken of an experimental research, is presented to clarify the concepts and necessary calculations. This method is not robust to sorne conditions that they candistort its interpretation, for example, the non normality of the data; alternative methods are mentioned to the statistical d. We ending with sorne conclusions that will notice about the appropriate use of it.

  7. Cost-effective unilateral climate policy design: Size Matters

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph; Fischer, Carolyn; Rosendahl, Knut Einar

    2011-07-01

    Given the bleak prospects for a global agreement on mitigating climate change, pressure for unilateral abatement is increasing. A major challenge is emissions leakage. Border carbon adjustments and output-based allocation of emissions allowances can increase effectiveness of unilateral action but introduce distortions of their own. We assess antileakage measures as a function of abatement coalition size. We first develop a partial equilibrium analytical framework to see how these instruments affect emissions within and outside the coalition. We then employ a computable general equilibrium model of international trade and energy use to assess the strategies as the coalition grows. We find that full border adjustments rank first in global cost-effectiveness, followed by import tariffs and output-based rebates. The differences across measures and their overall appeal decline as the abatement coalition grows. In terms of cost, the coalition countries prefer border carbon adjustments; countries outside the coalition prefer output-based rebates.(Author)

  8. Synergistic effects obtained by combined electron beam and microwave irradiation

    International Nuclear Information System (INIS)

    A new method based on microwave energy addition to accelerated electron beam energy for material processing was developed. The main idea of this work was to combine the advantages of both electron beam (EB) irradiation and microwave (MW) irradiation, i.e. EB high irradiation efficiency and MW high selectivity and volumetric heating, for material processing. The first expected and obtained result was the decrease of the required EB absorbed dose. Thus, the ionizing radiation costs could be reduced and the application of low intensity EB accelerators will become very economically attractive in the material-processing field. Another expected and obtained result was the improvement of material properties. A special designed facility consisting of an EB accelerator of 5.5 MeV and a MW source of 2.45 GHz and 1.6 kW that performs combined EB and MW irradiation is presented. There are three fields of interest under our investigation for application of combined EB and MW irradiation: environmental waste treatment (sewage sludge, flue gases), sterilization (food residuals, hospital wastes) and food quality and safety. Both, EB (ionizing radiation) and MW (non-ionizing) material processing are based on the radiation ability to alter physical and chemical properties of materials. Irradiation with electron beams was put forth as a very effective method for material processing because can produce ions, electrons, and free radicals at any temperature in the solid, liquid and gas. EB processes are very effective for material processing but the required absorbed dose is still high for pollutants removal, sterilization, vulcanization, etc. MW processing of materials is a relatively new technology that provides new approaches to improve the physical properties of materials and to produce new materials and microstructures that cannot be achieved by other methods. MW processes are less effective for material processing than EB processes but the cost of microwave systems is considerably

  9. Effects of modulated electron beams and cavities on reditrons

    International Nuclear Information System (INIS)

    The reditron has been shown to be an efficient, high-power, single-mode, monochromatic microwave generator in a virtual cathode configuration. The authors studied the use of premodulated electron beams and cavities in a reditron to enhance the efficiency of microwave production and electromagnetic mode selectivity, respectively. They found that electron beam current modulation of only 15% can significantly increase the generation of microwaves by the oscillating virtual cathode. Their 2-D particle-in-cell simulations show that modulation of the electron beam at the oscillating frequency of the virtual cathode in a reditron can increase the microwave power by 40%. Further, it can also provide frequency fine tuning when the electron beam is modulated at a slightly off-resonant frequency. They demonstrated in computer simulations that a 2.0 MeV electron beam can be modulated at a 15% level in a 15-cm long cavity when the appropriate cavity mode is excited

  10. Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies

    CERN Document Server

    Sailer, André; Lohse, Thomas

    2013-01-10

    The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

  11. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques

    Indian Academy of Sciences (India)

    Nishat Arshi; Junqing Lu; Chan Gyu Lee; Jae Hong Yoon; Bon Heun Koo; Faheem Ahmed

    2013-10-01

    This paper reports effect of thickness on the properties of titanium (Ti) film deposited on Si/SiO2 (100) substrate using two different methods: d.c. magnetron sputtering and electron beam (e-beam) evaporation technique. The structural and morphological characterization of Ti film were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). XRD pattern revealed that the films deposited using d.c. magnetron sputtering have HCP symmetry with preferred orientation along (002) plane, while those deposited with e-beam evaporation possessed fcc symmetry with preferred orientation along (200) plane. The presence of metallic Ti was also confirmed by XPS analysis. FESEM images depicted that the finite sized grains were uniformly distributed on the surface and AFM micrographs revealed roughness of the film. The electrical resistivity measured using four-point probe showed that the film deposited using d.c. magnetron sputtering has lower resistivity of ∼13 cm than the film deposited using e-beam evaporation technique, i.e. ∼60 cm. The hardness of Ti films deposited using d.c. magnetron sputtering has lower value (∼7.9 GPa) than the film deposited using e-beam technique (∼9.4 GPa).

