WorldWideScience

Sample records for beam scanning system

  1. Electrostatic ion beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Harper, G.C.; Curtis, W.D.

    1978-04-01

    An electrostatic scanning system has been designed and built to uniformly implant a 1 cm/sup 2/ sample with a charged particle beam. The full angular scan capability for a 2 MeV beam is 0.5 degrees at 6 kV p-p. The design of the system is extremely simple so it is very compact, easy to operate, and has shown very good reliability.

  2. A scanned beam THz imaging system for medical applications

    Science.gov (United States)

    Taylor, Zachary D.; Li, Wenzao; Suen, Jon; Tewari, Priyamvada; Bennett, David; Bajwa, Neha; Brown, Elliott; Culjat, Martin; Grundfest, Warren; Singh, Rahul

    2011-10-01

    THz medical imaging has been a topic of increased interest recently due largely to improvements in source and detector technology and the identification of suitable applications. One aspect of THz medical imaging research not often adequately addressed is pixel acquisition rate and phenomenology. The majority of active THz imaging systems use translation stages to raster scan a sample beneath a fixed THz beam. While these techniques have produced high resolution images of characterization targets and animal models they do not scale well to human imaging where clinicians are unwilling to place patients on large translation stages. This paper presents a scanned beam THz imaging system that can acquire a 1 cm2 area with 1 mm2 pixels and a per-pixel SNR of 40 dB in less than 5 seconds. The system translates a focused THz beam across a stationary target using a spinning polygonal mirror and HDPE objective lens. The illumination is centered at 525 GHz with ~ 125 GHz of response normalized bandwidth and the component layout is designed to optically co-locate the stationary source and detector ensuring normal incidence across a 50 mm × 50 mm field of view at standoff of 190 mm. Component characterization and images of a test target are presented. These results are some of the first ever reported for a short standoff, high resolution, scanned beam THz imaging system and represent an important step forward for practical integration of THz medical imaging where fast image acquisition times and stationary targets (patients) are requisite.

  3. Modelling and calibration of the laser beam-scanning triangulation measurement system

    NARCIS (Netherlands)

    Wang, Guoyu; Zheng, Bing; Li, Xin; Houkes, Z.; Regtien, P.P.L.

    2002-01-01

    We present an approach of modelling and calibration of an active laser beam-scanning triangulation measurement system. The system works with the pattern of two-dimensional beam-scanning illumination and one-dimensional slit-scanning detection with a photo-multiplier tube instead of a CCD camera. By

  4. Modelling and calibration of the laser beam-scanning triangulation measurement system

    NARCIS (Netherlands)

    Wang, G.Y.; Zheng, Bing; Li, Xin; Houkes, Z.; Regtien, Paulus P.L.

    2002-01-01

    We present an approach of modelling and calibration of an active laser beam-scanning triangulation measurement system. The system works with the pattern of two-dimensional beam-scanning illumination and one-dimensional slit-scanning detection with a photo-multiplier tube instead of a CCD camera. By

  5. Galvanometer beam-scanning system for laser fiber drawing.

    Science.gov (United States)

    Oehrle, R C

    1979-02-15

    A major difficulty in using a laser to draw optical fibers from a glass preform has been uniformally distributing the laser's energy around the melt zone. Several systems have evolved in recent years, but to date the most successful technique has been the off-axis rotating lens system (RLS). The inability of this device to structure efficiently and dynamically the heat zone longitudinally along the preform has restricted its use to preform of less than 8-mm diameter. A new technique reported here employs two orthogonal mounted mirrors, driven by galvanometers to distribute the laser energy around the preform. This system can be retrofitted into the RLS to replace the rotating lens element. The new system, the galvanometer scanning system (GSS), operates at ten times the rotational speed of the RLS and can instantaneously modify the melt zone. The ability of the GSS to enlarge the melt zone reduces the vaporization rate at the surface of the preform permitting efficient use of higher laser power. Experiments i dicate that fibers can be drawn from significantly larger preforms by using the expanded heat zone provided by the GSS.

  6. Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Nami; Bert, Christoph; Chaudhri, Naved; Gemmel, Alexander; Schardt, Dieter; Durante, Marco; Rietzel, Eike [GSI Helmholtz Centre for Heavy Ion Research GmbH, Planckstrasse 1, 64291 Darmstadt (Germany)], E-mail: n.saito@gsi.de

    2009-08-21

    The technical performance of an integrated three-dimensional carbon ion pencil beam tracking system that was developed at GSI was investigated in phantom studies. Aim of the beam tracking system is to accurately treat tumours that are subject to respiratory motion with scanned ion beams. The current system provides real-time control of ion pencil beams to track a moving target laterally using the scanning magnets and longitudinally with a dedicated range shifter. The system response time was deduced to be approximately 1 ms for lateral beam tracking. The range shifter response time has been measured for various range shift amounts. A value of 16 {+-} 2 ms was achieved for a water equivalent shift of 5 mm. An additional communication delay of 11 {+-} 2 ms was taken into account in the beam tracking process via motion prediction. Accuracy of the lateral beam tracking was measured with a multi-wire position detector to {<=}0.16 mm standard deviation. Longitudinal beam tracking accuracy was parameterized based on measured responses of the range shifter and required time durations to maintain a specific particle range. For example, 5 mm water equivalence (WE) longitudinal beam tracking results in accuracy of 1.08 and 0.48 mm WE in root mean square for time windows of 10 and 50 ms, respectively.

  7. Simulation of a 36 h solar particle event at LLUMC using a proton beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Coutrakon, G.B. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States)]. E-mail: gcoutrakon@dominion.llumc.edu; Benton, E.R. [Oklahoma State University, Department of Physics, 1110 S. Innovation Way, Stillwater, OK 74074 (United States); Gridley, D.S. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Hickey, T. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Hubbard, J. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Koss, P. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Moyers, M.F. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Nelson, G.A. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Pecaut, M.J. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Sanders, E. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States); Shahnazi, K. [Loma Linda University Medical Center, Department of Radiation Medicine, 11234 Anderson Street, Loma Linda, CA 92354 (United States)

    2007-08-15

    A radiation biology experiment was performed in the research room of the proton therapy facility at Loma Linda University Medical Center to simulate the proton exposure produced by a solar particle event. The experiment used two scanning magnets for X and Y deflection of the proton beam and covered a usable target area of nearly 1 m{sup 2}. The magnet scanning control system consisted of Lab View 6.0 software running on a PC. The goal of this experiment was to study the immune system response of 48 mice simultaneously exposed to 2 Gy of protons that simulated the dose rate and energy spectrum of the September 1989 solar particle event. The 2 Gy dose was delivered to the entrance of the mice cages over 36 h. Both ion chamber and TLD measurements indicated that the dose delivered was within 9% of the intended value. A spot scanning technique using one spot per accelerator cycle (2.2 s) was used to deliver doses as low as 1 {mu}Gy per beam spot. Rapid beam termination (less than 5 ms) on each spot was obtained by energizing a quadrupole in the proton synchrotron once the dose limit was reached for each spot. A parallel plate ion chamber placed adjacent to the mice cages provided fluence (or dose) measurements for each beam energy during each hour of the experiment. An intensity modulated spot scanning technique can be used in a variety of ways for radiation biology and a second experiment is being designed with this proton beam scanning system to simultaneously irradiate four groups of mice with different dose rates within the 1 m{sup 2} area. Also, large electronic devices being tested for radiation damage have been exposed in this beam without the use of patch fields. The same scanning system has potential application for intensity modulated proton therapy (IMPT) as well. This paper discusses the beam delivery system and dosimetry of the irradiation.

  8. Development of a photothermal double beam laser scanning system in biopharmaceutical applications

    Energy Technology Data Exchange (ETDEWEB)

    Faubel, W; Heissler, St; Schlegel, M [Institute of Functional Interfaces, Karlsruhe Institute of Technology, Herrmann- von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Gotter, B; Neubert, R H H, E-mail: werner.faubel@kit.ed [Institute of Pharmacy, Martin-Luther-University, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale (Germany)

    2010-03-01

    Photothermal beam deflection (PDS) has been applied to obtain information regarding the penetration of methylorange (MO) and ditranol (DI) into artificial membranes. The measurable depth range is 56 {mu}m. Photothermal beam deflection allows on the one hand depth resolved investigations by the use of a frequency modulation of the excitation beam to reach deeper regions even in opaque sample, and on the other hand lateral imaging. To explore the potential use of a novel photothermal double beam laser scanning system, measurements in drug delivery analysis have been used for depth profiling and imaging into an artificial membrane, which represents stratum corneum or bovine hoof, appropriately.

  9. The CNAO dose delivery system for modulated scanning ion beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, S.; Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Garella, M. A.; Donetti, M. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125, Italy and Centro Nazionale Adroterapia Oncologica, Pavia 27100 (Italy); Bourhaleb, F.; Monaco, V.; Hosseini, M. A.; Peroni, C.; Sacchi, R.; Cirio, R. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125, Italy and Physics Department, University of Torino, Torino 10125 (Italy); Ciocca, M.; Mirandola, A. [Centro Nazionale Adroterapia Oncologica, Pavia 27100 (Italy)

    2015-01-15

    Purpose: This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. Methods: CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. Results: The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing

  10. The CNAO dose delivery system for modulated scanning ion beam radiotherapy.

    Science.gov (United States)

    Giordanengo, S; Garella, M A; Marchetto, F; Bourhaleb, F; Ciocca, M; Mirandola, A; Monaco, V; Hosseini, M A; Peroni, C; Sacchi, R; Cirio, R; Donetti, M

    2015-01-01

    This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing comparable performances and

  11. Multi-frequency AOM for multi-beam laser scanning exposure system

    Science.gov (United States)

    Shinada, Hidetoshi

    2016-10-01

    Digital printing systems recorded on films or computer to plates (CTPs) have been required to improve their productivity and image quality. Under the circumstance, a printing technology of the multi-beam laser scanning for the drum capstan system, which is almost the same as optics configuration as the flat bed system, was developed using a newly developed multi-frequency acousto-optic modulator (AOM) as a key device instead of ultra-fast scanning devices toward a main scan direction. The multi-frequency AOM was developed with phased array-type transducers, achieving a wider bandwidth of over 160 MHz. The design consisted of a simultaneous three beams generation with interlace scan to avoid the beat effect by adjacent Doppler-shifted beams, which consequently attained the fastest recording speed of 5.0 mm/s compared with 2.0-3.0 mm/s of existing systems in those days. Furthermore, a couple of critical parameters of the multi-frequency AOM are studied, for example, a treatment of third-order intermodulation and also beat effect in connection with photosensitive media. As a result, the necessity of interlaces scanning to obtain good image quality without beat effect and also to allow a lower laser power to apply is proposed.

  12. Beam characteristics in two different proton uniform scanning systems: A side-by-side comparison

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporov, Dmitri; Hsi Wen; Farr, Jonathan [Indiana University Integrated Science and Accelerator Technology Hall, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408 (United States); ProCure Treatment Centers, Inc., 420 North Walnut Street, Bloomington, Indiana 47401 (United States); Westdeutsches Protonentherapiezentrum, Hufelandstr. 55, Essen, NRW 45147 (Germany)

    2012-05-15

    Purpose: To compare clinically relevant dosimetric characteristics of proton therapy fields produced by two uniform scanning systems that have a number of similar hardware components but employ different techniques of beam spreading. Methods: This work compares two technologically distinct systems implementing a method of uniform scanning and layer stacking that has been developed independently at Indiana University (IU) and by Ion Beam Applications, S. A. (IBA). Clinically relevant dosimetric characteristics of fields produced by these systems are studied, such as beam range control, peak-to-entrance ratio (PER), lateral penumbra, field flatness, effective source position, precision of dose delivery at different gantry angles, etc. Results: Under comparable conditions, both systems controlled beam range with an accuracy of 0.5 mm and a precision of 0.1 mm. Compared to IBA, the IU system produced pristine peaks with a slightly higher PER (3.23 and 3.45, respectively) and smaller, symmetrical, lateral in-air penumbra of 1 mm compared to about 1.9/2.4 mm in the inplane/crossplane (IP/CP) directions for IBA. Large field flatness results in the IP/CP directions were similar: 3.0/2.4% for IU and 2.9/2.4% for IBA. The IU system featured a longer virtual source-to-isocenter position, which was the same for the IP and CP directions (237 cm), as opposed to 212/192 cm (IP/CP) for IBA. Dose delivery precision at different gantry angles was higher in the IBA system (0.5%) than in the IU system (1%). Conclusions: Each of the two uniform scanning systems considered in this work shows some attractive performance characteristics while having other features that can be further improved. Overall, radiation field characteristics of both systems meet their clinical specifications and show comparable results. Most of the differences observed between the two systems are clinically insignificant.

  13. A beam monitoring and validation system for continuous line scanning in proton therapy

    Science.gov (United States)

    Klimpki, G.; Psoroulas, S.; Bula, C.; Rechsteiner, U.; Eichin, M.; Weber, D. C.; Lomax, A.; Meer, D.

    2017-08-01

    Line scanning represents a faster and potentially more flexible form of pencil beam scanning than conventional step-and-shoot irradiations. It seeks to minimize dead times in beam delivery whilst preserving the possibility of modulating the dose at any point in the target volume. Our second generation proton gantry features irradiations in line scanning mode, but it still lacks a dedicated monitoring and validation system that guarantees patient safety throughout the irradiation. We report on its design and implementation in this paper. In line scanning, we steer the proton beam continuously along straight lines while adapting the speed and/or current frequently to modulate the delivered dose. We intend to prevent delivery errors that could be clinically relevant through a two-stage system: safety level 1 monitors the beam current and position every 10 μs. We demonstrate that direct readings from ionization chambers in the gantry nozzle and Hall probes in the scanner magnets provide required information on current and position, respectively. Interlocks will be raised when measured signals exceed their predefined tolerance bands. Even in case of an erroneous delivery, safety level 1 restricts hot and cold spots of the physically delivered fraction dose to  ±36~mGy (±2% of 2~Gy biologically). In safety level 2—an additional, partly redundant validation step—we compare the integral line profile measured with a strip monitor in the nozzle to a forward-calculated prediction. The comparison is performed between two line applications to detect amplifying inaccuracies in speed and current modulation. This level can be regarded as an online quality assurance of the machine. Both safety levels use devices and functionalities already installed along the beamline. Hence, the presented monitoring and validation system preserves full compatibility of discrete and continuous delivery mode on a single gantry, with the possibility of switching between modes during the

  14. Design & Reality of CAD/CAM in Laser Beam Scanning Manufacturing System

    Institute of Scientific and Technical Information of China (English)

    SUN Jianjun; SUN Huilai; ZHAO Fangfang; LIN Shuzhong; QI Xiangyang

    2006-01-01

    In laser beam scanning manufacturing (LSM) system the PLT file was adopted as design file. The data of design file were processed by CAD software programmed. And the control model was adopted DEA control model. The DEA model was concerned with not only the distance of the two swaying mirrors, the distance between the swaying mirror and convex lens, the mirror swaying angle and the lens focal length but also the lens central height, the lens convex radius and the medium refractive index. It improved the precision and reduced the error in LBM system. The application of CAD/CAM system in LSM improved the LSM manufacturing velocity and manufacturing quality.

  15. Double acousto-optic deflector system for increased scanning range of laser beams.

    Science.gov (United States)

    Kastelik, J-C; Dupont, S; Yushkov, K B; Molchanov, V Ya; Gazalet, J

    2017-09-01

    A new laser scanning system is presented based on two wide-band acousto-optic deflectors. The interaction medium is tellurium dioxide. Anisotropic interactions take place under two different tangential phase matching configurations in such a way that the acousto-optic bandwidths add up. We demonstrate the feasibility of such a cascade deflection system for the wavelength of λ=514nm. The total frequency bandwidth is Δf=100MHz, equally distributed between the two acousto-optic deflectors. The total angular scan at the output is Δθ=4.4° leading to 125 resolvable spots for a 1mm truncated Gaussian beam. Copyright © 2017. Published by Elsevier B.V.

  16. On-line Scanned Probe Microscopy Transparently Integrated with DualBeam SEM/FIB Systems

    Science.gov (United States)

    Ignatov, Andrey; Komissar, Anatoly; Lewis, Aaron

    2013-03-01

    A multifunctional scanning probe microscope (SPM) will be described that transparently integrates with a DualBeam SEM/FIB System. This is done without perturbing any of the capabilities of the Dual Beam in terms of detectors, gas injectors, analyzers etc while allowing for a completely exposed probe tip to be imaged online even with immersion objectives at working distances as short as 4 mm. In addition, the completely free motion of the rotation axis of the stage is maintained with the probe tip at the eucentric point, this makes it possible to orient the sample in any direction on any structure The X and Y scan range of the atomic force microscopic (AFM) imaging achieves 35 microns with rough motion over 10 millimeters. This permits the SPM to tilt into position perpendicular to the SEM or FIB or under an angle for rapid and accurate placement of the probe tip at or on structures such as biopolymeric materials that are nanometric in X, Y and Z extent. Thus, not only can a structure's nanometric height be accurately profiled but this can be accomplished with the on-line excellence of SEM for X, Y metrology. Furthermore, electron and ion beam sensitive samples can be imaged and characterized by AFM at high resolution.

  17. Historical review and future trends of scanning optical systems for laser-beam printers

    Science.gov (United States)

    Minoura, Kazuo

    1993-12-01

    Flying spot scanning technologies providing a constant velocity were presented in 1963 and in 1969, although the concept of `f-0' was not yet explained definitely. After the middle of the 1970s, laser diodes became worthy of notice and a compact-sized laser beam printer was developed. Along with that development, the `f-0 lens' was defined based on the optical design theory in 1979 and also popular-type `f-0 lenses' were developed through the analytical design method. On the other hand, the author and colleagues worked out the best way of enabling metal light deflectors to apply in a popular-type system in 1984; which means the optical system of `deflection error compensation' with the simple composition including a toric lens. The epoch-making optical system raised the productivity of laser beam printers and also has been providing high-definition image printing. As for recent trends, low-priced and compact- sized printers are expanding their share of the market. The author predicts that future laser scanning technologies will be focused in low-priced and process-simplified printers looking closely into high-definition image quality.

  18. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  19. Investigation of tomosynthetic perfusion measurements using the scanning-beam digital x-ray (SBDX) system

    Science.gov (United States)

    Nett, Brian E.; Chen, Guang-Hong; Van Lysel, Michael S.; Betts, Timothy; Speidel, Michael; Rowley, Howard A.; Aagaard Kienitz, Beverly D.; Mistretta, Charles A.

    2004-10-01

    The feasibility of making regional perfusion measurements using a tomosynthetic digital subtraction angiography (TDSA) acquisition has been demonstrated. The study of tomosynthetic perfusion measurements was motivated by the clinical desire for perfusion measurements in an interventional angiography suite. These pilot studies were performed using the scanning-beam digital x-ray (SBDX) system which is an inverse-geometry imaging device which utilizes an electromagnetically-scanned x-ray source, and a small CdTe direct conversion photon counting detector. The scanning electron source was used to acquire planar-tomographic images of a 12.5 x 12.5 cm field of view at a frame rate of 15 frames/sec during dynamic contrast injection. A beagle animal model was used to evaluate the tomosynthetic perfusion measurements. A manual bolus injection of iodinated contrast solution was used in order to resolve the parameters of the contrast pass curve. The acquired planar tomosynthetic dataset was reconstructed with a simple back-projection algorithm. Digital subtraction techniques were used to visualize the change in contrast agent intensity in each reconstructed plane. Given the TDSA images, region of interest based analysis was used in the selection of the image pixels corresponding to the artery and tissue bed. The mean transit time (MTT), regional cerebral blood volume (rCBV) and regional cerebral blood flow (rCBF) were extracted from the tomosynthetic data for selected regions in each of the desired reconstructed planes. For the purpose of this study, the arterial contrast enhancement curve was fit with a combination of gamma variate terms, and the MTT was calculated using a deconvolution based on the singular value decomposition (SVD). The results of the contrast pass curves derived with TDSA were consistent with the results from perfusion measurements as implemented with CT acquisition.

  20. Development of a new ridge filter with honeycomb geometry for a pencil beam scanning system in particle radiotherapy

    Science.gov (United States)

    Tansho, R.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    A ridge filter (RGF), a beam energy modulation device, is usually used for particle radiotherapy with a pencil beam scanning system. The conventional RGF has a one-dimensional (1D) periodic laterally stepped structure in orthogonal plane with a central beam direction. The energy of a beam passing through the different thicknesses of the stepped RGF is modulated. Although the lateral pencil beam size is required to cover the several stepped RGF units to modulate its energy as designed, the current trend is to decrease lateral beam size to improve the scanning system. As a result, the beam size becomes smaller than the size of the individual RGF unit. The aim of this study was to develop a new RGF with two-dimensional (2D) honeycomb geometry to simultaneously achieve both a decrease in lateral beam size and the desired energy modulation. The conventional 1D-RGF and the 2D-RGF with honeycomb geometry were both designed so that the Bragg peak size of a 79 MeV/u carbon ion pencil beam in water was 1 mm RMS in the beam direction. To validate the design of the 2D-RGF, we calculated depth dose distributions in water using a simplified Monte Carlo method. In the calculations, we decreased the lateral pencil beam size at the entrance of the RGF and investigated the threshold of lateral beam size with which the pencil beam can reproduce the desired Bragg peak size for each type of RGF. In addition, we calculated lateral dose distributions in air downstream from the RGF and evaluated the inhomogeneity of the lateral dose distributions. Using the 2D-RGF, the threshold of lateral beam size with which the pencil beam can reproduce the desired Bragg peak size was smaller than that using the 1D-RGF. Moreover, the distance from the RGF at which the lateral dose distribution becomes uniform was shorter using the 2D-RGF than that using the 1D-RGF. These results indicate that when the periodic length of both RGFs is the same, the 2D-RGF allows use of a pencil beam with smaller lateral

  1. Characterizing a Proton Beam Scanning System for Monte Carlo Dose Calculation in Patients

    Science.gov (United States)

    Grassberger, C; Lomax, Tony; Paganetti, H

    2015-01-01

    The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low–energy electrons (protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations. PMID:25549079

  2. Control on Electron Beam Scanning Track

    Institute of Scientific and Technical Information of China (English)

    王学东; 姚舜

    2004-01-01

    In order to use electron beam as a movable welding heat source and whose energy distribution along its moving trace can be controlled, a method of electron beam scanning track and scanning mode control was put forward. Based on it, the electron beam scanning track and scanning mode can be edited at will according to actual requirements, and the energy input of each point of the scanning track can be controlled. In addition, the scanning frequency and points control, real time adjusting of the scanning track etc. were explained. This method can be used in electron beam brazing, surface modification, surface heat treatment etc.

  3. Calculation of Uniform of Beam Scanning

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    For the electron beam application, it is always scanned by a dipole magnet. The uniform of the scanning has great influence for some application, such as the irradiation of the thyristor. There are two methods for improving the scanning uniform:

  4. Diffraction analysis of beams for barcode scanning

    Science.gov (United States)

    Eastman, Jay M.; Quinn, Anna M.

    1991-02-01

    Laser based bar code scanners utilize large f/# beams to attain a large depth of focus. The intensity cross-section of the laser beam is generally not uniform but is frequently approximated by a Gaussian intensity profile. In the case of laser diodes the beam cross-section is a two dimensional distribution. It is well known that the focusing properties of large f/# Gaussian beams differ from the predictions of ray tracing techniques. Consequently analytic modeling of laser based bar code scanning systems requires techniques based on diffraction rather than on ray tracing in order to obtain agreement between theory and practice. The line spread function of the focused laser beam is generally the parameter of interest due to the one-dimensional nature of the bar code symbol. Some bar code scanners utilize an anamorphic optical system to produce a beam that that maintains an elliptical cross-section over an extended depth of focus. This elliptical beam shape is used to average over voids and other printing defects that occur in real world symbols. Since the scanner must operate over the maximum possible depth of field the beam emergent from the scanner must be analyzed in both its near field and far field regions in order to properly model the performance of the scanner.

  5. 196 Beams in a Scanning Electron Microscope

    NARCIS (Netherlands)

    Mohammadi-Gheidari, A.

    2013-01-01

    In this thesis, for the first time ever, it is demonstrated that 196 beams out of a single electron source can be finely focused onto the sample using the electron optics of a standard single beam SEM. During this PhD thesis, a multi beam scanning electron (MBSEM) was designed and built. The thesis

  6. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. R.; Poenisch, F.; Lii, M.; Sawakuchi, G. O.; Titt, U.; Bues, M.; Song, X.; Zhang, X.; Li, Y.; Ciangaru, G.; Li, H.; Taylor, M. B.; Suzuki, K.; Mohan, R.; Gillin, M. T.; Sahoo, N. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2013-04-15

    Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm{sup 2}/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients

  7. SU-D-BRE-02: Development and Commissioning of A Gated Spot Scanning Proton Beam Therapy System with Real-Time Tumor-Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, K; Matsuura, T.; Takao, S.; Nihongi, H.; Yamada, T.; Miyamoto, N.; Shimizu, S.; Shirato, H. [Hokkaido University, Sapporo, Hokkaido (Japan); Matsuda, K.; Nakamura, F.; Umezawa, M.; Hiramoto, K. [Hitachi, Ltd., Chiyoda-ku, Tokyo (Japan)

    2014-06-01

    Purpose: A novel Proton Beam Therapy system has been developed by integrating Real-Time Tumor-Tracking (RTRT) and discrete spot scanning techniques. The system dedicated for spot scanning delivers significant advantages for both clinical and economical points of view. The system has the ability to control dose distribution with spot scanning beams and to gate the beams from the synchrotron to irradiate moving tumors only when the actual positions of them are within the planned position. Methods: The newly designed system consists of a synchrotron, beam transport systems, a compact and rotating gantry system with robotic couch and two orthogonal sets of X-ray fluoroscopes. The fully compact design of the system has been realized by reducing the maximum energy of the beam to 220MeV, corresponding to 30g/cm2 range and the number of circulating protons per synchrotron operation cycle, due to higher beam utilization efficiency in spot scanning. To improve the irradiation efficiency in the integration of RTRT and spot scanning, a new control system has been developed to enable multiple gated irradiation per operation cycle according to the gating signals. After the completion of the equipment installation, beam tests and commissioning has been successfully performed. Results: The basic performances and beam characteristics through the synchrotron accelerator to iso-center have been confirmed and the performance test of the irradiation nozzle and whole system has been appropriately completed. CBCT image has been checked and sufficient quality was obtained. RTRT system has been demonstrated and realized accurate dose distributions for moving targets. Conclusion: The gated spot scanning Proton Beam Therapy system with Real-Time Tumor-Tracking has been developed, successfully installed and tested. The new system enables us to deliver higher dose to the moving target tumors while sparing surrounding normal tissues and to realize the compact design of the system and facility

  8. Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan

    CERN Document Server

    Zhao, Wei; Wang, Luyao

    2015-01-01

    We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) simulations, experimental CBCT phantom data, and \\emph{in vivo} human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU within either projection domain or image domain. Further test shows the method is robust with respect to segmentation procedure.

  9. Fast 2D phantom dosimetry for scanning proton beams

    NARCIS (Netherlands)

    Boon, SN; van Luijk, P; Schippers, JM; Meertens, H; Denis, JM; Vynckier, S; Medin, J; Grusell, E

    1998-01-01

    A quality control system especially designed for dosimetry in scanning proton beams has been designed and tested. The system consists of a scintillating screen (Gd2O2S:Tb), mounted at the beam-exit side of a phantom, and observed by a low noise CCD camera with a long integration time. The purpose of

  10. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  11. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  12. Scanning beam antenna conceptual design for 20/30 GHz satellite systems

    Science.gov (United States)

    Smetana, J.; Sorbello, R.; Crosswell, W. F.

    1983-01-01

    The configuration described is one of four antenna system configurations developed using a variety of monolithic microwave integrated circuit module arrangements and optical systems. A parametric analysis is expected to produce a data base for the selection of design points for a variety of applications. Soon to be accomplished is the design concept of the active (lens) array, which will take into consideration such factors as, coupling effects, the space-fed power divider network design, input bias and control layout, investigation of thermal distribution, and analysis of module failure (graceful degradation).

  13. Development of electron optical system using annular pupils for scanning transmission electron microscope by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Yasumoto, Tsuchika; Tanaka, Takeo [Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Kawasaki, Tadahiro; Ichihashi, Mikio [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikuta, Takashi [Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan)

    2012-02-01

    Annular pupils for electron optics were produced using a focused ion beam (FIB), enabling an increase in the depth of focus and allowing for aberration-free imaging and separation of the amplitude and phase images in a scanning transmission electron microscope (STEM). Simulations demonstrate that an increased focal depth is advantageous for three-dimensional tomography in the STEM. For a 200 kV electron beam, the focal depth is increased to approximately 100 nm by using an annular pupil with inner and outer semi-angles of 29 and 30 mrad, respectively. Annular pupils were designed with various outer diameters of 40-120 {mu}m and the inner diameter was designed at 80% of the outer diameter. A taper angle varying from 1 Degree-Sign to 20 Degree-Sign was applied to the slits of the annular pupils to suppress the influence of high-energy electron scattering. The fabricated annular pupils were inspected by scanning ion beam microscopy and scanning electron microscopy. These annular pupils were loaded into a STEM and no charge-up effects were observed in the scintillator projection images recorded by a CCD camera.

  14. NA49/NA61: results and plans on beam energy and system size scan at the CERN SPS

    CERN Document Server

    Gazdzicki, M

    2011-01-01

    This paper presents results and plans of the NA49 and NA61/SHINE experiments at the CERN Super Proton Synchrotron concerning the study of relativistic nucleus-nucleus interactions. First, the NA49 evidence for the energy threshold of creating quark-gluon plasma, the onset of deconfinement, in central lead-lead collisions around 30A GeV is reviewed. Then the status of the NA61/SHINE systematic study of properties of the onset of deconfinement is presented. Second, the search for the critical point of strongly interacting matter undertaken by both experiments is discussed. NA49 measured large fluctuations at the top SPS energy, 158A GeV, in collisions of light and medium size nuclei. They seem to indicate that the critical point exists and is located close to baryonic chemical potential of about 250 MeV. The NA61/SHINE beam energy and system size scan started in 2009 will provide evidence for the existence of the critical point or refute the interpretation of the NA49 fluctuation data in terms of the critical p...

  15. Speckle analysis in laser scanning display system

    Institute of Scientific and Technical Information of China (English)

    Hong Chang; Wei Huang; Fugui Yang; Hai Ming; Jianping Xie

    2009-01-01

    The theory of speckle formation in laser scanning display system is established based on the averaging effect of eye response as laser beam scanning through an eye resolution spot.It is analyzed that speckle reduction can be obtained by averaging states of speckle during scanning.The theoretical results show that a smaller correlation length of screen surface and the narrowing of laser beam in scanning direction can reduce speckle contrast for this system.

  16. A patient-specific aperture system with an energy absorber for spot scanning proton beams: Verification for clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Keisuke, E-mail: k.yasui.20@west-med.jp [Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya-shi, Aichi-ken 462-8508, Japan and Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daikouminami, Higashi-ku, Nagoya-shi, Aichi-ken 461-8673 (Japan); Toshito, Toshiyuki; Omachi, Chihiro; Kibe, Yoshiaki; Hayashi, Kensuke; Shibata, Hiroki; Tanaka, Kenichiro; Nikawa, Eiki; Asai, Kumiko; Shimomura, Akira; Kinou, Hideto; Isoyama, Shigeru; Mizoe, Jun-etsu [Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya-shi, Aichi-ken 462-8508 (Japan); Fujii, Yusuke; Takayanagi, Taisuke; Hirayama, Shusuke [Hitachi, Ltd., Hitachi Research Laboratory, 7-1-1, Omika-chou, Hitachi-shi, Ibaraki-ken 319-1292 (Japan); Nagamine, Yoshihiko [Hitachi, Ltd., Hitachi Works, 3-1-1, Saiwai-chou, Hitachi-shi, Ibaraki-ken 317-8511 (Japan); Shibamoto, Yuta [Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya-shi, Aichi-ken 467-8601 (Japan); Komori, Masataka [Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daikouminami, Higashi-ku, Nagoya-shi, Aichi-ken 461-8673 (Japan)

    2015-12-15

    Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm{sup 2}. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm{sup 2}. The authors measured in-air lateral profiles at the isocenter plane and integral depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.

  17. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora [University of Pavia and the INFN section of Pavia, via Bassi 6, 27100 Pavia (Italy); Piersimoni, Pierluigi [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Ciocca, Mario [Medical Physics Unit, CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  18. Adjustment procedure for beam alignment in scanned ion-beam therapy

    Science.gov (United States)

    Saraya, Y.; Takeshita, E.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Shirai, T.; Noda, K.

    2016-09-01

    Control of the beam position for three-dimensional pencil-beam scanning is important because the position accuracy of the beam significantly impacts the alignment of the irradiation field. To suppress this effect, we have developed a simple procedure for beamline tuning. At first, beamline tuning is performed with steering magnets and fluorescent screen monitors to converge the beam's trajectory to a central orbit. Misalignment between the beam's position and the reference axis is checked by using the verification system, which consists of a screen monitor and an acrylic phantom. If the beam position deviates from the reference axis, two pairs of steering magnets, which are placed on downstream of the beam transport line, will be corrected. These adjustments are iterated until the deviations for eleven energies of the beam are within 0.5 mm of the reference axis. To demonstrate the success of our procedure, we used our procedure to perform beam commissioning at the Kanagawa Cancer Center.

  19. Commissioning of the discrete spot scanning proton beam delivery system at University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston

    Energy Technology Data Exchange (ETDEWEB)

    Gillin, Michael T.; Sahoo, Narayan; Bues, Martin; Ciangaru, George; Sawakuchi, Gabriel; Poenisch, Falk; Arjomandy, Bijan; Martin, Craig; Titt, Uwe; Suzuki, Kazumichi; Smith, Alfred R.; Zhu, X. Ronald [Department of Radiation Physics, U.T. MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

    2010-01-15

    Purpose: To describe a summary of the clinical commissioning of the discrete spot scanning proton beam at the Proton Therapy Center, Houston (PTC-H). Methods: Discrete spot scanning system is composed of a delivery system (Hitachi ProBeat), an electronic medical record (Mosaiq V 1.5), and a treatment planning system (TPS) (Eclipse V 8.1). Discrete proton pencil beams (spots) are used to deposit dose spot by spot and layer by layer for the proton distal ranges spanning from 4.0 to 30.6 g/cm{sup 2} and over a maximum scan area at the isocenter of 30x30 cm{sup 2}. An arbitrarily chosen reference calibration condition has been selected to define the monitor units (MUs). Using radiochromic film and ion chambers, the authors have measured spot positions, the spot sizes in air, depth dose curves, and profiles for proton beams with various energies in water, and studied the linearity of the dose monitors. In addition to dosimetric measurements and TPS modeling, significant efforts were spent in testing information flow and recovery of the delivery system from treatment interruptions. Results: The main dose monitors have been adjusted such that a specific amount of charge is collected in the monitor chamber corresponding to a single MU, following the IAEA TRS 398 protocol under a specific reference condition. The dose monitor calibration method is based on the absolute dose per MU, which is equivalent to the absolute dose per particle, the approach used by other scanning beam institutions. The full width at half maximum for the spot size in air varies from approximately 1.2 cm for 221.8 MeV to 3.4 cm for 72.5 MeV. The measured versus requested 90% depth dose in water agrees to within 1 mm over ranges of 4.0-30.6 cm. The beam delivery interlocks perform as expected, guarantying the safe and accurate delivery of the planned dose. Conclusions: The dosimetric parameters of the discrete spot scanning proton beam have been measured as part of the clinical commissioning program

  20. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston.

    Science.gov (United States)

    Gillin, Michael T; Sahoo, Narayan; Bues, Martin; Ciangaru, George; Sawakuchi, Gabriel; Poenisch, Falk; Arjomandy, Bijan; Martin, Craig; Titt, Uwe; Suzuki, Kazumichi; Smith, Alfred R; Zhu, X Ronald

    2010-01-01

    To describe a summary of the clinical commissioning of the discrete spot scanning proton beam at the Proton Therapy Center, Houston (PTC-H). Discrete spot scanning system is composed of a delivery system (Hitachi ProBeat), an electronic medical record (Mosaiq V 1.5), and a treatment planning system (TPS) (Eclipse V 8.1). Discrete proton pencil beams (spots) are used to deposit dose spot by spot and layer by layer for the proton distal ranges spanning from 4.0 to 30.6 g/cm2 and over a maximum scan area at the isocenter of 30 x 30 cm2. An arbitrarily chosen reference calibration condition has been selected to define the monitor units (MUs). Using radiochromic film and ion chambers, the authors have measured spot positions, the spot sizes in air, depth dose curves, and profiles for proton beams with various energies in water, and studied the linearity of the dose monitors. In addition to dosimetric measurements and TPS modeling, significant efforts were spent in testing information flow and recovery of the delivery system from treatment interruptions. The main dose monitors have been adjusted such that a specific amount of charge is collected in the monitor chamber corresponding to a single MU, following the IAEA TRS 398 protocol under a specific reference condition. The dose monitor calibration method is based on the absolute dose per MU, which is equivalent to the absolute dose per particle, the approach used by other scanning beam institutions. The full width at half maximum for the spot size in air varies from approximately 1.2 cm for 221.8 MeV to 3.4 cm for 72.5 MeV. The measured versus requested 90% depth dose in water agrees to within 1 mm over ranges of 4.0-30.6 cm. The beam delivery interlocks perform as expected, guarantying the safe and accurate delivery of the planned dose. The dosimetric parameters of the discrete spot scanning proton beam have been measured as part of the clinical commissioning program, and the machine is found to function in a safe

  1. Heuristic optimization of the scanning path of particle therapy beams.

    Science.gov (United States)

    Pardo, J; Donetti, M; Bourhaleb, F; Ansarinejad, A; Attili, A; Cirio, R; Garella, M A; Giordanengo, S; Givehchi, N; La Rosa, A; Marchetto, F; Monaco, V; Pecka, A; Peroni, C; Russo, G; Sacchi, R

    2009-06-01

    Quasidiscrete scanning is a delivery strategy for proton and ion beam therapy in which the beam is turned off when a slice is finished and a new energy must be set but not during the scanning between consecutive spots. Different scanning paths lead to different dose distributions due to the contribution of the unintended transit dose between spots. In this work an algorithm to optimize the scanning path for quasidiscrete scanned beams is presented. The classical simulated annealing algorithm is used. It is a heuristic algorithm frequently used in combinatorial optimization problems, which allows us to obtain nearly optimal solutions in acceptable running times. A study focused on the best choice of operational parameters on which the algorithm performance depends is presented. The convergence properties of the algorithm have been further improved by using the next-neighbor algorithm to generate the starting paths. Scanning paths for two clinical treatments have been optimized. The optimized paths are found to be shorter than the back-and-forth, top-to-bottom (zigzag) paths generally provided by the treatment planning systems. The gamma method has been applied to quantify the improvement achieved on the dose distribution. Results show a reduction of the transit dose when the optimized paths are used. The benefit is clear especially when the fluence per spot is low, as in the case of repainting. The minimization of the transit dose can potentially allow the use of higher beam intensities, thus decreasing the treatment time. The algorithm implemented for this work can optimize efficiently the scanning path of quasidiscrete scanned particle beams. Optimized scanning paths decrease the transit dose and lead to better dose distributions.

  2. Heuristic optimization of the scanning path of particle therapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, J.; Donetti, M.; Bourhaleb, F.; Ansarinejad, A.; Attili, A.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Givehchi, N.; La Rosa, A.; Marchetto, F.; Monaco, V.; Pecka, A.; Peroni, C.; Russo, G.; Sacchi, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy) and Fondazione CNAO, Via Caminadella 16, I-20123, Milano (Italy); Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy) and Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy) and Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy) and Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy) and Dipartimento di Fisica Sperimentale, Universita di Torino, Via P. Giuria 1, I-10125 Torino (Italy)

    2009-06-15

    Quasidiscrete scanning is a delivery strategy for proton and ion beam therapy in which the beam is turned off when a slice is finished and a new energy must be set but not during the scanning between consecutive spots. Different scanning paths lead to different dose distributions due to the contribution of the unintended transit dose between spots. In this work an algorithm to optimize the scanning path for quasidiscrete scanned beams is presented. The classical simulated annealing algorithm is used. It is a heuristic algorithm frequently used in combinatorial optimization problems, which allows us to obtain nearly optimal solutions in acceptable running times. A study focused on the best choice of operational parameters on which the algorithm performance depends is presented. The convergence properties of the algorithm have been further improved by using the next-neighbor algorithm to generate the starting paths. Scanning paths for two clinical treatments have been optimized. The optimized paths are found to be shorter than the back-and-forth, top-to-bottom (zigzag) paths generally provided by the treatment planning systems. The gamma method has been applied to quantify the improvement achieved on the dose distribution. Results show a reduction of the transit dose when the optimized paths are used. The benefit is clear especially when the fluence per spot is low, as in the case of repainting. The minimization of the transit dose can potentially allow the use of higher beam intensities, thus decreasing the treatment time. The algorithm implemented for this work can optimize efficiently the scanning path of quasidiscrete scanned particle beams. Optimized scanning paths decrease the transit dose and lead to better dose distributions.

  3. SU-E-T-107: Development of a GPU-Based Dose Delivery System for Adaptive Pencil Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, S; Russo, G; Marchetto, F; Attili, A [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino (Italy); Monaco, V; Varasteh, M [University of Torino, Torino (Italy); Pella, A [Centro Nazionale di Adroterapia Oncologica, Pavia (Italy)

    2014-06-01

    Purpose: A description of a GPU-based dose delivery system (G-DDS) to integrate a fast forward planning implementing in real-time the prescribed sequence of pencil beams. The system, which is under development, is designed to evaluate the dose distribution deviations due to range variations and interplay effects affecting mobile tumors treatments. Methods: The Dose Delivery System (DDS) in use at the Italian Centro Nazionale di Adroterapia Oncologica (CNAO), is the starting point for the presented system. A fast and partial forward planning (FP) tool has been developed to evaluate in few seconds the delivered dose distributions using the DDS data (on-line measurements of spot properties, i.e. number of particles and positions). The computation is performed during the intervals between synchrotron spills and, made available at the end of each spill. In the interval between two spills, the G-DDS will evaluate the delivered dose distributions taking into account the real-time target positions measured by a tracking system. The sequence of prescribed pencil beams for the following spill will be adapted taking into account the variations with respect to the original plan due to the target motion. In order to speed up the computation required to modify pencil beams distribution (up to 400 times has been reached), the Graphics Processing Units (GPUs) and advanced Field Programmable Gate Arrays (FPGAs) are used. Results: An existing offline forward planning is going to be optimized for the CUDA architecture: the gain in time will be presented. The preliminary performances of the developed GPU-based FP algorithms will be shown. Conclusion: A prototype of a GPU-based dose delivery system is under development and will be presented. The system workflow will be illustrated together with the approach adopted to integrate the three main systems, i.e. CNAO dose delivery system, fast forward planning, and tumor tracking system.

  4. Ionscan: scanning and control software for proton beam writing

    Science.gov (United States)

    Bettiol, A. A.; Udalagama, C. N. B.; Kan, J. A. van; Watt, F.

