WorldWideScience

Sample records for beam radiotherapy ebrt

  1. Modulated photon radiotherapy (XMRT): an algorithm for the simultaneous optimization of photon beamlet energy and intensity in external beam radiotherapy (EBRT) planning

    Science.gov (United States)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-02-01

    This is a proof of principle study on an algorithm for optimizing external beam radiotherapy in terms of both photon beamlet energy and fluence. This simultaneous beamlet energy and fluence optimization is denoted modulated photon radiotherapy (XMRT). XMRT is compared with single-energy intensity modulated radiotherapy (IMRT) for five clinically relevant test geometries to determine whether treating beamlet energy as a decision variable improves the dose distributions. All test geometries were modelled in a cylindrical water phantom. XMRT optimized the fluence for 6 and 18 MV beamlets while IMRT optimized with only 6 MV and only 18 MV. CERR (computational environment for radiotherapy research) was used to calculate the dose deposition matrices and the resulting dose for XMRT and IMRT solutions. Solutions were compared via their dose volume histograms and dose metrics, such as the mean, maximum, and minimum doses for each structure. The homogeneity index (HI) and conformity number (CN) were calculated to assess the quality of the target dose coverage. Complexity of the resulting fluence maps was minimized using the sum of positive gradients technique. The results showed XMRT’s ability to improve healthy-organ dose reduction while yielding comparable coverage of the target relative to IMRT for all geometries. All three energy-optimization approaches yielded similar HI and CNs for all geometries, as well as a similar degree of fluence map complexity. The dose reduction provided by XMRT was demonstrated by the relative decrease in the dose metrics for the majority of the organs at risk (OARs) in all geometries. Largest reductions ranged between 5% to 10% in the mean dose to OARs for two of the geometries when compared with both single-energy IMRT schemes. XMRT has shown potential dosimetric benefits through improved OAR sparing by allowing beam energy to act as a degree of freedom in the EBRT optimization process.

  2. Analysis of health related quality of life (HRQoL) of patients with clinically localized prostate cancer, one year after treatment with external beam radiotherapy (EBRT) alone versus EBRT and high dose rate brachytherapy (HDRBT)

    International Nuclear Information System (INIS)

    Prostate cancer is the leading form of cancer diagnosed among North American men. Most patients present with localized disease, which can be effectively treated with a variety of different modalities. These are associated with widely different acute and late effects, which can be both physical and psychological in nature. HRQoL concerns are therefore important for these patients for selecting between the different treatment options. One year after receiving radiotherapy for localised prostate cancer 117 patients with localized prostate cancer were invited to participate in a quality of life (QoL) self reported survey. 111 patients consented and participated in the survey, one year after completion of their treatment. 88 patients received EBRT and 23 received EBRT and HDRBT. QoL was compared in the two groups by using a modified version of Functional Assessment of Cancer Therapy-Prostate (FACT-P) survey instrument. One year after completion of treatment, there was no significant difference in overall QoL scores between the two groups of patients. For each component of the modified FACT-P survey, i.e. physical, social/family, emotional, and functional well-being; there were no statistically significant differences in the mean scores between the two groups. In prostate cancer patients treated with EBRT alone versus combined EBRT and HDRBT, there was no significant difference in the QoL scores at one year post-treatment

  3. Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven E., E-mail: steven.finkelstein@moffitt.org [H. Lee Moffitt Cancer Center, Tampa, FL (United States); Iclozan, Cristina; Bui, Marilyn M.; Cotter, Matthew J.; Ramakrishnan, Rupal; Ahmed, Jamil; Noyes, David R.; Cheong, David; Gonzalez, Ricardo J.; Heysek, Randy V.; Berman, Claudia; Lenox, Brianna C.; Janssen, William; Zager, Jonathan S.; Sondak, Vernon K.; Letson, G. Douglas; Antonia, Scott J. [H. Lee Moffitt Cancer Center, Tampa, FL (United States); Gabrilovich, Dmitry I., E-mail: dmitry.gabrilovich@moffitt.org [H. Lee Moffitt Cancer Center, Tampa, FL (United States)

    2012-02-01

    Purpose: The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). Methods and Material: Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 10{sup 7} DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. Results: The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4{sup +} T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with {sup 111}In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. Conclusions: Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.

  4. Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

    International Nuclear Information System (INIS)

    Purpose: The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). Methods and Material: Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 107 DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. Results: The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4+ T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with 111In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. Conclusions: Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.

  5. Salvage brachytherapy for locally recurrent prostate cancer after external beam radiotherapy

    OpenAIRE

    Yasuhiro Yamada; Koji Okihara; Tsuyoshi Iwata; Koji Masui; Kazumi Kamoi; Kei Yamada; Tsuneharu Miki

    2015-01-01

    External beam radiotherapy (EBRT) is a standard treatment for prostate cancer. Despite the development of novel radiotherapy techniques such as intensity-modulated conformal radiotherapy, the risk of local recurrence after EBRT has not been obviated. Various local treatment options (including salvage prostatectomy, brachytherapy, cryotherapy, and high-intensity focused ultrasound [HIFU]) have been employed in cases of local recurrence after primary EBRT. Brachytherapy is the first-line treatm...

  6. Radical radiotherapy treatment (EBRT + HDR-ICRT of carcinoma of the uterine cervix: Outcome in patients treated at a rural center in India

    Directory of Open Access Journals (Sweden)

    Jain Vandana

    2007-01-01

    Full Text Available Aim: To report the outcome of carcinoma of the uterine cervix patients treated radically by external beam radiotherapy (EBRT and high-dose-rate (HDR intracavitary radiotherapy (ICRT. Materials and Methods: Between January 1997 to December 2001, a total of 550 newly diagnosed cases of carcinoma of the uterine cervix were reported in the department. All cases were staged according to the International Federation of Gynecologists and Oncologists (FIGO staging system, but for analytical convenience, the staging was limited to stages I, II, III, and IV. Out of the 550 cases, 214 completed radical radiotherapy (EBRT + HDR-ICRT and were retrospectively analyzed for presence of local residual disease, local recurrence, distant metastases, radiation reactions, and disease-free survival. Results: There were 7 (3.27%, 88 (41.1%, 101 (47.1%, and 18 (8.4% patients in stage I, II, III, and IV, respectively. The median follow-up time for all patients was 43 months (range: 3-93 months and for patients who were disease free till the last follow-up it was 59 months (range: 24-93 months. The overall treatment time (OTT ranged from 52 to 73 days (median 61 days. The 5-year disease-free mean survival rate was 58%, 44%, 33%, and 15%, with 95% confidence interval of 48 to 68, 37 to 51, 24 to 35, and 6 to 24 for stages I, II, III, and IV, respectively. There were 62 (28.97% cases with local residual disease, 35 (16.3% developed local recurrence/distant metastases, 17 (7.9% developed distant metastases, and 9 (4.2% had local recurrence as well. Discussion and Conclusion: The overall outcome was poor in advanced stage disease, but might be improved by increasing the total dose, decreasing overall duration of treatment, and by adding chemotherapy in patients with disease limited to the pelvis.

  7. Localized External Beam Radiation Therapy (EBRT) to the Pelvis Induces Systemic IL-1Beta and TNF-Alpha Production: Role of the TNF-Alpha Signaling in EBRT-Induced Fatigue.

    Science.gov (United States)

    McDonald, Tasha L; Hung, Arthur Y; Thomas, Charles R; Wood, Lisa J

    2016-01-01

    Prostate cancer patients undergoing localized external beam radiation therapy (EBRT) can experience a progressive increase in fatigue, which can affect physical functioning and quality of life. The purpose of this study was to develop a mouse EBRT prostate cancer treatment model with which to determine the role of pro-inflammatory cytokines in the genesis of EBRT-related fatigue. We assessed voluntary wheel-running activity (VWRA) as a proxy for fatigue, food intake and body weight in male C57BL/6 mice undergoing EBRT to the pelvis. In the first experiment, anesthetized male C57BL/6 mice underwent fractionated EBRT to the pelvis for a total dose of 68.2 Gy, thereby mimicking a clinically relevant therapeutic dose and frequency. The day after the last treatment, levels of IL-1β and TNF-α in plasma along with mRNA levels in liver, colon and whole brain were measured. EBRT-induced fatigue resulted in reduced body weight, diminished food intake, and increased plasma and tissue levels of IL-1β and TNF-α. In a follow-up experiment, we used TNF-α-deficient mice to further delineate the role of TNF-α signaling in EBRT-induced sickness behavior. EBRT-induced changes in fatigue, food intake and body weight were no different between TNF-α deficient mice and their wild-type counterparts. Taken together our data demonstrate that a clinically relevant localized irradiation of the pelvis induces a systemic IL-1β and TNF-α response and sickness behavior in mice, but the TNF-α signaling pathway alone does not independently mediate these effects. PMID:26720802

  8. Salvage brachytherapy for locally recurrent prostate cancer after external beam radiotherapy

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yamada

    2015-01-01

    Full Text Available External beam radiotherapy (EBRT is a standard treatment for prostate cancer. Despite the development of novel radiotherapy techniques such as intensity-modulated conformal radiotherapy, the risk of local recurrence after EBRT has not been obviated. Various local treatment options (including salvage prostatectomy, brachytherapy, cryotherapy, and high-intensity focused ultrasound [HIFU] have been employed in cases of local recurrence after primary EBRT. Brachytherapy is the first-line treatment for low-risk and selected intermediate-risk prostate tumors. However, few studies have examined the use of brachytherapy to treat post-EBRT recurrent prostate cancer. The purpose of this paper is to analyze the current state of our knowledge about the effects of salvage brachytherapy in patients who develop locally recurrent prostate cancer after primary EBRT. This article also introduces our novel permanent brachytherapy salvage method.

  9. Salvage brachytherapy for locally recurrent prostate cancer after external beam radiotherapy.

    Science.gov (United States)

    Yamada, Yasuhiro; Okihara, Koji; Iwata, Tsuyoshi; Masui, Koji; Kamoi, Kazumi; Yamada, Kei; Miki, Tsuneharu

    2015-01-01

    External beam radiotherapy (EBRT) is a standard treatment for prostate cancer. Despite the development of novel radiotherapy techniques such as intensity-modulated conformal radiotherapy, the risk of local recurrence after EBRT has not been obviated. Various local treatment options (including salvage prostatectomy, brachytherapy, cryotherapy, and high-intensity focused ultrasound [HIFU]) have been employed in cases of local recurrence after primary EBRT. Brachytherapy is the first-line treatment for low-risk and selected intermediate-risk prostate tumors. However, few studies have examined the use of brachytherapy to treat post-EBRT recurrent prostate cancer. The purpose of this paper is to analyze the current state of our knowledge about the effects of salvage brachytherapy in patients who develop locally recurrent prostate cancer after primary EBRT. This article also introduces our novel permanent brachytherapy salvage method. PMID:26112477

  10. Determining the role of external beam radiotherapy in unresectable intrahepatic cholangiocarcinoma: a retrospective analysis of 84 patients

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2010-09-01

    Full Text Available Abstract Background Intrahepatic cholangiocarcinoma (ICC is the second most common type of primary liver cancer. Only few studies have focused on palliative radiotherapy used for patients who weren't suitable for resection by surgery. This study was conducted to investigate the effect of external beam radiotherapy (EBRT for patients with unresectable ICC. Methods We identified 84 patients with ICC from December 1998 through December 2008 for retrospective analysis. Thirty-five of 84 patients received EBRT therapy five times a week (median dose, 50 Gy; dose range, 30-60 Gy, in fractions of 1.8-2.0 Gy daily; EBRT group; the remaining 49 patients comprised the non-EBRT group. Tumor response, jaundice relief, and survival rates were compared by Kaplan-Meier analysis. Patient records were reviewed and compared using Cox proportional hazard analysis to determine factors that affect survival time in ICC. Results After EBRT, complete response (CR and partial response (PR of primary tumors were observed in 8.6% and 28.5% of patients, respectively, and CR and PR of lymph node metastases were observed in 20% and 40% of patients. In 19 patients with jaundice, complete and partial relief was observed in 36.8% and 31.6% of patients, respectively. Median survival times were 5.1 months for the non-EBRT group and 9.5 months for the EBRT group (P = 0.003. One-and two-year survival rates for EBRT versus non-EBRT group were 38.5% versus 16.4%, and 9.6% versus 4.9%, respectively. Multivariate analysis revealed that clinical symptoms, larger tumor size, no EBRT, multiple nodules and synchronous lymph node metastases were associated with poorer prognosis. Conclusions EBRT as palliative care appears to improve prognosis and relieve the symptom of jaundice in patients with unresectable ICC.

  11. Determining the role of external beam radiotherapy in unresectable intrahepatic cholangiocarcinoma: a retrospective analysis of 84 patients

    International Nuclear Information System (INIS)

    Intrahepatic cholangiocarcinoma (ICC) is the second most common type of primary liver cancer. Only few studies have focused on palliative radiotherapy used for patients who weren't suitable for resection by surgery. This study was conducted to investigate the effect of external beam radiotherapy (EBRT) for patients with unresectable ICC. We identified 84 patients with ICC from December 1998 through December 2008 for retrospective analysis. Thirty-five of 84 patients received EBRT therapy five times a week (median dose, 50 Gy; dose range, 30-60 Gy, in fractions of 1.8-2.0 Gy daily; EBRT group); the remaining 49 patients comprised the non-EBRT group. Tumor response, jaundice relief, and survival rates were compared by Kaplan-Meier analysis. Patient records were reviewed and compared using Cox proportional hazard analysis to determine factors that affect survival time in ICC. After EBRT, complete response (CR) and partial response (PR) of primary tumors were observed in 8.6% and 28.5% of patients, respectively, and CR and PR of lymph node metastases were observed in 20% and 40% of patients. In 19 patients with jaundice, complete and partial relief was observed in 36.8% and 31.6% of patients, respectively. Median survival times were 5.1 months for the non-EBRT group and 9.5 months for the EBRT group (P = 0.003). One-and two-year survival rates for EBRT versus non-EBRT group were 38.5% versus 16.4%, and 9.6% versus 4.9%, respectively. Multivariate analysis revealed that clinical symptoms, larger tumor size, no EBRT, multiple nodules and synchronous lymph node metastases were associated with poorer prognosis. EBRT as palliative care appears to improve prognosis and relieve the symptom of jaundice in patients with unresectable ICC

  12. Single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients: comparative effectiveness

    International Nuclear Information System (INIS)

    External beam radiotherapy (EBRT) is an effective treatment for symptomatic bone metastases from a variety of primary malignancies. Previous meta-analyses and systematic reviews have reported on the efficacy of EBRT on bone metastases from multiple primaries. This review is focused on the comparative effectiveness of single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients

  13. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement

    International Nuclear Information System (INIS)

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting. (orig.)

  14. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement

    Energy Technology Data Exchange (ETDEWEB)

    Droege, L.H.; Hinsche, T.; Hess, C.F.; Wolff, H.A. [University Hospital of Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Canis, M. [University of Goettingen, Department of Otorhinolaryngology, Head and Neck Surgery, Goettingen (Germany); Alt-Epping, B. [University of Goettingen, Department of Palliative Medicine, Goettingen (Germany)

    2014-02-15

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting. (orig.)

  15. Erectile function following brachytherapy, external beam radiotherapy, or radical prostatectomy in prostate cancer patients

    International Nuclear Information System (INIS)

    For localized prostate cancer, treatment options include external beam radiotherapy (EBRT), radical prostatectomy (RP), and brachytherapy (BT). Erectile dysfunction (ED) is a common side-effect. Our aim was to evaluate penile erectile function (EF) before and after BT, EBRT, or RP using a validated self-administered quality-of-life survey from a prospective registry. Analysis included 478 patients undergoing RP (n = 252), EBRT (n = 91), and BT (n = 135) with at least 1 year of follow-up and EF documented using IIEF-5 scores at baseline, 6 weeks, 6 months, 1 year, and annually thereafter. Differences among treatments were most pronounced among patients with no or mild initial ED (IIEF-5 ≥ 17). Overall, corrected for baseline EF and age, BT was associated with higher IIEF-5 scores than RP (+ 7.8 IIEF-5 score) or EBRT (+ 3.1 IIEF-5 score). EBRT was associated with better IIEF-5 scores than RP (+ 4.7 IIEF-5 score). In patients undergoing EBRT or RP with bilateral nerve sparing (NS), recovery of EF was observed and during follow-up, the differences to BT were not statistically significant. Overall age had a negative impact on EF preservation (corrected for baseline IIEF). In our series, EF was adversely affected by each treatment modality. Considered overall, BT provided the best EF preservation in comparison to EBRT or RP. (orig.)

  16. Optimising measles virus-guided radiovirotherapy with external beam radiotherapy and specific checkpoint kinase 1 inhibition

    International Nuclear Information System (INIS)

    Background and purpose: We previously reported a therapeutic strategy comprising replication-defective NIS-expressing adenovirus combined with radioiodide, external beam radiotherapy (EBRT) and DNA repair inhibition. We have now evaluated NIS-expressing oncolytic measles virus (MV-NIS) combined with NIS-guided radioiodide, EBRT and specific checkpoint kinase 1 (Chk1) inhibition in head and neck and colorectal models. Materials and methods: Anti-proliferative/cytotoxic effects of individual agents and their combinations were measured by MTS, clonogenic and Western analysis. Viral gene expression was measured by radioisotope uptake and replication by one-step growth curves. Potential synergistic interactions were tested in vitro by Bliss independence analysis and in in vivo therapeutic studies. Results: EBRT and MV-NIS were synergistic in vitro. Furthermore, EBRT increased NIS expression in infected cells. SAR-020106 was synergistic with EBRT, but also with MV-NIS in HN5 cells. MV-NIS mediated 131I-induced cytotoxicity in HN5 and HCT116 cells and, in the latter, this was enhanced by SAR-020106. In vivo studies confirmed that MV-NIS, EBRT and Chk1 inhibition were effective in HCT116 xenografts. The quadruplet regimen of MV-NIS, virally-directed 131I, EBRT and SAR-020106 had significant anti-tumour activity in HCT116 xenografts. Conclusion: This study strongly supports translational and clinical research on MV-NIS combined with radiation therapy and radiosensitising agents

  17. Nanoparticle-aided external beam radiotherapy leveraging the Čerenkov effect.

    Science.gov (United States)

    Ouyang, Zi; Liu, Bo; Yasmin-Karim, Sayeda; Sajo, Erno; Ngwa, Wilfred

    2016-07-01

    This study investigates the feasibility of exploiting the Čerenkov radiation (CR) present during external beam radiotherapy (EBRT) for significant therapeutic gain, using titanium dioxide (titania) nanoparticles (NPs) delivered via newly designed radiotherapy biomaterials. Using Monte Carlo radiation transport simulations, we calculated the total CR yield inside a tumor volume during EBRT compared to that of the radionuclides. We also considered a novel approach for intratumoral titania delivery using radiotherapy biomaterials (e.g. fiducials) loaded with NPs. The intratumoral distribution/diffusion of titania released from the fiducials was calculated. To confirm the CR induced enhancement in EBRT experimentally, we used 6MV radiation to irradiate human lung cancer cells with or without titania NPs and performed clonogenic assays. For a radiotherapy biomaterial loaded with 20μg/g of 2-nm titania NPs, at least 1μg/g could be delivered throughout a tumor sub-volume of 2-cm diameter after 14days. This concentration level could inflict substantial damage to cancer cells during EBRT. The Monte Carlo results showed the CR yield by 6MV radiation was higher than by the radionuclides of interest and hence greater damage might be obtained during EBRT. In vitro study showed significant enhancement with 6MV radiation and titania NPs. These preliminary findings demonstrate a potential new approach that can be used to take advantage of the CR present during megavoltage EBRT to boost damage to cancer cells. The results provide significant impetus for further experimental studies towards the development of nanoparticle-aided EBRT powered by the Čerenkov effect. PMID:27397906

  18. Nanoparticle-aided external beam radiotherapy leveraging the Čerenkov effect

    Science.gov (United States)

    Ouyang, Zi; Liu, Bo; Yasmin-Karim, Sayeda; Sajo, Erno; Ngwa, Wilfred

    2016-01-01

    This study investigates the feasibility of exploiting the Čerenkov radiation (CR) present during external beam radiotherapy (EBRT) for significant therapeutic gain, using titanium dioxide (titania) nanoparticles (NPs) delivered via newly designed radiotherapy biomaterials. Using Monte Carlo radiation transport simulations, we calculated the total CR yield inside a tumor volume during EBRT compared to that of the radionuclides. We also considered a novel approach for intratumoral titania delivery using radiotherapy biomaterials (e.g. fiducials) loaded with NPs. The intratumoral distribution/diffusion of titania released from the fiducials was calculated. To confirm the CR induced enhancement in EBRT experimentally, we used 6 MV radiation to irradiate human lung cancer cells with or without titania NPs and performed clonogenic assays. For a radiotherapy biomaterial loaded with 20 μg/g of 2-nm titania NPs, at least 1 μg/g could be delivered throughout a tumor sub-volume of 2-cm diameter after 14 days. This concentration level could inflict substantial damage to cancer cells during EBRT. The Monte Carlo results showed the CR yield by 6 MV radiation was higher than by the radionuclides of interest and hence greater damage may be obtained during EBRT. In vitro study showed significant enhancement with 6 MV radiation and titania NPs. These preliminary findings demonstrate a potential new approach that can be used to take advantage of the CR present during megavoltage EBRT to boost damage to cancer cells. The results provide significant impetus for further experimental studies towards the development of nanoparticle-aided EBRT powered by the Čerenkov effect. PMID:27397906

  19. Radical prostatectomy versus external beam radiotherapy for localized prostate cancer. Comparison of treatment outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon-Joo; Cho, Kwan Ho; Lee, Kang Hyun; Moon, Sung Ho; Kim, Tae Hyun; Shin, Kyung Hwan; Kim, Joo-Young; Kim, Young-kyung; Lee, Se Byeong [National Cancer Center, Research Institute and Hospital, Goyang (Korea, Republic of); Pyo, Hong Ryull [Sungkyunkwan University, Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Seoul (Korea, Republic of)

    2015-04-01

    We retrospectively compared the treatment outcomes of localized prostate cancer between radical prostatectomy (RP) and external beam radiotherapy (EBRT). We retrospectively analyzed 738 patients with localized prostate cancer who underwent either RP (n = 549) or EBRT (n = 189) with curative intent at our institution between March 2001 and December 2011. Biochemical failure was defined as a prostate-specific antigen (PSA) level of ≥ 0.2 ng/ml in the RP group and the nadir of + ≥ 2 ng/ml in the EBRT group. The median (range) follow-up duration was 48.8 months (0.7-133.2 months) and 48.7 months (1.0-134.8 months) and the median age was 66 years (45-89 years) and 71 years (51-84 years; p < 0.001) in the RP and EBRT groups, respectively. Overall, 21, 42, and 36 % of patients in the RP group, and 15, 27, and 58 % of patients in the EBRT group were classified as low, intermediate, and high risk, respectively (p < 0.001). Androgen-deprivation therapy was more common in the EBRT group (59 vs. 27 %, respectively; p < 0.001). The 8-year biochemical failure-free survival rates were 44 and 72 % (p < 0.001) and the disease-specific survival rates were 98 % and 97 % (p = 0.543) in the RP and EBRT groups, respectively. Although the EBRT group included more high-risk patients than did the RP group, the outcomes of EBRT were not inferior to those of RP. Our data suggest that EBRT is a viable alternative to RP for treating localized prostate cancer. (orig.) [German] Wir vergleichen retrospektiv die Verfahrensergebnisse des lokal begrenzten Prostatakarzinoms zwischen radikaler Prostatektomie (RP) und externer Strahlentherapie (EBRT). Wir analysieren zurueckblickend 738 Patienten mit lokal begrenztem Prostatakarzinom, die zwischen Maerz 2001 und Dezember 2011 in unserem Institut entweder eine RP (n = 549) oder eine EBRT (n = 189) mit kurativer Intention durchliefen. Biochemischer Fehler wurde als prostataspezifisches Antigen (PSA) ≥ 0,2 ng/ml in der RP-Gruppe und ein Nadir +

  20. Neoadjuvant hormonal therapy and external-beam radiotherapy versus external-beam irradiation alone for prostate cancer. A quality-of-life analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinkawa, Michael; Piroth, Marc D.; Asadpour, Branka; Gagel, Bernd; Fischedick, Karin; Siluschek, Jaroslav; Kehl, Mareike; Krenkel, Barbara; Eble, Michael J. [RWTH Aachen (Germany). Dept. of Radiotherapy

    2009-02-15

    To evaluate the impact of neoadjuvant hormonal therapy (NHT) on quality of life after external-beam radiotherapy (EBRT) for prostate cancer. A group of 170 patients (85 with and 85 without NHT) has been surveyed prospectively before EBRT (70.2-72 Gy), at the last day of EBRT, a median time of 2 months and 15 months after EBRT using a validated questionnaire (Expanded Prostate Cancer Index Composite). Pairs with and without NHT (median treatment time of 3.5 months before EBRT) were matched according to the respective planning target volume and prostate volume. Before EBRT, significantly lower urinary function/bother, sexual function and hormonal function/bother scores were found for patients with NHT. More than 1 year after EBRT, only sexual function scores remained lower. In a multivariate analysis, NHT and adjuvant hormonal therapy (HT) versus NHT only (hazard ratio 14; 95% confidence interval 2.7-183; p = 0.02) and luteinizing hormone-releasing hormone (LHRH) agonists versus antiandrogens (hazard ratio 3.6; 95% confidence interval 1.1-12; p = 0.04) proved to be independent risk factors for long-term erectile dysfunction (no or very poor ability to have an erection). With the exception of sexual function (additional adjuvant HT and application of LHRH analog independently adverse), short-term NHT was not found to decrease quality of life after EBRT for prostate cancer. (orig.)

  1. Neoadjuvant hormonal therapy and external-beam radiotherapy versus external-beam irradiation alone for prostate cancer. A quality-of-life analysis

    International Nuclear Information System (INIS)

    To evaluate the impact of neoadjuvant hormonal therapy (NHT) on quality of life after external-beam radiotherapy (EBRT) for prostate cancer. A group of 170 patients (85 with and 85 without NHT) has been surveyed prospectively before EBRT (70.2-72 Gy), at the last day of EBRT, a median time of 2 months and 15 months after EBRT using a validated questionnaire (Expanded Prostate Cancer Index Composite). Pairs with and without NHT (median treatment time of 3.5 months before EBRT) were matched according to the respective planning target volume and prostate volume. Before EBRT, significantly lower urinary function/bother, sexual function and hormonal function/bother scores were found for patients with NHT. More than 1 year after EBRT, only sexual function scores remained lower. In a multivariate analysis, NHT and adjuvant hormonal therapy (HT) versus NHT only (hazard ratio 14; 95% confidence interval 2.7-183; p 0.02) and luteinizing hormone-releasing hormone (LHRH) agonists versus antiandrogens (hazard ratio 3.6; 95% confidence interval 1.1-12; p = 0.04) proved to be independent risk factors for long-term erectile dysfunction (no or very poor ability to have an erection). With the exception of sexual function (additional adjuvant HT and application of LHRH analog independently adverse), short-term NHT was not found to decrease quality of life after EBRT for prostate cancer. (orig.)

  2. Time of Decline in Sexual Function After External Beam Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: Erectile dysfunction is one of the most concerning toxicities for patients in the treatment of prostate cancer. The inconsistent evaluation of sexual function (SF) and limited follow-up data have necessitated additional study to clarify the rate and timing of erectile dysfunction after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: A total of 143 men completed baseline data on SF before treatment and at the subsequent follow-up visits. A total of 1187 validated SF inventories were analyzed from the study participants. Multiple domains of SF (sex drive, erectile function, ejaculatory function, and overall satisfaction) were analyzed for ≤8 years of follow-up. Results: The median follow-up was 4.03 years. The strongest predictor of SF after EBRT was SF before treatment. For all domains of SF, the only statistically significant decrease in function occurred in the first 24 months after EBRT. SF stabilized 2 years after treatment completion, with no statistically significant change in any area of SF >2 years after the end of EBRT. Conclusion: These data suggest that SF does not have a continuous decline after EBRT. Instead, SF decreases maximally within the first 24 months after EBRT, with no significant changes thereafter.

  3. Unified registration framework for cumulative dose assessment in cervical cancer across external beam radiotherapy and brachytherapy

    Science.gov (United States)

    Roy, Sharmili; Totman, John J.; Choo, Bok A.

    2016-03-01

    Dose accumulation across External Beam Radiotherapy (EBRT) and Brachytherapy (BT) treatment fractions in cervical cancer is extremely challenging due to structural dissimilarities and large inter-fractional anatomic deformations between the EBRT and BT images. The brachytherapy applicator and the bladder balloon, present only in the BT images, introduce missing structural correspondences for the underlying registration problem. Complex anatomical deformations caused by the applicator and the balloon, different rectum and bladder filling and tumor shrinkage compound the registration difficulties. Conventional free-form registration methods struggle to handle such topological differences. In this paper, we propose a registration pipeline that first transforms the original images to their distance maps based on segmentations of critical organs and then performs non-linear registration of the distance maps. The resulting dense deformation field is then used to transform the original anatomical image. The registration accuracy is evaluated on 27 image pairs from stage 2B-4A cervical cancer patients. The algorithm reaches a Hausdorff distance of close to 0:5 mm for the uterus, 2:2 mm for the bladder and 1:7 mm for the rectum when applied to (EBRT,BT) pairs, taken at time points more than three months apart. This generalized model-free framework can be used to register any combination of EBRT and BT images as opposed to methods in the literature that are tuned for either only (BT,BT) pair, or only (EBRT,EBRT) pair or only (BT,EBRT) pair. A unified framework for 3D dose accumulation across multiple EBRT and BT fractions is proposed to facilitate adaptive personalized radiation therapy.

  4. Palliative treatment of Erdheim-Chester disease with radiotherapy: A Rare Cancer Network study

    International Nuclear Information System (INIS)

    A retrospective study of the use of palliative external beam radiotherapy (EBRT) in nine patients with Erdheim-Chester disease was conducted through the Rare Cancer Network. Patients received EBRT for bone pain, brain infiltration, or retro-orbital involvement. EBRT typically provided short-term palliation, with later recurrence of symptoms in most cases

  5. Combined effects of MPA and EBRT in stage Ic endometrial cancer patients%Ic期子宫内膜癌患者中MPA和EBRT的联合疗效

    Institute of Scientific and Technical Information of China (English)

    Rumana Jafarey; Wei Zhang; Sun Jing

    2008-01-01

    Objective: To report the comparative effect of combined medroxyprogesterone acetate (MPA) and external beam pelvic radiotherapy (EBRT) with EBRT alone on local or distant recurrences, overall survival and treatment related toxicities in patients with stage Ic grade 3 endometrial cancer. Methods:A retrospective review of 80 International Federation of Gynecology and Obstetrics (FIGO) stage Ic grade 3 endometrial carcinoma patients treated between October 1994 and October 2004 at Renmin Hospital, Wuhan University, China was performed. All patients underwent surgery, of which 40 patients in arm Ⅰ received combined MPA and EBRT while in arm Ⅱ 40 patients received only adjuvant EBRT after surgery. The median dose of EBRT in arm Ⅰ was 50 Gy (range 36-54 Gy) and in arm Ⅱ was 45.2 Gy (range 43.2-50.4 Gy). Multivariate analysis was performed for the prognostic factors and Kaplan-Meier method was used for overall survival. Results: Of the 80 eligible patients, 40 in each group could be evaluated. The follow-up times ranged from 4-98 months with a median of 45 months. The overall survival rates at five years were 73% among patients treated with combined MPA and EBRT and 28.2% among patients treated with EBRT alone (P < 0.001). The rate of distant metastasis was significantly higher among patients treated with EBRT alone group than combined MPA and EBRT (55% vs 25%, P = 0.006) while no difference in Ioco regional recurrence rates was observed in both treatment groups. Most of the side effects observed in the combined MPA and EBRT group. Age (P < 0.001) and the presence of progesterone receptors (P = 0.003) were independent significant prognostic factors for overall survival in multiple regression analysis. Conclusion: We has been concluded that the addition of progestagen to external beam pelvic radiotherapy significantly improved survival and reduced distant metastasis among women with stage Ic grade 3 endometrial cancer.

  6. Hypofractionated SBRT versus conventionally fractionated EBRT for prostate cancer: comparison of PSA slope and nadir

    International Nuclear Information System (INIS)

    Patients with early stage prostate cancer have a variety of curative radiotherapy options, including conventionally-fractionated external beam radiotherapy (CF-EBRT) and hypofractionated stereotactic body radiotherapy (SBRT). Although results of CF-EBRT are well known, the use of SBRT for prostate cancer is a more recent development, and long-term follow-up is not yet available. However, rapid post-treatment PSA decline and low PSA nadir have been linked to improved clinical outcomes. The purpose of this study was to compare the PSA kinetics between CF-EBRT and SBRT in newly diagnosed localized prostate cancer. 75 patients with low to low-intermediate risk prostate cancer (T1-T2; GS 3 + 3, PSA < 20 or 3 + 4, PSA < 15) treated without hormones with CF-EBRT (>70.2 Gy, <76 Gy) to the prostate only, were identified from a prospectively collected cohort of patients treated at the University of California, San Francisco (1997–2012). Patients were excluded if they failed therapy by the Phoenix definition or had less than 1 year of follow-up or <3 PSAs. 43 patients who were treated with SBRT to the prostate to 38 Gy in 4 daily fractions also met the same criteria. PSA nadir and rate of change in PSA over time (slope) were calculated from the completion of RT to 1, 2 and 3 years post-RT. The median PSA nadir and slope for CF-EBRT was 1.00, 0.72 and 0.60 ng/ml and -0.09, -0.04, -0.02 ng/ml/month, respectively, for durations of 1, 2 and 3 years post RT. Similarly, for SBRT, the median PSA nadirs and slopes were 0.70, 0.40, 0.24 ng and -0.09, -0.06, -0.05 ng/ml/month, respectively. The PSA slope for SBRT was greater than CF-EBRT (p < 0.05) at 2 and 3 years following RT, although similar during the first year. Similarly, PSA nadir was significantly lower for SBRT when compared to EBRT for years 2 and 3 (p < 0.005). Patients treated with SBRT experienced a lower PSA nadir and greater rate of decline in PSA 2 and 3 years following completion of RT than with CF-EBRT, consistent

  7. Comparative Study of Inguinal Hernia Repair Rates After Radical Prostatectomy or External Beam Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: We tested the hypothesis that patients treated for localized prostate cancer with radical prostatectomy (RP) have a higher risk of requiring an inguinal hernia (IH) repair than their counterparts treated with external beam radiotherapy (EBRT). Methods and Materials: Within the Quebec Health Plan database, we identified 6,422 men treated with RP and 4,685 men treated with EBRT for localized prostate cancer between 1990 and 2000, in addition to 6,933 control patients who underwent a prostate biopsy. From among that population, we identified patients who underwent a unilateral or bilateral hernia repair after either RP or EBRT. Kaplan-Meier plots showed IH repair-free survival rates. Univariable and multivariable Cox regression models tested the predictors of IH repair after RP or EBRT. Covariates consisted of age, year of surgery, and Charlson Comorbidity Index. Results: IH repair-free survival rates at 1, 2, 5, and 10 years were 96.8, 94.3, 90.5, and 86.2% vs. 98.9, 98.0, 95.4, and 92.2%, respectively, in RP vs. EBRT patients (log-rank test, p < 0.001). IH repair-free survival rates in the biopsy population were 98.3, 97.1, 94.9, and 90.2% at the same four time points. In multivariable Cox regression models, RP predisposed to a 2.3-fold higher risk of IH repair than EBRT (p < 0.001). Besides therapy type, patient age (p < 0.001) represented the only other independent predictor of IH repair. Conclusions: RP predisposes to a higher rate of IH repair relative to EBRT. This observation should be considered at informed consent.

  8. External Beam Radiotherapy Followed by 90Y Ibritumomab Tiuxetan in Relapsed or Refractory Bulky Follicular Lymphoma

    International Nuclear Information System (INIS)

    Purpose: We combined external beam radiotherapy (EBRT) with yttrium-90 ibritumomab tiuxetan (90Y-IT) in an attempt to improve therapeutic response in patients with relapsed or refractory bulky follicular lymphoma (RRBFL). Methods and Materials: Between February 2006 and September 2007, 11 patients with RRBFL were treated with EBRT followed by 90Y-IT. Bulky disease (BD) was defined as >5 cm. EBRT was delivered to BD as 2,400 cGy in eight fractions using computed tomography (CT)-based planning. BD was contoured as the gross tumor volume. A planning margin of 1 to 2 cm was added depending on anatomical location. After recovery of complete blood counts (CBC), 90Y-IT was administered at a dose of 0.3 or 0.4 mCi/kg depending on platelet counts. Hematologic toxicity was monitored through weekly CBC. Response was measured by positron emission tomography/CT or CT 3-4 months after 90Y-IT. Results: Only 2 patients required prolonged breaks between EBRT and 90Y-IT. The median time after 90Y-IT for platelets to recover to >100,000/ml was 55 days (range, 41-128 days). Platelet counts for 1 patient, who had received 4 previous chemotherapy regimens, never reached 100,000/ml. The complete and overall responses to combined therapy as measured 3-4 months after 90Y-IT were 64%. No patients relapsed within the EBRT field. With a median follow-up of 36.1 months, 6 patients have relapsed, 2 of whom have died. Median progression-free survival was 17.5 months. Conclusions: In contrast to prior failure analysis data for RRBFL patients treated with 90Y-IT alone, a brief course of EBRT prevented relapse in sites of BD. EBRT used to pretreat bulky sites may improve clinical outcomes and potentially extend survival when combined with 90Y-IT.

  9. Erectile function following brachytherapy, external beam radiotherapy, or radical prostatectomy in prostate cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Putora, P.M.; Buchauer, K.; Plasswilm, L. [Kantonsspital St. Gallen, Department of Radiation Oncology, St. Gallen (Switzerland); Engeler, D.; Schmid, H.P. [Kantonsspital St. Gallen, Department of Urology, St. Gallen (Switzerland); Haile, S.R.; Graf, N. [Kantonsspital St. Gallen, Clinical Trials Unit, St. Gallen (Switzerland)

    2016-03-15

    For localized prostate cancer, treatment options include external beam radiotherapy (EBRT), radical prostatectomy (RP), and brachytherapy (BT). Erectile dysfunction (ED) is a common side-effect. Our aim was to evaluate penile erectile function (EF) before and after BT, EBRT, or RP using a validated self-administered quality-of-life survey from a prospective registry. Analysis included 478 patients undergoing RP (n = 252), EBRT (n = 91), and BT (n = 135) with at least 1 year of follow-up and EF documented using IIEF-5 scores at baseline, 6 weeks, 6 months, 1 year, and annually thereafter. Differences among treatments were most pronounced among patients with no or mild initial ED (IIEF-5 ≥ 17). Overall, corrected for baseline EF and age, BT was associated with higher IIEF-5 scores than RP (+ 7.8 IIEF-5 score) or EBRT (+ 3.1 IIEF-5 score). EBRT was associated with better IIEF-5 scores than RP (+ 4.7 IIEF-5 score). In patients undergoing EBRT or RP with bilateral nerve sparing (NS), recovery of EF was observed and during follow-up, the differences to BT were not statistically significant. Overall age had a negative impact on EF preservation (corrected for baseline IIEF). In our series, EF was adversely affected by each treatment modality. Considered overall, BT provided the best EF preservation in comparison to EBRT or RP. (orig.) [German] Die externe Radiotherapie (EBRT), die radikale Prostatektomie (RP) sowie die Brachytherapie (BT) stellen Behandlungsoptionen fuer das lokalisierte Prostatakarzinom dar. Die erektile Dysfunktion (ED) ist eine haeufige Nebenwirkung dieser Therapien. Unser Ziel war es, die penile erektile Funktion (EF) vor und nach BT, EBRT und RP mit Hilfe eines validierten, vom Patienten ausgefuellten Lebensqualitaetsfragebogens aus einer prospektiven Datenbank zu beurteilen. Mit einer minimalen Nachbeobachtungszeit von einem Jahr wurden 478 Patienten analysiert, die eine RP (n = 252), EBRT (n = 91) oder BT (n = 135) erhalten hatten und deren EF mit

  10. The effect of external beam radiotherapy volume on locoregional control in patients with locoregionally advanced or recurrent nonanaplastic thyroid cancer

    International Nuclear Information System (INIS)

    We evaluated outcomes of patients treated with external beam radiotherapy (EBRT) for locoregionally advanced or recurrent nonanaplastic thyroid cancer and analyzed the effect of EBRT volume on locoregional control. This study included 23 patients with locoregionally advanced or recurrent nonanaplastic thyroid cancer who were treated with EBRT. Two different EBRT target volumes were executed as follows: 1) limited field (LF, n = 11) included the primary (involved lobe) or recurrent tumor bed and the positive nodal area; 2) elective field (EF, n = 12) included the primary (involved lobe) or recurrent tumor bed and the regional nodal areas in the cervical neck and upper mediastinum. Clinical parameters, such as gender, age, histologic type, recurrence, stage, thyroglobulin level, postoperative residuum, radioiodine treatment, and EBRT volume were analyzed to identify prognostic factors associated with locoregional control. There were no significant differences in the clinical parameter distributions between the LF and EF groups. In the LF group, six (55%) patients developed locoregional recurrence and three (27%) developed distant metastasis. In the EF group, one (8%) patient developed locoregional recurrence and one (8%) developed a distant metastasis. There was a significant difference in locoregional control rate at 5 years in the LF and EF groups (40% vs. 89%, p = 0.041). There were no significant differences in incidences of acute and late toxicities between two groups (p >0.05). EBRT with EF provided significantly better locoregional control than that of LF; however, further larger scaled studies are warranted

  11. Development of late toxicity and International Prostate Symptom Score resolution after external-beam radiotherapy combined with pulsed dose rate brachytherapy for prostate cancer

    NARCIS (Netherlands)

    B.R. Pieters; E. Rezaie; E.D. Geijsen; K. Koedooder; J.N.B. van der Grient; L.E.C.M. Blank; T.M. de Reijke; C.C.E. Koning

    2011-01-01

    To investigate the development of gastrointestinal (GI) toxicity, genitourinary (GU) toxicity, erectile dysfunction, and International Prostate Symptom Score (IPSS) resolution in a cohort of patients treated with external-beam radiotherapy (EBRT) followed by a brachytherapy pulsed dose rate (PDR) bo

  12. Health-related quality of life after permanent I-125 brachytherapy and conformal external beam radiotherapy for prostate cancer - a matched-pair comparison

    International Nuclear Information System (INIS)

    Background and purpose: The aim of the study was to compare quality of life after permanent I-125 brachytherapy (BT) and external beam radiotherapy (EBRT) for prostate cancer. Materials and methods: A group of 104 patients (52 in each group) have been surveyed prospectively before EBRT/BT (time A), at the last day of EBRT (70.2-72.0 Gy) or one month after BT (time B), and a median time of 16 months after EBRT/BT (time C) using a validated questionnaire (Expanded Prostate Cancer Index Composite). Pairs were matched according to the following criteria: age ±5years, prostate volume ±10 cc, use of antiandrogens, and erectile function. Results: Urinary function/bother scores decreased significantly more after BT both at time B and time C. Bowel function/bother scores tended to be higher after BT, with a lower percentage of patients with painful bowel movements (BT: 12%/27%/15%; EBRT: 19%/52%/35% at time A/B/C; p < 0.05 for differences at times B/C) and rectal bleeding (BT: 12%/12%/12%; EBRT: 8%/14%/17%). No difference concerning erectile dysfunction was found (67% vs. 61% with preserved erections firm enough for intercourse after BT vs. EBRT at time C). Conclusions: BT was associated with higher urinary, but lower rectal toxicity. The risk of treatment-associated erectile dysfunction did not differ between these methods.