  12. Nosewitness Identification: Effects of Lineup Size and Retention Interval

    Science.gov (United States)

    Alho, Laura; Soares, Sandra C.; Costa, Liliana P.; Pinto, Elisa; Ferreira, Jacqueline H. T.; Sorjonen, Kimmo; Silva, Carlos F.; Olsson, Mats J.

    2016-01-01

    Although canine identification of body odor (BO) has been widely used as forensic evidence, the concept of nosewitness identification by human observers was only recently put to the test. The results indicated that BOs associated with male characters in authentic crime videos could later be identified in BO lineup tests well above chance. To further evaluate nosewitness memory, we assessed the effects of lineup size (Experiment 1) and retention interval (Experiment 2), using a forced-choice memory test. The results showed that nosewitness identification works for all lineup sizes (3, 5, and 8 BOs), but that larger lineups compromise identification performance in similarity to observations from eye- and earwitness studies. Also in line with previous eye- and earwitness studies, but in disagreement with some studies on odor memory, Experiment 2 showed significant forgetting between shorter retention intervals (15 min) and longer retention intervals (1-week) using lineups of five BOs. Altogether this study shows that identification of BO in a forensic setting is possible and has limits and characteristics in line with witness identification through other sensory modalities. PMID:27303317

  13. Community Size Effects on Epidemic Spreading in Multiplex Social Networks

    Science.gov (United States)

    Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie

    2016-01-01

    The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people’s reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals’ alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals’ risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals’ protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes. PMID:27007112

  14. Atomic size effects studied by transport in single silicide nanowires

    Science.gov (United States)

    Miccoli, I.; Edler, F.; Pfnür, H.; Appelfeller, S.; Dähne, M.; Holtgrewe, K.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2016-03-01

    Ultrathin metallic silicide nanowires with extremely high aspect ratios can be easily grown, e.g., by deposition of rare earth elements on semiconducting surfaces. These wires play a pivotal role in fundamental research and open intriguing perspectives for CMOS applications. However, the electronic properties of these one-dimensional systems are extremely sensitive to atomic-sized defects, which easily alter the transport characteristics. In this study, we characterized comprehensively TbSi2 wires grown on Si(100) and correlated details of the atomic structure with their electrical resistivities. Scanning tunneling microscopy (STM) as well as all transport experiments were performed in situ using a four-tip STM system. The measurements are complemented by local spectroscopy and density functional theory revealing that the silicide wires are electronically decoupled from the Si template. On the basis of a quasiclassical transport model, the size effect found for the resistivity is quantitatively explained in terms of bulk and surface transport channels considering details of atomic-scale roughness. Regarding future applications the full wealth of these robust nanostructures will emerge only if wires with truly atomically sharp interfaces can be reliably grown.

  15. Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes

    NARCIS (Netherlands)

    Damstra, Janalt; Fourie, Zacharias; Huddleston Slater, James J R; Ren, Yijin

    2010-01-01

    INTRODUCTION: The aims of this study were to determine the linear accuracy of 3-dimensional surface models derived from a commercially available cone-beam computed tomography (CBCT) dental imaging system and volumetric rendering software and to investigate the influence of voxel resolution on the li

  16. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and Pka

    International Nuclear Information System (INIS)

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (Pka) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of Pka using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / Pka these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm2; protocol [GX2]: 54.8 μSv/507 mGy cm2. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. Pka values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  17. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and P{sub ka}

    Energy Technology Data Exchange (ETDEWEB)

    Batista, W. O.; Linhares de O, M. V. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Soares, M. R.; Maia, A. F. [Universidade Federal de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Caldas, L. V. E., E-mail: wilsonottobatista@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P{sub ka}) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P{sub ka} using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P{sub ka} these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm{sup 2}; protocol [GX2]: 54.8 μSv/507 mGy cm{sup 2}. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P{sub ka} values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  18. Gaussian Beam Effect on Equivalence Principle Test Using Free-Fall Interferometry

    Institute of Scientific and Technical Information of China (English)

    严琴; 周泽兵; 龙长才; 罗俊; 张元仲; 聂玉昕

    2002-01-01

    We discuss the Gaussian beam effect on the test of the equivalence principle using a free-fall interferometer.A two-lens assembly is used to improve the propagating character of the laser beam, and the beam radius is collimated to about 3.0 mm. The analysis shows that the gravity acceleration difference induced by the Gaussian beam effect could be less than 10-15 g for our double free-fall experimental design, but it would be 10-9 g for the absolute measurement of the gravity acceleration with the usual single free-fall method.