    2005-04-01

    The proton beam writing technique relies on a precise beam scanning and control system that offers a simple yet flexible interface for the fabrication and design of microstructures. At the Centre for Ion Beam Applications, National University of Singapore, we have developed a suite of programs, collectively known as Ionscan, that cater for the specific needs of proton beam writing. The new version of Ionscan is developed using the Microsoft Visual C++. NET development environment in conjunction with a National Instruments analog output card and NI-DAQ drivers. With the benefit of the experience gained in proton beam writing over the years, numerous enhancements and new features have been added to the scanning software since the first version of the program that was developed using LabVIEW [A.A. Bettiol, J.A. van Khan, T.C. Sum, F. Watt, Nucl. Instr. and Meth. B 181 (2001) 49]. These include the ability to perform combined stage and magnetic (or electrostatic) scanning, which is particularly useful for the fabrication of long waveguides and microfluidic channels over lengths of up to 2.5 cm. Other enhancements include the addition of the Ionutils program which gives the user the ability to design basic structures using an ASCII file format that was developed. This format contains basic information on the shape to be irradiated including the way in which it is scanned.

  5. Digital confocal microscopy using a virtual 4f-system based on numerical beam propagation for depth measurement without mechanical scanning

    Science.gov (United States)

    Goto, Yuta; Okamoto, Atsushi; Toda, Masataka; Kuno, Yasuyuki; Nozawa, Jin; Ogawa, Kazuhisa; Tomita, Akihisa

    2016-08-01

    We propose a digital confocal microscope using a virtual 4f-system based on numerical beam propagation for depth measurement without mechanical scanning. In our technique, the information in the sample target along the depth direction is obtained by defocusing the virtual 4f-system, which consists of two virtual lenses arranged in a computer simulation. The principle of our technique is completely different from that of the mechanical scanning method used in the conventional confocal microscope based on digital holography. By using the virtual 4f-system, the measurement and exposure time can be markedly reduced because multilayered tomographic images are generated using a single measurement. In this study, we tested the virtual depth imaging technique by measuring cover glasses arranged along the depth direction.

  6. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  7. SU-E-CAMPUS-T-06: Initial Experience of Patient-Specific QA Using a Pencil Beam Scanning Proton Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Piskulich, F; Zhang, Y; Perles, L; Mascia, A; Lepage, R; Giebeler, A; Dong, L [Scripps Proton Therapy Center, San Diego, CA (United States)

    2014-06-15

    Purpose: To illustrate patient QA results for the first 10 patients treated at Scripps Proton Center by comparing point dose measurement using an ion chamber and in-house developed secondary MU program, and the measurement of 2D dose distribution using an ion chamber array. Methods: At the time of writing, 10 patient plans were approved for treatment using Varian ProBeam pencil beam scanning system and Eclipse treatment planning software. We used the IBA CC04 0.04 cm3 ion chamber and PTW Unidos E electrometer for point dose measurement in a small water tank (Sun Nuclear 1D scanner). We developed independent MU check software based on measured pencil beam dose profiles for various energies. We used PTW Octavius 729 XDR array to evaluate 2D planar dose distribution. The 3D gamma at 3%/3 mm local dose was used to compare a 3D calculated dose plan with a 2D measured dose distribution using PTW Verisoft software. All fields were exported to a verification phantom plan and delivered at 0 degrees for simplicity. Results: Comparisons between the CC04 ion chamber measurement and calculated dose agree well within 1%. The PTW Octavius 729 XDR array exhibited some dose rate dependence in high dose rate pencil beam delivery. Nevertheless, the results, used as a relative measurement, passed the gamma criteria of 3%/3mm for greater than 90% of area in all patient fields. Visual inspection showed good agreement between ion chamber dose profile and the calculated plan. The in-house secondary check for MU agreed very well with the plan dose and measurement. The results will be updated with more patients treated. Conclusion: The initial patient specific QA results are encouraging for a new pencil beam scanning only proton therapy system.

  8. 0.25-μm lithography using a 50-kV shaped electron-beam vector scan system

    Science.gov (United States)

    Gesley, Mark A.; Mulera, Terry; Nurmi, C.; Radley, J.; Sagle, Allan L.; Standiford, Keith P.; Tan, Zoilo C. H.; Thomas, John R.; Veneklasen, Lee

    1995-05-01

    Performance data from a prototype 50 kV shaped electron-beam (e-beam) pattern generator is presented. This technology development is targeted towards 180-130 nm device design rules. It will be able to handle 1X NIST X-ray membranes, glass reduction reticles, and 4- to 8-inch wafers. The prototype system uses a planar stage adapted from the IBM EL-4 design. The electron optics is an 50 kV extension of the AEBLE%+TM) design. Lines and spaces of 0.12 micrometers with dynamic corrections processor (DCP). Along with its normal role of coordinate transformation and dynamic correction of deflection distortion, astigmatism, and defocus; the DCP improves accuracy by modifying deflection conditions and focus according to measured substrate height variations. It also enables yaw calibration and correction for Write-on-the FlyTM motion. The electronics incorporates JTAG components for built-in self- test (BIST), as well as syndrome checking to ensure data integrity. The design includes diagnostic capabilities from offsite as well as from the operator console. A combination of third-party software and an internal job preparation software system is used to fracture patterns. It handles tone reversal, overlap removal, sizing, and proximity correction. Processing of large files in a commercial mask shop environment is made more efficient by retaining hierarchy and using parallel processing and data compression techniques. Large GDSIITM and MEBES data files can be processed. Data includes timing benchmarks for a 1 Gbit DRAM on both proximity and reduction reticles. The paper presents 50 kV results on silicon and quartz substrates along with examples of overlay to an external grid, field butting, and critical dimension (CD) control data. Selective experiments testing system stability, calibration accuracy, and local correction software implementation on a VAX control computer are also given.

  9. A proton beam therapy system dedicated to spot-scanning increases accuracy with moving tumors by real-time imaging and gating and reduces equipment size.

    Directory of Open Access Journals (Sweden)

    Shinichi Shimizu

    Full Text Available PURPOSE: A proton beam therapy (PBT system has been designed which dedicates to spot-scanning and has a gating function employing the fluoroscopy-based real-time-imaging of internal fiducial markers near tumors. The dose distribution and treatment time of the newly designed real-time-image gated, spot-scanning proton beam therapy (RGPT were compared with free-breathing spot-scanning proton beam therapy (FBPT in a simulation. MATERIALS AND METHODS: In-house simulation tools and treatment planning system VQA (Hitachi, Ltd., Japan were used for estimating the dose distribution and treatment time. Simulations were performed for 48 motion parameters (including 8 respiratory patterns and 6 initial breathing timings on CT data from two patients, A and B, with hepatocellular carcinoma and with clinical target volumes 14.6 cc and 63.1 cc. The respiratory patterns were derived from the actual trajectory of internal fiducial markers taken in X-ray real-time tumor-tracking radiotherapy (RTRT. RESULTS: With FBPT, 9/48 motion parameters achieved the criteria of successful delivery for patient A and 0/48 for B. With RGPT 48/48 and 42/48 achieved the criteria. Compared with FBPT, the mean liver dose was smaller with RGPT with statistical significance (p<0.001; it decreased from 27% to 13% and 28% to 23% of the prescribed doses for patients A and B, respectively. The relative lengthening of treatment time to administer 3 Gy (RBE was estimated to be 1.22 (RGPT/FBPT: 138 s/113 s and 1.72 (207 s/120 s for patients A and B, respectively. CONCLUSIONS: This simulation study demonstrated that the RGPT was able to improve the dose distribution markedly for moving tumors without very large treatment time extension. The proton beam therapy system dedicated to spot-scanning with a gating function for real-time imaging increases accuracy with moving tumors and reduces the physical size, and subsequently the cost of the equipment as well as of the building housing the

  10. Charged particle beam scanning using deformed high gradient insulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  11. Magnetically scanned proton therapy beams: rationales and principles

    Science.gov (United States)

    Jones, D. T. L.; Schreuder, A. N.

    2001-06-01

    High-energy proton therapy is finding increased application in radiation oncology because of the unique physical characteristics of proton beams which allow superior conformation of the high-dose region to the target volume. The standard method of "painting" the required dose over the target volume is to use passive mechanical means involving multiple scattering and variable thickness absorbers. However, this technique dose not allow proximal surface dose conformation which can only be achieved using beam scanning techniques. Apart from reducing the integral dose, intensity modulation and inverse planning are possible, there is less activation of the surroundings and no field-specific modification devices are required. However, scanning systems are very complicated and there are very high instantaneous dose rates which require sophisticated control systems.

  12. Electron optics of multi-beam scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi-Gheidari, A., E-mail: A.M.Gheidari@tudelft.nl [Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Kruit, P. [Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2011-07-21

    We have developed a multi-beam scanning electron microscope (MBSEM), which delivers a square array of 196 focused beams onto a sample with a resolution and current per beam comparable to a state of the art single beam SEM. It consists of a commercially available FEI Nova-nano 200 SEM column equipped with a novel multi-electron beam source module. The key challenge in the electron optical design of the MBSEM is to minimize the off-axial aberrations of the lenses. This article addresses the electron optical design of the system and presents the result of optics simulations for a specific setting of the system. It is shown that it is possible to design a system with a theoretical axial spot size of 1.2 nm at 15 kV with a probe current of 26 pA. The off-axial aberrations for the outermost beam add up 0.8 nm, increasing the probe size to 1.5 nm.

  13. Beam-Beam Scans Within a Linear Collider Bunch-Train Crossing

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; /SLAC

    2006-02-22

    Beam-beam deflection scans provide important beam diagnostics at the interaction point of a linear collider. Beam properties such as spot sizes, alignment, and waists are measured by sweeping one beam across the other. Proposed linear colliders use trains of bunches; if beam-beam scans can be done within the time of a bunch-train crossing rather than integrating over the bunch train, the acquisition rate of diagnostic information can be increased and the sensitivity of the scan to pulse-to-pulse jitter and slow drifts reduced. The existence of intra-train deflection feedback provides most of the hardware needed to implement intra-train beam-beam scans for diagnostic purposes. A conceptual design is presented for such beam-beam scans at the Next Linear Collider (NLC).

  14. Integration of a model-independent interface for RBE predictions in a treatment planning system for active particle beam scanning.

    Science.gov (United States)

    Steinsträter, O; Scholz, U; Friedrich, T; Krämer, M; Grün, R; Durante, M; Scholz, M

    2015-09-07

    Especially for heavier ions such as carbon ions, treatment planning systems (TPSs) for ion radiotherapy depend on models predicting the relative biological effectiveness (RBE) of the particles involved. Such models are subject to intensive research and the choice of the optimal RBE model is a matter of debate. On the other hand TPSs are often strongly coupled to particular RBE models and transition even to extended models of the same family can be difficult. We present here a model-independent interface which allows the unbiased use of any RBE model capable of providing dose-effect curves (even sampled curves) for a TPS. The full decoupling between the RBE model and TPS is based on the beam-mixing model proposed by Lam which is, in contrast to the often-used Zaider-Rossi model, independent of the explicit form of the underlying dose-effect curves. This approach not only supports the refinement of RBE models without adaptations of the TPS--which we demonstrate by means of the local effect model (LEM)--but also allows the comparison of very different model approaches on a common basis. We exemplify this by a comparison between the LEM and a model from the literature for proton RBE prediction.

  15. The effect of near-infrared laser beam on the surface modification of metal complex based on 3D laser scanning system

    Science.gov (United States)

    Zhao, Mali; Liu, Tiegen; Jiang, Junfeng; Wang, Meng

    2014-11-01

    High-precision 3-dimensional metallization is difficult to realize in specific nonmetallic areas by using the traditional methods such as wet-chemical and mechanical methods because of the disadvantage that usually they cannot achieve selective modification. In this paper, 3-dimensional laser scanning system was applied to achieve the modification of specific regions of the sample surface. In 3-dimensional laser scanning system, the laser beam, after going through dynamic focusing system, was reflected by galvanometers and then focused by f-theta lens on the sample surface. The changes in surface characteristics of the blends of polycarbonate and acrylonitrile butadiene styrene copolymers (PC/ABS) mixed with Cu-Cr complex by the laser irradiation with the wavelength of 1064nm were investigated. Through analysis it was found that the smooth surface of the original samples was changed to a micro-hole structure accompanied by an increased surface roughness as well as an increased water contact angle. The chemical composition percentage had changed and the metal components of copper and chromium were detected after the laser irradiation. The irradiated areas were degraded into organic ligand fragments, volatile gas and reducing metal ions of copper and chromium. Besides, the thickness of the deposited metal layer and the adhesive force between the metal layer and the substrate after electroless plating varied according to the laser parameters such as frequency and scanning speed. As shown in the experiment, the thickness of deposited copper layer exceeded 11μm and the deposited nickel layer exceeded 2μm respectively.

  16. Integration of a real-time tumor monitoring system into gated proton spot-scanning beam therapy: An initial phantom study using patient tumor trajectory data

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Taeko; Miyamoto, Naoki; Takao, Seishin; Nihongi, Hideaki; Toramatsu, Chie; Sutherland, Kenneth; Suzuki, Ryusuke; Ishikawa, Masayori; Maeda, Kenichiro [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638 (Japan); Shimizu, Shinichi; Kinoshita, Rumiko; Umegaki, Kikuo; Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648 (Japan); Fujii, Yusuke; Umezawa, Masumi [Hitachi, Ltd., Hitachi Research Laboratory, 7-2-1 Omika-cho, Hitachi-shi, Ibaraki 319-1221 (Japan)

    2013-07-15

    Purpose: In spot-scanning proton therapy, the interplay effect between tumor motion and beam delivery leads to deterioration of the dose distribution. To mitigate the impact of tumor motion, gating in combination with repainting is one of the most promising methods that have been proposed. This study focused on a synchrotron-based spot-scanning proton therapy system integrated with real-time tumor monitoring. The authors investigated the effectiveness of gating in terms of both the delivered dose distribution and irradiation time by conducting simulations with patients' motion data. The clinically acceptable range of adjustable irradiation control parameters was explored. Also, the relation between the dose error and the characteristics of tumor motion was investigated.Methods: A simulation study was performed using a water phantom. A gated proton beam was irradiated to a clinical target volume (CTV) of 5 Multiplication-Sign 5 Multiplication-Sign 5 cm{sup 3}, in synchronization with lung cancer patients' tumor trajectory data. With varying parameters of gate width, spot spacing, and delivered dose per spot at one time, both dose uniformity and irradiation time were calculated for 397 tumor trajectory data from 78 patients. In addition, the authors placed an energy absorber upstream of the phantom and varied the thickness to examine the effect of changing the size of the Bragg peak and the number of required energy layers. The parameters with which 95% of the tumor trajectory data fulfill our defined criteria were accepted. Next, correlation coefficients were calculated between the maximum dose error and the tumor motion characteristics that were extracted from the tumor trajectory data.Results: With the assumed CTV, the largest percentage of the data fulfilled the criteria when the gate width was {+-}2 mm. Larger spot spacing was preferred because it increased the number of paintings. With a prescribed dose of 2 Gy, it was difficult to fulfill the

  17. Technical Note: Spot characteristic stability for proton pencil beam scanning.

    Science.gov (United States)

    Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis

    2016-02-01

    The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  18. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  19. NAVTOLAND Microwave Scanning Beam Tests at NOSC. Three Landing Guidance Systems Tested in a Specular Multipath Environment.

    Science.gov (United States)

    1981-02-01

    Technology Department ACKNOWLEDGEMENTS The author would like to thank Kenneth Sliegus and Wayland Carlson for their participation in the tests. L 𔄃 i...guidance system concepts in a specular multipath environment for application to vertical takeoff and landing systems aboard small ships. Specifically...tested is, show\

  20. Two-photon flow cytometer with laser scanning Bessel beams

    Science.gov (United States)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  1. Dosimetric accuracy assessment of a treatment plan verification system for scanned proton beam radiotherapy: one-year experimental results and Monte Carlo analysis of the involved uncertainties

    Science.gov (United States)

    Molinelli, S.; Mairani, A.; Mirandola, A.; Vilches Freixas, G.; Tessonnier, T.; Giordanengo, S.; Parodi, K.; Ciocca, M.; Orecchia, R.

    2013-06-01

    During one year of clinical activity at the Italian National Center for Oncological Hadron Therapy 31 patients were treated with actively scanned proton beams. Results of patient-specific quality assurance procedures are presented here which assess the accuracy of a three-dimensional dose verification technique with the simultaneous use of multiple small-volume ionization chambers. To investigate critical cases of major deviations between treatment planning system (TPS) calculated and measured data points, a Monte Carlo (MC) simulation tool was implemented for plan verification in water. Starting from MC results, the impact of dose calculation, dose delivery and measurement set-up uncertainties on plan verification results was analyzed. All resulting patient-specific quality checks were within the acceptance threshold, which was set at 5% for both mean deviation between measured and calculated doses and standard deviation. The mean deviation between TPS dose calculation and measurement was less than ±3% in 86% of the cases. When all three sources of uncertainty were accounted for, simulated data sets showed a high level of agreement, with mean and maximum absolute deviation lower than 2.5% and 5%, respectively.

  2. Technical Note: Spot characteristic stability for proton pencil beam scanning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chin-Cheng, E-mail: chen.ccc@gmail.com; Chang, Chang; Mah, Dennis [ProCure Treatment Center, Somerset, New Jersey 08873 (United States); Moyers, Michael F. [ProCure Treatment Center, Somerset, New Jersey 08873 and Shanghai Proton and Heavy Ion Center, Shanghai 201321 (China); Gao, Mingcheng [CDH Proton Center, Warrenville, Illinois 60555 (United States)

    2016-02-15

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  3. Circuit enhances vertical resolution in raster scanning systems

    Science.gov (United States)

    Alsovsky, W. H.; Greenwood, J. R.; Holley, O. M.

    1968-01-01

    Circuit enhances vertical resolution in electron beam, raster scanning systems exhibiting aperture distortion in the vertical direction. A sensitized area /image/ produces a video output when the scan beam nears it, which causes vertical elongation in the reconstructed images of all sensitized areas on the surface.

  4. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  5. Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam.

    Science.gov (United States)

    Jensen, Martin F; Noerholm, Mikkel; Christensen, Leif Højslet; Geschke, Oliver

    2003-11-01

    In this paper we describe the use of a CO(2) laser for production of cavities and microstructures in poly(methyl methacrylate) (PMMA) by moving the laser beam over the PMMA surface in a raster pattern. The topography of the cavities thus produced is studied using stylus and optical profilometry and scanning electron microscopy (SEM). The microstructures display artifacts from the laser ablation process and we describe how the laser ablation parameters can be optimized in order to minimize these artifacts. Using this technique it is possible to generate structures with a depth from 50 microm and a minimum width of approximately 200 microm up to depth and widths of several mm, governed by the beam size and the laser settings.

  6. Electron-beam-assisted Scanning Tunneling Microscopy Of Insulating Surfaces

    CERN Document Server

    Bullock, E T

    2000-01-01

    Insulating materials are widely used in electronic devices. Bulk insulators and insulating films pose unique challenges for high resolution study since most commonly used charged particle surface analysis techniques are incompatible with insulating surfaces and materials. A, method of performing scanning tunneling microscopy (STM) on insulating surfaces has been investigated. The method is referred to as electron-beam assisted scanning tunneling microscopy (e-BASTM). It is proposed that by coupling the STM and the scanning electron microscopy (SEM) as one integrated device, that insulating materials may be studied, obtaining both high spatial resolution, and topographic and electronic resolution. The premise of the technique is based on two physical consequences of the interaction of an energetic electron beam (PE) with a material. First, when an electron beam is incident upon a material, low level material electrons are excited into conduction band states. For insulators, with very high secondary electron yi...

  7. Focused ion beam scanning electron microscopy in biology.

    Science.gov (United States)

    Kizilyaprak, C; Daraspe, J; Humbel, B M

    2014-06-01

    Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB-SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three-dimensional data, FIB-SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block-face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo-) transmission electron microscopy. Here, we will present an overview of the development of FIB-SEM and discuss a few points about sample preparation and imaging.

  8. Scanning laser beam displays based on a 2D MEMS

    Science.gov (United States)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  9. CS-Studio Scan System Parallelization

    Energy Technology Data Exchange (ETDEWEB)

    Kasemir, Kay [ORNL; Pearson, Matthew R [ORNL

    2015-01-01

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to the Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.

  10. Modeling and design of metasurfaces for beam scanning

    Science.gov (United States)

    Ratni, Badreddine; de Lustrac, André; Piau, Gérard-Pascal; Burokur, Shah Nawaz

    2017-01-01

    The aim of the present contribution is to show that a judicious phase engineering in metasurfaces can be efficiently used in the design of low-profile beam-steerable antennas. We present the design, simulation and experimental validation of the proposed low-profile antennas. The phase modulation on the metasurface is derived from the ray optics analysis. Such a non-uniform metasurface is utilized as a partially reflective surface in Fabry-Perot cavity antenna. Beam scanning is obtained, and depending on the phase modulation applied, the scan angle can be controlled. Furthermore, an active metasurface incorporating electronic components is fabricated and tested in an electronically steerable antenna.

  11. Chopper z-scan technique for elliptic Gaussian beams.

    Science.gov (United States)

    Dávila-Pintle, J A; Reynoso-Lara, E; Bravo-García, Y E

    2016-09-05

    This paper reports an improvement to the chopper z-scan technique for elliptic Gaussian beams. This improvement results in a higher sensitivity by measuring the ratio of eclipsing time to rotating period (duty cycle) of a chopper that eclipses the beam along the main axis. It is shown that the z-scan curve of the major axis is compressed along the z-axis. This compression factor is equal to the ratio between the minor and major axes. It was found that the normalized peak-valley difference with respect to the linear value does not depend on the axis along which eclipsing occurs.

  12. Beam energy scan with asymmetric collision at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alessi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Beebe, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Butler, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); D Ottavio, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hulsart, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ingrassia, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jamilkowski, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Laster, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marr, G. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Naylor, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sampson, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-11-15

    A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report.

  13. Fractionated treatment of moving tumors with scanned heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Woelfelschneider, Jens [GSI, Darmstadt (Germany); Fachhochschule Giessen-Friedberg (Germany); Scholz, Michael; Bert, Christoph [GSI, Darmstadt (Germany); Durante, Marco [GSI, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany)

    2011-07-01

    Scanned beam irradiation of moving targets typically results in inhomogeneous dose distributions if only margins are used. To overcome this so called interplay effect, currently technically elaborative methods, such as beam tracking, gating or rescanning, are proposed. With respect to absorbed dose, the dose homogenization that can be achieved with volumetric rescanning is comparable to a conventional fractionated treatment. In the scope of this work we investigated if fractionated dose delivery also results in homogeneous target coverage if the biological effect is incorporated. By using the treatment planning system TRiP 4D together with {alpha} and {beta} values of the Linear-Quadratic-Model, we calculated the equivalent uniform dose (EUD) for tumor and organs at risk in a fractionated treatment of lung tumors. The motion parameters were changed in each fraction, resulting in different interplay patterns. The summed dose distributions after varying the number of fractions were determined. Homogenization of the resulting dose distribution with increasing number of fractions was observed for the absorbed dose. The degree of homogenization for the biologically effective dose is currently analyzed. Results and the comparison to other treatment methods are presented.

  14. Beam-Beam effects at the CMS BRIL van-der-Meer scans

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is devoted to the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS Experiment at CERN. The project is engaged in operating and developing new detectors, compatible with the high luminosity experimental environments at the LHC. BRIL operates several detectors based on different physical principles and technologies. The detectors are calibrated using van-der-Meer scans to measure the luminosity that is a fundamental quantity of the LHC beam. In van-der-Meer scans the count rate in a detector is measured as a function of the distance between beams in the plane perpendicular to beam direction, to extract the underlying beam overlap area. The goal of the van-der-Meer scans is to obtain the calibration constant for each luminometer to be used at calibration then in physics data taking runs. The note presents the overview of beam-beam effects at the van-der-Meer scan and the corresponding corrections that sh...

  15. Beam Synchronous Timing Systems

    CERN Document Server

    Peters, A

    2003-01-01

    For many beam diagnostics purposes beam synchronous timing systems are needed in addition to the timing systems supplied by the control systems of the different accelerators. The demands and techniques of different accelerator facilities will be discussed along the following aspects: Bunch and macro pulse synchronous timing systems Solutions for different time scales from ps to ms Coupling to the RF and control systems of the different accelerators Electronics for the beam synchronous timing systems: parameters, techniques, controlling Use of industrial products for bunch synchronous timing systems, e.g. function generators Distribution of the timing signals: electronically via cables, optically via fibres or wireless Coupling to and use of timing standards: IRIG-B, GPS, ? The participants should present and describe solutions from their facilities with some transparencies as a starting point for the discussion.

  16. The Beam Delivery System of the European Spallation Source

    DEFF Research Database (Denmark)

    Thomsen, Heine Dølrath; Møller, Søren Pape

    The European Spallation Source (ESS) will apply a fast beam scanning system to redistribute the proton beam transversely across the spallation target surface. The system operates at sweep frequencies of tens of kHz and efficiently evens out the time-averaged beam intensity within a nominal beam...

  17. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...

  18. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H [Hokkaido University, Sapporo, Hokkaido (Japan)

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  19. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  20. Adaptive CT scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, Stephen E.

    2016-11-22

    Apparatus, systems, and methods that provide an X-ray interrogation system having a plurality of stationary X-ray point sources arranged to substantially encircle an area or space to be interrogated. A plurality of stationary detectors are arranged to substantially encircle the area or space to be interrogated, A controller is adapted to control the stationary X-ray point sources to emit X-rays one at a time, and to control the stationary detectors to detect the X-rays emitted by the stationary X-ray point sources.

  1. Characterization of uniform scanning proton beams with analytical models

    Science.gov (United States)

    Demez, Nebi

    Tissue equivalent phantoms have an important place in radiation therapy planning and delivery. They have been manufactured for use in conventional radiotherapy. Their tissue equivalency for proton beams is currently in active investigation. The Bragg-Kleeman rule was used to calculate water equivalent thickness (WET) for available tissue equivalent phantoms from CIRS (Norfolk, VA, USA). WET's of those phantoms were also measured using proton beams at Hampton University Proton Therapy Institute (HUPTI). WET measurements and calculations are in good agreement within ˜1% accuracy except for high Z phantoms. Proton beams were also characterized with an analytical proton dose calculation model, Proton Loss Model (PLM) [26], to investigate protons interactions in water and those phantoms. Depth-dose and lateral dose profiles of protons in water and in those phantoms were calculated, measured, and compared. Water Equivalent Spreadness (WES) was also investigated for those phantoms using the formula for scattering power ratio. Because WES is independent of incident energy of protons, it is possible to estimate spreadness of protons in different media by just knowing WES. Measurements are usually taken for configuration of the treatment planning system (TPS). This study attempted to achieve commissioning data for uniform scanning proton planning with analytical methods, PLM, which have been verified with published measurements and Monte Carlo calculations. Depth doses and lateral profiles calculated by PLM were compared with measurements via the gamma analysis method. While gamma analysis shows that depth doses are in >90% agreement with measured depth doses, the agreement falls to <80% for some lateral profiles. PLM data were imported into the TPS (PLM-TPS). PLM-TPS was tested with different patient cases. The PLM-TPS treatment plans for 5 prostate cases show acceptable agreement. The Planning Treatment Volume (PTV) coverage was 100 % with PLM-TPS except for one case in

  2. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    Science.gov (United States)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  3. System and method for compressive scanning electron microscopy

    Science.gov (United States)

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  4. High precision prism scanning system

    Science.gov (United States)

    García-Torales, G.; Flores, J. L.; Muñoz, Roberto X.

    2007-03-01

    Risley prisms are commonly used in continuous scanning manner. Each prism is capable of rotating separately about a common axis at different speeds. Scanning patterns are determined by the ratios of the wedge angles, the speed and direction of rotation of both prisms. The use of this system is conceptually simple. However, mechanical action in most applications becomes a challenge often solved by the design of complex control algorithms. We propose an electronic servomotor system that controls incremental and continuous rotations of the prisms wedges by means of an auto-tuning PID control using a Adaline Neural Network Algorithm, NNA.

  5. Influence of cone beam CT scanning parameters on grey value measurements at an implant site

    NARCIS (Netherlands)

    Parsa, A.; Ibrahim, N.; Hassan, B.; Motroni, A.; van der Stelt, P.; Wismeijer, D.

    2013-01-01

    Objectives: The aim of this study was to determine the grey value variation at the implant site with different scan settings, including field of view (FOV), spatial resolution, number of projections, exposure time and dose selections in two cone beam CT (CBCT) systems and to compare the results with

  6. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    Science.gov (United States)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  7. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    CERN Document Server

    Magro, G; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-01-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5–30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size r...

  8. Semiconductor characterization by scanning ion beam induced charge (IBIC) microscopy

    CERN Document Server

    Vittone, E; Olivero, P; Manfredotti, C; Jaksic, M; Giudice, A Lo; Fizzotti, F; Colombo, E

    2016-01-01

    The acronym IBIC (Ion Beam Induced Charge) was coined in early 1990's to indicate a scanning microscopy technique which uses MeV ion beams as probes to image the basic electronic properties of semiconductor materials and devices. Since then, IBIC has become a widespread analytical technique to characterize materials for electronics or for radiation detection, as testified by more than 200 papers published so far in peer-reviewed journals. Its success stems from the valuable information IBIC can provide on charge transport phenomena occurring in finished devices, not easily obtainable by other analytical techniques. However, IBIC analysis requires a robust theoretical background to correctly interpret experimental data. In order to illustrate the importance of using a rigorous mathematical formalism, we present in this paper a benchmark IBIC experiment aimed to test the validity of the interpretative model based on the Gunn's theorem and to provide an example of the analytical capability of IBIC to characteriz...

  9. Beam angle selection incorporation of anatomical heterogeneities for pencil beam scanning charged-particle therapy

    Science.gov (United States)

    Toramatsu, Chie; Inaniwa, Taku

    2016-12-01

    In charged particle therapy with pencil beam scanning (PBS), localization of the dose in the Bragg peak makes dose distributions sensitive to lateral tissue heterogeneities. The sensitivity of a PBS plan to lateral tissue heterogeneities can be reduced by selecting appropriate beam angles. The purpose of this study is to develop a fast and accurate method of beam angle selection for PBS. The lateral tissue heterogeneity surrounding the path of the pencil beams at a given angle was quantified with the heterogeneity number representing the variation of the Bragg peak depth across the cross section of the beams using the stopping power ratio of body tissues with respect to water. To shorten the computation time, one-dimensional dose optimization was conducted along the central axis of the pencil beams as they were directed by the scanning magnets. The heterogeneity numbers were derived for all possible beam angles for treatment. The angles leading to the minimum mean heterogeneity number were selected as the optimal beam angle. Three clinical cases of head and neck cancer were used to evaluate the developed method. Dose distributions and their robustness to setup and range errors were evaluated for all tested angles, and their relation to the heterogeneity numbers was investigated. The mean heterogeneity number varied from 1.2 mm-10.6 mm in the evaluated cases. By selecting a field with a low mean heterogeneity number, target dose coverage and robustness against setup and range errors were improved. The developed method is simple, fast, accurate and applicable for beam angle selection in charged particle therapy with PBS.

  10. Footwear scanning systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Justin L.; McMakin, Douglas L.; Sheen, David M.; Tedeschi, Jonathan R.

    2017-07-25

    Methods and apparatus for scanning articles, such as footwear, to provide information regarding the contents of the articles are described. According to one aspect, a footwear scanning system includes a platform configured to contact footwear to be scanned, an antenna array configured to transmit electromagnetic waves through the platform into the footwear and to receive electromagnetic waves from the footwear and the platform, a transceiver coupled with antennas of the antenna array and configured to apply electrical signals to at least one of the antennas to generate the transmitted electromagnetic waves and to receive electrical signals from at least another of the antennas corresponding to the electromagnetic waves received by the others of the antennas, and processing circuitry configured to process the received electrical signals from the transceiver to provide information regarding contents within the footwear.

  11. SU-E-T-439: Fundamental Verification of Respiratory-Gated Spot Scanning Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, H; Yamakawa, T [Graduate School of Health Sciences, Fujita Health University, Toyoake (Japan); Hayashi, N; Kato, H [School of Health Sciences, Fujita Health University, Tayoake (Japan); Yasui, K [Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya (Japan)

    2015-06-15

    Purpose: The spot-scanning proton beam irradiation with respiratory gating technique provides quite well dose distribution and requires both dosimetric and geometric verification prior to clinical implementation. The purpose of this study is to evaluate the impact of gating irradiation as a fundamental verification. Methods: We evaluated field width, flatness, symmetry, and penumbra in the gated and non-gated proton beams. The respiration motion was distinguished into 3 patterns: 10, 20, and 30 mm. We compared these contents between the gated and non-gated beams. A 200 MeV proton beam from PROBEAT-III unit (Hitachi Co.Ltd) was used in this study. Respiratory gating irradiation was performed by Quasar phantom (MODUS medical devices) with a combination of dedicated respiratory gating system (ANZAI Medical Corporation). For radiochromic film dosimetry, the calibration curve was created with Gafchromic EBT3 film (Ashland) on FilmQA Pro 2014 (Ashland) as film analysis software. Results: The film was calibrated at the middle of spread out Bragg peak in passive proton beam. The field width, flatness and penumbra in non-gated proton irradiation with respiratory motion were larger than those of reference beam without respiratory motion: the maximum errors of the field width, flatness and penumbra in respiratory motion of 30 mm were 1.75% and 40.3% and 39.7%, respectively. The errors of flatness and penumbra in gating beam (motion: 30 mm, gating rate: 25%) were 0.0% and 2.91%, respectively. The results of symmetry in all proton beams with gating technique were within 0.6%. Conclusion: The field width, flatness, symmetry and penumbra were improved with the gating technique in proton beam. The spot scanning proton beam with gating technique is feasible for the motioned target.

  12. Investigation on gradient material fabrication with electron beam melting based on scanning track control

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new electron beam control system was developed in a general vacuum electron beam machine by assembling with industrial control computer, programmable logic control (PLC), deflection coil, data acquisition card, power amplifier, etc. In this control system, scanning track and energy distribution of electron beam could be edited off-line, real-time adjusted and controlled on-line. Ti-Mo gradient material (GM) with high temperature resistant was fabricated using the technology of electron beam melting. The melting processes include three steps, such as preheating, melting, and homogenizing. The results show that the GM prepared by melting technology has fine appearance, and it has good integrated interface with the Ti alloy. Mo and Ti elements are gradually distributed in the interface of the gradient material. The microstructure close to the Ti alloy base metal is α+β basket-waver grain, and the microstructure close to the GM is a single phase of β solid solution.

  13. Beam Instrument Development System

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  14. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    OpenAIRE

    Nelson, Geoff; Yoon, Sungwon; Krishna, Ganesh; Wilfley, Brian; Fahrig, Rebecca

    2013-01-01

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.

  15. In situ nanomechanical testing in focused ion beam and scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Gianola, D. S. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Sedlmayr, A.; Moenig, R.; Kraft, O. [Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Volkert, C. A. [Institute for Materials Physics, Georg-August University of Goettingen, Goettingen (Germany); Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L. [Hysitron, Inc., Minneapolis, Minnesota 55344 (United States)

    2011-06-15

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  16. In situ nanomechanical testing in focused ion beam and scanning electron microscopes.

    Science.gov (United States)

    Gianola, D S; Sedlmayr, A; Mönig, R; Volkert, C A; Major, R C; Cyrankowski, E; Asif, S A S; Warren, O L; Kraft, O

    2011-06-01

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  17. Progress toward a general grating patterning technology using phase-locked scanning beams

    Science.gov (United States)

    Schattenburg, Mark L.; Chen, Carl G.; Heilmann, Ralf K.; Konkola, Paul T.; Pati, G. S.

    2002-01-01

    The fabrication of large high-quality diffraction gratings remains one of the most challenging tasks in optical fabrication. Traditional direct-write methods, such as diamond ruling or electron-beam lithography, can be extremely slow and result in gratings with undesired phase errors. Holographic methods, while generally resulting in gratings with smoother phase, frequently require large aspheres and lengthy optical setup in order to achieve desired period chirps. In this paper we describe a novel interference lithography method called scanning-beam interference lithography (SBIL) that utilizes small phase-locked scanning beams to write general periodic patterns onto large substrates. Small mutually coherent beams are phase controlled by high-bandwidth electro-optic components and caused to overlap and interfere, generating a small grating image. The image is raster-scanned over the substrate by use of a high-precision interferometer-controlled air bearing stage, resulting in large grating patterns. We will describe a prototype system in our laboratory designed to write gratings with extremely low phase distortion. The system is being generalized to pattern gratings with arbitrary period progressions (chirps). This technology, with extensions, will allow the rapid, low cost patterning of high-fidelity periodic patterns of arbitrary geometry on large substrates that could be of great interest to astronomers.

  18. An Improved Peak Sidelobe Reduction Method for Subarrayed Beam Scanning

    Directory of Open Access Journals (Sweden)

    Hang Hu

    2015-01-01

    Full Text Available This paper focused on PSL (peak sidelobe level reduction for subarrayed beam scanning in phased array radars. The desired GSP (Gaussian Subarray Patterns are achieved by creating a subarray weighting network. The GSP-based method could reduce PSL of array pattern; compared with the method based on the desired subarray pattern which is defined by ideal space-domain filter, the PSL reduction performance is improved remarkably. Further, based on the concept adopting superelement patterns to approximately express original subarray patterns, the simplified GSP-based method is proposed. So the dimension of each matrix required for creating the weighting network, which was originally the same as the element number, could be reduced to the same as the subarray number. Consequently, we achieve remarkable reduction of the computation burden; simultaneously, the PSL mitigation performance is degraded slightly. Simulation results demonstrate the validity of the introduced methods.

  19. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    Science.gov (United States)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  20. Light-sheet microscopy by confocal line scanning of dual-Bessel beams.

    Science.gov (United States)

    Zhang, Pengfei; Phipps, Mary E; Goodwin, Peter M; Werner, James H

    2016-10-01

    We have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as many photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.

  1. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    Science.gov (United States)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  2. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment.

    Science.gov (United States)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-21

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  3. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  4. Initial clinical experience with scanned proton beams at the Italian National Center for Hadrontherapy (CNAO).

    Science.gov (United States)

    Tuan, J; Vischioni, B; Fossati, P; Srivastava, A; Vitolo, V; Iannalfi, A; Fiore, M R; Krengli, M; Mizoe, J E; Orecchia, R

    2013-07-01

    We report the initial toxicity data with scanned proton beams at the Italian National Center for Hadrontherapy (CNAO). In September 2011, CNAO commenced patient treatment with scanned proton beams within two prospective Phase II protocols approved by the Italian Health Ministry. Patients with chondrosarcoma or chordoma of the skull base or spine were eligible. By October 2012, 21 patients had completed treatment. Immobilization was performed using rigid non-perforated thermoplastic-masks and customized headrests or body-pillows as indicated. Non-contrast CT scans with immobilization devices in place and MRI scans in supine position were performed for treatment-planning. For chordoma, the prescribed doses were 74 cobalt grey equivalent (CGE) and 54 CGE to planning target volume 1 (PTV1) and PTV2, respectively. For chondrosarcoma, the prescribed doses were 70 CGE and 54 CGE to PTV1 and PTV2, respectively. Treatment was delivered five days a week in 35-37 fractions. Prior to treatment, the patients' positions were verified using an optical tracking system and orthogonal X-ray images. Proton beams were delivered using fixed-horizontal portals on a robotic couch. Weekly MRI incorporating diffusion-weighted-imaging was performed during the course of proton therapy. Patients were reviewed once weekly and acute toxicities were graded with the Common Terminology Criteria for Adverse Events (CTCAE). Median age of patients = 50 years (range, 21-74). All 21 patients completed the proton therapy without major toxicities and without treatment interruption. Median dose delivered was 74 CGE (range, 70-74). The maximum toxicity recorded was CTCAE Grade 2 in four patients. Our preliminary data demonstrates the clinical feasibility of scanned proton beams in Italy.

  5. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    Science.gov (United States)

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-08-04

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (TBDT ) were compared with the BDTs recorded in the treatment delivery log files (TLog ): ∆t = TLog -TBDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide

  6. Experimentally validated pencil beam scanning source model in TOPAS.

    Science.gov (United States)

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Ainsley, Christopher G; McDonough, James E

    2014-11-21

    The presence of a low-dose envelope, or 'halo', in the fluence profile of a proton spot can increase the output of a pencil beam scanning field by over 10%. This study evaluated whether the Monte Carlo simulation code, TOPAS 1.0-beta 8, based on Geant4.9.6 with its default physics list, can predict the spot halo at depth in phantom by incorporating a halo model within the proton source distribution. Proton sources were modelled using three 2D Gaussian functions, and optimized until simulated spot profiles matched measurements at the phantom surface out to a radius of 100 mm. Simulations were subsequently compared with profiles measured using EBT3 film in Solidwater® phantoms at various depths for 100, 115, 150, 180, 210 and 225 MeV proton beams. Simulations predict measured profiles within a 1 mm distance to agreement for 2D profiles extending to the 0.1% isodose, and within 1 mm/1% Gamma criteria over the integrated curve of spot profile as a function of radius. For isodose lines beyond 0.1% of the central spot dose, the simulated primary spot sigma is smaller than the measurement by up to 15%, and can differ by over 1 mm. The choice of particle interaction algorithm and phantom material were found to cause ~1 mm range uncertainty, a maximal 5% (0.3 mm) difference in spot sigma, and maximal 1 mm and ~2 mm distance to agreement in isodoses above and below the 0.1% level, respectively. Based on these observations, therefore, the selection of physics model and the application of Solidwater® as water replacement material in simulation and measurement should be used with caution.

  7. Solar cell evaluation using electron beam induced current with the large chamber scanning electron microscope

    Science.gov (United States)

    Wink, Tara; Kintzel, Edward; Marienhoff, Peter; Klein, Martin

    2012-02-01

    An initial study using electron beam induced current (EBIC) to evaluate solar cells has been carried out with the large chamber scanning electron microscope (LC-SEM) at the Western Kentucky University Nondestructive Analysis Center. EBIC is a scanning electron microscope technique used for the characterization of semiconductors. To facilitate our studies, we developed a Solar Amplification System (SASY) for analyzing current distribution and defects within a solar cell module. Preliminary qualitative results will be shown for a solar cell module that demonstrates the viability of the technique using the LC-SEM. Quantitative EBIC experiments will be carried out to analyze defects and minority carrier properties. Additionally, a well-focused spot of light from an LED mounted at the side of the SEM column will scan the same area of the solar cell using the LC-SEM positioning system. SASY will then output the solar efficiency to be compared with the minority carrier properties found using EBIC.

  8. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  9. Pencil beam scanning dosimetry for large animal irradiation.

    Science.gov (United States)

    Lin, Liyong; Solberg, Timothy D; Carabe, Alexandro; Mcdonough, James E; Diffenderfer, Eric; Sanzari, Jenine K; Kennedy, Ann R; Cengel, Keith

    2014-09-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event. These events consist primarily of low-energy protons that produce a highly inhomogeneous depth-dose distribution. Here we describe a novel technique that uses pencil beam scanning at extended source-to-surface distances and range shifter (RS) to provide robust but easily modifiable delivery of simulated solar particle event radiation to large animals. Thorough characterization of spot profiles as a function of energy, distance and RS position is critical to accurate treatment planning. At 105 MeV, the spot sigma is 234 mm at 4800 mm from the isocentre when the RS is installed at the nozzle. With the energy increased to 220 MeV, the spot sigma is 66 mm. At a distance of 1200 mm from the isocentre, the Gaussian sigma is 68 mm and 23 mm at 105 MeV and 220 MeV, respectively, when the RS is located on the nozzle. At lower energies, the spot sigma exhibits large differences as a function of distance and RS position. Scan areas of 1400 mm (superior-inferior) by 940 mm (anterior-posterior) and 580 mm by 320 mm are achieved at the extended distances of 4800 mm and 1200 mm, respectively, with dose inhomogeneity <2%. To treat large animals with a more sophisticated dose distribution, spot size can be reduced by placing the RS closer than 70 mm to the surface of the animals, producing spot sigmas below 6 mm.