  13. Targeted Intraoperative Radiotherapy for Breast Cancer in Patients in Whom External Beam Radiation Is Not Possible

    International Nuclear Information System (INIS)

    Purpose: External beam radiation therapy (EBRT) following wide local excision of the primary tumor is the standard treatment in early breast cancer. In some circumstances this procedure is not possible or is contraindicated or difficult. The purpose of this study was to determine the safety and efficacy of targeted intraoperative radiotherapy (TARGIT) when EBRT is not feasible. Methods and Materials: We report our experience with TARGIT in three centers (Australia, Germany, and the United Kingdom) between 1999 and 2008. Patients at these centers received a single radiation dose of 20 Gy to the breast tissue in contact with the applicator (or 6 Gy at 1-cm distance), as they could not be given EBRT and were keen to avoid mastectomy. Results: Eighty patients were treated with TARGIT. Reasons for using TARGIT were 21 patients had previously received EBRT, and 31 patients had clinical reasons such as systemic lupus erythematosus, motor neuron disease, Parkinson's disease, ankylosing spondylitis, morbid obesity, and cardiovascular or severe respiratory disease. Three of these patients received percutaneous radiotherapy without surgery; 28 patients were included for compelling personal reasons, usually on compassionate grounds. After a median follow-up of 38 months, only two local recurrences were observed, an annual local recurrence rate of 0.75% (95% confidence interval, 0.09%-2.70%). Conclusions: While we await the results of the randomized trial (over 2,000 patients have already been recruited), TARGIT is an acceptable option but only in highly selected cases that cannot be recruited in the trial and in whom EBRT is not feasible/possible.

  14. Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma

    International Nuclear Information System (INIS)

    External beam radiotherapy (EBRT) is the treatment of choice for irresectable meningioma. Due to the strong expression of somatostatin receptors, peptide receptor radionuclide therapy (PRRT) has been used in advanced cases. We assessed the feasibility and tolerability of a combination of both treatment modalities in advanced symptomatic meningioma. 10 patients with irresectable meningioma were treated with PRRT (177Lu-DOTA0,Tyr3 octreotate or - DOTA0,Tyr3 octreotide) followed by external beam radiotherapy (EBRT). EBRT performed after PRRT was continued over 5–6 weeks in IMRT technique (median dose: 53.0 Gy). All patients were assessed morphologically and by positron emission tomography (PET) before therapy and were restaged after 3–6 months. Side effects were evaluated according to CTCAE 4.0. Median tumor dose achieved by PRRT was 7.2 Gy. During PRRT and EBRT, no side effects > CTCAE grade 2 were noted. All patients reported stabilization or improvement of tumor-associated symptoms, no morphologic tumor progression was observed in MR-imaging (median follow-up: 13.4 months). The median pre-therapeutic SUVmax in the meningiomas was 14.2 (range: 4.3–68.7). All patients with a second PET after combined PRRT + EBRT showed an increase in SUVmax (median: 37%; range: 15%–46%) to a median value of 23.7 (range: 8.0–119.0; 7 patients) while PET-estimated volume generally decreased to 81 ± 21% of the initial volume. The combination of PRRT and EBRT is feasible and well tolerated. This approach represents an attractive strategy for the treatment of recurring or progressive symptomatic meningioma, which should be further evaluated

  15. Role of adjuvant postoperative external beam radiotherapy for well differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jeanny; Wu, Hong Gyun; Youn, Yeo Kyu; Lee, Kyu Eun; Kim, Kwang Hyun; Park, Do Joon [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2013-09-15

    To analyze the outcome of adjuvant postoperative external beam radiotherapy (EBRT) in well-differentiated thyroid cancer (WDTC). We identified 84 patients treated with EBRT for WDTC from February 1981 to December 2010. Among them, we analyzed 39 patients who received EBRT after initial radical surgery. Twenty-four females and 15 males were included. The median age was 49 years (range, 16 to 72 years). There were 34 papillary thyroid carcinomas and 5 follicular thyroid carcinomas. Most patients showed pathologic T3/T4 stage (54%/26%). Ten patients (25.6%) had gross residual tumors. Five patients (12.8%) had tumor cells at the margin. The median EBRT dose and fraction size were 62.6 Gy and 1.8 to 2.0 Gy, respectively. The median follow-up was 73 months (range, 21 to 372 months). The five-year overall survival (OS) and locoregional recurrence free survival (LRFS) were 97.4% and 86.9%, respectively. Locoregional failures occurred in 5 and all failure sites were the neck node area. In univariate analysis, OS was significantly influenced by invasion of the trachea (p = 0.016) or esophagus (p = 0.006). LRFS was significantly decreased by male (p = 0.020), gross residuum after resection (p = 0.002), close or positive tumor at surgical margin involvement (p = 0.044), and tracheal invasion (p = 0.040). No significant prognostic factor was identified in the multivariate analysis. No patient experienced the Radiation Therapy Oncology Group grade 3 or more toxicity. Our locoregional control rate of 87.2% is comparable to historical controls with surgery alone, even though our study had a large proportion of advanced stage. Adjuvant EBRT may an effective and safe treatment option in patients with WDTC.

  16. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer

    DEFF Research Database (Denmark)

    Vaidya, Jayant S; Wenz, Frederik; Bulsara, Max;

    2014-01-01

    The TARGIT-A trial compared risk-adapted radiotherapy using single-dose targeted intraoperative radiotherapy (TARGIT) versus fractionated external beam radiotherapy (EBRT) for breast cancer. We report 5-year results for local recurrence and the first analysis of overall survival....

  17. Safety and Efficacy of Thoracic External Beam Radiotherapy After Airway Stenting in Malignant Airway Obstruction

    International Nuclear Information System (INIS)

    Purpose: We retrospectively evaluated the outcome and toxicity of external beam radiotherapy (EBRT) after airway stents were placed in patients treated for malignant airway obstruction. Methods and Materials: Between 2004 and 2009, we performed airway stenting followed by EBRT in 43 patients for symptomatic primary lung cancer (n = 31) or other thoracic malignancies (n = 12). The median time interval between stent placement and first irradiation was 14 days. A median total dose of 50 Gy was delivered. Sixty-seven percent of the patients had reduced performance status (Karnofsky performance score, ≤70). Results: EBRT had to be stopped prematurely in 16 patients (37%), at a median total dose of 17 Gy, for various reasons. In this group of patients, the survival was poor, with a median overall survival (OS) of only 21 days. Twenty-seven patients (63%) completed radiotherapy as planned, with a median OS of 8.4 months. Fourteen of 43 patients (33%) developed at least one Common Terminology Criteria for Adverse Event of grade 3 to 5. The most common event was a malignant restenosis of the stent leading to asphyxia (n = 7), followed by fistula formation (n = 4), necrosis (n = 3), mediastinitis with abscess (n = 1), secondary nonmalignant airway stenosis (n = 1), and hemoptysis (n = 1). With the exception of one event, all events were associated with a local progression of the tumor. Conclusions: Although the long-term prognosis for patients with malignant airway obstruction is poor, airway stenting combined with EBRT offers a possible therapeutic option, achieving fast relief of acute respiratory distress with an associated antitumor effect, resulting in a potential survival benefit. However, due to local advanced tumor growth, increased rates of adverse events are to be expected, necessitating careful monitoring.

  18. Outcomes of Patients With Non-Hodgkin's Lymphoma Treated With Bexxar With or Without External-Beam Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristy; Byer, Gracie; Morris, Christopher G.; Kirwan, Jessica M.; Lightsey, Judith [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL (United States); Mendenhall, Nancy P., E-mail: menden@shands.ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL (United States); Hoppe, Bradford S.; Lynch, James [Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL (United States); Olivier, Kenneth [Mayo Clinic, Rochester, MN (United States)

    2012-03-01

    Purpose: To compare the efficacy and toxicity of external-beam radiotherapy (EBRT) to sites of bulky lymphadenopathy in patients with chemotherapy-refractory low-grade non-Hodgkin's lymphoma (NHL) immediately before receiving Bexxar (tositumomab and {sup 131}I) vs. in patients receiving Bexxar alone for nonbulky disease. Methods and Materials: Nineteen patients with chemotherapy-refractory NHL were treated with Bexxar at our institution (University of Florida, Gainesville, FL) from 2005 to 2008. Seventeen patients had Grade 1-2 follicular lymphoma. Ten patients received a median of 20 Gy in 10 fractions to the areas of clinical involvement, immediately followed by Bexxar (EBRT + Bexxar); 9 patients received Bexxar alone. The median tumor sizes before EBRT + Bexxar and Bexxar alone were 4.8 cm and 3.3 cm, respectively. All 5 patients with a tumor diameter >5 cm were treated with EBRT + Bexxar. A univariate analysis of prognostic factors for progression-free survival (PFS) was performed. Results: The median follow-up was 2.3 years for all patients and 3.1 years for 12 patients alive at last follow-up. Of all patients, 79% had a partial or complete response; 4 of the 8 responders in the EBRT + Bexxar group achieved a durable response of over 2 years, including 3 of the 5 with tumors >5 cm. Three of 9 patients treated with Bexxar alone achieved a durable response over 2 years. Actuarial estimates of 3-year overall survival and PFS for EBRT + Bexxar and Bexxar alone were 69% and 38% and 62% and 33%, respectively. The median time to recurrence after EBRT + Bexxar and Bexxar alone was 9 months. Having fewer than 4 involved lymph-node regions was associated with superior PFS at 3 years (63% vs. 18%). There was no Grade 4 or 5 complications. Conclusions: Adding EBRT immediately before Bexxar produced PFS equivalent to that with Bexxar alone, despite bulkier disease. Hematologic toxicity was not worsened. EBRT combined with Bexxar adds a safe and effective therapeutic

  19. Palliative external-beam radiotherapy for bone metastases from hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shinya; Hayashi; Hidekazu; Tanaka; Hiroaki; Hoshi

    2014-01-01

    The incidence of bone metastases(BMs)from hepatocellular carcinoma(HCC)is relatively low compared to those of other cancers,but it has increased recently,especially in Asian countries.Typically,BMs from HCC appear radiologically as osteolytic,destructive,and expansive components with large,bulky soft-tissue masses.These soft-tissue masses are unique to bone metastases from HCC and often replace the normal bone matrix and exhibit expansive growth.They often compress the peripheral nerves,spinal cord,or cranial nerves,causing not only bone pain but also neuropathic pain and neurological symptoms.In patients with spinal BMs,the consequent metastatic spinal cord compression(MSCC)causes paralysis.Skull base metastases(SBMs)with cranial nerve involvement can cause neurological symptoms.Therefore,patients with bony lesions often suffer from pain or neurological symptoms that have a severe,adverse effect on the quality of life.External-beam radiotherapy(EBRT)can effectively relieve bone pain and neurological symptoms caused by BMs.However,EBRT is not yet widely used for the palliative management of BMs from HCC because of the limited number of relevant studies.Furthermore,the optimal dosing schedule remains unclear,despite clinical evidence to support single-fraction ra-diation schedules for primary cancers.In this review,we outline data describing palliative EBRT for BMs from HCC in the context of(1)bone pain;(2)MSCC;and(3)SBMs.

  20. Pattern of failures in gastric cancer patients with lymph node involvement treated by surgery, intraoperative and external beam radiotherapy

    International Nuclear Information System (INIS)

    Aims: High local failure rates in gastric cancer have been reported, up to 67%. To achieve a better local control, we evaluated intraoperative radiotherapy (IORT) and external beam radiotherapy (EBRT) in association with surgery for gastric cancer patients with lymph node involvement. We report here the analysis of the patterns of failure for patients involved in this IORT protocol. Material and methods: Forty-two positive lymph node (N+) gastric cancer patients were operated on (31 total, three subtotal and eight extended gastrectomies) with IORT procedure between 1985 and 1997 (33 males, nine females, mean age 61.3 years). IORT was focused on coeliac area (mean dose 15 Gy), followed by EBRT (46 Gy) in 36 patients. Ten patients were pN1 and 32 were pN2. A concurrent systemic chemotherapy (five Fluoro-Uracil and Cisplatinum) was performed in 14 patients. Results: One patient died postoperatively. Actuarial pN+ 10 year survival rate was 44.8%. The 5 year actuarial local control and disease-free survival rates were 78.8 and 47.5%, respectively. As far as patterns of failure were explored, 5 patients have a local coeliac recurrence (12%) and 12 have distant metastases with no evidence of coeliac recurrence. Conclusion: This retrospective analysis suggests a potential effect of IORT and/or EBRT in promoting local control and long-term survival in gastric cancer patients with lymph node involvement

  1. Treatment machines for external beam radiotherapy

    International Nuclear Information System (INIS)

    Since the inception of radiotherapy soon after the discovery of X rays by Roentgen in 1895, the technology of X ray production has first been aimed towards ever higher photon and electron beam energies and intensities, and more recently towards computerization and intensity modulated beam delivery. During the first 50 years of radiotherapy the technological progress was relatively slow and mainly based on X ray tubes, van de Graaff generators and betatrons. The invention of the 60Co teletherapy unit by H.E. Johns in Canada in the early 1950s provided a tremendous boost in the quest for higher photon energies and placed the cobalt unit at the forefront of radiotherapy for a number of years. The concurrently developed medical linacs, however, soon eclipsed cobalt units, moved through five increasingly sophisticated generations and became the most widely used radiation source in modern radiotherapy. With its compact and efficient design, the linac offers excellent versatility for use in radiotherapy through isocentric mounting and provides either electron or megavoltage X ray therapy with a wide range of energies. In addition to linacs, electron and X ray radiotherapy is also carried out with other types of accelerator, such as betatrons and microtrons. More exotic particles, such as protons, neutrons, heavy ions and negative p mesons, all produced by special accelerators, are also sometimes used for radiotherapy; however, most contemporary radiotherapy is carried out with linacs or teletherapy cobalt units

  2. Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Veres, C; Garsi, J P; Rubino, C; De Vathaire, F; Diallo, I [Inserm, CESP Centre for research in Epidemiology and Population Health, U1018, Radiation Epidemiology Team, F 94807, Villejuif (France); Pouzoulet, F; Bidault, F; Chavaudra, J; Bridier, A; Ricard, M; Ferreira, I; Lefkopoulos, D, E-mail: ibrahim.diallo@igr.f [Institut Gustave Roussy, F-94805, Villejuif (France)

    2010-11-07

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm{sup 3} at 2 years to about 16 cm{sup 3} at 20. In adults, the mean thyroid gland volume was 23.5 {+-} 9 cm{sup 3} for males and 17.5 {+-} 8 cm{sup 3} for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients. (note)

  3. Conservative treatment of a recto-urethral fistula due to savage HIFU for local recurrence of prostate cancer, 5 years after radical prostatectomy and external beam radiotherapy

    OpenAIRE

    Topazio, Luca; Perugia, Claudio; Finazzi-Agro, Enrico

    2012-01-01

    Recto-urethral fistula is one of the most serious complications caused by high-intensity-focused ultrasound used as salvage treatment for recurrence of prostate cancer after brachytherapy or external beam radiotherapy (EBRT). We report the case of a recto-urethral fistula in a 68-year-old patient, who previously had undergone radical prostatectomy and EBRT for prostate cancer (pT3 N0 Mx). The fistula was treated conservatively by an indwelling Foley catheter, without the creation of an intest...

  4. Dependence of some transmission factors on field size and treatment depth in external beam radiation therapy (EBRT) using the theratron equinox 100 cobalt 60 machine

    International Nuclear Information System (INIS)

    The use of beam modifiers in today’s radiotherapy is very important as it attenuates the beam and reduces the dose to the patient; therefore the need to know the amount of attenuation (in terms of a transmission factor) they provide during treatment. The purpose of this research work is to evaluate the variation (or dependence) of the transmission factors (TFs) of block tray and physical wedges (of different angles) as a function of treatment depth and field size using both iso-centric setups, SAD and SSD; and thus compare the results from the two setup techniques. Wedge and tray TF measurements were performed in a full scatter, large water phantom using a 0.04cc ionization chamber and an average photon energy of 1.25MV from a cobalt-60 unit at an SAD/SSD of 100cm at various depths and field sizes with gantry and collimator angles fixed at 0°. From the measurements carried out, the wedge TF of the 15°, 30°, 45°, and 60°, wedges were found to be 0.775±0.005, 0.650±0.010, 0.505±0.015, and 0.280±0.015 respectively; and the tray TF was found to be 0.960±0.003. Also, the results obtained showed that both the wedge TF and the tray TF has a strong linear dependence on treatment depth; however, the variation of the 15°, wedge TF and the tray TF with depth is less significant (less than 2%). Maximum percentage variation for the 15°, wedge for the SAD setup was 1.1% and 1.59% for the SSD setup; and that for the tray was 0.60% for the SAD setup and 0.12% for the SSD setup. Also, the variation of the 15°, 30°, and 45°, wedge TF with field size was less significant (less than 2%); and a weaker dependence was observed with field size as compared to the treatment depth. However, the 60°, wedge showed a significant variation (maximum of 2.22% and 2.88% for the SAD and SSD setups respectively) as an increase in field size was accompanied by an increase in its wedge TF. Also though the tray TF graphically showed a strong linear dependence on field size the

  5. Dose-Volume Parameters of the Corpora Cavernosa Do Not Correlate With Erectile Dysfunction After External Beam Radiotherapy for Prostate Cancer: Results From a Dose-Escalation Trial

    International Nuclear Information System (INIS)

    Purpose: To analyze the correlation between dose-volume parameters of the corpora cavernosa and erectile dysfunction (ED) after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: Between June 1997 and February 2003, a randomized dose-escalation trial comparing 68 Gy and 78 Gy was conducted. Patients at our institute were asked to participate in an additional part of the trial evaluating sexual function. After exclusion of patients with less than 2 years of follow-up, ED at baseline, or treatment with hormonal therapy, 96 patients were eligible. The proximal corpora cavernosa (crura), the superiormost 1-cm segment of the crura, and the penile bulb were contoured on the planning computed tomography scan and dose-volume parameters were calculated. Results: Two years after EBRT, 35 of the 96 patients had developed ED. No statistically significant correlations between ED 2 years after EBRT and dose-volume parameters of the crura, the superiormost 1-cm segment of the crura, or the penile bulb were found. The few patients using potency aids typically indicated to have ED. Conclusion: No correlation was found between ED after EBRT for prostate cancer and radiation dose to the crura or penile bulb. The present study is the largest study evaluating the correlation between ED and radiation dose to the corpora cavernosa after EBRT for prostate cancer. Until there is clear evidence that sparing the penile bulb or crura will reduce ED after EBRT, we advise to be careful in sparing these structures, especially when this involves reducing treatment margins

  6. Prostate-specific antigen (PSA) rate of decline post external beam radiotherapy predicts prostate cancer death

    International Nuclear Information System (INIS)

    Background and purpose: To assess the association between PSA velocity (PSAV) in the first 24 months after external beam radiotherapy (EBRT) and prostate cancer-specific mortality (PCSM) and all cause mortality. Materials and methods: All eligible patients in the South Australian (SA) Prostate Cancer Clinical Outcomes registry were followed. 848 Patients treated by definitive EBRT with more than one PSA recorded in the two year post-treatment were included. We calculated PSAV by linear regression. Results: The mean number of PSA measurements in the 2 year period was 4.4 (SD1.9). The median PSAVs across quartiles (Q1–Q4) were −4.17, −1.29, −0.38 and 0.20 ng/ml/yr. In multivariable analysis, a U-shaped relationship was seen between PSAV and PCSM with Q1–Q4 hazard ratios (HR) being 3.82 (1.46–10.00), 3.07 (1.10–8.58), 1, 5.15 (1.99–13.30) respectively. HR for all cause mortality in a similar model were 1.79 (1.07–2.98), 1.55 (0.93–2.59), 1.00 and 1.74 (1.04–2.90) for Q1 to Q4 respectively. A rapid PSA decline in the first year was a strong predictor of PCSM. However, in the second year PSA increase was positively associated with PCSM. Conclusion: A rapid decline in PSA in the first year following EBRT is positively associated with PCSM. This may be a useful early indicator of the need for additional therapies

  7. External and intraoperative radiotherapy for resectable and unresectable pancreatic cancer: analysis of survival rates and complications

    International Nuclear Information System (INIS)

    Purpose: Clinical results of intraoperative radiotherapy (IORT) and/or external beam radiotherapy (EBRT) for both resectable and unresectable pancreatic cancer were analyzed. Methods and Materials: Between 1980 and 1995, 332 patients with pancreatic cancer were treated with surgery and/or radiation therapy (RT). Of the 332 patients, 157 patients were treated with surgical resection of pancreatic tumor, and the remaining 175 patients had unresectable pancreatic tumors. Among the 157 patients with resected pancreatic cancer, 62 patients were not treated with RT, while 40 patients were treated with EBRT alone (mean RT dose; 46.3 Gy) and 55 patients with IORT (25.2 Gy) ± EBRT (44.0 Gy). On the other hand, among the 175 patients with unresectable pancreatic cancer, 58 patients were not treated with RT, 46 patients were treated with EBRT alone (39.2 Gy), and the remaining 71 patients with IORT (29.3 Gy) ± EBRT (41.2 Gy). Results: For 87 patients with curative resection, the median survival times (MSTs) of the no-RT, the EBRT, and the IORT ± EBRT groups were 10.4, 13.0, and 15.5 months, respectively, without significant difference. For 70 patients with non curative resection, the MSTs of the no-RT, the EBRT, and the IORT ± EBRT groups were 5.3, 8.7, and 6.5 months, respectively. When the EBRT and the IORT ± EBRT groups were combined, the survival rate was significantly higher than that of the no RT group for non curatively resected pancreatic cancers (log rank test; p = 0.028). The 2-year survival probability of the IORT ± EBRT group (16%) was higher than that of the EBRT group (0%). For unresectable pancreatic cancer, the MSTs of 52 patients without distant metastases were 6.7 months for palliative surgery alone, 7.6 months for EBRT alone, and 8.2 months for IORT ± EBRT. The survival curve of the IORT ± EBRT group was significantly better than that of the no-RT group (p 2 years) were obtained by IORT ± EBRT for non curatively resected and unresectable pancreatic

  8. Variation in Use of Androgen Suppression With External-Beam Radiotherapy for Nonmetastatic Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To describe practice patterns associated with androgen suppression (AS) stratified by disease risk group in patients undergoing external-beam radiotherapy (EBRT) for localized prostate cancer. Methods and Materials: We identified 2,184 low-risk, 2,339 intermediate-risk, and 2,897 high-risk patients undergoing EBRT for nonmetastatic prostate cancer diagnosed between January 1, 2004, and December 31, 2005, in the linked Surveillance, Epidemiology, and End Results—Medicare database. We examined the association of patient, clinical, and demographic characteristics with AS use by multivariate logistic regression. Results: The proportions of patients receiving AS for low-risk, intermediate-risk, and high-risk prostate cancer were 32.2%, 56.3%, and 81.5%, respectively. AS use among men in the low-risk disease category varied widely, ranging from 13.6% in Detroit to 47.8% in Kentucky. We observed a significant decline in AS use between 2004 and 2005 within all three disease risk categories. Men aged ≥75 years or with elevated comorbidity levels were more likely to receive AS. Conclusion: Our results identified apparent overuse and underuse of AS among men within the low-risk and high-risk disease categories, respectively. These results highlight the need for clinician and patient education regarding the appropriate use of AS. Practice patterns among intermediate-risk patients reflect the clinical heterogeneity of this population and underscore the need for better evidence to guide the treatment of these patients.

  9. Minimal requirements for quality controls in radiotherapy with external beams

    International Nuclear Information System (INIS)

    Physical dosimetric guidelines have been developed by the Italian National Institute of Health study group on quality assurance in radiotherapy to define protocols for quality controls in external beam radiotherapy. While the document does not determine strict rules or firm recommendations, it suggests minimal requirements for quality controls necessary to guarantee an adequate degree of accuracy in external beam radiotherapy

  10. Intraoperative EBRT and resection for renal cell carcinoma. Twenty-year outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, F.A. [Hospital Gneral Universitario Gregorio Maranon, Madrid (Spain). Dept. of Oncology; Complutense Univ., Madrid (Spain). School of Medicine; Sole, C.V. [Hospital Gneral Universitario Gregorio Maranon, Madrid (Spain). Dept. of Oncology; Complutense Univ., Madrid (Spain). School of Medicine; Instituto de Radiomedicina, Santiago (Spain). Service of Radiation Oncology; Martinez-Monge, R.; Aristu, J. [Clinica Universitaria de Navarra, Pamplona (Spain). Dept. of Radiation Oncology; Azinovic, I. [Hospital de San Jaime, Torrevieja (Spain). Dept. of Radiation Oncology; Zudaire, J.; Berian, J.M. [Clinica Universitaria de Navarra, Pamplona (Spain). Dept. of Urology; Garcia-Sabrido, J.L. [Hospital General Universitario Gregorio Maranon, Madrid (Spain). Dept. of General Surgery

    2013-02-15

    Purpose: We report the outcomes of a multimodality treatment approach combining maximal surgical resection and intraoperative electron radiotherapy (IOERT) with or without external beam radiation therapy (EBRT) in patients with locoregionally (LR) recurrent renal cell carcinoma (RCC) after radical nephrectomy or LR advanced primary RCC. Patients and methods: From 1983 to 2008, 25 patients with LR recurrent (n = 10) or LR advanced primary (n = 15) RCC were treated with this approach. Median patient age was 60 years (range, 16-79 years). Fifteen patients (60%) received perioperative EBRT (median dose, 44 Gy). Surgical resection was R0 (negative margins) in 6 patients (24%) and R1 (residual microscopic disease) in 19 patients (76%). The median dose of IOERT was 14 Gy (range, 9-15). Overall survival (OS) and relapse patterns were calculated using the Kaplan-Meier method. Results: Median follow-up for surviving patients was 22.2 years (range, 3.6-26 years). OS and DFS at 5 and 10 years were 38% and 18% and 19% and 14%, respectively. LR control (tumor bed or regional lymph nodes) and distant metastases-free survival rates at 5 years were 80% and 22%, respectively. The death rate within 30 days of surgery and IOERT was 4% (n = 1). Six patients (24%) experienced acute or late toxicities of grade 3 or higher according to the National Cancer Institute Common Toxicity Criteria (NCI-CTCAE) v4. Conclusion: In patients with LR recurrent or LR advanced primary RCC, a multimodality approach consisting of maximal surgical resection and IOERT with or without adjuvant EBRT yielded encouraging local control results, justifying further evaluation. (orig.)

  11. Use of intraoperative electron beam radiotherapy in the management of retroperitoneal soft tissue sarcomas

    International Nuclear Information System (INIS)

    Purpose: To evaluate the disease control, survival results, and tolerance of intraoperative electron beam radiotherapy (IOERT) as a component of treatment for retroperitoneal soft tissue sarcomas. Methods and Materials: Between March 1981 and September 1995, 87 patients with primary (n=43) or recurrent (n=44) retroperitoneal or intrapelvic sarcomas received IOERT as a component of treatment at the Mayo Clinic. The tumors were high grade in 54 patients (62%) and low grade in 33 (38%). The median tumor size was 10 cm (range 2-36). All patients underwent maximal surgical resection with IOERT; in 72 patients, only microscopic or no residual tumor remained. The IOERT doses ranged from 8.75 to 30 Gy (median 15). All primary tumors received external beam irradiation (EBRT) with a median dose of 48.6 Gy. Thirty-four of the 44 recurrent tumors received EBRT to a median dose of 45 Gy. All patients were followed prospectively for outcome and toxicity evaluation. Results: The median follow-up, based on 46 patients (53%) currently alive, was 3.5 years. The overall estimated 5-year survival was 47%. For patients with tumors ≥10 cm, the 5-year overall survival was significantly poorer (28%) than for those with smaller lesions (60%) (p=0.01). Neither primary vs. recurrent status nor tumor grade had a significant impact on survival. Patients with gross residual tumor had a marginally significantly poorer survival compared with patients with microscopic or no residual tumor, with a 5-year survival rate of 37% and 52%, respectively (p=0.08). A total of 49 patients (56%) experienced failure, including 20 local recurrences (23%). The median time to failure was 2.3 years. Four recurrences were within the IOERT field, 3 within the IOERT and EBRT field, and 13 within the EBRT field alone. The 3- and 5-year estimated local control rate was 77% and 59%, respectively. Local control was marginally significantly affected by the amount of residual tumor, with a 5-year local control rate of 41

  12. Prospective randomised trial on the role of HDR-brachytherapy in addition to external beam radiotherapy for central bronchial carcinoma

    International Nuclear Information System (INIS)

    Objective: In a prospective, randomised trial we investigated the influence of additional High-Dose-Rate-(HDR)-brachytherapy on tumor control and overall survival of patients suffering from inoperable central lung tumors treated with loco-regional external beam radiotherapy (EB-RT). Special attention was given to dose limiting side effects. Methods: Patients randomised in group A received loco-regional EB-RT up to 50 Gy (5 x 2 Gy per week), followed by a boost of 10 Gy also 2 Gy 5 times a week to the primary and adjacent lymphonodular metastases. Patients in group B additionally received an endoluminal HDR-afterloading-radiotherapy (192Ir) with 10 Gy calculated for 5 mm depth one week before and three weeks after EB-RT. Due to the advanced tumor stage, none of the patients received surgery before irradiation. Patients treated with chemotherapy were excluded from the study. Results: Until February 1996 all of 98 patients were evaluated. Both groups are comparable regarding age, gender, Karnofsky Performance State, tumor stage (mostly stage IIIb and IV) and histology. Squamous cell carcinoma (SCC) were found in 69%, whereas the rest consisted of adeno carcinoma (15%), large cell carcinoma (6%) and non small cell carcinoma (NSCLC) (10%), all subsets equally distributed between group A and B. Local control in group A (n=42) lasted for a median of 12 weeks, in group B (n=56) for a median of 21 weeks, a difference which is just significant (p≤0,05). The median overall survival was nearly identical (28 weeks). The subgroup of SCC, however, showed a median survival of 33 (group A) versus 40 weeks (group B), a difference which is not significant (p≤0.09), but might indicate an advantage for this histological group. The most serious side effect was fatal bleeding with 15% in group A and 21% in group B. Conclusions: At present, this study reveals improved local control by a boost of 2x10 Gy 192Ir-HDR-AL in addition to definitive EB-RT (group B) compared to EB-RT alone

  13. Proton beam radiotherapy of iris melanoma

    International Nuclear Information System (INIS)

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control

  14. Monitor tables for electron beams in radiotherapy

    International Nuclear Information System (INIS)

    The application of electron beams in radiotherapy is still based on tables of monitor units, although 3-D treatment planning systems for electron beams are available. This have several reasons: The need for 3-D treatment planning is not recognized; there is no confidence in the calculation algorithm; Monte-Carlo algorithms are too time-consuming; and the effort necessary to measure basic beam data for 3-D planning is considered disproportionate. However, the increasing clinical need for higher dosimetric precision and for more conformal electron beams leads to the requirement for more sophisticated tables of monitor units. The present paper summarizes and discusses the main aspects concerning the preparation of tables of monitor units for electron beams. The measurement equipment and procedures for measuring basic beam data needed for tables of monitor units for electron beams are described for a standard radiation therapy linac. The design of tables of monitor units for standard electron applicators is presented; this design can be extended for individual electron inserts, to variable applicator surface distances, to oblique beam incidence, and the use of bolus material. Typical data of an Elekta linac are presented in various tables. (orig.)

  15. Preoperative external beam radiotherapy and reduced dose brachytherapy for carcinoma of the cervix: survival and pathological response

    International Nuclear Information System (INIS)

    To evaluate the pathologic response of cervical carcinoma to external beam radiotherapy (EBRT) and high dose rate brachytherapy (HDRB) and outcome. Between 1992 and 2001, 67 patients with cervical carcinoma were submitted to preoperative radiotherapy. Sixty-five patients were stage IIb. Preoperative treatment included 45 Gy EBRT and 12 Gy HDRB. Patients were submitted to surgery after a mean time of 82 days. Lymphadenectomy was performed in 81% of patients. Eleven patients with residual cervix residual disease on pathological specimen were submitted to 2 additional insertions of HDRB. median follow up was 72 months. Five-year cause specific survival was 75%, overall survival 65%, local control 95%. Complete pelvic pathological response was seen in 40%. Surgery performed later than 80 days was associated with pathological response. Pelvic nodal involvement was found in 12%. Complete pelvic pathological response and negative lymphnodes were associated with better outcome (p = .03 and p = .005). Late grade 3 and 4 urinary and intestinal adverse effects were seen in 12 and 2% of patients. Time allowed between RT and surgery correlated with pathological response. Pelvic pathological response was associated with improved outcome. Postoperative additional HDRB did not improve therapeutic results. Treatment was well tolerated

  16. Radical External Beam Radiotherapy for Clinically Localized Prostate Cancer in Japan: Changing Trends in the Patterns of Care Process Survey

    International Nuclear Information System (INIS)

    Purpose: To delineate changing trends in radical external beam radiotherapy (EBRT) for prostate cancer in Japan. Methods and Materials: Data from 841 patients with clinically localized prostate cancer treated with EBRT in the Japanese Patterns of Care Study (PCS) from 1996 to 2005 were analyzed. Results: Significant increases in the proportions of patients with stage T1 to T2 disease and decrease in prostate-specific antigen values were observed. Also, there were significant increases in the percentages of patients treated with radiotherapy by their own choice. Median radiation doses were 65.0 Gy and 68.4 Gy from 1996 to 1998 and from 1999 to 2001, respectively, increasing to 70 Gy from 2003 to 2005. Moreover, conformal therapy was more frequently used from 2003 to 2005 (84.9%) than from 1996 to 1998 (49.1%) and from 1999 to 2001 (50.2%). On the other hand, the percentage of patients receiving hormone therapy from 2003 to 2005 (81.1%) was almost the same as that from 1996 to 1998 (86.3%) and from 1999 to 2001 (89.7%). Compared with the PCS in the United States, patient characteristics and patterns of treatments from 2003 to 2005 have become more similar to those in the United States than those from 1996 to 1998 and those from 1999 to 2001. Conclusions: This study indicates a trend toward increasing numbers of patients with early-stage disease and increasing proportions of patients treated with higher radiation doses with advanced equipment among Japanese prostate cancer patients treated with EBRT during 1996 to 2005 survey periods. Patterns of care for prostate cancer in Japan are becoming more similar to those in the United States.

  17. Impact of External Beam Adjuvant Radiotherapy on Health-Related Quality of Life for Long-Term Survivors of Endometrial Adenocarcinoma: A Population-Based Study

    International Nuclear Information System (INIS)

    Purpose: To compare the health-related quality of life (HRQOL) among 5-10-year survivors of Stage I-II endometrial (adeno-)carcinoma (EC) treated with surgery alone or surgery with external beam adjuvant radiotherapy (EBRT) and an age-matched norm population. Methods and Materials: A population-based, cross-sectional survey was conducted by the Eindhoven Cancer Registry. All patients were included who had been diagnosed with EC between 1994 and 1998 (n = 462). Information from the questionnaires returned was linked to data from the Eindhoven Cancer Registry on patient, tumor, and treatment characteristics. Results: Responses were received from 75% of the patients. The analyses were restricted to women with Stage I-II disease at diagnosis, treated with either surgery alone or surgery with adjuvant EBRT, and without recurrent disease or new primary malignancies (n = 264). The patients who had received adjuvant EBRT (n = 80) had had a significantly higher tumor stage and grade at diagnosis (p < 0.0001) and a longer mean time since diagnosis (p = 0.04). Age, number of comorbid diseases, current marital status, nulliparity, education, and occupation were similar for both treatment groups. On multivariate analyses, adjuvant EBRT was independently and negatively associated with the vitality and physical and social well-being scale scores. The HRQOL scores of both treatment groups, however, were similar to those of an age-matched norm population. Conclusion: In general, the HRQOL of EC survivors is good. EC survivors treated with surgery alone had a better HRQOL than women treated with surgery and adjuvant EBRT, although for both groups, the HRQOL was in the range of the norm population

  18. ILBT BOOST FOLLOWING EBRT IN LOCALLY ADVANCED OESOPHAGEAL CARCINOMA- IS IT REALLY CURATIVE OR JUST PALLIATION?

    Directory of Open Access Journals (Sweden)

    Rajeev

    2016-05-01

    Full Text Available INTRODUCTION Oesophageal Cancer is usually associated with late presentation and poor prognosis. Unfortunately, advanced disease at presentation is seen in around 70% oesophageal cancer patients with limited curative option. The main objective of treatment remains palliation. Different treatment modalities were tried in locally advanced oesophageal cancer, but the median survival remains less than 10 months. [1-3] A combination of these modalities in advanced cases has marginally improved the results. Radiotherapy can be external beam (EBRT alone, intraluminal brachytherapy (ILBT alone or combination of both and nowadays IMRT/IGRT with different fractionation schedules have some promising results and needs further exploration through large clinical studies. MATERIAL AND METHODS We evaluated the efficacy and safety of EBRT followed by ILBT in locally advanced unresectable cases of carcinoma oesophagus and compared it with EBRT alone arm with boost. All the patients were administered three cycles of three weekly neoadjuvant chemotherapy (NACT with TPF and further received a total target radiation absorbed dose of 40 Gy/20 fractions/4 weeks. All patients were divided in two arms of 30- each. In arm-1, patients received 3 sessions of ILBT boost of 5 Gy each, a week apart. In this arm, ILBT boost was given using state of the art MicroSelectron HDR brachytherapy machine with Iridium192 source. In arm-2, patients received EBRT boost of 20 Gy/10 fractions (Cobalt-60 Teletherapy machine by three field isocentric technique using Simulix HP Simulator. After completion of treatment, response was evaluated every month, in terms of local control, symptomatic relief like dysphagia, odynophagia, etc. All the patients were followed up regularly for five years. RESULTS Complete response at completion of treatment was 37% vs. 23% in arm-1 & arm-2 respectively although the results were statistically insignificant. There was marked difference in relief of dysphagia

  19. Combined total body X-ray irradiation and total skin electron beam radiotherapy with an improved technique for mycosis fungoides

    International Nuclear Information System (INIS)

    Twelve consecutive patients with advanced stage mycosis fungoides (MF) were treated with combined total body X ray irradiation (TBI) and total skin electron beam radiotherapy (EBRT). Six had generalized plaque disease and dermatopathic nodes, three had tumor stage disease and node biopsy positive for mycosis fungoides, and three had erythroderma/Sezary syndrome. The treatment regimen consisted of split course total body X ray irradiation, given in twice weekly 15 cGy fractions to 75 cGy, then total skin electron beam radiation therapy given in once weekly 400 cGy fractions to a total dose of 2400 cGy. Underdosed areas and areas of greatest initial involvement were boosted 400 cGy twice weekly for an additional 1200 cGy. This was followed by a second course of total body X ray irradiation, to a total dose of 150 cGy. The total skin electron beam radiotherapy technique is a modification of an established six position EBRT technique for mycosis fungoides. Measurements to characterize the beam with and without a lexan scattering plate, demonstrated that the combination of no-plate beams produced better dose uniformity with a much higher dose rate. This improved technique is particularly advantageous for elderly and/or frail patients. Nine (75%) of the 12 patients achieved complete response (CR). The other three had significant improvement with greater than 80% clearing of their disease and resolution of symptoms. All six patients with generalized plaque disease achieved complete response and remained free of disease from 2 to 16 months. Two of three node positive patients also achieved complete response; one, with massive biopsy-documented mycosis fungoides nodal disease and deep open tumors, remained relapse-free over 2 years. Only one of the three patients with erythroderma/Sezary syndrome achieved a complete response, which was short lived

  20. High-Intensity Focused Ultrasound as Salvage Therapy for Patients With Recurrent Prostate Cancer After Radiotherapy

    OpenAIRE

    Song, Wan; Jung, U Seok; Suh, Yoon Seok; Jang, Hyun Jun; Sung, Hyun Hwan; Jeon, Hwang Gyun; Jeong, Byung Chang; Seo, Seong Il; Jeon, Seong Soo; Choi, Han Yong; Lee, Hyun Moo

    2014-01-01

    Purpose To evaluate the oncologic outcomes and postoperative complications of high-intensity focused ultrasound (HIFU) as a salvage therapy after external-beam radiotherapy (EBRT) failure in patients with prostate cancer. Materials and Methods Between February 2002 and August 2010, we retrospectively reviewed the medical records of all patients who underwent salvage HIFU for transrectal ultrasound-guided, biopsy-proven locally recurred prostate cancer after EBRT failure (by ASTRO definition: ...

  1. External beam radiotherapy for thyroid cancer

    International Nuclear Information System (INIS)

    The indications for and techniques of external beam radiotherapy for thyroid tumours can be clearly defined in relation to the histological type of tumour and stage of disease. Localized treatment for carcinoma can easily be accomplished as can wide field irradiation for lymphoma. However, when either extensive lateral neck disease is present or tumour extends into the superior mediastinum, it becomes difficult to adequately encompass the required volume without including the spinal cord. Several techniques are described which overcome this problem and thus allow a radical dose to be given without significant risk of transverse myelitis

  2. External beam radiotherapy for subretinal neovascularization in age-related macular degeneration: is this treatment efficient?

    International Nuclear Information System (INIS)

    Purpose: Control of the natural course of sub retinal neovascularization (SRNV) in age-related macular degeneration (AMD) is difficult. Only a subset of patients is suitable for laser coagulation. This prospective study aimed to determine the efficacy and individual benefit of external beam radiotherapy (EBRT). Methods and Materials: The prospective trial included 287 patients with subfoveal neovascularization due to AMD which was verified by fluorescein angiography. Patients have been treated between January 1996 and October 1997. All patients received a total dose of 16 Gy in 2-Gy daily fractions with 5-6 MeV photons based on computerized treatment planning in individual head mask fixation. This first analysis is based on 73 patients (50 women, 23 men, median age 74.3 years), with a median follow-up of 13.3 months and a minimum follow-up of 11 months. Results: All patients completed therapy and tolerability was good. First clinical control with second angiography was performed 6 weeks after irradiation, then in 3-month intervals. Eighteen patients with SRNV refusing radiotherapy served as a control group and were matched with 18 irradiated patients. After 7 months median visual acuity (VA) was 20/160 for the irradiated and 20/400 for the untreated patients. One year after radiotherapy final median VA was 20/400 in both groups. Conclusion: These results suggest that 16 Gy of conventionally fractionated external beam irradiation slows down the visual loss in exudative AMD for only a few months. Patients' reading vision could not be saved for a long-term run

  3. Quality improvement process to assess tattoo alignment, set-up accuracy and isocentre reproducibility in pelvic radiotherapy patients

    OpenAIRE

    Elsner, Kelly; Francis, Kate; Hruby, George; Roderick, Stephanie

    2014-01-01

    Introduction This quality improvement study tested three methods of tattoo alignment and isocentre definition to investigate if aligning lateral tattoos to minimise pitch, roll and yaw decreased set-up error, and if defining the isocentre using the lateral tattoos for cranio-caudal (CC) position improved isocentre reproducibility. The study population was patients receiving curative external beam radiotherapy (EBRT) for prostate cancer. The results are applicable to all supine pelvic EBRT pat...