  19. Proximity effect of electron beam lithography on single-electron transistors

    Indian Academy of Sciences (India)

    Shu-Fen Hu; Kuo-Dong Huang; Yue-Min Wan; Chin-Lung Sung

    2006-07-01

    A simple method, based on the proximity effect of electron beam lithography, alleviated by exposing various shapes in the pattern of incident electron exposures with various intensities, was applied to fabricate silicon point-contact devices. The drain current (d) of the device oscillates against gate voltage. The electrical characteristics of the single-electron transistor were observed to be consistent with the expected behavior of electron transport through gated quantum dots, up to 150 K. The dependence of the electrical characteristics on the dot size reveals that the d oscillation follows from the Coulomb blockade by poly-Si grains in the poly-Si dot. The method of fabrication of this device is completely compatible with complementary metal-oxide-semiconductor technology, raising the possibility of manufacturing large-scale integrated nanoelectronic systems.

  20. Effect of electron beam irradiation on the structure and optical properties of nickel oxide nanocubes

    Indian Academy of Sciences (India)

    P A Sheena; K P Priyanka; N Aloysius Sabu; S Ganesh; Thomas Varghese

    2015-08-01

    This work reports the effect of electron beam (EB) irradiation on the structure and optical properties of nanocrystalline nickel oxide (NiO) cubes. NiO nanocubes were synthesized by the chemical precipitation method. The characterization was carried out by employing analytical techniques like X-ray diffraction, transmission electron microscopy, UV–visible and photoluminescence (PL) spectroscopy. The present investigation found that non-stoichiometry, defects and particle size variation caused by EB irradiation have a great influence on optical band gap, blue shift and band modification of absorption and PL spectra. Moreover, EB irradiation can result enhanced optical absorption performance and photo-activity in NiO nanocubes for optoelectronics and photo-catalytic applications. The study of International Commission on Illumination chromaticity diagram indicates that NiO can be developed as a suitable phosphor material for the application in near ultraviolet excited colour LEDs.

  1. Artificial fish schools : Collective effects of school size, body size, and body form

    NARCIS (Netherlands)

    Kunz, H.; Hemelrijk, C.K.

    2003-01-01

    Individual-based models of schooling in fish have demonstrated that, via processes of self-organization. artificial fish may school in the absence of a leader or external stimuli, using local information only. We study for the first time how body size and body form of artificial fish affect school f

  2. Indentation size effect and the plastic compressibility of glass

    International Nuclear Information System (INIS)

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO3 units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  3. Effect of tube size on electromagnetic tube bulging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The commercial finite code ANSYS was employed for the simulation of the electromagnetic tube bulging process. The finite element model and boundary conditions were thoroughly discussed. ANSYS/EMAG was used to model the time varying electromagnetic field in order to obtain the radial and axial magnetic pressure acting on the tube. The magnetic pressure was then used as boundary conditions to model the high velocity deformation of various length tube with ANSYS/LSDYNA. The time space distribution of magnetic pressure on various length tubes was presented. Effect of tube size on the distribution of radial magnetic pressure and axial magnetic pressure and high velocity deformation were discussed. According to the radial magnetic pressure ratio of tube end to tube center and corresponding dimensionless length ratio of tube to coil, the free electromagnetic tube bulging was studied in classification. The calculated results show good agreements with practice.

  4. Effect of chip size on steam explosion pretreatment of softwood.

    Science.gov (United States)

    Ballesteros, I; Oliva, J M; Navarro, A A; González, A; Carrasco, J; Ballesteros, M

    2000-01-01

    Although considerable progress has been made in technology for converting lignocellulosic biomass into ethanol, substantial opportunities still exist to reduce production costs. In biomass pretreatment, reducing milling power is a technological improvement that will substantially lower production costs for ethanol. Improving sugar yield from hemicellulose hydrolysis would also reduce ethanol production costs. Thus, it would be desirable to test innovative pretreatment conditions to improve the economics by reducing electrical power of the milling stage and by optimizing pretreatment recovery of hemicellulose, as well as to enhance cellulose hydrolysis. The objective of this study was to evaluate the effect of chip size (2-5, 5-8, and 8-12 mm) on steam-explosion pretreatment (190 and 210 degrees C, 4 and 8 min) of softwood (Pinus pinaster).