  10. Experimental dosimetric comparison of 1H, 4He, 12C and 16O scanned ion beams

    Science.gov (United States)

    Tessonnier, T.; Mairani, A.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.

    2017-05-01

    At the Heidelberg Ion Beam Therapy Center, scanned helium and oxygen ion beams are available in addition to the clinically used protons and carbon ions for physical and biological experiments. In this work, a study of the basic dosimetric features of the different ions is performed in the entire therapeutic energy range. Depth dose distributions are investigated for pencil-like beam irradiation, with and without a modulating ripple filter, focusing on the extraction of key Bragg curve parameters, such as the range, the peak-width and the distal 80%-20% fall-off. Pencil-beam lateral profiles are measured at different depths in water, and parameterized with multiple Gaussian functions. A more complex situation of an extended treatment field is analyzed through a physically optimized spread-out Bragg peak, delivered with beam scanning. The experimental results of this physical beam characterization indicate that helium ions could afford a more conformal treatment and in turn, increased tumor control. This is mainly due to a smaller lateral scattering than with protons, leading to better lateral and distal fall-off, as well as a lower fragmentation tail compared to carbon and oxygen ions. Moreover, the dosimetric dataset can be used directly for comparison with results from analytical dose engines or Monte Carlo codes. Specifically, it was used at the Heidelberg Ion Beam Therapy Center to generate a new input database for a research analytical treatment planning system, as well as for validation of a general purpose Monte Carlo program, in order to lay the groundwork for biological experiments and further patient planning studies.

  11. Future of the beam energy scan program at RHIC

    Directory of Open Access Journals (Sweden)

    Odyniec Grazyna

    2015-01-01

    Full Text Available The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy, suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  12. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance.

    Science.gov (United States)

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Mertens, Thierry; Baeumer, Christian; Ainsley, Christopher G; McDonough, James E

    2015-05-08

    The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXX(Evolution) but utilizes a smaller 2 mm plate spacing instead of 5mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXX(Evolution), a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXX(Evolution) can be up to 4%, it is 1%; chambers with an electrode spacing of 2 mm or smaller are recommended.

  13. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    Science.gov (United States)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  14. First results for custom-built low-temperature (4.2 K) scanning tunneling microscope/molecular beam epitaxy and pulsed laser epitaxy system designed for spin-polarized measurements

    Science.gov (United States)

    Foley, Andrew; Alam, Khan; Lin, Wenzhi; Wang, Kangkang; Chinchore, Abhijit; Corbett, Joseph; Savage, Alan; Chen, Tianjiao; Shi, Meng; Pak, Jeongihm; Smith, Arthur

    2014-03-01

    A custom low-temperature (4.2 K) scanning tunneling microscope system has been developed which is combined directly with a custom molecular beam epitaxy facility (and also including pulsed laser epitaxy) for the purpose of studying surface nanomagnetism of complex spintronic materials down to the atomic scale. For purposes of carrying out spin-polarized STM measurements, the microscope is built into a split-coil, 4.5 Tesla superconducting magnet system where the magnetic field can be applied normal to the sample surface; since, as a result, the microscope does not include eddy current damping, vibration isolation is achieved using a unique combination of two stages of pneumatic isolators along with an acoustical noise shield, in addition to the use of a highly stable as well as modular `Pan'-style STM design with a high Q factor. First 4.2 K results reveal, with clear atomic resolution, various reconstructions on wurtzite GaN c-plane surfaces grown by MBE, including the c(6x12) on N-polar GaN(0001). Details of the system design and functionality will be presented.

  15. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    Science.gov (United States)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  16. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    Science.gov (United States)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  17. [Depth dose characteristics of photon beams released from a scanning-type racetrack microtron].

    Science.gov (United States)

    Sato, Tomoharu

    2002-06-01

    The MM50 is a racetrack microtron that can emit photon beams or electron beams up to 50 MeV. The MM22 using the scanning beam method and the MM22 using a flattening filter method both to flatten the emission field and a water phantom with particular function measurable of PDD etc. in an accelerator using the scanning beam method to make up the PDD curve of photon beams from the linear accelerator. The Clinac21EX was thus employed. The maximum depth of beam flux was shallow, the gradient of the flux decrement large, the surface dose large, and the estimated nominal energy low to the same nominal energy. From these findings, it can be said that thorough comprehension of the characteristics of beam flux properties for these units is necessary when photon beams are to be used.

  18. Depth dose characteristics of photon beams released from a scanning-type racetrack microtron

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomoharu [National Cancer Center, Tokyo (Japan). Hospital

    2002-06-01

    The MM50 is a racetrack microtron that can emit photon beams or electron beams up to 50 MeV. The MM22 using the scanning beam method and the MM22 using a flattening filter method both to flatten the emission field and a water phantom with particular function measurable of PDD etc. in an accelerator using the scanning beam method to make up the PDD curve of photon beams from the linear accelerator. The Clinac21EX was thus employed. The maximum depth of beam flux was shallow, the gradient of the flux decrement large, the surface dose large, and the estimated nominal energy low to the same nominal energy. From these findings, it can be said that thorough comprehension of the characteristics of beam flux properties for these units is necessary when photon beams are to be used. (author)

  19. Further progress for a fast scanning of nuclear emulsions with Large Angle Scanning System

    Science.gov (United States)

    Alexandrov, A.; Tioukov, V.; Vladymyrov, M.

    2014-02-01

    The LASSO (Large Angle Scanning System for OPERA) is a scanning system designed in the framework of the OPERA experiment as a result of several R&Ds aimed to improve the performance of the European Scanning System (ESS) by increasing the scanning speed, the angular acceptance and the efficiency in microtrack reconstruction. The novel Continuous Motion (CM) scanning approach allows to double the ESS nominal speed without any changes in the hardware set-up. The LASSO modular design makes the system easily adaptable to new hardware. The novel microtrack reconstruction algorithm has been developed to be efficient in both standard Stop&Go (SG) and CM modes, performing a number of corrections during the processing like corrections for vibrations, optical distortions, field of view curvature. As an intermediate step it reconstructs silver grains positions inside emulsion layer to make a transition from 2D images to real 3D traces of a charged particle. This allows the algorithm to have no internal limits on the slope of microtracks being equally efficient on all angles. The LASSO has been used for about one year for mass production scanning of emulsion films of OPERA, Muon Radiography and also of films employed to study nuclear fragmentation of ion beams used in medical physics. More than 50000 cm2 of the emulsion surface have been analyzed during this period.

  20. Fabrication of gradient material by electron beam smelting based on scanning track control

    Institute of Scientific and Technical Information of China (English)

    YANG Shanglei; XUE Xiaohuai; LOU Songnian; LU Fenggui

    2007-01-01

    A new electron beam (EB) control system was developed in a general vacuum EB machine by equipping it with an industrial control computer, programmable logic control (PLC), deflection coil, data acquisition card, power amplifier, etc. In this control system, the scanning track and energy distribution of the EB could be edited off-line,adjusted in real-time, and controlled on-line. Ti-Mo gradient material (GM) with high temperature resistance was fabri-cated using electron beam smelting (EBS) control. The smelting processes include three steps such as preheating,smelting, and homogenizing. The results show that GM pre-pared by using smelting technology has fine appearance, and has good integrated interface with Ti alloy. The Mo and Ti elements are gradual diversification in the interface of the gradient material. The microstructure near the Ti alloy base metal is α + β basket-waver grain, and the microstructure near GM is single phase of β solid solution.

  1. Influence of cone beam CT scanning parameters on grey value measurements at an implant site.

    Science.gov (United States)

    Parsa, A; Ibrahim, N; Hassan, B; Motroni, A; van der Stelt, P; Wismeijer, D

    2013-01-01

    The aim of this study was to determine the grey value variation at the implant site with different scan settings, including field of view (FOV), spatial resolution, number of projections, exposure time and dose selections in two cone beam CT (CBCT) systems and to compare the results with those obtained from a multislice CT system. A partially edentulous human mandibular cadaver was scanned by three CT modalities: multislice CT (MSCT) (Philips, Best, the Netherlands), and two CBCT systems: (Accuitomo 170(®), Morita, Japan) and (NewTom 5G(®), QR, Verona, Italy). Using different scan settings 36 and 24 scans were obtained from the Accuitomo and the NewTom, respectively. The scans were converted to digital imaging and communications in medicine 3 format. The analysis of the data was performed using 3Diagnosys(®) software (v. 3.1, 3diemme, Cantù, Italy) and Geomagic studio(®) 2012 (Morrisville, NC). On the MSCT scan, one probe designating the site for pre-operative implant placement was inserted. The inserted probe on MSCT was transformed to the same region on each CBCT scan using a volume-based three-dimensional registration algorithm. The mean voxel grey value of the region around the probe was derived separately for each CBCT. The influence of scanning parameters on the measured mean voxel grey values was assessed. Grey values in both CBCT systems significantly deviated from Hounsfield unit values measured with MSCT (p = 0.0001). In both CBCT systems, scan FOV and spatial resolution selections had a statistically significant influence on grey value measurements (p = 0.0001). The number of projections selection had a statistically significant influence in the Accuitomo system (p = 0.0001) while exposure time and dose selections had no statistically significant influence on grey value measurements in the NewTom (p = 0.43 and p = 0.37, respectively). Grey-level values from CBCT images are influenced by device and scanning settings.

  2. Uniform, variable size rectangle beam scanning. Application to hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [DAPNIA and IN2P3, LPSC, F-38026 Grenoble (France)]. E-mail: meot@lpsc.in2p3.fr

    2006-08-01

    A beam optics method is described, which allows the dynamical adjustment of the transverse size of a sweeping particle beam with rectangular, uniform cross-section. This technique can find applications in the domain of hadrontherapy where it introduces various advantages compared to the existing methods of active or passive irradiation.

  3. Fast beam cut-off method in RF-knockout extraction for spot-scanning

    CERN Document Server

    Furukawa, T

    2002-01-01

    An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 mu s from 700 mu s by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.

  4. Non-Linear Optical Flow Cytometry Using a Scanned, Bessel Beam Light-Sheet

    Science.gov (United States)

    Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.

    2015-01-01

    Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers. PMID:26021750

  5. Scanning System -- Technology Worth a Look

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt; Richard W. Conners; D. Earl Kline

    1995-01-01

    In an effort to help automate the inspection for lumber defects, optical scanning systems are emerging as an alternative to the human eye. Although still in its infancy, scanning technology is being explored by machine companies and universities. This article was excerpted from "Machine Vision Systems for Grading and Processing Hardwood Lumber," by Philip...

  6. SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sorriaux, J [Center of Molecular Imaging, Radiotherapy and Oncology, Institut de recherche experimentale et Clinique, Universite catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels (Belgium); ICTEAM Institute, Universite catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Departement of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Paganetti, H; Testa, M; Giantsoudi, D; Schuemann, J [Departement of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Bertrand, D [Ion Beam Applications S.A, Louvain-la-Neuve (Belgium); Orban de Xivry, J. [ICTEAM Institute, Universite catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Lee, J [Center of Molecular Imaging, Radiotherapy and Oncology, Institut de recherche experimentale et Clinique, Universite catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels (Belgium); ICTEAM Institute, Universite catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Palmans, H [EBG MedAustron GmbH, Wiener Neustadt (Austria); National Physical Laboratory, Teddington (United Kingdom); Vynckier, S [Departement de radiotherapie, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 54, 1200 Brussels (Belgium); Sterpin, E [Center of Molecular Imaging, Radiotherapy and Oncology, Institut de recherche experimentale et Clinique, Universite catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels (Belgium)

    2014-06-01

    Purpose: In current practice, most proton therapy centers apply IAEA TRS-398 reference dosimetry protocol. Quality correction factors (kQ) take into account in the dose determination process the differences in beam qualities used for calibration unit and for treatment unit. These quality correction factors are valid for specific reference conditions. TRS-398 reference conditions should be achievable in both scattered proton beams (i.e. DS) and scanned proton beams (i.e. PBS). However, it is not a priori clear if TRS-398 kQ data, which are based on Monte Carlo (MC) calculations in scattered beams, can be used for scanned beams. Using TOPAS-Geant4 MC simulations, the study aims to determine whether broad beam quality correction factors calculated in TRS-398 can be directly applied to PBS delivery modality. Methods: As reference conditions, we consider a 10×10×10 cm{sup 3} homogeneous dose distribution delivered by PBS system in a water phantom (32/10 cm range/modulation) and an air cavity placed at the center of the spread-out-Bragg-peak. In order to isolate beam differences, a hypothetical broad beam is simulated. This hypothetical beam reproduces exactly the same range modulation, and uses the same energy layers than the PBS field. Ion chamber responses are computed for the PBS and hypothetical beams and then compared. Results: For an air cavity of 2×2×0.2 cm{sup 3}, the ratio of ion chamber responses for the PBS and hypothetical beam qualities is 0.9991 ± 0.0016. Conclusion: Quality correction factors are insensitive to the delivery pattern of the beam (broad beam or PBS), as long as similar dose distributions are achieved. This investigation, for an air cavity, suggests that broad beam quality correction factors published in TRS-398 can be applied for scanned beams. J. Sorriaux is financially supported by a public-private partnership involving the company Ion Beam Applications (IBA)

  7. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  8. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    Science.gov (United States)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  9. Geant4 simulation for a study of a possible use of carbon ions pencil beam for the treatment of ocular melanomas with the active scanning system at CNAO Centre

    Energy Technology Data Exchange (ETDEWEB)

    Farina, E. [University of Pavia-Department of Physics, via Bassi 6, 27100 Pavia (Italy); Piersimoni, P. [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Riccardi, C.; Rimoldi, A.; Tamborini, A. [University of Pavia-Department of Physics, via Bassi 6, 27100 Pavia (Italy); INFN Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Ciocca, M. [Medical Physics Unit, Centro Nazionale di Adroterapia Oncologica - CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    The aim of this work is to validate the Geant4 application reproducing the CNAO (National Centre for Oncological Hadrontherapy) beamline and to study of a possible use of carbon ion pencil beams for the treatment of ocular melanomas at the CNAO Centre. The promising aspect of carbon ions radiotherapy for the treatment of this disease lies in its superior relative radiobiological effectiveness (RBE). The Monte Carlo Geant4 toolkit is used to simulate the complete CNAO extraction beamline, with the active and passive components along it. A human eye modeled detector, including a realistic target tumor volume, is used as target. Cross check with previous studies at CNAO using protons allows comparisons on possible benefits on using such a technique with respect to proton beams. Before the eye-detector irradiation a validation of the Geant4 simulation with CNAO experimental data is carried out with both carbon ions and protons. Important beam parameters such as the transverse FWHM and scanned radiation field 's uniformity are tested within the simulation and compared with experimental measurements at CNAO Centre. The physical processes involved in secondary particles generation by carbon ions and protons in the eye-detector are reproduced to take into account the additional dose to the primary beam given to irradiated eye's tissues. A study of beam shaping is carried out to produce a uniform 3D dose distribution (shaped on the tumor) by the use of a spread out Bragg peak. The eye-detector is then irradiated through a two dimensional transverse beam scan at different depths. In the use case the eye-detector is rotated of an angle of 40 deg. in the vertical direction, in order to mis-align the tumor from healthy tissues in front of it. The treatment uniformity on the tumor in the eye-detector is tested. For a more quantitative description of the deposited dose in the eye-detector and for the evaluation of the ratio between the dose deposited in the tumor and

  10. Performances of the scanning system for the CNAO center of oncological hadron therapy

    CERN Document Server

    Giordanengo, S; Attili, A; Pardo, J; Russo, G; Taddia, G; Monaco, V; Garella, M A; Zampieri, A; Fabbricatore, P; Cirio, R; Voelker, F; Sacchi, R; Bourhaleb, F; Marchetto, F; Burini, F; Incurvati, M; Ansarinejad, A; Peroni, C

    2010-01-01

    In hadron therapy one of the most advanced methods for beam delivery is the active scanning technique which uses fast scanning magnets to drive a narrow particle beam across the target. The Centro Nazionale di Adroterapia Oncologica (CNAO) will treat tumours with this technique. The CNAO scanning system includes two identical dipole magnets for horizontal and vertical beam deflection, each one connected to a fast power supply. The dose delivery system exploits a set of monitor chambers to measure the fluence and position of the beam and drives the beam during the treatment by controlling the sequence of currents set by the power supplies. A test of the dynamic performance of the scanning system has been performed using a Hall probe to measure the field inside the magnet and the results are presented in this paper. (C) 2009 Elsevier B.V. All rights reserved.

  11. Performances of the scanning system for the CNAO center of oncological hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Giordanengo, S., E-mail: giordane@to.infn.i [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Donetti, M. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); CNAO - Centro Nazionale di Adroterapia Oncologica Foundation, Milano (Italy); Marchetto, F. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Ansarinejad, A. [Department of Physics, University of Torino, Torino (Italy); Attili, A. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Bourhaleb, F. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Department of Physics, University of Torino, Torino (Italy); Burini, F. [OCEM SpA, Bologna (Italy); Cirio, R. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Department of Physics, University of Torino, Torino (Italy); Fabbricatore, P. [INFN - Istituto Nazionale di Fisica Nucleare, Genova (Italy); Voelker, F. [CERN, Geneve (Switzerland); Garella, M.A. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Incurvati, M. [OCEM SpA, Bologna (Italy); Monaco, V. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Department of Physics, University of Torino, Torino (Italy); Pardo, J. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Peroni, C.; Russo, G.; Sacchi, R. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy); Department of Physics, University of Torino, Torino (Italy); Taddia, G. [OCEM SpA, Bologna (Italy); Zampieri, A. [INFN - Istituto Nazionale di Fisica Nucleare, Torino (Italy)

    2010-02-01

    In hadron therapy one of the most advanced methods for beam delivery is the active scanning technique which uses fast scanning magnets to drive a narrow particle beam across the target. The Centro Nazionale di Adroterapia Oncologica (CNAO) will treat tumours with this technique. The CNAO scanning system includes two identical dipole magnets for horizontal and vertical beam deflection, each one connected to a fast power supply. The dose delivery system exploits a set of monitor chambers to measure the fluence and position of the beam and drives the beam during the treatment by controlling the sequence of currents set by the power supplies. A test of the dynamic performance of the scanning system has been performed using a Hall probe to measure the field inside the magnet and the results are presented in this paper.

  12. Dosimetric properties of a scanned beam microtron at low monitor unit settings: importance for conformal therapy.

    Science.gov (United States)

    Humm, J L; Larsson, A; Lief, E P

    1996-03-01

    The dosimetric stability, linearity, dose rate dependence, and flatness of both photon and electron beams have been evaluated for a racetrack microtron at low monitor unit settings. For photons, the variation in dosimetric output about the mean is 3% at 20 cm, even at only 3 MU, in contrast with other scanned beam accelerators. Broad electron beams on the microtron are created by the superposition of the elementary beam pulses either directly from the scan magnets, or after their broadening through a scattering foil. The dosimetric instability both with and without the foil was less than 0.6% for both the 25- and 50-MeV electrons. Dose nonlinearity was microtron exhibits dosimetric properties which fulfill the recommendations of Task Groups 21 and 25. Based on the stability of the scanned beam at low monitor unit settings, the microtron can be used for 3-D conformal therapy with both photons and electrons.

  13. Beam Size Estimation from Luminosity Scans at the LHC During 2015 Proton Physics Operation

    CERN Document Server

    Hostettler, Michael

    2016-01-01

    As a complementary method for measuring the beam size for high-intensity beams at 6.5 TeV flat-top energy, beam separation scans were done regularly at the CERN Large Hadron Collider (LHC) during 2015 proton physics operation. The luminosities measured by the CMS experiment during the scans were used to derive the convoluted beam size and orbit offset bunch-by-bunch. This contribution will elaborate on the method used to derive plane-by-plane, bunch-by-bunch emittances from the scan data, including uncertainties and corrections. The measurements are then compared to beam size estimations from absolute luminosity, synchrotron light telescopes, and wire scanners. In particular, the evolution of the emittance over the course of several hours in collisions is studied and bunch-by-bunch differences are highlighted.

  14. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Das, Abhijit [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Department of Physics, Gauhati University, Guwahati 781014, Assam (India); Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)

    2014-04-15

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  15. Analytical examination of a spiral beam scanning method for uniform irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Mitsuhiro; Okumura, Susumu; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A new circular beam scanning method for uniform irradiation of high-energy, intense ion beams over a large area has been developed. A sweeping speed and a trajectory density in a radial direction are kept constant to obtain uniform fluence distribution. A radial position of a beam spot on a target and an angular frequency of the circular motion are expressed by an irrational function of time. The beam is swept continuously, and a beam trajectory becomes spiral. More than 90 % uniformity of the fluence distribution can been achieved over a large area. (author)

  16. IDENTIFIKASI PROFIL DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DENGAN METODE BEAM PATTERN DISCRETE-EQUI-SPACED UNSHADED LINE ARRAY

    Directory of Open Access Journals (Sweden)

    Muhammad Zainuddin Lubis

    2017-05-01

    which was a sea of Riau Island in Indonesia. Side scan sonar (SSS is an instrument based on sonar system wich capable of showing the image of two-dimensional surface of the seabed with contour conditions, topography, and the underwater target simultaneously. Beam Pattern Discrete-equispaced unshaded Line Array Method is used to compute the two-dimensional beam pattern which depends on the angle of the incoming sound waves from the axis of the array are acceptable depending on the angle at which the sound beam array. This research was conducted in December 2016 in the sea Punggur, Batam, Riau Islands-Indonesia, with coordinate system  104 ° 08,7102 E and 1° 03,2448 N until 1 ° 03.3977N and 104 ° 08,8133 E,  using Side Scan Sonar Tow C-Max CM2 fish instruments with a frequency of 325 kHz. The Results obtained from the recording there are 7 targets, and Beam pattern of Discrete-Beam method Equi-Spaced unshaded Line Array in targets 4 have the highest value in the Pattern is 21:08 dB directivity. The results of the model's beam pattern have anaxis value at the incidence angle (o of the directivity pattern (dB are not on the value 0 or the central beam pattern generated on the target 6 with incident angle -1.5 o and 1.5o have declined by -40 dB. Characteristics of bottom sediment in the sea waters Punggur found more sand.Discrete-method result Beam Equi-Spaced unshaded Line Array discovered the sunken wreck. Keywords: Side Scan Sonar, Beam Pattern Discrete-Equi-Spaced Unshaded Line Array, Incidence angle, Directivity pattern

  17. Slit scan radiographic system for intermediate size rocket motors

    Science.gov (United States)

    Bernardi, Richard T.; Waters, David D.

    1992-12-01

    The development of slit-scan radiography capability for the NASA Advanced Computed Tomography Inspection System (ACTIS) computed tomography (CT) scanner at MSFC is discussed. This allows for tangential case interface (bondline) inspection at 2 MeV of intermediate-size rocket motors like the Hawk. Motorized mounting fixture hardware was designed, fabricated, installed, and tested on ACTIS. The ACTIS linear array of x-ray detectors was aligned parallel to the tangent line of a horizontal Hawk motor case. A 5 mm thick x-ray fan beam was used. Slit-scan images were produced with continuous rotation of a horizontal Hawk motor. Image features along Hawk motor case interfaces were indicated. A motorized exit cone fixture for ACTIS slit-scan inspection was also provided. The results of this SBIR have shown that slit scanning is an alternative imaging technique for case interface inspection. More data is required to qualify the technique for bondline inspection.

  18. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.

    Science.gov (United States)

    Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana

    2010-10-01

    The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.

  19. Compensation of body shake errors in terahertz beam scanning single frequency holography for standoff personnel screening

    Science.gov (United States)

    Liu, Wei; Li, Chao; Sun, Zhao-Yang; Zhao, Yu; Wu, Shi-You; Fang, Guang-You

    2016-08-01

    In the terahertz (THz) band, the inherent shake of the human body may strongly impair the image quality of a beam scanning single frequency holography system for personnel screening. To realize accurate shake compensation in imaging processing, it is quite necessary to develop a high-precision measure system. However, in many cases, different parts of a human body may shake to different extents, resulting in greatly increasing the difficulty in conducting a reasonable measurement of body shake errors for image reconstruction. In this paper, a body shake error compensation algorithm based on the raw data is proposed. To analyze the effect of the body shake on the raw data, a model of echoed signal is rebuilt with considering both the beam scanning mode and the body shake. According to the rebuilt signal model, we derive the body shake error estimated method to compensate for the phase error. Simulation on the reconstruction of point targets with shake errors and proof-of-principle experiments on the human body in the 0.2-THz band are both performed to confirm the effectiveness of the body shake compensation algorithm proposed. Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123).

  20. Camera Systems Rapidly Scan Large Structures

    Science.gov (United States)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  1. The design of laser scanning galvanometer system

    Science.gov (United States)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  2. Sensitivity optimization of the one beam Z-scan technique and a Z-scan technique immune to nonlinear absorption.

    Science.gov (United States)

    Dávila Pintle, José A; Lara, Edmundo Reynoso; Iturbe Castillo, Marcelo D

    2013-07-01

    It is presented a criteria for selecting the optimum aperture radius for the one beam Z-scan technique (OBZT), based on the analysis of the transmittance of the aperture. It is also presented a modification to the OBZT by directly measuring the beam radius in the far field with a rotating disk, which allows to determine simultaneously the non-linear absorptive coefficient and non-linear refractive index, much less sensitive to wave front distortions caused by inhomogeneities of the sample with a negligible loss of signal to noise ratio. It is demonstrated its equivalence to the OBZT.

  3. The ELENA Beam Diagnostics Systems

    CERN Document Server

    Tranquille, G

    2013-01-01

    The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...

  4. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Grevillot, L; Freud, N; Sarrut, D [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, Lyon (France); Bertrand, D; Dessy, F, E-mail: loic.grevillot@creatis.insa-lyon.fr [IBA, B-1348, Louvain-la Neuve (Belgium)

    2011-08-21

    This work proposes a generic method for modeling scanned ion beam delivery systems, without simulation of the treatment nozzle and based exclusively on beam data library (BDL) measurements required for treatment planning systems (TPS). To this aim, new tools dedicated to treatment plan simulation were implemented in the Gate Monte Carlo platform. The method was applied to a dedicated nozzle from IBA for proton pencil beam scanning delivery. Optical and energy parameters of the system were modeled using a set of proton depth-dose profiles and spot sizes measured at 27 therapeutic energies. For further validation of the beam model, specific 2D and 3D plans were produced and then measured with appropriate dosimetric tools. Dose contributions from secondary particles produced by nuclear interactions were also investigated using field size factor experiments. Pristine Bragg peaks were reproduced with 0.7 mm range and 0.2 mm spot size accuracy. A 32 cm range spread-out Bragg peak with 10 cm modulation was reproduced with 0.8 mm range accuracy and a maximum point-to-point dose difference of less than 2%. A 2D test pattern consisting of a combination of homogeneous and high-gradient dose regions passed a 2%/2 mm gamma index comparison for 97% of the points. In conclusion, the generic modeling method proposed for scanned ion beam delivery systems was applicable to an IBA proton therapy system. The key advantage of the method is that it only requires BDL measurements of the system. The validation tests performed so far demonstrated that the beam model achieves clinical performance, paving the way for further studies toward TPS benchmarking. The method involves new sources that are available in the new Gate release V6.1 and could be further applied to other particle therapy systems delivering protons or other types of ions like carbon.

  5. A Novel Approach to Postmastectomy Radiation Therapy Using Scanned Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Depauw, Nicolas, E-mail: ndepauw@partners.org [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Centre for Medical Radiation Physics, University of Wollongong, New South Wales (Australia); Batin, Estelle; Daartz, Julianne [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Rosenfeld, Anatoly [Centre for Medical Radiation Physics, University of Wollongong, New South Wales (Australia); Adams, Judith; Kooy, Hanne; MacDonald, Shannon; Lu, Hsiao-Ming [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Postmastectomy radiation therapy (PMRT), currently offered at Massachusetts General Hospital, uses proton pencil beam scanning (PBS) with intensity modulation, achieving complete target coverage of the chest wall and all nodal regions and reduced dose to the cardiac structures. This work presents the current methodology for such treatment and the ongoing effort for its improvements. Methods and Materials: A single PBS field is optimized to ensure appropriate target coverage and heart/lung sparing, using an in–house-developed proton planning system with the capability of multicriteria optimization. The dose to the chest wall skin is controlled as a separate objective in the optimization. Surface imaging is used for setup because it is a suitable surrogate for superficial target volumes. In order to minimize the effect of beam range uncertainties, the relative proton stopping power ratio of the material in breast implants was determined through separate measurements. Phantom measurements were also made to validate the accuracy of skin dose calculation in the treatment planning system. Additionally, the treatment planning robustness was evaluated relative to setup perturbations and patient breathing motion. Results: PBS PMRT planning resulted in appropriate target coverage and organ sparing, comparable to treatments by passive scattering (PS) beams but much improved in nodal coverage and cardiac sparing compared to conventional treatments by photon/electron beams. The overall treatment time was much shorter than PS and also shorter than conventional photon/electron treatment. The accuracy of the skin dose calculation by the planning system was within ±2%. The treatment was shown to be adequately robust relative to both setup uncertainties and patient breathing motion, resulting in clinically satisfying dose distributions. Conclusions: More than 25 PMRT patients have been successfully treated at Massachusetts General Hospital by using single-PBS fields

  6. Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Grevillot, Loic, E-mail: loic.grevillot@gmail.co [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); IBA, B-1348 Louvain-la-Neuve (Belgium); Frisson, Thibault [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); Zahra, Nabil [Universite de Lyon, F-69622 Lyon (France); IPNL, CNRS UMR 5822, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France); Bertrand, Damien; Stichelbaut, Frederic [IBA, B-1348 Louvain-la-Neuve (Belgium); Freud, Nicolas [Universite de Lyon, F-69622 Lyon (France); CNDRI, INSA-Lyon, F-69621 Villeurbanne Cedex (France); Sarrut, David [Universite de Lyon, F-69622 Lyon (France); Creatis, CNRS UMR 5220, F-69622 Villeurbanne (France); Centre de Lutte Contre le Cancer Leon Berard, F-69373 Lyon (France)

    2010-10-15

    This study reports the investigation of different GEANT4 settings for proton therapy applications in the context of Treatment Planning System comparisons. The GEANT4.9.2 release was used through the GATE platform. We focused on the Pencil Beam Scanning delivery technique, which allows for intensity modulated proton therapy applications. The most relevant options and parameters (range cut, step size, database binning) for the simulation that influence the dose deposition were investigated, in order to determine a robust, accurate and efficient simulation environment. In this perspective, simulations of depth-dose profiles and transverse profiles at different depths and energies between 100 and 230 MeV have been assessed against reference measurements in water and PMMA. These measurements were performed in Essen, Germany, with the IBA dedicated Pencil Beam Scanning system, using Bragg-peak chambers and radiochromic films. GEANT4 simulations were also compared to the PHITS.2.14 and MCNPX.2.5.0 Monte Carlo codes. Depth-dose simulations reached 0.3 mm range accuracy compared to NIST CSDA ranges, with a dose agreement of about 1% over a set of five different energies. The transverse profiles simulated using the different Monte Carlo codes showed discrepancies, with up to 15% difference in beam widening between GEANT4 and MCNPX in water. A 8% difference between the GEANT4 multiple scattering and single scattering algorithms was observed. The simulations showed the inability of reproducing the measured transverse dose spreading with depth in PMMA, corroborating the fact that GEANT4 underestimates the lateral dose spreading. GATE was found to be a very convenient simulation environment to perform this study. A reference physics-list and an optimized parameters-list have been proposed. Satisfactory agreement against depth-dose profiles measurements was obtained. The simulation of transverse profiles using different Monte Carlo codes showed significant deviations. This point

  7. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    Science.gov (United States)

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented.

  8. [Depth dose characteristics of electron beams released from a scanning type Racetrack Microtron treatment machine].

    Science.gov (United States)

    Sato, Tomoharu

    2002-01-01

    The Racetrack Microtron MM50 capable of taking out x-rays and electron beams having a high energy of up to 50 MeV was evaluated by a dosimetry of electron beams in comparison with Microtron MM22. The MM50 flattens the intensity of electron beams by using the beam scanning method while the MM22 utilizes the flattening-filter method. A percentage depth dose (PDD) curve was obtained through the dosimetry of electron beams using a water phantom. As compared with the MM22, the MM50 emits an electron beam that has an energy much closer to the nominal one, that is less contaminated by x-rays, and whose intensity decreases steeply down to near zero on the PDD curve. The MM50 has an electron beam dose distribution that is practically useful since the dose tends to be concentrated on the target volume.

  9. Depth dose characteristics of electron beams released from a scanning type racetrack microtron treatment machine

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomoharu [National Cancer Center, Tokyo (Japan). Hospital

    2002-01-01

    The Racetrack Microtron MM50 capable of taking out x-rays and electron beams having a high energy of up to 50 MeV was evaluated by a dosimetry of electron beams in comparison with Microtron MM22. The MM50 flattens the intensity of electron beams by using the beam scanning method while the MM22 utilizes the flattening-filter method. A percentage depth dose (PDD) curve was obtained through the dosimetry of electron beams using a water phantom. As compared with the MM22, the MM50 emits an electron beam that has an energy much closer to the nominal one, that is less contaminated by x-rays, and whose intensity decreases steeply down to near zero on the PDD curve. The MM50 has an electron beam dose distribution that is practically useful since the dose tends to be concentrated on the target volume. (author)

  10. Scanning laser system to determine the corneal shape

    Science.gov (United States)

    Ascanio, Gabriel; Caballero-Ruiz, Alberto; Ruiz-Huerta, Leopoldo; Gonzalez-Cardel, Mario; Diaz-Uribe, Rufino

    2005-07-01

    The development and tests of a scanning system to be used to determine the corneal topography with the laser deflectometry method are presented. In this equipment, a He-Ne laser beam scans the cornea by describing a spiral trajectory generated by two components: radial and angular. The first component is produced by the displacement of a plane mirror moved by a linear pneumatic actuator. The second component is produced by passing the beam through a Dove prism which is rotating by means of a belt drive coupled to a high-speed electric motor. Tests were first performed by analyzing both components independently and then they were characterized by combining the two components. Results are discussed and compared to those of an earlier cited work.

  11. Switched steerable multiple beam antenna system

    Science.gov (United States)

    Iwasaki, Richard S. (Inventor)

    1988-01-01

    A steerable multibeam five element cross-feed cluster antenna system is described. The feed power is divided into five branches. Each branch includes a switching network comprised of a plurality of time delay elements each individually controlled by a respective electromagnetic latching switch. Frequency independent individual two-dimensional beam steering at intermediate (IF) scanning frequencies is thereby provided wherein discrete incremental time delays are introduced by the switching networks into each branch and the signals recombined thereafter to form each beam. The electromagnetic latched switching reduces power consumption and permits higher power switching and reciprocal coincident tranmsit and receive operation. Frequency independence due to incremental time delay switching permits coincident reciprocal operation and steering for transmit-receive signal paths carrying different transmit-receive frequencies. Diagonal quarter wave plates in the waveguides alter polarization from the circular to orthogonal linear to provide transmitter-receiver isolation.

  12. ACTD Laser Line Scan System

    Science.gov (United States)

    1997-09-30

    communications with a computer system in the MILVAN. For the ACTD a single board computer dedicated to the EOID Sensor will be inserted into GEM. This... single board computer will provide real time control of the EOID Sensor. Since the bandwidth of the microwave data link is smaller than the data rate of...EOID Sensor image data will be maintained in a circular buffer on the single board computer in GEM. Upon command, full resolution data from any segment

  13. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    Science.gov (United States)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  14. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  15. Z-scan experiment with anisotropic Gaussian Schell-model beams.

    Science.gov (United States)

    Liu, Yongxin; Pu, Jixiong; Qi, Hongqun

    2009-09-01

    We analyze the z-scan experiment with anisotropic Gaussian Schell-model (AGSM) beams. The expression for the cross-spectral density of the AGSM beam passing through the lens and onto the nonlinear thin sample is derived. Based on the expression, we simulate the results of the z-scan experiment theoretically and analyze the effects of the e factor (e=w(0x)/w(0y)) and the spatial degree of coherence in the x and y orientations on the on-axis z-scan transmittance. It is found that DeltaTp(-v) becomes larger with an increment of the e factor and the spatial degree of coherence. So we can improve the sensitivity of the z-scan experiment by increasing the e factor and the spatial degree of coherence. The results are helpful for improving the sensitivity of the z-scan experiment.

  16. Development of beam current control system in RF-knockout slow extraction

    Science.gov (United States)

    Mizushima, K.; Sato, S.; Shirai, T.; Furukawa, T.; Katagiri, K.; Takeshita, E.; Iwata, Y.; Himukai, T.; Noda, K.

    2011-12-01

    A raster scanning method has been developed for cancer therapy at NIRS-HIMAC. This method requires a high-accuracy beam current control and fast beam-on/off switching. We have developed a feedback control system of the beam current with the RF-knockout slow extraction method. The system has allowed a stable response to beam-on/off switching using a feedback control delay function with a beam-current ripple of 7%.

  17. Development of beam current control system in RF-knockout slow extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mizushima, K., E-mail: mizshima@nirs.go.jp [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Sato, S.; Shirai, T.; Furukawa, T.; Katagiri, K.; Takeshita, E.; Iwata, Y.; Himukai, T.; Noda, K. [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2011-12-15

    A raster scanning method has been developed for cancer therapy at NIRS-HIMAC. This method requires a high-accuracy beam current control and fast beam-on/off switching. We have developed a feedback control system of the beam current with the RF-knockout slow extraction method. The system has allowed a stable response to beam-on/off switching using a feedback control delay function with a beam-current ripple of 7%.

  18. SCANNING VISION SYSTEM FOR VEHICLE NAVIGATION

    OpenAIRE

    O. Sergiyenko

    2012-01-01

    The new model of the scanning vision system for vehicles is offered. The questions of creation, functioning and interaction of the system units and elements are considered. The mathematical apparatus for processing digital information inside the system and for determining distances and an-gle standard in the offered system is worked out. Expected accuracy, functioning speed, range of ac-tion, energy consumption when using the system are determined. The possible areas of the developed automa...

  19. Ultrasonic lateral modulation imaging, speckle reduction, and displacement vector measurements using simple single-beam scanning or plural crossed-beam scanning with new spectra frequency division processing methods

    Directory of Open Access Journals (Sweden)

    Sumi C

    2012-10-01

    Full Text Available Chikayoshi Sumi, Yousuke IshiiDepartment of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, JapanAbstract: The development of effective ultrasonic tissue displacement measurement methods increases the number of possible applications for various tissue displacement and strain measurements. These applications include measurements of spontaneous motions/deformations generated by heart motion; pulsations from phenomena such as blood flow (intracardiac, intravascular, and carotid; heart, blood vessel, and liver motion; and motion from artificial sources such as motions/deformations generated by applying static compression/stretching forces, vibration or acoustic radiation forces (breast and liver. For arbitrary orthogonal coordinate systems obtained using arbitrary transducer types (eg, linear, convex, sector, arc, or radial array types, or single aperture types with a mechanical scan, several lateral modulation (LM methods (eg, scanning with plural crossed or steered beams over a region of interest have been developed that can be used with new echo imaging methods for tissue displacement/deformation measurements. Specifically, by using such beamforming methods, in addition to highly accurate displacement vector and lateral displacement measurements, LM echo imaging with a high lateral carrier frequency and a high lateral resolution has been developed. Another new beamforming method, referred to as “a steering angle (ASTA method,” ie, scanning with a defined steering angle, is also described. In addition to conventional non-steered-beam scanning (ie, a version of ASTA and conventional steered-beam scanning with a variable steering angle (eg, sector, arc, radial scan, a simple, single-beam scanning method also permits the use of LM, which yields an accurate displacement vector measurement with fewer calculations than the original LM methods. This is accomplished by using a previously developed

  20. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  1. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  2. The Effect of Scan Length on the Structure and Mechanical Properties of Electron Beam-Melted Ti-6Al-4V

    Science.gov (United States)

    Everhart, Wesley; Dinardo, Joseph; Barr, Christian

    2017-02-01

    Electron beam melting (EBM) is a powder bed fusion-based additive manufacturing process in which selective areas of a layer of powder are melted with an electron beam and a part is built layer by layer. EBM scanning strategies within the Arcam AB® A2X EBM system rely upon governing relationships between the scan length of the beam path, the beam current, and speed. As a result, a large parameter process window exists for Ti-6Al-4V. Many studies have reviewed various properties of EBM materials without accounting for this effect. The work performed in this study demonstrates the relationship between scan length and the resulting density, microstructure, and mechanical properties of EBM-produced Ti-6Al-4V using the scanning strategies set by the EBM control software. This emphasizes the criticality of process knowledge and careful experimental design, and provides an alternate explanation for reported orientation-influenced strength differences.

  3. Frequency-controls of electromagnetic multi-beam scanning by metasurfaces.

    Science.gov (United States)

    Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun

    2014-01-01

    We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena.

  4. Estimating SI violation in CMB due to non-circular beam and complex scan in minutes

    CERN Document Server

    Pant, Nidhi; Rotti, Aditya; Mitra, Sanjit; Souradeep, Tarun

    2015-01-01

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper, we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a compl...

  5. Phased array based ultrasound scanning system development

    Science.gov (United States)

    Sagdiev, R. K.; Denisov, E. S.; Evdokimov, Yu K.; Fazlyyyakhmatov, M. G.; Kashapov, N. F.

    2014-12-01

    Multichannel ultrasound scanning system based on phased arrays development is presented in this paper. Substantiation of system parameters is presented. The description of block diagram and hardware development is presented. The combination of the self-developed receiving and a transmitting units and commercially available FPGA unit and Personal Computer can solve our scientific goals, while providing a relatively low device cost.

  6. KTeV beam systems design report

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  7. System and Method for Scan Range Gating

    Science.gov (United States)

    Zuk, David M. (Inventor); Lindemann, Scott (Inventor)

    2017-01-01

    A system for scanning light to define a range gated signal includes a pulsed coherent light source that directs light into the atmosphere, a light gathering instrument that receives the light modified by atmospheric backscatter and transfers the light onto an image plane, a scanner that scans collimated light from the image plane to form a range gated signal from the light modified by atmospheric backscatter, a control circuit that coordinates timing of a scan rate of the scanner and a pulse rate of the pulsed coherent light source so that the range gated signal is formed according to a desired range gate, an optical device onto which an image of the range gated signal is scanned, and an interferometer to which the image of the range gated signal is directed by the optical device. The interferometer is configured to modify the image according to a desired analysis.

  8. A custom CMOS imager for multi-beam laser scanning microscopy and an improvement of scanning speed

    Science.gov (United States)

    Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2013-02-01

    Multi-beam laser scanning confocal microscopy with a 256 × 256-pixel custom CMOS imager performing focal-plane pinhole effect, in which any rotating disk is not required, is demonstrated. A specimen is illuminated by 32 × 32 diffraction limited light spots whose wavelength and pitch are 532nm and 8.4 μm, respectively. The spot array is generated by a microlens array, which is scanned by two-dimensional piezo actuator according to the scanning of the image sensor. The frame rate of the prototype is 0.17 Hz, which is limited by the actuator. The confocal effect has been confirmed by comparing the axial resolution in the confocal imaging mode with that of the normal imaging mode. The axial resolution in the confocal mode measured by the full width at half maximum (FWHM) for a planar mirror was 8.9 μm, which is showed that the confocality has been achieved with the proposed CMOS image sensor. The focal-plane pinhole effect in the confocal microscopy with the proposed CMOS imager has been demonstrated at low frame rate. An improvement of the scanning speed and a CMOS imager with photo-sensitivity modulation pixels suitable for high-speed scanning are also discussed.