  4. Postoperative external beam radiotherapy for medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ha Chung; Lee, Myung Za [College of Medicine, Hanyang Univ., Seoul (Korea, Republic of)

    2000-06-01

    This study was performed to evaluate the effectiveness and tolerance of craniospinal irradiation for patients with medulloblastoma and to define the optimal radiotherapeutic regimen. We retrospectively analyzed the records of 43 patients with medulloblastoma who were treated with external beam craniospinal radiotherapy at our institution between May, 1984 and April, 1998. Median follow up period was 47 months with range of 18 to 86 months. Twenty seven patients were male and sixteen patients were female, a male to female ratio of 1.7:1. Surgery consisted of biopsy alone in 5 patients, subtotal excision in 24 patients, and gross total excision in 14 patients. All of the patients were treated with craniospinal irradiation. All of the patients except four received fat least 5,000 cGy to the posterior fossa and forty patients received more than 3,000 cGy to the spinal cord. The overall survival rates at 5 and 7 years for entire group of patients were 67% and 56%, respectively. Corresponding disease free survival rates were 60% and 51%, respectively. The rates of disease control in the posterior fossa were 77% and 67% at 5 and 7 years. Gross total excision and subtotal excision resulted in 5 year overall survival rates of 76% and 66%, respectively. in contrast, those patients who had biopsy alone had a 5 year survival rate of only 40%. Posterior fossa was a component of failure in 11 of the 18 recurrences. Seven recurrences were isolated to the posterior fossa. Four patients had neuraxis recurrences, three had distant metastasis alone and four had multiple sites of failure, all involving the primary site. Craniospinal irradiation for patients with medulloblastoma is an effective adjuvant treatment without significant treatment related toxicities. There is room for improvement in terms of posterior fossa control, especially in biopsy alone patients. The advances in radiotherapy including hyperfractionation, stereotactic radiosurgery and 3D conformal radiotherapy would be

  5. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Localization of Recurrent Prostate Cancer After External Beam Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To compare the performance of T2-weighted (T2w) imaging and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland in the localization of recurrent prostate cancer in patients with biochemical failure after external beam radiotherapy (EBRT). Methods and Materials: T2-weighted imaging and DCE MRI were performed in 33 patients with suspected relapse after EBRT. Dynamic contrast-enhanced MRI was performed with a temporal resolution of 95 s. Voxels enhancing at 46 s after injection to a greater degree than the mean signal intensity of the prostate at 618 s were considered malignant. Results from MRI were correlated with biopsies from six regions in the peripheral zone (PZ) (base, mid, and apex). The percentage of biopsy core positive for malignancy from each region was correlated with the maximum diameter of the tumor on DCE MRI with a linear regression model. Results: On a sextant basis, DCE MRI had significantly better sensitivity (72% [21of 29] vs. 38% [11 of 29]), positive predictive value (46% [21 of 46] vs. 24% [11 of 45]) and negative predictive value (95% [144 of 152] vs. 88% [135 of 153] than T2w imaging. Specificities were high for both DCE MRI and T2w imaging (85% [144 of 169] vs. 80% [135 of 169]). There was a linear relationship between tumor diameters on DCE MRI and the percentage of cancer tissue in the corresponding biopsy core (r = 0.9, p < 0.001), with a slope of 1.2. Conclusions: Dynamic contrast-enhanced MRI performs better than T2w imaging in the detection and localization of prostate cancer in the peripheral zone after EBRT. This may be helpful in the planning of salvage therapy

  6. Combined brachytherapy and external beam radiotherapy without adjuvant androgen deprivation therapy for high-risk prostate cancer

    International Nuclear Information System (INIS)

    To report the outcomes of patients treated with combined iodine-125 (I-125) brachytherapy and external beam radiotherapy (EBRT) for high-risk prostate cancer. Between 2003 and 2009, I-125 permanent prostate brachytherapy plus EBRT was performed for 206 patients with high-risk prostate cancer. High-risk patients had prostate-specific antigen ≥ 20 ng/mL, and/or Gleason score ≥ 8, and/or Stage ≥ T3. One hundred and one patients (49.0%) received neoadjuvant androgen deprivation therapy (ADT) but none were given adjuvant ADT. Biochemical failure-free survival (BFFS) was determined using the Phoenix definition. The 5-year actuarial BFFS rate was 84.8%. The 5-year cause-specific survival and overall survival rates were 98.7% and 97.6%, respectively. There were 8 deaths (3.9%), of which 2 were due to prostate cancer. On multivariate analysis, positive biopsy core rates and the number of high-risk factors were independent predictors of BFFS. The 5-year BFFS rates for patients in the positive biopsy core rate <50% and ≥50% groups were 89.3% and 78.2%, respectively (p = 0.03). The 5-year BFFS rate for patients with the any single high-risk factor was 86.1%, compared with 73.6% for those with any 2 or all 3 high-risk factors (p = 0.03). Neoadjuvant ADT did not impact the 5-year BFFS. At a median follow-up of 60 months, high-risk prostate cancer patients undergoing combined I-125 brachytherapy and EBRT without adjuvant ADT have a high probability of achieving 5-year BFFS

  7. Additional androgen deprivation makes the difference. Biochemical recurrence-free survival in prostate cancer patients after HDR brachytherapy and external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, Jonas; Tennstedt, Pierre; Beyer, Burkhard; Boehm, Katharina; Tilki, Derya; Salomon, Georg; Graefen, Markus [University Medical Center Hamburg-Eppendorf, Martini-Clinic Prostate Cancer Center, Hamburg (Germany); Lesmana, Hans; Platz, Volker; Petersen, Cordula; Kruell, Andreas; Schwarz, Rudolf [University Medical Center Hamburg-Eppendorf, Department of Radiation oncology, Hamburg (Germany)

    2015-04-01

    The role of additional androgen deprivation therapy (ADT) in prostate cancer (PCa) patients treated with combined HDR brachytherapy (HDR-BT) and external beam radiotherapy (EBRT) is still unknown. Consecutive PCa patients classified as D'Amico intermediate and high-risk who underwent HDR-BT and EBRT treatment ± ADT at our institution between January 1999 and February 2009 were assessed. Multivariable Cox regression models predicting biochemical recurrence (BCR) were performed. BCR-free survival was assessed with Kaplan-Meier analyses. Overall, 392 patients were assessable. Of these, 221 (56.4 %) underwent trimodality (HDR-BT and EBRT and ADT) and 171 (43.6 %) bimodality (HDR-BT and EBRT) treatment. Additional ADT administration reduced the risk of BCR (HR: 0.4, 95 % CI: 0.3-0.7, p < 0.001). D'Amico high-risk patients had superior BCR-free survival when additional ADT was administered (log-rank p < 0.001). No significant difference for BCR-free survival was recorded when additional ADT was administered to D'Amico intermediate-risk patients (log-rank p = 0.2). Additional ADT administration improves biochemical control in D'Amico high-risk patients when HDR-BT and EBRT are combined. Physicians should consider the oncological benefit of ADT administration for these patients during the decision-making process. (orig.) [German] Der Nutzen einer zusaetzlichen Hormonentzugstherapie (ADT, ''androgen deprivation therapy'') fuer Patienten mit Prostatakarzinom (PCa), welche mit einer Kombination aus HDR-Brachytherapie (HDR-BT) und perkutaner Bestrahlung (EBRT) behandelt werden, ist weiterhin ungeklaert. Fuer diese Studie wurden konsekutive, nach der D'Amico-Risikoklassifizierung in ''intermediate'' und ''high-risk'' eingeteilte Patienten ausgewaehlt, die zwischen Januar 1999 und Februar 2009 in unserem Institut eine kombinierte Therapie aus HDR-BT, EBRT ± ADT erhalten haben. Eine

  8. The effect of short term neo-adjuvant androgen deprivation on erectile function in patients treated with external beam radiotherapy for localised prostate cancer: an analysis of the 4- versus 8-month randomised trial (Irish Clinical Oncology Research Group 97-01).

    LENUS (Irish Health Repository)

    Daly, Patricia E

    2012-07-01

    Erectile dysfunction is a common consequence of external beam radiotherapy (EBRT) for prostate cancer. The addition of neo-adjuvant androgen deprivation (NAD) has an indeterminate additive effect. We examined the long-term effect on erectile function (EF) of two durations (4 months: arm 1 and 8 months: arm 2) of NAD prior to radiation (RT) for patients with localised prostate cancer from the Irish Clinical Oncology Research Group (ICORG 97-01) 4- versus 8-month trial. In this study we aimed to (1) analyse the overall effect on EF of NAD in an EBRT population, (2) compare the probability of retained EF over time in an EBRT population treated with either 4 or 8 months of NAD and (3) identify any variables such as risk group and age which may have an additive detrimental effect. This analysis provides unique long term follow up data.

  9. 20 Gy Versus 44 Gy of Supplemental External Beam Radiotherapy With Palladium-103 for Patients With Greater Risk Disease: Results of a Prospective Randomized Trial

    International Nuclear Information System (INIS)

    Purpose: The necessity of external beam radiotherapy (EBRT) as a supplement to prostate brachytherapy remains unknown. We report brachytherapy outcomes for patients with higher risk features randomized to substantially different supplemental EBRT regimens. Methods and Materials: Between December 1999 and June 2004, 247 patients were randomized to 20 Gy vs. 44 Gy EBRT followed by a palladium-103 boost (115 Gy vs. 90 Gy). The eligibility criteria included clinically organ-confined disease with Gleason score 7–10 and/or pretreatment prostate-specific antigen (PSA) level 10–20 ng/mL. The median follow-up period was 9.0 years. Biochemical progression-free survival (bPFS) was defined as a PSA level of ≤0.40 ng/mL after nadir. The median day 0 prescribed dose covering 90% of the target volume was 125.7%; 80 men received androgen deprivation therapy (median, 4 months). Multiple parameters were evaluated for their effect on bPFS. Results: For the entire cohort, the cause-specific survival, bPFS, and overall survival rates were 97.7%, 93.2%, and 80.8% at 8 years and 96.9%, 93.2%, and 75.4% at 10 years, respectively. The bPFS rate was 93.1% and 93.4% for the 20-Gy and 44-Gy arms, respectively (p = .994). However, no statistically significant differences were found in cause-specific survival or overall survival were identified. When stratified by PSA level of ≤10 ng/mL vs. >10 ng/mL, Gleason score, or androgen deprivation therapy, no statistically significant differences in bPFS were discerned between the two EBRT regimens. On multivariate analysis, bPFS was most closely related to the preimplant PSA and clinical stage. For patients with biochemically controlled disease, the median PSA level was <0.02 ng/mL. Conclusion: The results of the present trial strongly suggest that two markedly different supplemental EBRT regimens result in equivalent cause-specific survival, bPFS, and overall survival. It is probable that the lack of benefit for a higher supplemental EBRT

  10. 20 Gy Versus 44 Gy of Supplemental External Beam Radiotherapy With Palladium-103 for Patients With Greater Risk Disease: Results of a Prospective Randomized Trial

    Energy Technology Data Exchange (ETDEWEB)

    Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org [Schiffler Cancer Center/Wheeling Jesuit University, Wheeling, WV (United States); Wallner, Kent E. [Puget Sound Healthcare Corporation, University of Washington, Seattle, WA (United States); Butler, Wayne M.; Galbreath, Robert W. [Schiffler Cancer Center/Wheeling Jesuit University, Wheeling, WV (United States); Taira, Al V. [Western Radiation Oncology Inc, Mountain View, CA (United States); Orio, Peter [Department of Radiation Oncology, Dana Farber Cancer Institute/Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Adamovich, Edward [Department of Pathology, Wheeling Hospital, Wheeling, WV (United States)

    2012-03-01

    Purpose: The necessity of external beam radiotherapy (EBRT) as a supplement to prostate brachytherapy remains unknown. We report brachytherapy outcomes for patients with higher risk features randomized to substantially different supplemental EBRT regimens. Methods and Materials: Between December 1999 and June 2004, 247 patients were randomized to 20 Gy vs. 44 Gy EBRT followed by a palladium-103 boost (115 Gy vs. 90 Gy). The eligibility criteria included clinically organ-confined disease with Gleason score 7-10 and/or pretreatment prostate-specific antigen (PSA) level 10-20 ng/mL. The median follow-up period was 9.0 years. Biochemical progression-free survival (bPFS) was defined as a PSA level of {<=}0.40 ng/mL after nadir. The median day 0 prescribed dose covering 90% of the target volume was 125.7%; 80 men received androgen deprivation therapy (median, 4 months). Multiple parameters were evaluated for their effect on bPFS. Results: For the entire cohort, the cause-specific survival, bPFS, and overall survival rates were 97.7%, 93.2%, and 80.8% at 8 years and 96.9%, 93.2%, and 75.4% at 10 years, respectively. The bPFS rate was 93.1% and 93.4% for the 20-Gy and 44-Gy arms, respectively (p = .994). However, no statistically significant differences were found in cause-specific survival or overall survival were identified. When stratified by PSA level of {<=}10 ng/mL vs. >10 ng/mL, Gleason score, or androgen deprivation therapy, no statistically significant differences in bPFS were discerned between the two EBRT regimens. On multivariate analysis, bPFS was most closely related to the preimplant PSA and clinical stage. For patients with biochemically controlled disease, the median PSA level was <0.02 ng/mL. Conclusion: The results of the present trial strongly suggest that two markedly different supplemental EBRT regimens result in equivalent cause-specific survival, bPFS, and overall survival. It is probable that the lack of benefit for a higher supplemental EBRT dose

  11. High-Dose-Rate Brachytherapy and External-Beam Radiotherapy for Hormone-Naieve Low- and Intermediate-Risk Prostate Cancer: A 7-Year Experience

    Energy Technology Data Exchange (ETDEWEB)

    Aluwini, Shafak, E-mail: s.aluwini@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC, Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Rooij, Peter H. van [Department of Radiation Oncology, Erasmus MC, Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Kirkels, Wim J. [Department of Urology, Erasmus MC, Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Jansen, Peter P.; Praag, John O. [Department of Radiation Oncology, Erasmus MC, Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Bangma, Chris H. [Department of Urology, Erasmus MC, Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Kolkman-Deurloo, Inger-Karine K. [Department of Radiation Oncology, Erasmus MC, Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

    2012-08-01

    Purpose: To report clinical outcomes and early and late complications in 264 hormone-naieve patients with low- and intermediate-risk prostate cancer treated with high-dose-rate brachytherapy (HDR-BT) in combination with external-beam radiotherapy (EBRT). Methods and Materials: Between February 2000 and July 2007, 264 patients underwent HDR-BT in combination with EBRT as a treatment for their low- to intermediate-risk prostate cancer. The HDR-BT was performed using ultrasound-based implantation. The total HDR-BT dose was 18 Gy in 3 fractions within 24 h, with a 6-h minimum interval. The EBRT started 2 weeks after HDR-BT and was delivered in 25 fractions of 1.8 Gy to 45 Gy within 5 weeks. Results: After a mean follow-up of 74.5 months, 4 patients (1.5%) showed prostate-specific antigen progression according to the American Society for Radiation Oncology definition and 8 patients (3%) according to the Phoenix definition. A biopsy-proven local recurrence was registered in 1 patient (0.4%), and clinical progression (bone metastases) was documented in 2 patients (0.7%). Seven-year actuarial freedom from biochemical failure was 97%, and 7-year disease-specific survival and overall survival were 100% and 91%, respectively. Toxicities were comparable to other series. Conclusions: Treatment with interstitial HDR-BT plus EBRT shows a low incidence of late complications and a favorable oncologic outcome after 7 years follow-up.

  12. Optimization approaches for planning external beam radiotherapy

    Science.gov (United States)

    Gozbasi, Halil Ozan

    Cancer begins when cells grow out of control as a result of damage to their DNA. These abnormal cells can invade healthy tissue and form tumors in various parts of the body. Chemotherapy, immunotherapy, surgery and radiotherapy are the most common treatment methods for cancer. According to American Cancer Society about half of the cancer patients receive a form of radiation therapy at some stage. External beam radiotherapy is delivered from outside the body and aimed at cancer cells to damage their DNA making them unable to divide and reproduce. The beams travel through the body and may damage nearby healthy tissue unless carefully planned. Therefore, the goal of treatment plan optimization is to find the best system parameters to deliver sufficient dose to target structures while avoiding damage to healthy tissue. This thesis investigates optimization approaches for two external beam radiation therapy techniques: Intensity-Modulated Radiation Therapy (IMRT) and Volumetric-Modulated Arc Therapy (VMAT). We develop automated treatment planning technology for IMRT that produces several high-quality treatment plans satisfying provided clinical requirements in a single invocation and without human guidance. A novel bi-criteria scoring based beam selection algorithm is part of the planning system and produces better plans compared to those produced using a well-known scoring-based algorithm. Our algorithm is very efficient and finds the beam configuration at least ten times faster than an exact integer programming approach. Solution times range from 2 minutes to 15 minutes which is clinically acceptable. With certain cancers, especially lung cancer, a patient's anatomy changes during treatment. These anatomical changes need to be considered in treatment planning. Fortunately, recent advances in imaging technology can provide multiple images of the treatment region taken at different points of the breathing cycle, and deformable image registration algorithms can

  13. Registering prostate external beam radiotherapy with a boost from high-dose-rate brachytherapy: a comparative evaluation of deformable registration algorithms

    International Nuclear Information System (INIS)

    Registering CTs for patients receiving external beam radiotherapy (EBRT) with a boost dose from high-dose-rate brachytherapy (HDR) can be challenging due to considerable image discrepancies (e.g. rectal fillings, HDR needles, HDR artefacts and HDR rectal packing materials). This study is the first to comparatively evaluate image processing and registration methods used to register the rectums in EBRT and HDR CTs of prostate cancer patients. The focus is on the rectum due to planned future analysis of rectal dose-volume response. For 64 patients, the EBRT CT was retrospectively registered to the HDR CT with rigid registration and non-rigid registration methods in VelocityAI. Image processing was undertaken on the HDR CT and the rigidly-registered EBRT CT to reduce the impact of discriminating features on alternative non-rigid registration methods applied in the software suite for Deformable Image Registration and Adaptive Radiotherapy Research (DIRART) using the Horn-Schunck optical flow and Demons algorithms. The propagated EBRT-rectum structures were compared with the HDR structure using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and average surface distance (ASD). The image similarity was compared using mutual information (MI) and root mean squared error (MSE). The displacement vector field was assessed via the Jacobian determinant (JAC). The post-registration alignments of rectums for 21 patients were visually assessed. The greatest improvement in the median DSC relative to the rigid registration result was 35 % for the Horn-Schunck algorithm with image processing. This algorithm also provided the best ASD results. The VelocityAI algorithms provided superior HD, MI, MSE and JAC results. The visual assessment indicated that the rigid plus deformable multi-pass method within VelocityAI resulted in the best rectum alignment. The DSC, ASD and HD improved significantly relative to the rigid registration result if image processing was applied prior

  14. Role of postoperative radiotherapy for celiac lymph node metastasis from gastric cancer: analysis on 63 patients

    International Nuclear Information System (INIS)

    Objective: To evaluate the role of postoperative radiotherapy for celiac lymph node (LN) metastasis from gastric cancer in the past 6 years. Methods: Sixty-three patients with abdominal LN metastasis after curative resection for gastric cancer were retrospectively analyzed. Clinical characteristics was colleeted including age, gender, status of primary tumor of stomach (size, location and grade), and the number of LN dissected and involved. Of the 63 patients, 36 received local external beam radiotherapy (EBRT) as salvage therapy and were classified as the EBRT group. The irradiation target was local-regional LN. The radiation dose ranged from 40 to 60 Gy in daily 1.8-2.0 Gy fractions, 5 times weekly. The other 27 patients who received chemotherapy were classified as the non-EBRT group. The Kaplan-Meier method was used to evaluate the survival rates, and the Cox regression model was used to identify the predictors of prognosis. Results: After EBRT, complete response and partial response were observed in 31% and 58% of patients, respectively. The clinical obstruction symptoms induced by LN pressure in 18 patients were completely relieved after EBRT. The median survival was 339 clays for the EBRT group and 136 days for the non- EBRT group, the survival rate at 1 and 2 years for patients treated with EBRT vs. without EBRT was 40% vs. 17% and 20% vs. 6%, respectively (P=0.004). Multivariate analysis showed that the level of relative risk (RR) in the EBRT group was reduced to 0.299 (P=0.002). The incidence of death resulting from LN-related complications was lower in the EBRT group. The main cause of death in both groups was distant metastasis. The gastro-intestinal toxicities were the most common side effects during and after EBRT. The RTOG grade 0,1,2 and 3 toxicities were found in 7,17,11 and 1 patients, respectively. No hematologic and hepatic toxicities were observed. Conclusions: Postoperative lymph node metastasis from gastric cancer is sensitive to external beam

  15. External Beam Radiation in Differentiated Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Salem Billan

    2016-01-01

    Full Text Available The treatment of differentiated thyroid carcinoma (DTC is surgery followed in some cases by adjuvant treatment, mostly with radioactive iodine (RAI. External beam radiotherapy (EBRT is less common and not a well-established treatment modality in DTC. The risk of recurrence depends on three major prognostic factors: extra-thyroid extension, patient’s age, and tumor with reduced iodine uptake. Increased risk for recurrence is a major factor in the decision whether to treat the patient with EBRT. Data about the use of EBRT in DTC are limited to small retrospective studies. Most series have demonstrated an increase in loco-regional control. The risk/benefit from giving EBRT requires careful patient selection. Different scoring systems have been proposed by different investigators and centers. The authors encourage clinicians treating DTC to become familiarized with those scoring systems and to use them in the management of different cases. The irradiated volume should include areas of risk for microscopic disease. Determining those areas in each case can be difficult and requires detailed knowledge of the surgery and pathological results, and also understanding of the disease-spreading pattern. Treatment with EBRT in DTC can be beneficial, and data support the use of EBRT in high-risk patients. Randomized controlled trials are needed for better confirmation of the role of EBRT.

  16. Characterization of a homemade ionization chamber for radiotherapy beams.

    Science.gov (United States)

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. PMID:22153889

  17. External beam radiotherapy for retinoblastoma: Pt. 1: Whole eye technique

    International Nuclear Information System (INIS)

    A retrospective analysis has been performed of the results of external beam radiotherapy for retinoblastoma using a whole eye technique. Local tumour control has been assessed in a consecutive series of 175 eyes in 142 children all of whom received external beam radiotherapy as the primary treatment for retinoblastoma. Follow up ranged from 2 to 17 years (median 9 years). Tumour control rates have been analysed with respect to the Reese Ellsworth classification and the series includes eyes in groups I to V. Focal salvage therapy was given for persistent, recurrent, or new tumours after radiotherapy. Following whole eye radiotherapy alone, the overall ocular cure rate was 57%, though with salvage therapy 80% of eyes could be preserved. (author)

  18. Diaphragm motion characterization using chest motion data for biomechanics-based lung tumor tracking during EBRT

    Science.gov (United States)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2016-03-01

    Despite recent advances in image-guided interventions, lung cancer External Beam Radiation Therapy (EBRT) is still very challenging due to respiration induced tumor motion. Among various proposed methods of tumor motion compensation, real-time tumor tracking is known to be one of the most effective solutions as it allows for maximum normal tissue sparing, less overall radiation exposure and a shorter treatment session. As such, we propose a biomechanics-based real-time tumor tracking method for effective lung cancer radiotherapy. In the proposed algorithm, the required boundary conditions for the lung Finite Element model, including diaphragm motion, are obtained using the chest surface motion as a surrogate signal. The primary objective of this paper is to demonstrate the feasibility of developing a function which is capable of inputting the chest surface motion data and outputting the diaphragm motion in real-time. For this purpose, after quantifying the diaphragm motion with a Principal Component Analysis (PCA) model, correlation coefficient between the model parameters of diaphragm motion and chest motion data was obtained through Partial Least Squares Regression (PLSR). Preliminary results obtained in this study indicate that the PCA coefficients representing the diaphragm motion can be obtained through chest surface motion tracking with high accuracy.

  19. External beam radiotherapy synergizes 188Re-liposome against human esophageal cancer xenograft and modulates 188Re-liposome pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Chang CH

    2015-05-01

    Full Text Available Chih-Hsien Chang,1,2 Shin-Yi Liu,3 Chih-Wen Chi,3 Hsiang-Lin Yu,1 Tsui-Jung Chang,1 Tung-Hu Tsai,4 Te-Wei Lee,1 Yu-Jen Chen3–5 1Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan; 2Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 3Department of Medical Research MacKay Memorial Hospital, 4Institute of Traditional Medicine, National Yang-Ming University, 5Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan Abstract: External beam radiotherapy (EBRT treats gross tumors and local microscopic diseases. Radionuclide therapy by radioisotopes can eradicate tumors systemically. Rhenium 188 (188Re-liposome, a nanoparticle undergoing clinical trials, emits gamma rays for imaging validation and beta rays for therapy, with biodistribution profiles preferential to tumors. We designed a combinatory treatment and examined its effects on human esophageal cancer xenografts, a malignancy with potential treatment resistance and poor prognosis. Human esophageal cancer cell lines BE-3 (adenocarcinoma and CE81T/VGH (squamous cell carcinoma were implanted and compared. The radiochemical purity of 188Re-liposome exceeded 95%. Molecular imaging by NanoSPECT/CT showed that BE-3, but not CE81T/VGH, xenografts could uptake the 188Re-liposome. The combination of EBRT and 188Re-liposome inhibited tumor regrowth greater than each treatment alone, as the tumor growth inhibition rate was 30% with EBRT, 25% with 188Re-liposome, and 53% with the combination treatment at 21 days postinjection. Combinatory treatment had no additive adverse effects and significant biological toxicities on white blood cell counts, body weight, or liver and renal functions. EBRT significantly enhanced the excretion of 188Re-liposome into feces and urine. In conclusion, the combination of EBRT with 188Re-liposome might be a potential treatment modality for esophageal cancer. Keywords: Radionuclide

  20. Radiation-related quality of life parameters after targeted intraoperative radiotherapy versus whole breast radiotherapy in patients with breast cancer: results from the randomized phase III trial TARGIT-A

    International Nuclear Information System (INIS)

    Intraoperative radiotherapy (IORT) is a new treatment approach for early stage breast cancer. This study reports on the effects of IORT on radiation-related quality of life (QoL) parameters. Two hundred and thirty women with stage I-III breast cancer (age, 31 to 84 years) were entered into the study. A single-center subgroup of 87 women from the two arms of the randomized phase III trial TARGIT-A (TARGeted Intra-operative radioTherapy versus whole breast radiotherapy for breast cancer) was analyzed. Furthermore, results were compared to non-randomized control groups: n = 90 receiving IORT as a tumor bed boost followed by external beam whole breast radiotherapy (EBRT) outside of TARGIT-A (IORT-boost), and n = 53 treated with EBRT followed by an external-beam boost (EBRT-boost). QoL was collected using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaires C30 (QLQ-C30) and BR23 (QLQ-BR23). The mean follow-up period in the TARGIT-A groups was 32 versus 39 months in the non-randomized control groups. Patients receiving IORT alone reported less general pain (21.3 points), breast (7.0 points) and arm (15.1 points) symptoms, and better role functioning (78.7 points) as patients receiving EBRT (40.9; 19.0; 32.8; and 60.5 points, respectively, P < 0.01). Patients receiving IORT alone also had fewer breast symptoms than TARGIT-A patients receiving IORT followed by EBRT for high risk features on final pathology (IORT-EBRT; 7.0 versus 29.7 points, P < 0.01). There were no significant differences between TARGIT-A patients receiving IORT-EBRT compared to non-randomized IORT-boost or EBRT-boost patients and patients receiving EBRT without a boost. In the randomized setting, important radiation-related QoL parameters after IORT were superior to EBRT. Non-randomized comparisons showed equivalent parameters in the IORT-EBRT group and the control groups

  1. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer

    International Nuclear Information System (INIS)

    Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of the bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of the

  2. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vásquez Osorio, Eliana M., E-mail: e.vasquezosorio@erasmusmc.nl; Kolkman-Deurloo, Inger-Karine K.; Schuring-Pereira, Monica; Zolnay, András; Heijmen, Ben J. M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam 3075 (Netherlands)

    2015-01-15

    Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of the bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of the

  3. Laparoscopic insertion of pelvic tissue expander to prevent radiation enteritis prior to radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Radiation enteritis is a significant complication of external beam radiotherapy (EBRT) to the pelvis, particularly in patients having high dose radiotherapy (>80 Gy) and in those with a low pelvic peritoneal reflection allowing loops of small bowel to enter the radiation field. Laparoscopic insertion and subsequent removal of a pelvic tissue expander before and after external beam radiotherapy is a relatively convenient, safe and effective method for displacing loops of bowel out of the pelvis. We report on a patient with prostate cancer who ordinarily would not have been a candidate for EBRT due to loops of bowel low in the pelvis. With laparoscopic insertion and subsequent removal of a tissue expander, he was able to have radiotherapy to the prostate without developing radiation enteritis

  4. Technologies for Delivery of Proton and Ion Beams for Radiotherapy

    CERN Document Server

    Owen, Hywel; Alonso, Jose; MacKay, Ranald

    2013-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  5. TECHNOLOGIES FOR DELIVERY OF PROTON AND ION BEAMS FOR RADIOTHERAPY

    CERN Document Server

    Owen, H; Alonso, J; Mackay, R

    2014-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  6. Detection of Local, Regional, and Distant Recurrence in Patients With PSA Relapse After External-Beam Radiotherapy Using 11C-Choline Positron Emission Tomography

    International Nuclear Information System (INIS)

    Purpose: An elevated serum prostate-specific antigen (PSA) level cannot distinguish between local-regional recurrences and the presence of distant metastases after treatment with curative intent for prostate cancer. With the advent of salvage treatment such as cryotherapy, it has become important to localize the site of recurrence (local or distant). In this study, the potential of 11C-choline positron emission tomography (PET) to identify site of recurrence was investigated in patients with rising PSA after external-beam radiotherapy (EBRT). Methods and Materials: Seventy patients with histologically proven prostate cancer treated with EBRT and showing biochemical recurrence as defined by American Society for Therapeutic Radiology and Oncology consensus statement and 10 patients without recurrence underwent a PET scan using 400 MBq 11C-choline intravenously. Biopsy-proven histology from the site of suspicion, findings with other imaging modalities, clinical follow-up and/or response to adjuvant therapy were used as comparative references. Results: None of the 10 patients without biochemical recurrence had a positive PET scan. Fifty-seven of 70 patients with biochemical recurrence (median PSA 9.1 ng/mL; mean PSA 12.3 ng/mL) showed an abnormal uptake pattern (sensitivity 81%). The site of recurrence was only local in 41 of 57 patients (mean PSA 11.1 ng/mL at scan), locoregionally and/or distant in 16 of 57 patients (mean PSA 17.7 ng/mL). Overall the positive predictive value and negative predictive value for 11C-choline PET scan were 1.0 and 0.44 respectively. Accuracy was 84%. Conclusions: 11C-choline PET scan is a sensitive technique to identify the site of recurrence in patients with PSA relapse after EBRT for prostate cancer.

  7. External-beam radiotherapy for clinically localized prostate cancer in Osaka, Japan, 1995-2006. Time trends, outcome, and risk stratification

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Yasuo; Inoue, Takehiro [Dept. of Radiation Oncology, Osaka Univ. Graduate School of Medicine (Japan); Suzuki, Osamu [Dept. of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan); Kobayashi, Kana; Yamazaki, Hideya [Dept. of Radiology, Kyoto Prefectural Univ. of Medicine (Japan); Teshima, Teruki [Dept. of Radiology, Suita Municipal Hospital, Osaka (Japan); Yamada, Yuji [Dept. of Radiation Oncology, Kansai Rosai Hospital, Hyogo (Japan); Kotsuma, Tadayuki [Dept. of Radiology, National Hospital Organization Osaka National Hospital (Japan); Koizumi, Masahiko [Faculty of Radiological Technology, School of Health Sciences, Fujita Health Univ., Aichi (Japan); Kagawa, Kazufumi [Dept. of Radiation Oncology, NTT West Osaka Hospital (Japan); Chatani, Masashi [Dept. of Radiology, Osaka Rosai Hospital (Japan); Shimamoto, Shigetoshi [Dept. of Radiation Oncology, Osaka Prefectural General Medical Center (Japan); Tanaka, Eiichi [Dept. of Radiation Oncology, Rinku General Medical Center, Osaka (Japan)

    2009-07-15

    Purpose: To establish an initial database of external-beam radiotherapy (EBRT) for clinically localized prostate cancer used in Osaka, Japan, and, by analyzing the results of the Osaka multicenter cooperative study, to determine time trends, outcome, and applicability of existing and the authors' original risk stratification methods. Patients and methods: Data of 652 patients with clinically localized prostate cancer (T1-4 NO MO) were accrued from July to December 2007. These patients had been treated from 1995 through 2006 with consecutive definitive EBRT of {>=} 60 Gy at eleven institutions, mainly in Osaka. Altogether, 436 patients were eligible for analysis using several risk stratification methods, namely, those of D'Amico et al., the National Comprehensive Cancer Network (NCCN), and Seattle, as well as the authors' original Prostate Cancer Risk Index (PRIX). Results: The number of patients showed a tenfold increase over 10 years, together with a rapid spread of the use of Gleason Score from 0% to > 90% of cases. The dominant RT dose fractionation was 70 Gy/35 fractions (87%). Hormone therapy had been administered to 95% of the patients and the higher PRIX corresponded to the higher rate of hormone usage. 3- and 5-year biochemical relapse-free survival (bRFS) rates were 85% and 70%, respectively. The D'Amico (p = 0.132), NCCN (p = 0.138), Seattle (p = 0.041) and PRIX (p = 0.044) classifications showed weak or no correlation with bRFS, while the own modified three-class PRIX (PRIX 0, 1-5, 6) showed a strong correlation (p = 0.002). Conclusion: The use of prostate EBRT in Japan is still in its infancy, but is rapidly expanding. The short-term outcomes have been satisfactory considering the moderate RT dose. A very high rate of hormone usage may affect the outcome favorably, but also may compromise the usefulness of current risk stratification. (orig.)

  8. Development of Late Toxicity and International Prostate Symptom Score Resolution After External-Beam Radiotherapy Combined With Pulsed Dose Rate Brachytherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate the development of gastrointestinal (GI) toxicity, genitourinary (GU) toxicity, erectile dysfunction, and International Prostate Symptom Score (IPSS) resolution in a cohort of patients treated with external-beam radiotherapy (EBRT) followed by a brachytherapy pulsed dose rate (PDR) boost. Methods and Materials: Between 2002 and 2008, 110 patients were treated with 46-Gy EBRT followed by PDR brachytherapy (24.96-28.80 Gy). The investigated outcome variables, GI toxicity, GU toxicity, erectile dysfunction, and IPSS were prospectively scored at several time points during follow-up. Association between time (as continuous and categorical variable) and the outcome variables was assessed using generalized linear models. Results: No statistically significant association was found between time (continuous) and GI toxicity (odds ratio [OR], 0.97; 95% confidence interval [CI], 0.89-1.06), GU toxicity (OR, 0.97; 95% CI, 0.91-1.03), erectile dysfunction (OR, 1.06; 95% CI, 0.99-1.11), and IPSS (-0.11; 95% CI, -0.41-0.20). Also, no statistically significant association was found between these variables and time as a categorical variable. GU toxicity was associated with IPSS resolution (OR, 1.16; 95% CI, 1.09-1.24). Posttreatment IPSS was associated with pretreatment IPSS (0.52; 95% CI, 0.25-0.79). Conclusions: No accumulation of high-grade toxicity over time could be established for a group of patients treated with EBRT and PDR brachytherapy for prostate cancer, probably because high-grade late toxicity resolves with time. Also, differences in IPSS values among patients are smaller after treatment than before treatment.

  9. Length and quality of survival after external-beam radiotherapy with concurrent continuous 5-fluorouracil infusion for locally unresectable pancreatic cancer

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to evaluate whether external-beam radiotherapy (EBRT) with concurrent continuous 5-fluorouracil (5-FU) infusion affects the length and quality of survival in patients with locally unresectable pancreatic cancer. Methods: Thirty-one patients with histologically proven locally advanced and unresectable pancreatic cancer without distant metastases were evaluated in this prospective randomized trial. Sixteen patients received EBRT (50.4 Gy/28 fractions) with concurrent continuous infusion of 5-FU (200 mg/m2/day), whereas 15 patients received no chemoradiation. The length and quality of survival was analyzed and compared for the two groups. Results: The median survival of 13.2 months and the 1-year survival rate of 53.3% in the chemoradiation group were significantly better than the respective 6.4 months and 0% in the group without chemoradiotherapy (p=0.0009). The average monthly Karnofsky score, a quality of life indicator, was 77.1 in the chemoradiation group, which was significantly higher than the 65.5 in the group without chemoradiotherapy (p<0.0001). The number of hospital days per month of survival was significantly less in the chemoradiation than in the no-therapy group (12.3 vs. 19.0 days, p<0.05). In the chemoradiation group, 5 patients (31%) had a partial response, and 9 (56%) had radiologically stable disease at a median duration of 6.1 months. The patients who had chemoradiation had a lower rate of liver and peritoneal metastases than patients without chemoradiotherapy (31% vs. 64%). Of 10 patients who experienced pain before chemoradiation, 8 (80%) received pain relief that lasted a median of 5.2 months. Conclusions: EBRT with concurrent continuous 5-FU infusion increased the length and quality of survival as compared to no chemoradiotherapy and provided a definite palliative benefit for patients with unresectable pancreatic cancer

  10. Beam monitoring in radiotherapy and hadron-therapy

    International Nuclear Information System (INIS)

    Radiotherapy techniques have evolved over the past twenty years. For photon beams, the development of tools such as multi leaf collimators, machines such as Cyberknife or tomo-therapy, have improved the conformation of treatments to the tumor volume and lowered maximum dose to healthy tissue. In another register, the use of proton-therapy is expanding in all countries and the development of carbon ions beams for hadron-therapy is also increasing. If techniques improve, the control requirements for the monitoring of the dose administered to patients are always the same. This document presents, first, the ins and outs of the different techniques of external beam radiotherapy: photon treatments, protons and hadrons. Starting from the basis of clinical requirements, it sets the variables to be measured in order to ensure the quality of treatment for the different considered modalities. It then describes some implementations, based on precise and rigorous specifications, for the monitoring and measurement of beams delivered by external beam radiotherapy equipments. Two instrumental techniques are particularly highlighted, plastic scintillators dosimetry for the control of megavoltage photon beams and ionization chamber dosimetry applied to proton-therapy or radiobiology experiments conducted at the GANIL facility. Analyzes and perspectives, based on the recent developments of treatment techniques, are delivered in conclusion and can serve as guide for future instrumental developments. (author)

  11. Intraoperative radiotherapy (IORT is an option for patients with localized breast recurrences after previous external-beam radiotherapy

    Directory of Open Access Journals (Sweden)

    Schaefer Joerg

    2007-09-01

    Full Text Available Abstract Background For patients suffering of recurrent breast cancer within the irradiated breast, generally mastectomy is recommended. The normal tissue tolerance does not permit a second full-dose course of radiotherapy to the entire breast after a second breast-conserving surgery (BCS. A novel option is to treat these patients with partial breast irradiation (PBI. This approach is based on the hypothesis that re-irradiation of a limited volume will be effective and result in an acceptable frequency of side effects. The following report presents a single center experience with intraoperative radiotherapy (IORT during excision of recurrent breast cancer in the previously irradiated breast. Methods Between 4/02 and 11/06, 15 patients were treated for in-breast recurrences at a median of 10 years (3–25 after previous EBRT (10 recurrences in the initial tumor bed, 3 elsewhere in-breast failures, 2 invasive recurrences after previous DCIS. Additional 2 patients were selected for IORT with new primary breast cancer after previous partial breast EBRT for treatment of Hodgkin's disease. IORT with a single dose of 14.7 – 20 Gy 50 kV X-rays at the applicator surface was delivered with the Intrabeam™-device (Carl Zeiss, Oberkochen, Germany. Results After a median follow-up of 26 months (1–60, no local recurrence occurred. 14 out of 17 patients are alive and free of disease progression. Two patients are alive with distant metastases. One patient died 26 months after BCS/IORT due to pulmonary metastases diagnosed 19 months after BCS/IORT. Acute toxicity after IORT was mild with no Grade 3/4 toxicities and cosmetic outcome showed excellent/good/fair results in 7/7/3 cases. Conclusion IORT for recurrent breast cancer using low energy X-rays is a valuable option for patients with recurrent breast cancer after previous radiotherapy.

  12. Shielding in electron beams used in radiotherapy

    International Nuclear Information System (INIS)

    The interactions of electron beams with initial energies between 7 and 30 MeV have been studied in various materials including polystyrene, aluminium, copper and lead. The following experimental results have been found: estimation of measurement point displacement in a cylindrical chamber and of its variations with electron beam energy, empirical relations between the energy at the surface and the practical range of the electrons in various materials, an estimation of the relative ionisation due to the 'bremsstrahlung' measured behind different materials with beam complete shielding. Improvement of electron beam collimation is suggested after analysis of the dose distribution behind partial shielding

  13. Calibration of reference dosimeters for external beam radiotherapy

    International Nuclear Information System (INIS)

    Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. The role of Secondary Standards Dosimetry Laboratories (SSDLs) is crucial in providing traceable calibrations to hospitals, since they disseminate calibrations at specific radiation qualities appropriate to the use of radiation measuring instruments. To contribute to harmonization and consistency in radiation measurements, the IAEA and the World Health Organization (WHO) created a network of SSDLs in 1976. To provide SSDLs with a practical guide on calibration and quality control procedures in radiotherapy dosimetry, the IAEA published a manual in 1995 entitled Calibration of Dosimeters Used in Radiotherapy (Technical Reports Series (TRS) No. 374). The manual was a revision of a report, Calibration of Dose Meters Used in Radiotherapy (TRS-185), published in 1979. Although much of TRS-374 remains relevant, there are a number of reasons for preparing a new report, including the development of new dosimetry standards and an increased emphasis on implementing quality assurance systems to help calibration laboratories provide documented assurance to the user community of their commitment to offering consistent and reliable results. This report is not simply a revision of TRS-374, and should be regarded as a new publication with a new structure. Nevertheless, some material, especially that related to the calibration of dosimeters in terms of air kerma for kilovoltage X rays, has been extracted from TRS-374. It fulfils the need for a systematic and standardized approach to the calibration of reference dosimeters used in external beam radiotherapy by the SSDLs. It provides a framework for the operation of an SSDL within the international measurement system, a methodology for the calibration of instruments, and related quality control procedures to

  14. A criterion-based audit of the technical quality of external beam radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the technical quality of external beam radiotherapy for prostate cancer in Canada. Methods: This was a multi-institution, retrospective study of a random sample of patients undergoing radiotherapy (RT) for prostate cancer in Canada. Patterns of care were determined by abstracting details of the patients’ management from original records. The quality of patient’s technical care was measured against a previously published, comprehensive suite of quality indicators. Results: 32 of the 37 RT centres participated. The total study population of 810 patients included 25% low-risk, 44% intermediate-risk, and 28% high-risk cases. 649 received external beam RT (EBRT) only, for whom compliance with 12 indicators of the quality of pre-treatment assessment ranged from 56% (sexual function documented) to 96% (staging bone scan obtained in high-risk patients). Compliance with treatment-related indicators ranged from 78% (dose to prostate ⩾74 Gy in intermediate risk patients not receiving hormone therapy) to 100% (3DCRT or IMRT plan). Compliance varied among centres; no centre demonstrated 100% compliance on all indicators and every centre was 100% compliant on at least some indicators. The number of assessment-related indicators (n = 13) with which a given centre was 100% compliant ranged from 4 to 11 (median 7) and the number of the treatment-specific indicators (n = 8) with which a given centre was 100% compliant ranged from 6 to 8 (median 8). ADT therapy was utilised in most high-risk cases (191, 92.3%). Conclusions: While patterns of prostate cancer care in Canada vary somewhat, compliance on the majority of quality indicators is very high. However, all centres showed room for improvement on several indicators and few individual patients received care that met target benchmarks on all quality measures. This variation is particularly important for indicators such as delivered dose where impact on disease outcome is known to exist, and suggests that

  15. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    International Nuclear Information System (INIS)

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R and D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R and D's will be presented together with clinical results and basic research activities at HIMAC

  16. A device for a proton beam energy control for radiotherapy

    International Nuclear Information System (INIS)

    A Medical-Technical Facility for hadron radiotherapy based on the JINR DLNP phasotron has been constructed and put into operation. Upgrading of methods, hardware and software for radiotherapy is one of the main tasks for further development of the Facility. This article concerns one of the fields of this work, that is the development of equipment for dynamic irradiation of a deep lying target - the construction of a device for the proton beam energy control and measurement of its depth-dose curve in a treatment room. (author)

  17. Validating dose rate calibration of radiotherapy photon beams through IAEA/WHO postal audit dosimetry service

    International Nuclear Information System (INIS)

    In external beam radiation therapy (EBRT), the quality assurance (QA) of the radiation beam is crucial to the accurate delivery of the prescribed dose to the patient. One of the dosimetric parameters that require monitoring is the beam output, specified as the dose rate on the central axis under reference conditions. The aim of this project was to validate dose rate calibration of megavoltage photon beams using the International Atomic Energy Agency (IAEA)/World Health Organisation (WHO) postal audit dosimetry service. Three photon beams were audited: a 6 MV beam from the low-energy linac and 6 and 18 MV beams from a dual high-energy linac. The agreement between our stated doses and the IAEA results was within 1% for the two 6 MV beams and within 2% for the 18 MV beam. The IAEA/WHO postal audit dosimetry service provides an independent verification of dose rate calibration protocol by an international facility. (author)

  18. Olfactory neural tumours - the role of external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Slevin, N.J.; Irwin, C.J.R.; Banerjee, S.S.; Path, F.R.C.; Gupta, N.K.; Farrington, W.T. [Christie Hospital and Holt Radium Inst., Manchester (United Kingdom)

    1996-11-01

    Olfactory neuroblastoma is an uncommon tumour arising in the nasal cavity or paranasal sinuses. We report the management of nine cases treated with external beam radiotherapy subsequent to surgery, either attempted definitive removal or biopsy only. Recent refinements in pathological evaluation of these tumours are discussed. Seven cases were deemed classical olfactory neuroblastoma whilst two were classified as neuroendocrine carcinoma. The clinical features, radiotherapy technique and variable natural history are presented. Seven of eight patients treated radically were controlled locally, with a minimum follow-up of two years. Three patients developed cervical lymph node disease and three patients died of systemic metastatic disease. Suggestions are made as to which patients should have en-bloc resection rather than definitive radiotherapy. (author).