  5. Effects of dust size distribution in ultracold quantum dusty plasmas

    Institute of Scientific and Technical Information of China (English)

    Qi Xue-Hong; Duan Wen-Shan; Chen Jian-Min; Wang Shan-Jin

    2011-01-01

    The effect of dust size distribution in ultracold quantum dusty plasmas are investigated in this paper. How the dispersion relation and the propagation velocity for the quantum dusty plasma vary with the system parameters and the different dust distribution are studied. It is found that as the Fermi temperature of the dust grains increases the frequency of the wave increases for large wave number dust acoustic wave. The quantum parameter of Hd also increases the frequency of the large wave number dust acoustic wave. It is also found that the frequency ω0 and the propagation velocity v0 of quantum dust acoustic waves all increase as the total number density increases. They are greater for unusual dusty plasmas than those of the usual dusty plasma.

  6. Thinking outside the box: fluctuations and finite size effects

    Science.gov (United States)

    Villamaina, Dario; Trizac, Emmanuel

    2014-05-01

    The isothermal compressibility of an interacting or non-interacting system may be extracted from the fluctuations of the number of particles in a well-chosen control volume. Finite size effects are prevalent and should be accounted for to obtain a meaningful, thermodynamic compressibility. In the traditional computational setup, where a given simulation box is replicated with periodic boundary conditions, we study particle number fluctuations outside the box (i.e. when the control volume exceeds the box itself), which bear relevant thermodynamic information. We also investigate the related problem of extracting the compressibility from the structure factor in the small wave-vector limit (k → 0). The calculation should be restricted to the discrete set of wave-vectors k that are compatible with the periodicity of the system, and we assess the consequences of considering other k values, a widespread error among beginners.

  7. Non-local damage rheology and size effect

    Science.gov (United States)

    Lyakhovsky, V.

    2011-12-01

    We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time

  8. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Directory of Open Access Journals (Sweden)

    Dmitry Kolomenskiy

    Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  9. Non-stationary Effects In Space-charge Dominated Electron Beams

    CERN Document Server

    Agafonov, A V; Tarakanov, V P

    2004-01-01

    Problems of non-linear dynamics of space charge dominated electron beams in plane and in coaxial electron guns are discussed from the point of view of non-stationary behaviour of beams. The results of computer simulations of beam formation are presented for several simple plane diode geometries and for the gun with large compression of annular beam. Emphasised is non-stationary behaviour combined with edge and hysteresis effects. Non-stationary effects in crossed electron and magnetic field are considered from the point of view a development of schemes of intense electron beam formation for compact accelerators and RF-devices. The results of computer simulation of beam formation inside coaxial guns are described under condition of secondary self-sustaining emission. Possibilities of electron storage and capture due to transient processes are discussed. Work supported by RFBR under grant 03-02-17301.

  10. Effects of size and interactions on the magnetic behaviour of elliptical (0 0 1)Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, M. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)]. E-mail: maj.hanson@fy.chalmers.se; Brucas, R. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Kazakova, O. [National Physical Laboratory, TW11 0LW Teddington, Middlesex (United Kingdom)

    2007-09-15

    Arrays of elliptical particles with aspect ratio 1:3 and short axes 50, 100 and 150 nm were prepared by electron-beam lithography and ion-beam milling of epitaxial (0 0 1)Fe films of thicknesses 10 and 20 nm. The domain state of an individual particle imaged by magnetic force microscopy in zero field after demagnetization was observed to change from being bi-domain or multidomain (MD) to stable single domains (SD) as the lateral size and film thickness were decreased. The critical size for SD formation was found to be close to the actual lateral sizes of 100 nmx300 nm and 150 nmx450 nm for the thicknesses of 20 and 10 nm, respectively. Only in the 10 nm thick ellipses of lateral size 100 nmx300 nm, the magnetization reversal may take place through coherent rotation. For all other investigated samples, the experimental switching field is lower than what would be required for this process.

  11. Electron beam irradiation effects on xanthan gum. Rheological aspects

    International Nuclear Information System (INIS)

    The paper describes the application of electron beam irradiation to xanthum gum as used as ingredient by the food or cosmetics industry in order to establish their radiosensitivity. The edible powder of xanthum gum samples were irradiated in 1mm thick layers of Petri dishes covered by a transparent PVC of films using an EB accelerator Dynamitron (Radiation Dynamics Inc.) model JOB 188, dose rate 11.17 kGy/s, 0.637 MeV, 1.78 mA, 5 kGy per passage, 3.36 m min-1 with doses of 5, 10, 20 and 50kGy. One % aqueous solutions from irradiated and non-irradiated xanthum gum were prepared and the radiation effects were measured following viscosity changes at 25 deg. C using a Brookfield viscometer; model DVIII, spindel L, with Rheocalc software. Viscosity measurements were performed according to our previous experience and the results are the mean of at least 3 experiments

  12. THE EFFECT OF FLY ASH ON FLEXURAL CAPACITY CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Amir Mohammad Amiri

    2016-06-01

    Full Text Available This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC beam. A commercial finite element (FE software ABAQUS has been used to perform a structural behavior of RGPC beam. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental test and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occurring, the actual deflection of RGPC beam from experimental test results were slightly different from the results of ABAQUS. And there is good agreement between the crack patterns of fly-ash based geopolymer concrete generated by FE analysis using ABAQUS, and those in experimental data.