  9. Patient-specific quality assurance for spot scanning proton beams using a large-volume liquid scintillator detector

    Science.gov (United States)

    Robertson, D.; Beddar, S.

    2017-05-01

    A large-volume liquid scintillator detector was used to measure individual energy layers from a clinical prostate treatment plan on a scanning proton beam system. Lateral and beam’s-eye view images of the dose distribution were acquired with two CCD cameras facing adjacent sides of a scintillator tank. The measured dose images were compared with calculated dose distributions from a validated Monte Carlo model. The measured and calculated dose distributions showed good agreement, with the exception of the Bragg peak region of the lateral view, which exhibited ionization quenching. The beam’s-eye and lateral views achieved gamma analysis passing rates of 99.7% and 92.5%, respectively, using gamma criteria of 3%, 3 mm. Large-volume scintillator detectors show promise for quick and accurate measurements of patient treatment fields for scanning proton beam systems.

  10. High-Q MEMS Resonators for Laser Beam Scanning Displays

    Directory of Open Access Journals (Sweden)

    Ulrich Hofmann

    2012-06-01

    Full Text Available This paper reports on design, fabrication and characterization of high-Q MEMS resonators to be used in optical applications like laser displays and LIDAR range sensors. Stacked vertical comb drives for electrostatic actuation of single-axis scanners and biaxial MEMS mirrors were realized in a dual layer polysilicon SOI process. High Q-factors up to 145,000 have been achieved applying wafer level vacuum packaging technology including deposition of titanium thin film getters. The effective reduction of gas damping allows the MEMS actuator to achieve large amplitudes at high oscillation frequencies while driving voltage and power consumption can be minimized. Exemplarily shown is a micro scanner that achieves a total optical scan angle of 86 degrees at a resonant frequency of 30.8 kHz, which fulfills the requirements for HD720 resolution. Furthermore, results of a new wafer based glass-forming technology for fabrication of three dimensionally shaped glass lids with tilted optical windows are presented.

  11. Requirements of CLIC Beam Loss Monitoring System

    CERN Document Server

    Sapinski, M; Holzer, EB; Jonker, M; Mallows, S; Otto, T; Welsch, C

    2010-01-01

    The Compact Linear Collider (CLIC) [1] is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel twobeam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine, because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring (BLM) system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. The two-beam module where the protection from beam losses is particularly challenging and important, is studied.

  12. Evaluation of anthropometric accuracy and reliability using different three-dimensional scanning systems

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Gerrits, Peter O.; Ren, Yijin

    2011-01-01

    The aim of this study was to evaluate the accuracy and reliability of standard anthropometric linear measurements made with three different three-dimensional scanning systems namely laser surface scanning (Minolta Vivid 900), cone beam computed tomography (CBCT), 3D stereo-photogrammetry (Di3D syste

  13. Fast beam cut-off method in RF-knockout extraction for spot-scanning

    Science.gov (United States)

    Furukawa, Takuji; Noda, Koji

    2002-08-01

    An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 μs from 700 μs by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.

  14. SCANNING VISION SYSTEM FOR VEHICLE NAVIGATION

    Directory of Open Access Journals (Sweden)

    O. Sergiyenko

    2012-01-01

    Full Text Available The new model of the scanning vision system for vehicles is offered. The questions of creation, functioning and interaction of the system units and elements are considered. The mathematical apparatus for processing digital information inside the system and for determining distances and an-gle standard in the offered system is worked out. Expected accuracy, functioning speed, range of ac-tion, energy consumption when using the system are determined. The possible areas of the developed automatic navigation system use are offered.

  15. SU-E-T-505: BrainLab Plan Comparisons: Brain Scan Pencil Beam versus IPlan Monte Carlo.

    Science.gov (United States)

    Kowski, M; Edwards, J; Bauer, L; DuBose, R; Powell, H

    2012-06-01

    Monte Carlo (MC) dose modeling techniques are available in the newest version of Brain Lab's IPlan treatment planning system (TPS). Prior to the upgrade, at our facility, BrainLab's BrainScan was the treatment planning system available; pencil beam (PB) modeling is employed by BrainScan. As published in the literature, MC calculations, as compared to the PB algorithm, can generate differences in coverage as much as 20%. With the introduction of the new treatment planning system, treatment parameter comparisons were made with quantitative assessments. Differences due to changes in the dose calculation that could impact patient treatments and outcomes were investigated. Beam data was collected for the new BrainLab TPS IPLAN under the conditions as outlined in the manufacturer's Version 1.3 data collection, commissioning and acceptance guidelines. Utilizing BrainLab's treatment planning systems, treatment plan comparisons were made. First, PB modeling treatment plans were assessed for each treatment plan with pencil beam modeling in the BrainScan and IPlan TPS. Treatment plans with MC modeling were then compared to PB models. Differences in the dose distribution, DVH values, and monitor units were evaluated between the older version software (BrainScan) and the newer treatment planning system (IPlan). As predicted by the literature, the differences in the MC modeling versus PB modeling were significant depending upon the anatomy (tumor site). Modeling comparison for the treatment plans will be presented for SRS (Stereotactic Radiosurgery) and Stereotactic Body Radiation Therapy (SBRT). Clinical implementation of a new treatment planning system must be approached with caution and with adherence to AAPM recommendations and guidelines. Whenever a new TPS calculation model is introduced, thorough comparison between former and new models should be obtained. An additional recommended test would be to perform an independent, end-to-end check of the overall system utilizing

  16. Integration of digital dental casts in cone-beam computed tomography scans

    NARCIS (Netherlands)

    Rangel, F.A.; Maal, T.J.J.; Berge, S.J.; Kuijpers-Jagtman, A.M.

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all

  17. Nano-tomography of porous geological materials using focused ion beam-scanning electron microscopy

    NARCIS (Netherlands)

    Liu, Yang; King, Helen E.; van Huis, Marijn A.; Drury, Martyn R.; Plümper, Oliver

    2016-01-01

    Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM) provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution

  18. Scanning Tunneling Microscopy Studies of Topological Insulators Grown by Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Xue Qikun

    2012-03-01

    Full Text Available We summarize our recent scanning tunneling microscopy (STM study of topological insulator thin films grown by molecular beam epitaxy (MBE, which includes the observation of electron standing waves on topological insulator surface and the Landau quantization of topological surface states. The work has provided valuable information to the understanding of intriguing properties of topological insulators, as predicted by theory.

  19. Compact multiple laser beam scanning module for high-resolution pico-projector applications using a fiber bundle combiner

    Science.gov (United States)

    Ide, Masafumi; Fukaya, Shinpei; Yoda, Kaoru; Suzuki, Masaya

    2014-02-01

    We present a novel multiple laser beam scanning projection module using compact red-green-blue (RGB) fiber pigtailed laser modules for use in a high resolution pico-projector display system using a fiber bundle combiner in combination with a single MEMS mirror. This system can be used to create accurate multiple-projection images on a screen without overlaps or spaces among the projection images. The system uses very simple projection optics and has the potential to become a light engine unit for use in multiple projection systems, particularly those for light field displays. As such, light field display applications are also discussed.

  20. Confocal line scanning of a Bessel beam for fast 3D imaging.

    Science.gov (United States)

    Zhang, P; Phipps, M E; Goodwin, P M; Werner, J H

    2014-06-15

    We have developed a light-sheet illumination microscope that can perform fast 3D imaging of transparent biological samples with inexpensive visible lasers and a single galvo mirror (GM). The light-sheet is created by raster scanning a Bessel beam with a GM, with this same GM also being used to rescan the fluorescence across a chip of a camera to construct an image in real time. A slit is used to reject out-of-focus fluorescence such that the image formed in real time has minimal contribution from the sidelobes of the Bessel beam. Compared with two-photon Bessel beam excitation or other confocal line-scanning approaches, our method is of lower cost, is simpler, and does not require calibration and synchronization of multiple GMs. We demonstrated the optical sectioning and out-of-focus background rejection capabilities of this microscope by imaging fluorescently labeled actin filaments in fixed 3T3 cells.

  1. Tetrahedron-based orthogonal simultaneous scan for cone-beam computed tomography.

    Science.gov (United States)

    Ye, Ivan B; Wang, Ge

    2012-08-01

    In this article, a cone-beam computed tomography scanning mode is designed using four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite of each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. A proposed scanning scheme consists of two rotations about orthogonal axes, such that, each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired.

  2. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  3. Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography.

    Science.gov (United States)

    Kim, Jooseong; Heo, Giseon; Lagravère, Manuel O

    2014-05-01

    To compare the accuracy of measurements obtained from the three-dimensional (3D) laser scans to those taken from the cone-beam computed tomography (CBCT) scans and those obtained from plaster models. Eighteen different measurements, encompassing mesiodistal width of teeth and both maxillary and mandibular arch length and width, were selected using various landmarks. CBCT scans and plaster models were prepared from 60 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner, and the selected landmarks were measured using its software. CBCT scans were imported and analyzed using the Avizo software, and the 26 landmarks corresponding to the selected measurements were located and recorded. The plaster models were also measured using a digital caliper. Descriptive statistics and intraclass correlation coefficient (ICC) were used to analyze the data. The ICC result showed that the values obtained by the three different methods were highly correlated in all measurements, all having correlations>0.808. When checking the differences between values and methods, the largest mean difference found was 0.59 mm±0.38 mm. In conclusion, plaster models, CBCT models, and laser-scanned models are three different diagnostic records, each with its own advantages and disadvantages. The present results showed that the laser-scanned models are highly accurate to plaster models and CBCT scans. This gives general clinicians an alternative to take into consideration the advantages of laser-scanned models over plaster models and CBCT reconstructions.

  4. Fast dose analysis of movement effects during treatments with scanned proton and carbon-ion beams

    Science.gov (United States)

    Vignati, A.; Varasteh Anvar, M.; Giordanengo, S.; Monaco, V.; Attili, A.; Donetti, M.; Marchetto, F.; Mas Milian, F.; Ciocca, M.; Russo, G.; Sacchi, R.; Cirio, R.

    2017-01-01

    Charged particle therapy delivered using scanned pencil beams shows the potential to produce better dose conformity than conventional radiotherapy, although the dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of engines to monitor the dose as it is being delivered is highly desirable, in order to enhance the development of adaptive treatment techniques in hadrontherapy. A tool for fast dose distributions analysis is presented, which integrates on GPU a Fast Forward Planning, a Fast Image Deformation algorithm, a fast computation of Gamma-Index and Dose-Volume Histogram. The tool is being interfaced with the Dose Delivery System and the Optical Tracking System of a synchrotron-based facility to investigate the feasibility to quantify, spill by spill, the effects of organ movements on dose distributions during treatment deliveries with protons and carbon-ions. The dose calculation and comparison times for a patient treated with protons on a 61.3 cm3 planning target volume, a CT matrix of 512x512x125 voxels, and a computation matrix of 170x170x125 voxels are within 1 s per spill. In terms of accuracy, the absolute dose differences compared with benchmarked Treatment Planning System results are negligible (<10-4 Gy).

  5. Proton therapy posterior beam approach with pencil beam scanning for esophageal cancer. Clinical outcome, dosimetry, and feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yue-Can [Shengjing Hospital of China Medical University, Department of Medical Oncology, Cancer Center, Shenyang (China); University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); Vyas, Shilpa; Apisarnthanarax, Smith; Zeng, Jing [University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); Dang, Quang; Schultz, Lindsay [Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA (United States); Bowen, Stephen R. [University of Washington Medical Center, Department of Radiation Oncology, 1959 NE Pacific Street, Campus Box 356043, Seattle, WA (United States); University of Washington Medical Center, Department of Radiology, Seattle, WA (United States); Shankaran, Veena [University of Washington Medical Center, Department of Medical Oncology, Seattle, WA (United States); Farjah, Farhood [University of Washington Medical Center, Department of Surgery, Division of Cardiothoracic Surgery, Seattle, WA (United States); University of Washington Medical Center, Department of Surgery, Surgical Outcomes Research Center, Seattle, WA (United States); Oelschlager, Brant K. [University of Washington Medical Center, Department of Surgery, Seattle, WA (United States)

    2016-12-15

    The aim of this study is to present the dosimetry, feasibility, and preliminary clinical results of a novel pencil beam scanning (PBS) posterior beam technique of proton treatment for esophageal cancer in the setting of trimodality therapy. From February 2014 to June 2015, 13 patients with locally advanced esophageal cancer (T3-4N0-2M0; 11 adenocarcinoma, 2 squamous cell carcinoma) were treated with trimodality therapy (neoadjuvant chemoradiation followed by esophagectomy). Eight patients were treated with uniform scanning (US) and 5 patients were treated with a single posterior-anterior (PA) beam PBS technique with volumetric rescanning for motion mitigation. Comparison planning with PBS was performed using three plans: AP/PA beam arrangement; PA plus left posterior oblique (LPO) beams, and a single PA beam. Patient outcomes, including pathologic response and toxicity, were evaluated. All 13 patients completed chemoradiation to 50.4 Gy (relative biological effectiveness, RBE) and 12 patients underwent surgery. All 12 surgical patients had an R0 resection and pathologic complete response was seen in 25 %. Compared with AP/PA plans, PA plans have a lower mean heart (14.10 vs. 24.49 Gy, P < 0.01), mean stomach (22.95 vs. 31.33 Gy, P = 0.038), and mean liver dose (3.79 vs. 5.75 Gy, P = 0.004). Compared to the PA/LPO plan, the PA plan reduced the lung dose: mean lung dose (4.96 vs. 7.15 Gy, P = 0.020) and percentage volume of lung receiving 20 Gy (V{sub 20}; 10 vs. 17 %, P < 0.01). Proton therapy with a single PA beam PBS technique for preoperative treatment of esophageal cancer appears safe and feasible. (orig.) [German] Wir stellen die Vergleichsdosimetrie, Realisierbarkeit und die vorlaeufigen klinischen Ergebnisse einer neuen Pencil-Beam-Scanning(-PBS)/Posterior-Beam-Methode innerhalb der Protonentherapie fuer Speiseroehrenkrebs im Setting einer trimodalen Therapie vor. Von Februar 2014 bis Juni 2015 erhielten 13 Patienten mit lokal fortgeschrittenem

  6. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  7. Influence of scanning strategies on the accuracy of digital intraoral scanning systems.

    Science.gov (United States)

    Ender, A; Mehl, A

    2013-01-01

    The digital intraoral impression is a central part in today's CAD/CAM dentistry. With its possibilities, new treatment options for the patient is provided and the prosthetic workflow is accelerated. Nowadays, the major issue with intraoral scanning systems is to gain more accuracy especially for larger scan areas and to simplify clinical handling for the dentist. The aim of this study was to investigate different scanning strategies regardingtheir accuracy with full arch scans in an in-vitro study design. A reference master model was used for the digital impressions with the Lava COS, the Cerec Bluecam and a powderfree intraoral scanning system, Cadent iTero. The trueness and precision of each scanning protocol was measured. Lava COS provides the a trueness of 45.8 microm with the scanning protocol recommended from the manufacturer. A different scanning protocol shows significantly lower accuracy (trueness +/- 90.2 microm). Cerec Bluecam also benefits from an optimal scanning protocol with a trueness of +/- 23.3 microm compared to +/- 52.5 microm with a standard protocol. The powderfree impression system Cadent iTero shows also a high accurate full-arch scan with a trueness of +/- 35.0 microm and a precision of +/- 30.9 microm. With the current intraoral scanning systems, full arch dental impressions are possible with a high accuracy, if adequate scan strategies are used. The powderfree scanning system provides the same level of accuracy compared to scanning systems with surface pretreatment.

  8. Super-resolution for scanning light stimulation systems

    Science.gov (United States)

    Bitzer, L. A.; Neumann, K.; Benson, N.; Schmechel, R.

    2016-09-01

    Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems. To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.

  9. Use of Reference Ear Plug to improve accuracy of lateral cephalograms generated from cone-beam computed tomography scans

    OpenAIRE

    Hwang, Hyeon-Shik; Lee, Kyung-Min; Uhm, Gi-Soo; Cho, Jin-Hyoung; McNamara, James A.

    2013-01-01

    Objective The purpose of this study was to evaluate the effectiveness of the use of Reference Ear Plug (REP) during cone-beam computed tomography (CBCT) scan for the generation of lateral cephalograms from CBCT scan data. Methods Two CBCT scans were obtained from 33 adults. One CBCT scan was acquired using conventional methods, and the other scan was acquired with the use of REP. Virtual lateral cephalograms created from each CBCT image were traced and compared with tracings of the real cepha...

  10. Cryo DualBeam Focused Ion Beam-Scanning Electron Microscopy to Evaluate the Interface Between Cells and Nanopatterned Scaffolds.

    Science.gov (United States)

    Lamers, Edwin; Walboomers, X Frank; Domanski, Maciej; McKerr, George; O'Hagan, Barry M; Barnes, Clifford A; Peto, Lloyd; Luttge, Regina; Winnubst, Louis A J A; Gardeniers, Han J G E; Jansen, John A

    2011-01-01

    With the advance of nanotechnology in biomaterials science and tissue engineering, it is essential that new techniques become available to observe processes that take place at the direct interface between tissue and scaffold materials. Here, Cryo DualBeam focused ion beam-scanning electron microscopy (FIB-SEM) was used as a novel approach to observe the interactions between frozen hydrated cells and nanometric structures in high detail. Through a comparison of images acquired with transmission electron microscopy (TEM), conventional FIB-SEM operated at ambient temperature, and Cryo DualBeam FIB-SEM, the advantages and disadvantages of each technique were evaluated. Ultrastructural details of both (extra)cellular components and cell organelles were best observe with TEM. However, processing artifacts such as shrinkage of cells at the substrate interface were introduced in both TEM and conventional FIB-SEM. In addition, the cellular contrast in conventional FIB-SEM was low; consequently, cells were difficult to distinguish from the adjoining substrate. Cryo DualBeam FIB-SEM did preserve (extra)cellular details like the contour, cell membrane, and mineralized matrix. The three described techniques have proven to be complementary for the evaluation of processes that take place at the interface between tissue and substrate.

  11. Advantages of scanning-mode ion beam analysis for the study of Cultural Heritage

    Science.gov (United States)

    Grassi, N.; Giuntini, L.; Mandò, P. A.; Massi, M.

    2007-03-01

    In this paper, we discuss the convenience of performing external PIXE and PIGE measurements by scanning relatively large areas (some mm2) with a beam size of the order of hundred microns, rather than performing "spot" compositional analysis. Examples of test runs on samples of archaeometric interest are presented: scanning-mode measurements of ancient inks, Roman glass and metal point drawings clearly demonstrate that using this procedure to perform IBA may become fundamental to avoid deceptive information and to obtain more reliable quantitative results.

  12. Advantages of scanning-mode ion beam analysis for the study of Cultural Heritage

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, N. [Dipartimento di Fisica dell' Universita and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Florence (Italy)]. E-mail: grassi@fi.infn.it; Giuntini, L. [Dipartimento di Fisica dell' Universita and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Florence (Italy); Mando, P.A. [Dipartimento di Fisica dell' Universita and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Florence (Italy); Massi, M. [Dipartimento di Fisica dell' Universita and Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Florence (Italy)

    2007-03-15

    In this paper, we discuss the convenience of performing external PIXE and PIGE measurements by scanning relatively large areas (some mm{sup 2}) with a beam size of the order of hundred microns, rather than performing 'spot' compositional analysis. Examples of test runs on samples of archaeometric interest are presented: scanning-mode measurements of ancient inks, Roman glass and metal point drawings clearly demonstrate that using this procedure to perform IBA may become fundamental to avoid deceptive information and to obtain more reliable quantitative results.

  13. BEAM CONTAINMENT SYSTEM FOR NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.L.; Casey, W.; Job, P.K.

    2010-05-23

    The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.

  14. Destructive effects induced by the electron beam in scanning electron microscopy

    Science.gov (United States)

    Popescu, M. C.; Bita, B. I.; Banu, M. A.; Tomescu, R. M.

    2016-12-01

    The Scanning Electron Microscopy has been validated by its impressive imaging and reliable measuring as an essential characterization tool for a variety of applications and research fields. This paper is a comprehensive study dedicated to the undesirable influence of the accelerated electron beam associated with the dielectric materials, sensitive structures or inappropriate sample manipulation. Depending on the scanning conditions, the electron beam may deteriorate the investigated sample due to the extended focusing or excessive high voltage and probe current applied on vulnerable configurations. Our aim is to elaborate an instructive material for improved SEM visualization capabilities by overcoming the specific limitations of the technique. Particular examination and measuring methods are depicted along with essential preparation and manipulation procedures in order to protect the integrity of the sample. Various examples are mentioned and practical solutions are described in respect to the general use of the electron microscope.

  15. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    Science.gov (United States)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-01-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588

  16. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J., E-mail: gsimpson@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  17. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  18. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Hasi, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025-7015 (United States); Oh, A. [The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2013-08-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge.

  19. Focussed Ion Beam Milling and Scanning Electron Microscopy of Brain Tissue

    OpenAIRE

    Knott, Graham; Rosset, Stéphanie; Cantoni, Marco

    2011-01-01

    This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened. Using a light microscope and ultramicrotome with glass knives, a small block containing the region interest close to the surface is made....

  20. Prediction of non-identical particle correlations for the Beam Energy Scan program

    CERN Document Server

    Poniatowska, Katarzyna

    2014-01-01

    Femtoscopy of two non-identical particles in heavy ion collisions enables one to study the space-time asymmetry in the particle's emission process. Theoretical studies based on EPOS model performed for collision energies from the Beam Energy Scan program in STAR allow us to investigate the dependence of source sizes and dynamics effects. Obtained information will enable us to predict the collective behaviour of femtoscopic particle's source.

  1. Beam-Scanning Reflectarray Based on a Single Varactor-Tuned Element

    Directory of Open Access Journals (Sweden)

    F. Venneri

    2012-01-01

    Full Text Available A single varactor-tuned element is investigated as effective solution for the realization of reconfigurable reflectarray antennas. The proposed configuration is successfully implemented for the design of an X-band reflectarray prototype of 3×15 radiators. A dedicated electronic control board is designed as an integral part of the antenna. Good performances in terms of beam-scanning capabilities are obtained from measurements.

  2. Correlative analysis of immunoreactivity in confocal laser-scanning microscopy and scanning electron microscopy with focused ion beam milling.

    Science.gov (United States)

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Unzai, Tomo; Matsuda, Wakoto; Iwai, Haruki; Yamanaka, Atsushi; Uemura, Masanori; Kaneko, Takeshi

    2013-01-01

    Recently, three-dimensional reconstruction of ultrastructure of the brain has been realized with minimal effort by using scanning electron microscopy (SEM) combined with focused ion beam (FIB) milling (FIB-SEM). Application of immunohistochemical staining in electron microscopy (EM) provides a great advantage in that molecules of interest are specifically localized in ultrastructures. Thus, we applied immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in confocal laser-scanning microcopy (CF-LSM). Dendrites of medium-sized spiny neurons in the rat neostriatum were visualized using a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively. In contrast-inverted FIB-SEM images, silver precipitations and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were as easily recognizable as those in the transmission electron microscopy (TEM) images. Furthermore, in the sites of interest, some appositions displayed synaptic specializations of an asymmetric type. Thus, the present method was useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connections in the central neural circuit.

  3. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  4. Quantification of interplay effects of scanned particle beams and moving targets.

    Science.gov (United States)

    Bert, Christoph; Grözinger, Sven O; Rietzel, Eike

    2008-05-07

    Scanned particle beams and target motion interfere. This interplay leads to deterioration of the dose distribution. Experiments and a treatment planning study were performed to investigate interplay. Experiments were performed with moving radiographic films for different motion parameters. Resulting dose distributions were analyzed for homogeneity and dose coverage. The treatment planning study was based on the time-resolved computed tomography (4DCT) data of five lung tumor patients. Treatment plans with margins to account for respiratory motion were optimized, and resulting dose distributions for 108 different motion parameters for each patient were calculated. Data analysis for a single fraction was based on dose-volume histograms and the volume covered with 95% of the planned dose. Interplay deteriorated dose conformity and homogeneity (1-standard deviation/mean) in the experiments as well as in the treatment-planning study. The homogeneity on radiographic films was below approximately 80% for motion amplitudes of approximately 15 mm. For the treatment-planning study based on patient data, the target volume receiving at least 95% of the prescribed dose was on average (standard deviation) 71.0% (14.2%). Interplay of scanned particle beams and moving targets has severe impact on the resulting dose distributions. Fractionated treatment delivery potentially mitigates at least parts of these interplay effects. However, especially for small fraction numbers, e.g. hypo-fractionation, treatment of moving targets with scanned particle beams requires motion mitigation techniques such as rescanning, gating, or tracking.

  5. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    Science.gov (United States)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  6. Development of an automatic pipeline scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Moon, Soon S.; Eom, Heung S.; Choi, Yu R

    1999-11-01

    Pressure pipe inspection in nuclear power plants is one of the mandatory regulation items. Comparing to manual ultrasonic inspection, automatic inspection has the benefits of more accurate and reliable inspection results and reduction of radiation disposal. final object of this project is to develop an automatic pipeline inspection system of pressure pipe welds in nuclear power plants. We developed a pipeline scanning robot with four magnetic wheels and 2-axis manipulator for controlling ultrasonic transducers, and developed the robot control computer which controls the robot to navigate along inspection path exactly. We expect our system can contribute to reduction of inspection time, performance enhancement, and effective management of inspection results. The system developed by this project can be practically used for inspection works after field tests. (author)

  7. Measurements of Beam Ion Loss from the Compact Helical System

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  8. Study on the parameters of the scanning system for the 300 keV electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.; Baijan, A. H.; Sabri, R. M.; Mohtar, M.; Glam, H.; Lojius, L.; Zahidee, M.; Azman, A.; Zaid, M. [Malaysian Nuclear Agency, Bangi, 43000 Kajang. Selangor (Malaysia)

    2016-01-22

    This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters of the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.

  9. BEAM COUPLING PHENOMENA IN FAST KICKER SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; AHRENS,L.A.; GLENN,J.; SANDBERG,J.; TSOUPAS,N.

    2001-06-18

    Beam coupling phenomena have been observed in most fast kicker systems through out Brookhaven Collider-Accelerator complex. With ever-higher beam intensity, the signature of the beam becomes increasingly recognizable. The beam coupling at high intensity produced additional heat dissipation in high voltage modulator, thyratron grids, thyratron driver circuit sufficient to damage some components, and causes trigger instability. In this paper, we will present our observations, basic coupling mode analysis, relevance to the magnet structures, issues related to the existing high voltage modulators, and considerations of the future design of the fast kicker systems.

  10. Angle extended linear MEMS scanning system for 3D laser vision sensor

    Science.gov (United States)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  11. Gamma beam system at ELI-NP

    Energy Technology Data Exchange (ETDEWEB)

    Ur, Calin Alexandru, E-mail: calin.ur@eli-np.ro [Extreme Light Infrastructure, IFIN-HH, Magurele-Bucharest (Romania)

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  12. Optical analysis of scanning microstereolithography systems

    Science.gov (United States)

    Deshmukh, Suhas P.; Dubey, Shashikant; Gandhi, P. S.

    2006-01-01

    Microstereolithography (MSL) is rapidly developing technique for micro-fabrication. Vector-by-vector scanning MSL has a potential to create true 3D micro-devices as compared to mostly planar (2D-2 1/2 D) devices fabricated by conventional MEMS techniques. Previous literature shows two different scanning methods:(1) Galvanomirror scanning, (2) Photoreactor tank scanning. Galvanomirror scanning technique has higher fabrication speed but poor resolution because of defocusing of laser spot on the resin surface. Photo-reactor tank scanning has higher resolution but produces a wavy structures and limited speed of fabrication. This paper proposes and develops an offaxis lens scanning technique for MSL and carries out optical analysis to compare its performance with the existing techniques mentioned above. The comparison clearly demonstrates improved performance with the proposed offaxis lens scanning technique.

  13. MO-F-CAMPUS-T-04: Utilization of Optical Dosimeter for Modulated Spot-Scanning Particle Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, W; Li, Y; Huang, Z; Sheng, Y; Deng, Y; Zhao, J; Zhao, F; Sun, L; Moyers, M [Shanghai Proton and Heavy Ion Center, Pudong, Shangai (China)

    2015-06-15

    Purpose: To present the utilization of an optical dosimeter for modulated spot-scanning carbon-ion and proton beams during the acceptance test of Siemens IONTRIS system. Method and Materials: An optical dosimeter using phosphor scintillation was developed to map and interactively analyze the shapes and sizes of spots over 190 energies for ProTom modulated-scanning system. The dose response to proton had been characterized with proper pixel calibration at ProTom system. The dose response was further studied at 0.7 cm depths by uniform 8cm in-diameter fields of 424.89 MeV/u (E290) carbon-ions and 215.18MeV (E282) protons at IONTRIS system. The virtual source axial distances (vSAD) of carbonions and protons of IONTRIS system was investigated by measuring either variations of spot position or field size at five different locations to Isocenter. By measuring lateral profiles of uniform doses with varied thin-thicknesses of chest-board pattern and placing the scintillation plate at near to the distal edge, range variations at different off-axis-distances (rOAD) were examined. Relative accuracy and reproducibility of beam range were measured for three beam ranges with a ramping block at front of scintillation plate. Results: Similar dose response was observed for high energies of carbon ions and protons. Mean vSAD at X and Y axes were 744.1 cm and 807.4cm with deviation of 7.4cm and 7.7cm, respectively. Variation of rOAD was within 0.35 mm over 10cm for both protons and carbon ions. Accuracy of measuring relative distal range using the ramping block was 0.2mm. Measured range over repeated three times for each range were within 0.25mm at same room, and within 1.0mm between four rooms. Conclusions: The optical dosimeter could efficiently measure the virtual source distance. And, to measure small range variation at different off-axial locations, and for the relative beam range between rooms during acceptance test of a modulated spot-scanning particle system.

  14. Single-scan scatter correction in CBCT by using projection correlation based view interpolation (PC-VI) and a stationary ring-shaped beam stop array (BSA)

    CERN Document Server

    Yan, Hao; Zhang, Yanbo; Zankl, Maria

    2014-01-01

    In the scatter correction for x-ray Cone Beam (CB) CT, the single-scan scheme with moving Beam Stop Array (BSA) offers reliable scatter measurement with low dose, and by using Projection Correlation based View Interpolation (PC-VI), the primary fluence shaded by the moving BSA (during scatter measurement) could be recovered with high accuracy. However, the moving BSA may increase the mechanical burden in real applications. For better practicability, in this paper we proposed a PC-VI based single-scan scheme with a ring-shaped stationary BSA, which serves as a virtual moving BSA during CB scan, so the shaded primary fluence by this stationary BSA can be also well recovered by PC-VI. The principle in designing the whole system is deduced and evaluated. The proposed scheme greatly enhances the practicability of the single-scan scatter correction scheme.

  15. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy.

    Science.gov (United States)

    Bushby, Andrew J; P'ng, Kenneth M Y; Young, Robert D; Pinali, Christian; Knupp, Carlo; Quantock, Andrew J

    2011-06-01

    In this protocol, we describe a 3D imaging technique known as 'volume electron microscopy' or 'focused ion beam scanning electron microscopy (FIB/SEM)' applied to biological tissues. A scanning electron microscope equipped with a focused gallium ion beam, used to sequentially mill away the sample surface, and a backscattered electron (BSE) detector, used to image the milled surfaces, generates a large series of images that can be combined into a 3D rendered image of stained and embedded biological tissue. Structural information over volumes of tens of thousands of cubic micrometers is possible, revealing complex microanatomy with subcellular resolution. Methods are presented for tissue processing, for the enhancement of contrast with osmium tetroxide/potassium ferricyanide, for BSE imaging, for the preparation and platinum deposition over a selected site in the embedded tissue block, and for sequential data collection with ion beam milling; all this takes approximately 90 h. The imaging conditions, procedures for alternate milling and data acquisition and techniques for processing and partitioning the 3D data set are also described; these processes take approxiamtely 30 h. The protocol is illustrated by application to developing chick cornea, in which cells organize collagen fibril bundles into complex, multilamellar structures essential for transparency in the mature connective tissue matrix. The techniques described could have wide application in a range of fields, including pathology, developmental biology, microstructural anatomy and regenerative medicine.

  16. The First Experience With Space Scanning Extracted Beam On The Spin@u-70 Setup Target Possibility And Measurement Tool

    CERN Document Server

    Afonin, A G; Gres, V N; Terekhov, V I

    2004-01-01

    This paper presents the first results of experiments aimed at a provision of possibilities of the extracted beam space scanning on polarized target of the SPIN@U-70 Setup. The design and features of the special instrumentation are given.

  17. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    Science.gov (United States)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  18. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  19. Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads

    Science.gov (United States)

    Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek

    2016-06-01

    To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of "flux beaming." In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.

  20. Design of 220 GHz electronically scanned reflectarrays for confocal imaging systems

    Science.gov (United States)

    Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.

    2012-09-01

    The authors analyze properties of a 220 GHz imaging system that uses a scanned reflectarray to perform electronic beam scanning of a confocal imager for applications including imaging meter-sized fields of view at 50 m standoff. Designs incorporating reflectarrays with confocal imagers have not been examined previously at these frequencies. We examine tradeoffs between array size, overall system size, and number of achievable image pixels resulting in a realistic architecture capable of meeting the needs of our application. Impacts to imaging performance are assessed through encircled energy calculations, beam pointing accuracy, and examining the number and intensity of quantization lobes that appear over the scan ranges of interest. Over the desired scan range, arrays with 1 and 2-bit phase quantization showed similar array main beam energy efficiencies. Two-bit phase quantization is advantageous in terms of pointing angle error, resulting in errors of at most 15% of the diffraction-limited beam size. However, both phase quantization cases considered resulted in spurious returns over the scan range of interest and other array layouts should be examined to eliminate potential imaging artifacts.

  1. Beam specific planning target volumes incorporating 4DCT for pencil beam scanning proton therapy of thoracic tumors

    CERN Document Server

    Lin, Liyong; Huang, Sheng; Mayer, Rulon; Thomas, Andrew; Solberg, Timothy D; McDonough, James E; Simone, Charles B

    2015-01-01

    The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4DCT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4DCT phases, using +-3% uncertainty in stopping power, and +-3 mm uncertainty in patient setup in each direction were used to create 8X12X10=960 PBS plans for the evaluation of ten patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and...

  2. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazunori, E-mail: kazokada@sfsu.edu [Department of Computer Science, San Francisco State University, San Francisco, California 94132 (United States); Rysavy, Steven [Biomedical and Health Informatics Program, University of Washington, Seattle, Washington 98195 (United States); Flores, Arturo [Computer Science and Engineering, University of California, San Diego, California 92093 (United States); Linguraru, Marius George [Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010 and Departments of Radiology and Pediatrics, George Washington University, Washington, DC 20037 (United States)

    2015-04-15

    Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.

  3. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    Science.gov (United States)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  4. Overview of results from phase I of the Beam Energy Scan program at RHIC

    Directory of Open Access Journals (Sweden)

    McDonald Daniel

    2015-01-01

    Full Text Available The first phase of the Beam Energy Scan (BES program at the Relativistic Heavy Ion Collider (RHIC was successfully completed during the years 2010, 2011 and 2014, with Au+Au collisions at center-of-mass energies (√sNN of 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The BES has three distinct goals: search for the turning off of the signatures of the Quark Gluon Plasma (QGP, search for the first-order phase transition, and search for the critical point. We report several interesting results that address each of these goals of the BES program.

  5. Correlative In Vivo 2 Photon and Focused Ion Beam Scanning Electron Microscopy of Cortical Neurons

    Science.gov (United States)

    Maco, Bohumil; Holtmaat, Anthony; Cantoni, Marco; Kreshuk, Anna; Straehle, Christoph N.; Hamprecht, Fred A.; Knott, Graham W.

    2013-01-01

    Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis. PMID:23468982

  6. Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Bohumil Maco

    Full Text Available Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis.

  7. Refocusing a scanned laser projector for small and bright images: simultaneously controlling the profile of the laser beam and the boundary of the image.

    Science.gov (United States)

    Horvath, Samantha; Galeotti, John; Siegel, Mel; Stetten, George

    2014-08-20

    This paper describes a projection system for augmenting a scanned laser projector to create very small, very bright images for use in a microsurgical augmented reality system. Normal optical design approaches are insufficient because the laser beam profile differs optically from the aggregate image. We propose a novel arrangement of two lens groups working together to simultaneously adjust both the laser beam of the projector (individual pixels) and the spatial envelope containing them (the entire image) to the desired sizes. The present work models such a system using paraxial beam equations and ideal lenses to demonstrate that there is an "in-focus" range, or depth of field, defined by the intersection of the resulting beam-waist radius curve and the ideal pixel radius for a given image size. Images within this depth of field are in focus and can be adjusted to the desired size by manipulating the lenses.

  8. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  9. Performance of the ATLAS Beam Diagnostic Systems

    CERN Document Server

    Macek, B; The ATLAS collaboration

    2010-01-01

    The beam diagnostic system of the ATLAS detector comprises two diamond sensor based devices. The innovative Beam Conditions Monitor (BCM) is aimed at resolving background from collision particles by sub-ns time-of-flight measurement. The Beam Loss Monitor (BLM) is a clone of the LHC machine BLM system, replacing ionization chambers with diamond sensors. BCM uses 16 1x1 cm2 0.5 mm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors arranged in 8 positions at a radius r ≈ 55 mm, ~1.9 m up- and down-stream the interaction point. Time measurements at 2.56 GHz sampling rate are performed to distinguish between collision and shower particles from beam incidents. A FPGA-based readout system performs real-time data analysis and interfaces the results to ATLAS and the LHC beam permit system. The diamond sensors, the detector modules and their readout system are described. Results of performance with LHC beams of increasing energy and intensity including timing separation of collisions from beam re...

  10. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Beltran, Francisco [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C.I. [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Poncin-Epaillard, Fabienne, E-mail: epaill@univ-lemans.fr [Institute for Molecules and Materials, UMR CNRS 6283, Av. O. Messiaen, Universitè du Maine, Le Mans 72085 (France); Luna-Barcenas, Gabriel, E-mail: gluna@qro.cinvestav.mx [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico)

    2015-11-01

    Highlights: • Kelvin-probe-force microscopy helps study of PET surface treated by Ar ion beam. • Ar ion beam surface treatment promotes chain scission and N insertion. • Surface roughness and work function increases as intensity of ion energy increases. • Adhesive force of PET decrease due to the surface changes by ion bombardment. - Abstract: The effect of argon (Ar{sup +}) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar{sup +} ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φ{sub e}) from 5.1 V (untreated) to 5.2 V (treated). Ar{sup +} ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  11. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Zheng, Y; Rana, S [Procure Proton Therapy Center, Oklahoma City, OK (United States); Collums, T [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Monsoon, J; Benton, E [Oklahoma State University, Stillwater, OK (United States)

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  12. Optimized treatment parameters to account for interfractional variability in scanned ion beam therapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Brevet, Romain

    2015-02-04

    Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay) as well as interfractional anatomic changes. To compensate for dose deterioration by intrafractional motion, motion mitigation techniques, such as gating have been developed. The latter confines the irradiation to a predetermined breathing state, usually the stable end-exhale phase. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of the study presented in this dissertation was to determine treatment planning parameters that permit to recover good target coverage and homogeneity during a full course of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (MDACC), a total of 70 weekly time-resolved computed tomography (4DCT) datasets were available, which depict the evolution of the patient anatomy over the several fractions of the treatment. Using the GSI in-house treatment planning system (TPS) TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. It was found that using a large beam spot size, a short gating window (GW), additional margins and multiple fields permitted to obtain the best results, yielding an average target coverage (V95) of 96.5%. Two motion mitigation techniques, one approximating the rescanning process (multiple irradiations of the target with a fraction of the planned dose) and one combining the latter and gating, were then compared to gating. Both did neither show an improvement in target dose coverage nor in normal tissue sparing. Finally, the total dose delivered to each patient in a simulation of a fractioned treatment was calculated and clinical requirements in terms of target coverage and normal tissue sparing were

  13. Exact and efficient cone-beam reconstruction algorithm for a short-scan circle combined with various lines

    Science.gov (United States)

    Dennerlein, Frank; Katsevich, Alexander; Lauritsch, Guenter; Hornegger, Joachim

    2005-04-01

    X-ray 3D rotational angiography based on C-arm systems has become a versatile and established tomographic imaging modality for high contrast objects in interventional environment. Improvements in data acquisition, e.g. by use of flat panel detectors, will enable C-arm systems to resolve even low-contrast details. However, further progress will be limited by the incompleteness of data acquisition on the conventional short-scan circular source trajectories. Cone artifacts, which result from that incompleteness, significantly degrade image quality by severe smearing and shading. To assure data completeness a combination of a partial circle with one or several line segments is investigated. A new and efficient reconstruction algorithm is deduced from a general inversion formula based on 3D Radon theory. The method is theoretically exact, possesses shift-invariant filtered backprojection (FBP) structure, and solves the long object problem. The algorithm is flexible in dealing with various circle and line configurations. The reconstruction method requires nothing more than the theoretically minimum length of scan trajectory. It consists of a conventional short-scan circle and a line segment approximately twice as long as the height of the region-of-interest. Geometrical deviations from the ideal source trajectory are considered in the implementation in order to handle data of real C-arm systems. Reconstruction results show excellent image quality free of cone artifacts. The proposed scan trajectory and reconstruction algorithm assure excellent image quality and allow low-contrast tomographic imaging with C-arm based cone-beam systems. The method can be implemented without any hardware modifications on systems commercially available today.

  14. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    Energy Technology Data Exchange (ETDEWEB)

    Toftegaard, Jakob, E-mail: jaktofte@rm.dk; Fledelius, Walther; Worm, Esben S.; Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Seghers, Dieter; Huber, Michael; Brehm, Marcus [Varian Medical Systems, Imaging Laboratory GmbH, Baden-Daettwil 5405 (Switzerland); Elstrøm, Ulrik V. [Department of Medical Physics, Aarhus University Hospital, Aarhus 8000 (Denmark)

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  15. Range optimization for mono- and bi-energetic proton modulated arc therapy with pencil beam scanning

    Science.gov (United States)

    Sanchez-Parcerisa, Daniel; Kirk, Maura; Fager, Marcus; Burgdorf, Brendan; Stowe, Malorie; Solberg, Tim; Carabe, Alejandro

    2016-11-01

    The development of rotational proton therapy plans based on a pencil-beam-scanning (PBS) system has been limited, among several other factors, by the energy-switching time between layers, a system-dependent parameter that ranges between a fraction of a second and several seconds. We are investigating mono- and bi-energetic rotational proton modulated arc therapy (PMAT) solutions that would not be affected by long energy switching times. In this context, a systematic selection of the optimal proton energy for each arc is vital. We present a treatment planning comparison of four different range selection methods, analyzing the dosimetric outcomes of the resulting treatment plans created with the ranges obtained. Given the patient geometry and arc definition (gantry and couch trajectories, snout elevation) our in-house treatment planning system (TPS) FoCa was used to find the maximum, medial and minimum water-equivalent thicknesses (WETs) of the target viewed from all possible field orientations. Optimal ranges were subsequently determined using four methods: (1) by dividing the max/min WET interval into equal steps, (2) by taking the average target midpoints from each field, (3) by taking the average WET of all voxels from all field orientations, and (4) by minimizing the fraction of the target which cannot be reached from any of the available angles. After the range (for mono-energetic plans) or ranges (for bi-energetic plans) were selected, the commercial clinical TPS in use in our institution (Varian Eclipse™) was used to produce the PMAT plans using multifield optimization. Linear energy transfer (LET) distributions of all plans were also calculated using FoCa and compared among the different methods. Mono- and bi-energetic PMAT plans, composed of a single 180° arc, were created for two patient geometries: a C-shaped target located in the mediastinal area of a thoracic tissue-equivalent phantom and a small brain tumor located directly above the brainstem. All

  16. MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2014-08-01

    Full Text Available The surface modification of engineering materials by laser beam scanning (LBS allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and Y2O3 particles of 10 μm were selected for ODS treatment using LBS. Through the LBS method, the Y2O3 particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at 500°C was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive Y2O3 particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

  17. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy.