  19. Olfactory neural tumours - the role of external beam radiotherapy

    International Nuclear Information System (INIS)

    Olfactory neuroblastoma is an uncommon tumour arising in the nasal cavity or paranasal sinuses. We report the management of nine cases treated with external beam radiotherapy subsequent to surgery, either attempted definitive removal or biopsy only. Recent refinements in pathological evaluation of these tumours are discussed. Seven cases were deemed classical olfactory neuroblastoma whilst two were classified as neuroendocrine carcinoma. The clinical features, radiotherapy technique and variable natural history are presented. Seven of eight patients treated radically were controlled locally, with a minimum follow-up of two years. Three patients developed cervical lymph node disease and three patients died of systemic metastatic disease. Suggestions are made as to which patients should have en-bloc resection rather than definitive radiotherapy. (author)

  20. Nuclear data for proton beam radiotherapy

    International Nuclear Information System (INIS)

    A consultants meeting organized by the International Atomic Energy Agency (IAEA) concluded that there is a strong need for a program of work focused on nuclear data evaluations for charged-particle therapeutic applications. An IAEA Coordinated Research Project named 'Heavy charged-particle interaction data for radiotherapy' was thus initiated in 2007. Here we describe our participation in this project. The main goal of our work is the selection and comparison of nuclear data for nuclear reactions induced by protons at low to intermediate energies (E<250 MeV). The library EXFOR was used as the main experimental data base; two different versions of EMPIRE II were systematically used to provide results according to theoretical models. The Monte Carlo preequilibrium model is the most expressive one in this project. Graphs are presented as results. (author)

  1. Monitoring external beam radiotherapy using real-time beam visualization

    International Nuclear Information System (INIS)

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd2O2S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure

  2. Monitoring external beam radiotherapy using real-time beam visualization

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Cesare H. [Department of Mechanical Engineering and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  3. Efficacy and Safety of High-Dose-Rate Brachytherapy of Single Implant with Two Fractions Combined with External Beam Radiotherapy for Hormone-Naïve Localized Prostate Cancer

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the efficacy and safety of high-dose-rate (HDR) brachytherapy of a single implant with two fractions plus external beam radiotherapy (EBRT) for hormone-naïve prostate cancer in comparison with radical prostatectomy. Of 150 patients with localized prostate cancer (T1c–T2c), 59 underwent HDR brachytherapy plus EBRT, and 91 received radical prostatectomy. The median follow-up of patients was 62 months for HDR brachytherapy plus EBRT, and 64 months for radical prostatectomy. In patient backgrounds between the two cohorts, the frequency of T2b plus T2c was greater in HDR brachytherapy cohort than in prostatectomy cohort (27% versus 12%, p = 0.029). Patients in HDR brachytherapy cohort first underwent 3D conformal RT with four beams to the prostate to an isocentric dose of 50 Gy in 25 fractions and then, a total of 15–18 Gy in two fractions at least 5 hours apart. We prescribed 9 Gy/fraction for target (prostate gland plus 3 mm lateral outside margin and seminal vesicle) using CT image method for radiation planning. The total biochemical failure-free control rates (BF-FCR) at 3 and 5 years for the HDR brachytherapy cohort, and for the prostatectomy cohort were 92% and 85%, and 72% and 72%, respectively (significant difference, p = 0.0012). The 3-and 5-year BF-FCR in the HDR brachytherapy cohort and in the prostatectomy cohort by risk group was 100 and 100%, and 80 and 80%, respectively, for the low-risk group (p = 0.1418); 92 and 92%, 73 and 73%, respectively, for the intermediate-risk group (p = 0.0492); and 94 and 72%, 45 and 45%, respectively, for the high-risk group (p = 0.0073). After HDR brachytherapy plus EBRT, no patient experienced Grade 2 or greater genitourinay toxicity. The rate of late Grade 1 and 2 GI toxicity was 6% (n = 4). No patient experienced Grade 3 GI toxicity. HDR brachytherapy plus EBRT is useful for treating patients with hormone-naïve localized prostate cancer, and has low GU and GI toxicities

  4. Is modern external beam radiotherapy with androgen deprivation therapy still a viable alternative for prostate cancer in an era of robotic surgery and brachytherapy: a comparison of Australian series

    International Nuclear Information System (INIS)

    We compare the results of modern external-beam radiotherapy (EBRT), using combined androgen deprivation and dose-escalated intensity-modulated radiotherapy with MRI-CT fusion and daily image guidance with fiducial markers (DE-IG-IMRT), with recently published Australian series of brachytherapy and surgery. Five-year actuarial biochemical disease-free survival (bDFS), metastasis-free survival (MFS) and prostate cancer-specific survival (PCaSS) were calculated for 675 patients treated with DE-IG-IMRT and androgen deprivation therapy (ADT). Patients had intermediate-risk (IR) and high-risk (HR) disease. A search was conducted identifying Australian reports from 2005 onwards of IR and HR patients treated with surgery or brachytherapy, reporting actuarial outcomes at 3 years or later. With a median follow-up of 59 months, our 5-year bDFS was 93.3% overall: 95.5% for IR and 91.3% for HR disease. MFS was 96.9% overall (99.0% IR, 94.9% HR), and PCaSS was 98.8% overall (100% IR, 97.7% HR). Prevalence of Grade 2 genitourinary and gastrointestinal toxicity at 5 years was 1.3% and 1.6%, with 0.3% Grade 3 genitourinary toxicity and no Grade 3 gastrointestinal toxicity. Eight reports of brachytherapy and surgery were identified. The HDR brachytherapy series' median 5-year bDFS was 82.5%, MFS 90.0% and PCaSS 97.9%. One surgical series reported 5-year bDFS of 65.5% for HR patients. One LDR series reported 5-year bDFS of 85% for IR patients. Modern EBRT is at least as effective as modern Australian surgical and brachytherapy techniques. All patients considering treatment for localised prostate cancer should be referred to a radiation oncologist to discuss EBRT as an equivalent option.

  5. Modelling beam transport and biological effectiveness to develop treatment planning for ion beam radiotherapy

    CERN Document Server

    Grzanka, Leszek

    2014-01-01

    Radiation therapy with carbon ions is a novel technique of cancer radiotherapy, applicable in particular to treating radioresistant tumours at difficult localisations. Therapy planning, where the medical physicist, following the medical prescription, finds the optimum distribution of cancer cells to be inactivated by their irradiation over the tumour volume, is a basic procedure of cancer radiotherapy. The main difficulty encountered in therapy planning for ion radiotherapy is to correctly account for the enhanced radiobiological effectiveness of ions in the Spread Out Bragg Peak (SOBP) region over the tumour volume. In this case, unlike in conventional radiotherapy with photon beams, achieving a uniform dose distribution over the tumour volume does not imply achieving uniform cancer cell inactivation. In this thesis, an algorithm of the basic element (kernel) of a treatment planning system (TPS) for carbon ion therapy is developed. The algorithm consists of a radiobiological part which suitably corrects for ...

  6. Intraoperative and external beam radiotherapy for pancreatic carcinoma; Intraoperative und perkutane Radiotherapie des Pankreaskarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Eble, M.J. [Abt. Klinische Radiologie, Radiologische Universitaetsklinik Heidelberg (Germany); Maurer, U. [Klinikum der Stadt Mannheim (Germany). Inst. fuer Radiologie

    1996-05-01

    Therapeutic strategies in the treatment of pancreatic carcinoma are based on the high number of non-resectable cancers, the high relative radioresistance and the high distant metastases rate. Even in curatively resected carcinomas, a locally effective treatment modality is needed because of the risk of microscopical residual disease in the peripancreatic tissue. The efficacy of radiotherapy is dose dependent. Based on an analysis of published data a dose of more than 50 Gy is recommended, resulting in a high morbidity rate with external beam radiotherapy alone. The use of intraoperative radiotherapy allows locally restricted dose escalation without increased perioperative morbidity. In adjuvant and in primary treatment, local tumor control was improved (70-90%). With palliative intent, pain relief was obtained rapidly in over 60% of patients and led to improved patient performance. As a result of the high distant metastases rate, even in curatively resected carcinomas, the overall prognosis could not be significantly improved. Further dose escalation is limited by the increasing incidence of upper gastrointestinal bleeding (20-30%). (orig.) [Deutsch] Therapiestrategien beim Pankreaskarzinom werden bestimmt durch den hohen Anteil primaer nicht resektabler Karzinome, der hohen relativen Strahlenresistenz und der hohen Fernmetastasierungsrate. Selbst kurativ resezierte Karzinome erfordern durch ihre hohe lokale Tumorzellpersistenz eine lokal effektive adjuvante Behandlungsmassnahme. Die Effektivitaet einer Radiotherapie ist dosisabhaengig. Aus der Analyse publizierter Daten wird eine Dosis von >50 Gy, welche bei der alleinigen perkutanen Bestrahlung mit einer hohen Morbiditaet verbunden ist, empfohlen. Mit der intraoperativen Radiotherapie ist eine lokal begrenzte Dosiseskalation ohne erhoehte perioperative Morbiditaet moeglich. Sowohl in der adjuvanten als auch in der primaeren Behandlung kann die lokale Tumorkontrolle deutlich verbessert werden (70-90%). Unter

  7. Clinical tests of large area thermoluminescent detectors under radiotherapy beams

    International Nuclear Information System (INIS)

    Two-dimensional (2D) thermoluminescence (TL) dosimetry systems based on LiF:Mg,Cu,P, together with the newly developed, based on CaSO4:Dy, were tested under radiotherapy beams. The detectors were irradiated in a water phantom with 6 MV X-ray beams from linac and read with a dedicated TLD reader. Dose distributions of differently shaped fields and of a full stereotactic plan were measured and compared with planned distributions. Maximum distance-to-agreement (DTA) in the penumbra region was 1 mm for both LiF:Mg,Cu,P and CaSO4:Dy TL sheets, for all the measured fields. Maximum percentage dose difference (DA%) between planned and measured dose value in low dose gradient regions was up to 11% for LiF:Mg,Cu,P TL sheets and 18% for CaSO4:Dy TL sheets. Concerning the full stereotactic plan, the percentage of points with γ-index below 1 is 54.9% for the LiF:Mg,Cu,P-based foil and 96.9% for the CaSO4:Dy TL sheets. Both 2D TL detector types can be considered to be a promising tool for bi-dimensional dose measurements in radiotherapy. Non-homogeneity, presumably due to the TL sheets manufacture, still affects dosimetric distribution and the agreement between planned and measured distributions may depend on the chosen sample. - Highlights: ► Thermoluminescence films were tested under radiotherapy beams. ► The detectors were irradiated in a water phantom and read with a dedicated TLD reader. ► Dose distributions of treatment plans were measured and compared with planned ones. ► Non-homogeneity, maybe due to sheets manufacture, still affects detectors response. ► If properly corrected, TL films can be considered for 2D dose verification

  8. Potential benefits of π meson beams for radiotherapy

    International Nuclear Information System (INIS)

    After a brief survey of the history of the discovery and production of mesons, their main characteristics and the principle of their production are summarized. The interactions with matter of the positive, negative and neutral forms are pointed out at the levels of target, beams transfer and biological tissues. The attention is especially drawn on the characteristics of energy deposition by particles issued from disintegrations produced by negative pions at the end of their tracks; these characteristics materialize the interest for radiotherapy by negative pions

  9. Usefulness of Positron Emission Tomography With Fluorine-18-Fluorodeoxyglucose in Predicting Treatment Response in Unresectable Hepatocellular Carcinoma Patients Treated With External Beam Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To assess the significance of the ratio between standardized uptake values (SUV) of tumor and normal liver tissue obtained from positron emission tomography with fluorine-18-fluorodeoxyglucose (FDG-PET) in predicting the response of hepatocellular carcinoma (HCC) patients treated with external beam radiotherapy (EBRT). Methods and Materials: We retrospectively analyzed 35 HCC patients who were treated with EBRT between January 2004 and June 2007. All patients underwent FDG-PET in which SUV values were obtained from tumor and normal liver tissues and were used to calculate the ratios (SUVTumor/SUVLiver). After FDG-PET, patients received liver treatment including concurrent chemoradiation, transarterial chemoembolization plus RT, or intraarterial chemotherapy plus RT. Using three-dimensional conformal RT, median dose of 45 Gy was delivered in conventional fractions. Patients underwent abdominal/pelvic CT 1 month after RT, and treatment responses were evaluated according to the Response Evaluation Criteria in Solid Tumors criteria. Results: Patients were divided into high-SUV ratio group (n = 20) and low-SUV ratio group (n = 15) according to SUV ratio at a cutoff value of 2.5. Objective responses consisting of either complete response (CR) or partial response (PR) were observed in 16 and 6 patients (46% vs. 17%, p = 0.015), respectively; median survivals after RT were 8 months and 5 months (p = 0.41) for the high-SUV ratio group and the low-SUV ratio group, respectively. Rates of intrahepatic metastases (9% vs. 11%, p = 0.39) and distant metastases (32% vs. 32%, p = 0.27) showed no significant difference between two groups. Conclusions: External beam RT for HCC patients with higher SUV ratios resulted in higher response rates than for patients with lower SUV ratios. Treatment of HCC with higher SUV ratios did not result in increased survival; high rates of intrahepatic and distant metastases in both SUV groups may have affected patient survival. SUV ratios

  10. Combined external beam and intraluminal radiotherapy for irresectable Klatskin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schleicher, U.M. [Klinik fuer Strahlentherapie, Technische Hochschule Aachen (Germany); Staatz, G. [Klinik fuer Radiologische Diagnostik, Technische Hochschule Aachen (Germany); Alzen, G. [Klinik fuer Radiologische Diagnostik, Technische Hochschule Aachen (Germany); Abt. Kinderradiologie, Giessen Univ. (Germany); Andreopoulos, D. [Klinik fuer Strahlentherapie, Technische Hochschule Aachen (Germany); BOC Oncology Centre, Nikosia (Cyprus)

    2002-12-01

    Background: In most cases of proximal cholangiocarcinoma, curative surgery is not possible. Radiotherapy can be used for palliative treatment. We report our experience with combined external beam and intraluminal radiotherapy of advanced Klatskin's tumors. Patients and Methods: 30 patients were treated for extrahepatic proximal bile duct cancer. Our schedule consisted for external beam radiotherapy (median dose 30 Gy) and a high-dose-rate brachytherapy boost (median dose 40 Gy) delivered in four or five fractions, which could be applied completely in twelve of our patients. 15 patients in the brachytherapy and nine patients in the non-brachytherapy group received additional low-dose chemotherapy with 5-fluorouracil. Results: The brachytherapy boost dose improved the effect of external beam radiotherapy by increasing survival from a median of 3.9 months in the non-brachytherapy group to 9.1 months in the brachytherapy group. The effect was obvious in patients receiving a brachytherapy dose above 30 Gy, and in those without jaundice at the beginning of radiotherapy (p<0.05). Conclusions: The poor prognosis in patients with advanced Klatskin's tumors may be improved by combination therapy, with the role of brachytherapy and chemotherapy still to be defined. Our results suggest that patients without jaundice should be offered brachytherapy, and that a full dose of more than 30 Gy should be applied. (orig.) [German] Hintergrund: Bei den meisten Patienten mit proximalen Cholangiokarzinomen ist eine kurative Operation nicht mehr moeglich. Im Rahmen der Palliativbehandlung kann die Strahlentherapie eingesetzt werden. Wir berichten ueber unsere Erfahrungen mit der Kombination aus perkutaner und intraluminaler Strahlentherapie fortgeschrittener Klatskin-Tumoren. Patienten und Methode: 30 Patienten wurden wegen extrahepatischer proximaler Gallengangskarzinome behandelt. Unser Therapieschema umfasste eine perkutane Strahlentherapie (mediane Dosis: 30 Gy) sowie einen

  11. Does obesity hinder radiotherapy in endometrial cancer patients? The implementation of new techniques in adjuvant radiotherapy – focus on obese patients

    Directory of Open Access Journals (Sweden)

    Małgorzata Moszyńska-Zielińska

    2014-05-01

    Full Text Available The increasing incidence of obesity in Poland and its relation to endometrioid endometrial cancer (EEC is resulting in the increasing necessity of treating obese women. Treatment of an overweight patient with EEC may impede not only the surgical procedures but also radiotherapy, especially external beam radiotherapy (EBRT. The problems arise both during treatment planning and when delivering each fraction due to the difficulty of positioning such a patient – it implies the danger of underdosing targets and overdosing organs at risk. Willingness to use dynamic techniques in radiation oncology has increased for patients with EEC, even those who are obese. During EBRT careful daily verification is necessary for both safety and treatment accuracy. The most accurate method of verification is cone beam computed tomography (CBCT with soft tissue assessment, although it is time consuming and often requires a radiation oncologist. In order to improve the quality of such treatment, the authors present the practical aspects of planning and treatment itself by means of dynamic techniques in EBRT. The authors indicate the advantages and disadvantages of different types of on-board imaging (OBI verification images. Considering the scanty amount of literature in this field, it is necessary to conduct further research in order to highlight proper planning and treatment of obese endometrial cancer patients. The review of the literature shows that all centres that wish to use EBRT for gynaecological tumours should develop their own protocols on qualification, planning the treatment and methods of verifying the patients’ positioning.

  12. Intensity modulated radiotherapy (IMRT) in bilateral retinoblastoma

    International Nuclear Information System (INIS)

    External beam radiotherapy (EBRT) for retinoblastoma has traditionally been done with conventional radiotherapy techniques which resulted high doses to the surrounding normal tissues. A 20 month-old girl with group D bilateral retinoblastoma underwent intensity modulated radiotherapy (IMRT) to both eyes after failing chemoreduction and focal therapies including cryotherapy and transpupillary thermotherapy. In this report, we discuss the use of IMRT as a method for reducing doses to adjacent normal tissues while delivering therapeutic doses to the tumour tissues compared with 3-dimensional conformal radiotherapy (3DCRT). At one year follow-up, the patient remained free of any obvious radiation complications. Image guided IMRT provides better dose distribution than 3DCRT in retinoblastoma eyes, delivering the therapeutic dose to the tumours and minimizing adjacent tissue damage

  13. Status of Radiotherapy in Kenya: The Milestones and Challenges

    International Nuclear Information System (INIS)

    According to Gobacan 2012, seventy eight (78) Kenyans die daily of cancer related complications. Ratiotherapy is the treatment of cancer using high energy radiation targeting the tumour cells. The three main modalities used in treatment are radiotherapy, chemotherapy and surgery. More than 50% of cases are treated using radiotherapy. Radiotherapy is divided into two brad categoeis, namely external beam radiotherapy (EBRT) or teletherapy and internal radiotherapy (Brachytherapy). In Kenya, the machines available for EBRT are Cobalt-60 and linear accelerators. Co-60 source emits gamma-ray with energy of 1.25 MV while linear accelerators available locally emit photons (x-rays) and electrons ranging between 6 to 8MV. Until 2010, there was only one (public) radiotherapy facility using the co-60. Currently, four private facilities using linear accelerations have joined the fray. Two more public institutions are at different stages of putting up radiotherapy facilities. Owing to the high energy range, a lot of radiation safety considerations are made prior to installation, during acceptance testing and commissioning and during the operation. These include, but not limited to shielding integrity checks, Dosimetry checks, mechanical checks and emergency procedures check. In view of these, a lot of capacity building still needs to be done in term of skilled staff development as well as equipment

  14. A New Beam and Delivery System for Radiotherapy

    International Nuclear Information System (INIS)

    The new beam delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. Prototypes were successfully tested by means of computer simulation. The electron accelerator : can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorptionaccumulation . The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible. The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam.

  15. Performance of EPI diodes as dosimeters for photon beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thais C. dos; Bizetto, Cesar A., E-mail: ccbueno@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Neves-Junior, Wellington F.P.; Haddad, Cecilia M.K. [Hospital Sirio Libanes (HSL), Sao Paulo, SP (Brazil); Goncalves, Josemary A.C.; Bueno, Carmen C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Universidade Catolica de Sao Paulo (PUC-SP), SP (Brazil)

    2011-07-01

    In this work we present the preliminary results about the performance of an epitaxial (EPI) diode as on-line dosimeter for photon beam radiotherapy. The diode used was processed at University of Hamburg on n-type 75 {mu}m thick epitaxial silicon layer grown on a highly doped n-type 300 {mu}m thick Czochralski (Cz) silicon substrate. The measurements were performed with a diode which not received any type of pre-dose. In order to use this device as a dosimeter, it was enclosed in a black polymethylmethacrylate (PMMA) probe. The diode was connected to an electrometer Keithley 6517B in the photovoltaic mode. During all measurements, the diode was held between PMMA plates, placed at 10.0 cm depth and centered in a radiation field of 10 x 10 cm{sup 2}, with the source-to-surface distance (SSD) kept at 100 cm. The short-term repeatability was measured with photon beams of 6 and 18 MV energy by registering five consecutive current signals for the same radiation dose. The current signals induced showed good instantaneous repeatability of the diode, characterized by a smallest coefficient of variation (CV) of 0.21%. Furthermore, the dose-response curves of the diode were quite linear with the highest charge sensitivity achieved of 5.0 {mu}C/Gy. It worth noting that still remains to be investigated the pre-dose influence on epitaxial silicon diode response in radiotherapy photon beam dosimetry, the long term stability and the radiation hardness of these diodes for absorbed doses higher than that investigated in this work. All these studies are under way. (author)

  16. Retinoblastoma: Review of 30 years' experience with external beam radiotherapy

    International Nuclear Information System (INIS)

    A review of the experience at the Peter MacCallum Cancer Centre (Peter Mac), Melbourne, Australia in treating retinoblastoma with external beam radiotherapy was conducted. Outcomes of particular interest were tumour control, vision preservation and treatment late effects. The review was restricted to patients that had intact eyes treated at Peter Mac from 1965 until 1997 with at least 2 years of follow up. Histories were reviewed regarding patient and tumour characteristics and treatment details. Thirty-five patients were identified in whom 47 eyes were treated. Of the tumours, 47% were Reese-Ellsworth stage IV or V and the majority of others were at high risk for vision loss because of tumour location. The radiation treatment technique became increasingly sophisticated during the study period. Radiation dose and fraction size have similarly evolved but most patients received 30-50 Gy. Since 1989, a highly accurate contact lens immobilization technique has been used to deliver 40 Gy in 20 fractions. Thirteen eyes required additional local therapy. Of the treated eyes, 34 (72%) remain intact and 74% of these have useful vision. One patient died from retinoblastoma and three from second malignant neoplasms. With modern radiotherapy, late toxicities other than growth arrest and non-progressive cataract did not occur during the study period. Tumour control was high and a very acceptable rate of organ and vision preservation was achieved in a relatively high-risk population. Modern radiotherapy continues to develop in an attempt to improve treatment accuracy and minimize late radiation toxicity. Copyright (2003) Blackwell Science Pty Ltd

  17. Computerized treatment planning systems for external photon beam radiotherapy

    International Nuclear Information System (INIS)

    Computerized treatment planning systems (TPSs) are used in external beam radiotherapy to generate beam shapes and dose distributions with the intent to maximize tumour control and minimize normal tissue complications. Patient anatomy and tumour targets can be represented as 3-D models. The entire process of treatment planning involves many steps and the medical physicist is responsible for the overall integrity of the computerized TPS to accurately and reliably produce dose distributions and associated calculations for external beam radiotherapy. The planning itself is most commonly carried out by a dosimetrist, and the plan must be approved by a radiation oncologist before implementation in actual patient treatments. Treatment planning prior to the 1970s was generally carried out through the manual manipulation of standard isodose charts on to patient body contours that were generated by direct tracing or lead wire representation, and relied heavily on the judicious choice of beam weight and wedging by an experienced dosimetrist. The simultaneous development of computed tomography (CT), along with the advent of readily accessible computing power from the 1970s on, led to the development of CT based computerized treatment planning, providing the ability to view dose distributions directly superimposed upon a patient's axial anatomy. The entire treatment planning process involves many steps, beginning from beam data acquisition and entry into the computerized TPS, through patient data acquisition, to treatment plan generation and the final transfer of data to the treatment machine. Successive improvements in treatment planning hardware and software have been most notable in the graphics, calculation and optimization aspects of current systems. Systems encompassing the 'Virtual Patient' are able to display beam's eye views (BEVs) of radiation beams and digitally reconstructed radiographs (DRRs) for arbitrary dose distributions. Dose calculations have evolved from

  18. Intraoperative electron-beam radiotherapy and ureteral obstruction

    International Nuclear Information System (INIS)

    Purpose: To quantify the risk of ureteral obstruction (UO) after intraoperative electron-beam radiotherapy (IOERT). Methods and Materials: One hundred forty-six patients received IOERT of 7.5 to 30 Gy to 168 ureters; 132 patients received external radiotherapy. Results: Follow-up ranged from 0.01 to 19.1 years (median, 2.1 years). The rates of clinically apparent type 1 UO (UO from any cause) after IOERT at 2, 5, and 10 years were 47%, 63%, and 79%, respectively. The rates of clinically apparent type 2 UO (UO occurring at least 1 month after IOERT, excluding UO caused by tumor or abscess and patients with stents) at 2, 5, and 10 years were 27%, 47%, and 70%, respectively. Multivariate analysis revealed that the presence of UO before IOERT (p < 0.001) was associated with an increased risk of clinically apparent type 1 UO. Increasing IOERT dose (p < 0.04) was associated with an increased risk of clinically apparent type 2 UO. UO rates in ureters not receiving IOERT at 2, 5, and 10 years were 19%, 19%, and 51%, respectively. Conclusions: Risk of UO after IOERT increases with dose. However, UO risk for ureters not receiving IOERT was also high, which suggests an underlying risk of ureteral injury from other causes

  19. Quality Assesment Of Photon And Electron Beams From Siemens PRIMUS Radiotherapy Accelerator

    International Nuclear Information System (INIS)

    There are two types of radiation from SIEMENS Primus Radiotherapy Accelerator at the National Cancer Hospital (K Hospital): electron and photon beams. Electron beams with four different energies of 6; 9; 12 and 15 MeV. Photon beams with two different energies: 6 MV and 15 MV. The symmetry as well as flatness of profiles created by all these beams are very important factors using in clinical practice. This report presents the method using water phantom to define absorbed dose distribution in medium of all beams. This is an effective and accurate method to define quality of radiation beams with different field sizes using in radiotherapy. (author)

  20. Objective assessment of cosmetic outcome after targeted intraoperative radiotherapy in breast cancer

    DEFF Research Database (Denmark)

    Keshtgar, Mohammed R S; Williams, Norman R; Bulsara, Max;

    2013-01-01

    fibrosis and thus impair cosmesis further, so we objectively evaluated the aesthetic outcome of patients within the TARGIT randomised controlled trial. We have used an objective assessment tool for evaluation of cosmetic outcome. Frontal digital photographs were taken at baseline (before TARGIT or EBRT...... objective assessment in a randomised setting, the aesthetic outcome of patients demonstrates that those treated with TARGIT have a superior cosmetic result to those patients who received conventional external beam radiotherapy....

  1. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  2. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soevik, Aaste; Skogmo, Hege K. (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)), E-mail: aste.sovik@nvh.no; Roedal, Jan (Dept. of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, Oslo (Norway)); Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway))

    2010-10-15

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  3. Intraoperative avidination for radionuclide treatment as a radiotherapy boost in breast cancer: results of a phase II study with 90Y-labeled biotin

    International Nuclear Information System (INIS)

    External beam radiotherapy (EBRT) after conservative surgery for early breast cancer requires 5-7 weeks. For elderly patients and those distant from an RT center, attending for EBRT may be difficult or impossible. We investigated local toxicity, cosmetic outcomes, and quality of life in a new breast irradiation technique - intraoperative avidination for radionuclide therapy (IART) - in which avidin is administered to the tumor bed and 90Y-labelled biotin later administered intravenously to bind the avidin and provide irradiation. Reduced duration EBRT (40 Gy) is given subsequently. After surgery, 50 (ten patients), 100 (15 patients) or 150 mg (ten patients) of avidin was injected into the tumor bed. After 12-24 h, 3.7 GBq 90Y-biotin (beta source for therapeutic effect) plus 185 MBq 111In-biotin (gamma source for imaging and dosimetry) was infused slowly. Whole-body scintigraphy and SPECT/CT images were taken for up to 30 h. Shortened EBRT started 4 weeks later. Local toxicity was assessed by RTOG scale; quality of life was assessed by EORTC QOL-30. Of 35 patients recruited (mean age 63 years; range 42-74) 32 received IART plus EBRT. 100 mg avidin provided 19.5 ± 4.0 Gy to the tumor bed and was considered the optimum dose. No side-effects of avidin or 90Y-biotin occurred, with no hematological or local toxicity. Local G3 toxicity occurred in 3/32 patients during EBRT. IART plus EBRT was well accepted, with good cosmetic outcomes and maintained quality of life. IART plus reduced EBRT can accelerate irradiation after conservative breast surgery. (orig.)

  4. Intraoperative avidination for radionuclide treatment as a radiotherapy boost in breast cancer: results of a phase II study with {sup 90}Y-labeled biotin

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Giovanni; De Cicco, Concetta; Carbone, Giuseppe; Pacifici, Monica [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Ferrari, Mahila E.; Cremonesi, Marta; Di Dia, Amalia [European Institute of Oncology, Division of Medical Physics, Milan (Italy); Pagani, Gianmatteo; Galimberti, Viviana; Luini, Alberto [European Institute of Oncology, Division of Senology, Milan (Italy); Leonardi, Maria Cristina; Ferrari, Annamaria; Orecchia, Roberto [European Institute of Oncology, Division of Radiotherapy, Milan (Italy); De Santis, Rita [Sigma-Tau SpA R and D, Rome (Italy); Zurrida, Stefano [European Institute of Oncology, Division of Senology, Milan (Italy); University of Milan School of Medicine, Milan (Italy); Veronesi, Umberto [European Institute of Oncology, Scientific Director, Milan (Italy)

    2010-02-15

    External beam radiotherapy (EBRT) after conservative surgery for early breast cancer requires 5-7 weeks. For elderly patients and those distant from an RT center, attending for EBRT may be difficult or impossible. We investigated local toxicity, cosmetic outcomes, and quality of life in a new breast irradiation technique - intraoperative avidination for radionuclide therapy (IART) - in which avidin is administered to the tumor bed and {sup 90}Y-labelled biotin later administered intravenously to bind the avidin and provide irradiation. Reduced duration EBRT (40 Gy) is given subsequently. After surgery, 50 (ten patients), 100 (15 patients) or 150 mg (ten patients) of avidin was injected into the tumor bed. After 12-24 h, 3.7 GBq {sup 90}Y-biotin (beta source for therapeutic effect) plus 185 MBq {sup 111}In-biotin (gamma source for imaging and dosimetry) was infused slowly. Whole-body scintigraphy and SPECT/CT images were taken for up to 30 h. Shortened EBRT started 4 weeks later. Local toxicity was assessed by RTOG scale; quality of life was assessed by EORTC QOL-30. Of 35 patients recruited (mean age 63 years; range 42-74) 32 received IART plus EBRT. 100 mg avidin provided 19.5 {+-} 4.0 Gy to the tumor bed and was considered the optimum dose. No side-effects of avidin or {sup 90}Y-biotin occurred, with no hematological or local toxicity. Local G3 toxicity occurred in 3/32 patients during EBRT. IART plus EBRT was well accepted, with good cosmetic outcomes and maintained quality of life. IART plus reduced EBRT can accelerate irradiation after conservative breast surgery. (orig.)

  5. The use of beam code in external radiotherapy; Utilisation du code beam en radiotherapie externe

    Energy Technology Data Exchange (ETDEWEB)

    Guillerminet, C.; Gschwind, R.; Makovicka, L. [CREST - UMR 6000 CNRS, 25 - Montbeliard (France)

    2003-07-01

    This code, in constant evolution, has several assets because it allows in one hand to better characterize the beams at the energy and angular level of accelerators at medical use; these data being accessible only by simulation and on the other hand to establish a three dimensional dose calculation fro any phantom. The limit factors are the calculation time, the size of voxels need important dimension tables for the data storage, and the compatibility between the code and the different images formats. (N.C.)

  6. The ESTRO-EQUAL results for photon and electron beams checks in European radiotherapy beams

    International Nuclear Information System (INIS)

    Background and purpose: European Society for Therapeutic Radiology and Oncology (ESTRO) has set up a Quality Assurance network for radiotherapy (EQUAL) carrying out dosimetry audit. Some of the work is done in cooperation with the IAEA. The network deals with measurements performed with mailed TLD irradiated in reference and non-reference conditions, for on-axis points in photons and electrons beams. Material and methods: The LiF DTL937 (Philitech, France) was used and read with the PCL3 automatic reader (FIMEL-PTW). The participating centres irradiate the TLD capsules to an absorbed dose of 2 Gy determined with the Treatment Planning System used in clinical routine. Results: Statistical data from the participating centres on their radiotherapy structure such as number of machines and beams qualities available, dosimetry protocols and equipment in use were analysed. 23 European and 2 Mediterranean Basin countries participated. Photons beam audit: 282 centres and 757 beams have been checked; 11% 60Co beams and 89 % of X-ray beams. Compared to the EQUAL reference dosimetry 1.4 % of the reference beam output dose values and 3% of the percentage depth doses are outside the tolerance level (deviation > ± 5%). The standard deviation for the reference beam output is 1.8 %. Five percent of the rectangular field dose checks and 4 % the wedge transmission factors had deviations > ± 5%. The analysis of the global results shows deviations > ± 5% in at least 1 point for 133 out of the 757 beams, mainly for large and rectangular fields and for wedged beams. At least 45 of these centres had one 'real dosimetric' problem in one or more parameters, which corresponds to 7% of the checked beams. Electron beam audit: 97 centres and 277 beams have been checked. 1.0 % of the reference beam output values (field size 10 cm x 10 cm) and about 2 % of the beam output for the others field sizes (15 cm x 20 cm, and 7 cm x 7 cm) are outside tolerance level (deviation > ± 5%). The standard

  7. Analysis of late toxicity associated with external beam radiation therapy for prostate cancer with uniform setting of classical 4-field 70 Gy in 35 fractions: a survey study by the Osaka Urological Tumor Radiotherapy Study Group

    OpenAIRE

    Yoshioka, Yasuo; Suzuki, Osamu; Nishimura, Kazuo; Inoue, Hitoshi; Hara, Tsuneo; Yoshida, Ken; Imai, Atsushi; Tsujimura, Akira; Nonomura, Norio; Ogawa, Kazuhiko

    2012-01-01

    We aimed to analyse late toxicity associated with external beam radiation therapy (EBRT) for prostate cancer using uniform dose-fractionation and beam arrangement, with the focus on the effect of 3D (CT) simulation and portal field size. We collected data concerning patients with localized prostate adenocarcinoma who had been treated with EBRT at five institutions in Osaka, Japan, between 1998 and 2006. All had been treated with 70 Gy in 35 fractions, using the classical 4-field technique wit...

  8. In vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alessandro M. [Departamento de Fisica e Matematica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, SP (Brazil)], E-mail: amcosta@usp.br; Barbi, Gustavo L.; Bertucci, Edenyse C.; Ferreira, Heberton; Sansavino, Simone Z.; Colenci, Beatriz [Servico de Radioterapia, Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, 14048-900 Ribeirao Preto, SP (Brazil); Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    The ultimate check of the actual dose delivered to a patient in radiotherapy can only be achieved by using in vivo dosimetry. This work reports a pilot study to test the applicability of a thermoluminescent dosimetric system for performing in vivo entrance dose measurements in external photon beam radiotherapy. The measurements demonstrated the value of thermoluminescent dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in radiotherapy.

  9. In vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy

    International Nuclear Information System (INIS)

    The ultimate check of the actual dose delivered to a patient in radiotherapy can only be achieved by using in vivo dosimetry. This work reports a pilot study to test the applicability of a thermoluminescent dosimetric system for performing in vivo entrance dose measurements in external photon beam radiotherapy. The measurements demonstrated the value of thermoluminescent dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in radiotherapy.

  10. Issues in respiratory motion compensation during external-beam radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To investigate how respiration influences the motion of lung and pancreas tumors and to relate the observations to treatment procedures intended to improve dose alignment by predicting the moving tumor's position from external breathing indicators. Methods and materials: Breathing characteristics for five healthy subjects were observed by optically tracking the displacement of the chest and abdomen, and by measuring tidal air volume with a spirometer. Fluoroscopic imaging of five radiotherapy patients detected the motion of lung and pancreas tumors synchronously with external breathing indicators. Results: The external and fluoroscopic data showed a wide range of behavior in the normal breathing pattern and its effects on the position of lung and pancreas tumors. This included transient phase shifts between two different external measures of breathing that diminished to zero over a period of minutes, modulated phase shifts between tumor and chest wall motion, and other complex phenomena. Conclusions: Respiratory compensation strategies that infer tumor position from external breathing signals, including methods of beam gating and dynamic beam tracking, require three-dimensional knowledge of the tumor's motion trajectory as well as the ability to detect and adapt to transient and continuously changing characteristics of respiratory motion during treatment

  11. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    International Nuclear Information System (INIS)

    Radiotherapy treatments with high-energy (>8MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the “in vivo” dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented

  12. Patient-reported lower urinary tract symptoms, urinary incontinence, and quality of life after external beam radiotherapy for localized prostate cancer - 15 years' follow-up. A comparison with age-matched controls

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Per (Dept. of Radiation Sciences, Oncology, Umeaa Univ., Umeaa (Sweden))

    2008-06-15

    Background. To prospectively examine the urinary toxicity and quality of life (QOL) in patients 15 years after external beam radiotherapy (EBRT) for localized prostate cancer (LPC) and compare the outcomes with results for age-matched controls. Material and methods. Urinary symptoms were assessed using the symptom-specific Prostate Cancer Symptom Scale (PCSS) questionnaire, and QOL was assessed with the European Organization for Research and Treatment of Cancer (EORTC)'s Quality of Life Questionnaire (QLQ-C30). Both questionnaires were sent to the surviving 41 patients (25%) and the PCSS questionnaire was sent to 69 age-matched controls for comparison. Results. The response rate was 71% in the patient group and 59% in the control group. Two patients and four controls were excluded due to other cancer diagnoses, resulting in a total of 27 patients and 37 controls for inclusion in the analyses. The mean age in both groups was 78 years. In the patient group, incontinence had increased between the 8-year (mean=0.6) and the 15-year follow-up (mean=2.1; p=0.038). No other differences in urinary problems were seen between these two follow-ups. Increased incontinence, stress incontinence, and pain while urinating were reported by the patients in comparison with the controls at 15 years. Role function was worse in the patient group (mean=67.3) compared with the controls (mean=82.4; p=0.046). The patients also reported more appetite loss, diarrhea, nausea/vomiting, and pain than the controls. Conclusion. EBRT for LPC has divergent effects on urinary symptoms and QOL in comparison with age-matched controls. In our patient population, urinary incontinence increased between 8 and 15 years of follow-up. Otherwise, no differences in urinary symptoms were seen between 4 and 15 years. Incontinence, stress incontinence, and pain while urinating were increased after EBRT in comparison with the controls. Conventional EBRT did not result in a major deterioration in QOL 15 years

  13. The relationship between the biochemical control outcomes and the quality of planning of high-dose rate brachytherapy as a boost to external beam radiotherapy for locally and locally advanced prostate cancer using the RTOG-ASTRO Phoenix definition

    Directory of Open Access Journals (Sweden)

    Antonio Cassio Assis Pellizzon, João Salvajoli, Paulo Novaes, Maria Maia, Ricardo Fogaroli, Doglas Gides, Rodrigues Horriot

    2008-01-01

    Full Text Available Purpose: To evaluated prognostic factors and impact of the quality of planning of high dose rate brachytherapy (HDR-BT for patients with local or locally advanced prostate cancer treated with external beam radiotherapy (EBRT and HDR-BT. Methods and Materials: Between 1997 and 2005, 209 patients with biopsy proven prostate adenocarcinoma were treated with localized EBRT and HDR-BT at the Department of Radiation-Oncology, Hospital A. C. Camargo, Sao Paulo, Brazil. Patient's age, Gleason score (GS, clinical stage (CS, initial PSA (iPSA, risk group for biochemical failure (GR, doses of EBRT and HDR-BT, use of three-dimensional planning for HDR-BT (3DHDR and the Biological Effective Dose (BED were evaluated as prognostic factors for biochemical control (bC. Results: Median age and median follow-up time were 68 and 5.3 years, respectively. Median EBRT and HDR-BT doses were 45 Gy and 20 Gy. The crude bC at 3.3 year was 94.2%. For the Low, intermediate and high risk patients the bC rates at 3.3 years were 91.5%, 90.2% and 88.5%, respectively. Overall survival (OS and disease specific survival rates at 3.3 years were 97.8% and 98.4%, respectively. On univariate analysis the prognostic factors related bC were GR (p= 0.040, GS ≤ 6 (p= 0.002, total dose of HDR-BT ≥ 20 Gy (p< 0.001, 3DHDR (p< 0.001, BED-HDR ≥ 99 Gy1.5 (p<0.001 and BED-TT ≥ 185 (p<0.001. On multivariate analysis the statistical significant predictive factors related to bC were RG (p< 0.001, HDR-BT ≥ 20 Gy (p=0.008 and 3DHDR (p<0.001. Conclusions: we observed that the bC rates correlates with the generally accepted risk factors described in the literature. Dose escalation, evaluated through the BED, and the quality of planning of HDR-BT are also important predictive factors when treating prostate cancer.

  14. Consensus and differences in primary radiotherapy for localized and locally advanced prostate cancer in Switzerland. A survey on patterns of practice

    International Nuclear Information System (INIS)

    External beam radiotherapy (EBRT), with or without androgen deprivation therapy (ADT), is an established treatment option for nonmetastatic prostate cancer. Despite high-level evidence from several randomized trials, risk group stratification and treatment recommendations vary due to contradictory or inconclusive data, particularly with regard to EBRT dose prescription and ADT duration. Our aim was to investigate current patterns of practice in primary EBRT for prostate cancer in Switzerland. Treatment recommendations on EBRT and ADT for localized and locally advanced prostate cancer were collected from 23 Swiss radiation oncology centers. Written recommendations were converted into center-specific decision trees, and analyzed for consensus and differences using a dedicated software tool. Additionally, specific radiotherapy planning and delivery techniques from the participating centers were assessed. The most commonly prescribed radiation dose was 78 Gy (range 70-80 Gy) across all risk groups. ADT was recommended for intermediate-risk patients for 6 months in over 80 % of the centers, and for high-risk patients for 2 or 3 years in over 90 % of centers. For recommendations on combined EBRT and ADT treatment, consensus levels did not exceed 39 % in any clinical scenario. Arc-based intensity-modulated radiotherapy (IMRT) is implemented for routine prostate cancer radiotherapy by 96 % of the centers. Among Swiss radiation oncology centers, considerable ranges of radiotherapy dose and ADT duration are routinely offered for localized and locally advanced prostate cancer. In the vast majority of cases, doses and durations are within the range of those described in current evidence-based guidelines. (orig.)