  13. Collective Effect Studies of a Beta Beam Decay Ring

    CERN Document Server

    Hansen, Christian

    2011-01-01

    The Beta Beam, the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring called the Decay Ring (DR), is the basis of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the DR's ion intensity and of its duty factor (the filled ratio of the ring). Different methods, including analytical calculations and multiparticle tracking simulations, were used to estimate the DR's potential to contain enough ions in as small a part of the ring as needed for the sensitivities. Studies of transverse blow up of the beams due to resonance wake fields show that a very challenging upper limit of the transverse broadband impedance is required to avoid instabilities and beam loss.

  14. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  15. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  16. Cellular effects after exposure to mixed beams of ionizing radiation

    OpenAIRE

    Staaf, Elina

    2012-01-01

    Mixed beams of ionizing radiation in our environment originate from space, the bedrock and our own houses. Radiotherapy patients treated with boron neutron capture therapy or with high energy photons are also exposed to mixed beams of gamma radiation and neutrons. Earlier investigations have reported additivity as well as synergism (a greater than additive response) when combining radiations of different linear energy transfer. However, the outcome seemed to be dependent on the experimental s...

  17. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Science.gov (United States)

    Van Renterghem, W.; Uytdenhouwen, I.

    2016-08-01

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 1020 n/cm2 and 4.74 × 1020 n/cm2 at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 1021/m³ to 9 × 1022/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock.

  18. Effect of ocular implants of different materials on the dosimetry of external beam radiation therapy

    International Nuclear Information System (INIS)

    Purpose: To study the attenuation and scattering effects of ocular implants, made from different materials, on the dose distributions of a 6 MV photon beam, and 6, 9, and 12 MeV electron beams used in orbital radiotherapy. Methods and Materials: Central axis depth-dose measurements were performed in a polystyrene phantom with embedded spherical ocular implants using film dosimetry of a 6 MV photon beam and electron beams of 6, 9, and 12 MeV energy. The isodose distributions were also calculated by a computerized treatment planning system using computerized tomography (CT) scans of a polystyrene phantom that had silicone, acrylic, and hydroxyapatite ocular implants placed into it. Results: Electron beam dose distributions display distortions both on the measured and calculated data. This effect is most accentuated for the hydroxyapatite implants, for which the transmissions through ocular implants are on the order of 93% for the 6 MV photon beam, and range from 60% for 6 MeV electrons to 90% for 12 MeV electrons. Conclusion: We studied the effect of ocular implants of various materials, embedded in a polystyrene phantom, on the dose distributions of a 6 MV photon beam, and 6, 9, and 12 MeV electron beams. Our investigations show that while 6 MV photons experience only a few percent attenuation, lower energy electron beam with 60% transmission is not a suitable choice of treating tumors behind the ocular implants

  19. Effects of grain size and specimen size on small punch test of type 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Miniature specimen test technique has been extensively studied for quantifying the properties of bulk materials. In this paper small punch test (SPT) is used to clarify the effects of specimen thickness (t), grain size (d) and ratio of thickness to grain size (t/d) on mechanical properties of 316L austenitic stainless steel (SS). Five sheet of 316L SS with the same texture but different thicknesses and grain sizes were prepared using rolling and heating treatment technique. Effective SPT yield strength was measured, and then used to correlate with conventional tensile test by empirical equation. The results show that the SPT is sensitive not only to differences in the thickness, but also to changes in the grain size and value of t/d. The present work provides information that enhance the understanding of reliability of SPT in analysis of the mechanical properties of small specimens and bulk materials. (author)

  20. SIZE EFFECT AND GEOMETRICAL EFFECT OF SOLIDS IN MICRO-INDENTATION TEST

    Institute of Scientific and Technical Information of China (English)

    魏悦广; 王学峥; 赵满洪; 郑哲敏; 白以龙

    2003-01-01

    Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. At the same time, at micron or sub-micron scale, another effect, which is referred to as the geometrical size effects such as crystal grain size effect, thin film thickness effect, etc., also influences the measured material hardness. However, the trends are at odds with the size-independence implied by the conventional elastic-plastic theory. In the present research, the strain gradient plasticity theory (Fleck and Hutchinson) is used to model the composition effects (size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting. The phenomena of the "pile-up" and "sink-in" appeared in the indentation test for the polycrystal materials are also discussed. Meanwhile, the micro-indentation experiments for the polycrystal A1 and for the Ti/Si3N4 thin film/substrate system are carried out. By comparing the theoretical predictions with experimental measurements, the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.