    Science.gov (United States)

    Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian

    2016-04-01

    To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.

  18. Effect of Beam Scanning on Target Polarization Scattering Matrix Observed by Fully Polarimetric Phased-array Radar

    Directory of Open Access Journals (Sweden)

    Li Mianquan

    2016-04-01

    Full Text Available The polarization feature of a fully Polarimetric Phased-Array Radar (PPAR antenna varies according to the beam-scanning angle, thereby introducing two problems on the target Polarization Scattering Matrix (PSM measurement. First, the antenna polarization basis is defined within the vertical cross-section of an electromagnetic wave propagation direction, and the polarization basis of each beam direction angle is not identical, resulting in the PSM of a fixed-posture target observed by PPAR being not identical for different beam-scanning angles. Second, the cross polarization of the PPAR antenna increases with increasing beamscanning angle, resulting in a crosstalk among the elements of PSM observed by PPAR. This study focuses on the analysis of the abovementioned two aspects of the effect of beam scanning on target PSM observed by PPAR. The results will establish a more accurate observation of the equation for the precision PSM measurement of PPAR.

  19. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging

    Science.gov (United States)

    Thériault, Gabrielle; Cottet, Martin; Castonguay, Annie; McCarthy, Nathalie; De Koninck, Yves

    2014-01-01

    Two-photon microscopy has revolutionized functional cellular imaging in tissue, but although the highly confined depth of field (DOF) of standard set-ups yields great optical sectioning, it also limits imaging speed in volume samples and ease of use. For this reason, we recently presented a simple and retrofittable modification to the two-photon laser-scanning microscope which extends the DOF through the use of an axicon (conical lens). Here we demonstrate three significant benefits of this technique using biological samples commonly employed in the field of neuroscience. First, we use a sample of neurons grown in culture and move it along the z-axis, showing that a more stable focus is achieved without compromise on transverse resolution. Second, we monitor 3D population dynamics in an acute slice of live mouse cortex, demonstrating that faster volumetric scans can be conducted. Third, we acquire a stereoscopic image of neurons and their dendrites in a fixed sample of mouse cortex, using only two scans instead of the complete stack and calculations required by standard systems. Taken together, these advantages, combined with the ease of integration into pre-existing systems, make the extended depth-of-field imaging based on Bessel beams a strong asset for the field of microscopy and life sciences in general. PMID:24904284

  20. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  1. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  2. Focussed ion beam milling and scanning electron microscopy of brain tissue.

    Science.gov (United States)

    Knott, Graham; Rosset, Stéphanie; Cantoni, Marco

    2011-07-06

    This protocol describes how biological samples, like brain tissue, can be imaged in three dimensions using the focussed ion beam/scanning electron microscope (FIB/SEM). The samples are fixed with aldehydes, heavy metal stained using osmium tetroxide and uranyl acetate. They are then dehydrated with alcohol and infiltrated with resin, which is then hardened. Using a light microscope and ultramicrotome with glass knives, a small block containing the region interest close to the surface is made. The block is then placed inside the FIB/SEM, and the ion beam used to roughly mill a vertical face along one side of the block, close to this region. Using backscattered electrons to image the underlying structures, a smaller face is then milled with a finer ion beam and the surface scrutinised more closely to determine the exact area of the face to be imaged and milled. The parameters of the microscope are then set so that the face is repeatedly milled and imaged so that serial images are collected through a volume of the block. The image stack will typically contain isotropic voxels with dimenions as small a 4 nm in each direction. This image quality in any imaging plane enables the user to analyse cell ultrastructure at any viewing angle within the image stack.

  3. The CERN Beam Interlock System: Principle and Operational Experience

    CERN Document Server

    Puccio, B; Kwiatkowski, M; Romera Ramirez, I; Todd, B

    2010-01-01

    A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System that is the backbone of machine protection. Only if the subsystems are in the correct state for beam operation, the Beam Interlock System receives a status flag and beam can be injected into LHC (Large Hadron Collider). The Beam Interlock System also relays commands from the connected subsystems in case of failure for triggering the LHC Beam Dumping System. To maintain the required level of safety of the Beam Interlock System, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected systems triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permi...

  4. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  5. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    Science.gov (United States)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  6. Beam trip diagnostic system at SSRF

    Institute of Scientific and Technical Information of China (English)

    HOU Hongtao; ZHAO Shenjie; LUO Chen; ZHAO Yubin; ZHANG Zhigang; FENG Ziqiang; MAO Dongqing; LIU Jianfei

    2009-01-01

    In this paper we report the design and realization of beam trip diagnostic system at Shanghai Synchrotron Radiation Facility (SSRF).The system can find out the first fault signal in the key operation signals related to the RF system by analyzing the time sequence,also it can decide which trips occurs first among the three superconducting RF stations.All the states of monitored signals in a time period ahead and behind beam trip are recorded.The results are compared with those from other diagnostic tools at SSRF.The work is of help in improving reliability of the superconducting RF system and stability of the storage ring operation.

  7. Impact of Intrafraction and Residual Interfraction Effect on Prostate Proton Pencil Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shikui, E-mail: shktang@gmail.com [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); ProCure Proton Therapy Center, Somerset, New Jersey (United States); Deville, Curtiland; Tochner, Zelig [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wang, Ken Kang-Hsin [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); McDonough, James; Vapiwala, Neha; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-12-01

    Purpose: To quantitatively evaluate the impact of interplay effect and plan robustness associated with intrafraction and residual interfraction prostate motion for pencil beam scanning proton therapy. Methods and Materials: Ten prostate cancer patients with weekly verification CTs underwent pencil beam scanning with the bilateral single-field uniform dose (SFUD) modality. A typical field had 10-15 energy layers and 500-1000 spots. According to their treatment logs, each layer delivery time was <1 s, with average time to change layers of approximately 8 s. Real-time intrafraction prostate motion was determined from our previously reported prospective study using Calypso beacon transponders. Prostate motion and beam delivering sequence of the worst-case scenario patient were synchronized to calculate the “true” dose received by the prostate. The intrafraction effect was examined by applying the worst-case scenario prostate motion on the planning CT, and the residual interfraction effect was examined on the basis of weekly CT scans. The resultant dose variation of target and critical structures was examined to evaluate the interplay effect. Results: The clinical target volume (CTV) coverage was degraded because of both effects. The CTV D{sub 99} (percentage dose to 99% of the CTV) varied up to 10% relative to the initial plan in individual fractions. However, over the entire course of treatment the total dose degradation of D{sub 99} was 2%-3%, with a standard deviation of <2%. Absolute differences between SFUD, intensity modulate proton therapy, and one-field-per-day SFUD plans were small. The intrafraction effect dominated over the residual interfraction effect for CTV coverage. Mean dose to the anterior rectal wall increased approximately 10% because of combined residual interfraction and intrafraction effects, the interfraction effect being dominant. Conclusions: Both intrafraction and residual interfraction prostate motion degrade CTV coverage within a

  8. Performance of the HIMAC beam control system using multiple-energy synchrotron operation

    Science.gov (United States)

    Mizushima, K.; Furukawa, T.; Iwata, Y.; Hara, Y.; Saotome, N.; Saraya, Y.; Tansho, R.; Sato, S.; Fujimoto, T.; Shirai, T.; Noda, K.

    2017-09-01

    Multiple-energy synchrotron operation was developed to realize fast 3D scanning irradiation for carbon-ion radiotherapy. This type of operation can output various carbon-ion beams with different energies in a single synchrotron cycle. The beam control system used in this kind of operation was developed to quickly provide the beam energy and intensity required from the irradiation control system. The performance of the system was verified by experimental tests. The system could output beams of 197 different energies in 63 s. The beam intensity could be controlled for all the output beams without large ripples or overshooting. The experimental test of irradiation for prostate cancer treatment was also successfully performed, and the test results proved that our system can greatly reduce the irradiation time.

  9. Scanning high-Tc SQUID imaging system for magnetocardiography

    Science.gov (United States)

    Yang, Hong-Chang; Wu, Tsung-Yeh; Horng, Herng-Er; Wu, Chau-Chung; Yang, S. Y.; Liao, Shu-Hsien; Wu, Chiu-Hsien; Jeng, J. T.; Chen, J. C.; Chen, Kuen-Lin; Chen, M. J.

    2006-05-01

    A scanning magnetocardiography (MCG) system constructed from SQUID sensors offers potential to basic or clinical research in biomagnetism. In this work, we study a first order scanning electronic high-Tc (HTS) SQUID MCG system for biomagnetic signals. The scanning MCG system was equipped with an x-y translation bed powered by step motors. Using noise cancellation and μ-metal shielding, we reduced the noise level substantially. The established scanning HTS MCG system was used to study the magnetophysiology of hypercholesterolaemic (HC) rabbits. The MCG data of HC rabbits were analysed. The MCG contour map of HC rabbits provides experimental models for the interpretation of human cardiac patterns.

  10. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  11. SU-E-T-562: Scanned Percent Depth Dose Curve Discrepancy for Photon Beams with Physical Wedge in Place (Varian IX) Using Different Sensitive Volume Ion Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H; Sarkar, V; Rassiah-Szegedi, P; Huang, Y; Szegedi, M; Huang, L; Salter, B [University Utah, Salt Lake City, UT (United States)

    2014-06-01

    Purpose: To investigate and report the discrepancy of scanned percent depth dose (PDD) for photon beams with physical wedge in place when using ion chambers with different sensitive volumes. Methods/Materials: PDD curves of open fields and physical wedged fields (15, 30, 45, and 60 degree wedge) were scanned for photon beams (6MV and 10MV, Varian iX) with field size of 5x5 and 10x10 cm using three common scanning chambers with different sensitive volumes - PTW30013 (0.6cm3), PTW23323 (0.1cm3) and Exradin A16 (0.007cm3). The scanning system software used was OmniPro version 6.2, and the scanning water tank was the Scanditronix Wellhoffer RFA 300.The PDD curves from the three chambers were compared. Results: Scanned PDD curves of the same energy beams for open fields were almost identical between three chambers, but the wedged fields showed non-trivial differences. The largest differences were observed between chamber PTW30013 and Exradin A16. The differences increased as physical wedge angle increased. The differences also increased with depth, and were more pronounced for 6MV beam. Similar patterns were shown for both 5x5 and 10x10 cm field sizes. For open fields, all PDD values agreed with each other within 1% at 10cm depth and within 1.62% at 20 cm depth. For wedged fields, the difference of PDD values between PTW30013 and A16 reached 4.09% at 10cm depth, and 5.97% at 20 cm depth for 6MV with 60 degree physical wedge. Conclusion: We observed a significant difference in scanned PDD curves of photon beams with physical wedge in place obtained when using different sensitive volume ion chambers. The PDD curves scanned with the smallest sensitive volume ion chamber showed significant difference from larger chamber results, beyond 10cm depth. We believe this to be caused by varying response to beam hardening by the wedges.

  12. Multi-beam Sonar and Side-scan Sonar Image Co-registering and Fusing

    Institute of Scientific and Technical Information of China (English)

    Yang Fanlin; Liu Jingnan; Zhao Jianhu

    2003-01-01

    Multi-beam Sonar and Side-scan Sonar compensate each other. In order to fully utilize all information, it is necessary to fuse two kinds of image and data. And the image co -registration is an important and complicated job before fusion. This paper suggests combining bathymetric data with intensity image, obtaining the characteristic points through the minimal angles of lines, and then deciding the corresponding image points by the maximal correlate coefficient in searching space. Finally, the second order polynomial is applied to the deformation model. After the images have been co-registered, Wavelet is used to fuse the images. It is shown that this algorithm can be used in the flat seafloor or the isotropic seabed. Verification is made in the paper with the observed data.

  13. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    Science.gov (United States)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  14. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam.

    Science.gov (United States)

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A; Vick, Andrew J

    2016-09-02

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  15. Self-similarity of negative particle production from the Beam Energy Scan Program at STAR

    CERN Document Server

    Tokarev, M V

    2015-01-01

    We present the spectra of negative charged particle production in Au+Au collisions from STAR for the first phase of the RHIC Beam Energy Scan Program measured over a wide range of collision energy sqrt s{NN}=7.7-200 GeV, and transverse momentum of produced particle in different centralities at |eta|<0.5. The spectra demonstrate strong dependence on collision energy which enhances with pT. An indication of self-similarity of negative charged particle production in Au+Au collisions is found. The constituent energy loss as a function of energy and centrality of collisions and transverse momentum of inclusive particle was estimated in the $z$-scaling approach. The energy dependence of the model parameters - the fractal and fragmentation dimensions and "specific heat", was studied.

  16. Equalization of Ti-6Al-4 V alloy welded joint by scanning electron beam welding

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The equalization of Ti-6Al-4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm equiaxed grains by scanning electron beam welding. The anodic polarization curve of 150 μm equiaxed grains coincides with that of base metal. Equal corrosion resistance between weld metal and base metal was ob tained. Uniform microstructure and solutedistribution are the basis of equalization. Corrosion rate of weld with 150 μm equiaxed grains is the lowest, 2.45 times lower than that of 650 μm columnar grains. Weld strength is 98% as much as that of base metal, yield-strength ratio is 99.5%, which is 3.6% higher than that of base metal.

  17. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  18. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Science.gov (United States)

    Kim, Dongkyu; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan

    2016-06-01

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  19. Focused ion beam/scanning electron microscopy studies of Porcellio scaber (Isopoda, Crustacea) digestive gland epithelium cells.

    Science.gov (United States)

    Drobne, Damjana; Milani, Marziale; Zrimec, Alexis; Zrimec, Maja Berden; Tatti, Francesco; Draslar, Kazimir

    2005-01-01

    The focused ion beam (FIB) was used to prepare cross sections of precisely selected regions of the digestive gland epithelium of a terrestrial isopod P. scaber (Isopoda, Crustacea) for scanning electron microscopy (SEM). The FIB/SEM system allows ad libitum selection of a region for gross morphologic to ultrastructural investigation, as the repetition of FIB/SEM operations is unrestricted. The milling parameters used in our work proved to be satisfactory to produce serial two-dimensional (2-D) cuts and/or three-dimensional (3-D) shapes on a submicrometer scale. A final, cleaning mill at lower ion currents was employed to minimize the milling artifacts. After cleaning, the milled surface was free of filament- and ridge-like milling artifacts. No other effects of the cleaning mill were observed.

  20. External cervical resorption: an analysis using cone beam and microfocus computed tomography and scanning electron microscopy.

    Science.gov (United States)

    Gunst, V; Mavridou, A; Huybrechts, B; Van Gorp, G; Bergmans, L; Lambrechts, P

    2013-09-01

    To provide a three-dimensional representation of external cervical resorption (ECR) with microscopy, stereo microscopy, cone beam computed tomography (CT), microfocus CT and scanning electron microscopy (SEM). External cervical resorption is an aggressive form of root resorption, leading to a loss of dental hard tissues. This is due to clastic action, activated by a damage of the covering cementum and stimulated probably by infection. Clinically, it is a challenging situation as it is characterized by a late symptomatology. This is due to the pericanalar protection from a resorption-resistant sheet, composed of pre-dentine and surrounding dentine. The clastic activity is often associated with an attempt to repair, seen by the formation of osteoid tissue. Cone beam CT is extremely useful in the diagnoses and treatment planning of ECR. SEM analyses provide a better insight into the activity of osteoclasts. The root canal is surrounded by a layer of dentine that is resistant to resorption. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors.

    Science.gov (United States)

    Lin, Liyong; Kang, Minglei; Huang, Sheng; Mayer, Rulon; Thomas, Andrew; Solberg, Timothy D; McDonough, James E; Simone, Charles B

    2015-11-08

    The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties, and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4D CT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4D CT phases, using ± 3% uncertainty in stopping power and ± 3 mm uncertainty in patient setup in each direction, were used to create 8 × 12 × 10 = 960 PBS plans for the evaluation of 10 patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus, and heart doses were decreased from 37.1 Gy, 71.7 Gy, and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy, and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04, and 72.1 Gy with PBS. All differences are statistically significant, with p-values <0.05, with the exception of the heart V45 (p = 0.146). PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion-related uncertainties is essential.

  2. Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles

    Science.gov (United States)

    Olarte, Omar E.; Licea-Rodriguez, Jacob; Palero, Jonathan A.; Gualda, Emilio J.; Artigas, David; Mayer, Jürgen; Swoger, Jim; Sharpe, James; Rocha-Mendoza, Israel; Rangel-Rojo, Raul; Loza-Alvarez, Pablo

    2012-01-01

    We present the implementation of a combined digital scanned light-sheet microscope (DSLM) able to work in the linear and nonlinear regimes under either Gaussian or Bessel beam excitation schemes. A complete characterization of the setup is performed and a comparison of the performance of each DSLM imaging modality is presented using in vivo Caenorhabditis elegans samples. We found that the use of Bessel beam nonlinear excitation results in better image contrast over a wider field of view. PMID:22808423

  3. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    Science.gov (United States)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  4. The Beam Inhibit System for TTF II

    CERN Document Server

    Nölle, D; Neumann, R; Pugachov, D; Wittenburg, K; Wendt, M; Werner, M; Schlarb, H; Staack, M

    2003-01-01

    The new generation of light sources based on SASE Free-Electron-Lasers driven by LINACs operate with electron beams with high beam currents and duty cycles. This is especially true for the superconducting machines like TTF II and the X-RAY FEL, under construction or planning at DESY. Elaborate fast protections systems are required not only to protect the machine from electron beams hitting and destroying the vacuum chamber, but also to prevent the machine from running at high loss levels, dangerous for components like the FEL undulator. This paper will give an overview over the different protection systems currently under construction for TTF II. The very fast systems, based on transmission measurements and distributed loss detection monitors, will be described in detail. This description will include the fast electronics to collect and to transmit the different interlock signals.

  5. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes

    Science.gov (United States)

    Pant, Nidhi; Das, Santanu; Rotti, Aditya; Mitra, Sanjit; Souradeep, Tarun

    2016-03-01

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper, we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.

  6. SU-E-T-441: Comparison of Dose Distributions for Spot-Scanned Pencil-Beam and Scattered-Beam Proton Treatments of Ocular Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Deisher, A; Whitaker, T; Kruse, J [Mayo Clinic, Rochester, MN (United States); Kooy, H; Trofimov, A [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: To study the cross-field and depth dose profiles of spot-scanned pencil beam configurations for the treatment of ocular tumors and to compare their performance to a simulated scattered beam. Methods: Dose distributions in a cubic water phantom were compared for beams that passed through a final 24mm diameter aperture to deposit maximum dose at 2.4cm depth. The pencil-beam spots formed a hexagonally-packed ring with a center-to-center spacing of 4mm. The protons exited the nozzle with energy 95.5MeV, traversed a 4.5cm water-equivalent range shifter, and travelled either 42.5cm or 100cm to the phantom surface. The aperture-to-phantom distance (APD) was 5.7cm to allow room for eye-tracking hardware. A configuration with APD=0 was also tested. The scattered beam was generated with energy 159MeV, passed through 127mm of Lexan, exited the final aperture, and travelled 5.7cm to the phantom surface. This latter configuration is comparable to the MGH single scattered beamline. All beams were modelled with TOPAS1.0-beta6 compiled with GEANT4.9.6p2. Results: The modeled scattered beam produced a distal fall-off along the central axis of zd90%-zd10%=3.6mm. For the pencil beam, the zd90%-zd10% was 1.6mm in all configurations. The scattered beam's cross-field penumbra at depth of maximum dose was r90%- r10%=1.9mm. For the spot-scanned configuration with the range-shifter-tophantom distance (RsPD) of 100cm, similar cross-field profiles were achieved with r90%-r10%=2.0mm. At shorter RsPD of 42.5cm, the crossfield penumbras were 5.6mm and 7.7mm for APD=0cm and APD=5.7cm, respectively. Conclusion: For proton treatments employing a range shifter, the cross-field and central axis dose profiles depend on the quality of the original beam, the size of the range shifter, the distance from the range shifter exit to the patient, and the distance from the final aperture to the patient. A spot-scanned pencil beam configuration can achieve cross-field penumbras equal to a

  7. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    DEFF Research Database (Denmark)

    Westberg, Jonas; Jensen, Henrik R; Bertelsen, Anders;

    2010-01-01

    In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose...... of this study is to minimise the scan time of the CBCT without compromising the accuracy of the image registration in IGRT....

  8. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  9. Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography images.

    Science.gov (United States)

    Kim, Jooseong; Lagravére, Manuel O

    2016-01-01

    The aim of this study was to compare the accuracy of Bolton analysis obtained from digital models scanned with the Ortho Insight three-dimensional (3D) laser scanner system to those obtained from cone-beam computed tomography (CBCT) images and traditional plaster models. CBCT scans and plaster models were obtained from 50 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner; Bolton ratios were calculated with its software. CBCT scans were imported and analyzed using AVIZO software. Plaster models were measured with a digital caliper. Data were analyzed with descriptive statistics and the intraclass correlation coefficient (ICC). Anterior and overall Bolton ratios obtained by the three different modalities exhibited excellent agreement (> 0.970). The mean differences between the scanned digital models and physical models and between the CBCT images and scanned digital models for overall Bolton ratios were 0.41 ± 0.305% and 0.45 ± 0.456%, respectively; for anterior Bolton ratios, 0.59 ± 0.520% and 1.01 ± 0.780%, respectively. ICC results showed that intraexaminer error reliability was generally excellent (> 0.858 for all three diagnostic modalities), with < 1.45% discrepancy in the Bolton analysis. Laser scanned digital models are highly accurate compared to physical models and CBCT scans for assessing the spatial relationships of dental arches for orthodontic diagnosis.

  10. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO_2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle; Fabien; Luo; Aiping; Marin; Emmanuel; Meunier; Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  11. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle Fabien; Luo Aiping; Marin Emmanuel; Meunier Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  12. Apertures in the LHC Beam Dump System and Beam Losses During Beam Abort

    CERN Document Server

    Kramer, T; Gyr, M; Koschik, A; Uythoven, J; Weiler, T

    2008-01-01

    The LHC beam dumping system (LBDS) is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of $3 \\mu$s is foreseen to avoid sweeping particles through the LHC ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines. MAD-X tracking studies have been made to investigate the impact of particles swept through the aperture due to extraction kicker failures or the presence of particles within the abort gap. The issue of failures during beam abort is a major concern for machine protection as well as a critical factor for safe operation of the experiments and their detectors.

  13. Dosimetric impact of the low-dose envelope of scanned proton beams at a ProBeam facility: comparison of measurements with TPS and MC calculations

    Science.gov (United States)

    Würl, M.; Englbrecht, F.; Parodi, K.; Hillbrand, M.

    2016-01-01

    Due to the low-dose envelope of scanned proton beams, the dose output depends on the size of the irradiated field or volume. While this field size dependence has already been extensively investigated by measurements and Monte Carlo (MC) simulations for single pencil beams or monoenergetic fields, reports on the relevance of this effect for analytical dose calculation models are limited. Previous studies on this topic only exist for specific beamline designs. However, the amount of large-angle scattered primary and long-range secondary particles and thus the relevance of the low-dose envelope can considerably be influenced by the particular design of the treatment nozzle. In this work, we therefore addressed the field size dependence of the dose output at the commercially available ProBeam® beamline, which is being built in several facilities worldwide. We compared treatment planning dose calculations with ionization chamber (IC) measurements and MC simulations, using an experimentally validated FLUKA MC model of the scanning beamline. To this aim, monoenergetic square fields of three energies, as well as spherical target volumes were studied, including the investigation on the influence of the lateral spot spacing on the field size dependence. For the spherical target volumes, MC as well as analytical dose calculation were found in excellent agreement with the measurements in the center of the spread-out Bragg peak. In the plateau region, the treatment planning system (TPS) tended to overestimate the dose compared to MC calculations and IC measurements by up to almost 5% for the smallest investigated sphere and for small monoenergetic square fields. Narrower spot spacing slightly enhanced the field size dependence of the dose output. The deviations in the plateau dose were found to go in the clinically safe direction, i.e. the actual deposited dose outside the target was found to be lower than predicted by the TPS. Thus, the moderate overestimation of dose to

  14. SU-D-BRE-04: Evaluating the Dose Accuracy of a 2D Ion Chamber Array in High Dose Rate Pencil Beam Scanning Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Perles, L; Mascia, A; Piskulich, F; Lepage, R; Zhang, Y; Giebeler, A; Dong, L [Scripps Proton Therapy Center, San Diego, CA (United States)

    2014-06-01

    Purpose: To evaluate the absolute dose accuracy of the PTW Octavius 729 XDR 2D ion chamber array at a high dose rate pencil beam scanning proton therapy facility. Methods: A set of 18 plans were created in our treatment planning system, each of which comprising a unique combination of field sizes (FS), length of spread out of Bragg peaks (SOBP) and depths. The parameters used were: FS of 5×5cm{sup 2}, 10×10cm{sup 2} and 15×15cm{sup 2}; flat SOBP of 5cm and 10cm; and isocenter depths of 10cm, 15cm and 20cm, which coincides with the center of the SOBP. The 2D array detector was positioned at the machine isocenter and the appropriate amount of solid water was used to match the planned depths of 10, 15 and 20 cm water equivalent depth. Subsequently, we measured the absolute dose at isocenter using a CC04 ion chamber in a 1D water tank. Both 2D array and CC04 were previously cross calibrated. We also collected the MU rates used by our proton machine from the log files. Results: The relative differences between the CC04 and the 2D array can be summarized into two groups, one with 5 cm SOBP and another with 10 cm SOBP. Plotting these datasets against FS shows that the 2D array response for high dose rate fields (FS of 5×5cm{sup 2} and 5cm SOBP) can be up to 2% lower. Similarly, plotting them against isocenter depths reveals the detector's response can be up to 2% lower for higher energy beams (about 200MeV nominal). The MU rate found in the machine log files for 5cm SOBP's were as high as twice the MU rate for the 10cm SOBP. Conclusion: The 2D array dose response showed a dose rate effect in scanning pencil beam delivery, which needs to be corrected to achieve a better dose accuracy.

  15. Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Bourhaleb, F; Givehchi, N; Iliescu, S; Rosa, A La; Pecka, A; Peroni, C [Dipartimento di Fisica Sperimentale, Universita' di Torino, Via P. Giuria 1, Torino 10125 (Italy); Attili, A; Cirio, R; Marchetto, F; Donetti, M; Garella, M A; Giordanengo, S; Pardo, J [INFN, Sezione di Torino, Via P. Giuria 1, Torino 10125 (Italy); Cirrone, P [INFN, Laboratori Nazionali del Sud, Via S.Sofia 62, Catania 95125 (Italy)], E-mail: bourhaleb@to.infn.it

    2008-02-01

    Proton and carbon ion beams have a very sharp Bragg peak. For proton beams of energies smaller than 100 MeV, fitting with a gaussian the region of the maximum of the Bragg peak, the sigma along the beam direction is smaller than 1 mm, while for carbon ion beams, the sigma derived with the same technique is smaller than 1 mm for energies up to 360 MeV. In order to use low energy proton and carbon ion beams in hadrontherapy and to achieve an acceptable homogeneity of the spread out Bragg peak (SOBP) either the peak positions along the beam have to be quite close to each other or the longitudinal peak shape needs to be broaden at least few millimeters by means of a properly designed ripple filter. With a synchrotron accelerator in conjunction with active scanning techniques the use of a ripple filter is necessary to reduce the numbers of energy switches necessary to obtain a smooth SOBP, leading also to shorter overall irradiation times. We studied the impact of the design of the ripple filter on the dose uniformity in the SOBP region by means of Monte Carlo simulations, implemented using the package Geant4. We simulated the beam delivery line supporting both proton and carbon ion beams using different energies of the beams. We compared the effect of different kind of ripple filters and their advantages.

  16. Analysis of adaptive laser scanning optical system with focus-tunable components

    Science.gov (United States)

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  17. Analysis of measurement deviations for the patient-specific quality assurance using intensity-modulated spot-scanning particle beams

    Science.gov (United States)

    Li, Yongqiang; Hsi, Wen C.

    2017-04-01

    To analyze measurement deviations of patient-specific quality assurance (QA) using intensity-modulated spot-scanning particle beams, a commercial radiation dosimeter using 24 pinpoint ionization chambers was utilized. Before the clinical trial, validations of the radiation dosimeter and treatment planning system were conducted. During the clinical trial 165 measurements were performed on 36 enrolled patients. Two or three fields of particle beam were used for each patient. Measurements were typically performed with the dosimeter placed at special regions of dose distribution along depth and lateral profiles. In order to investigate the dosimeter accuracy, repeated measurements with uniform dose irradiations were also carried out. A two-step approach was proposed to analyze 24 sampling points over a 3D treatment volume. The mean value and the standard deviation of each measurement did not exceed 5% for all measurements performed on patients with various diseases. According to the defined intervention thresholds of mean deviation and the distance-to-agreement concept with a Gamma index analysis using criteria of 3.0% and 2 mm, a decision could be made regarding whether the dose distribution was acceptable for the patient. Based measurement results, deviation analysis was carried out. In this study, the dosimeter was used for dose verification and provided a safety guard to assure precise dose delivery of highly modulated particle therapy. Patient-specific QA will be investigated in future clinical operations.

  18. Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope.

    Directory of Open Access Journals (Sweden)

    André Klauss

    Full Text Available By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating.

  19. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R., E-mail: smitha2@ohio.edu [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States)

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  20. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    Science.gov (United States)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  1. A transverse emittance and acceptance measurement system in a low-energy beam transport line

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H., E-mail: kashiwagi.hirotsugu@jaea.go.jp; Miyawaki, N.; Kurashima, S.; Okumura, S. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A transverse beam emittance and acceptance measurement system has been developed to visualize the relationship between the injected beam emittance and the acceptance of a cyclotron. The system is composed of a steering magnet, two pairs of slits to limit the horizontal and vertical phase-space, a beam intensity detector just behind the slits for the emittance measurement, and a beam intensity detector in the cyclotron for the acceptance measurement. The emittance is obtained by scanning the slits and measuring the beam intensity distribution. The acceptance is obtained by measuring the distribution of relative beam transmission by injecting small emittance beams at various positions in a transverse phase-space using the slits. In the acceptance measurement, the beam from an ion source is deflected to the defined region by the slits using the steering magnet so that measurable acceptance area covers a region outside the injection beam emittance. Measurement tests were carried out under the condition of accelerating a beam of {sup 16}O{sup 6+} from 50.2 keV to 160 MeV. The emittance of the injected beam and the acceptance for accelerating and transporting the beam to the entrance of the extraction deflector were successfully measured. The relationship between the emittance and acceptance is visualized by displaying the results in the same phase-plane.

  2. The Rapidity Density Distributions and Longitudinal Expansion Dynamics of Identified Pions from the STAR Beam Energy Scan

    Science.gov (United States)

    Flores, Christopher E.

    2016-12-01

    The Beam Energy Scan (BES) at the Relativistic Heavy-Ion Collider was proposed to characterize the properties of the medium produced in heavy-ion interactions over a broad range of baryon chemical potential. The aptitude of the STAR detector for mid-rapidity measurements has previously been leveraged to measure identified particle yields and spectra to extract bulk properties for the BES energies for | y | ≤ 0.1. However, to extract information on expansion dynamics and full phase space particle production, it is necessary to study identified particle rapidity density distributions. We present the first rapidity density distributions of identified pions from Au+Au collisions at √{sNN} = 7.7 , 11.5, and 19.6 GeV from the BES program as measured by the STAR detector. We use these distributions to obtain the full phase space yields of the pions to provide additional information of the system's chemistry. Further, we report the width of the rapidity density distributions compared to the width expected from Landau hydrodynamics. Finally, we interpret the results as a function of collision energy and discuss them in the context of previous energy scans done at the AGS and SPS.

  3. Status of the CLIC Beam Delivery System

    CERN Document Server

    Tomás, R; Resta López, J; Rumolo, G; Schulte, D; Schuler, P; Bolzon, B; Brunetti, L; Brunetti, L; Geffroy, N; Jeremie, A; Seryi, A; Angal-Kalinin, D; Jackson, F

    2010-01-01

    The CLIC Beam Delivery System (BDS) is experiencing the careful revision from a large number of world wide experts. This was particularly enhanced by the successful CLIC’08 workshop held at CERN. Numerous new ideas, improvements and critical points are arising, establishing the path towards the Conceptual Design Report by 2010.

  4. SU-E-T-281: Dose Measurements of Modulated Spot-Scanning Particle Beams with Beam-Gating of Respiratory-Phase

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, W; Huang, Z; Wang, W; Sheng, Y; Deng, Y [Shanghai Proton and Heavy Ion Center (SPHIC), Shanghai, Shanghai (China)

    2015-06-15

    Purpose: To present dosimetric variations due to target movements with beam-gating windows of various respiratory-phase in homogeneous phantom irradiated by modulated spot-scanning carbon-ions and protons in Siemens IONTRIS system. Methods: For the safety and efficacy of proton therapy to treat three patients with lung cancer during our clinical trial, residual motion was required within 5mm. To study dosimetric variations due to respiratory movement, a target of 4.0cmx4.0cm with 2cm thick was moved with distances of 3.5mm, 4.4mm, 6.0mm, 8.3mm, and 11.0mm with beam-gating windows between various phases of inhalation or exhalation at a sin-wave breathing pattern. The target was irritated at 110mm depth by modulated carbon-ions with focus sizes of 4.1mm to 4.6mm, and a grid size of 1mm between spots. And, by modulated protons with focus sizes of 11.4mm to 13.6mm, and a grid size of 1.9mm between spots. A 4.0cmx4.0cm field size was used for both beams. EBT3 films was placed at the center of target for measurements. Delivery dose was 5.0 Gy with >1.0% uniformity over target. The uniformity and field size of each measured 2D lateral profiles were extracted. Results: By irradiating films to a doses at linear region of dose response, the uniformity and field size were extracted by measured optical density. The measured deviations from calculated field width and dose increase with increased motion amplitude. Larger non-uniformity was observed for carbonion with smaller focus size in comparing with protons. For movements of 4.4mm and 6.0mm, Optical Density uniformity of 3.80% and 5.66%were observed for carbon beam. But, is 3.46% for protons with 11.4mm movement. Conclusion: Our investigations showed that 5% optical density uniformity for carbon-ions and protons might be acceptable for treatments with 8.3mm movements in homogeneous phantoms. Dose variation introduced in complex anatomy of real patients need further investigation.

  5. Collisionless relaxation in beam-plasma systems

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Ekaterina Yu. [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It is discovered that the rapid relaxation or beam size oscillations can be attributed to a resonant coupling between different modes of the system. A simple analytical estimate of the relaxation time is developed. The final state of the system reached after the relaxation is complete is investigated. New and accurate analytical results for the second order moments in the phase-mixed state are obtained. Unlike previous results, these connect the final values of the second order moments with the initial beam mismatch. These analytical estimates are in good agreement with the CME model and PIC simulations. Predictions for the final density and temperature are developed that show

  6. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  7. Scanning SQUID microscopy for magnetic flux systems

    CERN Document Server

    Suzuki, J I; Hata, Y

    2003-01-01

    Recently, vortices confined into micro-scale superconductors with shapes like a disk, triangle, square, etc., have attracted much attention because of the quantum phase transition of the self-organized vortex arrangement occurring within such geometrical constraints. Such a transition can be observed using a scanning SQUID microscope with high spatial resolution. We have successfully improved spatial resolution by incorporating a microfabrication technique that reduces both the size of the pick-up coil of the micro DC-SQUID and the standoff distance between the pick-up coil and the sample surface. Using this microscope, we have studied vortex arrangements in micro-scale superconductors made of Nb and YBa sub 2 Cu sub 3 O sub 7 sub - subdelta films with various sizes and geometrical shapes. A peculiar oscillating behavior of diamagnetic magnetization corresponding to the particular vortex state was observed.

  8. An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy

    NARCIS (Netherlands)

    Perrin, R L; Zakova, M; Peroni, Marta; Bernatowicz, K; Bikis, C; Knopf, A. K.; Safai, S; Fernandez-Carmona, P; Tscharner, N; Weber, Damien C.; Parkel, T C; Lomax, Antony J.

    2017-01-01

    Motion-induced range changes and incorrectly placed dose spots strongly affect the quality of pencil-beam-scanned (PBS) proton therapy, especially in thoracic tumour sites, where density changes are large. Thus motion-mitigation techniques are necessary, which must be validated in a realistic

  9. Comparison of in vivo cone-beam and multidetector computed tomographic scans by three-dimensional merging software.

    Science.gov (United States)

    Rostetter, Claudio; Metzler, Philipp; Schenkel, Jan S; Seifert, Burkhardt; Luebbers, Heinz-Theo

    2015-12-01

    In dentomaxillofacial radiology, cone-beam computed tomography (CT) is used to give fast and high-resolution 3-dimensional images of bone with a low dose of radiation. However, its use for quantitative measurement of bone density based on absolute values (Hounsfield units, HU) as in multidetector CT is still controversial. We know of no in vivo study of 3-dimensional merging software that will reliably match identical bone areas of cone-beam and multidetector CT datasets. We studied 19 multidetector, and 19 cone-beam, CT scans of the skull. The two datasets were fused, corresponding points were identified for measurement, and we compared mean density. We used linear regression to analyse the relation between the two different scanning methods, and studied a total of 4180 measurements. The mean time interval between scans was 5.2 (4.7) months. Mean R(2) over all measurements was 0.63 (range 0.22 - 0.79) with a mean internal consistency (Cronbach's α) of 0.86 (range 0.61 - 0.93). The strongest linearity, seen at the left mastoid, was R(2)=0.79 with high internal consistency (Cronbach's α 0.89), and the weakest was at the left zygomatic bone with R(2)=0.22 and Cronbach's α=0.61. Measurements of bone density based on cone-beam and multidetector CT scans generated in vivo showed high and reproducible internal consistency but poor linearity.

  10. Outcome of root canal treatment in dogs determined by periapical radiography and cone-beam computed tomography scans

    NARCIS (Netherlands)

    de Paula-Silva, F.W.G.; Hassan, B.; da Silva, L.A.B.; Leonardo, M.R.; Wu, M.K.

    2009-01-01

    The purpose of this study was to compare the favorable outcome of root canal treatment determined by periapical radiographs (PRs) and cone beam computed tomography (CBCT) scans. Ninety-six roots of dogs' teeth were used to form four groups (n= 24). In group 1, root canal treatments were performed in

  11. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. Here, I present the detector...

  12. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly Marie

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to supress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will descri...

  13. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  14. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  15. Jefferson Lab Personnel Safety Fast Beam Kicker System

    Science.gov (United States)

    Mahoney, K.; Garza, O.; Stitts, E.; Areti, H.; O'Sullivan, M.

    1997-05-01

    The CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) uses a continuous electron beam with up to 800 kilowatts of average beam power. The laboratory beam containment policy requires that in the event of an errant beam striking a beam blocking device, the beam must be shut off by three methods in less than 1 millisecond. One method implemented is to shut off the beam at the gun. Two additional methods have been developed which use fast beam kickers to deflect the injector beam on to a water cooled aperture. The kickers designed and implemented at Jefferson Lab are able to deflect the injector beam in less than 200 microseconds. The kicker system includes self-test and monitoring capabilities that enable the system to be used for personnel safety. This paper will describe the requirements and performance of the fast beam kicker system.

  16. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  17. A fast DSP-based calorimeter hit scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, S.; Arai, I.; Suzuki, A.; Watanabe, A. [Tsukuba Univ., Ibaraki (Japan). Inst. of Phys.; Kuno, Y. [Department of Physics, National Laboratory for High Energy (KEK), Tsukuba, Ibaraki 305 (Japan); Marlow, D.R.; Mindas, C.R.; Wixted, R.L. [Physics Department, Princeton University, Princeton, NJ (United States)

    1997-08-11

    A custom made digital signal processor (DSP) based system has been developed to scan calorimeter hits read by a 32-channel FASTBUS waveform recorder board. The scanner system identifies hit calorimeter elements by surveying their discriminated outputs. This information is used to generate a list of addresses, which guides the read-out process. The system is described and measurements of the scan times are given. (orig.).

  18. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  19. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX (Netherlands)

    2014-06-15

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  20. Focus Ion Beam/Scanning Electron Microscopy Characterization of Osteoclastic Resorption of Calcium Phosphate Substrates.

    Science.gov (United States)

    Diez-Escudero, Anna; Espanol, Montserrat; Montufar, Edgar B; Di Pompo, Gemma; Ciapetti, Gabriela; Baldini, Nicola; Ginebra, Maria-Pau

    2017-02-01

    This article presents the application of dual focused ion beam/scanning electron microscopy (FIB-SEM) imaging for preclinical testing of calcium phosphates with osteoclast precursor cells and how this high-resolution imaging technique is able to reveal microstructural changes at a level of detail previously not possible. Calcium phosphate substrates, having similar compositions but different microstructures, were produced using low- and high-temperature processes (biomimetic calcium-deficient hydroxyapatite [CDHA] and stoichiometric sintered hydroxyapatite, respectively). Human osteoclast precursor cells were cultured for 21 days before evaluating their resorptive potential on varying microstructural features. Alternative to classical morphological evaluation of osteoclasts (OC), FIB-SEM was used to observe the subjacent microstructure by transversally sectioning cells and observing both the cells and the substrates. Resorption pits, indicating OC activity, were visible on the smoother surface of high-temperature sintered hydroxyapatite. FIB-SEM analysis revealed signs of acidic degradation on the grain surface under the cells, as well as intergranular dissolution. No resorption pits were evident on the surface of the rough CDHA substrates. However, whereas no degradation was detected by FIB sections in the material underlying some of the cells, early stages of OC-mediated acidic degradation were observed under cells with more spread morphology. Collectively, these results highlight the potential of FIB to evaluate the resorptive activity of OC, even in rough, irregular, or coarse surfaces where degradation pits are otherwise difficult to visualize.

  1. Focused-Ion-Beam-Milled Carbon Nanoelectrodes for Scanning Electrochemical Microscopy

    Science.gov (United States)

    Chen, Ran; Hu, Keke; Yu, Yun; Mirkin, Michael V.; Amemiya, Shigeru

    2016-01-01

    Nanoscale scanning electrochemical microscopy (SECM) has emerged as a powerful electrochemical method that enables the study of interfacial reactions with unprecedentedly high spatial and kinetic resolution. In this work, we develop carbon nanoprobes with high electrochemical reactivity and well-controlled size and geometry based on chemical vapor deposition of carbon in quartz nanopipets. Carbon-filled nanopipets are milled by focused ion beam (FIB) technology to yield a flat disk tip with a thin quartz sheath as confirmed by transmission electron microscopy. The extremely high electroactivity of FIB-milled carbon nanotips is quantified by enormously high standard electron-transfer rate constants of ≥10 cm/s for Ru(NH3)63+. The tip size and geometry are characterized in electrolyte solutions by SECM approach curve measurements not only to determine inner and outer tip radii of down to ~27 and ~38 nm, respectively, but also to ensure the absence of a conductive carbon layer on the outer wall. In addition, FIB-milled carbon nanotips reveal the limited conductivity of ~100 nm-thick gold films under nanoscale mass-transport conditions. Importantly, carbon nanotips must be protected from electrostatic damage to enable reliable and quantitative nanoelectrochemical measurements. PMID:27642187

  2. Overview of recent results from the Beam Energy Scan program in the STAR experiment

    Science.gov (United States)

    Lipiec, Andrzej

    2016-09-01

    It is believed, that shortly after the Big Bang the Universe existed in the state of the Quark Gluon Plasma, where quarks and gluons act as quasi-free particles. During relativistic heavy ion collisions this state of matter can be reproduced. Quantum Chromo-Dynamics (QCD) calculations show possible existence of the critical point and the 1st order phase transition between hadron gas and QGP. The Relativistic Heavy Ion Collider's (RHIC) program called Beam Energy Scan (BES) was developed for experimental verification of above QCD predictions. Within this program the Solenoidal Tracker At RHIC (STAR) experiment gathered data from gold-gold collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. This data are analysed by STAR Collaboration in search for answers to questions concerning the nuclear matter phases, namely: what is the collision energy for the onset of the QGP formation? What is the nature of a phase transition between QGP and hadron gas? Is there a critical point and if yes, where is it situated? In this proceedings a few of the latest STAR results that address these questions are presented.