  15. Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients. A low-field MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.P.; Mansmann, B.; Federico, M.; Georg, P.; Fidarova, E. [General Hospital of Vienna (Austria). Dept. of Radiotherapy; Dimopoulous, J.C.A. [Metropolitan Hospital, Athens (Greece). Dept. of Radiation Oncology; Doerr, W. [General Hospital of Vienna (Austria). Dept. of Radiotherapy; Technische Univ. Dresden (Germany). Dept. of Radiotherapy and Radiation Oncology; Medical University of Vienna (Austria). Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology; Poetter, R. [General Hospital of Vienna (Austria). Dept. of Radiotherapy; Medical University of Vienna (Austria). Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology

    2013-03-15

    Background: Grey zones, which are defined as tissue with intermediate signal intensity in the area of primary hyperintense tumour extension, can be seen during radiation with or without chemotherapy on the T2-weighted MRI in patients with cervical cancer. The purpose of this study was to systematically measure the tumour volume at the time of diagnosis and the residual tumour volume at the time of brachytherapy without and with consideration of the grey zones and to estimate tumour regression during external beam radiotherapy (EBRT). Material and methods: T2-weighted MRI datasets of 175 patients with locally advanced cervical cancer (FIGO stage IB-IVA), who underwent combined external beam radiotherapy and brachytherapy with or without concomitant chemotherapy were available for this study. The gross tumour volume at the time of diagnosis (GTV{sub init}) and at the time of first brachytherapy without (GTV{sub res}) and with (GTV{sub res} + GZ) consideration of grey zones were measured for each patient. A descriptive statistical analysis was performed and tumour regression rates without (R) and with consideration of grey zones (R{sub GZ}) were calculated. Further, the role of prognostic factors on GTV{sub init}, GTV{sub res}, GTV{sub res} + GZ and tumour regression rates was investigated. Results: The median GTV{sub init}, GTV{sub res}, GTV{sub res} + GZ in all patients were 44.4 cm{sup 3}, 8.2 cm{sup 3}, 20.3 cm{sup 3}, respectively. The median R was 78.5% and the median R{sub GZ} was 50.1%. The histology and FIGO staging showed a significant impact on GTV{sub init}, GTV{sub res} and GTV{sub res} + GZ. Conclusion: Grey zones represent a substantial proportion of the residual tumour volume at the time of brachytherapy. Differentiation of high signal intensity mass and surrounding intermediate signal intensity grey zones may be reasonable. (orig.)

  16. Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients. A low-field MRI study

    International Nuclear Information System (INIS)

    Background: Grey zones, which are defined as tissue with intermediate signal intensity in the area of primary hyperintense tumour extension, can be seen during radiation with or without chemotherapy on the T2-weighted MRI in patients with cervical cancer. The purpose of this study was to systematically measure the tumour volume at the time of diagnosis and the residual tumour volume at the time of brachytherapy without and with consideration of the grey zones and to estimate tumour regression during external beam radiotherapy (EBRT). Material and methods: T2-weighted MRI datasets of 175 patients with locally advanced cervical cancer (FIGO stage IB-IVA), who underwent combined external beam radiotherapy and brachytherapy with or without concomitant chemotherapy were available for this study. The gross tumour volume at the time of diagnosis (GTVinit) and at the time of first brachytherapy without (GTVres) and with (GTVres + GZ) consideration of grey zones were measured for each patient. A descriptive statistical analysis was performed and tumour regression rates without (R) and with consideration of grey zones (RGZ) were calculated. Further, the role of prognostic factors on GTVinit, GTVres, GTVres + GZ and tumour regression rates was investigated. Results: The median GTVinit, GTVres, GTVres + GZ in all patients were 44.4 cm3, 8.2 cm3, 20.3 cm3, respectively. The median R was 78.5% and the median RGZ was 50.1%. The histology and FIGO staging showed a significant impact on GTVinit, GTVres and GTVres + GZ. Conclusion: Grey zones represent a substantial proportion of the residual tumour volume at the time of brachytherapy. Differentiation of high signal intensity mass and surrounding intermediate signal intensity grey zones may be reasonable. (orig.)

  17. Enteric-coated, highly standardized cranberry extract reduces risk of UTIs and urinary symptoms during radiotherapy for prostate carcinoma

    OpenAIRE

    Di Pierro, Francesco

    2012-01-01

    Alberto Bonetta,1 Francesco Di Pierro21Unità Operativa Radioterapia Oncologica, Istituti Ospedalieri di Cremona, Cremona; 2Velleja Research, Milan, ItalyBackground: Cranberry (Vaccinium macrocarpon) proanthocyanidins can interfere with adhesion of bacteria to uroepithelial cells, potentially preventing lower urinary tract infections (LUTIs). Because LUTIs are a common side effect of external beam radiotherapy (EBRT) for prostate cancer, we evaluated the clinical efficacy of enteric...

  18. Comparison Analysis of MR Images Before and After External Beam Radiotherapy in Brachytherapy

    International Nuclear Information System (INIS)

    To analyze availability of MR images before and after external beam radiotherapy in brachytherapy, we will acquire MR images before and after external beam radiotherapy and compare the change of direction of uterine cavity and analyze the accuracy of applicator insertion. From January 2009 to December 2010, we compared MR images before and after external beam radiotherapy for uterine cervical cancer only with radical purpose treatment. MR images which was acquired after external beam radiotherapy has done with inserted status of CT/MR applicator. As a consequence, the tumor was markedly reduced after external beam radiotherapy. The change of anteflexion of uterus turned into retroflexion of the uterine cavity was 17.1%. The case of wrong insertion of tandem include direction or length was 14.3%. According to MR images taken after external beam radiotherapy, we recognized not only reduced the tumor volume but the marked change of exact direction or length of the uterine cavity. So the confirmation of accurate insertion based on MR images before brachytherapy could be very helpful for optimal brachytherapy treatment planning with reduced applicator insertion errors.

  19. Salivary Gland. Photon beam and particle radiotherapy: Present and future.

    Science.gov (United States)

    Orlandi, Ester; Iacovelli, Nicola Alessandro; Bonora, Maria; Cavallo, Anna; Fossati, Piero

    2016-09-01

    Salivary gland cancers (SGCs) are rare diseases and their treatment depends upon histology, stage and site of origin. Radical surgery is the mainstay of treatment but radiotherapy (RT) plays a key role in both the postoperative and the inoperable setting, as well as in recurrent disease. In the absence of prospective randomized trials, a wide retrospective literature suggests postoperative RT (PORT) in patients with high risk pathological features. SGCs, and adenoid cystic carcinoma (ACC) in particular, are known to be radio-resistant tumors and should therefore respond well to particle beam therapy. Recently, excellent outcome has been reported with radical carbon ion RT (CIRT) in particular for ACC. Both modern photon- and hadron-based treatments are effective and are characterized by a favourable toxicity profile. But it is not clear whether one modality is superior to the other for disease control, due to the differences in patients' selection, techniques, fractionation schedules and outcome measurements among clinical experiences. In this paper, we review the role of photon and particle RT for malignant SGCs, discussing the difference between modalities in terms of biological and technical characteristics. RT dose and target volumes for different histologies (ACC versus non-ACC) have also been taken into consideration. PMID:27394087

  20. Prospective survey of erectile dysfunction after external beam radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    We prospectively evaluated the effect of external beam radiotherapy on erectile function in patients with localized or locally advanced prostate cancer using the Japanese version of the International Index of Erectile Function (IIEF) survey. From 2000 to 2007, we identified 55 patients who underwent external beam radiotherapy at our institution for localized or locally advanced prostate cancer and could respond to the IIEF survey. The patients did not receive neo- and/or adjuvant hormone therapy and they were followed-up for at least 12 months after radiotherapy. Mean patient age was 69 years and the mean prostate specific antigen (PSA) level before radiotherapy was 24.9 ng/ml. First we evaluated the change of the erectile function domain score over time before and after radiotherapy. The population of severe erectile dysfunction (ED) increased while those with no or mild ED decreased after radiotherapy. The erectile function and intercourse satisfaction domain score of the IIEF declined significantly after radiotherapy, however, the orgasmic function, sexual desire, and overall satisfaction domain scores did not change after external beam radiation. Of the 34 patients who had erectile function at baseline, 10 patients could maintain erectile function 12 months after radiotherapy. Though there were no significant differences in clinical features between patients who could maintain erectile function and those who had worsening erectile function 12 months after radiotherapy, the sexual desire domain score before radiotherapy was significantly higher in patients who could maintain erectile function than their counterparts. Using the IIEF survey, external beam radiation was found to affect erectile function in patients with localized or locally advanced prostate cancer. (author)

  1. Dosimetric predictors of biochemical control of prostate cancer in patients randomised to external beam radiotherapy with a boost of high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Background: To correlate dose and volume dosimetric parameters (D90 and V100) with biochemical control in advanced prostate cancer treated with high-dose rate brachytherapy (HDR-BT). Methods: One hundred and eight patients received external beam radiotherapy (EBRT) to 35.75 Gy in 13 fractions followed by HDR-BT of 2 × 8.5 Gy. Kaplan–Meier freedom-from-biochemical relapse (FFbR; nadir + 2 μg/L) fits were grouped by the first (Q1), second (Q2) and third (Q3) D90 and V100 quartiles. Groups were compared with the log-rank test. Univariate and multivariate Hazard Ratios (HR) for D90 and V100 and other co-variates (PSA, androgen deprivation therapy (ADT) were obtained using Cox’s proportional hazard model. Results: FFbR was significantly higher in patients whose D90 and V100 were at or above the second and third quartile (log rank p ⩽ 0·04). In multivariate analysis D90, V100 were significant covariates for risk of relapse. Conclusions: Dichotomising the data using 6 levels of response (above and below Q1, Q2 and Q3) showed a progressive and continuous improvement in biochemical control of disease across the entire dose (and volume) range. The data show that a minimum D90 of 108% of the prescribed dose should be the target to achieve

  2. Dosimetric Comparing between Protons Beam and Photons Beam 
for Lung Cancer Radiotherapy: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Guangwei TIAN

    2013-05-01

    Full Text Available Background and objective The clinical evidences are not sufficient on the proton beam therapy of lung cancer for lacking of the RCTs on the comparing the proton with the photon beam in lung cancer radiotherapy. The aim of this study is to evaluate the dosimetry superiority of the proton beam and provide more valuable evidences to the clinical researches. Methods Clinical trails of dosimetric comparing between protons beam and photons beam for lung cancer radiotherapy were obtained from the Cochrane library, Pubmed, EMbase, CBM, CNKI, VIP, and Wan Fang databases. The data included in the study were evaluated and analyzed using the Cochrane Collaboration's RevMan 5.2 software. Results Six trails were included. Compared to photon therapy (three-dimensional conformal photon radiotherapy, 3D-CRT, the proton therapy had a significantly lower total lung Dmean (MD=-4.15, 95%CI: -5.56--2.74, P<0.001 and V20, V10, V5 (MD=-10.92, 95%CI: -13.23--8.62, P<0.001; The V20, V10, V5 significantly decreased in proton therapy group. Compared to photon therapy (intensity-modulated photon radiotherapy, IMRT, V20, V10, V5 were also significantly lowered in proton therapy group (MD=-3.70, 95%CI: -5.31--2.10, P<0.001; MD=-8.86, 95%CI: -10.74--6.98, P<0.001; MD=-20.13, 95%CI: -27.11--13.14, P<0.001; The esophagus Dmean was not lowered, while the heart Dmean decreased in proton therapy group. Conclusion Comparing to photon beam radiotherapy (3D-CRT and IMRT, proton beam therapy is advantageous in dosimetry of the lung cancer radiotherapy and recommended for clinical applying.

  3. Radiotherapy for 71 patients with tonsillar carcinoma

    International Nuclear Information System (INIS)

    Objective: To evaluate the therapeutic outcome and determine the prognosticators of tonsillar carcinoma treated by different approaches. Methods: A retrospective study was done on 71 tonsillar carcinoma patients treated from August 1971 to October 1995 by three different ways of radiotherapy. All were pathologically proved. Fifteen patients received external bean therapy plus intracavitary brachytherapy (EBRT + BRT), 39 patients were treated by EBRT only (EBRT) and the other 17 patients underwent FBRT plus chemotherapy (EBTR + CHEMO). Results: The local control rates of EBRT + BRT, EBRT and EBRT + chemo were 82.1%, 68.4% and 64.2%. There was significant difference between EBRT + BRT and the other two groups (x2=4.65, P=0.030; x2=5.65, P=0.018). The 3-, 5- and 10- year survival rates of EBRT + BRT, EBRT and EBRT + CHEMO were 76.3%, 53.2%, 31.2%; 74.0%, 45.2%, 33.5% and 75.2%, 47.1%, 25.3%. All these survival rates showed no statistical significance. (P > 0.05). Conclusion: Brachytherapy, when used to increase the dose effect, may enhance the local effect without any change in the overall survival

  4. Mammographic Findings after Intraoperative Radiotherapy of the Breast

    International Nuclear Information System (INIS)

    Intraoperative Radiotherapy (IORT) is a form of accelerated partial breast radiation that has been shown to be equivalent to conventional whole breast external beam radiotherapy (EBRT) in terms of local cancer control. However, questions have been raised about the potential of f IORT to produce breast parenchymal changes that could interfere with mammographic surveillance of cancer recurrence. The purpose of this study was to identify, quantify, and compare the mammographic findings of patients who received IORT and EBRT in a prospective, randomized controlled clinical trial of women with early stage invasive breast cancer undergoing breast conserving therapy between July 2005 and December 2009. Treatment groups were compared with regard to the 1, 2 and 4-year incidence of 6 post-operative mammographic findings: architectural distortion, skin thickening, skin retraction, calcifications, fat necrosis, and mass density. Blinded review of 90 sets of mammograms of 15 IORT and 16 EBRT patients demonstrated a higher incidence of fat necrosis among IORT recipients at years 1, 2, and 4. However, none of the subjects were judged to have suspicious mammogram findings and fat necrosis did not interfere with mammographic interpretation.

  5. Investigation of photon beam models for multi-dimensional radiotherapy

    International Nuclear Information System (INIS)

    Full text: Dose calculation algorithms implemented in a radiotherapy treatment planning system (RTPS) can be correction-based or algorithm-based. This project is to investigate the underlying theories of the dose calculation algorithms and their limitation under various clinical situations. Air cavity and lung phantoms were used in this study. The open air phantom was made of solid water slabs and 2cm thickness of open air. The lung phantom was made of 8cm thickness of lung analogue slabs sandwiched between two 4-cm thickness solid water. Dose distributions in the phantoms were measured with ionisation chamber and film for the field sizes of 5cmx5cm and 10cmx10cm at 6MV and 10MV X-rays. The measured results were used to validate the results calculated by the CMS-Focus RTPS, which has three dose calculation algorithms for photons - superposition, FFT convolution and Clarkson. Secondary dose build-up was measured immediate beyond the air cavity for the field size of 5x5 cm at 6 and 10 MV due to lack of lateral electronic equilibrium. The superposition algorithm was able to calculate this secondary dose build-up effect while the FFT convolution and Clarkson algorithms could not. For the dose distribution in the lung phantom, dose calculated by the superposition algorithm matched well with the measured results. However, for the field size of 5x5 cm at 10 MV, dose errors at mid-lung for FFT convolution and Clarkson were 7.7% and 11.0% respectively. The superposition algorithm implemented in CMS-Focus RTPS calculates the dose more accurately than the FFT convolution and Clarkson algorithms in situations where lateral electronic equilibrium does not exist. When irradiating a target volume involving low density tissues along the beam path with small x-ray fields (such as in IMRT), the use of superposition algorithm is recommended. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  6. Radiotherapy combined with hormonal therapy in prostate cancer: the state of the art

    Directory of Open Access Journals (Sweden)

    Piotr Milecki

    2010-10-01

    Full Text Available Piotr Milecki1,2, Piotr Martenka1, Andrzej Antczak3, Zbigniew Kwias31Department of Radiotherapy, Greater Poland Cancer Center, Poznan, Poland; 2Department of Electroradiology, Medical University, Poznan, Poland; 3Chair of Urology, Medical University, Poznan, PolandAbstract: Androgen-deprivation therapy (ADT is used routinely in combination with definitive external beam radiation therapy (EBRT in patients with high-risk clinically localized or locally advanced disease. The combined treatment (ADT–EBRT also seems to play a significant role in improving treatment results in the intermediate-risk group of prostate cancer patients. On the other hand, there is a growing body of evidence that treatment with ADT can be associated with serious and lifelong adverse events including osteoporosis, cardiovascular disease, diabetes, and many others. Almost all ADT adverse events are time dependant and tend to increase in severity with prolongation of hormonal manipulation. Therefore, it is crucial to clearly state the optimal schedule for ADT in combination with EBRT, that maintaining the positive effect on treatment efficacy would keep the adverse events risk at reasonable level. To achieve this goal, treatment schedule may have to be highly individualized on the basis of the patient-specific potential vulnerability to adverse events. In this study, the concise and evidence-based review of current literature concerning the general rationales for combining radiotherapy and hormonal therapy, its mechanism, treatment results, and toxicity profile is presented.Keywords: prostate cancer, radiotherapy, androgen deprivation, combined treatment

  7. Prescription dose analysis and evaluation of carcinoma of breast on 60Co radiation beam

    International Nuclear Information System (INIS)

    To report the outcome of breast cancer patients treated radically by External Beam Radiotherapy (EBRT) and Chemotherapy. Radiation therapy along with chemotherapy plays an important role in the treatment of breast cancer. In breast tumour management the role of post mastectomy chest wall irradiation in improving the local control is well known. It is important to practice optimal radiation therapy in order to achieve high loco-regional control with minimal morbidity

  8. Intraoperative Radiotherapy for Pancreatic Cancer: 30-Year Experience in a Single Institution in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Jingu, Keiichi, E-mail: kjingu-jr@rad.med.tohoku.ac.jp [Department of Radiation Oncology, Tohoku University School of Medicine, Sendai (Japan); Tanabe, Takaya [Department of Radiation Oncology, Tohoku University School of Medicine, Sendai (Japan); Nemoto, Kenji [Department of Radiation Oncology, Yamagata University School of Medicine, Yamagata (Japan); Ariga, Hisanori; Umezawa, Rei; Ogawa, Yoshihiro; Takeda, Ken; Koto, Masashi; Sugawara, Toshiyuki; Kubozono, Masaki; Shimizu, Eiji; Abe, Keiko; Yamada, Shogo [Department of Radiation Oncology, Tohoku University School of Medicine, Sendai (Japan)

    2012-07-15

    Purpose: To analyze retrospectively the results of intraoperative radiotherapy (IORT) with or without external beam radiotherapy ({+-} EBRT) for localized pancreatic cancer in the past three decades and to analyze prognostic factors by multivariate analysis. Methods and Materials: Records for 322 patients with pancreatic cancer treated by IORT {+-} EBRT in Tohoku University Hospital between 1980 and 2009 were reviewed. One hundred ninety-two patients who had no distant organ metastases or dissemination at the time of laparotomy were enrolled in the present study. Results: Eighty-three patients underwent gross total resection (R0: 48 patients, R1: 35 patients), and 109 patients underwent only biopsy or palliative resection. Fifty-five patients underwent adjuvant EBRT, and 124 underwent adjuvant chemotherapy. The median doses of IORT and EBRT were 25 and 40 Gy, respectively. The median follow-up period was 37.5 months. At the time of the analysis, 166 patients had disease recurrence, and 35 patients had local failure. The 2-year local control (LC) and overall survival (OS) rates were 71.0% and 16.9%, respectively. Comparison of the results for each decade showed that OS was significantly improved decade by decade (2-year: 25.0% vs. 18.8% vs. 4.2%, p < 0.001). Multivariate analysis showed that degree of resection (R0-1 vs. R2, hazard ratio = 1.97, p = 0.001) and adjuvant chemotherapy (yes vs. no, hazard ratio = 1.54, p = 0.028) had significant impacts on OS. Late gastrointestinal morbidity of Common Terminology Criteria for Adverse Events version 3.0 grade 4 or 5 was observed in four patients. Conclusion: Excellent local control for pancreatic cancer with few cases of severe late toxicity was achieved by using IORT. OS of patients with pancreatic cancer treated by IORT {+-} EBRT improved significantly decade by decade. Multivariate analysis showed that degree of resection and adjuvant chemotherapy had significant impacts on OS.

  9. One-dimensional field analyzer of medical proton beam in radiotherapy

    International Nuclear Information System (INIS)

    A Medical-Technical Complex for hadron radiotherapy of cancer patients based on the 660 MeV proton Phasotron has been constructed and put into operation at JINR. Upgrading of methods, hardware and software for radiotherapy is one of the main tasks for further development of the Facility. This article concerns one of the fields of this work: that is the development of equipment for conformal proton beam therapy and dynamic irradiation of deep lying target - the construction of a device for measurement of proton beam depth-dose curve in a treatment room

  10. Radiotherapy

    International Nuclear Information System (INIS)

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  11. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Science.gov (United States)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  12. Factors determining acute normal tissue reactions during postoperative radiotherapy in endometrial cancer: analysis of 317 consecutive cases

    International Nuclear Information System (INIS)

    Background and purpose: Acute radiotherapy reactions are commonly underestimated and under-reported in the literature. Our aim was to evaluate the incidence and risk factors for acute reactions during postoperative radiotherapy in endometrial cancer patients. Material and methods: Performed was detailed retrospective analysis of 317 endometrial cancer patients given postoperative radiotherapy. Two hundred forty seven patients (78%) received both intracavitary (BRT) and external beam irradiation (EBRT), 49 patients (15%) received only BRT and 21 patients (7%) - only EBRT. BRT included radium (Ra) or cesium (Cs). The mean total dose at 0.5 cm for Ra and Cs was 50.5±10.3 Gy and 48.4±15.0 Gy, respectively, and the mean dose rate - 0.47±0.06 Gy/h and 1.42±0.41 Gy/h, respectively. Mean EBRT dose in the ICRU reference point was 49.0±3.7 Gy given in fractions of 1.54-2.49 Gy (mean 2.0±0.17 Gy). Radiotherapy and Oncology Group classification system was employed to score acute reactions. The impact of patient- and treatment-related factors on the risk of acute bowel and urinary bladder reactions was assessed with uni- and multivariate tests. Results: Acute radiotherapy reactions of any grade occurred in 265 patients (84%) including bowel complications in 66% and urinary bladder complications in 36%. There were 21 severe (grade 3 or 4) reactions, all but one seen in the patients treated with combined EBRT and BRT. Higher total dose (P=0.024), higher EBRT dose (P=0.022) and higher age (P=0.026) were correlated with increased acute bowel toxicity in univariate analysis. Multivariate analysis showed that higher EBRT dose (P=0.015) and older age (P=0.016) were independently correlated with the risk of acute bowel events. Higher total dose (P=0.009), BRT dose (P=0.029), BRT dose rate (P=0.004), EBRT fraction size (P=0.007), the use of Cs BRT (P=0.001) and lower parity (P=0.041) were correlated with increased risk of acute bladder toxicity in univariate test. Multivariate

  13. A comparative study of quality of life in patients with localized prostate cancer treated at a single institution: Stereotactic ablative radiotherapy or external beam + high dose rate brachytherapy boost

    International Nuclear Information System (INIS)

    Purpose: To compare the quality of life (QOL) in patients treated with stereotactic ablative radiation therapy (SABR) alone or high dose rate (HDR) brachytherapy + hypofractionated external beam radiotherapy (EBRT). Methods and materials: Patient self-reported QOL was prospectively measured among patients from two sequential phase 2 clinical trials: 1-SABR 35 Gy/5 fractions/5 weeks, 2–15 Gy HDR 1 fraction, followed by EBRT 37.5 Gy/15 fractions/3 weeks. The expanded prostate cancer index composite was assessed at baseline and q6 monthly up to 5 years. Urinary, bowel and sexual domains were analyzed. A minimally clinical important change (MCIC) was defined as 0.5*standard deviation of the baseline for each domain. Fisher exact test and general linear mixed model were used (p < 0.05). Results: 84 and 123 patients were treated on the SABR and HDR boost studies, with a median follow up of 51 and 61 months respectively. There was a significant difference in MCIC between treatments in the urinary function and bother (p < 0.0001), the bowel function (p = 0.0216) and the sexual function (p = 0.0419) and bother (p = 0.0290) domains in favor of the SABR group. Of patients who reported no problem with their sexual function at baseline, 7% and 23% respectively considered it to be a moderate to big problem on follow up (p = 0.0077). Conclusion: Patients treated with HDR-boost reported deterioration of QOL particularly in sexual domains in comparison with SABR

  14. IART® (Intra-Operative Avidination for Radionuclide Therapy) for accelerated radiotherapy in breast cancer patients. Technical aspects and preliminary results of a phase II study with 90Y-labelled biotin

    OpenAIRE

    Paganelli, G.; De Cicco, C; M. E. Ferrari; McVie, G.; Pagani, G; Leonardi, M C; Cremonesi, M.; Ferrari, A.; Pacifici, M.; Di Dia, A; Botta, F; De Santis, R; Galimberti, V.; Luini, A.; Orecchia, R.

    2010-01-01

    Background: Breast conserving surgery (BCS) plus external beam radiotherapy (EBRT) is considered the standard treatment for early breast cancer. We have investigated the possibility of irradiating the residual gland, using an innovative nuclear medicine approach named IART® (Intra-operative Avidination for Radionuclide Therapy). Aim: The objective of this study was to determine the optimal dose of avidin with a fixed activity (3.7 GBq) of 90Y-biotin, in order to provide a boost of 20 Gy, foll...

  15. Type and dose of radiotherapy used for initial treatment of non-metastatic prostate cancer

    International Nuclear Information System (INIS)

    We sought to describe patterns of initial radiotherapy among non-metastatic prostate cancer (PC) patients by recurrence risk groups. Medical records were abstracted for a sample of 9017 PC cases diagnosed in 2004 as a part of the Center for Disease Control and Prevention’s Prostate and Breast Patterns of Care Study in seven states. Non-metastatic PC cases are categorized as low-risk (LR), intermediate-risk (IR) or high-risk (HR) groups based on pretreatment PSA, tumor stage, and Gleason score per 2002 NCCN guidelines. Univariate and multivariate analyses were employed to determine factors associated with the type and dose of radiotherapy by the risk groups. Of the 9,017 patients, 3153 who received definitive radiotherapy either alone or in combination with hormone therapy (HT) were selected for in-depth analysis. Multivariate models showed that LR patients were more likely to receive seed implant brachytherapy (BT) than those in higher risk groups. Those in the IR group were most likely to receive external beam radiotherapy (EBRT) combined with BT or high-dose radiotherapy. Use of HT in combination with radiotherapy was more common in the IR and HR groups than for LR patients. Intensity modulated radiation treatment (IMRT) was used to treat 32.6% of PC patients treated with EBRT, with the majority (60.6%) treated with high-dose radiotherapy. Radiotherapy types and dosage utilization varied by PC risk groups. Patients in IR were more likely than those in LR or HR to receive high-dose radiotherapy. IMRT was used in about one third of patients to deliver high-dose radiotherapy

  16. The relationship between external beam radiotherapy dose and chronic urinary dysfunction - A methodological critique

    International Nuclear Information System (INIS)

    Purpose: To perform a methodological critique of the literature evaluating the relationship between external beam radiotherapy dose/volume parameters and chronic urinary dysfunction to determine why consistent associations between dose and dysfunction have not been found. Methods and materials: The radiotherapy literature was reviewed using various electronic medical search engines with appropriate keywords and MeSH headings. Inclusion criteria comprised of; English language articles, published between 1999 and June 2009, incorporating megavoltage external beam photons in standard-sized daily fraction. A methodological critique was then performed, evaluating the factors affected in the quantification of radiotherapy dose and chronic urinary dysfunction. Results: Nine of 22 eligible studies successfully identified a clinically and statistically significant relationship between dose and dysfunction. Accurate estimations of external beam radiotherapy dose were compromised by the frequent use of dosimetric variables which are poor surrogates for the dose received by the lower urinary tract tissue and do not incorporate the effect of daily variations in isocentre and bladder position. The precise categorization of chronic urinary dysfunction was obscured by reliance on subjective and aggregated toxicity metrics which vary over time. Conclusions: A high-level evidence-base for the relationship between external beam radiotherapy dose and chronic urinary dysfunction does not currently exist. The quantification of the actual external beam dose delivered to the functionally important tissues using dose accumulation strategies and the use of objective measures of individual manifestations of urinary dysfunction will assist in the identification of robust relationships between dose and urinary dysfunction for application in widespread clinical practice.

  17. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography.

    Science.gov (United States)

    Christensen, A N; Rydhög, J S; Søndergaard, R V; Andresen, T L; Holm, S; Munck Af Rosenschöld, P; Conradsen, K; Jølck, R I

    2016-06-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively. PMID:27174233

  18. Phase-space database for external beam radiotherapy. Summary report of a consultants' meeting

    International Nuclear Information System (INIS)

    A summary is given of a Consultants' Meeting assembled to discuss and recommend actions and activities to prepare a Phase-space Database for External Beam Radiotherapy. The new database should serve to disseminate phase-space data of those accelerators and 60Co units used in radiotherapy through the compilation of existing data that have been properly validated. Both the technical discussions and the resulting work plan are described, along with the detailed recommendations for implementation. The meeting was jointly organized by NAPC-Nuclear Data Section and NAHU-Dosimetry and Medical Radiation Physics Section. (author)

  19. {sup 11}C-Choline PET/CT detects the site of relapse in the majority of prostate cancer patients showing biochemical recurrence after EBRT

    Energy Technology Data Exchange (ETDEWEB)

    Ceci, Francesco; Graziani, Tiziano; Lodi, Filippo; Fanti, Stefano [University of Bologna, Service of Nuclear Medicine, Policlinico S. Orsola Malpighi, Bologna (Italy); Castellucci, Paolo [University of Bologna, Service of Nuclear Medicine, Policlinico S. Orsola Malpighi, Bologna (Italy); Azienda Ospedaliero-Unversitaria di Bologna Policlinico Sant' Orsola-Malpighi, UO di Medicina Nucleare, PAD. 30, Bologna (Italy); Schiavina, Riccardo; Brunocilla, Eugenio; Martorana, Giuseppe [University of Bologna, Department of Urology, Policlinico S. Orsola Malpighi, Bologna (Italy); Mazzarotto, Renzo; Ntreta, Maria [University of Bologna, Service of Radiotherapy, Policlinico S. Orsola Malpighi, Bologna (Italy)

    2014-05-15

    The aim of this retrospective study was to evaluate the usefulness and the detection rate of {sup 11}C-choline PET/CT in a population of patients with prostate cancer (PC), exclusively treated with external beam radiotherapy (EBRT) as primary treatment, who showed biochemical relapse. We enrolled 140 patients showing a serum PSA level >2 ng/mL (mean 8.6 ng/mL, median 5 ng/mL, range 2 - 60 ng/mL). All patients had been treated with EBRT to the prostate gland and prostatic fossa with doses ranging from 70 to 76 Gy in low-risk patients (T1/T2 and/or serum PSA <10 ng/mL) and escalating to >76 Gy (range 76 - 81 Gy) in high-risk patients (T3/T4 and/or serum PSA >10 ng/mL). Of the 140 patients, 53 were receiving androgen deprivation therapy at the time of the scan. All positive {sup 11}C-choline PET/CT findings were validated by transrectal ultrasound-guided biopsy or at least 12 months of follow-up with contrast-enhanced CT, MR, bone scintigraphy or a repeated {sup 11}C-choline PET/CT scan. The relationships between the detection rate of {sup 11}C-choline PET/CT and the factors PSA level, PSA kinetics, Gleason score, age, time to relapse and SUVmax in patients with positive findings were analysed. {sup 11}C-Choline PET/CT detected the site of relapse in 123 of the 140 patients with a detection rate of 87.8 % (46 patients showed local relapse, 31 showed local and distant relapse, and 46 showed only distant relapse). In patients with relapse the mean serum PSA level was 9.08 ng/mL (median 5.1 ng/mL, range 2 - 60 ng/mL), the mean PSA doubling time was 5.6 months (median 3.5 months, range 0.4 - 48 months), and the mean PSA velocity was 15 ng/mL/year (median 8.8 ng/mL/year, range 0.4 - 87 ng/mL/year). Of the 123 patients with relapse, 77 (62.6 %) showed distant relapse with/without local relapse, and of these 77, 31 (40.2 %) showed oligometastatic disease (one or two distant lesions: lymph node lesions only in 16, bone lesions only in 14, and lymph node lesions and bone

  20. Improved genetic algorithm in optimization of beam orientation in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Objective: At present beam orientation selection in intensity-modulated radiotherapy (IMRT) is mainly based on empiric knowledge. This study is to evaluate the feasibility of automated beam angle selection. Methods: Genetic algorithm technique which based on beam eye view dose measurement (BEVD-GA) was tested on two clinical cases, including a spine column cancer and a lung cancer. Three plans were obtained under the following different beam configurations: five equiangular-spaced beams, five beams with GA-selected, and five beams with BEVD-GA-selected beams. Then the dose distribution was compared among the three plans. Results: The method, restricting the range of genetic algorithm followed by carrying through genetic operations, not only shortened the optimization time, but also improved the optimization effect. For spine column cancer and lung cancer, the best IMRT plans were obtained with BEVD-GA-selected beams, which used automated beam orientation selection. Conclusions: Comparing with the conventional manual beam orientation selection, beam orientation optimization which is feasible in IMRT planning may significantly improve the efficiency and result. (authors)

  1. External beam radiotherapy plus single-fraction high dose rate brachytherapy in the treatment of locally advanced prostate cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the efficacy and toxicity of external beam radiation therapy (EBRT) plus high-dose-rate brachytherapy (HDRB) as a boost in patients (pts) with intermediate or high-risk prostate cancer. Methods and materials: From 2002 to July 2012, 377 pts with a diagnosis of intermediate or high-risk prostate cancer were treated with EBRT plus HDRB. Median patient age was 66 years (range, 41–86). Most patients (347 pts; 92%) were classified as high-risk (stage T2c–T3, or PSA > 20 ng/mL, or GS ⩾ 8), with 30 patients (8%) considered intermediate risk. All patients underwent EBRT at a prescribed dose of 60.0 Gy (range, 45–70 Gy) to the prostate and seminal vesicles. A total of 120 pts (31%) received a dose of 46 Gy (45–50 Gy) to the true pelvis. All pts received a single-fraction 9 Gy (9–15 Gy) HDR boost. Most patients (353; 94%) were prescribed complete androgen deprivation therapy (ADT). Overall survival (OS), cause-specific survival (CSS), and biochemical relapse-free survival (BRFS) rates were calculated. In the case of BRFS, patients with <26 months of follow-up (n = 106) were excluded to minimize the impact of ADT. Results: The median follow-up for the entire sample was 50 months (range, 12–126), with 5-year actuarial OS and CSS, respectively, of 88% (95% confidence interval [CI]: 84–92) and 98% (95% CI: 97–99). The 5-year BRFS was 91% (95% CI: 87–95) in the 271 pts with ⩾26 months (median, 60 months) of follow-up. Late toxicity included grade 2 and 3 gastrointestinal toxicity in 17 (4.6%) and 6 pts (1.6%), respectively, as well as grades 2 and 3 genitourinary toxicity in 46 (12.2%) and 3 pts (0.8%), respectively. Conclusion: These long-term outcomes confirm that EBRT plus a single-fraction HDRB boost provides good results in treatment-related toxicity and biochemical control. In addition to the excellent clinical results, this fractionation schedule reduces physician workload, treatment-related expenses, patient discomfort and risks

  2. Management of hilar bile duct carcinoma with high-dose radiotherapy and expandable metallic stent placement

    International Nuclear Information System (INIS)

    This article describes our experience with high-dose radiotherapy in combination with the placement of expandable metallic stents (EMS) in the management of hilar bile duct carcinoma. Between 1988 and 1999, 107 consecutive patients with hilar bile duct carcinoma were treated with EMS placement either alone or in combination with high-dose radiotherapy. External beam radiotherapy (EBRT) was indicated in 101 patients, and in 86 this was combined with intraluminal 192Ir irradiation (ILRT, 59-98 Gy) EMS were placed after the completion of radiotherapy. The 1-, 2-, 3-, and 5-year actuarial survival rates for the radiotherapy group were 66.4%, 23.4%, 15.6%, 7.8%, respectively, and the 1- and 2-year actuarial survival rates for the nonradiotherapy group were 66.4% and 0%, respectively. The placement of EMS was useful for the early establishment of an internal bile passage in radically irradiated patients and the 1-, 2-, 3-, and 5-year actuarial patency rates for the radiotherapy group were 56.3%, 45.3%, 35.2%, and 23.4%, respectively, and the 1- and 2-year actuarial patency rates for the non radiotherapy group were 50.0% and 0% respectively. High-dose radiotherapy, consisting of ILRT and EBRT, appears to be feasible in the management of hilar bile duct carcinoma, and it offers a survival advantage for patients no suited for surgical resection. The placement of EMS assists the internal bile flow and lengthens survival after high-dose radiotherapy. (author)

  3. History, preliminary results, complications, and future prospects of intraoperative radiotherapy

    International Nuclear Information System (INIS)

    Intraoperative electron beam radiotherapy (IORT) is a new combined modality therapy in the treatment of cancer. IORT is delivered during a surgical procedure to a tumor or tumor bed and areas of possible local regional spread, with the ability to shield or physically move normal tissues and organs out of the treatment volume. IORT is feasible for various intraabdominal, retroperitoneal, pelvic, and other malignancies. It is possible to increase the total radiation dose, thereby improving the therapeutic ratio; a better local control without an increasing morbidity. Although the optimum use of IORT is still unknown, it is believed that its greatest value is in combination with maximal surgical resection of the tumor with or without external beam radiotherapy (EBRT). IORT is still an experimental treatment modality combining surgery, EBRT, and if necessary, chemotherapy. Because IORT is an expensive treatment method, it is important to determine which method is the best and most convenient for the patient. The answer can be given only when prospective, randomized clinical IORT trials and cost-effectiveness studies are initiated. 53 references

  4. Facilities for radiotherapy with ion beams status and worldwide developments

    CERN Document Server

    Wolf, B H

    1999-01-01

    Forty-five years after the first ion beam therapy in Berkeley around 25,000 cancer patients worldwide have been treated successfully. Ion accelerators, designed for nuclear research, delivered most of this treatment. The first hospital-based facility started operation in 1998 at Loma Linda California, the first for heavier ions at Chiba, Japan in 1994 and the first commercially delivered facilities started operation in 1998 at Kashiwa, Japan. In 2000, the Harvard Medical Centre, Boston, US, will commence operation and several new facilities are planned or under construction worldwide, although none in Australia. This paper will discuss the physical and biological advantages of ion beams over x-rays and electrons. In the treatment of cancer patients ion beam therapy is especially suited for localised tumours in radiation sensitive areas like skull or spine. Heavier ions are also effective in anoxic tumour cells (found around the normally oxygenated cell population). An additional advantage of the heavier carbo...

  5. Erectile function following external beam radiotherapy for clinically organ-confined or locally advanced prostate cancer

    International Nuclear Information System (INIS)

    External beam radiotherapy (XRT) has been a standard treatment for clinically localized prostate cancer. However, preservation of erectile function following XRT is controversial. In this study, the influence of XRT on erectile function of patients with clinically organ-confined or locally advanced prostate cancer was retrospectively evaluated. The study included 34 of 84 patients with organ-confined or locally advanced prostate cancer who underwent XRT between 1995 and 2002. Erectile function following radiotherapy was assessed by a simple mailed questionnaire that was constructed for the study. To determine the predictive factors for erectile dysfunction following radiotherapy, data were analyzed by multivariate analysis with the Cox proportional hazards model. The modality of XRT was the only factor to independently predict erectile dysfunction following XRT. The maintenance rates of erectile function were 47.6% at 1 year and 19% at 3 years in patients who received the 3-dimensional conformal radiotherapy, which were significantly higher than in those who received conventional radiotherapy (P=0.026). XRT significantly reduced the maintenance rate of erectile function during the follow-up period, with the rate being 19% at 3 years in patients who received 3-dimensional conformal radiation. The XRT modality was involved in the reduction of erectile function. These results suggest that erectile dysfunction is a possible adverse event following XRT. (author)

  6. Multimodality treatment for cerebral arteriovenous malformations. Complementary role of proton beam radiotherapy

    International Nuclear Information System (INIS)

    A total of 29 cerebral arteriovenous malformations (AVMs) treated at the University of Tsukuba with multimodality treatment including proton beam (PB) radiotherapy for cerebral AVMs between 2005 and 2011 were retrospectively evaluated. Eleven AVMs were classified as Spetzler-Martin grades I and II, 10 as grade III, and 8 as grades IV and V. For AVMs smaller than 2.5 cm and located on superficial and non-eloquent areas, surgical removal with/without embolization was offered as a first-line treatment. For some small AVMs located in deep or eloquent lesions, gamma knife (GK) radiosurgery was offered. Some AVMs were treated with only embolization. AVMs larger than 2.5 cm were embolized to achieve reduction in size, to enhance the safety of the surgery, and to render the AVM amenable to GK radiosurgery. For larger AVMs located in deep or eloquent areas, PB radiotherapy was offered with/without embolization. Immediately after the treatment, 24 patients exhibited no neurological worsening. Four patients had moderate disability, and 1 patient had severe disability. Three patients suffered brain damage after surgical resection, and 2 patients suffered embolization complications. However, no neurological worsening was observed after either GK radiosurgery or PB radiotherapy, but 3 patients treated by PB radiotherapy suffered delayed hemorrhage. Fractionated PB radiotherapy for cerebral AVMs seems to be useful for the treatment of large AVMs, but careful long-term follow up is required to establish the efficacy and safety. (author)

  7. Review of clinical experience with ion beam radiotherapy

    OpenAIRE

    Jensen, A D; Münter, M W; Debus, J.

    2011-01-01

    The article describes both the early development of oncology as a core discipline at the University of Heidelberg Hospital and the first steps towards ion beam treatment, from the pilot project carried out in co-operation with the Gesellschaft für Schwerionenforschung Darmstadt to the initial start-up of clinical service at the Heidelberg Heavy Ion Centre (HIT). We present an overview, based on data published in the literature, of the available clinical evidence relating the use of ion beam t...