  1. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  2. FLEXURAL VIBRATIONS BAND GAPS IN PERIODIC BEAMS INCLUDING ROTARY INERTIA AND SHEAR DEFORMATION EFFECTS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the idea of the phononic crystals, the beams with periodic structure are designed.Flexural vibration through such periodic beams composed of two kinds of materials is studied. The emphasis is laid on the effects of rotary inertia and shear deformation. Based on the vibration equation, plane wave expansion method is provided. The acceleration frequency responses of such beams with finite structure are simulated by the finite element method. The frequency ranges of sharp drops in the calculated acceleration frequency response curves are in good agreement with those in the band structures. The findings will be significant in the application of the periodic beams.

  3. Experimental research of electron beam instability on the Doppler anomalous effect

    International Nuclear Information System (INIS)

    Beam instability caused by the Doppler anomalous effect (DAE) at electron beam interaction with the decelerating electrodynamic system (a resonator with a single-thread spiral and a resonator with a space-periodic structure) placed in the external homogeneous field are studied experimentally to investigate main mechanisms of instability of charged particle beams. Such general properties of DAE as resonance conditions for instability excitation, increase of the internal energy of oscillators (Larmor and Langmuir) during radiation, energy ratios for slow cyclotron and plasma waves of an electron beam are studied. Good agreement between experimental and theoretical results is obtained

  4. Charge Stripper Effects on Beam Optics in 180-degree Bending Section of RISP Linac

    CERN Document Server

    Jang, Ji-Ho; Song, Jeong Seog

    2016-01-01

    The RAON, a superconducting linear accelerator for RISP (Rare Isotope Science Project), will use a charge stripper in order to increase the charge states of the heavy ions for effective acceleration in the higher energy part of the linac. The charge stripper affects the beam qualities by scattering when the heavy ions go through the charge stripper. Moreover we have to select and accelerate proper charge states between 77+ and 81+ for uranium beam case in order to satisfy the beam power requirement at an IF (Inflight Fragmentation) target. This work focuses on the beam optics affected by the charge stripper in the 180-dgree bending section.

  5. Electron-beam curing of epoxy resins: effect of alcohols on cationic polymerization

    Indian Academy of Sciences (India)

    N N Ghosh; G R Palmese

    2005-10-01

    Electron-beam (e-beam) induced polymerization of epoxy resins proceeds via cationic mechanism in presence of suitable photoinitiator. Despite good thermal properties and significant processing advantages, epoxy-based composites manufactured using e-beam curing suffer from low compressive strength, poor interlaminar shear strength, and low fracture toughness. A detailed understanding of the reaction mechanism involving e-beam induced polymerization is required to properly address the shortcomings associated with ebeam curable resin systems. This work investigated the effect of hydroxyl containing materials on the reaction mechanism of e-beam induced cationic polymerization of phenyl glycidyl ether (PGE). The alcohols were found to play important roles in polymerization. Compared to hydroxyl group of aliphatic alcohol, phenolic hydroxyl group is significantly less reactive with the oxonium active centre, generated during e-beam induced polymerization of epoxy resin system.

  6. Effect of shape of elastic beam hair on its adhesion with wavy surfaces

    Science.gov (United States)

    Hemthavy, Pasomphone; Yazaki, Takehiko; Wang, Boqing; Sekiguchi, Yu; Takahashi, Kunio

    2014-08-01

    An analysis on a tapered elastic beam whose side surface partially adhered to a rigid surface was carried out to study the effect of the beam shape on the gripping force. Considering the total energy of the system, the relation between the gripping force and the displacement was obtained analytically in closed form. The analytical result is significant because it provides an intuitive picture of the gripping force. Although, an individually tapered beam can generate less gripping force for flat or slightly wavy surfaces, compared to a rectangular beam, the analysis result suggests that the tapered beam has more ability to absorb surface waviness. This result can be applied to a multi-beam structure.

  7. Effects of childhood body size on breast cancer tumour characteristics

    OpenAIRE

    Li, Jingmei; Humphreys, Keith; Eriksson, Louise; Czene, Kamila; Liu, Jianjun; Hall, Per

    2010-01-01

    Introduction Although a role of childhood body size in postmenopausal breast cancer risk has been established, less is known about its influence on tumour characteristics. Methods We studied the relationships between childhood body size and tumour characteristics in a Swedish population-based case-control study consisting of 2,818 breast cancer cases and 3,111 controls. Our classification of childhood body size was derived from a nine-level somatotype. Relative risks were estimated by odds ra...