  3. Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology.

    Science.gov (United States)

    Narayan, Kedar; Danielson, Cindy M; Lagarec, Ken; Lowekamp, Bradley C; Coffman, Phil; Laquerre, Alexandre; Phaneuf, Michael W; Hope, Thomas J; Subramaniam, Sriram

    2014-03-01

    Efficient correlative imaging of small targets within large fields is a central problem in cell biology. Here, we demonstrate a series of technical advances in focused ion beam scanning electron microscopy (FIB-SEM) to address this issue. We report increases in the speed, robustness and automation of the process, and achieve consistent z slice thickness of ∼3 nm. We introduce "keyframe imaging" as a new approach to simultaneously image large fields of view and obtain high-resolution 3D images of targeted sub-volumes. We demonstrate application of these advances to image post-fusion cytoplasmic intermediates of the HIV core. Using fluorescently labeled cell membranes, proteins and HIV cores, we first produce a "target map" of an HIV infected cell by fluorescence microscopy. We then generate a correlated 3D EM volume of the entire cell as well as high-resolution 3D images of individual HIV cores, achieving correlative imaging across a volume scale of 10(9) in a single automated experimental run.

  4. Nano-Tomography of Porous Geological Materials Using Focused Ion Beam-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-10-01

    Full Text Available Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution serves as an introduction and overview of FIB-SEM tomography applied to porous materials. Using two different porous Earth materials, a diatomite specimen, and an experimentally produced amorphous silica layer on olivine, we discuss the experimental setup of FIB-SEM tomography. We then focus on image processing procedures, including image alignment, correction, and segmentation to finally result in a three-dimensional, quantified pore network representation of the two example materials. To each image processing step we consider potential issues, such as imaging the back of pore walls, and the generation of image artefacts through the application of processing algorithms. We conclude that there is no single image processing recipe; processing steps need to be decided on a case-by-case study.

  5. Dosimetry of cone beam computed tomography scanning for diagnosis and planning in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Santos Pinto de A, E. L.; Manzi, F. R.; Goncalves Z, E. [Pontifical Catholic University of Minas Gerais, Av. Jose Gaspar 500, 30535-901 Belo Horizonte, Minas Gerais (Brazil); Nogueira, M. S.; Fernandes Z, M. A., E-mail: madelon@cdtn.br [Development Center of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: The radiation dose and estimate the radiation induced risk of cancer and morpho functional alterations according to BEIR VII (2006) and recommendations of the ICRP 103 (2007) were measured in cone beam computed tomography (CBCT) scanning (Tc Kodak 9000C 3D) in different oral and maxillofacial regions for diagnosis and planning in implant dentistry for each examination protocol: jaw full, maxilla full and jaw and maxilla full associated. Thermoluminescent dosimeters (TLD- 100 H) were placed in an Alderson-Rando in regions corresponding to the crystalline, parotid, submandibular and thyroid glands and ovaries. The highest values for entrance skin dose were observed in the region of the parotid and submandibular glands, 9.612 mGy to 7.912 mGy and 8.818 mGy to 0.483 mGy, respectively. All examination protocols presented on the right and left sides in the region of the submandibular gland the highest values for absorbed dose (D). In the jaw full exam the thyroid glands on both sides presented highest dose values than maxilla full exam. This study allowed measuring the entrance skin dose and the absorbed dose (D) highlighting a dosimetric preponderance to the salivary glands. With danger of to radiation that induces cancer risk was observed that the age group most likely to have to risk of cancer was 20 years, compared to 30, 40, 50, 60,70 and 80 years. (Author)

  6. Laser beam shaping and packaging system

    Science.gov (United States)

    Luo, Daxin; Zhao, Baiqin

    2012-10-01

    This paper presents a semiconductor laser beam shaping system, that can collimate the irradiance profile effectively and package the laser diode(LD) at the same time. Due to the semiconductor LD is a kind of line source, a particular ellipsoidal lens is designed after both the fast-axis and the slow-axis of the laser beam analyzed. Geometrical optics analysis based on the ray tracing method is done and the formulas to calculate the shape of the lens are given. Both the theoretical and experimental result show that the laser beam system works effectively; the divergence angle is reduced to less than 0.5 degree in the fast-axial direction and 1.8 degree in the slow-axial direction. In addition, it is the same process that makes the laser beam shaper and packages the LD by using epoxy resin, which simplifies the manufacturing process and reduces the LD volume greatly. Because of the advantages of small volume, low-cost, high rigidity and easy fabrication, the shaper is of great value in the field of semiconductor LD applications.

  7. SU-E-T-778: Use of the 2D MatriXX Detector for Measuring Scanned Ion Beam Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Anvar, M Varasteh; Monaco, V; Sacchi, R; Guarachi, L Fanola; Cirio, R [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); University of Torino, Turin, TO (Italy); Giordanengo, S; Marchetto, F; Vignati, A [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); Donetti, M [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV (Italy); Ciocca, M; Panizza, D [Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV (Italy)

    2015-06-15

    Purpose: The quality assurance (QA) procedure has to check the most relevant beam parameters to ensure the delivery of the correct dose to patients. Film dosimetry, which is commonly used for scanned ion beam QA, does not provide immediate results. The purpose of this work is to answer whether, for scanned ion beam therapy, film dosimetry can be replaced with the 2D MatriXX detector as a real-time tool. Methods: MatriXX, equipped with 32×32 parallel plate ion-chambers, is a commercial device intended for pre-treatment verification of conventional radiation therapy.The MatriXX, placed at the isocenter, and GAFCHROMIC films, positioned on the MatriXX entrance, were exposed to 131.44 MeV proton and 221.45 MeV/u Carbon-ion beams.The OmniPro-I’mRT software, applied for the data taking of MatriXX, gives the possibility of acquiring consecutive snapshots. Using the NI LabVIEW, the data from snapshots were logged as text files for further analysis. Radiochromic films were scanned with EPSON scanner and analyzed using software programs developed in-house for comparative purposes. Results: The field dose uniformity, flatness, beam position and beam width were investigated. The field flatness for the region covering 6×6 cm{sup 2} square field was found to be better than 2%. The relative standard deviations, expected to be constant over 2×2, 4×4 and 6×6 pixels from MatriXX measurement gives a uniformity of 1.5% in good agreement with the film results.The beam center position is determined with a resolution better than 200 µm for Carbon and less than 100 µm for proton beam.The FWHM determination for a beam wider than 10 mm is satisfactory, whilst for smaller beams the determination is uncertain. Conclusion: Precise beam position and fast 2D dose distribution can be determined in real-time using MatriXX detector. The results show that MatriXX is quick and accurate enough to be used in charged-particle therapy QA.

  8. Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging.

    Science.gov (United States)

    Dehez, Harold; Piché, Michel; De Koninck, Yves

    2013-07-01

    Laser scanning microscopy allows for three-dimensional imaging of cells with molecular specific labeling. However the spatial resolution of optical microscopy is fundamentally limited by the diffraction of light. In the last two decades many techniques have been introduced to enhance the resolution of laser scanning microscopes. However most of these techniques impose strong constraints on the specimen or rely on complex optical systems. These constraints limit the applicability of resolution improvement to various imaging modalities and sample types. To overcome these limitations, we introduce here a novel approach, which we called Switching LAser Mode (SLAM) microscopy, to enhance resolution and contrast in laser scanning microscopy. SLAM microscopy relies on subtracting images obtained with dark and bright modes, and exploits the smaller dimensions of the dark spot of the azimuthally polarized TE 01 mode. With this approach, resolution is improved by a factor of two in confocal microscopy. The technique is not based on complex nonlinear processes and thus requires laser power similar to that used in conventional imaging, minimizing photo-damage. The flexibility of the approach enables retrofitting in commercial confocal and two-photon microscopes and opens avenues for resolution enhancement in fluorescence-independent microscopy.

  9. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    Science.gov (United States)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  10. Transverse beam feedback system for PLS storage ring

    CERN Document Server

    Huang, J Y; Kim, D T; Kang, H S; Hwang, W H; Nam, S H

    2001-01-01

    As the stored beam current increases over 240 mA, transverse coupled-beam instability limits higher beam current in Pohang Light Source. A bunch by bunch transverse feedback system has been developed to cure these beam instabilities. It consists of beam oscillation detectors, betatron phase adjuster, power amplifiers and a stripline kicker. Design of each circuit and its functions are described with simple trigonometric equations. The result of the beam test has shown more than 30 dB damping of the beam oscillation in the full bandwidth of the system.

  11. A novel raster-scanning method to fabricate ultra-fine cross-gratings for the generation of electron beam moiré fringe patterns

    Science.gov (United States)

    Lang, F. C.; Zhao, Y. R.; Xing, Y. M.; Liu, F.; Hou, X. H.; Zhu, J.; Li, J. J.; Yang, S. T.

    2016-11-01

    The resolution of the electron beam moiré method depends on the line frequency of the grating. Recently, more and more effort has been devoted to increase the frequency, and a novel method for producing high-resolution electron beam gratings is presented in this work. Cross-gratings with a frequency up to 14,832 lines/mm (67 nm pitch) were successfully fabricated using a common scanning electron microscope without a dedicated pattern generation system. The quality of the grating was high enough to produce high-quality moiré fringe patterns. In this method, the ultra-fine cross-grating can be fabricated only through one-directional scanning on the resist, which can improve the grating quality and significantly reduces the fabrication time. The number of control parameters for grating fabrication could be reduced to two compared to the six parameters required by conventional methods, which facilitates the use of the electron beam moiré method. The frequency of the fabricated grating is linearly proportional to the exposure magnification. Thus, the frequency of the grating can be accurately predetermined, and the null field can be easily obtained in the electron beam moiré method. The quality of the fabricated gratings was illustrated by the obtained micrographs and moiré fringe patterns. The full-field local strain near an induced crack was studied to verify the application potential of this method.

  12. A Novel Contactless Method for Characterization of Semiconductors: Surface Electron Beam Induced Voltage in Scanning Electron Microscopy

    Institute of Scientific and Technical Information of China (English)

    朱世秋; E.I.RAU; 杨富华; 郑厚植

    2002-01-01

    We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64pf. It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.

  13. Indexing system for optical beam steering

    Science.gov (United States)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  14. TU-EF-304-04: A Heart Motion Model for Proton Scanned Beam Chest Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    White, B; Kiely, J Blanco; Lin, L; Freedman, G; Both, S [University of Pennsylvania, Philadelphia, PA (United States); Vennarini, S [Operativa di Protonterapia, Azienda Provinciale per i Servizi Sanitari, Trento, Trento (Italy); Santhanam, A; Low, D [University of California, Los Angeles, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To model fast-moving heart surface motion as a function of cardiac-phase in order to compensate for the lack of cardiac-gating in evaluating accurate dose to coronary structures. Methods: Ten subjects were prospectively imaged with a breath-hold, cardiac-gated MRI protocol to determine heart surface motion. Radial and planar views of the heart were resampled into a 3-dimensional volume representing one heartbeat. A multi-resolution optical flow deformable image registration algorithm determined tissue displacement during the cardiac-cycle. The surface of the heart was modeled as a thin membrane comprised of voxels perpendicular to a pencil beam scanning (PBS) beam. The membrane’s out-of-plane spatial displacement was modeled as a harmonic function with Lame’s equations. Model accuracy was assessed with the root mean squared error (RMSE). The model was applied to a cohort of six chest wall irradiation patients with PBS plans generated on phase-sorted 4DCT. Respiratory motion was separated from the cardiac motion with a previously published technique. Volumetric dose painting was simulated and dose accumulated to validate plan robustness (target coverage variation accepted within 2%). Maximum and mean heart surface dose assessed the dosimetric impact of heart and coronary artery motion. Results: Average and maximum heart surface displacements were 2.54±0.35mm and 3.6mm from the end-diastole phase to the end-systole cardiac-phase respectively. An average RMSE of 0.11±0.04 showed the model to be accurate. Observed errors were greatest between the circumflex artery and mitral valve level of the heart anatomy. Heart surface displacements correspond to a 3.6±1.0% and 5.1±2.3% dosimetric impact on the maximum and mean heart surface DVH indicators respectively. Conclusion: Although heart surface motion parallel to beam’s direction was substantial, its maximum dosimetric impact was 5.1±2.3%. Since PBS delivers low doses to coronary structures relative to

  15. Georeferenced Scanning System to Estimate the Leaf Wall Area in Tree Crops

    Directory of Open Access Journals (Sweden)

    Ignacio del-Moral-Martínez

    2015-04-01

    Full Text Available This paper presents the use of a terrestrial light detection and ranging (LiDAR system to scan the vegetation of tree crops to estimate the so-called pixelated leaf wall area (PLWA. Scanning rows laterally and considering only the half-canopy vegetation to the line of the trunks, PLWA refers to the vertical projected area without gaps detected by LiDAR. As defined, PLWA may be different depending on the side from which the LiDAR is applied. The system is completed by a real-time kinematic global positioning system (RTK-GPS sensor and an inertial measurement unit (IMU sensor for positioning. At the end, a total leaf wall area (LWA is computed and assigned to the X, Y position of each vertical scan. The final value of the area depends on the distance between two consecutive scans (or horizontal resolution, as well as the number of intercepted points within each scan, since PLWA is only computed when the laser beam detects vegetation. To verify system performance, tests were conducted related to the georeferencing task and synchronization problems between GPS time and central processing unit (CPU time. Despite this, the overall accuracy of the system is generally acceptable. The Leaf Area Index (LAI can then be estimated using PLWA as an explanatory variable in appropriate linear regression models.

  16. Georeferenced scanning system to estimate the leaf wall area in tree crops.

    Science.gov (United States)

    del-Moral-Martínez, Ignacio; Arnó, Jaume; Escolà, Alexandre; Sanz, Ricardo; Masip-Vilalta, Joan; Company-Messa, Joaquim; Rosell-Polo, Joan R

    2015-04-10

    This paper presents the use of a terrestrial light detection and ranging (LiDAR) system to scan the vegetation of tree crops to estimate the so-called pixelated leaf wall area (PLWA). Scanning rows laterally and considering only the half-canopy vegetation to the line of the trunks, PLWA refers to the vertical projected area without gaps detected by LiDAR. As defined, PLWA may be different depending on the side from which the LiDAR is applied. The system is completed by a real-time kinematic global positioning system (RTK-GPS) sensor and an inertial measurement unit (IMU) sensor for positioning. At the end, a total leaf wall area (LWA) is computed and assigned to the X, Y position of each vertical scan. The final value of the area depends on the distance between two consecutive scans (or horizontal resolution), as well as the number of intercepted points within each scan, since PLWA is only computed when the laser beam detects vegetation. To verify system performance, tests were conducted related to the georeferencing task and synchronization problems between GPS time and central processing unit (CPU) time. Despite this, the overall accuracy of the system is generally acceptable. The Leaf Area Index (LAI) can then be estimated using PLWA as an explanatory variable in appropriate linear regression models.

  17. Requirements of a beam loss monitoring system for the CLIC two beam modules

    CERN Document Server

    Mallows, S; van Hoorne, J; Mechev, A; Welsch, C

    2011-01-01

    The Compact Linear Collider (CLIC) study investigates the feasibility of a high-energy electron-positron linear collider optimized for a centre of mass energy of 3 TeV. To achieve the high accelerating gradients, the RF power is produced by a novel two-beam acceleration method in which a decelerating drive beam supplies energy to the main accelerating beam. The linacs are arranged in modular structures referred to as the two beam modules which cover 42 km of beamline. Beam losses from either beam can have severe consequences due to the high intensity drive beam and the high energy, small emittance main beam. This paper presents recent developments towards the design of a Cherenkov fiber BLM system and discusses its ability to distinguish losses originating from either beam.

  18. Vacuum system of the 3MeV industrial electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, D; Mishra, R L; Ghodke, S R; Kumar, M; Kumar, M; Nanu, K; Mittal, Dr K C [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 (India)], E-mail: jaypee@barc.gov.in

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF{sub 6} gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1x10{sup -7}mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm x 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50{mu}m thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  19. Vacuum system of the 3MeV industrial electron beam accelerator

    Science.gov (United States)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  20. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  1. Automated angle-scanning photoemission end-station with molecular beam epitaxy at KEK-PF BL-1C

    CERN Document Server

    Ono, K; Horiba, K; Oh, J H; Nakazono, S; Kihara, T; Nakamura, K; Mano, T; Mizuguchi, M; Oshima, M; Aiura, Y; Kakizaki, A

    2001-01-01

    In order to satisfy demands to study the electronic structure of quantum nanostructures, a VUV beamline and a high-resolution and high-throughput photoemission end-station combined with a molecular beam epitaxy (MBE) system have been constructed at the BL-1C of the Photon Factory. An angle-resolved photoemission spectrometer, having high energy- and angular-resolutions; VG Microtech ARUPS10, was installed. The total energy resolution of 31 meV at the 60 eV of photon energy is achieved. For the automated angle-scanning photoemission, the electron spectrometer mounted on a two-axis goniometer can be rotated in vacuum by the computer-controlled stepping motors. Another distinctive feature of this end-station is a connection to a MBE chamber in ultahigh vacuum (UHV). In this system, MBE-grown samples can be transferred into the photoemission chamber without breaking UHV. Photoemission spectra of MBE-grown GaAs(0 0 1) surfaces were measured with high-resolution and bulk and surface components are clearly resolved.

  2. [SCAN system--semi-structured interview based on diagnostic criteria].

    Science.gov (United States)

    Adamowski, Tomasz; Kiejna, Andrzej; Hadryś, Tomasz

    2006-01-01

    This paper presents the main features of contemporary diagnostic systems which are implemented into the SCAN--modern and semi-structured diagnostic interview. The concepts of further development of the classifications, rationale for operationalized diagnostic criteria and for the divisional approach to mental diagnoses will be in focus. The structure and components of SCAN ver. 2.1 (WHO), i.e. Present State Examination--10th edition, Item Group Checklist, Clinical History Schedule, Glossary of Definitions and computer software with the diagnostic algorithm: I-Shell, as well as rules for a reliable use of diagnostic rating scales, will be discussed within the scope of this paper. The materials and training sets necessary for the learning of proper use of the SCAN, especially training sets for SCAN Training Centers and the Reference Manual--a form of guidebook for SCAN shall be introduced. Finally the paper will present evidence that SCAN is an instrument feasible in different cultural settings. Reliability and validity data of SCAN will also be dealt with indicating that SCAN could be widely used in research studies as well as in everyday clinical practice facilitating more detailed diagnostic approach to a patient.

  3. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, Keita [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Moskvin, Vadim P., E-mail: vadim.p.moskvin@gmail.com [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2014-10-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.

  4. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    Science.gov (United States)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  5. Advanced treatment planning using direct 4D optimisation for pencil-beam scanned particle therapy

    Science.gov (United States)

    Bernatowicz, Kinga; Zhang, Ye; Perrin, Rosalind; Weber, Damien C.; Lomax, Antony J.

    2017-08-01

    We report on development of a new four-dimensional (4D) optimisation approach for scanned proton beams, which incorporates both irregular motion patterns and the delivery dynamics of the treatment machine into the plan optimiser. Furthermore, we assess the effectiveness of this technique to reduce dose to critical structures in proximity to moving targets, while maintaining effective target dose homogeneity and coverage. The proposed approach has been tested using both a simulated phantom and a clinical liver cancer case, and allows for realistic 4D calculations and optimisation using irregular breathing patterns extracted from e.g. 4DCT-MRI (4D computed tomography-magnetic resonance imaging). 4D dose distributions resulting from our 4D optimisation can achieve almost the same quality as static plans, independent of the studied geometry/anatomy or selected motion (regular and irregular). Additionally, current implementation of the 4D optimisation approach requires less than 3 min to find the solution for a single field planned on 4DCT of a liver cancer patient. Although 4D optimisation allows for realistic calculations using irregular breathing patterns, it is very sensitive to variations from the planned motion. Based on a sensitivity analysis, target dose homogeneity comparable to static plans (D5-D95  <5%) has been found only for differences in amplitude of up to 1 mm, for changes in respiratory phase  <200 ms and for changes in the breathing period of  <20 ms in comparison to the motions used during optimisation. As such, methods to robustly deliver 4D optimised plans employing 4D intensity-modulated delivery are discussed.

  6. A Multicounter System for Scanning Ultra-Low-Level Radiochromatograms

    DEFF Research Database (Denmark)

    Bøtter-Jensen, Lars; Hansen, Heinz Johs. Max; Theodorsson, P.

    1977-01-01

    A multicounter system consisting of an integrated array of flow counters for the scanning of ultra-low-level radioactivity on paper and thin-layer chromatograms was developed. Experience with routine measurements over a prolonged period has proved the advantages of this system over other systems...

  7. SU-E-T-120: Analytic Dose Verification for Patient-Specific Proton Pencil Beam Scanning Plans

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C; Mah, D [ProCure Proton Therapy Centers, Somerset, NJ (United States)

    2015-06-15

    Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18 measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA.

  8. Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system.

    Science.gov (United States)

    Boudebs, Georges; Besse, Valentin; Cassagne, Christophe; Leblond, Hervé; de Araújo, Cid B

    2013-07-01

    We show that direct measurement of the beam radius in Z-scan experiments using a CCD camera at the output of a 4f-imaging system allows higher sensitivity and better accuracy than Baryscan. One of the advantages is to be insensitive to pointing instability of pulsed lasers because no hard (physical) aperture is employed as in the usual Z-scan. In addition, the numerical calculations involved here and the measurement of the beam radius are simplified since we do not measure the transmittance through an aperture and it is not subject to mathematical artifacts related to a normalization process, especially when the diffracted light intensity is very low.

  9. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    Science.gov (United States)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  10. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, Keita [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871 (Japan); Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Moskvin, Vadim P. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105 (United States)

    2016-01-15

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm{sup 3}, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm{sup 3} voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation

  11. The LHC Beam Dumping System Trigger Synchronisation and Distribution System

    CERN Document Server

    Antoine, A; Voumard, N

    2005-01-01

    Two LHC beam dumping systems (LBDS) will fast-extract the counter-rotating beams safely from the LHC collider during setting-up of the accelerator, at the end of a physics run and in case of emergencies. They consist of 15 fast pulsed magnets per ring for beam extraction from the accelerator combined with 10 fast pulsed magnets for horizontal and vertical beam dilution. Dump requests will come from 3 different sources: the machine protection system for emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These spontaneously issued dump requests will be synchronised with the 3 µs beam abort gap within a fail-safe trigger synchronisation unit (TSU) based on a digital phase lock loop (DPLL) locked on the beam revolution frequency with a maximum phase error of 40 ns. Afterwards, the synchronised trigger pulse will be distributed to the fast pulsed magnet high voltage generators through a redundant fault tolerant trigger distribution system based on the...

  12. Design of CMS Beam Halo Monitor system

    CERN Document Server

    AUTHOR|(CDS)2078842

    2015-01-01

    A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...

  13. Maxillary first molar with seven root canals diagnosed with cone-beam computed tomography scanning

    Directory of Open Access Journals (Sweden)

    Anil Munavalli

    2015-01-01

    Full Text Available Nonsurgical endodontic therapy of a right maxillary first molar with three roots and seven root canals. This unusual morphology was diagnosed using a dental operating microscope (DOM and confirmed with the help of cone-beam computed tomography (CBCT images. CBCT axial images showed that both the palatal and distobuccal root have a Vertucci type II canal pattern, whereas the mesiobuccal root showed a Sert and Bayirli type XVIII canal configuration. The use of a DOM and CBCT imaging in endodontically challenging cases can facilitate a better understanding of the complex root canal anatomy, which ultimately enables the clinician to explore the root canal system and clean, shape, and obturate it more efficiently.

  14. Status of Beam Diagnostic Systems for the PEFP

    CERN Document Server

    Park Jang Ho; Choi Byung Ho; Ha Hwang Woon; Han, Sang-Hyo; Park, Sung-Ju; Woon Parc, Yong; Yun Huang Jung

    2005-01-01

    A proton linear accelerator is currently the construction at the KAERI (Korea Atomic Research Institute) to the PEFP (Proton Engineering Frontier Project) in Korea. We are accomplished the technique development of beam diagnostic system to be currently the construction. We treat beam diagnostics for the high power proton linear accelerator. Prototype beam position & phase monitor (BPPM) electronics was made and tested successfully in one of the beam diagnostic systems. The beam position monitor pickup electrode is a capacitive type (electrostatic type) which has a button form. Button form electrode, in common use around electron synchrotrons and storage rings, are a variant of the electrode with small button form (e.g., sub mm diameter). However, we are designed button form electrode to measure beam position of proton beam. The BCM (Beam Current Monitor) is developed Tuned CT (Current Transformer) for collaborate with Bergoz Instruments. This paper describes the status of beam diagnostic systems for the P...

  15. Performance characteristics and long-term calibration stability of a beam monitor for a proton scanning gantry

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporov, D.F., E-mail: nichipor@indiana.ed [Indiana University Cyclotron Facility, 2401 Milo B. Sampson Ln., Bloomington, IN 47408 (United States); Klyachko, A.V.; Solberg, K.A. [Indiana University Cyclotron Facility, 2401 Milo B. Sampson Ln., Bloomington, IN 47408 (United States); Zhao, Q. [Midwest Proton Radiotherapy Institute, 2425 Milo B. Sampson Ln., Bloomington, IN 47408 (United States)

    2011-02-15

    A monitor for a uniformly scanned beam was designed and constructed by the Indiana University Cyclotron Facility for use in a clinical proton gantry at the Midwest Proton Radiotherapy Institute. The beam monitor is a thin-walled, wide-aperture ionization chamber, which provides information about dose, beam size, symmetry, flatness, and position. Several characteristics of the monitor's performance were studied, including linearity in dose rate, reproducibility, recombination correction, and dependence on both radiation field size and gantry angle. Additionally, stability of the detector output was analyzed using daily monitor calibrations performed over a period of 21 months. The beam monitor was found to meet design requirements for linearity ({+-}1%), calibration stability ({+-}2%), and stability of response as a function of gantry angle ({+-}1%). Beam monitor calibration statistics also revealed a sine-like yearly trend with a {+-}2% maximum deviation from the average. These and other beam monitor test results are presented and discussed in the context of the detector design. Design changes aimed at further improving the detector's performance characteristics are proposed.

  16. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, C. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Boissonnat, G., E-mail: boissonnat@lpccaen.in2p3.fr [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Brusasco, C. [IBA, 3 Chemin du Cyclotron, 31348 Louvain-la-Neuve (Belgium); Colin, J.; Cussol, D.; Fontbonne, J.M. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France); Marchand, B.; Mertens, T.; Neuter, S. de [IBA, 3 Chemin du Cyclotron, 31348 Louvain-la-Neuve (Belgium); Peronnel, J. [LPC (IN2P3-ENSICAEN-UNICAEN), 6 Boulevard Maréchal Juin, 14050 Caen (France)

    2014-02-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, we developed an ionization chamber in collaboration with the IBA (Ion Beam Applications) company. This monitoring device called IC2/3 was developed to be used in IBA universal irradiation head for Pencil Beam Scanning (PBS). Here we present the characterization of the IC2/3 monitor in the energy and flux ranges used in protontherapy. The equipment has been tested with an IBA cyclotron able to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initial specifications needed for PBS purposes. The detector measures the dose with a relative uncertainty lower than 1% in the range from 0.5 Gy/min to 8 Gy/min while the spatial resolution is better than 250μm. The technology has been patented and five IC2/3 chambers were delivered to IBA. Nowadays, IBA produces the IC2/3 beam monitoring device as a part of its Proteus 235 product.

  17. Cleaning of endodontic root canal by ultrasonics and Nd:YAG laser beam with fiber optic delivery: scanning electron microscopy, endoscopic and microradiographic analysis

    Science.gov (United States)

    Berna, Norberto; Melis, Marco; Benvenuti, Alessandro; Tosto, Sebastiano; Pierdominici, Fabrizio

    1997-05-01

    12 teeth have been extracted and treated 'in vitro' by ultrasonics and Nd:YAG pulsed laser with fiber optic delivery to compare the cleaning efficiency of the root canal. The optic fiber was equipped with a water-air coaxial cooling system. The ultrasonic device was equipped with a 3 percent NaCl solution douche system. The samples have been prepared according to the technical specifications of the suppliers of laser and ultrasonics and observed by an endodontic endoscope. Cross sections of the samples have been utilized for microradiographic investigations and scanning electron microscopy observations. Local melting has been observed after laser irradiation.Also, vitrification preferentially occurred in the apical zones. The occurrence of vitrification was found strongly dependent on the translation velocity of the laser beam inside the root canal. The laser beam has shown a cleaning efficiency greater than that obtained by ultrasonic procedure.

  18. Software-based data path for raster-scanned multi-beam mask lithography

    Science.gov (United States)

    Rajagopalan, Archana; Agarwal, Ankita; Buck, Peter; Geller, Paul; Hamaker, H. Christopher; Rao, Nagswara

    2016-10-01

    According to the 2013 SEMATECH Mask Industry Survey,i roughly half of all photomasks are produced using laser mask pattern generator ("LMPG") lithography. LMPG lithography can be used for all layers at mature technology nodes, and for many non-critical and semi-critical masks at advanced nodes. The extensive use of multi-patterning at the 14-nm node significantly increases the number of critical mask layers, and the transition in wafer lithography from positive tone resist to negative tone resist at the 14-nm design node enables the switch from advanced binary masks back to attenuated phase shifting masks that require second level writes to remove unwanted chrome. LMPG lithography is typically used for second level writes due to its high productivity, absence of charging effects, and versatile non-actinic alignment capability. As multi-patterning use expands from double to triple patterning and beyond, the number of LMPG second level writes increases correspondingly. The desire to reserve the limited capacity of advanced electron beam writers for use when essential is another factor driving the demand for LMPG capacity. The increasing demand for cost-effective productivity has kept most of the laser mask writers ever manufactured running in production, sometimes long past their projected lifespan, and new writers continue to be built based on hardware developed some years ago.ii The data path is a case in point. While state-ofthe- art when first introduced, hardware-based data path systems are difficult to modify or add new features to meet the changing requirements of the market. As data volumes increase, design styles change, and new uses are found for laser writers, it is useful to consider a replacement for this critical subsystem. The availability of low-cost, high-performance, distributed computer systems combined with highly scalable EDA software lends itself well to creating an advanced data path system. EDA software, in routine production today, scales

  19. Protection and Diagnostic Systems for High Intensity Beams

    CERN Document Server

    Jensen, L; Vismara, Giuseppe

    2000-01-01

    This paper presents a summary of the facilities for beam interlocks and diagnostics to protect the CERN SPS machine. An overview of the existing systems is given, which are based on beam loss and beam current monitors and large beam position excursion in the horizontal plane. The later system mainly protects the system against a failure of the transverse damping system. The design for a new large excursion interlock for both transverse planes is also presented in some detail. For this system a digital approach is being taken to allow post-mortem analysis of the behaviour of the beam prior to the activation of the interlock.

  20. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  1. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring.

    Science.gov (United States)

    Fattori, G; Saito, N; Seregni, M; Kaderka, R; Pella, A; Constantinescu, A; Riboldi, M; Steidl, P; Cerveri, P; Bert, C; Durante, M; Baroni, G

    2014-12-01

    The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in 20.3(2.3)% and 21.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.

  2. An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy

    Science.gov (United States)

    Perrin, R. L.; Zakova, M.; Peroni, M.; Bernatowicz, K.; Bikis, C.; Knopf, A. K.; Safai, S.; Fernandez-Carmona, P.; Tscharner, N.; Weber, D. C.; Parkel, T. C.; Lomax, A. J.

    2017-03-01

    Motion-induced range changes and incorrectly placed dose spots strongly affect the quality of pencil-beam-scanned (PBS) proton therapy, especially in thoracic tumour sites, where density changes are large. Thus motion-mitigation techniques are necessary, which must be validated in a realistic patient-like geometry. We report on the development and characterisation of a dynamic, anthropomorphic, thorax phantom that can realistically mimic thoracic motions and anatomical features for verifications of proton and photon 4D treatments. The presented phantom is of an average thorax size, and consists of inflatable, deformable lungs surrounded by a skeleton and skin. A mobile ‘tumour’ is embedded in the lungs in which dosimetry devices (such as radiochromic films) can be inserted. Motion of the tumour and deformation of the thorax is controlled via a custom made pump system driving air into and out of the lungs. Comprehensive commissioning tests have been performed to evaluate the mechanical performance of the phantom, its visibility on CT and MR imaging and its feasibility for dosimetric validation of 4D proton treatments. The phantom performed well on both regular and irregular pre-programmed breathing curves, reaching peak-to-peak amplitudes in the tumour of  90% in the central planes of the target. The results of this study demonstrate that this anthropomorphic thorax phantom is suitable for imaging and dosimetric studies in a thoracic geometry closely-matched to lung cancer patients under realistic motion conditions.

  3. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  4. Improved robustness of the LHC collimation system by operating with a jaw-beam angle

    CERN Document Server

    Lari, L; Rossi, A; Cauchi, M; Faus-Golfe, A

    2012-01-01

    The robustness of the Phase I collimation system could be improved playing with the angular orientation of each single jaw. A preliminary study on the asymmetric misalignment of the collimator jaws, scanning through different jaw angles and varying beam sizes and energy, have been carried out, aiming at minimizing the energy deposited on metallic collimators, following an asynchronous dump.

  5. The ILC Beam Delivery System - Conceptual Design and RD Plans

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei; /SLAC

    2005-05-27

    The Beam Delivery System of the ILC has many stringent and sometimes conflicting requirements. To produce luminosity, the beams must be focused to nanometer size. To provide acceptable detector backgrounds, particles far from the beam core must be collimated. Unique beam diagnostics and instrumentation are required to monitor parameters of the colliding beams such as the energy spectrum and polarization. The detector and beamline components must be protected against errant beams. After collision, the beams must also be transported to the beam dumps safely and with acceptable losses. An international team is actively working on the design of the ILC Beam Delivery System in close collaboration. Details of the design, recent progress and remaining challenges will be summarized in this paper.

  6. Imaging of whole tumor cut sections using a novel scanning beam confocal fluorescence MACROscope

    Science.gov (United States)

    Constantinou, Paul; Vukovic, Vojislav; Haugland, Hans K.; Nicklee, Trudey; Hedley, David W.; Wilson, Brian C.

    2001-07-01

    Hypoxia caused by inadequate structure and function of the tumor vasculature has been found to negatively determine the prognosis of cancer patients. Hence, understanding the biological basis of tumor hypoxia is of significant clinical interest. To study solid tumor microenvironments in sufficient detail, large areas (several mm in diameter) need to be imaged at micrometers resolutions. We have used a novel confocal scanning laser MACROscopeTM (CSLM) capable of acquiring images over fields of view up to 2 cm X 2 cm. To demonstrate its performance, frozen sections from a cervical carcinoma xenograft were triple labeled for tissue hypoxia, blood vessels and hypoxia-inducible transcription factor 1 alpha (HIF-1(alpha) ), imaged using the CSLM and compared to images obtained using a standard epifluorescence microscope imaging system. The results indicate that the CSLM is a useful instrument for imaging tissue-based fluorescence at resolutions comparable to standard low-power microscope objectives.

  7. On the interplay effects with proton scanning beams in stage III lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yupeng [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Applied Research, Varian Medical Systems, Palo Alto, California 94304 (United States); Kardar, Laleh; Liao, Li; Lim, Gino [Department of Industrial Engineering, The University of Houston, Houston, Texas 77204 (United States); Li, Xiaoqiang; Li, Heng; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Zhang, Xiaodong, E-mail: xizhang@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cao, Wenhua [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Department of Industrial Engineering, The University of Houston, Houston, Texas 77204 (United States); Chang, Joe Y.; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-02-15

    Purpose: To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Methods: Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Results: Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Conclusions

  8. Comparative Geometrical Investigations of Hand-Held Scanning Systems

    Science.gov (United States)

    Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.

    2016-06-01

    An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  9. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 {mu}s, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1{sup +} to 4{sup +}. The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  10. Development of a liquid scintillator-based 3D detector for range measurements of spot-scanned proton beams

    Science.gov (United States)

    Darne, C. D.; Robertson, D.; Beddar, S.

    2017-05-01

    The goal of the present study is to develop a liquid scintillator-based 3D detector and investigate its performance for beam range measurements in real time. The detector design consists of a tank filled with water-equivalent liquid scintillator that scintillates in response to incident proton beams. Three scientific complementary metal-oxide semiconductor (sCMOS) cameras collect the resulting optical signals. Preliminary measurements have shown that the optical detection system can record light distribution profiles anywhere inside the tank with an average spatial resolution of 0.23 mm. By employing multiple cameras the system is capable of capturing high resolution 2D depth and beams-eye profiles of the delivered beam and can consequently localize the position of beam anywhere inside the tank. It is also shown that it is capable of accurately measuring proton beam range with no more than 0.3 mm difference from the nominal range. The detector system thus demonstrates its ability to perform fast, high-resolution, and precise beam range measurements in 3D.

  11. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  12. Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength

    Science.gov (United States)

    Tsuji, Hidenobu; Imaki, Masaharu; Kotake, Nobuki; Hirai, Akihito; Nakaji, Masaharu; Kameyama, Shumpei

    2017-03-01

    We demonstrate a range imaging pulsed laser sensor with two-dimensional scanning of a transmitted beam and a scanless receiver using a high-aspect avalanche photodiode (APD) array for the eye-safe wavelength. The system achieves a high frame rate and long-range imaging with a relatively simple sensor configuration. We developed a high-aspect APD array for the wavelength of 1.5 μm, a receiver integrated circuit, and a range and intensity detector. By combining these devices, we realized 160×120 pixels range imaging with a frame rate of 8 Hz at a distance of about 50 m.

  13. Mathematical model for light scanning system based on circular laser

    Institute of Scientific and Technical Information of China (English)

    Peiquan Xu; Shun Yao; Fenggui Lu; Xinhua Tang; Wei Zhang

    2005-01-01

    A novel light scanning system based on circular laser trajectory for welding robot is developed. With the help of image processing technique, intelligent laser welding could be realized. According to laser triangulation algorithm and Scheimpflug condition, mathematical model for circular laser vision is built.This scanning system projects circular laser onto welded seams and recovers the depth of the welded seams,escapes from shortcomings of less information, explains ambiguity and single tracking direction inherent in "spot" or "line" type laser trajectory. Three-dimensional (3D) model for welded seams could be recognized after depth recovery. The imaging error is investigated also.

  14. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    CERN Document Server

    Courtois, C; Brusasco, C; Colin, J; Cussol, D; Fontbonne, J M; Marchand, B; Mertens, T; De Neuter, S; Peronnel, J

    2013-01-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, the medical application group from the Laboratory of Corpuscular Physics (LPC Caen) developed an Ionization Chamber in collaboration with the company IBA (Ion Beam Applications). This monitoring device called IC2/3 was developed to be used in IBAs universal irradiation head for Pencil Beam Scanning (PBS). The objectives presented in this article are to characterize the IC2/3 monitor in the energy and ux ranges used in protontherapy. The equipment has been tested with an IBAs cyclotronable to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initials speci cations needed for PBS purposes. The detector measures the dose with a relative precision better than 1% in the rang...

  15. The Beam Energy Tracking System of the LHC Beam Dumping System

    CERN Document Server

    Barlow, R A; Carlier, E; Gräwer, G; Voumard, N; Gjelsvik, R

    2005-01-01

    The LHC Beam Dumping System (LBDS) of the Large Hadron Collider (LHC), presently under construction at CERN, will be installed around the straight section 6. It comprises per ring 15 horizontally deflecting extraction kickers, followed by 1 quadrupole, 15 vertically deflecting steel septum magnets, 10 dilution kickers and, in a separate cavern several hundred meters away, an external absorber assembly. A beam dump request can occur at any moment during the operation of the collider, from injection at 450 GeV up to top energy at 7 TeV. The Beam Energy Tracking System (BETS) monitors the deflection strength of each active element of the LBDS with respect to the beam energy in order to guarantee the correct extraction trajectory over the complete operational range and under all operational conditions. Its main functions are the acquisition of the beam energy, the generation of the kick strength reference signals for the extraction and dilution kickers, the continuous checking that the kicker high voltage generat...

  16. Proton microbeam radiotherapy with scanned pencil-beams--Monte Carlo simulations.

    Science.gov (United States)

    Kłodowska, M; Olko, P; Waligórski, M P R

    2015-09-01

    Irradiation, delivered by a synchrotron facility, using a set of highly collimated, narrow and parallel photon beams spaced by 1 mm or less, has been termed Microbeam Radiation Therapy (MRT). The tolerance of healthy tissue after MRT was found to be better than after standard broad X-ray beams, together with a more pronounced response of malignant tissue. The microbeam spacing and transverse peak-to-valley dose ratio (PVDR) are considered to be relevant biological MRT parameters. We investigated the MRT concept for proton microbeams, where we expected different depth-dose profiles and PVDR dependences, resulting in skin sparing and homogeneous dose distributions at larger beam depths, due to differences between interactions of proton and photon beams in tissue. Using the FLUKA Monte Carlo code we simulated PVDR distributions for differently spaced 0.1 mm (sigma) pencil-beams of entrance energies 60, 80, 100 and 120 MeV irradiating a cylindrical water phantom with and without a bone layer, representing human head. We calculated PVDR distributions and evaluated uniformity of target irradiation at distal beam ranges of 60-120 MeV microbeams. We also calculated PVDR distributions for a 60 MeV spread-out Bragg peak microbeam configuration. Application of optimised proton MRT in terms of spot size, pencil-beam distribution, entrance beam energy, multiport irradiation, combined with relevant radiobiological investigations, could pave the way for hypofractionation scenarios where tissue sparing at the entrance, better malignant tissue response and better dose conformity of target volume irradiation could be achieved, compared with present proton beam radiotherapy configurations.

  17. Four-dimensional transverse beam matrix measurement using the multiple-quadrupole scan technique

    Directory of Open Access Journals (Sweden)

    Eduard Prat

    2014-05-01

    Full Text Available Accurate measurements of the transverse beam properties are essential to understand and optimize particle beams. We present an optimized method that uses three quadrupole magnets and one profile monitor to measure the full 4D transverse matrix of the beam. The method has been applied to the SwissFEL Injector Test Facility (SITF at the Paul Scherrer Institute (Villigen. The SITF is the principal test bed and demonstration plant for the SwissFEL project, which aims at realizing a hard-x-ray free-electron laser in 2017. Simulations, measurements, and results of cross-plane coupling correction are presented.