  8. Clinically diagnosed glomus vagale tumour treated with external beam radiotherapy: a review of the published reports

    International Nuclear Information System (INIS)

    Full text: The aim of the study was to present a case of clinically diagnosed glomus vagale in a 42-year-old Aboriginal woman treated with external beam radiotherapy and to carry out a review of the published work. The details of presentation, diagnosis, treatment and follow up of the patient are discussed. A review of the published work was carry out using MEDLINE database with respect to aetiology, clinical presentation, diagnosis, treatment and expected outcomes. Glomus vagale tumours are a subtype of paragangliomas of the head and neck derived from extra-adrenal paraganglia of the autonomic nervous system. They are typically slow-growing, benign masses that are often asymptomatic and rarely show signs of hypersecretion. Treatment options include embolization, surgical excision, radiotherapy or surveillance. Radiotherapy is often used for extensive lesions where surgery is considered prohibitively morbid. Following treatment relapse rates are low with the most patients achieving long-term control. Our patient presented with an extensive lesion compressing the wall of the carotid artery and invading the jugular fossa to involve the clivus. Surgery was offered; however, the patient opted for external beam radiotherapy. A dose of 45 Gy in 25 fractions was delivered with 6-MV photons employing a CT-planned, wedge pair technique. Glomus vagale tumours are rare and should be managed in a multidisciplinary head and neck clinic with both surgical and radiation oncology opinions offered. The toxicities and outcomes of both methods should be discussed

  9. Image-Guided Radiotherapy via Daily Online Cone-Beam CT Substantially Reduces Margin Requirements for Stereotactic Lung Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To determine treatment accuracy and margins for stereotactic lung radiotherapy with and without cone-beam CT (CBCT) image guidance. Methods and Materials: Acquired for the study were 308 CBCT of 24 patients with solitary peripheral lung tumors treated with stereotactic radiotherapy. Patients were immobilized in a stereotactic body frame (SBF) or alpha-cradle and treated with image guidance using daily CBCT. Four (T1) or five (T2/metastatic) 12-Gy fractions were prescribed to the planning target volume (PTV) edge. The PTV margin was ≥5 mm depending on a pretreatment estimate of tumor excursion. Initial daily setup was according to SBF coordinates or tattoos for alpha-cradle cases. A CBCT was performed and registered to the planning CT using soft tissue registration of the target. The initial setup error/precorrection position, was recorded for the superior-inferior, anterior-posterior, and medial-lateral directions. The couch was adjusted to correct the tumor positional error. A second CBCT verified tumor position after correction. Patients were treated in the corrected position after the residual errors were ≤2 mm. A final CBCT after treatment assessed intrafraction tumor displacement. Results: The precorrection systematic (Σ) and random errors (σ) for the population ranged from 2-3 mm for SBF and 2-6 mm for alpha-cradle patients; postcorrection errors ranged from 0.4-1.0 mm. Calculated population margins were 9 to 13 mm (SBF) and 10-14 mm (cradle) precorrection, 1-2 mm (SBF), and 2-3 mm (cradle) postcorrection, and 2-4 mm (SBF) and 2-5 mm (cradle) posttreatment. Conclusions: Setup for stereotactic lung radiotherapy using a SBF or alpha-cradle alone is suboptimal. CBCT image guidance significantly improves target positioning and substantially reduces required target margins and normal tissue irradiation

  10. The effect of short term neo-adjuvant androgen deprivation on erectile function in patients treated with external beam radiotherapy for localised prostate cancer: An analysis of the 4- versus 8-month randomised trial (Irish Clinical Oncology Research Group 97-01)

    International Nuclear Information System (INIS)

    Background and purpose: Erectile dysfunction is a common consequence of external beam radiotherapy (EBRT) for prostate cancer. The addition of neo-adjuvant androgen deprivation (NAD) has an indeterminate additive effect. We examined the long-term effect on erectile function (EF) of two durations (4 months: arm 1 and 8 months: arm 2) of NAD prior to radiation (RT) for patients with localised prostate cancer from the Irish Clinical Oncology Research Group (ICORG 97-01) 4- versus 8-month trial. In this study we aimed to (1) analyse the overall effect on EF of NAD in an EBRT population, (2) compare the probability of retained EF over time in an EBRT population treated with either 4 or 8 months of NAD and (3) identify any variables such as risk group and age which may have an additive detrimental effect. This analysis provides unique long term follow up data. Materials and methods: From 1997 to 2001, 276 patients with adenocarcinoma of the prostate were randomised to 4 or 8 months of NAD before RT. EF data were recorded at baseline and at each follow-up visit by physician directed questions, using a 4-point grading system. Results: Two hundred and thirty patients were included in the analysis of EF and were followed for a median of 80 months. One hundred and forty-one patients had EF at baseline. Neo-adjuvant androgen deprivation in addition to radiation therapy caused a significant reduction in EF. The most significant reduction in EF happens within the first year. The median time to grade 3–4 EF toxicity was 14.6 months, 17.6 months in arm 1 and 13.7 in arm 2. Freedom from late EF toxicity did not differ significantly between arms, overall or at 5 years (n = 141). The cumulative probability of EF preservation at 5 years was 28% (22–34) in arm 1 and 24% (19–30) in arm 2. Age was a significant predictor of post-treatment EF. Conclusions: The first year post ADT and EBRT poses the greatest risk to sexual function and a continued decline may be expected. However, 26

  11. Definition of stereotactic body radiotherapy. Principles and practice for the treatment of stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    This report from the Stereotactic Radiotherapy Working Group of the German Society of Radiation Oncology (Deutschen Gesellschaft fuer Radioonkologie, DEGRO) provides a definition of stereotactic body radiotherapy (SBRT) that agrees with that of other international societies. SBRT is defined as a method of external beam radiotherapy (EBRT) that accurately delivers a high irradiation dose to an extracranial target in one or few treatment fractions. Detailed recommendations concerning the principles and practice of SBRT for early stage non-small cell lung cancer (NSCLC) are given. These cover the entire treatment process; from patient selection, staging, treatment planning and delivery to follow-up. SBRT was identified as the method of choice when compared to best supportive care (BSC), conventionally fractionated radiotherapy and radiofrequency ablation. Based on current evidence, SBRT appears to be on a par with sublobar resection and is an effective treatment option in operable patients who refuse lobectomy. (orig.)

  12. Feasibility study on effect and stability of adaptive radiotherapy on kilovoltage cone beam CT:

    OpenAIRE

    Yadav, Poonam; Ramasubramanian, Velayudham; Paliwal, Bhudatt R.

    2011-01-01

    Background We have analyzed the stability of CT to density curve of kilovoltage cone-beam computerized tomography (kV CBCT) imaging modality over the period of six months. We also, investigated the viability of using image value to density table (IVDT) generated at different time, for adaptive radiotherapy treatment planning. The consequences of target volume change and the efficacy of kV CBCT for adaptive planning issues is investigated. Materials and methods. Standard electron density phant...

  13. Shading correction algorithm for improvement of cone-beam CT images in radiotherapy

    OpenAIRE

    Marchant, T. E.; Moore, C. J.; Rowbottom, C G; Mackay, R. I.; Williams, P.C.

    2008-01-01

    Cone-beam CT (CBCT) images have recently become an established modality for treatment verification in radiotherapy. However, identification of soft-tissue structures and the calculation of dose distributions based on CBCT images is often obstructed by image artefacts and poor consistency of density calibration. A robust method for voxel-by-voxel enhancement of CBCT images using a priori knowledge from the planning CT scan has been developed and implemented. CBCT scans were enhanced using a lo...

  14. Safety and Efficacy of Concurrent Cisplatin and Radiotherapy in Inoperable or Metastatic Squamous Cell Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shaleen; Dimri, Kislay; Datta, Niloy R.; Rastogi, Neeraj; Lal, Punita; Das, Koilpillai J. Maria; Ayyagari, Sundar [Sanjay Gandhi Postgraduate Inst. of Medical Sciences, Lucknow (India). Dept of Radiotherapy

    2002-09-01

    Between August 1996 and May 1999, 50 consecutive, previously untreated patients with carcinoma of the esophagus and who were inoperable for various reasons were treated with weekly doses of cisplatin (35 mg/m{sup 2}, maximum 7 cycles) concurrent with either 66 Gy/33 fractions external beam radiotherapy (EBRT) (n=42) or 50 Gy/25 fractions EBRT and two insertions of high-dose-rate intraluminal radiotherapy of 6 Gy each, spaced a week apart (n=8). Eighty-two percent (41/50) of the patients received the stipulated radiotherapy (RT) dose. Seventy-six percent (38/50) received at least 6 cycles of chemotherapy. Neutropenia in the form of WHO grade II-12% (6/50) and grade III-2% (1/50) was observed. Grade III emesis was seen in 8% (4/50). Improvement in the swallowing status was seen in 84% (42/50). Median duration of dysphagia relief was 6 months. The median overall survival was 9 months with 17% estimated to be alive after 4 years. Combined treatment with single agent cisplatin and definitive radiotherapy for inoperable cancer of the esophagus is safe, well tolerated and reasonably efficacious.

  15. Local prostate cancer radiotherapy after prostate-specific antigen progression during primary hormonal therapy

    International Nuclear Information System (INIS)

    The outcome of patients after radiotherapy (RT) for localized prostate cancer in case of prostate-specific antigen (PSA) progression during primary hormonal therapy (HT) is not well known. A group of 27 patients presenting with PSA progression during primary HT for local prostate cancer RT was identified among patients who were treated in the years 2000–2004 either using external-beam RT (EBRT; 70.2Gy; n=261) or Ir-192 brachytherapy as a boost to EBRT (HDR-BT; 18Gy + 50.4Gy; n=71). The median follow-up period after RT was 68 months. Median biochemical recurrence free (BRFS), disease specific (DSS) and overall survival (OS) for patients with PSA progression during primary HT was found to be only 21, 54 and 53 months, respectively, with a 6-year BRFS, DSS and OS of 19%, 41% and 26%. There were no significant differences between different RT concepts (6-year OS of 27% after EBRT and 20% after EBRT with HDR-BT). Considering all 332 patients in multivariate Cox regression analysis, PSA progression during initial HT, Gleason score>6 and patient age were found to be predictive for lower OS (p<0.001). The highest hazard ratio resulted for PSA progression during initial HT (7.2 in comparison to patients without PSA progression during primary HT). PSA progression and a nadir >0.5 ng/ml during initial HT were both significant risk factors for biochemical recurrence. An unfavourable prognosis after PSA progression during initial HT needs to be considered in the decision process before local prostate radiotherapy. Results from other centres are needed to validate our findings

  16. Beam related response of in vivo diode detectors for external radiotherapy

    Science.gov (United States)

    Baci, Syrja; Telhaj, Ervis; Malkaj, Partizan

    2016-03-01

    In Vivo Dosimetry (IVD) is a set of methods used in cancer treatment clinics to determine the real dose of radiation absorbed by target volume in a patient's body. IVD has been widely implemented in radiotherapy treatment centers and is now recommended part of Quality Assurance program by many International health and radiation organizations. Because of cost and lack of specialized personnel, IVD has not been practiced as yet, in Albanian radiotherapy clinics. At Hygeia Hospital Tirana, patients are irradiated with high energy photons generated by Elekta Synergy Accelerators. We have recently started experimenting with the purpose of establishing an IVD practice at this hospital. The first set of experiments was aimed at calibration of diodes that are going to be used for IVD. PMMA, phantoms by PTW were used to calibrate p - type Si, semiconductor diode dosimeters, made by PTW Freiburg for entrance dose. Response of the detectors is affected by energy of the beam, accumulated radiation dose, dose rate, temperature, angle against the beam axis, etc. Here we present the work done for calculating calibration factor and correction factors of source to surface distance, field size, and beam incidence for the entrance dose for both 6 MV photon beam and 18 MV photon beam. Dependence of dosimeter response was found to be more pronounced with source to surface distance as compared to other variables investigated.

  17. Radiation safety assessment of cobalt 60 external beam radiotherapy using the risk-matrix method

    International Nuclear Information System (INIS)

    External beam radiotherapy is the only practice in which humans are placed directly in a radiation beam with the intention to deliver a very high dose. This is why safety in radiotherapy is very critical, and is a matter of interest to both radiotherapy departments and regulatory bodies. Accidental exposures have occurred throughout the world, thus showing the need for systematic safety assessments, capable to identify preventive measures and to minimize consequences of accidental exposure. Risk-matrix is a systematic approach which combines the relevant event features to assess the overall risk of each particular event. Once an event sequence is identified, questions such as how frequent the event, how severe the potential consequences and how reliable the existing safety measures are answered in a risk-matrix table. The ultimate goal is to achieve that the overall risk for events with severe consequences should always be low o very low. In the present study, the risk-matrix method has been applied to an hypothetical radiotherapy department, which could be equivalent to an upper level hospital of the Ibero American region, in terms of safety checks and preventive measures. The application of the method has identified 76 event sequences and revealed that the hypothetical radiotherapy department is sufficiently protected (low risk) against them, including 23 event sequences with severe consequences. The method has revealed that the risk of these sequences could grow to high level if certain specific preventive measures were degraded with time. This study has identified these preventive measures, thus facilitating a rational allocation of resources in regular controls to detect any loss of reliability. The method has proven to have an important practical value and is affordable at hospital level. The elaborated risk-matrix can be easily adapted to local circumstances, in terms of existing controls and safety measures. This approach can help hospitals to identify

  18. External beam radiotherapy for basal cell carcinoma. Local control and cosmetic outcome

    International Nuclear Information System (INIS)

    Background: The basal cell carcinoma which is often occurring in the elderly can be well treated by surgery. For large and recurrent lesions and in cosmetically difficult locations external beam radiotherapy provides an equally effective treatment alternative. Patients and Methods: From 1986 to 1999, 60 females and 39 males received primary radiotherapy for a total of 127 histologically verified basal cell carcinoma lesions. Tumors were mostly localized in the face at the temple, nose and forehead. Radiotherapy was applied with orthovoltage equipment and energies of up to 100 kV. Single doses ranged from 2 to 5 Gy related to the 80%-isodose depth. Weekly doses ranged from 8 to 25 Gy and total doses from 25 to 60 Gy. The mean follow-up period was 36±21 months. The acute sequelae were scored according to CTC criteria. Radiogenic late effects as single events were related to the radiation portal. Results: 3 months after treatment all besides one patient (99%) experienced complete tumor remission (CR). In all cases, acute radiation reaction occurred within the radiation portal: CTC Grade 1 in 100%, CTC Grade 2 in 54% and CTC Grade 3 in 30% of the cases. All side effects regressed under simple local measures without further complications. Late sequelae were observed in three cases. Overall cosmetic outcome was good to excellent in almost all patients (98%). In two cases (2%) a local recurrence was observed 6 and 20 months after radiotherapy. Conclusion: External beam (orthovoltage) radiotherapy is very effective and yields high tumor control rates and good cosmetic results in long-term follow-up. Former dermatological treatment concepts should be replaced by an ICRU-based radiophysical dose prescription and should respect the newer radiobiological fractionation principles. (orig.)

  19. Partially wedged beams improve radiotherapy treatment of urinary bladder cancer

    International Nuclear Information System (INIS)

    Background and purpose: Partially wedged beams (PWBs) having wedge in one part of the field only, can be shaped using dynamic jaw intensity modulation. The possible clinical benefit of PWBs was tested in treatment plans for muscle-infiltrating bladder cancer. Material and methods: Three-dimensional treatment plans for 25 bladder cancer patients were analyzed. The originally prescribed standard conformal four-field box technique, which includes the use of lateral ordinary wedge beams, was compared to a modified conformal treatment using customized lateral PWBs. In these modified treatment plans, only the anterior parts of the two lateral beams had a wedge. To analyze the potential clinical benefit of treatment with PWBs, treatment plans were scored and compared using both physical parameters and biological dose response models. One tumour control probability model and two normal tissue complication probability (NTCP) models were applied. Different parameters for normal tissue radiation tolerance presented in the literature were used. Results: By PWBs the dose homogeneity throughout the target volume was improved for all patients, reducing the average relative standard deviation of the target dose distribution from 2.3 to 1.8%. A consistent reduction in the maximum doses to surrounding normal tissue volumes was also found. The most notable improvement was demonstrated in the rectum where the volume receiving more than the prescribed tumour dose was halved. Treatment with PWBs would permit a target dose escalation of 2-6 Gy in several of the patients analyzed, without increasing the overall risk for complications. The number of patients suitable for dose escalation ranged from 3 to 15, depending on whether support from all or only one of the five applied NTCP model/parameter combinations were required in each case to recommend dose escalation. Conclusion: PWBs represent a simple dose conformation tool that may allow radiation dose escalation in the treatment of muscle

  20. Automated planning of breast radiotherapy using cone beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Amit, Guy [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G2M9 (Canada); Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Techna Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 1P5 (Canada)

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  1. The future and progress of proton beam radiotherapy

    International Nuclear Information System (INIS)

    The advantage of proton therapy is reduction of treatment volumes relative to those feasible with conventional photon therapy. The consequence is that the radiation dose to the target can be raised, with a resultant increase in tumor control probability. Proton beams, however, yield no biological gains because their biological properties are similar to conventional low LET radiations. As more sophisticated technologies are needed, there have been many advances which are applicable to photon therapy; 3-D treatment planning, DVH analysis, and systems for positioning, etc. As of January 1994, a total of about 13,000 cases were reported as having had treatments with proton beams in 16 centers world wide. The tumor sites for those include uveal melanoma (30-40%), intra-cranial small targets (40%), and others. Uveal melanomas had been most extensively treated with 70 Gy/5 fx or 60 Gy/4 fx which resulted in local control and survival rates of >96% and 80%, respectively. For chordoma and chondrosarcoma of the skull base and cervical spine, the 5 year local control rates were 65% and 91%, respectively. Promising results are also being obtained for head and neck and pelvic tumors. Deeper-seated tumors have been treated only at Tsukuba University with successful results in some anatomic sites. Among these, inoperable primary hepatocellular carcinomas were effectively treated with a total dose of 75-85 Gy (3.0-4.5 Gy/fx). The 3 year survival rates for all patients, Child A+B patient, and Child A patients were 38%, 47%, and 60%, respectively, which compare favorably to other modalities. These successful results of world wide proton therapy have led us to the conclusion that a hospital-based proton facility will provide opportunities for additional patients to be treated with protons. Thus, new plans are proposed from more than 10 institutions to build a new treatment center or upgrade the energy of currently available proton beams. (author)

  2. A quality audit program for external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, W.F.; Stovall, M. [Univ. of Texas, Houston, TX (United States)

    1993-12-31

    For more than 25 years, the University of Texas M. D. Anderson Cancer Center has had a quality audit program using mailed dosimeters to verify radiation therapy machine output. Two programs, one compulsory and one voluntary, presently monitor therapy beams at more than 1000 megavoltage-therapy facilities. A successful program requires two major components: a high-precision thermoluminescent dosimeter (TLD) system and dedicated staff that interact closely with the users to resolve discrepancies. The TLD system, the logistics used, and the human interaction of these programs are described. Examples show that the programs can identify major discrepancies, exceeding 5 %, as well as discrepancies as small as 3%.

  3. Preparation Of Thermoluminescence Dosimeters For External Radiotherapy Beam Audit In Malaysia

    International Nuclear Information System (INIS)

    The external beam audit is a part of the Quality Assurance Programme (QAP) in radiotherapy that should be carried out to check the accuracy of dose delivered by the radiotherapy treatment units are within the tolerance limit of A ± 5 % as recommended by the International Commission of Radiation Units and Measurements (ICRU) Report No. 24. In this work, thermoluminescence dosimeters (TLD) in powder form were chosen to be used in the dose quality audit for the radiotherapy treatment units in Malaysia. As a preparation, the characterizations of a new batch of TLD-100 powders were studied. The studies include checks for the response of TLD-100 before and after pre-annealing process, reproducibility and linearity of TL signal. Results show that the response of TLD-100 powder after pre-annealing increases by 65 % compared with before pre-annealing process. These TLD-100 powders also provide reliable and consistent readings for the absorbed dose to water within the range of 150 cGy to 250 cGy with the maximum standard uncertainty of 0.554 μC. Finally, the calibration curves for 6 MV and 10 MV photon beams were established. These curves will be used in determining the absorbed dose to water (Dw) from user's irradiated TLDs. The expanded uncertainty (coverage factor k=2) of Dw determination was estimated to be 4.1 %. As a conclusion, these TLD-100 powders are ready to be used as a transfer detector for evaluating the accuracy of user's delivery dose in the radiotherapy beam audit program in Malaysia. (author)

  4. Particle-beam accelerators for radiotherapy and radioisotopes

    International Nuclear Information System (INIS)

    The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines

  5. Radiotherapy

    International Nuclear Information System (INIS)

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  6. The Outcome of Conventional External Beam Radiotherapy for Patients with Squamous Cell Carcinoma of the Esophagus

    International Nuclear Information System (INIS)

    The best treatment for advanced esophageal cancer is chemoradiotherapy followed by surgery. In spite of the advance of multimodality therapy, most patients with esophageal cancer are treated with radiation therapy alone. This study reports the outcome of the use of conventional external beam radiotherapy alone for the treatment of esophageal cancer. Between January 1998 and December 2005, 30 patients with squamous cell carcinoma of the esophagus were treated with external beam radiotherapy using a total dose exceeding 40 Gy. Radiotherapy was delivered with a total dose of 44-60 Gy (median dose, 57.2 Gy) over 36 ∼115 days (median time, 45 days). Thirteen patients (43.3%) had a history of disorders such as diabetes, hypertension, tuberculosis, lye stricture, asthma, cerebral infarct, and cancers. Four patients metachronously had double primary cancers. The most common location of a tumor was the mid-thoracic portion of the esophagus (56.7%). Tumor lengths ranged from 2 cm to 11 cm, with a median length of 6 cm. For AJCC staging, stage III was the most common (63.3%). Five patients had metastases at diagnosis. The median overall survival was 8.3 months. The survival rates at 1-year and 2-years were 33.3% and 18.7%, respectively. The complete response rate 1∼3 months after radiotherapy was 20% (6/30) and the partial response rate was 70% (21/30). Sixteen patients (53.3%) had an improved symptom of dysphagia. Significant prognostic factors were age, tumor length, stage, degree of dysphagia at the time of diagnosis and tumor response. Cox regression analysis revealed the aim of treatment, clinical tumor response and tumor length as independent prognostic factors for overall survival. Twenty-eight patients had local failure and another four patients had metastases. Three patients were detected with double primary cancers in this analysis. A complication of esophageal stricture was observed in three patients (10%), and radiation pneumonitis occurred in two patients (6

  7. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers

    International Nuclear Information System (INIS)

    Background and purpose: Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002 - 2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. Materials and Methods: The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. Results: The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside ±3% and 31% outside ±5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and

  8. Relative biological effectiveness (RBE) of proton beams in radiotherapy

    International Nuclear Information System (INIS)

    Treatment planning in proton therapy uses a generic value for the Relative Biological Efficiency (RBE) of 1.1 relative to 60Co gamma-rays throughout the Spread Out Bragg Peak (SOBP). We have studied the variation of the RBE at three positions in the SOBP of the 76 and 201 MeV proton beams used for cancer treatment at the Institut Curie Proton Therapy in Orsay (ICPO) in two human tumor cell lines using clonogenic cell death and the incidence of DNA double-strand breaks (DSB) as measured by pulse-field gel electrophoresis without and with endonuclease treatment to reveal clustered lesions as endpoints.The RBE for induced cell killing by the 76 MeV beam increased with depth in the SOBP. However for the 201 MeV protons it was close to that for 137Cs gamma-rays and did not vary significantly. The incidence of DSBs and clustered lesions was higher for protons than for 137Cs g-rays, but did not depend on the proton energy or the position in the SOBP. In the second part of our work, we have shown using cell clones made deficient for known repair genes by stable or transient shRNA transfection, that the D-NHEJ pathway determine the response to protons. The response of DNA damages created in the distal part of the 76 MeV SOBP suggests that those damages belong to the class of DNA 'complex lesions' (LMDS). It also appears that the particle fluence is a major determinant of the outcome of treatment in the distal part of the SOBP. (author)

  9. Cone beam CT based image guided radiotherapy: Implementation and clinical use

    International Nuclear Information System (INIS)

    The kV cone beam CT (C.B.C.T.) consists of an X-ray tube and a flat panel detector placed perpendicularly to the treatment beam, allowing the acquisition of hundreds of projections in one rotation of the gantry about the patient. Available in all new linear accelerators, the C.B.C.T. provides volumetric imaging in treatment position proving the realization of image- and dose-guided radiotherapy (I.G.R.T. and D.G.R.T.). The clinical indications correspond to mobile tumours irradiating with high precision required techniques, such as stereotactic, hypo fractionated or high dose radiotherapy. The clinical experience is still very limited and concerns mainly prostate, head and neck and lung tumours. The registration and treatment protocols are briefly described. Quality control and training are major issues. C.B.C.T. based I.G.R.T. is a new technique which needs to be optimized. However, it should provide significant clinical benefit in combination with intensity modulated radiotherapy and new imaging modalities for target delineation. (authors)

  10. Incidence of Secondary Cancer Development After High-Dose Intensity-Modulated Radiotherapy and Image-Guided Brachytherapy for the Treatment of Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To report the incidence and excess risk of second malignancy (SM) development compared with the general population after external beam radiotherapy (EBRT) and brachytherapy to treat prostate cancer. Methods and Materials: Between 1998 and 2001, 1,310 patients with localized prostate cancer were treated with EBRT (n = 897) or brachytherapy (n = 413). We compared the incidence of SMs in our patients with that of the general population extracted from the National Cancer Institute’s Surveillance, Epidemiology, and End Results data set combined with the 2000 census data. Results: The 10-year likelihood of SM development was 25% after EBRT and 15% after brachytherapy (p = .02). The corresponding 10-year likelihood for in-field SM development in these groups was 4.9% and 1.6% (p = .24). Multivariate analysis showed that EBRT vs. brachytherapy and older age were the only significant predictors for the development of all SMs (p = .037 and p = .030), with a trend for older patients to develop a SM. The increased incidence of SM for EBRT patients was explained by the greater incidence of skin cancer outside the radiation field compared with that after brachytherapy (10.6% and 3.3%, respectively, p = .004). For the EBRT group, the 5- and 10-year mortality rate was 1.96% and 5.1% from out-of field cancer, respectively; for in-field SM, the corresponding mortality rates were 0.1% and 0.7%. Among the brachytherapy group, the 5- and 10-year mortality rate related to out-of field SM was 0.8% and 2.7%, respectively. Our observed SM rates after prostate RT were not significantly different from the cancer incidence rates in the general population. Conclusions: Using modern sophisticated treatment techniques, we report low rates of in-field bladder and rectal SM risks after prostate cancer RT. Furthermore, the likelihood of mortality secondary to a SM was unusual. The greater rate of SM observed with EBRT vs. brachytherapy was related to a small, but significantly increased

  11. Clinical application of intensity and energy modulated radiotherapy with photon and electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Xiangkui Mu

    2005-01-01

    In modern, advanced radiotherapy (e.g. intensity modulated photon radiotherapy, IMXT) the delivery time for each fraction becomes prolonged to 10-20 minutes compared with the conventional, commonly 2-5 minutes. The biological effect of this prolongation is not fully known. The large number of beam directions in IMXT commonly leads to a large integral dose in the patient. Electrons would reduce the integral dose but are not suitable for treating deep-seated tumour, due to their limited penetration in tissues. By combining electron and photon beams, the dose distributions may be improved compared with either used alone. One obstacle for using electron beams in clinical routine is that there is no available treatment planning systems that optimise electron beam treatments in a similar way as for IMXT. Protons have an even more pronounced dose fall-off, larger penetration depth and less penumbra widening than electrons and are therefore more suitable for advanced radiotherapy. However, proton facilities optimised for advanced radiotherapy are not commonly available. In some instances electron beams may be an acceptable surrogate. The first part of this study is an experimental in vitro study where the situation in a tumour during fractionated radiotherapy is simulated. The effect of the prolonged fraction time is compared with the predictions by radiobiological models. The second part is a treatment planning study to analyse the mixing of electron and photon beams for at complex target volume in comparison with IMXT. In the next step a research version of an electron beam optimiser was used for the improvement of treatment plans. The aim was to develop a method for translating crude energy and intensity matrices for optimised electrons into a deliverable treatment plan without destroying the dose distribution. In the final part, different methods of treating the spinal canal in medulloblastoma were explored in a treatment planning study that was evaluated with

  12. Feasibility of proton transmission-beam stereotactic ablative radiotherapy versus photon stereotactic ablative radiotherapy for lung tumors: a dosimetric and feasibility study.

    Directory of Open Access Journals (Sweden)

    Benjamin Mou

    Full Text Available Stereotactic ablative radiotherapy is being increasingly adopted in the treatment of lung tumors. The use of proton beam therapy can further reduce dose to normal structures. However, uncertainty exists in proton-based treatment plans, including range uncertainties, large sensitivity to position uncertainty, and calculation of dose deposition in heterogeneous areas. This study investigated the feasibility of proton transmission beams, i.e. without the Bragg peak, to treat lung tumors with stereotactic ablative radiotherapy. We compared three representative treatment plans using proton transmission beams versus conformal static-gantry photon beams. It was found that proton treatment plans using transmission beams passing through the patient were feasible and demonstrated lower dose to normal structures and markedly reduced treatment times than photon plans. This is the first study to demonstrate the feasibility of proton-based stereotactic ablative radiotherapy planning for lung tumors using proton transmission beams alone. Further research using this novel approach for proton-based planning is warranted.

  13. SU-E-T-55: Biological Equivalent Dose (BED) Comparison Between Permanent Interstitial Brachytherapy and Conventional External Beam Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: The goal of this research is to calculate and compare the Biological Equivalent Dose (BED) between permanent prostate Iodine-125 implant brachytherapy as monotherapy with the BED of conventional external beam radiation therapy (EBRT). Methods: A retrospective study of 605 patients treated with Iodine-125 seed implant was performed in which physician A treated 274 patients and physician B treated 331 patients. All the Brachytherapy treatment plans were created using VariSeed 8 planning system. The Iodine-125 seed source activities and loading patterns varied slightly between the two physicians. The prescription dose is 145 Gy to PTV for each patient. The BED and Tumor Control Probability (TCP) were calculated based on the TG 137 formulas. The BED for conventional EBRT of the prostate given in our institution in 2Gy per fraction for 38 fractions was calculated and compared. Results: Physician A treated 274 patients with an average BED of 123.92±0.87 Gy and an average TCP of 99.20%; Physician B treated 331 patients with an average BED of 124.87±1.12 Gy and an average TCP of 99.30%. There are no statistically significant differences (T-Test) between the BED and TCP values calculated for these two group patients.The BED of the patients undergoing conventional EBRT is calculated to be 126.92Gy. The BED of the patients treated with permanent implant brachytherapy and EBRT are comparable. Our BED and TCP values are higher than the reported values by TG 137 due to higher Iodine-125 seed activity used in our institution. Conclusion: We calculated the BED,a surrogate of the biological response to a permanent prostate brachytherapy using TG 137 formulas and recommendation. The TCP of better than 99% is calculated for these patients. A clinical outcome study of these patients correlating the BED and TCP values with PSA and Gleason Levels as well as patient survival is warranted

  14. In vivo dosimetry with thermoluminescent dosimeters in external photon beam radiotherapy

    International Nuclear Information System (INIS)

    Full text: The aim of this work was the implementation of in vivo dosimetry with thermoluminescent dosimeters for treatments of head and neck cancers at a radiotherapy department in a public hospital of Ribeirao Preto, Brazil. For the setting up of the thermoluminescent dosimetric system several tests and measurements were made including the initialization procedure, the determination of the batch homogeneity, the determination of relative intrinsic sensitivity of each dosimeter, the determination of linearity range of the system and its calibration coefficients. Thermoluminescent dosimeter measurements were carried out for the cobalt-60 teletherapy unit photon beams. Practical guidelines provided in the first of the European Society for Therapeutic Radiology and Oncology (ESTRO) booklet on in vivo dosimetry were followed in the determination of entrance doses. Dose verification with the thermoluminescent dosimeters placed on the patients was performed. These measurements demonstrated the value of thermoluminescent dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in radiotherapy

  15. Intraoperative Electron Radiotherapy for the Management of Aggressive Fibromatosis

    International Nuclear Information System (INIS)

    Purpose: We analyzed our experience with intraoperative electron radiotherapy (IOERT) followed by moderate doses of external beam radiotherapy (EBRT) after organ-sparing surgery in patients with primary or recurrent aggressive fibromatosis. Methods and Materials: Indication for IOERT and postoperative EBRT as an individual treatment approach to avoid mutilating surgical procedures was seen when complete surgical removal seemed to be unlikely or impossible. A total of 31 lesions in 30 patients were treated by surgery and IOERT with a median dose of 12 Gy. Median age was 31 years (range, 13-59 years). Resection status was close margin in six lesions, microscopically positive in 13, and macroscopically positive in 12. Median tumor size was 9 cm. In all, 25 patients received additional EBRT, with a median dose of 45 Gy (range, 36-54 Gy). Results: After a median follow-up of 32 months (range, 3-139 months), no disease-related deaths occurred. A total of five local recurrences were seen, resulting in actuarial 3-year local control rates of 82% overall and 91% inside the IOERT areas. Trends to improved local control were seen for older age (>31 years) and negative margins, but none of these factors reached significance. Perioperative complications were found in six patients, in particular as wound healing disturbances in five patients and venous thrombosis in one patient. Late toxicity was seen in five patients. Conclusion: Introduction of IOERT into a multimodal treatment approach in patients with aggressive fibromatosis is feasible with low toxicity and yielded good local control rates even in patients with microscopical or gross residual disease.

  16. Calculation of uncertainties in the protocol of dosimetry for Co 60 beams in Radiotherapy

    International Nuclear Information System (INIS)

    The objective in this work is to show how the uncertainty is possible to know in the determination of the absorbed dose in Co 60 photon beams and to establish in a rational form, tolerance levels for this. It is took as base the spanish protocol of dosimetry in Radiotherapy. We have been centered in a Co 60 beam. We utilized the statistical theory of little samples. We allowed to suggest a new approach about the treatment of the tolerance levels and the uncertainty of the measurement. After two years of experience in the practical hospitable application we have gotten to put around 1 % uncertainty in the absolute dosimetry of the Co 60 beam. The presented protocol allows to execute the accuracy requirements in the determination of absorbed doses. (Author)

  17. Supine proton beam craniospinal radiotherapy using a novel tabletop adapter

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, Jeffrey C., E-mail: jbuchsba@iupui.edu [IU Health Proton Therapy Center, Bloomington, IN (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Besemer, Abby; Simmons, Joseph; Hoene, Ted; Simoneaux, Victor; Sandefur, Amy [IU Health Proton Therapy Center, Bloomington, IN (United States); Wolanski, Mark; Li, Zhao; Cheng, Chee-Wei [IU Health Proton Therapy Center, Bloomington, IN (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2013-04-01

    To develop a device that allows supine craniospinal proton and photon therapy to the vast majority of proton and photon facilities currently experiencing limitations as a result of couch design issues. Plywood and carbon fiber were used for the development of a prototype unit. Once this was found to be satisfactory after all design issues were addressed, computer-assisted design (CAD) was used and carbon fiber tables were built to our specifications at a local manufacturer of military and racing car carbon fiber parts. Clinic-driven design was done using real-time team discussion for a prototype design. A local machinist was able to construct a prototype unit for us in <2 weeks after the start of our project. Once the prototype had been used successfully for several months and all development issues were addressed, a custom carbon fiber design was developed in coordination with a carbon fiber manufacturer in partnership. CAD methods were used to design the units to allow oblique fields from head to thigh on patients up to 200 cm in height. Two custom-designed carbon fiber craniospinal tabletop designs now exist: one long and one short. Four are in successful use in our facility. Their weight tolerance is greater than that of our robot table joint (164 kg). The long unit allows for working with taller patients and can be converted into a short unit as needed. An affordable, practical means of doing supine craniospinal therapy with protons or photons can be used in most locations via the use of these devices. This is important because proton therapy provides a much lower integral dose than all other therapy methods for these patients and the supine position is easier for patients to tolerate and for anesthesia delivery. These units have been successfully used for adult and pediatric supine craniospinal therapy, proton therapy using oblique beams to the low pelvis, treatment of various spine tumors, and breast-sparing Hodgkin's therapy.

  18. Endoscopic findings of rectal mucosal damage after pelvic radiotherapy for cervical carcinoma: correlation of rectal mucosal damage with radiation dose and clinical symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Gyu; Huh, Seung Jae; Park, Won [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2013-06-15

    To describe chronic rectal mucosal damage after pelvic radiotherapy (RT) for cervical cancer and correlate these findings with clinical symptoms and radiation dose. Thirty-two patients who underwent pelvic RT were diagnosed with radiation-induced proctitis based on endoscopy findings. The median follow-up period was 35 months after external beam radiotherapy (EBRT) and intracavitary radiotherapy (ICR). The Vienna Rectoscopy Score (VRS) was used to describe the endoscopic findings and compared to the European Organization for Research and Treatment of Cancer (EORTC)/Radiation Therapy Oncology Group (RTOG) morbidity score and the dosimetric parameters of RT (the ratio of rectal dose calculated at the rectal point [RP] to the prescribed dose, biologically effective dose [BED] at the RP in the ICR and EBRT plans, {alpha}/{beta} = 3). Rectal symptoms were noted in 28 patients (rectal bleeding in 21 patients, bowel habit changes in 6, mucosal stools in 1), and 4 patients had no symptoms. Endoscopic findings included telangiectasia in 18 patients, congested mucosa in 20, ulceration in 5, and stricture in 1. The RP ratio, BEDICR, BEDICR+EBRT was significantly associated with the VRS (RP ratio, median 76.5%; BEDICR, median 37.1 Gy3; BEDICR+EBRT, median 102.5 Gy3; p < 0.001). The VRS was significantly associated with the EORTC/RTOG score (p = 0.038). The most prevalent endoscopic findings of RT-induced proctitis were telangiectasia and congested mucosa. The VRS was significantly associated with the EORTC/RTOG score and RP radiation dose.

  19. SU-E-T-221: Investigation of Lower Energy (< 6 MV) Photon Beams for Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Ming, X [Tianjin University, Tianjin (China); New Haven Hospital, New Haven, CT (United States); Feng, Y [Tianjin University, Tianjin (China); East Carolina University, Rockville, MD (United States); Zhou, L [New Haven Hospital, New Haven, CT (United States); West China Hospital, Sichuan University, Chengdu, Sichuan (China); Ahmad, M; Deng, J [New Haven Hospital, New Haven, CT (United States); Nguyen, K; Griffin, M [William Backus Hospital, Norwich, CT (United States)

    2014-06-01

    Purpose: To study the potential applications of the lower energy (< 6MV) photon beams in the radiotherapeutic management of pediatric cancer and lung cancer patients. Methods: Photon beams of 2, 3, 4, 5 and 6MV were first simulated with EGS4/BEAM and then used for Monte-Carlo dose calculations. For four pediatric patients with abdominal and brain lesions, six 3D-conformal radiotherapy (3DCRT) plans were generated using single photon energy (2 to 6MV) or mixed energies (3 and 6MV). Furthermore, a virtual machine of 3 and 6MV was commissioned in a treatment planning system (TPS) based on Monte-Carlo simulated data. Three IMRT plans of a lung cancer patient were generated on this virtual machine. All plans were normalized to D95% of target dose for 6MV plan and then compared in terms of integral dose and OAR sparing. Results: For the four pediatric patients, the integral dose for the 2, 3, 4 and 5MV plans increased by 9%, 5%, 3.5%, 1.7%, respectively as compared to 6MV. Almost all OARs in the 2MV plan received more than 10% more doses than 6MV. Mixed energy 3DCRT plans were of the same quality as 6MV plans. For the lung IMRT plans, both the 3MV plan and the mixed beam plan showed better OAR sparing in comparison to 6MV plan. Specifically, the maximum and mean doses to the spinal cord in the mixed energy plan were lower by 21% and 16%, respectively. Conclusion: Single lower energy photon beam was found to be inferior to 6MV in the radiotherapy of pediatric patients and lung cancer patients when the integral doses and the doses to the OARs were considered. However, mixed energy plans combining low with high energy beams showed significant OAR sparing while maintaining the same PTV coverage. Investigation with more patient data is ongoing for further confirmation.

  20. SU-E-T-221: Investigation of Lower Energy (< 6 MV) Photon Beams for Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To study the potential applications of the lower energy (< 6MV) photon beams in the radiotherapeutic management of pediatric cancer and lung cancer patients. Methods: Photon beams of 2, 3, 4, 5 and 6MV were first simulated with EGS4/BEAM and then used for Monte-Carlo dose calculations. For four pediatric patients with abdominal and brain lesions, six 3D-conformal radiotherapy (3DCRT) plans were generated using single photon energy (2 to 6MV) or mixed energies (3 and 6MV). Furthermore, a virtual machine of 3 and 6MV was commissioned in a treatment planning system (TPS) based on Monte-Carlo simulated data. Three IMRT plans of a lung cancer patient were generated on this virtual machine. All plans were normalized to D95% of target dose for 6MV plan and then compared in terms of integral dose and OAR sparing. Results: For the four pediatric patients, the integral dose for the 2, 3, 4 and 5MV plans increased by 9%, 5%, 3.5%, 1.7%, respectively as compared to 6MV. Almost all OARs in the 2MV plan received more than 10% more doses than 6MV. Mixed energy 3DCRT plans were of the same quality as 6MV plans. For the lung IMRT plans, both the 3MV plan and the mixed beam plan showed better OAR sparing in comparison to 6MV plan. Specifically, the maximum and mean doses to the spinal cord in the mixed energy plan were lower by 21% and 16%, respectively. Conclusion: Single lower energy photon beam was found to be inferior to 6MV in the radiotherapy of pediatric patients and lung cancer patients when the integral doses and the doses to the OARs were considered. However, mixed energy plans combining low with high energy beams showed significant OAR sparing while maintaining the same PTV coverage. Investigation with more patient data is ongoing for further confirmation

  1. Radiotherapy

    International Nuclear Information System (INIS)

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  2. Development of a postal dosimetric system for quality assurance programs in radiotherapy using fotons beams in non references conditions

    CERN Document Server

    Marin, A

    2003-01-01

    In radiotherapy, to cure the primary tumor, the absorbed dose delivered at the target volume should have an accuracy better than +- 5%. As the basic aim in radiotherapy is the eradication of the primary tumor with the smallest possible damage to the health tissues, it is necessary to guarantee that the dose delivered to the patient in different depths and treatment configurations has the right accuracy. For this reason, a quality control program should be carried out by regulatory and national standardization programs including postal evaluation of the beam dosimetry are also necessary. Since many years Brazil is running a postal quality control program in radiotherapy in reference conditions, Nevertheless it should be increased to include also measurements in non reference conditions. In this paper we present a new dosimetric postal system using thermoluminescent dosimeters (TLD-100 in powder) for photon beams quality control in radiotherapy, in non reference conditions. This system has been checked and appl...

  3. Dosimetric application of a special pencil ionization chamber in radiotherapy X-ray beams

    International Nuclear Information System (INIS)

    The aim of this work was to study the performance of a pencil ionization chamber with a sensitive volume of only 1.06 cm3 and a length of 3.0 cm, developed at the Calibration Laboratory of the IPEN, in very low-energy radiotherapy X-ray beams. These beams are still used for certain skin cancer treatments due to their rapid attenuation in tissue. The dosimeter performance was evaluated in some tests proposed by the IEC 60731 standard: short- and long-term stability and linearity of response. For a complete analysis of the dosimeter response, the EGSnrc Monte Carlo simulation was utilized to investigate the influence of its different parts on the ionization chamber response. All results of the tests were in accordance with the recommended limits, and this work shows that it is possible to extend the application of this pencil-type ionization chamber developed at the LCI. - Highlights: ► A special pencil-type ionization chamber was characterized for radiotherapy X-ray beams. ► The results of the characterization tests were within the recommended limits. ► The EGSnrc code was employed to evaluate the components of the dosimeter. ► The simulations showed that this novel configuration is suitable for this application. ► This dosimeter may be used for quality control programs at laboratories and clinics

  4. Modeling of beam customization devices in the pencil beam splitting algorithm for heavy charged particle radiotherapy

    CERN Document Server

    Kanematsu, Nobuyuki

    2010-01-01

    Broad-beam-delivery methods use multiple devices to form a conformal field of heavy charged particles. To overcome an intrinsic difficulty of pencil-beam algorithms in dealing with fine lateral structure, we applied the pencil-beam-splitting algorithm to a beam-customization system conprised of multiple collimators and a range compensating filter. The pencil beams were initially defined at the range compensating filter with angular acceptance correction for the upstream collimators followed by the range compensation effects. They were individually transported with possible splitting near the downstream collimator edges. The dose distribution was calculated and compared with existing experimental data. The penumbra sizes for various collimator edges agreed between them to a submillimeter level. This beam-customization model will complete an accurate and efficient dose-calculation algorithm for treatment planning.