  8. Threshold effects and firm size: the case of firing costs

    OpenAIRE

    Schivardi, Fabiano; Torrini, Roberto

    2004-01-01

    We study the role of employment protection legislation (EPL) in determining firm size distribution. In many countries the provisions of EPL are more stringent for firms above certain size thresholds. We construct a simple model that shows that the smooth relation between size and growth probability is broken in proximity of the thresholds at which EPL applies differentially. We use a comprehensive longitudinal dataset of all Italian firms, a country with an important threshold at 15 employees...

  9. Size speed bias or size arrival effect-How judgments of vehicles' approach speed and time to arrival are influenced by the vehicles' size.

    Science.gov (United States)

    Petzoldt, Tibor

    2016-10-01

    Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles.

  10. Size speed bias or size arrival effect-How judgments of vehicles' approach speed and time to arrival are influenced by the vehicles' size.

    Science.gov (United States)

    Petzoldt, Tibor

    2016-10-01

    Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles. PMID:27428866

  11. Numerical Investigation of Size and Structure Effect on Tensile Characteristics of Symmetric and Asymmetric CNTs

    Directory of Open Access Journals (Sweden)

    Mahnaz Zakeri

    2016-06-01

    Full Text Available In this research, the influence of structure on the tensile properties of single- walled carbon nanotubes (CNTs is evaluated using molecular mechanics technique and finite element method. The effects of diameter, length and chiral angle on elastic modulus and Poisson’s ratio of armchair, zigzag and chiral structures are investigated. To simulate the CNTs, a 3D FEM code is developed using the ANSYS commercial software. Considering the carbon-carbon covalent bonds as connecting load-carrying beam elements, and the atoms as joints of the elements, CNTs are simulated as space-frame structures. The atomic potentials are estimated using harmonic simple functions. The numerical results show that by increasing the diameter and length to a certain amount, the size effect on tensile behavior of modeled nanotubes is omitted. In fact, for nanotubes with diameter over 2 nm and length over 36.5 nm the chiral angle is the only effective factor on the tensile properties. Also, it is found that the structure has a little effect on the elasticity modulus, which is about 4%. However, Poisson’s ratio can be affected significantly with chiral angle. Asymmetric structures with angles θ

  12. Influence of the transverse beam sizes on the ep -> ep. gamma. cross section at the HERA and a FUTURE CERN electron-proton collider

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Polityko, S.I.; Serbo, V.G.; Schiller, A.

    1988-06-01

    In the process ep -> ep..gamma.., proposed for luminosity measurements at HERA, impact parameters occur which are larger than the transverse beam sizes in the ep-colliders in HERA and a CERN option (LHC+LEP). This decreases the number of observed photons compared to the standard QED calculation. The difference is larger than 10% at photon energies E/sub ..gamma../ < 0.4E/sub e/ for the CERN option and E/sub ..gamma../ < 0.01E/sub e/ for HERA. (orig.)

  13. Laser Plasmas : Effect of rippled laser beam on excitation of ion acoustic wave

    Indian Academy of Sciences (India)

    Nareshpal Singh Saini; Tarsem Singh Gill

    2000-11-01

    Growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in collisional unmagnetised plasma is investigated. From numerical computation, it is observed that self-focusing of main beam as well as ripple determine the growth dynamics of ripple with the distance of propagation. The effect of growing ripple on excitation of ion acoustic wave (IAW) has also been studied

  14. Analysis of beam plasma instability effects on incoherent scatter spectra

    Directory of Open Access Journals (Sweden)

    M. A. Diaz

    2010-12-01

    Full Text Available Naturally Enhanced Ion Acoustic Lines (NEIALs detected with Incoherent Scatter Radars (ISRs can be produced by a Langmuir decay mechanism, triggered by a bump on tail instability. A recent model of the beam-plasma instability suggests that weak-warm beams, such those associated with NEIAL events, might produce Langmuir harmonics which could be detected by a properly configured ISR. The analysis performed in this work shows that such a beam-driven wave may be simultaneously detected with NEIALs within the baseband signal of a single ISR. The analysis shows that simultaneous detection of NEIALs and the first Langmuir harmonic is more likely than simultaneous detection of NEIALs and enhanced plasma line. This detection not only would help to discriminate between current NEIAL models, but could also aid in the parameter estimation of soft precipitating electrons.