  18. Comparing cone beam laminographic system trajectories for composite NDT

    Directory of Open Access Journals (Sweden)

    Neil O'Brien

    2016-11-01

    Full Text Available We compare the quality of reconstruction obtainable using various laminographic system trajectories that have been described in the literature, with reference to detecting defects in composite materials in engineering. We start by describing a laminar phantom representing a simplified model of composite panel, which models certain defects that may arise in such materials, such as voids, resin rich areas, and delamination, and additionally features both blind and through holes along multiple axes. We simulate ideal cone-beam projections of this phantom with the different laminographic trajectories, applying both Simultaneous Iterative Reconstruction Technique (SIRT and Conjugate Gradient Least Squares (CGLS reconstruction algorithms. We compare the quality of the reconstructions with a view towards optimising the scan parameters for defect detectability in composite NDT applications.

  19. SU-E-T-286: Dose Verification of Spot-Scanning Proton Beam Using GafChromic EBT3 Film

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Tang, S; Mah, D [ProCure Proton Therapy Center, Somerset, NJ (United States); Chan, M [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States)

    2015-06-15

    Purpose: Dose verification of spot-scanning proton pencil beam is performed via planar dose measurements at several depths using an ionization-chamber array, requiring repeat irradiations of each field for each depth. Here we investigate film dosimetry which has two advantages: higher resolution and efficiency from one-shot irradiation for multiple depths. Methods: Film calibration was performed using an EBT3 film at 20-cm depth of Plastic Water (CIRS, Norfolk, VA) exposed by a 10-level step wedge on a Proteus Plus proton system (IBA, Belgium). The calibration doses ranged from 25–250 cGy(RBE) for proton energies of 170–200 MeV. A uniform 1000 cm{sup 3} dose cube and a clinical prostate combined with seminal-vesicle and pelvic-nodes plan were used for this study. All treatment plans were generated in the RayStation (RaySearch Lab, Sweden). The planar doses at different depths for both cases were measured with film using triple-channel dosimetry and the MatriXX PT (IBA Dosimetry, Germany). The Gamma passing rates, dose-difference maps, and profiles of 2D planar doses measured with EBT3 film and MatriXX, versus treatment planning system (TPS) calculations were analyzed and compared using the FilmQA Pro (Ashland Inc., Bridgewater, NJ). Results: The EBT3 film measurement results matched well with the TPS calculation data with an average passing rate >95% for 2%/2mm and are comparable with the MatriXX measurements (0.7%, 1.8%, 3.8% mean differences corresponding to 3%/3mm, 3%/2mm, 2%/2mm, respectively). Overall passing rates for EBT3 films appear higher than those with MatriXX detectors. Conclusion: The energy dependence of the film response could be minimized by calibration using proton beam with mixed energies. The greater efficiency of the dose verification using GafChromic EBT3 results in a potential cost trade-off between room capacity and film cost. EBT3 film may offer distinct advantages in highly intensity-modulated fields due to its higher resolution

  20. Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system.

    Science.gov (United States)

    Alaei, Parham; Spezi, Emiliano

    2012-11-08

    The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The beams generated by Elekta X-ray volume imaging (XVI) kilovoltage CBCT (kV CBCT) system for various cassettes and filters have been modeled in the Philips Pinnacle treatment planning system (TPS) and used to compute dose to stack and anthropomorphic phantoms. The results were then compared to measurements made using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) simulations. The agreement between modeled and measured depth-dose and cross profiles is within 2% at depths beyond 1 cm for depth-dose curves, and for regions within the beam (excluding penumbra) for cross profiles. The agreements between TPS-calculated doses, TLD measurements, and Monte Carlo simulations are generally within 5% in the stack phantom and 10% in the anthropomorphic phantom, with larger variations observed for some of the measurement/calculation points. Dose computation using modeled beams is reasonably accurate, except for regions that include bony anatomy. Inclusion of this dose in treatment plans can lead to more accurate dose prediction, especially when the doses to organs at risk are of importance.

  1. The beam delivery modeling and error sources analysis of beam stabilization system for lithography

    Science.gov (United States)

    Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie

    2013-12-01

    Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2μm displacement error and 24.49μrad angle error. Measurement inaccuracy as a result of 5μm measurement noise results in the maximum 0.126mm displacement error and 57.2μrad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5μrad for angle and 28μm for displacement (both 1σ) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.

  2. Descriptive study of apical periodontitis detected in Cone Beam Computed Tomography scans

    OpenAIRE

    MORETI,Lucieni Cristina Trovati; PANZARELLA,Francine Kühl; OLIVEIRA,Marine de; José Luiz Cintra JUNQUEIRA; MANHÃES JÚNIOR,Luiz Roberto

    2016-01-01

    ABSTRACT Objective: To perform a descriptive study in order to evaluate apical periodontitis in endodontically treated teeth using cone beam computed tomography. Methods: Eighty-six exams presenting at least one apical periodontitis were selected and divided into two groups: 1 for the mandible and 2 for the maxilla. All the exams were done using the same cone beam computed tomography with standard acquisition settings. All the images were processed and manipulated using the same software. T...

  3. Multi-transmission-line-beam interactive system

    Energy Technology Data Exchange (ETDEWEB)

    Figotin, Alexander; Reyes, Guillermo [Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875 (United States)

    2013-11-15

    We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube due to J. R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes.

  4. Cone-Beam Composite-Circling Scan and Exact Image Reconstruction for a Quasi-Short Object

    Directory of Open Access Journals (Sweden)

    Hengyong Yu

    2007-01-01

    Full Text Available Here we propose a cone-beam composite-circling mode to solve the quasi-short object problem, which is to reconstruct a short portion of a long object from longitudinally truncated cone-beam data involving the short object. In contrast to the saddle curve cone-beam scanning, the proposed scanning mode requires that the X-ray focal spot undergoes a circular motion in a plane facing the short object, while the X-ray source is rotated in the gantry main plane. Because of the symmetry of the proposed mechanical rotations and the compatibility with the physiological conditions, this new mode has significant advantages over the saddle curve from perspectives of both engineering implementation and clinical applications. As a feasibility study, a backprojection filtration (BPF algorithm is developed to reconstruct images from data collected along a composite-circling trajectory. The initial simulation results demonstrate the correctness of the proposed exact reconstruction method and the merits of the proposed mode.

  5. Moessbauer thermal scan study of a spin crossover system

    Energy Technology Data Exchange (ETDEWEB)

    Zelis, P Mendoza; Pasquevich, G A; Sanchez, F H; Veiga, A; Cabrera, A F [Departamento de Fisica, FCE-UNLP, La Plata (Argentina); Ceolin, M [Instituto de Investigaciones FIsico-Quimicas Teoricas y Aplicadas (UNLP-CONICET), La Plata (Argentina); Coronado-Miralles, E; Monrabal-Capilla, M; Galan-Mascaros, J R, E-mail: pmendoza@fisica.unlp.edu.a [Instituto de Ciencias Moleculares, Universidad de Valencia, Valencia (Spain)

    2010-03-01

    Programmable Velocity equipment was used to perform a Moessbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz){sub 2}(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.

  6. Airborne laser scan data: a valuable tool with which to infer weather radar partial beam blockage in urban environments

    Science.gov (United States)

    Cremonini, Roberto; Moisseev, Dmitri; Chandrasekar, Venkatachalam

    2016-10-01

    High-spatial-resolution weather radar observations are of primary relevance for hydrological applications in urban areas. However, when weather radars are located within metropolitan areas, partial beam blockages and clutter by buildings can seriously affect the observations. Standard simulations with simple beam propagation models and digital elevation models (DEMs) are usually not able to evaluate buildings' contribution to partial beam blockages. In recent years airborne laser scanners (ALSs) have evolved to the state-of-the-art technique for topographic data acquisition. Providing small footprint diameters (10-30 cm), ALS data allow accurate reconstruction of buildings and forest canopy heights. Analyzing the three weather C-band radars located in the metropolitan area of Helsinki, Finland, the present study investigates the benefits of using ALS data for quantitative estimations of partial beam blockages. The results obtained applying beam standard propagation models are compared with stratiform 24 h rainfall accumulation to evaluate the effects of partial beam blockages due to constructions and trees. To provide a physical interpretation of the results, the detailed analysis of beam occultations is achieved by open spatial data sets and open-source geographic information systems.

  7. A surface refractive index scanning system and method

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction, and a s......The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction...... a grating period Λ2 in the longitudinal direction, where the longitudinal direction is orthogonal to the transverse direction. A grating period spacing ΔΛ = Λ1 - Λ2 is finite. Further, the first and second grating periods are chosen to provide optical resonances for light respectively in a first...

  8. ITER neutral beam system US conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.

  9. Effectiveness of respiratory-gated radiotherapy with audio-visual biofeedback for synchrotron-based scanned heavy-ion beam delivery

    Science.gov (United States)

    He, Pengbo; Li, Qiang; Zhao, Ting; Liu, Xinguo; Dai, Zhongying; Ma, Yuanyuan

    2016-12-01

    A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient’s breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.

  10. Tip alignment system in a sextupole-corrected scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, S. (The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States)); Kapp, O.H. (The Department of Radiology and The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States))

    1993-03-01

    Tip alignment and replacement in ultrahigh vacuum field-emission electron microscopes is traditionally a time-consuming endeavor. A convenient autodrive system for the 200 kV scanning transmission electron microscope was developed to facilitate the alignment of field-emission tips, thus saving a great deal of experimenter time. Under computer control, a series of automatic electrical and mechanical processes are initiated to systematically adjust various parameters to effect passage of the electron beam through the various apertures of the microscope column. The task of finding the beam'' is thus performed automatically. In this process the tip holder is moved in a raster parallel to the first anode. Feedback from various detectors placed throughout the column direct the positioning of the tip for optimal alignment. This process is routinely performed in about 45 min.

  11. Measurement of surface recombination velocity for silicon solar cells using a scanning electron microscope with pulsed beam

    Science.gov (United States)

    Daud, T.; Cheng, L. J.

    1981-01-01

    The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.

  12. Automated Beam Loss Monitoring System At Extraction From U-70

    CERN Document Server

    Afonin, A G; Baranov, V T; Gres, V N; Shaposhnikov, P A; Terekhov, V I; Uglekov, V Ya

    2004-01-01

    This paper presents a description of the new beam loss monitoring system built and comissioned to detect beam losses in the IHEP extraction area at 16 places of interest. It yields information about possible beam interception by extraction elements over each mode of extracting. Multiple measurements with resolution 10ms are possible to study the dynamic processes over the slow extraction. This system is a part of the U-70 Control System.

  13. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Geng, C [Massachusetts General Hospotal and Harvard Medical School, Boston, MA (United States); Nanjing University of Aeronautics and Astronautics, Nanjing (China); Schuemann, J; Moteabbed, M; Paganetti, H [Massachusetts General Hospotal and Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalent was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)

  14. Evaluation of the systematic error in using 3D dose calculation in scanning beam proton therapy for lung cancer.

    Science.gov (United States)

    Li, Heng; Liu, Wei; Park, Peter; Matney, Jason; Liao, Zhongxing; Chang, Joe; Zhang, Xiaodong; Li, Yupeng; Zhu, Ronald X

    2014-09-08

    The objective of this study was to evaluate and understand the systematic error between the planned three-dimensional (3D) dose and the delivered dose to patient in scanning beam proton therapy for lung tumors. Single-field and multifield optimized scanning beam proton therapy plans were generated for ten patients with stage II-III lung cancer with a mix of tumor motion and size. 3D doses in CT datasets for different respiratory phases and the time-weighted average CT, as well as the four-dimensional (4D) doses were computed for both plans. The 3D and 4D dose differences for the targets and different organs at risk were compared using dose-volume histogram (DVH) and voxel-based techniques, and correlated with the extent of tumor motion. The gross tumor volume (GTV) dose was maintained in all 3D and 4D doses, using the internal GTV override technique. The DVH and voxel-based techniques are highly correlated. The mean dose error and the standard deviation of dose error for all target volumes were both less than 1.5% for all but one patient. However, the point dose difference between the 3D and 4D doses was up to 6% for the GTV and greater than 10% for the clinical and planning target volumes. Changes in the 4D and 3D doses were not correlated with tumor motion. The planning technique (single-field or multifield optimized) did not affect the observed systematic error. In conclusion, the dose error in 3D dose calculation varies from patient to patient and does not correlate with lung tumor motion. Therefore, patient-specific evaluation of the 4D dose is important for scanning beam proton therapy for lung tumors.

  15. LHC magnet quench test with beam loss generated by wire scan

    CERN Document Server

    Sapinski, M; Dahlerup-Petersen, K; Dehning, B; Emery, j; Ferrari, A; Guerrero, A; Holzer, E B; Koujili, M; Lechner, A; Nebot, E; Scheubel, M; Steckert, J; Verweij, A; Wenninger, J

    2011-01-01

    Beam losses with millisecond duration have been observed in the LHC in 2010 and 2011. They are thought to be provoked by dust particles falling into the beam. These losses could compromise the LHC availability if they provoke quenches of superconducting magnets. In order to investigate the quench limits for this loss mechanism, a quench test using a wire scanner has been performed, with the wire movement through the beam mimicking a loss with similar spatial and temporal distribution as in the case of dust particles. This paper will show the conclusions reached for millisecond-duration dust-provoked quench limits. It will include details on the maximum energy deposited in the coil as estimated using FLUKA code, showing a reasonable agreement with quench limit estimated from the heat transfer code QP3. In addition, information on the damage limit for carbon wires in proton beamswill be presented, following electronmicroscope analysis which revealed strong wire sublimation.

  16. Hardware and Initial Beam Commissioning of the LHC RF Systems

    CERN Document Server

    Linnecar, T; Arnaudon, L; Baudrenghien, P; Bohl, T; Brunner, O; Butterworth, A; Ciapala, Edmond; Dubouchet, F; Ferreira-Bento, J; Glenat, D; Hagmann, G; Höfle, Wolfgang; Julie, C; Killing, F; Kotzian, G; Landre, D; Louwerse, R; Maesen, P; Martinez-Yanez, P; Molendijk, J; Montesinos, E; Nicou, C; Noirjean, J; Papotti, G; Pashnin, A; Pechaud, G; Pradier, J; Rossi, V; Sanchez-Quesada, J; Schokker, M; Shaposhnikova, E; Sorokoletev, R; Stellfeld, D; Tückmantel, Joachim; Valuch, D; Wehrle, U; Weierud, F

    2008-01-01

    Hardware commissioning of the LHC RF Systems, the ACS Superconducting RF systems, ADT Transverse Dampers and APWL Wideband Longitudinal Monitors, started in late 2007 and was completed in time for the first LHC beams in 2008. The RF inter-machine synchroni-sation systems were in place and operational for the LHC synchronization tests in August 2008. The very first beams through IP4 were observed on the RF monitors and beam 2 was captured on 11th September. Measurements with beam on the damper systems were also pos-sible, preparing the way for closing the damper loop with beam. Major milestones during commissioning the ACS and ADT systems and results obtained during first capture tests are presented. Preparatory work for acceleration and multi-bunch operation is described as are the beam tests foreseen for 2009.

  17. Laser Micro-beam Manipulation System for Cells

    Institute of Scientific and Technical Information of China (English)

    孟祥旺; 李岩; 张书练; 张志诚; 赵南明

    2002-01-01

    This paper introduces a laser micro-beam system for cells manipulation. The laser micro-beam system comprises a laser scissors and a laser tweezers, which are focused by a Nd∶YAG laser and a He-Ne laser through a microscope objective, respectively. Not only the overall design of the laser micro-beam system is discussed, but also the design and choice of the critical components. A laser micro-beam system was constructed and anticipated experiment results were gained. Yeast cells can be successfully manipulated with the laser tweezers. Chromosomes can be successfully incised with the laser scissors.

  18. Pulsed Laser Deposition of YBa2Cu3Ox with Scanning Beam: Target to Substrate Composition Transfer and Film Structure

    DEFF Research Database (Denmark)

    Mozhaev, Peter; Khoryushin, Alexey; Mozhaeva, Julia

    2017-01-01

    Pulsed laser deposition is often considered a process providing congruent transfer of target composition to the growing film. In fact, many different processes affect compositional preservation, starting from incongruent target ablation, to scattering on the way to the substrate, and to processes...... of the film formation on the substrate surface. We developed a pulsed laser deposition process trying to minimize the compositional deviations due to the scattering by the ambient gas by applying laser beam scanning across the target surface and substitution of oxygen with argon in the chamber during...

  19. Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    Science.gov (United States)

    Unberath, Mathias; Choi, Jang-Hwan; Berger, Martin; Maier, Andreas; Fahrig, Rebecca

    2015-03-01

    We previously introduced four fiducial marker-based strategies to compensate for involuntary knee-joint motion during weight-bearing C-arm CT scanning of the lower body. 2D methods showed significant reduction of motion- related artifacts, but 3D methods worked best. However, previous methods led to increased examination times and patient discomfort caused by the marker attachment process. Moreover, sub-optimal marker placement may lead to decreased marker detectability and therefore unstable motion estimates. In order to reduce overall patient discomfort, we developed a new image-based 2D projection shifting method. A C-arm cone-beam CT system was used to acquire projection images of five healthy volunteers at various flexion angles. Projection matrices for the horizontal scanning trajectory were calibrated using the Siemens standard PDS-2 phantom. The initial reconstruction was forward projected using maximum-intensity projections (MIP), yielding an estimate of a static scan. This estimate was then used to obtain the 2D projection shifts via registration. For the scan with the most motion, the proposed method reproduced the marker-based results with a mean error of 2.90 mm +/- 1.43 mm (compared to a mean error of 4.10 mm +/- 3.03 mm in the uncorrected case). Bone contour surrounding modeling clay layer was improved. The proposed method is a first step towards automatic image-based, marker-free motion-compensation.

  20. BeamOptics : a Symbolic Platform for Modeling and the Solution of Beam Optics System

    Energy Technology Data Exchange (ETDEWEB)

    Yu-Chiu Chao

    2000-11-01

    BeamOptics [1] is a Mathematica-based computing platform devoted to the following objectives: (1) Structured representation and manipulation of particle beam optics systems with symbolic capabilities, (2) Analytical and numerical modeling of beam optics system behaviors, (3) Solution to specific beam optical or general accelerator system problems, in algebraic form in certain cases, through customized algorithms. Taking advantage of and conforming to the highly formal and self-contained structure of Mathematica, BeamOptics provides a unique platform for developing accelerator design and analysis programs. The feature of symbolic computation and the ability to manipulate the beam optics system at the programming language level enable the user to solve or optimize his system with considerably more efficiency, rigour and insight than can be easily achieved with passive modeling or numerical simulation methods. BeamOptics is developed with continuous evolution in mind. New features and algorithms from diverse sources can be incorporated without major modification, due to its formal and generic structure. In this report, a survey is given of the basic structure and methodology of BeamOptics, as well as a demonstration of some of its more specialized applications, and possible direction of evolution.

  1. Multiple helical scans and the reconstruction of over FOV-sized objects in cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    Han Yu; Yan Bin; Li Lei; Yu Chao-Qun; Li Jian-Xin; Bao Shang-Lian

    2012-01-01

    In cone-beam computed tomography (CBCT),there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)).To acquire the complete projection data for OFS objects,some scan modes have been developed for long objects and short but over-wide objects.However,these modes still cannot meet the requirements for both longitudinally long and transversely wide objects.In this paper,we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects.The simulation results show that our model can deal with the problem and that the results are acceptable,while the OFS object is twice as long compared with the FOV in the same latitude.

  2. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.

  3. Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes

    Science.gov (United States)

    Zhabitsky, V. M.

    2012-07-01

    The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency.

  4. Artifacts caused by insufficient contrast medium filling during C-arm cone-beam CT scans: a phantom study.

    Science.gov (United States)

    Terabe, Mitsuaki; Ichikawa, Hajime; Kato, Toyohiro; Koshida, Kichiro

    2014-01-01

    We investigated artifacts due to late-arriving contrast medium (CM) during C-arm cone-beam computed tomography. We scanned a phantom filled with water or with 100, 50, or 5% v/v concentrations of CM and then virtually produced CM-delayed projection data by partially replacing the projection images. Artifacts as a function of concentration, percentage of filling time, and size and position of the filling area were assessed. In addition, we used an automatic power injector with different injection delays to inject CM during the scans. A decrease in filling times caused by a lag in CM arrival during the scan resulted in a decrease in pixel values, distortion of the filling area, and appearance of streak artifacts. Even a delay of approximately 20% in CM arrival in the total scan time resulted in obvious distortion of the filling area. The distortion and streak artifacts tended to worsen at higher CM concentrations. Use of a minimum CM concentration based on the purpose of the examination and constant filling at the target region are effective for avoiding these artifacts.

  5. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    Science.gov (United States)

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. Results All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. Conclusions The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken. PMID:27226958

  6. Error correction based on micro-scanning preprocessing for an optical micro-scanning thermal microscope imaging system

    Science.gov (United States)

    Gao, Meijing; Xu, Jie; Tan, Ailing; Zu, Zhenlong; Yang, Ming; Wang, Jingyuan

    2017-06-01

    In recent years, various thermal microscope imaging systems have been developed to meet the demands of micro-thermal analysis for large-scale integrated circuits, biomedical, science, and research fields. However, conventional thermal microscope imaging systems, which use cooled infrared detectors are heavy and expensive. In order to solve this problem, we developed a thermal microscope imaging system based on an uncooled infrared detector. However, the spatial resolution of the thermal microscope imaging system based on an uncooled infrared detector is low. With optical micro-scanning technology, the spatial resolution of the thermal microscope imaging system can be increased without increasing the detector dimension or reducing the detector unit size. In order to improve its spatial resolution, a micro-scanning system based on optical plate rotation was developed, and an optical microscanning thermal microscope imaging system was obtained after the integrated design. Due to environmental factors, mechanical vibration, alignment error and other factors, there is micro-scanning error in the designed micro-scanning thermal microscope imaging system. The four low-resolution images collected by micro-scanning thermal microscope imaging system are not standard down-sampled images. The quality of the image interpolated directly by four collected images is reduced and the performance of the micro-scanning system isn't fully exploited. Therefore, based on the proposed second-order oversampling reconstruction micro-scanning error correction algorithm and the new edge directed interpolation algorithm, a new micro-scanning error correction technique is proposed. Simulations and experiments show that the proposed technique can effectively reduce optical micro-scanning error, improve the systems spatial resolution and optimize the effect of the imaging system. It can be applied to other electro-optical imaging systems to improve their spatial resolution.

  7. Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans

    NARCIS (Netherlands)

    Al-Rawi, B.; Hassan, B.; Vandenberge, B.; Jacobs, R.

    2010-01-01

    The use of three-dimensional (3D) models of the dentition obtained from cone beam computed tomography (CBCT) is becoming increasingly more popular in dentistry. A recent trend is to replace the traditional dental casts with digital CBCT models for diagnosis, treatment planning and simulation. The ac

  8. Incidental findings on cone beam computed tomography scans in cleft lip and palate patients

    NARCIS (Netherlands)

    Kuijpers, Mette A. R.; Pazera, Andrzej; Admiraal, Ronald J.; Berge, Stefaan J.; Vissink, Arjan; Pazera, Pawel

    2014-01-01

    Cone beam computed tomography (CBCT) is frequently used in treatment planning for alveolar bone grafting (ABG) and orthognathic surgery in patients with cleft lip and palate (CLP). CBCT images may depict coincident findings. The aim of this study was to assess the prevalence of incidental findings o

  9. Incidental findings on cone beam computed tomography scans in cleft lip and palate patients

    NARCIS (Netherlands)

    Kuijpers, M.A.R.; Pazera, A.; Admiraal, R.J.C.; Berge, S.J.; Vissink, A.; Pazera, P.

    2014-01-01

    OBJECTIVES: Cone beam computed tomography (CBCT) is frequently used in treatment planning for alveolar bone grafting (ABG) and orthognathic surgery in patients with cleft lip and palate (CLP). CBCT images may depict coincident findings. The aim of this study was to assess the prevalence of incidenta

  10. Incidental findings on cone beam computed tomography scans in cleft lip and palate patients

    NARCIS (Netherlands)

    Kuijpers, Mette A. R.; Pazera, Andrzej; Admiraal, Ronald J.; Berge, Stefaan J.; Vissink, Arjan; Pazera, Pawel

    Cone beam computed tomography (CBCT) is frequently used in treatment planning for alveolar bone grafting (ABG) and orthognathic surgery in patients with cleft lip and palate (CLP). CBCT images may depict coincident findings. The aim of this study was to assess the prevalence of incidental findings

  11. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure

  12. Low-Dose and Scatter-Free Cone-Beam CT Imaging Using a Stationary Beam Blocker in a Single Scan: Phantom Studies

    Directory of Open Access Journals (Sweden)

    Xue Dong

    2013-01-01

    Full Text Available Excessive imaging dose from repeated scans and poor image quality mainly due to scatter contamination are the two bottlenecks of cone-beam CT (CBCT imaging. Compressed sensing (CS reconstruction algorithms show promises in recovering faithful signals from low-dose projection data but do not serve well the needs of accurate CBCT imaging if effective scatter correction is not in place. Scatter can be accurately measured and removed using measurement-based methods. However, these approaches are considered unpractical in the conventional FDK reconstruction, due to the inevitable primary loss for scatter measurement. We combine measurement-based scatter correction and CS-based iterative reconstruction to generate scatter-free images from low-dose projections. We distribute blocked areas on the detector where primary signals are considered redundant in a full scan. Scatter distribution is estimated by interpolating/extrapolating measured scatter samples inside blocked areas. CS-based iterative reconstruction is finally carried out on the undersampled data to obtain scatter-free and low-dose CBCT images. With only 25% of conventional full-scan dose, our method reduces the average CT number error from 250 HU to 24 HU and increases the contrast by a factor of 2.1 on Catphan 600 phantom. On an anthropomorphic head phantom, the average CT number error is reduced from 224 HU to 10 HU in the central uniform area.

  13. Application of MMIC modules in future multiple beam satellite antenna systems

    Science.gov (United States)

    Smetana, J.

    1982-01-01

    Multiple beam antenna systems for advanced communication satellites operating in the 30/20 GHz frequency bands (30 GHz uplink, 20 GHz downlink) were developed. Up to twenty 0.3 deg HPBW fixed spot beams and six 0.3 deg HPBW scanning spot beams will be required. Array-fed dual reflector antenna systems in which monolithic microwave integrated circuit (MMIC) phase shift and amplifier modules are used with each radiating element of the feed array for beam pointing and power gain were developed. The feasibility of distributed power amplification and beam pointing with MMIC modules in the elements of an array and to develop a data base for future development were demonstrated. The technical discussion centers around the potential advantages of ""monolithic'' antennas for specific applications as compared to systems using high powered TWT's. These include: reduced losses in the beam forming network; advantage of space combining and graceful degradation; dynamic control of beam pointing and illumination contour; and possibilities for cost and weight reduction.

  14. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography

    NARCIS (Netherlands)

    Hassan, B.; Souza, P.C.; Jacobs, R.; Berti, S.D.; van der Stelt, P.

    2010-01-01

    The study aim is to investigate the influence of scan field, mouth opening, voxel size, and segmentation threshold selections on the quality of the three-dimensional (3D) surface models of the dental arches from cone beam computed tomography (CBCT). 3D models of 25 patients scanned with one image in

  15. A Robotic System to Scan and Reproduce Object

    Directory of Open Access Journals (Sweden)

    Cesare Rossi

    2011-01-01

    Full Text Available An application of a robotic system integrated with a vision system is presented. The robot is a 3-axis revolute prototype, while the vision system essentially consists in a laser scanner made up of a camera and a linear laser projector. Both the robotic and the video system were designed and built at DIME (Department of Mechanical Engineering for Energetics, University of Naples Federico II. The presented application essentially consists of a laser scanner that is installed on the robot arm; the scanner scans a 3D surface, and the data are converted in a cloud of points in the robot’s workspace. Then, starting from those points, the end-effector trajectories adopted to replicate the scanned surface are calculated; so, the same robot, by using a tool, can reproduce the scanned object. The software was developed also at the DIME. The adopted tool was a high-speed drill, installed on the last link of the robot arm, with a spherical milling cutter in order to obtain enough accurate surfaces by the data represented by the cloud of points. An algorithm to interpolate the paths and to plan the trajectories was also developed and successfully tested.

  16. Analysis of Vernier Scans during the PP2PP run in 2009 (pp at 100 GeV/beam)

    Energy Technology Data Exchange (ETDEWEB)

    Drees, A.

    2011-12-13

    At the end of RHIC's 2009 operation a dedicated run for the PP2PP experiment (part of the STAR experiment) took place from Jun 29 to Jul 06 2009. Polarized protons were accelerated to 100 GeV using ramp-file pp100-90pp2pp with a {beta}* = 22 m in IR6. Since only transverse polarization was required no rotator ramp was in use. The PP2PP experiment consists mainly of two Roman Pot detectors (one horizontal and one vertical) on either side of IR6 in the outgoing-beam arms between the Q3 and Q4 magnets. The yellow pots are in sector 5, the blue ones in sector 6. Roman Pot type detectors are installed inside the beampipe causing an accelerator safety concern. To address this concern there is a limit to the allowable total beam current in the machine while Roman Pots are enabled to move closer to the beam. This limit was set to a motion limit of 5 mm from the center of the beampipe and 50 {center_dot} 10{sup 11} beam current per ring. In order to reduce the background in the detectors, beams were scraped using the RHIC collimator system prior to moving the pots closer. This was typically repeated several times throughout a store since beam halo reforms over the course of hours.

  17. Optimum Combined Lenses for Confocal Biochip Scanning System

    Institute of Scientific and Technical Information of China (English)

    黄国亮; 程京; 周玉祥; 冯继宏; 刘诚迅; 金国藩; 邬敏贤; 严瑛白; 张腾飞; 李林

    2002-01-01

    Laboratory-on-a-chip technology has attracted wide interest in recent years, where the sample preparation, bio-chemical reaction, separation, detection and analysis are performed in a small biochip of the size of a fingernail. To obtain a high detection sensitivity of 1 fluors/μm2 (one fluorescence molecule per square micrometer) in biochip scanning systems, the scanning objective lens is required to have a high numerical aperture (>0.5), very small focal spot (3 mm). This study presents the design of optimum combined lenses including scanning objective and fluorescence focal lenses. The scanning objective had a high numerical aperture (NA) of 0.72, a very small focal spot of 1.67 μm, a long back focal length of 3.2 mm, and a high resolving power of 760 lines/mm. The fluorescence focal lenses had an NA of 0.3, a fluorescence focal spot of 16 μm, a long back focal length of 16.7 mm and a resolving power of 590 lines/mm. The phase aberrations of the combined lenses, including the aspherical aberration and the chromatic aberration corresponding to wavelengths of 532, 570, 635, and 670 nm, were well-corrected. The encircled energy diagram of the lenses was within the diffraction limit. The study also included the focal spot diagram, the optical path difference diagram, the transverse ray fan plot, and the modulation transfer function. A confocal biochip scanning system with designed combined lenses was developed and some experiments were conducted on a multi-channel biochip.

  18. New Beam Profile Monitoring System At Extraction From U-70

    CERN Document Server

    Afonin, A G; Gorlov, V N; Gres, V N; Sokolov, S V; Terekhov, V I

    2004-01-01

    In the course of upgrading Instrumentation of extracted beams at IHEP the new beam profile monitoring system has been developed and comissioned. It incorporates many improvements towards lower amount of monitor substance to be placed in the beam path, lower cable expenses, higher radiation and noisy resistance, wider dynamic range. New circuitry allows one to measure profiles separately for each extraction in one machine cycle. The system has a capability for multiple measures of beam profile during the slow extraction for exploring dynamic effects. The paper describes hardware and software of system.

  19. PRF Ambiguity Detrmination for Radarsat ScanSAR System

    Science.gov (United States)

    Jin, Michael Y.

    1998-01-01

    PRF ambiguity is a potential problem for a spaceborne SAR operated at high frequencies. For a strip mode SAR, there were several approaches to solve this problem. This paper, however, addresses PRF ambiguity determination algorithms suitable for a burst mode SAR system such as the Radarsat ScanSAR. The candidate algorithms include the wavelength diversity algorithm, range look cross correlation algorithm, and multi-PRF algorithm.

  20. Z-scan studies of the nonlinear optical properties of gold nanoparticles prepared by electron beam deposition.

    Science.gov (United States)

    Mezher, M H; Nady, A; Penny, R; Chong, W Y; Zakaria, R

    2015-11-20

    This paper details the fabrication process for placing single-layer gold (Au) nanoparticles on a planar substrate, and investigation of the resulting optical properties that can be exploited for nonlinear optics applications. Preparation of Au nanoparticles on the substrate involved electron beam deposition and subsequent thermal dewetting. The obtained thin films of Au had a variation in thicknesses related to the controllable deposition time during the electron beam deposition process. These samples were then subjected to thermal annealing at 600°C to produce a randomly distributed layer of Au nanoparticles. Observation from field-effect scanning electron microscope (FESEM) images indicated the size of Au nanoparticles ranges from ∼13 to ∼48  nm. Details of the optical properties related to peak absorption of localized surface plasmon resonance (LSPR) of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear effects on the fabricated Au nanoparticle layers where it strongly relates LSPR and nonlinear optical properties.

  1. Laser Beam Duct Pressure Controller System.

    Science.gov (United States)

    the axial flow of a conditioning gas within the laser beam duct, by matching the time rate of change of the pressure of the flowing conditioning gas...to the time rate of change of the pressure in the cavity of an operably associated laser beam turret.

  2. Endodontic outcome predictors identified with periapical radiographs and cone-beam computed tomography scans

    NARCIS (Netherlands)

    Liang, Y.H.; Li, G.; Wesselink, P.R.; Wu, M.K.

    2011-01-01

    Introduction The outcomepredictorsidentified with data from periapicalradiographs (PA) and cone-beamcomputedtomography (CBCT) scans might not be the same. This retrospective study evaluated various factors that might affect the outcome of root canal therapy. Methods In total, 115 teeth (143 roots) w

  3. Implant planning and placement using optical scanning and cone beam CT technology

    NARCIS (Netherlands)

    J.M. van der Zel

    2008-01-01

    There is a growing interest in minimally invasive implant therapy as a standard prosthodontic treatment, providing complete restoration of occlusal function. A new treatment method (CADDIMA), which combines both computerized tomographic (CT) and optical laser-scan data for planning and design of sur

  4. LAND-BASED MOBILE LASER SCANNING SYSTEMS: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. Puente

    2012-09-01

    Full Text Available Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS and terrestrial laser scanning (TLS systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  5. Land-Based Mobile Laser Scanning Systems: a Review

    Science.gov (United States)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  6. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  7. SU-E-T-383: Evaluation of Deep Inspiration Breath-Hold Technique for Post-Mastectomy Proton Pencil Beam Scanning Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Depauw, N; Patel, S; MacDonald, S; Lu, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Deep inspiration breath-hold techniques (DIBH) have been shown to carry significant dosimetric advantages in conventional radiotherapy of left-sided breast cancer. The purpose of this study is to evaluate the use of DIBH techniques for post-mastectomy radiation therapy (PMRT) using proton pencil beam scanning (PBS). Method: Ten PMRT patients, with or without breast implant, underwent two helical CT scans: one with free breathing and the other with deep inspiration breath-hold. A prescription of 50.4 Gy(RBE) to the whole chest wall and lymphatics (axillary, supraclavicular, and intramammary nodes) was considered. PBS plans were generated for each patient’s CT scan using Astroid, an in-house treatment planning system, with the institution conventional clinical PMRT parameters; that is, using a single en-face field with a spot size varying from 8 mm to 14 mm as a function of energy. Similar optimization parameters were used in both plans in order to ensure appropriate comparison. Results: Regardless of the technique (free breathing or DIBH), the generated plans were well within clinical acceptability. DIBH allowed for higher target coverage with better sparing of the cardiac structures. The lung doses were also slightly improved. While the use of DIBH techniques might be of interest, it is technically challenging as it would require a fast PBS delivery, as well as the synchronization of the beam delivery with a gating system, both of which are not currently available at the institution. Conclusion: DIBH techniques display some dosimetric advantages over free breathing treatment for PBS PMRT patients, which warrants further investigation. Plans will also be generated with smaller spot sizes (2.5 mm to 5.5 mm and 5 mm to 9 mm), corresponding to new generation machines, in order to further quantify the dosimetric advantages of DIBH as a function of spot size.

  8. Design of a MEMS-based retina scanning system for biometric authentication

    Science.gov (United States)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Schelinski, Uwe; Grüger, Heinrich

    2014-05-01

    There is an increasing need for reliable authentication for a number of applications such as e commerce. Common authentication methods based on ownership (ID card) or knowledge factors (password, PIN) are often prone to manipulations and may therefore be not safe enough. Various inherence factor based methods like fingerprint, retinal pattern or voice identifications are considered more secure. Retina scanning in particular offers both low false rejection rate (FRR) and low false acceptance rate (FAR) with about one in a million. Images of the retina with its characteristic pattern of blood vessels can be made with either a fundus camera or laser scanning methods. The present work describes the optical design of a new compact retina laser scanner which is based on MEMS (Micro Electric Mechanical System) technology. The use of a dual axis micro scanning mirror for laser beam deflection enables a more compact and robust design compared to classical systems. The scanner exhibits a full field of view of 10° which corresponds to an area of 4 mm2 on the retinal surface surrounding the optical disc. The system works in the near infrared and is designed for use under ambient light conditions, which implies a pupil diameter of 1.5 mm. Furthermore it features a long eye relief of 30 mm so that it can be conveniently used by persons wearing glasses. The optical design requirements and the optical performance are discussed in terms of spot diagrams and ray fan plots.

  9. Interpolating sliding mode observer for a ball and beam system

    Science.gov (United States)

    Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor

    2016-09-01

    A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.

  10. Beam Commissioning and Performance Characterisation of the LHC Beam Dump Kicker Systems

    CERN Document Server

    Uythoven, J; Ducimetière, L; Goddard, B; Kain, V; Magnin, N

    2010-01-01

    The LHC beam dump system was commissioned with beam in 2009. This paper describes the operational experience with the kicker systems and the tests and measurements to qualify them for operation. The kicker performance was characterized with beam by measurements of the deflection angles, using bunches extracted at different times along the kicker sweep. The kicker performance was also continuously monitored for each dump with measurement and analysis of all kick pulses, allowing diagnostic of errors and of long-term drifts. The results are described and compared to the expectations.

  11. Fast ion beam-plasma interaction system.

    Science.gov (United States)

    Breun, R A; Ferron, J R

    1979-07-01

    A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).

  12. Optimization of beam transformation system for laser-diode bars.

    Science.gov (United States)

    Yu, Junhong; Guo, Linhui; Wu, Hualing; Wang, Zhao; Gao, Songxin; Wu, Deyong

    2016-08-22

    An optimized beam transformation system (BTS) is proposed to improve the beam quality of laser-diode bars. Through this optimized design, the deterioration of beam quality after the BTS can be significantly reduced. Both the simulation and experimental results demonstrate that the optimized system enables the beam quality of a mini-bar (9 emitters) approximately equal to 5.0 mm × 3.6 mrad in the fast-axis and slow-axis. After beam shaping by the optimized BTS, the laser-diode beam can be coupled into a 100 μm core, 0.15 numerical aperture (NA) fiber with an output power of over 100 W and an electric-optical efficiency of 46.8%.

  13. BEAM TEST RESULTS WITH THE FONT4 ILC PROTOTYPE INTRA-TRAIN BEAM FEEDBACK SYSTEM

    CERN Document Server

    Apsimon, R; Clarke, C; Constance, B; Dabiri Khah, H; Hartin, T; Perry, C; Resta Lopez, J; Swinson, C; Christian, G B; Kalinin, A

    2009-01-01

    We present the design and beam test results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end processor, FPGA-based digital signal processing board, and kicker drive amplifier have been designed, built, and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The system was measured to have a latency of approximately 140 ns.

  14. Collected abstracts on particle beam diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hickok, R.L.

    1979-01-01

    This report contains a compilation of abstracts on work related to particle beam diagnostics for high temperature plasmas. The abstracts were gathered in early 1978 and represent the status of the various programs as of that date. It is not suggested that this is a comprehensive list of all the work that is going on in the development of particle beam diagnostics, but it does provide a representative view of the work in this field. For example, no abstracts were received from the U.S.S.R. even though they have considerable activity in particle beam diagnostics.

  15. Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging

    Science.gov (United States)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Brenner, Carsten; Gerhardt, Nils C.; Hofmann, Martin

    2017-02-01

    Microscopy imaging with a single technology is usually restricted to a single contrast mechanism. Multimodal imaging is a promising technique to improve the structural information that could be obtained about a device under test (DUT). Due to the different contrast mechanisms of laser scanning microscopy (LSM), confocal laser scanning microscopy (CLSM) and optical beam induced current microscopy (OBICM), a combination could improve the detection of structures in integrated circuits (ICs) and helps to reveal their layout. While OBIC imaging is sensitive to the changes between differently doped areas and to semiconductor-metal transitions, CLSM imaging is mostly sensitive to changes in absorption and reflection. In this work we present the implementation of OBIC imaging into a CLSM. We show first results using industry standard Atmel microcontrollers (MCUs) with a feature size of about 250nm as DUTs. Analyzing these types of microcontrollers helps to improve in the field of side-channel attacks to find hardware Trojans, possible spots for laser fault attacks and for reverse engineering. For the experimental results the DUT is placed on a custom circuit board that allows us to measure the current while imaging it in our in-house built stage scanning microscope using a near infrared (NIR) laser diode as light source. The DUT is thinned and polished, allowing backside imaging through the Si-substrate. We demonstrate the possibilities using this optical setup by evaluating OBIC, LSM and CLSM images above and below the threshold of the laser source.

  16. Scanning array radar system for bridge subsurface imaging

    Science.gov (United States)

    Lai, Chieh-Ping; Ren, Yu-Jiun; Yu, Tzu Yang

    2012-04-01

    Early damage detection of bridge has been an important issue for modern civil engineering technique. Existing bridge inspection techniques used by State Department of Transportation (DOT) and County DOT include visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, and ultrasonics; other NDE techniques include ground penetrating radar (GPR), radiography, and some experimental types of sensors. Radar technology like GPR has been widely used for the bridge structure detection with a good penetration depth using microwave energy. The system to be presented in this paper is a different type of microwave sensing technology. It is focus on the subsurface detection and trying to find out detail information at subsurface (10 cm) with high resolution radar imaging from a flexible standoff distance. Our radar operating frequency is from 8-12 GHz, which is different from most of the current GPR systems. Scanning array antenna system is designed for adjustable beamwidth, preferable scanning area, and low sidelobe level. From the theoretical analysis and experimental results, it is found that the proposed technique can successfully capture the presence of the near-surface anomaly. This system is part of our Multi- Modal Remote Sensing System (MRSS) and provides good imaging correlations with other MRSS sensors.

  17. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    Energy Technology Data Exchange (ETDEWEB)

    Coquelle, Nicolas [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Burghammer, Manfred, E-mail: burgham@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Ghent University, Ghent B-9000 (Belgium); Colletier, Jacques-Philippe, E-mail: burgham@esrf.fr [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France)

    2015-05-01

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  18. Performance Studies of the SPS Beam Dump System for HL-LHC Beams

    CERN Document Server

    Velotti, FM; Bracco, C; Carlier, E; Cerutti, F; Cornelis, K; Ducimetiere, L; Goddard, B; Kain, V; Losito, R; Maglioni, C; Meddahi, M; Pasdeloup, F; Senaj, V; Steele, GE

    2014-01-01

    The Super Proton Synchrotron (SPS) beam dump system is a concern for the planned High Luminosity LHC (HL-LHC) operation. The system has initially been designed for very different beam parameters compared to those which will reign after the completion of the LHC injectors upgrade, when the SPS will have to operate with unprecedented beam brightness. This paper describes the relevant operational and failure modes of the dump system together with the expected beam loading levels. Tracking studies are presented, considering both normal operation and failure scenarios, with particular attention to the location and level of proton losses. First FLUKA investigations and thermo-mechanical analysis of the high-energy absorber block are described.