  5. Proton beam radiotherapy for uveal melanoma: Results of Curie Institut-Orsay Proton Therapy Center (ICPO)

    International Nuclear Information System (INIS)

    Purpose: This study reports the results of proton beam radiotherapy based on a retrospective series of patients treated for uveal melanoma at the Orsay Center. Methods and Materials: Between September 1991 and September 2001, 1,406 patients with uveal melanoma were treated by proton beam radiotherapy. A total dose of 60 cobalt Gray equivalent (CGE) was delivered in 4 fractions on 4 days. Survival rates were determined using Kaplan-Meier estimates. Prognostic factors were determined by multivariate analysis using the Cox model. Results: The median follow-up was 73 months (range, 24-142 months). The 5-year overall survival and metastasis-free survival rates were 79% and 80.6%, respectively. The 5-year local control rate was 96%. The 5-year enucleation for complications rate was 7.7%. Independent prognostic factors for overall survival were age (p < 0.0001), gender (p < 0.0003), tumor site (p < 0.0001), tumor thickness (p = 0.02), tumor diameter (p < 0.0001), and retinal area receiving at least 30 CGE (p = 0.003). Independent prognostic factors for metastasis-free survival were age (p = 0.0042), retinal detachment (p = 0.01), tumor site (p < 0.0001), tumor volume (p < 0.0001), local recurrence (p < 0.0001), and retinal area receiving at least 30 CGE (p = 0.002). Independent prognostic factors for local control were tumor diameter (p = 0.003) and macular area receiving at least 30 CGE (p = 0.01). Independent prognostic factors for enucleation for complications were tumor thickness (p < 0.0001) and lens volume receiving at least 30 CGE (p = 0.0002). Conclusion: This retrospective study confirms that proton beam radiotherapy ensures an excellent local control rate. Further clinical studies are required to decrease the incidence of postirradiation ocular complications

  6. Radiotherapy combined with hormonal therapy in prostate cancer: the state of the art

    International Nuclear Information System (INIS)

    Androgen-deprivation therapy (ADT) is used routinely in combination with definitive external beam radiation therapy (EBRT) in patients with high-risk clinically localized or locally advanced disease. The combined treatment (ADT–EBRT) also seems to play a significant role in improving treatment results in the intermediate-risk group of prostate cancer patients. On the other hand, there is a growing body of evidence that treatment with ADT can be associated with serious and lifelong adverse events including osteoporosis, cardiovascular disease, diabetes, and many others. Almost all ADT adverse events are time dependant and tend to increase in severity with prolongation of hormonal manipulation. Therefore, it is crucial to clearly state the optimal schedule for ADT in combination with EBRT, that maintaining the positive effect on treatment efficacy would keep the adverse events risk at reasonable level. To achieve this goal, treatment schedule may have to be highly individualized on the basis of the patient-specific potential vulnerability to adverse events. In this study, the concise and evidence-based review of current literature concerning the general rationales for combining radiotherapy and hormonal therapy, its mechanism, treatment results, and toxicity profile is presented

  7. Fifteen-Year Radiotherapy Outcomes of the Randomized PORTEC-1 Trial for Endometrial Carcinoma

    International Nuclear Information System (INIS)

    Purpose: To evaluate the very long-term results of the randomized Post Operative Radiation Therapy in Endometrial Carcinoma (PORTEC)-1 trial for patients with Stage I endometrial carcinoma (EC), focusing on the role of prognostic factors for treatment selection and the long-term risk of second cancers. Patients and Methods: The PORTEC trial (1990–1997) included 714 patients with Stage IC Grade 1–2 or Stage IB Grade 2–3 EC. After surgery, patients were randomly allocated to external-beam pelvic radiotherapy (EBRT) or no additional treatment (NAT). Analysis was by intention to treat. Results: 426 patients were alive at the date of analysis. The median follow-up time was 13.3 years. The 15-year actuarial locoregional recurrence (LRR) rates were 6% for EBRT vs. 15.5% for NAT (p 60 (HR 3.9, p = 0.002 for LRR and 2.7, p = 0.01 for EC death) and myometrial invasion >50% (HR 1.9, p = 0.03 and HR 1.9, p = 0.02). Conclusions: The 15-year outcomes of PORTEC-1 confirm the relevance of HIR criteria for treatment selection, and a trend for long-term risk of second cancers. EBRT should be avoided in patients with low- and intermediate-risk EC.

  8. Optimal beam arrangement for pulmonary ventilation image-guided intensity-modulated radiotherapy for lung cancer

    OpenAIRE

    Wang, Ruihao; Zhang, Shuxu; YU, HUI; Lin, Shengqu; Zhang, Guoqian; Tang, Rijie; Qi, Bin

    2014-01-01

    Background The principal aim of this study was to evaluate the feasibility of incorporating four-dimensional (4D)-computed tomography (CT)-based functional information into treatment planning and to evaluate the potential benefits of individualized beam setups to better protect lung functionality in patients with non-small cell lung cancer (NSCLC). Methods Peak-exhale and peak-inhale CT scans were carried out in 16 patients with NSCLC treated with intensity-modulated radiotherapy (IMRT). 4D-C...

  9. Can the risk of secondary cancer induction after breast conserving therapy be reduced using intraoperative radiotherapy (IORT) with low-energy x-rays?

    International Nuclear Information System (INIS)

    Radiation induced secondary cancers are a rare but severe late effect after breast conserving therapy. Intraoperative radiotherapy (IORT) is increasingly used during breast conserving surgery. The purpose of this analysis was to estimate secondary cancer risks after IORT compared to other modalities of breast radiotherapy (APBI - accelerated partial breast irradiation, EBRT - external beam radiotherapy). Computer-tomography scans of an anthropomorphic phantom were acquired with an INTRABEAM IORT applicator (diameter 4 cm) in the outer quadrant of the breast and transferred via DICOM to the treatment planning system. Ipsilateral breast, contralateral breast, ipsilateral lung, contralateral lung, spine and heart were contoured. An INTRABEAM source (50 kV) was defined with the tip of the drift tube at the center of the spherical applicator. A dose of 20 Gy at 0 mm depth from the applicator surface was prescribed for IORT and 34 Gy (5 days × 2 × 3.4 Gy) at 10 mm depth for APBI. For EBRT a total dose of 50 Gy in 2 Gy fractions was planned using two tangential fields with wedges. The mean and maximal doses, DVHs and volumes receiving more than 0.1 Gy and 4 Gy of organs at risk (OAR) were calculated and compared. The life time risk for secondary cancers was estimated according to NCRP report 116. IORT delivered the lowest maximal doses to contralateral breast (< 0.3 Gy), ipsilateral (1.8 Gy) and contralateral lung (< 0.3 Gy), heart (1 Gy) and spine (< 0.3 Gy). In comparison, maximal doses for APBI were 2-5 times higher. EBRT delivered a maximal dose of 10.4 Gy to the contralateral breast and 53 Gy to the ipsilateral lung. OAR volumes receiving more than 4 Gy were 0% for IORT, < 2% for APBI and up to 10% for EBRT (ipsilateral lung). The estimated risk for secondary cancer in the respective OAR is considerably lower after IORT and/or APBI as compared to EBRT. The calculations for maximal doses and volumes of OAR suggest that the risk of secondary cancer induction after

  10. Monte Carlo based beam model using a photon MLC for modulated electron radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). Methods: This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. Results: For 15 × 34, 5 × 5, and 2 × 2 cm2 fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two

  11. Monte Carlo evaluations of the absorbed dose and quality dependence of Al2O3 in radiotherapy photon beams

    International Nuclear Information System (INIS)

    Purpose: The purpose of this work was to evaluate the absorbed dose to Al2O3 dosimeter at various depths of water phantom in radiotherapy photon beams by Monte Carlo simulation and evaluate the beam quality dependence. Methods: The simulations were done using EGSnrc. The cylindrical Al2O3 dosimeter (Φ4 mmx1 mm) was placed at the central axis of the water phantom (Φ16 cmx16 cm) at depths between 0.5 and 8 cm. The incident beams included monoenergetic photon beams ranging from 1 to 18 MeV, 60Co γ beams, Varian 6 MV beams using phase space files based on a full simulation of the linac, and Varian beams between 4 and 24 MV using Mohan's spectra. The absorbed dose to the dosimeter and the water at the corresponding position in the absence of the dosimeter, as well as absorbed dose ratio factor fmd, was calculated. Results: The results show that fmd depends obviously on the photon energy at the shallow depths. However, as the depth increases, the change in fmd becomes small, beyond the buildup region, the maximum discrepancy of fmd to the average value is not more than 1%. Conclusions: These simulation results confirm the use of Al2O3 dosimeter in radiotherapy photon beams and clearly indicate that more attention should be paid when using such a dosimeter in the buildup region of high-energy radiotherapy photon beams.

  12. Intraoperative Radiotherapy for Breast Cancer: The Lasting Effects of a Fleeting Treatment

    Directory of Open Access Journals (Sweden)

    Harriet B. Eldredge-Hindy

    2014-01-01

    Full Text Available In well-selected patients who choose to pursue breast conservation therapy (BCT for early-stage breast cancer, partial breast irradiation (PBI delivered externally or intraoperatively, may be a viable alternative to conventional whole breast irradiation. Two large, contemporary randomized trials have demonstrated breast intraoperative radiotherapy (IORT to be noninferior to whole breast external beam radiotherapy (EBRT when assessing for ipsilateral breast tumor recurrence in select patients. Additionally, IORT and other PBI techniques are likely to be more widely adopted in the future because they improve patient convenience by offering an accelerated course of treatment. Coupled with these novel techniques for breast radiotherapy (RT are distinct toxicity profiles and unique cosmetic alterations that differ from conventional breast EBRT and have the potential to impact disease surveillance and patient satisfaction. This paper will review the level-one evidence for treatment efficacy as well as important secondary endpoints like RT toxicity, breast cosmesis, quality of life, patient satisfaction, and surveillance mammography following BCT with IORT.

  13. Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy

    International Nuclear Information System (INIS)

    Intensity modulated proton radiotherapy (IMPT) can reduce the dose to critical structures by optimizing the distribution and intensity of individual pencil beams. The IMPT can be delivered by dynamically scanning a pencil beam with variable intensity and energy across the tumor target volume. The lateral penumbra of an uncollimated pencil beam is compromised, however, by the scattering in air between the vacuum window and the patient, and by the initial beam size. In this study, we compare the transversal penumbra of a pencil beam to the one of a collimated Gaussian broad divergent beam, such as the one produced by the double scattering system, for different range compensator thicknesses, collimator-to-surface distances (CSD), proton range and pencil beam sizes (σ0). The effect of vacuum and helium in the nozzle on the pencil beam lateral profile further downstream is also investigated. The lateral spatial intensity distribution for the collimated Gaussian broad divergent proton beam is modeled using the generalized Fermi-Eyges theory. The model is validated with measurements of the lateral profile in water at different depths for two different ranges (7.7 cm and 22.1 cm, respectively). Nearly 2500 treatment fields are analyzed to establish typical clinical beam configurations, such as the range compensator thicknesses, CSD and range, which we use to predict the 80%-20% lateral penumbra. The penumbra of the collimated broad divergent beam is calculated for fixed source-to-surface distance (SSD) of 220 cm and source size of 2.5 cm (σ). The results show that the model predicts the penumbra at different water depths with accuracy better than 0.2 mm. At depths larger than 7.6 cm (minimum range of the clinical fields analyzed), the accuracy is better than 3%. The treatment fields feature the following average configuration: the range compensator thickness of 6.5 ± 2.8 cm (max 19.4 cm), CSD 11.9 ± 3.8 cm (max 29.4 cm) and range of 16.0 ± 6.1 cm. The penumbra of a

  14. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Guerra, Jose L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Department of Medicine, Universitat Autonoma de Barcelona, Barcelona (Spain); Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhuang Yan; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eapen, George [Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  15. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy for primary NSCLC in 1998–2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient’s preradiation value at the following time intervals: 0–4 (T1), 5–8 (T2), and 9–12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy

  16. Inhomogeneities in high energy photon beams used in radiotherapy. Experimental and theoretical studies

    International Nuclear Information System (INIS)

    This work is dedicated to the influence of the human body inhomogeneities on the dose distribution for high energy photons beams used in Radiotherapy. It consists in an experimental part and a theoretical analysis leading to original models of calculation. We study essentially, - the beam quality of the machines used and its influence on some basic dosimetric quantities and on the response of an ionization chamber. - The dose perturbation due to off-axis heterogeneous volumes at off-axis points of measurement; a model is suggested to take into account the perturbation of the multiple scatter. The perturbation of the dose in the transition region, between water equivalent medium and heterogeneous medium (air) is also investigated. The last part is devoted to computer applications of the proposed correction methods and to a comparison between the different computerized treatment planning systems which take into account of inhomogeneities

  17. The Results of Intraoperative Radiotherapy for Stomach Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Hoon; Kang, Min Kyu; Kim, Myung Se; Kim, Sung Kyu; Yun, Sang Mo; Kim, Sung Hoon [Dept. of Radiation Oncology, Yeungnam University College of Medicine, Daegu (Korea, Republic of)

    2010-11-15

    We retrospectively analyzed the long-term results of radical surgery and intraoperative radiation therapy (IORT) in patients with stomach cancer. From 1988 to 1994, 51 patients were treated with curative surgery and IORT. Postoperative external beam radiotherapy (EBRT) was administered to 30 patients, while adjuvant chemotherapy was administered to 35 patients. A dose of 15 Gy was irradiated with a 9 MeV electron beam as the IORT and a median dose of EBRT was 43.2 Gy (range, 7.2 to 45 Gy). The follow-up period ranged from 1-254 months, with a median follow-up period of 64 months. The median age of all the patients was 58 years (range, 30 to 71 years). The distribution of pathologic stage (American Joint Committee on Cancer [AJCC] 2002 tumor-note-metastasis [TNM]) was as follows: 13 stage I (25.5%), 10 stage II (19.6%), 25 stage III (49.0%), and 3 stage IV (5.9%). Distant metastases occurred in 11 patients (10 in the peritoneum and 1 in bone), including one patient with concurrent local recurrence (anastomosis site). The 5-year locoregional control, disease free survival and overall survival rates were 94.7%, 66.5%, and 51.7%, respectively. For the multivariate analysis, age, TNM stage, and EBRT were significant prognostic factors for overall survival, and only TNM stage for disease free survival. We could have achieved a high loco-regional control rate in patients with locally advanced stomach cancer by adding IORT to radical surgery. However, the benefit of IORT on survival remains to be elucidated.

  18. The Results of Intraoperative Radiotherapy for Stomach Cancer

    International Nuclear Information System (INIS)

    We retrospectively analyzed the long-term results of radical surgery and intraoperative radiation therapy (IORT) in patients with stomach cancer. From 1988 to 1994, 51 patients were treated with curative surgery and IORT. Postoperative external beam radiotherapy (EBRT) was administered to 30 patients, while adjuvant chemotherapy was administered to 35 patients. A dose of 15 Gy was irradiated with a 9 MeV electron beam as the IORT and a median dose of EBRT was 43.2 Gy (range, 7.2 to 45 Gy). The follow-up period ranged from 1-254 months, with a median follow-up period of 64 months. The median age of all the patients was 58 years (range, 30 to 71 years). The distribution of pathologic stage (American Joint Committee on Cancer [AJCC] 2002 tumor-note-metastasis [TNM]) was as follows: 13 stage I (25.5%), 10 stage II (19.6%), 25 stage III (49.0%), and 3 stage IV (5.9%). Distant metastases occurred in 11 patients (10 in the peritoneum and 1 in bone), including one patient with concurrent local recurrence (anastomosis site). The 5-year locoregional control, disease free survival and overall survival rates were 94.7%, 66.5%, and 51.7%, respectively. For the multivariate analysis, age, TNM stage, and EBRT were significant prognostic factors for overall survival, and only TNM stage for disease free survival. We could have achieved a high loco-regional control rate in patients with locally advanced stomach cancer by adding IORT to radical surgery. However, the benefit of IORT on survival remains to be elucidated.

  19. Intravitreal bevacizumab for macular edema due to proton beam radiotherapy: Favorable results shown after eighteen months follow-up

    OpenAIRE

    Loukianou, Eleni; Brouzas, Dimitrios; Georgopoulou, Eleni; Koutsandrea, Chrysanthi; Apostolopoulos, Michael

    2010-01-01

    Purpose: To evaluate the safety and efficacy of intravitreal injections of bevacizumab (Avastin®) as a treatment option for radiation maculopathy secondary to proton beam radiotherapy for choroidal melanoma. Case: A 61-year-old woman presented with a gradual decrease in left eye visual acuity (VA) 29 months after proton beam radiotherapy for choroidal melanoma. On presentation, her best-corrected VA (BCVA) was 2/10 in the left eye and the intraocular pressure was 15 mmHg. Fundoscopy revealed ...

  20. The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy

    International Nuclear Information System (INIS)

    Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)

  1. The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Alan, E.; Nahum, PhD. [Copenhagen University Hospital, Radiation Physics Dept. (Denmark)

    2003-07-01

    Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)

  2. Development of methodology for TLD quality audits of MLC shaped photon beams in radiotherapy

    International Nuclear Information System (INIS)

    This work has been performed within a framework of an IAEA Coordinated Research Project ''Development of quality audits for radiotherapy dosimetry for complex treatment techniques''. The purpose of the dosimetry audit exercise described below was to test the procedures for audit of radiotherapy fields shaped with a multileaf collimator (MLC). The MLC audit procedure testing consisted of two parts including dosimetry verification (with ionization chamber in a solid phantom) of a sequence of MLC field arrangements and participation in an IAEA multicentre pilot study to test TLD audit procedures for these fields. Seven MLC shaped fields including the reference field, small square, circular, inverted ''Y'', irregular field without and with wedge (30 o), and a small rectangular field were included for 6 MV and 18 MV beams from a Varian linac. The solid water phantom was CT scanned and the image was imported to the treatment planning system (Eclipse 7.3). The number of MU was calculated using pencil beam convolution (PBC) in Eclipse to deliver 2 Gy to the point of interest located at the isocentre, at a 10 cm depth

  3. Configuration space analysis of common cost functions in radiotherapy beam-weight optimization algorithms

    International Nuclear Information System (INIS)

    The successful implementation of downhill search engines in radiotherapy optimization algorithms depends on the absence of local minima in the search space. Such techniques are much faster than stochastic optimization methods but may become trapped in local minima if they exist. A technique known as 'configuration space analysis' was applied to examine the search space of cost functions used in radiotherapy beam-weight optimization algorithms. A downhill-simplex beam-weight optimization algorithm was run repeatedly to produce a frequency distribution of final cost values. By plotting the frequency distribution as a function of final cost, the existence of local minima can be determined. Common cost functions such as the quadratic deviation of dose to the planning target volume (PTV), integral dose to organs-at-risk (OARs), dose-threshold and dose-volume constraints for OARs were studied. Combinations of the cost functions were also considered. The simple cost function terms such as the quadratic PTV dose and integral dose to OAR cost function terms are not susceptible to local minima. In contrast, dose-threshold and dose-volume OAR constraint cost function terms are able to produce local minima in the example case studied. (author)

  4. Boosting runtime-performance of photon pencil beam algorithms for radiotherapy treatment planning.

    Science.gov (United States)

    Siggel, M; Ziegenhein, P; Nill, S; Oelfke, U

    2012-10-01

    Pencil beam algorithms are still considered as standard photon dose calculation methods in Radiotherapy treatment planning for many clinical applications. Despite their established role in radiotherapy planning their performance and clinical applicability has to be continuously adapted to evolving complex treatment techniques such as adaptive radiation therapy (ART). We herewith report on a new highly efficient version of a well-established pencil beam convolution algorithm which relies purely on measured input data. A method was developed that improves raytracing efficiency by exploiting the capability of modern CPU architecture for a runtime reduction. Since most of the current desktop computers provide more than one calculation unit we used symmetric multiprocessing extensively to parallelize the workload and thus decreasing the algorithmic runtime. To maximize the advantage of code parallelization, we present two implementation strategies - one for the dose calculation in inverse planning software, and one for traditional forward planning. As a result, we could achieve on a 16-core personal computer with AMD processors a superlinear speedup factor of approx. 18 for calculating the dose distribution of typical forward IMRT treatment plans. PMID:22071169

  5. Phase II Radiation therapy oncology group trial of weekly paclitaxel and conventional external beam radiation therapy for supratentorial glioblastoma multiforme

    International Nuclear Information System (INIS)

    Purpose: Fractionated external beam radiotherapy (EBRT) ± carmustine (BCNU) is the standard of care for patients with glioblastoma multiforme (GBM), but survival results remain poor. Preclinical studies indicate synergy between RT and paclitaxel (TAX) in astrocytoma cell lines. Phase I studies in GBM have demonstrated a maximum tolerated dose for TAX of 225 mg/m2/3 h/week x 6, during EBRT, with no exacerbation of typical RT-induced toxicities. The Radiation Therapy Oncology Group (RTOG) therefore mounted a Phase II study to determine the feasibility and efficacy of conventional EBRT and concurrent weekly TAX at its MTD. Patients and Methods: Sixty-two patients with histologic diagnosis of GBM were enrolled from 8/16/96 through 3/21/97 in a multi-institutional Phase II trial of EBRT and TAX 225 mg/m2/3 h (1-3 h before EBRT), administered the first treatment day of each RT week. Total EBRT dose was 60 Gy (200 cGy/fraction), 5 days per week. A smaller treatment field, to include gross disease plus a margin only, was used after 46 Gy. Results: Sixty-one patients (98%) were evaluable. Median age was 55 years (range, 28-78). Seventy-four percent were ≥50 years. Recursive partitioning analysis (RPA) Classes III, IV, V, VI included 10 (17%), 21 (34%), 25 (41%), and 5 (8%) patients, respectively. Gross total resection was performed in only 16%. There was no Grade 3 or 4 neutropenia or thrombocytopenia. Hypersensitivity reactions precluding further use of TAX occurred in 4 patients. There were 2 instances of late neurotoxicity (4% Grade 3 or 4). Ninety-one percent of patients received treatment per protocol. Seventy-seven percent completed prescribed treatment (6 weeks). Of 35 patients with measurable disease, CR/PR was observed in 23%, MR in 17%, and SD in 43%. Seventeen percent demonstrated progression at first follow-up. Median potential follow-up time is 20 months. Median survival is 9.7 months, with median survivals for RPA classes III, IV, V, and VI of 16.3, 10.2, 9

  6. Influence of Daily Set-Up Errors on Dose Distribution During Pelvis Radiotherapy

    International Nuclear Information System (INIS)

    An external beam radiotherapy (EBRT) using megavoltage beam of linear accelerator is usually the treatment of choice for the cancer patients. The goal of EBRT is to deliver the prescribed dose to the target volume, with as low as possible dose to the surrounding healthy tissue. A large number of procedures and different professions involved in radiotherapy process, uncertainty of equipment and daily patient set-up errors can cause a difference between the planned and delivered dose. We investigated a part of this difference caused by daily patient set-up errors. Daily set-up errors for 35 patients were measured. These set-up errors were simulated on 5 patients, using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The differences in dose distributions between the planned and shifted ''geometry'' were investigated. Additionally, an influence of the error on treatment plan selection was checked by analyzing the change in dose volume histograms, planning target volume conformity index (CIPTV) and homogeneity index (HI). Simulations showed that patient daily set-up errors can cause significant differences between the planned and actual dose distributions. Moreover, for some patients those errors could influence the choice of treatment plan since CIPTV fell under 97 %. Surprisingly, HI was not as sensitive as CIPTV on set-up errors. The results showed the need for minimizing daily set-up errors by quality assurance programme. (author)

  7. Volumetric Modulated Arc Radiotherapy for Early Stage Non-Small-Cell Lung Carcinoma: Is It Better Than the Conventional Static Beam Intensity Modulated Radiotherapy?

    OpenAIRE

    Vincent Wing Cheung Wu; Man In Pun; Cho Pan Lam; To Wing Mok; Wah Wai Mok

    2014-01-01

    This study compared the performance of volumetric modulated arc therapy (VMAT) techniques: single arc volumetric modulated arc therapy (SA-VMAT) and double arc volumetric modulated arc therapy (DA-VMAT) with the static beam conventional intensity modulated radiotherapy (C-IMRT) for non-small-cell lung carcinoma (NSCLC). Twelve stage I and II NSCLC patients were recruited and their planning CT with contoured planning target volume (PTV) and organs at risk (OARs) was used for planning. Using th...

  8. Characterization of a computed radiography system for external radiotherapy beam dosimetry

    Science.gov (United States)

    Aberle, Christoph; Kapsch, Ralf-Peter

    2016-06-01

    A commercial computed radiography (CR) system was studied as an option for quantitative dosimetry quality assurance of external radiotherapy beams. Following the examination of influencing quantities, practical measurement procedures are discussed. Corrections were derived for image fading, an observed long-term response drift and the image length scale, which was found to be off by up to 2–3%. It is known that energy dependence is important for CR measurements. Therefore, signal-to-dose calibration curves and the energy dependence of the response were studied extensively using multiple photon and electron beam qualities. Doses which yield the same signal vary by up to tens of percent for different beam qualities. Results on the directional response of the plates are presented. It was found that rotations of up to 30° to 40° relative to perpendicular irradiation yield no significant change in response. Finally, the homogeneity of the response over the measurement region was studied for electrons and photons and a correction method is described. In summary, relative dose measurements with uncertainties of a few percent are feasible in regions of constant beam energy.

  9. Radiobiological characterization of different energy-photon beams used in radiotherapy from linear accelerator

    International Nuclear Information System (INIS)

    The main objective of this study was to perform a radiobiological characterization of different energy photon beams (6 MV and 15 MV) from linear accelerator used in radiotherapy, and comparison of different treatment modalities, with special regard to late effects of radiation. Using two end points, cell survival and micronucleus induction, in the biological system (Chines hamster V79 cell line). Chromosomes number was counted and found to be 22 chromosomes per cell. Cells were kept in confluent growth for two days and then exposed to two photon beams and immediately after irradiation were counted and re seeded in different numbered for each dose. For evaluation of surviving fraction samples were incubated at 37oC for 6 days, five samples were counted for each dose. At the same time three samples were seeded for the micronuclei frequency and incubated at 37oC after 24 hours cytochalasin-B was added to block cells in cytokinesis. The survival curve showed similar curves for the two beams and decreased with dose. The micronuclei frequency was positively correlated with dose and the energy of the photon. This indicates the presence of low dose of photoneutrons produced by using high energy photon beams. (Author)

  10. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions)

  11. Salvage high-intensity focused ultrasound ablation for prostate cancer local recurrence after external-beam radiation therapy: Prognostic value of prostate MRI

    International Nuclear Information System (INIS)

    Aim: To assess the prognostic value of magnetic resonance imaging (MRI) before salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after external-beam radiotherapy (EBRT). Materials and methods: Forty-six patients who underwent prostate MRI before salvage HIFU for locally recurrent prostate cancer after EBRT were retrospectively studied. HIFU failure was defined as a prostate-specific antigen (PSA) value >nadir + 2 ng/ml (Phoenix criteria) or positive follow-up biopsy or initiation of any other salvage therapy. The following prognostic parameters were assessed: neoadjuvant hormone therapy, clinical stage and Gleason score of recurrence, PSA level and velocity at HIFU treatment, and six MRI-derived parameters (prostate volume, tumour volume, extracapsular extension, seminal vesicle invasion, tumour extension into the apex or anterior to the urethra). Results: Two factors were significant independent predictors of salvage HIFU failure: the PSA level at HIFU treatment (p < 0.012; risk ratio: 1.15, 95% CI: 1.03–1.29) and the tumour extension anterior to the urethra, as assessed by MRI (p = 0.046, risk ratio: 2.51, 95% CI: 1.02–6.16). Conclusion: The location of cancer recurrence anterior to the urethra on MRI is an independent significant predictor of salvage HIFU failure for locally recurrent prostate cancer after EBRT. Therefore, MRI may be useful for patient selection before post-EBRT salvage HIFU ablation

  12. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    Science.gov (United States)

    Thomas, T. Hannah Mary; Devakumar, D.; Purnima, S.; Ravindran, B. Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm × 10 cm beam at a gantry angle of 0° and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between ±6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  13. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T Hannah Mary; Purnima, S; Ravindran, B Paul [Department of Radiotherapy, Christian Medical College, Vellore (India); Devakumar, D [Department of Nuclear Medicine, Christian Medical College, Vellore (India)], E-mail: paul@cmcvellore.ac.in

    2009-04-07

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm x 10 cm beam at a gantry angle of 0{sup 0} and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between {+-}6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  14. Dosimetric Characteristics of Circular 6-MeV X-Ray Beams for Stereotactic Radiotherapy with a Linear Accelerator

    Science.gov (United States)

    Wysocka, A.; Rostkowska, J.; Kania, M.; Bulski, W.; Fijuth, J.

    2000-01-01

    Dosimetric characteristics of 6 MeV circular X-ray beams of diameters ranging from 7.5 to 35.0 mm are reported. The 6-MeV X-ray beam from Clinac 2300CD was formed using additional cylindrical BrainLAB's collimators. The mechanical stability of the entire system was verified. Specific quantities measured include tissue maximum ratios (TMR), beam profiles (off-axis ratios OAR) and relative output factors. Measurements of these parameters were performed in a water phantom using small cylindrical ionization chambers and a diamond detector. Comparison of TMR values measured with the ionization chamber and the diamond detector showed no significant differences. It was shown that the latter yields more accurate results for beam profiles than ionization chambers. The mechanical and dosimetric characteristics of this radiotherapy unit are found to be suitable for stereotactic radiosurgery and radiotherapy.

  15. To analyze the impact of intracavitary brachytherapy as boost radiation after external beam radiotherapy in carcinoma of the external auditory canal and middle ear: A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Dinesh K Badakh

    2014-01-01

    Conclusion: ICBT as a boost after EBRT has got a positive impact on the OS. In conclusion, our results demonstrate that radical radiation therapy (EBRT and ICBT is the treatment of choice for stage T2, carcinoma of EACMA.

  16. Intravitreal bevacizumab for macular edema due to proton beam radiotherapy: Favorable results shown after eighteen months follow-up

    OpenAIRE

    Eleni Loukianou; Dimitrios Brouzas; Eleni Georgopoulou; et al.

    2010-01-01

    Eleni Loukianou, Dimitrios Brouzas, Eleni Georgopoulou, Chrysanthi Koutsandrea, Michael ApostolopoulosEye Department, University of Athens, Athens, GreecePurpose: To evaluate the safety and efficacy of intravitreal injections of bevacizumab (Avastin®) as a treatment option for radiation maculopathy secondary to proton beam radiotherapy for choroidal melanoma.Case: A 61-year-old woman presented with a gradual decrease in left eye visual acuity (VA) 29 months after proton beam radiother...

  17. Dramatic response of follicular thyroid carcinoma with superior vena cava syndrome and tracheal obstruction to external-beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wilford, M.R.; Chertow, B.S.; Lepanto, P.B.; Leidy, J.W. Jr. (Section of Endocrinology, Marshall University School of Medicine, Huntington, West Virginia (USA))

    1991-06-01

    We report a patient with follicular thyroid carcinoma progressing to superior vena cava (SVC) syndrome and tracheal obstruction despite multiple doses of radioactive iodine therapy but subsequently responding dramatically to external-beam radiotherapy (RT). Although RT is not considered to be the treatment of choice for follicular carcinoma, RT in our patient produced unequivocal improvement of SVC syndrome and tracheal obstruction.

  18. Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain

    DEFF Research Database (Denmark)

    Edmund, Jens M.; Andreasen, Daniel; Mahmood, Faisal;

    2015-01-01

    Background. Radiotherapy based on MRI only (MRI-only RT) shows a promising potential for the brain. Much research focuses on creating a pseudo computed tomography (pCT) from MRI for treatment planning while little attention is often paid to the treatment delivery. Here, we investigate if cone beam...

  19. External-beam radiation therapy after surgical resection and intraoperative electron-beam radiation therapy for oligorecurrent gynecological cancer. Long-term outcome

    Energy Technology Data Exchange (ETDEWEB)

    Sole, C.V. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Complutense University, School of Medicine, Madrid (Spain); Instituto de Radiomedicina, Service of Radiation Oncology, Santiago (Chile); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Calvo, F.A. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Lozano, M.A.; Gonzalez-Sansegundo, C. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Gonzalez-Bayon, L. [Hospital General Universitario Gregorio Maranon, Service of General Surgery, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Alvarez, A. [Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Lizarraga, S. [Hospital General Universitario Gregorio Maranon, Department of Gynecology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Garcia-Sabrido, J.L. [Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Service of General Surgery, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Gynecology, Madrid (Spain)

    2014-02-15

    The goal of the present study was to analyze prognostic factors in patients treated with external-beam radiation therapy (EBRT), surgical resection and intraoperative electron-beam radiotherapy (IOERT) for oligorecurrent gynecological cancer (ORGC). From January 1995 to December 2012, 61 patients with ORGC [uterine cervix (52 %), endometrial (30 %), ovarian (15 %), vagina (3 %)] underwent IOERT (12.5 Gy, range 10-15 Gy), and surgical resection to the pelvic (57 %) and paraaortic (43 %) recurrence tumor bed. In addition, 29 patients (48 %) also received EBRT (range 30.6-50.4 Gy). Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Median follow-up time for the entire cohort of patients was 42 months (range 2-169 months). The 10-year rates for overall survival (OS) and locoregional control (LRC) were 17 and 65 %, respectively. On multivariate analysis, no tumor fragmentation (HR 0.22; p = 0.03), time interval from primary tumor diagnosis to locoregional recurrence (LRR) < 24 months (HR 4.02; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.95; p = 0.02) retained significance with regard to LRR. Time interval from primary tumor to LRR < 24 months (HR 2.32; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.77; p = 0.04) showed a significant association with OS after adjustment for other covariates. External-beam radiation therapy at the time of pelvic recurrence, time interval for relapse ≥24 months and not multi-involved fragmented resection specimens are associated with improved LRC in patients with ORGC. As suggested from the present analysis a significant group of ORGC patients could potentially benefit from multimodality rescue treatment. (orig.)

  20. External-beam radiation therapy after surgical resection and intraoperative electron-beam radiation therapy for oligorecurrent gynecological cancer. Long-term outcome

    International Nuclear Information System (INIS)

    The goal of the present study was to analyze prognostic factors in patients treated with external-beam radiation therapy (EBRT), surgical resection and intraoperative electron-beam radiotherapy (IOERT) for oligorecurrent gynecological cancer (ORGC). From January 1995 to December 2012, 61 patients with ORGC [uterine cervix (52 %), endometrial (30 %), ovarian (15 %), vagina (3 %)] underwent IOERT (12.5 Gy, range 10-15 Gy), and surgical resection to the pelvic (57 %) and paraaortic (43 %) recurrence tumor bed. In addition, 29 patients (48 %) also received EBRT (range 30.6-50.4 Gy). Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Median follow-up time for the entire cohort of patients was 42 months (range 2-169 months). The 10-year rates for overall survival (OS) and locoregional control (LRC) were 17 and 65 %, respectively. On multivariate analysis, no tumor fragmentation (HR 0.22; p = 0.03), time interval from primary tumor diagnosis to locoregional recurrence (LRR) < 24 months (HR 4.02; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.95; p = 0.02) retained significance with regard to LRR. Time interval from primary tumor to LRR < 24 months (HR 2.32; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.77; p = 0.04) showed a significant association with OS after adjustment for other covariates. External-beam radiation therapy at the time of pelvic recurrence, time interval for relapse ≥24 months and not multi-involved fragmented resection specimens are associated with improved LRC in patients with ORGC. As suggested from the present analysis a significant group of ORGC patients could potentially benefit from multimodality rescue treatment. (orig.)

  1. MRI of the prostate after combined radiotherapy (interstitial with external beam irradiation): histopathological correlation

    International Nuclear Information System (INIS)

    Aim: To identify the MRI changes of the prostate after combined (high-dose rate interstitial with external beam) radiotherapy for, localized prostate cancer and to correlate the findings with histology in order to determine the value of MR imaging in the follow-up of these patients. Material and methods: Twenty-three patients underwent MR imaging at 1.5 T between 6 and 24 months after completion of combined radiotherapy. The prostate was imaged with axial and coronal T2-weighted sequences and axial T1-weighted sequences before and after intravenous administration of Gd-DTPA. Quandrant or sextant biopsy was performed in all cases and three patients with proven persistence of the tumor underwent salvage prostatectomy. The MRI findings were compared with the biopsy results or the large-area sections. Results: On T2-weighted images the fibrotically changed peripheral zone was hypointense while persistent tumor tissue showed hyperintensity. Solid tumors were depicted when they had a diameter of 1 cm or more. Persistent tumors of the diffuse multifocal type escaped detection. Contrast-enhanced T1-weighted imaging yielded no additional information. The accuracy in detecting persistent tumor was 74%. Conclusions: Histopathologic changes seen after combined radiotherapy correlate with the findings on T2-weighted MR images. MR imaging cannot replace follow-up by routine biopsy. Its only role is assessing local operability in cases found to have increasing PSA levels during follow-up. Further studies are needed to determine the role of MR imaging in this patient population. (orig.)

  2. EPR dosimetry of radiotherapy photon beams in inhomogeneous media using alanine films

    International Nuclear Information System (INIS)

    In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 μm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media

  3. Prostate image-guided radiotherapy by megavolt cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro [Regional Oncological Hospital, Cagliari (Italy). Dept. of Radiooncology

    2011-08-15

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  4. Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented

  5. A volumetric approach to path-length measurements is essential when treating radiotherapy with modulated beams

    International Nuclear Information System (INIS)

    The established dosimetric benefits of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy have lead to their increased use in prostate radiotherapy. Complimenting these techniques, volumetric image guidance has supported increased positional accuracy. In addition, 3-dimensional image guidance has also allowed for assessment of potential dosimetric variation that can be attributed to a deformation of either internal or external structures, such as rectal distension or body contour. Compounding these issues is the variation of tissue density through which the new field position passes and also the variation of dose across a modulated beam. Despite the growing level of interest in this area, there are only a limited number of articles that examine the effect of a variation in beam path length, particularly across a modulated field. IMRT and volumetric-modulated radiation therapy (VMAT) fields are dynamic in nature, and the dose gradient within these fields is variable. Assessment of variation of path length away from the beam's central axis and across the entire field is vital where there is considerable variation of dose within the field, such as IMRT and VMAT. In these cases, reliance on the traditional central axis to focus skin distances is no longer appropriate. This article discusses these more subtle challenges that may have a significant clinical effect if left unrecognized and undervalued

  6. An alternative approach to compensators design for photon beams used in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, S. [University Hospital, Department of Radiotherapy, Physics Division, Kresimirova 42, 51000 Rijeka (Croatia); Zauhar, G. [School of Medicine, Department of Physics, Brace Branchetta 20, 51000 Rijeka (Croatia)], E-mail: gordz@medri.hr; Bistrovic, M. [Hospital for Tumors, Radiotherapy Department, Ilica 272, 10000 Zagreb (Croatia); Faj, D. [University Hospital, Department of Radiotherapy and Oncology, J. Huttlera 4, 31000 Osijek (Croatia); Kaliman, Z. [Faculty of Sciences and Arts, Department of Physics, Omladinska 14, 51000 Rijeka (Croatia); Smilovic Radojcic, D. [University Hospital, Department of Radiotherapy, Physics Division, Kresimirova 42, 51000 Rijeka (Croatia)

    2007-09-21

    The use of compensators in order to achieve desired dose distribution has a long history and is a well-established technique in radiation therapy planning. There are several different calculation methods for determining a compensator's thickness. An alternative method that is based on the Cunningham's modification of Clarkson's method to calculate scattered radiation in beams with an inhomogeneous cross-section is proposed. It is well known that the total dose distribution of radiotherapy photon beam consists of the contributions of the primary beam, attenuated by the tissue layer, and the scattered radiation generated by the primary radiation in single and multiple photon scatter events. The scattered component can be represented as a function of the primary radiation. The central point of our method is the numerical estimation of the primary distribution required to achieve the desired total distribution. Now using the calculated primary distribution, the shape of the modulator could be determined. In this way the contribution of the scattered component is validated in a more accurate way than using effective attenuation coefficients, which is a common practice. The method is verified in various clinical situations and compared with the standard method. The accuracy, although dependent on geometry, was improved by at least 2%. With more complex geometries there is an even higher gain in accuracy with our method when compared to the standard method.

  7. Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides

    International Nuclear Information System (INIS)

    Purpose: The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. Methods and Materials: We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. Results: The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. Conclusion: TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended

  8. Use of an Anthropomorphic Phantom to Improve the External Beam Quality Audits in Radiotherapy

    International Nuclear Information System (INIS)

    The present paper describes the Cuban experience in the implementation of an external quality audit system for high energy radiotherapy photon beams (60Co and linac) in non-reference conditions using a thorax (CIRS) phantom. By comparing the calculated and actually delivered doses for four test cases, it is possible to check the quality of the entire planning chain from prescription to delivery as well as the integrity of the beam data modelled into the treatment planning system (TPS). The test cases were taken/modified from IAEA TRS 430 and include direct, tangential, wedged, blocked and multiple fields, all commonly used in clinic. According to the available insertion holes in the phantom, a number of dose points were defined and calculated with four different clinical TPSs used in our environment. Subsequently the dose was measured at these points with an ionization chamber. A set of audit results with on-site measurement are shown to demonstrate the practicability of the method. The points were classified by regions according to their position with respect to the beam axis. The 90% of measured points were found within tolerance. For the failing 10% we found no correlation with TPS (centre) or with the complexity of the case. For all test cases, except the simplest one, at least one department/TPS prediction falls outside tolerance. There is no significant difference among the audited departments. (author)

  9. A volumetric approach to path-length measurements is essential when treating radiotherapy with modulated beams

    Energy Technology Data Exchange (ETDEWEB)

    Forde, Elizabeth, E-mail: eforde@tcd.ie [Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin (Ireland); Booth, Jeremy [Northern Sydney Cancer Centre, Royal North Shore Hospital, New South Wales (Australia); Leech, Michelle [Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Dublin (Ireland)

    2014-07-01

    The established dosimetric benefits of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy have lead to their increased use in prostate radiotherapy. Complimenting these techniques, volumetric image guidance has supported increased positional accuracy. In addition, 3-dimensional image guidance has also allowed for assessment of potential dosimetric variation that can be attributed to a deformation of either internal or external structures, such as rectal distension or body contour. Compounding these issues is the variation of tissue density through which the new field position passes and also the variation of dose across a modulated beam. Despite the growing level of interest in this area, there are only a limited number of articles that examine the effect of a variation in beam path length, particularly across a modulated field. IMRT and volumetric-modulated radiation therapy (VMAT) fields are dynamic in nature, and the dose gradient within these fields is variable. Assessment of variation of path length away from the beam's central axis and across the entire field is vital where there is considerable variation of dose within the field, such as IMRT and VMAT. In these cases, reliance on the traditional central axis to focus skin distances is no longer appropriate. This article discusses these more subtle challenges that may have a significant clinical effect if left unrecognized and undervalued.

  10. Optimal beam arrangement for pulmonary ventilation image-guided intensity-modulated radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    The principal aim of this study was to evaluate the feasibility of incorporating four-dimensional (4D)-computed tomography (CT)-based functional information into treatment planning and to evaluate the potential benefits of individualized beam setups to better protect lung functionality in patients with non-small cell lung cancer (NSCLC). Peak-exhale and peak-inhale CT scans were carried out in 16 patients with NSCLC treated with intensity-modulated radiotherapy (IMRT). 4D-CT-based ventilation information was generated from the two sets of CT images using deformable image registration. Four kinds of IMRT plans were generated for each patient: two anatomic plans without incorporation of ventilation information, and two functional plans with ventilation information, using either five equally spaced beams (FESB) or five manually optimized beams (FMOB). The dosimetric parameters of the plans were compared in terms of target and normal tissue structures, with special focus on dose delivered to total lung and functional lung. In both the anatomic and functional plans, the percentages of both the functional and total lung regions irradiated at V5, V10, and V20 (percentage volume irradiated to >5, >10 and >20 Gy, respectively) were significantly lower for FMOB compared with FESB (P < 0.05), but there was no significant difference for V30 (P > 0.05). Compared with FESB, a greater degree of sparing of the functional lung was achieved in functional IMRT plans with optimal beam arrangement, without compromising target volume coverage or the irradiated volume of organs at risk, such as the spinal cord, esophagus, and heart. Pulmonary ventilation image-guided IMRT planning with further optimization of beam arrangements improves the preservation of functional lung in patients with NSCLC

  11. Adaptive-Predictive Organ Localization Using Cone-Beam Computed Tomography for Improved Accuracy in External Beam Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Purpose: To examine patterns of bladder wall motion during high-dose hypofractionated bladder radiotherapy and to validate a novel adaptive planning method, A-POLO, to prevent subsequent geographic miss. Methods and Materials: Patterns of individual bladder filling were obtained with repeat computed tomography planning scans at 0, 15, and 30 minutes after voiding. A series of patient-specific plans corresponding to these time-displacement points was created. Pretreatment cone-beam computed tomography was performed before each fraction and assessed retrospectively for adaptive intervention. In fractions that would have required intervention, the most appropriate plan was chosen from the patient's 'library,' and the resulting target coverage was reassessed with repeat cone-beam computed tomography. Results: A large variation in patterns of bladder filling and interfraction displacement was seen. During radiotherapy, predominant translations occurred cranially (maximum 2.5 cm) and anteriorly (maximum 1.75 cm). No apparent explanation was found for this variation using pretreatment patient factors. A need for adaptive planning was demonstrated by 51% of fractions, and 73% of fractions would have been delivered correctly using A-POLO. The adaptive strategy improved target coverage and was able to account for intrafraction motion also. Conclusions: Bladder volume variation will result in geographic miss in a high proportion of delivered bladder radiotherapy treatments. The A-POLO strategy can be used to correct for this and can be implemented from the first fraction of radiotherapy; thus, it is particularly suited to hypofractionated bladder radiotherapy regimens.