  15. Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten;

    2006-01-01

    Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time.......Ge-nanoclusters were formed by electron-beam irradiation in Ge-doped silica-on-silicon thin films. The size and density of the clusters can be controlled by the irradiation intensity and time....

  16. Effects of Meaning and Symmetry on Judgments of Size

    DEFF Research Database (Denmark)

    Reber, Rolf; Christensen, Bo T.; Meier, Beat

    2014-01-01

    Research has shown that people judge words as having bigger font size than non-words. This finding has been interpreted in terms of processing fluency, with higher fluency leading to judgments of bigger size. If so, symmetric numbers (e.g., 44) which can be processed more fluently are predicted...

  17. Polychaete Annelid Biomass Size Spectra: The Effects of Hypoxia Stress

    Directory of Open Access Journals (Sweden)

    Fangyuan Qu

    2015-01-01

    Full Text Available Quantitative benthic samples were taken during spring and summer at three locations on the Louisiana continental shelf from 2004 to 2012 to assess the influence of hypoxia on the mean sizes (wet weight of polychaete annelid worms. While the mean body size over the entire study of 64 samples was 3.99 ± 4.66 mg wet weight per individual, the mean ranged from 2.97 ± 2.87 mg during consistently hypoxic conditions (2 mg/L. The variations in size within assemblages were estimated from conventional biomass size spectra (BSS and normalized biomass size spectra (NBSS across a broad range of oxygen concentrations. The decline in size was due to the elimination of large species under hypoxic conditions (<2 mg/L, not a reduction in size within species. At “severe” levels of hypoxia (<1 mg/L, the smallest species also declined in abundance, whereas the ubiquitous “medium-sized” Paraprionospio pinnata flourished. These results suggest that there will be enhanced selection for small sizes and species with enlarged branchial palps such as those in P. pinnata if, as predicted, hypoxia becomes more commonplace in time and space worldwide.

  18. Effect Size Measures for Mediation Models: Quantitative Strategies for Communicating Indirect Effects

    Science.gov (United States)

    Preacher, Kristopher J.; Kelley, Ken

    2011-01-01

    The statistical analysis of mediation effects has become an indispensable tool for helping scientists investigate processes thought to be causal. Yet, in spite of many recent advances in the estimation and testing of mediation effects, little attention has been given to methods for communicating effect size and the practical importance of those…

  19. Neutron capture effects and pre-atmospheric sizes of meteoroids

    Institute of Scientific and Technical Information of China (English)

    WANG Daode; LIN Yangting

    2003-01-01

    Excesses of 80Kr and 82Kr, produced by secondary neutron capture effects of 79Br and 81Br, were observed in meteorites. Epithermal neutron flux, Jn (30-300 eV), and fast neutron flux, Jn( > 5 MeV), were determined according to reactions of 79Br(n, γβ80Kr, 81Br(n, γβ82Kr, and 24Mg(n, α)21Ne, respectively. Cosmogenic noble gases of several ordinary chondrites fell in China indicate a positive relationship between Jn (30-300 eV)/Jn ( > 5 MeV) ratio and Jn (30-300 eV). This suggests large pre-atmospheric sizes of the meteorites, and a considerable fraction of the secondary neutrons were slowed down to epithermal energy. According to its relationship with Jn (30-300 eV)/Jn ( > 5 MeV) ratio, the pre-atmospheric minimum radii and masses of several Chinese chondrites were estimated as below: Zhaodong: 60 cm, 3200 kg; Laochengzhen: 23 cm, 490 kg; Suizhou: 31 cm, 450 kg; Xi Ujimgin: 22 cm, 160 kg; Dongtai: 21 cm, 140 kg.

  20. Indentation size effect in spherical and pyramidal indentations

    International Nuclear Information System (INIS)

    The indentation size effect (ISE) is studied for spherical and pyramidal indentations on a Ni poly-crystal. The indentation experiments were conducted using a Berkovich geometry as well as different spherical indenters with radii of 0.38, 3.8 and 51.0 μm. A strong ISE is observed for the material yielding a higher hardness at smaller depths or smaller sphere radii. The transition from elastic to plastic behaviour is associated with a pop-in in the load-displacement curve, in contrast to the conventional elastic-plastic transition as discussed by Tabor. The indentation response is modelled using Tabor's approach in conjunction with the uniaxial macroscopic stress-strain behaviour for calculating the statistically stored dislocation density for a given indenter geometry. The geometrically necessary dislocation (GND) density is calculated using a modified Nix/Gao approach, whereas the storage volume for GNDs is used as a parameter for the measured depth dependence of hardness. It will be shown that the ISE for both pyramidal and spherical indentations is related and can be understood within the same given framework. The indentation response of metallic materials can thus be modelled from pop-in to macroscopic hardness