  19. Performance requirements of the MedAustron beam delivery system

    CERN Document Server

    AUTHOR|(CDS)2073034

    The Austrian hadron therapy center MedAustron is currently under construction with patient treatment planned to commence in 2015. Tumors will be irradiated using proton and carbon ions, for which the steeply rising Bragg curve and finite range offer a better conformity of the dose to the geometrical shape of the tumor compared to conventional photon irradiation. The current trend is to move from passive scattering toward active scanning using a narrow pencil beam in order to reach an even better dose conformation and limit the need of patient specific hardware. The quality of the deposited dose will ultimately depend on the performance of the beam delivery chain: beam profile and extraction stability of the extracted beam, accuracy and ramp rate of the scanning magnet power supplies, and precision of the beam monitors used for verifying the delivered dose. With a sharp lateral penumbra, the transverse dose fall-off can be minimized. This is of particular importance in situations where the lesion is adjace...

  20. System Design Considerations In Bar-Code Laser Scanning

    Science.gov (United States)

    Barkan, Eric; Swartz, Jerome

    1984-08-01

    The unified transfer function approach to the design of laser barcode scanner signal acquisition hardware is considered. The treatment of seemingly disparate system areas such as the optical train, the scanning spot, the electrical filter circuits, the effects of noise, and printing errors is presented using linear systems theory. Such important issues as determination of depth of modulation, filter specification, tolerancing of optical components, and optimi-zation of system performance in the presence of noise are discussed. The concept of effective spot size to allow for impact of optical system and analog processing circuitry upon depth of modulation is introduced. Considerations are limited primarily to Gaussian spot profiles, but also apply to more general cases. Attention is paid to realistic bar-code symbol models and to implications with respect to printing tolerances.

  1. Minimum Detectable Activity for Tomographic Gamma Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, Ram [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Smith, Susan [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Kirkpatrick, J. M. [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographic Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities

  2. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    Science.gov (United States)

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer

  3. Data acquisition system for KOMAC beam monitoring using EPICS middleware

    Science.gov (United States)

    Song, Young-Gi

    2015-10-01

    The beam diagnostics instrument used to measure the beam properties is one of the important devices for the 100-MeV proton linear accelerator of the KOrea Multi-purpose Accelerator Complex (KOMAC). A data acquisition system (DAQ) is required to collect the output beam signals conditioned in the analog front-end circuitry of a beam loss monitor (BLM) and a beam position monitor (BPM). The electrical beam signal must be digitized, and the sampling has to be synchronized to a global timing system that produces a pulse signal for the pulsed beam operation. The digitized data must be accessible by the experimental physics and industrial control system (EPICS)-based control system, which manages all accelerator control. An input output controller (IOC), which runs Linux on a central process unit (CPU) module with a peripheral component interconnect (PCI) express-based Analog-to-digital converter (ADC) card, has been adopted to satisfy the requirements. An associated Linux driver and EPICS device support module have also been developed. The IOC meets the requirements, and the development and maintenance of software for the IOC is very efficient. In this paper, the details of the DAQ system for the BLM and the BPM with the introduction of the KOMAC beam-diagnostics devices, along with the performance, are described.

  4. Monitoring system experiments on beam loss at SSRF injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  5. Monitoring system experiments on beam loss at SSRF injector

    Science.gov (United States)

    Cai, Jun; Xia, XiaoBin; Xu, XunJiang; Liu, Xin; Xu, JiaQiang; Wang, GuangHong; Zeng, Ming

    2011-12-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  6. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams

    CERN Document Server

    Zelenogorskii, V V; Gacheva, E I; Gelikonov, G V; Krasilnikov, M; Mart'yanov, M A; Mironov, S Yu; Potemkin, A K; Syresin, E M; Stephan, F; Khazanov, E A

    2014-01-01

    The specific features of experimental implementation of a cross-correlator with a scan rate above 1600 cm s(-1) and a spatial delay amplitude of more than 15 mm are considered. The possibility of measuring the width of femtosecond pulses propagating in a train 300 mu s in duration with a repetition rate of 1 MHz is demonstrated. A time resolution of 300 fs for the maximum time window of 50 ps is attained.The cross-correlator is aimed at testing 3D pulses of a laser driver of an electron photo-injector.

  7. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat [Dept. of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand); Sriwilas, Patiyut [Dept. of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Midtboe, Marit [Dept. of Clinical Dentistry - Orthodontics, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway)

    2017-06-15

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm{sup 2}) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

  8. A Prototype Two-Axis Laser Scanning System used in Stereolithography Apparatus with New Algorithms for Computerized Model Slicing

    Directory of Open Access Journals (Sweden)

    M. Habibi

    2009-01-01

    Full Text Available Problem statement: A successful operation of rapid prototyping process depends on software and hardware which are used in RP machines. About software, an efficient technique is required to slice the CAD model. Several slicing methods are used for slicing from Standard Triangulation Language (STL files, such as direct slicing and adaptive slicing. Using these methods reduce accuracy of physical part or increase process time. About hardware, in Stereolithography (SLA apparatus, two mirrors have been used to reflect laser beam. Approach: In this study new algorithms were developed for part slicing from STL file and modifying the laser beam path such as: Derivation of contours in each layer, generate contour family tree, detective arcs and modifying laser beam path. A modified mechanism was designed and developed based on only one mirror to reflect laser beam. Results: These algorithms were used in a visual basic interface and the developed mechanism was implemented in a prototype apparatus. Conclusion: Developed algorithms decreased CAD model slicing time and generated more accurate laser beam path than usual methods and fabricated apparatus decreased scanning mechanism complexity and volume of the scanning system.

  9. Effect of crosstalk on combined beam characteristics in spectral beam combining systems

    Science.gov (United States)

    Yang, Lei; Wu, Zhen; Zhong, Zheqiang; Zhang, Bin

    2017-02-01

    In a spectral beam combining (SBC) system, crosstalk always happens because stray lights are inevitable due to fabrication errors of optical components and 'smile' effect of laser arrays. Two kinds of crosstalk, including the crosstalk generated between two adjacent emitters of the laser array (ad-crosstalk) and that generated between two non-adjacent emitters (non-ad-crosstalk), have been analyzed. The equivalent light of the crosstalk model has been proposed, and the propagation model of the SBC system with the crosstalk has been built up. On this basis, influences of above two kinds of the crosstalk on the combined beam have been numerically simulated and discussed in detail. The results show that the wavelength composition of the combined beam varies evidently owing to the existence of the crosstalk. With the increasing of the crosstalk intensity, the beam quality of the combined beam degrades, and the side lobes of intensity distribution of the combined beam become more and more obvious. Furthermore, the influence of the non-ad-crosstalk on the beam quality is more serious than that of the ad-crosstalk.

  10. Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid.

    Science.gov (United States)

    Desbois, G; Urai, J L; Pérez-Willard, F; Radi, Z; Offern, S; Burkart, I; Kukla, P A; Wollenberg, U

    2013-03-01

    The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB-cryo-SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high-quality cross-sections (up to 2 mm(2)) at cryogenic temperature to be imaged at the state-of-the-art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross-sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB-cryo-SEM are demonstrated by the investigation of rock salts (synthetic coarse-grained sodium chloride synthesized from halite-brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB-cryo-SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm-scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB-SEM method with focused ion beam-SEM and X-ray tomography methods, the BIB cross-sectioning enables detailed insights about morphologies of pores at greater resolution than X-ray tomography and allows the production of large representative surfaces suitable for FIB-SEM investigations of a specific representative site within the BIB cross-section.

  11. Status of ITER neutral beam cell remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Belcher, C. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Crofts, O. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Crowe, R. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Damiani, C. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Delavalle, S.; Meredith, L. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Mindham, T.; Raimbach, J. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  12. Status of ITER neutral beam cell remote handling system

    CERN Document Server

    Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

    2013-01-01

    The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

  13. Computers and the design of ion beam optical systems

    Science.gov (United States)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  14. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams.

    Science.gov (United States)

    Coquelle, Nicolas; Brewster, Aaron S; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques Philippe

    2015-05-01

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  15. Conserved Charge Fluctuations from Lattice QCD and the Beam Energy Scan

    Science.gov (United States)

    Karsch, F.; Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Laermann, E.; Mukherjee, Swagato; Ohno, H.; Petreczky, P.; Schmidt, C.; Sharma, S.; Soeldner, W.; Steinbrecher, P.; Wagner, M.

    2016-12-01

    We discuss the next-to-leading order Taylor expansion of ratios of cumulants of net-baryon number fluctuations. We focus on the relation between the skewness ratio, SBσB ≡ χ3B/χ1B, and the kurtosis ratio, κB σB2 ≡ χ4B/χ2B. We show that differences in these two cumulant ratios are small for small values of the baryon chemical potential. The next-to-leading order correction to κB σB2 however is approximately three times larger than that for SBσB. The former thus drops much more rapidly with increasing beam energy, √{sNN}. We argue that these generic patterns are consistent with current data on cumulants of net-proton number fluctuations measured by the STAR Collaboration at √{sNN} ≥ 19.6 GeV.

  16. Conserved Charge Fluctuations from Lattice QCD and the Beam Energy Scan

    CERN Document Server

    Karsch, F; Ding, H -T; Hegde, P; Kaczmarek, O; Laermann, E; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Steinbrecher, P; Wagner, M

    2015-01-01

    We discuss the next-to-leading order Taylor expansion of ratios of cumulants of net-baryon number fluctuations. We focus on the relation between the skewness ratio, $S_B\\sigma_B = \\chi_3^B/\\chi_1^B$, and the kurtosis ratio, $\\kappa_B\\sigma_B^2 =\\chi_4^B/\\chi_2^B$. We show that differences in these two cumulant ratios are small for small values of the baryon chemical potential. The next-to-leading order correction to $\\kappa_B\\sigma_B^2$ however is approximately three times larger than that for $S_B\\sigma_B$. The former thus drops much more rapidly with increasing beam energy, $\\sqrt{s_{NN}}$. We argue that these generic patterns are consistent with current data on cumulants of net-proton number fluctuations measured by the STAR Collaboration at $\\sqrt{s_{NN}}\\ge 19.6$~GeV.

  17. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  18. Sample heating system for spin-polarized scanning electron microscopy.

    Science.gov (United States)

    Kohashi, Teruo; Motai, Kumi

    2013-08-01

    A sample-heating system for spin-polarized scanning electron microscopy (spin SEM) has been developed and used for microscopic magnetization analysis at temperatures up to 500°C. In this system, a compact ceramic heater and a preheating operation keep the ultra-high vacuum conditions while the sample is heated during spin SEM measurement. Moreover, the secondary-electron collector, which is arranged close to the sample, was modified so that it is not damaged at high temperatures. The system was used to heat a Co(1000) single-crystal sample from room temperature up to 500°C, and the magnetic-domain structures were observed. Changes of the domain structures were observed around 220 and 400°C, and these changes are considered to be due to phase transitions of this sample.

  19. Recent developments of ion beam induced luminescence at the external scanning microbeam facility of the LABEC laboratory in Florence

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, E. [INFN sezione di Torino, via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica and Centro di Eccellenza NIS, Universita di Torino, via P. Giuria 1, 10125 Torino (Italy); Calusi, S. [INFN sezione di Torino, via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica, Universita and INFN Sez.di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Cossio, R. [Dipartimento di Scienze Mineralogiche e Petrologiche, via Valperga Caluso, 35, 10125 Torino (Italy); Giuntini, L. [Dipartimento di Fisica, Universita and INFN Sez.di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Giudice, A. [Dipartimento di Fisica and Centro di Eccellenza NIS, Universita di Torino, via P. Giuria 1, 10125 Torino (Italy); Lo Mando, P.A. [Dipartimento di Fisica, Universita and INFN Sez.di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Manfredotti, C. [INFN sezione di Torino, via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica and Centro di Eccellenza NIS, Universita di Torino, via P. Giuria 1, 10125 Torino (Italy); Massi, M.; Mirto, F.A. [Dipartimento di Fisica, Universita and INFN Sez.di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Vittone, E. [INFN sezione di Torino, via P.Giuria 1, 10125 Torino (Italy); Dipartimento di Fisica and Centro di Eccellenza NIS, Universita di Torino, via P. Giuria 1, 10125 Torino (Italy)], E-mail: vittone@to.infn.it

    2008-04-15

    A new ionoluminescence (IL) apparatus has been successfully installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC in Firenze; the apparatus for photon detection has been fully integrated in the existing ion beam analysis (IBA) set-up, for the simultaneous acquisition of IL and PIXE/PIGE/BS spectra and maps. The potential of the new set-up is illustrated in this paper by some results extracted by the analysis of art objects and advanced semiconductor materials. In particular, the adequacy of the new IBA set-up in the field of cultural heritage is pointed out by the coupled PIXE/IL micro-analysis of a lapis lazuli stone; concerning applications in material science, IL spectra from a N doped diamond sample were acquired and compared with CL analyses to evaluate the relevant sensitivities and the effect of ion damage.

  20. Recent developments of ion beam induced luminescence at the external scanning microbeam facility of the LABEC laboratory in Florence

    Science.gov (United States)

    Colombo, E.; Calusi, S.; Cossio, R.; Giuntini, L.; Giudice, A. Lo; Mandò, P. A.; Manfredotti, C.; Massi, M.; Mirto, F. A.; Vittone, E.

    2008-04-01

    A new ionoluminescence (IL) apparatus has been successfully installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC in Firenze; the apparatus for photon detection has been fully integrated in the existing ion beam analysis (IBA) set-up, for the simultaneous acquisition of IL and PIXE/PIGE/BS spectra and maps. The potential of the new set-up is illustrated in this paper by some results extracted by the analysis of art objects and advanced semiconductor materials. In particular, the adequacy of the new IBA set-up in the field of cultural heritage is pointed out by the coupled PIXE/IL micro-analysis of a lapis lazuli stone; concerning applications in material science, IL spectra from a N doped diamond sample were acquired and compared with CL analyses to evaluate the relevant sensitivities and the effect of ion damage.

  1. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, George J. [Univ. of Connecticut, Storrs, CT (United States); Harris, William H. [Univ. of Connecticut, Storrs, CT (United States); Lombardo, Jeffrey J. [Univ. of Connecticut, Storrs, CT (United States); Izzo, Jr., John R. [Univ. of Connecticut, Storrs, CT (United States); Chiu, W. K. S. [Univ. of Connecticut, Storrs, CT (United States); Tanasini, Pietro [Ecole Ploytechnique Federale de Lausanne (Switzerland); Cantoni, Marco [Ecole Ploytechnique Federale de Lausanne (Switzerland); Van herle, Jan [Ecole Ploytechnique Federale de Lausanne (Switzerland); Comninellis, Christos [Ecole Ploytechnique Federale de Lausanne (Switzerland); Andrews, Joy C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Liu, Yijin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pianetta, Piero [SLAC National Accelerator Lab., Menlo Park, CA (United States); Chu, Yong [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  2. Rapid phase-correlated rescanning irradiation improves treatment time in carbon-ion scanning beam treatment under irregular breathing

    Science.gov (United States)

    Mori, Shinichiro; Furukawa, Takuji

    2016-05-01

    To shorten treatment time in pencil beam scanning irradiation, we developed rapid phase-controlled rescanning (rPCR), which irradiates two or more isoenergy layers in a single gating window. Here, we evaluated carbon-ion beam dose distribution with rapid and conventional PCR (cPCR). 4 dimensional computed tomography (4DCT) imaging was performed on 12 subjects with lung or liver tumors. To compensate for intrafractional range variation, the field-specific target volume (FTV) was calculated using 4DCT within the gating window (T20-T80). We applied an amplitude-based gating strategy, in which the beam is on when the tumor is within the gating window defined by treatment planning. Dose distributions were calculated for layered phase-controlled rescanning under an irregular respiratory pattern, although a single 4DCT data set was used. The number of rescannings was eight times. The prescribed doses were 48 Gy(RBE)/1 fr (where RBE is relative biological effectiveness) delivered via four beam ports to the FTV for the lung cases and 45 Gy(RBE)/2 fr delivered via two beam ports to the FTV for the liver cases. In the liver cases, the accumulated dose distributions showed an increased magnitude of hot/cold spots with rPCR compared with cPCR. The results of the dose assessment metrics for the cPCR and rPCR were very similar. The D 95, D max, and D min values (cPCR/rPCR) averaged over all the patients were 96.3  ±  0.9%/96.0  ±  1.2%, 107.3  ±  3.6%/107.1  ±  2.9%, and 88.8  ±  3.2%/88.1  ±  3.1%, respectively. The treatment times in cPCR and rPCR were 110.7 s and 53.5 s, respectively. rPCR preserved dose conformation under irregular respiratory motion and reduced the total treatment time compared with cPCR.

  3. Multi-electron beam system for high resolution electron beam induced deposition

    OpenAIRE

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...

  4. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    Science.gov (United States)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  5. Lithium beam diagnostic system on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Anda, G.; Bencze, A. [Wigner – RCP, HAS, Budapest (Hungary); Berta, M., E-mail: bertam@sze.hu [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Hacek, P. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Réfy, D.; Krizsanóczi, T.; Bató, S.; Ilkei, T.; Kiss, I.G.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)

    2016-10-15

    Highlights: • Li-beam diagnostic system on the COMPASS tokamak is an improved and compact system to allow testing of Atomic Beam Probe. • The possibility to measure background corrected density profiles on the few microseconds time scale. • First Li-beam diagnostic system with recirculating neutralizer. • The system includes the redesigned ion source with longer lifetime. - Abstract: An improved lithium beam based beam emission spectroscopy system – installed on COMPASS tokamak – is described. The beam energy enhanced up to 120 keV for Atomic Beam Probe measurement. The size of the ion source is doubled, using a newly developed thermionic heater instead of the conventionally used heating (tungsten or molybdenum) filament. The neutralizer is also improved. It produces the same sodium vapor in a cell but minimize the loss condensing the vapor on a cold surface which is led back (in fluid state) into the sodium oven. This way we call it recirculating neutralizer. The observation system consists of a CCD camera and an avalanche photodiode array.

  6. Beam Position and Phase Monitor - Wire Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Heath A [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  7. Optoelectronic scanning system upgrade by energy center localization methods

    Science.gov (United States)

    Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.

    2016-11-01

    A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.

  8. Scanning laser optical computed tomography system for large volume 3D dosimetry

    Science.gov (United States)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  9. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    Science.gov (United States)

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  10. PSIDD (2): A Prototype Post-Scan Interactive Data Display System for Detailed Analysis of Ultrasonic Scans

    Science.gov (United States)

    Cao, Wei; Roth, Don J.

    1997-01-01

    This article presents the description of PSIDD(2), a post-scan interactive data display system for ultrasonic contact scan and single measurement analysis. PSIDD(2) was developed in conjunction with ASTM standards for ultrasonic velocity and attenuation coefficient contact measurements. This system has been upgraded from its original version PSIDD(1) and improvements are described in this article. PSIDD(2) implements a comparison mode where the display of time domain waveforms and ultrasonic properties versus frequency can be shown for up to five scan points on one plot. This allows the rapid contrasting of sample areas exhibiting different ultrasonic properties as initially indicated by the ultrasonic contact scan image. This improvement plus additional features to be described in the article greatly facilitate material microstructural appraisal.

  11. Beam Current Measurement and Adjustment System on AMS

    Institute of Scientific and Technical Information of China (English)

    WUShao-yong; HEMING; SUSheng-yong; WANGZhen-jun; JIANGShan

    2003-01-01

    The beam current measurement and adjustment system of HI-13 tandem accelerator mass spectrometry detector system is consisted of the faraday cup, fluorescent target and a series of adjustable vertical slits(Fig. 1). The system's operation is very complicated and the transmission is low for the old system. A new system is instalated for improvement. We put the adjustable vertical slit, Faraday cup.

  12. Minimum detection windows, PI-line existence and uniqueness for helical cone-beam scanning of variable pitch.

    Science.gov (United States)

    Ye, Yangbo; Zhu, Jiehua; Wang, Ge

    2004-03-01

    The goal of this paper is to study Cone-beam CT scanning along a helix of variable pitch. First the rationale and applications in medical imaging of variable pitch CT reconstruction are explained. Then formulas for the minimum detection window are derived. The main part of the paper proves a necessary and sufficient condition for the existence and uniqueness of PI-lines inside this variable pitch helix. These results are necessary steps toward an exact reconstruction algorithm for helix scanning of variable pitch, generalizing Katsevich's formula on constant pitch exact reconstruction. It is shown through an example that, when the derivative of the pitch function is not convex, or when the pitch function passes a inflection point and begins to slow down, PI-lines may be not unique near the rim of the helix cylinder. The conclusion is that the restriction on the pitch function is weaker, if the object is placed well within the helix cylinder and far from its rim, in order to preserve the uniqueness of PI-lines. If the object is near the rim, the restriction condition on the allowable pitch functions becomes stronger.

  13. Evaluation of the efficacy of a metal artifact reduction algorithm in different cone beam computed tomography scanning parameters.

    Science.gov (United States)

    Queiroz, Polyane Mazucatto; Groppo, Francisco Carlos; Oliveira, Matheus Lima; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-06-01

    The aim of this study was to evaluate the efficacy of a metal artifact reduction (MAR) algorithm in cone beam computed tomography (CBCT) images of dental materials obtained with different field-of-view (FOV) and voxel sizes. Two imaging phantoms were custom-made of acrylic resin. Each phantom had 3 cylinders made of the same dental material: dental amalgam or copper-aluminum alloy. CBCT scans were obtained separately for each of the imaging phantoms using the Picasso-Trio CBCT (Vatech, Hwaseong, Republic of Korea) unit at 4 FOV sizes and 2 voxel sizes. Each imaging phantom was scanned with and without MAR. All images were evaluated in the OnDemand3D software (Cybermed, Seoul, Republic of Korea) and image noise (gray value variability) was calculated as the standard deviation (SD) of the gray values of regions of interest around the dental material cylinders. Data were compared by the Friedman test and Dunn test (α = 0.05). Intraclass correlation coefficient (ICC) was calculated to assess intraobserver reliability. MAR significantly reduced (P < .05) image noise around the dental materials, irrespective of FOV and voxel sizes, with an ICC of 0.997. The efficacy of MAR was similar for the different FOV and voxel sizes studied. Hence, imaging protocols and the use of MAR algorithm should be based on the selection criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Hyperspectral imaging system for disease scanning on banana plants

    Science.gov (United States)

    Ochoa, Daniel; Cevallos, Juan; Vargas, German; Criollo, Ronald; Romero, Dennis; Castro, Rodrigo; Bayona, Oswaldo

    2016-05-01

    Black Sigatoka (BS) is a banana plant disease caused by the fungus Mycosphaerella fijiensis. BS symptoms can be observed at late infection stages. By that time, BS has probably spread to other plants. In this paper, we present our current work on building an hyper-spectral (HS) imaging system aimed at in-vivo detection of BS pre-symptomatic responses in banana leaves. The proposed imaging system comprises a motorized stage, a high-sensitivity VIS-NIR camera and an optical spectrograph. To capture images of the banana leaf, the stage's speed and camera's frame rate must be computed to reduce motion blur and to obtain the same resolution along both spatial dimensions of the resulting HS cube. Our continuous leaf scanning approach allows imaging leaves of arbitrary length with minimum frame loss. Once the images are captured, a denoising step is performed to improve HS image quality and spectral profile extraction.

  15. Numerical Modeling of a Near-Field Scanning Optical System

    Science.gov (United States)

    Kann, Joshua Louis

    A near-field scanning optical (NFO) system utilizes a subwavelength sized aperture to illuminate a sample. The aperture raster scans the sample. During the scan, the aperture is held in proximity to the sample. At each sampling point, the integrated far-zone energy distribution is stored. This collection of data is used to generate an image of the sample's surface. The main advantage of NFO systems is their very high spatial resolution. In this dissertation a hybrid finite-difference-time-domain (FDTD)/angular spectrum code is used to study the electromagnetic and imaging properties of a NFO scanning system. In addition, a finite-difference thermal (FD-thermal) code is used to calculate the thermal properties of a NFO system. Various aperture/sample geometries are studied numerically using both TE and TM polarization within a two-dimensional metallic waveguide that forms the aperture. The spatial properties of the electric field emitted by the aperture with no sample present are greatly influenced by the polarization. In particular, the electric field with TM polarization exhibits sharp peaks near the corners of the aperture, while the field with TE polarization is smooth and peaked at the center of the aperture. For both polarizations, the electric field remains collimated for a distance comparable to the aperture size. The electric field for both polarizations is altered when a dielectric sample is placed in proximity to the aperture. It is shown that the most representative image of the sample's topography is obtained using TE polarization and the resulting total far-zone energy as the sampled data. It is also shown that simpler scalar methods do not accurately predict the imaging behavior of a NFO system. Under certain circumstances the relationship between the sample's topography and the detected image is nearly linear. Under these conditions a system transfer function is calculated. Using the transfer function, it is shown that the spatial resolution of a NFO

  16. Applications of Rapid Spectral Scanning System (RSSS) in petroleum exploration

    Energy Technology Data Exchange (ETDEWEB)

    Van Gijzel, P. (PVG Microscope Technology, Inc., Houston, TX (USA))

    1989-09-01

    Recently, a new instrument - the rapid spectral scanning system (RSSS) - has been developed. This system allows fast spectral microscope/photometric analysis of geologic materials in transmitted, reflected, or fluorescent illumination. Exact reproducibility, precise calibration, and correct standardization of the RSSS results in a high accuracy of {plus minus}1 nm or 0.3% for the peak wavelength and other spectral parameters. There are numerous applications of the RSSS in petroleum exploration. Examples are shown of thermal maturity analysis of hydrocarbon source rocks (on kerogen in transmitted light, fluorescence); identification of organic matter and certain minerals, such as dolomite and calcite (transmitted light and fluorescence); and characterization of crude oil, solid bitumens, and drilling fluids (fluorescence). One major application of the RSSS is the transmittance color index (TCI) as a new thermal maturity indicator. The RSSS will probably cause a revolution in organic petrology.

  17. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  18. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  19. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  20. Large amplitude forced vibration analysis of cross-beam system ...

    African Journals Online (AJOL)

    user

    governing nonlinear differential equation of dynamic equilibrium for forced vibration of a ...... ω is the first natural frequency of the corresponding beam. ..... Although a separate free vibration analysis of the system is not carried out in course.

  1. Dielectric Collimators for Linear Collider Beam Delivery System

    CERN Document Server

    Kanareykin, A; Baturin, S; Tomás, R

    2011-01-01

    The current status of ILC and CLIC concepts require additional research on wakefield reduction in the collimator sections. New materials and new geometries have been considered recently*. Dielectric collimators for the CLIC Beam Delivery System have been discussed with a view to minimize the BDS collimation wakefields**. Dielectric collimator concepts for the linear collider are presented in this paper; cylindrical and planar collimators for the CLIC parameters have been considered, and simulations to minimize the beam impedance have been performed. The prototype collimator system is planned to be fabricated and experimentally tested at Facilities for Accelerator Science and Experimental Test Beams (FACET) at SLAC.

  2. CAVITY BEAM POSITION MONITOR SYSTEM FOR ATF2

    CERN Document Server

    Boogert, S T; Cullinan, F; Joshi, N; Lyapin, A; Aryshev, A; Honda, Y; Naito, T; Terunuma, N; Urakara, J; Heo, A; Kim, E-S; Kim, Y I; McCormick, D; Frisch, J; Nelson, J; Smith, T; White, G R

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitisers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance.

  3. Influence of both angle and position error of pentaprism on accuracy of pentaprism scanning system

    Science.gov (United States)

    Xu, Kun; Han, Sen; Zhang, Qiyuan; Wu, Quanying

    2014-11-01

    Pentaprism scanning system has been widely used in the measurement of large flat and wavefront, based on its property that the deviated beam will have no motion in the pitch direction. But the manufacturing and position errors of pentaprisms will bring error to the measurement and so a good error analysis method is indispensable. In this paper, we propose a new method of building mathematic models of pentaprism and through which the size and angle errors of a pentaprism can be put into the model as parameters. 4 size parameters are selected to determine the size and 11 angle parameters are selected to determine the angles of a pentaprism. Yaw, Roll and Pitch are used to describe the position error of a pentaprism and an autocollimator. A pentaprism scanning system of wavefront test is simulated by ray tracing using matlab. We design a method of separating the constant from the measurement results which will improve the measurement accuracy and analyze the system error by Monte Carlo method. This method is simple, rapid, accurate and convenient for computer programming.

  4. A Programmable Beam Shaping System for Tailoring the Profile of High Fluence Laser Beams

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J; Borden, M; Miller, P; Stolz, C; Suratwala, T; Wegner, P; Hermann, M; Henesian, M; Haynam, C; Hunter, S; Christensen, K; Wong, N; Seppala, L; Brunton, G; Tse, E; Awwal, A; Franks, M; Marley, E; Williams, K; Scanlan, M; Budge, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J

    2010-11-10

    Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.

  5. PSB LLRF renovation: Initial beam tests of the new digital beam control system

    CERN Document Server

    Angoletta, ME; Butterworth, A; Findlay, A; Pedersen, F; CERN. Geneva. BE Department

    2009-01-01

    The beam control renovation project for CERN’s PS Booster (PSB) was started in autumn 2008. Its aim is to equip all four PSB rings with modern digital beam control systems, characterised by fully-PPM parameters and complete remote control. Additionally, all intermediate and input/output signals are to be remotely acquired in a digital way and in full PPM fashion, and displayed via the Oasis application program. The same digital technology concepts have already been successfully applied to the LEIR beam control system, which has acted as a pilot project for the whole PS Complex renovation project. This new technology allows a very flexible performance and can improve the system maintainability by becoming the standard for the PS Complex beam controls. This note details the first step in the PSB consolidation project, namely the beam control prototype tests carried out on PSB ring 4 in October and November 2008. Both C02 and C04 RF system have been successfully controlled; bunch splitting and extraction synch...

  6. High-sensitive scanning laser magneto-optical imaging system.

    Science.gov (United States)

    Murakami, Hironaru; Tonouchi, Masayoshi

    2010-01-01

    A high-sensitive scanning laser magneto-optical (MO) imaging system has been developed. The system is mainly composed of a laser source, galvano meters, and a high-sensitive differential optical-detector. Preliminary evaluation of system performance by using a Faraday indicator with a Faraday rotation coefficient of 3.47 x 10(-5) rad/microm Oe shows a magnetic sensitivity of about 5 microT, without any need for accumulation or averaging processing. Using the developed MO system we have succeeded in the fast and quantitative imaging of a rotationally symmetric magnetic field distribution around an YBa(2)Cu(3)O(7-delta) (YBCO) strip line applied with dc-biased current, and also succeeded in the detection of quantized fine signals corresponding to magnetic flux quantum generation in a superconducting loop of an YBCO Josephson vortex flow transistor. Thus, the developed system enables us not only to do fast imaging and local signal detection but also to directly evaluate both the strength and direction of a magnetic signal.

  7. Chaotic synchronization in coupled spatially extended beam-plasma systems

    OpenAIRE

    Filatov, Roman A.; Hramov, Alexander E.; ALEXEY A. KORONOVSKII

    2006-01-01

    The appearance of the chaotic synchronization regimes has been discovered for the coupled spatially extended beam-plasma Pierce systems. The coupling was introduced only on the right bound of each subsystem. It has been shown that with coupling increase the spatially extended beam-plasma systems show the transition from asynchronous behavior to the phase synchronization and then to the complete synchronization regime. For the consideration of the chaotic synchronization we used the concept of...

  8. Beam Tracking in Switched-Beam Antenna System for V2V Communication

    Directory of Open Access Journals (Sweden)

    Settawit Poochaya

    2016-01-01

    Full Text Available This paper presents the proposed switched beam antenna system for V2V communication including optimum antenna half power beamwidth determination in urban road environments. SQP optimization method is selected for the computation of optimum antenna half power beamwidth. In addition, beam tracking algorithm is applied to guarantee the best beam selection with maximum RSSI. The results present the success of the proposed system with the increasing of V2V performance metrics. Also, V2V data dissemination via the proposed system introduces the enhancement of V2V link in terms of RSSI, PER, BER, Tsafe, and Rsafe. The results indicate the improvement of V2V link reliability. Consequently, the road safety is improved.

  9. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    Science.gov (United States)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  10. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  11. Simulation of a beam rotation system for a spallation source

    Directory of Open Access Journals (Sweden)

    Tibor Reiss

    2015-04-01

    Full Text Available With a nominal beam power of nearly 1 MW on target, the Swiss Spallation Neutron Source (SINQ, ranks among the world’s most powerful spallation neutron sources. The proton beam transport to the SINQ target is carried out exclusively by means of linear magnetic elements. In the transport line to SINQ the beam is scattered in two meson production targets and as a consequence, at the SINQ target entrance the beam shape can be described by Gaussian distributions in transverse x and y directions with tails cut short by collimators. This leads to a highly nonuniform power distribution inside the SINQ target, giving rise to thermal and mechanical stresses. In view of a future proton beam intensity upgrade, the possibility of homogenizing the beam distribution by means of a fast beam rotation system is currently under investigation. Important aspects which need to be studied are the impact of a rotating proton beam on the resulting neutron spectra, spatial flux distributions and additional—previously not present—proton losses causing unwanted activation of accelerator components. Hence a new source description method was developed for the radiation transport code MCNPX. This new feature makes direct use of the results from the proton beam optics code TURTLE. Its advantage to existing MCNPX source options is that all phase space information and correlations of each primary beam particle computed with TURTLE are preserved and transferred to MCNPX. Simulations of the different beam distributions together with their consequences in terms of neutron production are presented in this publication. Additionally, a detailed description of the coupling method between TURTLE and MCNPX is provided.

  12. Invited article: Digital beam-forming imaging riometer systems.

    Science.gov (United States)

    Honary, Farideh; Marple, Steve R; Barratt, Keith; Chapman, Peter; Grill, Martin; Nielsen, Erling

    2011-03-01

    The design and operation of a new generation of digital imaging riometer systems developed by Lancaster University are presented. In the heart of the digital imaging riometer is a field-programmable gate array (FPGA), which is used for the digital signal processing and digital beam forming, completely replacing the analog Butler matrices which have been used in previous designs. The reconfigurable nature of the FPGA has been exploited to produce tools for remote system testing and diagnosis which have proven extremely useful for operation in remote locations such as the Arctic and Antarctic. Different FPGA programs enable different instrument configurations, including a 4 × 4 antenna filled array (producing 4 × 4 beams), an 8 × 8 antenna filled array (producing 7 × 7 beams), and a Mills cross system utilizing 63 antennas producing 556 usable beams. The concept of using a Mills cross antenna array for riometry has been successfully demonstrated for the first time. The digital beam forming has been validated by comparing the received signal power from cosmic radio sources with results predicted from the theoretical beam radiation pattern. The performances of four digital imaging riometer systems are compared against each other and a traditional imaging riometer utilizing analog Butler matrices. The comparison shows that digital imaging riometer systems, with independent receivers for each antenna, can obtain much better measurement precision for filled arrays or much higher spatial resolution for the Mills cross configuration when compared to existing imaging riometer systems.

  13. Ultrafast fiber beam delivery: system technology and industrial application

    Science.gov (United States)

    Funck, Max C.; Eilzer, Sebastian; Wedel, Björn

    2017-02-01

    Flexible beam delivery of high power pico- and femtosecond pulses offers great advantages in industrial applications. Complex free space beam delivery as found in robot or gantry systems can be replaced, laser safety and uptime increased and system integration in production environment simplified. Only recently fiber beam delivery has become available for ultrafast lasers while it has been an established standard for cw and pulsed laser sources for many years. Using special kinds of fiber that guide the laser beam mostly inside a hollow core, nonlinear effects and catastrophic damage that would arise in conventional glass fibers can be avoided. Today, ultrafast pulses with several 100 μJ and hundreds of MW can be transmitted in quasi single mode fashion with micro-structured hollow core fibers. During the last years we have developed a modular beam delivery system that suits industrial ultrafast lasers and can be integrated into existing processing machines. Micro-structured hollow core fibers inside the sealed laser light cable efficiently guide high-power laser pulses over distances of several meters with excellent beam quality, while power, pulse duration and polarization are maintained. We report on the technology required for fiber beam delivery of ultrafast laser pulses and discuss requirements for successful integration into industrial production as well as achievable performance under realistic operation and show examples of micromachining applications.

  14. Laser beam riding guided system principle and design research

    Science.gov (United States)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  15. Edge detection in the presence of speckle noise in barcode scanning systems

    Science.gov (United States)

    Marom, Emanuel; Kresic-Juric, Sasa

    2003-05-01

    Speckle noise is inherent to laser barcode scanners since barcodes are usually printed on diffusive surfaces which generate speckle when illuminated by spatially coherent beams. In this paper statistical properties of barcode signals corrupted by speckle noise are analyzed. We derive closed form expressions for the autorcorrelation function and power spectral density of speckle noise for scanning beams with arbitrary field distributions. Since differentiation is often used for enhancement of barcode edges, we also analyze the properties of differentiated speckle noise. We derive estimates for signal-to-noise ratio when a laser beam scans over an edge. The random edge jitter in a barcode signal caused by speckle noise is also analyzed. The theory is illustrated by applying the results to Gaussian beams.

  16. SU-E-T-375: Passive Scattering to Pencil-Beam-Scanning Comparison for Medulloblastoma Proton Therapy: LET Distributions and Radiobiological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D; MacDonald, S; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2014-06-01

    Purpose: To compare the linear energy transfer (LET) distributions between passive scattering and pencil beam scanning proton radiation therapy techniques for medulloblastoma patients and study the potential radiobiological implications. Methods: A group of medulloblastoma patients, previously treated with passive scattering (PS) proton craniospinal irradiation followed by prosterior fossa or involved field boost, were selected from the patient database of our institution. Using the beam geometry and planning computed tomography (CT) image sets of the original treatment plans, pencil beam scanning (PBS) treatment plans were generated for the cranial treatment for each patient, with average beam spot size of 8mm (sigma in air at isocenter). 3-dimensional dose and LET distributions were calculated by Monte Carlo methods (TOPAS) both for the original passive scattering and new pencil beam scanning treatment plans. LET volume histograms were calculated for the target and OARs and compared for the two delivery methods. Variable RBE weighted dose distributions and volume histograms were also calculated using a variable dose and LET-based model. Results: Better dose conformity was achieved with PBS planning compared to PS, leading to increased dose coverage for the boost target area and decreased average dose to the structures adjacent to it and critical structures outside the whole brain treatment field. LET values for the target were lower for PBS plans. Elevated LET values for OARs close to the boosted target areas were noticed, due to end of range of proton beams falling inside these structures, resulting in higher RBE weighted dose for these structures compared to the clinical RBE value of 1.1. Conclusion: Transitioning from passive scattering to pencil beam scanning proton radiation treatment can be dosimetrically beneficial for medulloblastoma patients. LET–guided treatment planning could contribute to better decision making for these cases, especially for

  17. MONTE CARLO SIMULATION OF MULTIFOCAL STOCHASTIC SCANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    LIXIN LIU

    2014-01-01

    Full Text Available Multifocal multiphoton microscopy (MMM has greatly improved the utilization of excitation light and imaging speed due to parallel multiphoton excitation of the samples and simultaneous detection of the signals, which allows it to perform three-dimensional fast fluorescence imaging. Stochastic scanning can provide continuous, uniform and high-speed excitation of the sample, which makes it a suitable scanning scheme for MMM. In this paper, the graphical programming language — LabVIEW is used to achieve stochastic scanning of the two-dimensional galvo scanners by using white noise signals to control the x and y mirrors independently. Moreover, the stochastic scanning process is simulated by using Monte Carlo method. Our results show that MMM can avoid oversampling or subsampling in the scanning area and meet the requirements of uniform sampling by stochastically scanning the individual units of the N × N foci array. Therefore, continuous and uniform scanning in the whole field of view is implemented.

  18. The Emulsion Scanning System of the OPERA experiment

    CERN Document Server

    Juget, F

    2010-01-01

    The OPERA experiment has for goal the direct detection of !μ ! !! oscilla- tion, using an hybrid apparatus composed of electronic detectors and nuclear photographic emulsions. A charged particle crossing an emulsion layer ion- izes the medium along its path leaving a latent image which leads, after de- velopment, to a sequence of aligned grains. Nuclear emulsions are analyzed by means of optical microscopes to reconstruct the 3D particle tracks. The OPERA collaboration has developed a dedicated system to scan a large num- ber of emulsions (surface of about 1000 m2). The achieved resolution is "1 μm and "1 mrad allowing to observe directly the short-lived " particles pro- duced in !!CC interactions.

  19. A Mobile Automated Tomographic Gamma Scanning System - 13231

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J.M.; LeBlanc, P.J.; Nakazawa, D.; Petroka, D.L.; Kane Smith, S.; Venkataraman, R.; Villani, M. [Canberra Industries, Inc. 800 Research Parkway, Meriden CT 06450 (United States)

    2013-07-01

    Canberra Industries have recently designed and built a new automated Tomographic Gamma Scanning (TGS) system for mobile deployment. The TGS technique combines high-resolution gamma spectroscopy with low spatial resolution 3-dimensional image reconstruction to provide increased accuracy over traditional approaches for the assay of non-uniform source distributions in low-to medium-density, non-heterogeneous matrices. Originally pioneered by R. Estep at Los Alamos National Laboratory (LANL), the TGS method has been further developed and commercialized by Canberra Industries in recent years. The present system advances the state of the art on several fronts: it is designed to be housed in a standard cargo transport container for ease of transport, allowing waste characterization at multiple facilities under the purview of a single operator. Conveyor feed, drum rotator, and detector and collimator positioning mechanisms operated by programmable logic control (PLC) allow automated batch mode operation. The variable geometry settings can accommodate a wide range of waste packaging, including but not limited to standard 220 liter drums, 380 liter overpack drums, and smaller 20 liter cans. A 20 mCi Eu-152 transmission source provides attenuation corrections for drum matrices up to 1 g/cm{sup 3} in TGS mode; the system can be operated in Segmented Gamma Scanning (SGS) mode to measure higher density drums. To support TGS assays at higher densities, the source shield is sufficient to house an alternate Co-60 transmission source of higher activity, up to 250 mCi. An automated shutter and attenuator assembly is provided for operating the system with a dual intensity transmission source. The system's 1500 kg capacity rotator turntable can handle heavy containers such as concrete lined 380 liter overpack drums. Finally, data acquisition utilizes Canberra's Broad Energy Germanium (BEGE) detector and Lynx MCA, with 32 k channels, providing better than 0.1 ke

  20. Halftone biasing OPC technology: an approach for achieving fine bias control on raster-scan systems

    Science.gov (United States)

    Nakagawa, Kent H.; Chen, J. Fung; Socha, Robert J.; Laidig, Thomas L.; Wampler, Kurt E.; Van Den Broeke, Douglas J.; Dusa, Mircea V.; Caldwell, Roger F.

    1999-08-01

    As the semiconductor roadmap continues to require imaging of smaller features on wafers, we continue to explore new approaches in OPC strategies to enhance existing technology. Advanced reticle design, intended for printing sub-wavelength features, requires the support of very fine-increment biases on semi-densely-pitched lines, where the CD correction requires only a fraction of the spot size of an e-beam system. Halftone biasing, a new OPC strategy, has been proposed to support these biases on a raster-scan e-beam system without the need for a reduced address unit and the consequent write time penalty. The manufacturability and inspectability of halftone-biased lines are explored, using an OPC characterization reticle. Pattern fidelity is examined using both optical and SEM tools. Printed DUV resist line edge profiles are compared for both halftone and non-halftone feature edges. Halftone biasing was applied to an SRAM-type simulation reticle, to examine its impact on data volume, write time reduction, and printing performance.