  12. Dosimetric properties characterization of silicon diodes used in photon beam radiotherapy

    International Nuclear Information System (INIS)

    In the current work it was studied the performance of epitaxial (EPI) and float zone (FZ) silicon diodes as on-line dosimeters for megavoltage (EPI diode) and orthovoltage (EPI and FZ diode) photon beam radiotherapy. In order to be used as dosimeters the diodes were enclosed in black polymethylmethacrylate (PMMA) probes. The devices were then connected, on photovoltaic mode, to an electrometer Keithley® 6517B to allow measurements of the photocurrent. The irradiations were performed with 6 and 18 MV photon beams (Siemens Primus® linear accelerator), 6 and 15 MV (Novalis TX®) and 10, 25, 30 and 50 kV of a Pantak / Seifert X ray radiation device. During the measurements with the Siemens Primus the diodes were held between PMMA plates placed at 10.0 cm depth. When using Novalis TX® the devices were held between solid water plates placed at 50 cm depth. In both cases the diodes were centered in a radiation field of 10 x 10 cm2, with the source-to-surface distance (SSD) kept at 100 cm. In measurements with orthovoltage photon beams the diodes were placed 50.0 cm from the tube in a radiation field of 8 cm diameter. The dose-rate dependency was studied for 6 and 15 MV (varying the dose-rate from 100 to 600 monitor units per minute) and for the 50 kV beam by varying the current tube from 2 to 20 mA. All devices showed linear response with dose rate and, within uncertainties the charge collected is independent of dose rate. The current signals induced showed good instantaneous repeatability of the diodes, characterized by coefficients of variation of current (CV) smaller than 1.14% (megavoltage beams) and 0.15% for orthovoltage beams and coefficients of variation of charge (CV) smaller than 1.84% (megavoltage beams) and 1.67% (orthovoltage beams). The dose response curves were quite linear with linear correlation coefficients better than 0.9999 for all diodes. (author)

  13. The Role of Dosimetry Audits in Radiotherapy Quality Assurance: Eight Years of Experience in Greek External Beam Radiotherapy and Brachytherapy Centres

    International Nuclear Information System (INIS)

    The Greek Atomic Energy Commission (GAEC) runs dosimetry audits through on-site visits for photon and electron beams and for 192Ir brachytherapy high dose rate systems in all Greek radiotherapy centres. In audits, absolute and relative dosimetry measurements are being performed. The deviation, expressed as the percentage difference of the measured values by the GAEC to the respective stated values by the radiotherapy centre of absorbed dose to water or air kerma strength were recorded and compared to the action levels of ±3% (preventive actions needed) and ±5% (immediate corrective actions needed). The results of the subsequent audit rounds, each one lasting for approximately four years, are presented in this work. During the first round, 79.2% of photon beams exhibited deviations of less than 3%, while during the second round this photon beam percentage increased to 96.9%. During the first round, 76.4% of the electron beams recorded deviations less than 3% and 12.9% higher than 5%. All brachytherapy sources showed deviations less than 3%. An improvement in dose accuracy was recorded during the subsequent rounds of the audits. (author)

  14. Contribution to the planning and dosimetry of photon beams applied to radiosurgery and stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Radiosurgery and stereotactic radiotherapy are irradiation techniques that use small diameter photon beams for treating intracranial lesions such as pituitary adenomas, acoustic tumors and arterio-venous malformations which are inaccessible for surgery. These treatment techniques are characterized by the use of very small radiation beams which deliver a precisely measured dose to the target volume, while sparing the surrounding healthy tissue. Treatment can be performed by using multiple 60Co gamma-ray sources (in the so-called 'Gamma Knife'), charged particles or X-ray beams produced by linear accelerators. The prescribed dose can be given in a single session or in multiple fractions, as in conventional radiotherapy. The success of the treatment depends, among other factors, of the accurate determination of the parameters that characterize the radiation beam produced by the equipment, as well as, of a well designed quality assurance program. In this study, the dosimetric parameters of a set of collimating cones of a RadionicsTM treatment system applied to two 6 MV- photon beams (Clinac 600C - VarianTM, and Mevatron MD2 - SiemensTM) were evaluated by using a water filled PMMA simulator. Measurements were carried out for photon beam diameters ranging from 12.5 to 40.0 mm for the Clinac-600C and from 5.0 to 50.0 mm for the Mevatron MD2. The parameters were evaluated by using a parallel plate ionization chamber (Markus), Kodak X-Omat V dosimetric films, thermoluminescent dosemeters (Harschaw, TLD-100) and photodiodes. The maximum tissue-ratio, the off-axis profile and the output factors were determined and the results were compared to those reported elsewhere. A study of the dosimetric characteristics of some commercially available phototransistors was also carried out. The results showed that these electronic components can be successfully used for measuring the dosimetric parameters of small diameter photon beans used in radiosurgery. Measurements were also

  15. Clinical results of iridium-192 high dose rate brachytherapy with external beam radiotherapy

    International Nuclear Information System (INIS)

    Here, we report the clinical results of iridium-192 high dose rate brachytherapy at Kanazawa University Hospital. The study population consisted of 166 patients diagnosed with T1c-T3bN0M0 prostate cancer treated with high dose rate brachytherapy and external beam radiotherapy and followed up for 6 months or longer. Treatment consisted of external beam radiotherapy to the prostate at 44 Gy/22 fractions and high dose rate brachytherapy at 18 Gy/3 fractions. Median follow-up interval was 31.5 months (range 6.2-88.7). The overall 5-year biological recurrence-free survival rate was 93.0%. The 5-year biological recurrence-free survival rates for the patients in low-, intermediate- and high-risk groups according to the D'Amico risk classification criteria were 96.1%, 89.0% and 91.6%, respectively. When limited to the group that did not receive adjuvant hormonal therapy, the 5-year biological recurrence-free survival rates for the patients in low-, intermediate- and high-risk groups were 96.0%, 96.3% and 82.9%, respectively. Grade 3 or greater adverse effects were rare. Urethral stricture was observed in only 1.0% of the patients. Eighty percent of patients retained erectile function after high dose rate brachytherapy and reported satisfaction with sexual function. High dose rate brachytherapy is considered a good form of treatment for localized prostate cancer, although longer follow-up is necessary. (author)

  16. Clinical evaluation of external beam radiotherapy combined with arterial infusion chemotherapy for advanced oral tongue cancer

    International Nuclear Information System (INIS)

    Clinical results of external beam radiotherapy combined with arterial infusion chemotherapy for advanced oral tongue cancer were analyzed. Forty patients with oral tongue squamous cell carcinoma underwent these combined therapy in the period between 1985 and 1996. Subject include 17 males and 23 females. Ages ranged from 27 to 84; median age was 64.2. The size of primary lesion was classified as follows: T1: 2 cases, T2: 16 cases, T3: 21 cases, T4: 1 case. Sixteen patients were treated as radical therapy, 24 as preoperative therapy. Anti-cancer drugs used for arterial infusion were 5-FU (31 patients) or CBDCA (9 patients). For 16 radical cases, ten (62.5%) were CR (tumor disappeared). In 4 cases (25.0%), tumor volume was decreased above 50%, but in 2 (12.5%) any local effect could not be confirmed. For 24 pre-operative cases, Complete Response (CR) was observed only in 12.5% (3 patients). Partial Response (PR) was observed in 15 patients (62.5%), no change (NC) in 6 (25.0%). In 6 from 15 PR cases disappearance of viable atypical cells could be confirmed from histological examinations of resected tongue. In results local control rate (CR rate) for 24 pre-operative cases was 37.5% (9/24). Severe complications, for examples ulcerations of the tongue or exposure of the mandible could not be found in any cases. CR was observed in 19 patients (47.5%) out of 40, and severe late complications were noted in no patients. External beam radiotherapy combined with arterial infusion chemotherapy was effective for locally advanced cancer of anterior two-thirds of the tongue. (author)

  17. The results of radiotherapy for T1 glottic cancers; influence of radiation beam energy

    International Nuclear Information System (INIS)

    Purpose; To report our results of radiotherapy for T1 glottic cancers and to analyze the influence of various parameters. Materials and Methods; Reviewed were the outcome of 57 patients with T1 glottic cancers who received definitive radiotherapy between 1985 and 1993. Of 57 patients, 46 had T1a lesions and 11 T1b. Of 57 lesions, 29 were well differentiated carcinoma, 12 moderately, one poorly and 15 unknown. Seven patients were treated with cobalt-60 unit, 26 with 3-MV linear accelerator, 7 with 6-MV and 17 with 10-MV. Of 17 patients treated with 10-MV, 4 also received part of their treatment with a cobalt-60 unit. Right and left lateral parallel opposed fields was used with all patients. The average field size was 30cm2, with typical field sizes ranging from 5x5 cm to 6x6 cm. Doses reported in this study refer to the central absorbed dose calculated at the central axis. The total radiation doses was 6000 cGy for 49 patients (86%) and the mean total radiation doses was 6100 cGy (range, 5600-7000 cGy). A daily fraction dose was 200 cGy for all patients. All courses of radiotherapy were delivered by using once-a-day fractionation 5 days per week without interruption. Chemotherapy was concurrently used with radiotherapy for 32 patients. Median follow-up was 53 months (range, 3-102 months). The local control and survival curves were adjusted and expressed by Kaplan-Meier method and comparison of the curves were calculated using the log-rank test. Results; Of 54 patients, 13 (24%) had local recurrence. Various parameters including substage; histologic grade; treatment machine; use of chemotherapy were analyzed. The only factor that influenced local control was treatment machine. The local control rate at five years was 93% for cases treated with cobalt-60 unit or a 3-MV linear accelerator and 53% for cases treated with a 6- or 10-MV linear accelerator. The local control rate for cases treated with cobalt-60 unit or a 3-MV linear accelerator was significantly better (p

  18. Intraoperative radiotherapy of soft tissue sarcoma of the extremity

    International Nuclear Information System (INIS)

    Purpose: evaluation of treatment outcome after intraoperative radiotherapy (IORT) ± external-beam irradiation (EBRT) in patients with localized soft tissue sarcoma of the extremity at high risk for local recurrence after limb-sparing surgery. Patients and methods: 28 patients treated between 1989 and 1999 were evaluated retrospectively. Patients presented with locally recurrent (n = 17), T2 (n = 20), high-grade (n = 26), or incompletely resected tumors (n = 11). All patients underwent limb-sparing surgery and IORT (median dose of 15 Gy) given either with high-dose-rate brachytherapy or a linear accelerator. 25 patients received additional EBRT with a mean of 50.6 Gy (range: 30.6-60 Gy). The mean follow-up time was 4.3 years (95% confidence interval [CI]: 3.0-5.6 years). Results: the 5-year overall and distant disease-free survival rates were 66% and 54%, respectively. The overall actuarial recurrence rate after 5 years is 16% (95% CI: 1%, 31%). The crude rate after 8 years is 18%. Surgical margin status, primary versus recurrent tumor and tumor stage did not show any statistically significant influence (univariate analysis) on local recurrence rates. Patients with T1 tumors exhibited a borderline significant (p = 0.053) better distant disease-free survival (83%) compared to T2 tumors (43%). Five (24%) grade 3-4 late side effects were observed. Conclusion: in patients with high-risk soft tissue sarcomas, IORT ± EBRT after limb-preserving surgery achieves high local control rates. The risk of normal tissue toxicities is comparable to conventional limb-sparing treatment. (orig.)

  19. Intraoperative radiotherapy of soft tissue sarcoma of the extremity

    Energy Technology Data Exchange (ETDEWEB)

    Kretzler, A.; Molls, M.; Wuerschmidt, F. [Dept. of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technical Univ. Munich (Germany); Gradinger, R. [Dept. of Orthopedics and Orthopedic Surgery, Klinikum rechts der Isar, Technical Univ. Munich (Germany); Lukas, P. [Radiotherapy and Radiation Oncology, Leopold Franzens Univ., Innsbruck (Austria); Steinau, H.U. [Dept. of Plastic Surgery, Univ. Hospital Bergmannsheil, Bochum (Germany)

    2004-06-01

    Purpose: evaluation of treatment outcome after intraoperative radiotherapy (IORT) {+-} external-beam irradiation (EBRT) in patients with localized soft tissue sarcoma of the extremity at high risk for local recurrence after limb-sparing surgery. Patients and methods: 28 patients treated between 1989 and 1999 were evaluated retrospectively. Patients presented with locally recurrent (n = 17), T2 (n = 20), high-grade (n = 26), or incompletely resected tumors (n = 11). All patients underwent limb-sparing surgery and IORT (median dose of 15 Gy) given either with high-dose-rate brachytherapy or a linear accelerator. 25 patients received additional EBRT with a mean of 50.6 Gy (range: 30.6-60 Gy). The mean follow-up time was 4.3 years (95% confidence interval [CI]: 3.0-5.6 years). Results: the 5-year overall and distant disease-free survival rates were 66% and 54%, respectively. The overall actuarial recurrence rate after 5 years is 16% (95% CI: 1%, 31%). The crude rate after 8 years is 18%. Surgical margin status, primary versus recurrent tumor and tumor stage did not show any statistically significant influence (univariate analysis) on local recurrence rates. Patients with T1 tumors exhibited a borderline significant (p = 0.053) better distant disease-free survival (83%) compared to T2 tumors (43%). Five (24%) grade 3-4 late side effects were observed. Conclusion: in patients with high-risk soft tissue sarcomas, IORT {+-} EBRT after limb-preserving surgery achieves high local control rates. The risk of normal tissue toxicities is comparable to conventional limb-sparing treatment. (orig.)

  20. Application of failure mode and effects analysis to treatment planning in scanned proton beam radiotherapy

    International Nuclear Information System (INIS)

    A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to the actively scanned proton beam radiotherapy process implemented at CNAO (Centro Nazionale di Adroterapia Oncologica), aiming at preventing accidental exposures to the patient. FMEA was applied to the treatment planning stage and consisted of three steps: i) identification of the involved sub-processes; ii) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, iii) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Thirty-four sub-processes were identified, twenty-two of them were judged to be potentially prone to one or more failure modes. A total of forty-four failure modes were recognized, 52% of them characterized by an RPN score equal to 80 or higher. The threshold of 125 for RPN was exceeded in five cases only. The most critical sub-process appeared related to the delineation and correction of artefacts in planning CT data. Failures associated to that sub-process were inaccurate delineation of the artefacts and incorrect proton stopping power assignment to body regions. Other significant failure modes consisted of an outdated representation of the patient anatomy, an improper selection of beam direction and of the physical beam model or dose calculation grid. The main effects of these failures were represented by wrong dose distribution (i.e. deviating from the planned one) delivered to the patient. Additional strategies for risk mitigation, easily and immediately applicable, consisted of a systematic information collection about any known implanted prosthesis directly from each patient and enforcing a short interval time between CT scan and treatment start. Moreover, (i) the investigation of dedicated CT image

  1. Development of a diamond dosimeter for measuring the absorbed dose in small beams used in stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Stereotactic radiotherapy is a relatively recent technique used for the treatment of small benign and malignant tumors with small radiation beams. The clinical efficiency of this technique has been proved. However, the measurement of absolute and relative dose in small beams is not possible currently due to the lack of suited detectors for these measurements. In small beam dosimetry, the detector has to be as close as possible to tissue equivalence and exhibit a small detection volume due to the lack of lateral electronic equilibrium. Characteristics of diamond (water equivalent material Z=6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. In this thesis, we developed a dosimeter prototype for small beams, based on CVD synthetic single crystal diamond. The diamond samples were characterized optically and their detection properties were investigated under X-rays and alpha-particles. First diamond dosimeter prototypes were tested with small beams produced by several stereotactic machines. Studies using Monte Carlo simulations were performed in order to optimize the parameters involved in the detector response in small beams. This leaded to a final diamond dosimeter prototype that respects all radiotherapy centers requirements, in both standard and small beams. (author)

  2. Intercomparison of ionization chambers in standard X-ray beams, at radiotherapy, diagnostic radiology and radioprotection levels

    International Nuclear Information System (INIS)

    Since the calibration of radiation measurement instruments and the knowledge of their major characteristics are very important subjects, several different types of ionization chambers were intercompared in terms of their calibration coefficients and their energy dependence, in radiotherapy, diagnostic radiology and radioprotection standard beams. An intercomparison of radionuclide calibrators for nuclear medicine was performed, using three radionuclides: 67Ga, 201Tl and 99mTc; the results obtained were all within the requirements of the national standard CNEN-NE-3.05. In order to complete the range of radiation qualities of the Calibration Laboratory of IPEN, standard radiation beam qualities, radiation protection and low energy radiation therapy levels, were established, according international recommendations. Three methodologies for the calibration of unsealed ionization chambers in X-ray beams were studied and compared. A set of Victoreen ionization chambers, specially designed for use in laboratorial intercomparisons, was submitted to characterization tests. The performance of these Victoreen ionization chambers showed that they are suitable for use in radioprotection beams, because the results obtained agree with international recommendations. However, these Victoreen ionization chambers can be used in radiotherapy and diagnostic radiology beams only with some considerations, since their performance in these beams, especially in relation to the energy dependence and stabilization time tests, did not agree with the international recommendations for dosimeters used in radiotherapy and diagnostic radiology beams. This work presents data on the performance of several types of ionization chambers in different X-ray beams, that may be useful for choosing the appropriate instrument for measurements in ionizing radiation beams. (author)

  3. Whole breast radiotherapy in prone and supine position: is there a place for multi-beam IMRT?

    OpenAIRE

    Mulliez, Thomas; Speleers, Bruno; Madani, Indira; De Gersem, Werner; Veldeman, Liv; De Neve, Wilfried

    2013-01-01

    Background: Early stage breast cancer patients are long-term survivors and finding techniques that may lower acute and late radiotherapy-induced toxicity is crucial. We compared dosimetry of wedged tangential fields (W-TF), tangential field intensity-modulated radiotherapy (TF-IMRT) and multi-beam IMRT (MB-IMRT) in prone and supine positions for whole-breast irradiation (WBI). Methods: MB-IMRT, TF-IMRT and W-TF treatment plans in prone and supine positions were generated for 18 unselected ...

  4. Automated beam placement for breast radiotherapy using a support vector machine based algorithm

    International Nuclear Information System (INIS)

    Purpose: To develop an automated beam placement technique for whole breast radiotherapy using tangential beams. We seek to find optimal parameters for tangential beams to cover the whole ipsilateral breast (WB) and minimize the dose to the organs at risk (OARs). Methods: A support vector machine (SVM) based method is proposed to determine the optimal posterior plane of the tangential beams. Relative significances of including/avoiding the volumes of interests are incorporated into the cost function of the SVM. After finding the optimal 3-D plane that separates the whole breast (WB) and the included clinical target volumes (CTVs) from the OARs, the gantry angle, collimator angle, and posterior jaw size of the tangential beams are derived from the separating plane equation. Dosimetric measures of the treatment plans determined by the automated method are compared with those obtained by applying manual beam placement by the physicians. The method can be further extended to use multileaf collimator (MLC) blocking by optimizing posterior MLC positions. Results: The plans for 36 patients (23 prone- and 13 supine-treated) with left breast cancer were analyzed. Our algorithm reduced the volume of the heart that receives >500 cGy dose (V5) from 2.7 to 1.7 cm3 (p = 0.058) on average and the volume of the ipsilateral lung that receives >1000 cGy dose (V10) from 55.2 to 40.7 cm3 (p = 0.0013). The dose coverage as measured by volume receiving >95% of the prescription dose (V95%) of the WB without a 5 mm superficial layer decreases by only 0.74% (p = 0.0002) and the V95% for the tumor bed with 1.5 cm margin remains unchanged. Conclusions: This study has demonstrated the feasibility of using a SVM-based algorithm to determine optimal beam placement without a physician's intervention. The proposed method reduced the dose to OARs, especially for supine treated patients, without any relevant degradation of dose homogeneity and coverage in general.

  5. Intraoperative radiotherapy given as a boost for early breast cancer: Long-term clinical and cosmetic results

    International Nuclear Information System (INIS)

    Purpose: The standard radiotherapy (RT) of breast cancer consists of 50 Gy external beam RT (EBRT) to the whole breast followed by an electron boost of 10-16 Gy to the tumor bed, but this has several cosmetic disadvantages. Intraoperative radiotherapy (IORT) could be an alternative to overcome these. Methods and Materials: We evaluated 50 women with early breast cancer operated on in a dedicated IORT facility. Median dose of 10 Gy was delivered using 9-MeV electron beams. All patients received postoperative EBRT (50 Gy in 2 Gy fractions). Late toxicity and cosmetic results were assessed independently by two physicians according to the Common Terminology Criteria for Adverse Event v3.0 grading system and the European Organization for Research and Treatment of Cancer questionnaires. Results: After a median follow-up of 9.1 years (range, 5-15 years), two local recurrences were observed within the primary tumor bed. At the time of analysis, 45 patients are alive with (n = 1) or without disease. Among the 42 disease-free remaining patients, 6 experienced Grade 2 late subcutaneous fibrosis within the boost area. Overall, the scores indicated a very good quality of life and cosmesis was good to excellent in the evaluated patients. Conclusion: Our results confirm that IORT given as a boost after breast-conserving surgery is a reliable alternative to conventional postoperative fractionated boost radiation

  6. Merkel cell carcinoma: Outcome and role of radiotherapy

    International Nuclear Information System (INIS)

    Merkel cell carcinoma (M.C.C.) are rare neuroendocrine malignant tumor of the skin, occurring in elderly patients. It affects primarily the sun-exposed areas of the skin, with approximately 50% of all tumors occurring in the face and neck and 40% in the extremities. Immunohistochemical markers (C.K.20+, C.K.7- and T.T.F.1-) are used to distinguish between M.C.C. and other tumors. M.C.C. have a tendency to rapid local progression, frequent spread to regional lymph nodes and distant metastases. Due to the rarity of the disease, the optimal treatment has not been fully defined. Localized stages (stages I and II) are treated by surgical excision of the primary tumor (with 2 to 3 cm margin) and lymphadenectomy in case of node-positive disease, followed by external beam radiotherapy (E.B.R.T.) to a total dose of 50 to 60 Gy in the tumor bed. Adjuvant E.B.R.T. has been shown to decrease markedly locoregional recurrences and to increase survival in recent studies. Treatment of lymph nodes area is more controversial. Chemotherapy is recommended only for metastatic disease. (authors)

  7. Salvage High-intensity Focused Ultrasound for the Recurrent Prostate Cancer after Radiotherapy

    International Nuclear Information System (INIS)

    To investigate the use of minimally invasive high-intensity focused ultrasound (HIFU) as a salvage therapy in men with localized prostate cancer recurrence following external beam radiotherapy (EBRT), brachytherapy or proton therapy. A review of 20 cases treated using the Sonablate registered 500 HIFU device, between August 28, 2002 and September 1, 2009, was carried out. All men had presumed organ-confined, histologically confirmed recurrent prostate adenocarcinoma following radiation therapy. All men with presumed, organ-confined, recurrent disease following EBRT in 8 patients, brachytherapy in 7 patients or proton therapy in 5 patients treated with salvage HIFU were included. The patients were followed for a mean (range) of 16.0 (3-80) months. Biochemical disease-free survival (bDFS) rates in patients with low-intermediate and high risk groups were 86% and 50%, respectively. Side-effects included urethral stricture in 2 of the 16 patients (13%), urinary tract infection or dysuria syndrome in eight (26%), and urinary incontinence in one (6%). Recto-urethral fistula occurred in one patient (6%). Transrectal HIFU is an effective treatment for recurrence after radiotherapy especially in patients with low- and intermediate risk groups.

  8. Salvage High-intensity Focused Ultrasound for the Recurrent Prostate Cancer after Radiotherapy

    Science.gov (United States)

    Shoji, S.; Nakano, M.; Omata, T.; Harano, Y.; Nagata, Y.; Usui, Y.; Terachi, T.; Uchida, T.

    2010-03-01

    To investigate the use of minimally invasive high-intensity focused ultrasound (HIFU) as a salvage therapy in men with localized prostate cancer recurrence following external beam radiotherapy (EBRT), brachytherapy or proton therapy. A review of 20 cases treated using the Sonablate® 500 HIFU device, between August 28, 2002 and September 1, 2009, was carried out. All men had presumed organ-confined, histologically confirmed recurrent prostate adenocarcinoma following radiation therapy. All men with presumed, organ-confined, recurrent disease following EBRT in 8 patients, brachytherapy in 7 patients or proton therapy in 5 patients treated with salvage HIFU were included. The patients were followed for a mean (range) of 16.0 (3-80) months. Biochemical disease-free survival (bDFS) rates in patients with low-intermediate and high risk groups were 86% and 50%, respectively. Side-effects included urethral stricture in 2 of the 16 patients (13%), urinary tract infection or dysuria syndrome in eight (26%), and urinary incontinence in one (6%). Recto-urethral fistula occurred in one patient (6%). Transrectal HIFU is an effective treatment for recurrence after radiotherapy especially in patients with low- and intermediate risk groups.

  9. Survival of women with clear cell and papillary serous endometrial cancer after adjuvant radiotherapy

    International Nuclear Information System (INIS)

    Type II (papillary serous and clear cell) endometrial carcinoma (EC) is a rare subgroup and is considered to have an unfavorable prognosis. The purpose of this retrospective analysis was to elucidate the meaning of adjuvant radiotherapy (RT) for clinical outcome and to define prognostic factors in these patients (pts). From 2004-2012 forty-two pts with type II EC underwent surgery followed by adjuvant RT at our department. Median age was 72 years. The majority were early stage carcinomas (FIGO I n = 27 [64.3%], FIGO II n = 4 [9.5%], FIGO III n = 11 [26.2%]. Seven pts (16.7%) received adjuvant chemotherapy (ChT). Pts were treated with external beam radiotherapy (EBRT) and brachytherapy (IVB) boost. Five-year local recurrence free survival (LRFS), distant metastases free survival (DMFS) and overall survival (OS) were 85.4%, 78%, and 64.5% respectively. LRFS was better with lower pT stage, without lymphangiosis (L0), without haemangiosis (V0) and negative resection margins (R0). DMFS was prolonged in lymph node negatives (N0), L0, V0 and R0. OS was improved in younger pts, N0, L0, V0 and after lymphadenectomy (LNE). Multivariate analysis revealed haemangiosis (V1) as the only independent prognostic factor for OS (p = .014) and DMFS (p = .008). For LRFS pT stage remained as an independent prognostic factor (p = .028). Adjuvant RT with EBRT/IVB ensures adequate local control in type II EC, but control rates remain lower than in type I EC. A benefit of additional adjuvant ChT could not be demonstrated and a general omission of EBRT cannot be recommended at this point. Lymphovascular infiltration and pT stage might be the best predictive factors for a benefit from combined local and systemic treatment

  10. Primary radiotherapy of stage IIA/B-IIIB cervical carcinoma. A comparison of continuous versus sequential regimens

    International Nuclear Information System (INIS)

    Background: comprehensive literature on cervical cancer demonstrates, even today, the need for optimization of the timing of external-beam radiotherapy (EBRT) and high-dose-rate brachytherapy (HDR-BT) in the treatment of stage IIA/B-IIIB cervical carcinoma. Patients and methods: 210 patients with carcinoma of the cervix were treated in the Municipal Center of Oncoradiology between January 1991 and December 1996 (FIGO IIA: n = 10, FIGO IIB: n = 113, and FIGO IIIB: n = 87). Two regimens were compared: sequential radiation therapy (SRT) with 4 x 8 Gy HDR-BT to point A followed by EBRT, and continuous radiation therapy (CRT) in which 5 x 6 Gy HDR-BT to point A, one session per week, was integrated into the EBRT. A total dose of 68-70 Gy to point A and 52-54 Gy to point B was given in EBRT with SRT, five fractions per week were applied. Four fractions per week were applied in CRT, i.e., no EBRT was performed on the day of HDR-BT. Total doses to points A and B were identical in both regimens. Overall treatment time (OTT) amounted to 56 days for SRT and 35 days for CRT. Median follow-up time was 3.4 (2.5-4.2) years. Results: progression-free 5-year-survival (PFS) was 71% in the CRT and 56% in the SRT group. Nevertheless, this difference was not statistically significant (p = 1.00), and the same was found in a subgroup analysis of the different tumor stages, showing, however, an unequivocal trend. Late bladder and rectal injuries occurred in 13% and 25%, respectively. Late rectal injuries were significantly more frequent with SRT than CRT (35 patients in the SRT and 18 patients in the CRT group; p = 0.037). This was due to the higher doses per fraction of HDR-BT in the SRT group. No difference was found regarding late bladder injuries (p = 0.837). Conclusion: for the patients included in this study, no advantage has been found so far in using CRT, i.e., shortening the OTT by weekly integration of HDR-BT into EBRT. Nevertheless, an obvious trend exists. The dose of 8 Gy per

  11. Matched Cohort Analysis of Outcomes of Definitive Radiotherapy for Prostate Cancer in Human Immunodeficiency Virus-Positive Patients

    International Nuclear Information System (INIS)

    Purpose: To compare the biochemical outcome and toxicity scores of men with human immunodeficiency virus (HIV) and prostate cancer with a matched control population with negative or unknown HIV status when treated with external-beam radiotherapy (EBRT). Methods and Materials: A single-institution database of men with prostate cancer treated with EBRT from 1999 to 2009 was reviewed. Thirteen men with HIV were identified and matched to 2 control patients according to age, race, T stage, prostate-specific antigen level, Gleason score, RT dose, intensity-modulated RT vs. three-dimensional conformal RT, and whole-pelvis vs. prostate-only RT, for a total of 39 cases. The median follow-up time was 39 months (range, 3–110 months). Results: The 4-year biochemical failure (BF)-free survival rate was 87% in the HIV-positive group vs. 89% in the controls (p = 0.94). Pre- and post-RT viral loads were found to be predictive of BF (p = 0.04 and p = 0.04, respectively). No men with HIV died, whereas 2 in the control group died of causes unrelated to prostate cancer. Acute and chronic genitourinary and gastrointestinal toxicity were less in the HIV-positive patients than in controls (p 3. Conclusions: Our findings suggest that men with HIV treated with EBRT have a similar risk of BF; however, high viral loads may contribute to an increased risk. This analysis supports that HIV-positive men with prostate cancer can be treated with definitive EBRT with similar disease control and toxicity outcomes as in the general population.

  12. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams

    International Nuclear Information System (INIS)

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than ± 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  13. Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung City, Taiwan (China); Chou, Kuei-Ting [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Yang, Shih-Neng [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung City, Taiwan (China); Chang, Chih-Kai [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Liang, Ji-An [Department of Radiation Oncology, China Medical University Hospital, Taichung City, Taiwan (China); Zhang, Geoffrey [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States)

    2015-10-01

    The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment. For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer.

  14. Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography

    International Nuclear Information System (INIS)

    The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment. For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer

  15. On the feasibility of dose quantification with in-beam PET data in radiotherapy with 12C and proton beams

    International Nuclear Information System (INIS)

    The physical advantages of light ions in combination with technological advances like intensity controlled raster scanning offer a unique tool for high precision radiotherapy. This is particularly applied to delicate clinical situations of inoperable tumours growing in close proximity to critical organs. The potential benefit of such a high selectivity of ion beam therapy demands the complex and strictly conformal dose delivery to be monitored in-situ and non-invasively in three dimensions. In contrast to conventional photon radiation, light ions exhibit a well defined range which determines the position of the maximum dose delivery in the inhomogeneous tumour target. This requires a monitoring technology along the ion trajectory offering millimetre precision. Additionally, accurate control of the lateral position of the irradiation field within the patient can be a crucial issue for the frequent case of portals passing adjacent to organs at risk. At present, positron emission tomography (PET) represents the only feasible method fulfilling these requirements. For this purpose a dedicated in-beam positron camera has been completely integrated into the experimental heavy ion treatment site at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. This allows to measure the minor amount of β+-activity produced in nuclear reactions between the projectiles and the target nuclei of the tissue simultaneously to the tumour irradiation. The emitted signal is correlated but not directly proportional to the spatial pattern of the delivered dose. Hence, therapy control is achieved by comparing the measured β+-activity distribution with a prediction based on the treatment plan and the specific time course of the particular irradiation. (orig.)

  16. Kilovoltage Rotational External Beam Radiotherapy on a Breast Computed Tomography Platform: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Prionas, Nicolas D.; McKenney, Sarah E. [Department of Radiology, University of California, Davis, Medical Center, Sacramento, California (United States); Stern, Robin L. [Department of Radiation Oncology, University of California, Davis, Medical Center, Sacramento, California (United States); Boone, John M., E-mail: jmboone@ucdavis.edu [Department of Radiology, University of California, Davis, Medical Center, Sacramento, California (United States)

    2012-10-01

    Purpose: To demonstrate the feasibility of a dedicated breast computed tomography (bCT) platform to deliver rotational kilovoltage (kV) external beam radiotherapy (RT) for partial breast irradiation, whole breast irradiation, and dose painting. Methods and Materials: Rotational kV-external beam RT using the geometry of a prototype bCT platform was evaluated using a Monte Carlo simulator. A point source emitting 178 keV photons (approximating a 320-kVp spectrum with 4-mm copper filtration) was rotated around a 14-cm voxelized polyethylene disk (0.1 cm tall) or cylinder (9 cm tall) to simulate primary and primary plus scattered photon interactions, respectively. Simulations were also performed using voxelized bCT patient images. Beam collimation was varied in the x-y plane (1-14 cm) and in the z-direction (0.1-10 cm). Dose painting for multiple foci, line, and ring distributions was demonstrated using multiple rotations with varying beam collimation. Simulations using the scanner's native hardware (120 kVp filtered by 0.2-mm copper) were validated experimentally. Results: As the x-y collimator was narrowed, the two-dimensional dose profiles shifted from a cupped profile with a high edge dose to an increasingly peaked central dose distribution with a sharp dose falloff. Using a 1-cm beam, the cylinder edge dose was <7% of the dose deposition at the cylinder center. Simulations using 120-kVp X-rays showed distributions similar to the experimental measurements. A homogeneous dose distribution (<2.5% dose fluctuation) with a 20% decrease in dose deposition at the cylinder edge (i.e., skin sparing) was demonstrated by weighted summation of four dose profiles using different collimation widths. Simulations using patient bCT images demonstrated the potential for treatment planning and image-guided RT. Conclusions: Rotational kV-external beam RT for partial breast irradiation, dose painting, and whole breast irradiation with skin sparing is feasible on a bCT platform

  17. Intraoperative radiotherapy for early breast cancer: do health professionals choose convenience or risk?

    International Nuclear Information System (INIS)

    The randomized TARGIT trial comparing experimental intra-operative radiotherapy (IORT) to up to 7 weeks of daily conventional external beam radiotherapy (EBRT) recruited participants in Western Australia between 2003 and 2012. We aimed to understand preferences for this evolving radiotherapy treatment for early breast cancer (EBC) in health professionals, and how they changed over time and in response to emerging data. Preferences for single dose IORT or EBRT for EBC were elicited in 2004 and 2011, together with factors that may be associated with these preferences. Western Australian health professionals working with breast cancer patients were invited to complete a validated, self-administered questionnaire. The questionnaire used hypothetical scenarios and trade-off methodology to determine the maximum increase in risk of local recurrence health professionals were willing to accept in order to have a single dose of IORT in the place of EBRT if they were faced with this decision themselves. Health professional characteristics were similar across the two time points although 2011 included a higher number of nurse (49% vs. 36%) and allied health (10% vs. 4%) participants and a lower number of radiation therapists (17% vs. 32%) compared to 2004. Health professional preferences varied, with 7.5% and 3% judging IORT unacceptable at any risk, 18% and 21% judging IORT acceptable only if offering an equivalent risk, 56% and 59% judging IORT acceptable with a low maximum increase in risk (1-3%) and 19% and 17% judging a high maximum increase in risk acceptable (4-5%), in 2004 and 2011 respectively. A significantly greater number of nurses accepted IORT as a treatment option in 2011. Most Western Australian health professionals working with breast cancer patients are willing to accept an increase in risk of local recurrence in order to replace EBRT with IORT in a hypothetical setting. This finding was consistent over two time points spanning 7 years despite the duration of

  18. Integral dose investigation of non-coplanar treatment beam geometries in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dan; Dong, Peng; Ruan, Dan; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States); Long, Troy; Romeijn, Edwin [Department of Industrial and Operations, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-01-15

    Purpose: Automated planning and delivery of non-coplanar plans such as 4π radiotherapy involving a large number of fields have been developed to take advantage of the newly available automated couch and gantry on C-arm gantry linacs. However, there is an increasing concern regarding the potential changes in the integral dose that needs to be investigated. Methods: A digital torso phantom and 22 lung and liver stereotactic body radiation therapy (SBRT) patients were included in the study. The digital phantom was constructed as a water equivalent elliptical cylinder with a major axis length of 35.4 cm and minor axis of 23.6 cm. A 4.5 cm diameter target was positioned at varying depths along the major axis. Integral doses from intensity modulated, non-coplanar beams forming a conical pattern were compared against the equally spaced coplanar beam plans. Integral dose dependence on the phantom geometry and the beam number was also quantified. For the patient plans, the non-coplanar and coplanar beams and fluences were optimized using a column generation and pricing approach and compared against clinical VMAT plans using two full (lung) or partial coplanar arcs (liver) entering at the side proximal to the tumor. Both the average dose to the normal tissue volume and the total volumes receiving greater than 2 Gy (V2) and 5 Gy (V5) were evaluated and compared. Results: The ratio of integral dose from the non-coplanar and coplanar plans depended on the tumor depth for the phantom; for tumors shallower than 10 cm, the non-coplanar integral doses were lower than coplanar integral doses for non-coplanar angles less than 60°. Similar patterns were observed in the patient plans. The smallest non-coplanar integral doses were observed for tumor 6–8 cm deep. For the phantom, the integral dose was independent of the number of beams, consistent with the liver SBRT patients but the lung SBRT patients showed slight increase in the integral dose when more beams were used. Larger

  19. Anesthesia for pediatric external beam radiation therapy

    International Nuclear Information System (INIS)

    Background: For very young patients, anesthesia is often required for radiotherapy. This results in multiple exposures to anesthetic agents over a short period of time. We report a consecutive series of children anesthetized for external beam radiation therapy (EBRT). Methods: Five hundred twelve children ≤ 16 years old received EBRT from January 1983 to February 1996. Patient demographics, diagnosis, anesthesia techniques, monitoring, airway management, complications, and outcome were recorded for the patients requiring anesthesia. Results: One hundred twenty-three of the 512 children (24%) required 141 courses of EBRT with anesthesia. Anesthetized patients ranged in age from 20 days to 11 years (mean 2.6 ± 1.8 ). The frequency of a child receiving EBRT and requiring anesthesia by age cohort was: ≤ 1 year (96%), 1-2 years (93%), 2-3 years (80%), 3-4 years (51%), 4-5 years (36%), 5-6 years (13%), 6-7 years (11%), and 7-16 years (0.7%). Diagnoses included: primary CNS tumor (28%), retinoblastoma (27%), neuroblastoma (20%), acute leukemia (9%), rhabdomyosarcoma (6%), and Wilms' tumor (4%). Sixty-three percent of the patients had been exposed to chemotherapy prior to EBRT. The mean number of anesthesia sessions per patient was 22 ± 16. Seventy-eight percent of the treatment courses were once daily and 22% were twice daily. Anesthesia techniques included: short-acting barbiturate induction + inhalation maintenance (21%), inhalation only (20%), ketamine (19%), propofol only (12%), propofol induction + inhalation maintenance (7%), ketamine induction + inhalation maintenance (6%), ketamine or short-acting barbiturate induction + inhalation maintenance (6%). Monitoring techniques included: EKG (95%), O2 saturation (93%), fraction of inspired O2 (57%), and end-tidal CO2 (55%). Sixty-four percent of patients had central venous access. Eleven of the 74 children with a central line developed sepsis (15%): 6 of the 11 were anesthetized with propofol (55%), 4 with a short

  20. Transitioning from conventional radiotherapy to intensity-modulated radiotherapy for localized prostate cancer. Changing focus from rectal bleeding to detailed quality of life analysis

    International Nuclear Information System (INIS)

    With the advent of modern radiation techniques, we have been able to deliver a higher prescribed radiotherapy dose for localized prostate cancer without severe adverse reactions. We reviewed and analyzed the change of toxicity profiles of external beam radiation therapy (EBRT) from the literature. Late rectal bleeding is the main adverse effect, and an incidence of >20% of Grade ≥2 adverse events was reported for 2D conventional radiotherapy of up to 70 Gy. 3D conformal radiation therapy (3D-CRT) was found to reduce the incidence to ∼10%. Furthermore, intensity-modulated radiation therapy (IMRT) reduced it further to a few percentage points. However, simultaneously, urological toxicities were enhanced by dose escalation using highly precise external radiotherapy. We should pay more attention to detailed quality of life (QOL) analysis, not only with respect to rectal bleeding but also other specific symptoms (such as urinary incontinence and impotence), for two reasons: (1) because of the increasing number of patients aged >80 years, and (2) because of improved survival with elevated doses of radiotherapy and/or hormonal therapy; age is an important prognostic factor not only for prostate-specific antigen (PSA) control but also for adverse reactions. Those factors shift the main focus of treatment purpose from survival and avoidance of PSA failure to maintaining good QOL, particularly in older patients. In conclusion, the focus of toxicity analysis after radiotherapy for prostate cancer patients is changing from rectal bleeding to total elaborate quality of life assessment. (author)

  1. Initial patient imaging with an optimised radiotherapy beam for portal imaging

    International Nuclear Information System (INIS)

    Background and purpose: To investigate the feasibility and the advantages of a portal-imaging mode on a medical accelerator, consisting of a thin low-Z bremsstrahlung target and a thin Gd2O2S/film detector, for patient imaging. Patients and methods: The international code of practice for high-energy photon dosimetry was used to calibrate dosimetry instruments for the imaging beam produced by 4.75 MeV electrons hitting a 6 mm thick aluminium target. Images of the head and neck of a humanoid phantom were taken with a mammography film system and the dose in the phantom was measured with TLDs calibrated for this beam. The first head and neck patient images are compared with conventional images (taken with the treatment beam on a film radiotherapy verification detector). Visibility of structures for six patients was evaluated. Results: Images of the head and neck of a humanoid phantom, taken with both imaging systems showed that the contrast increased dramatically for the new system while the dose required to form an image was less than 10-2 Gy. The patient images taken with the new and the conventional systems showed that air-tissue interfaces were better defined in the new system image. Anatomical structures, visible on both films, are clearer with the new system. Additionally, bony structures, such as vertebrae, were clearly visible only with the new system. The system under evaluation was significantly better for all features in lateral images and most features in anterior images. Conclusions: This pilot study of the new portal imaging system showed the image quality is significantly improved

  2. Implementation of single-breath-hold cone beam CT guided hypofraction radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    To analyze the feasibility of active breath control (ABC), the lung tumor reproducibility and the rationale for single-breath-hold cone beam CT (CBCT)-guided hypofraction radiotherapy. Single-breath-hold CBCT images were acquired using ABC in a cohort of 83 lung cancer patients (95 tumors) treated with hypofraction radiotherapy. For all alignments between the reference CT and CBCT images (including the pre-correction, post-correction and post-treatment CBCT images), the tumor reproducibility was evaluated via online manual alignment of the tumors, and the vertebral bone uncertainties were evaluated via offline manual alignment of the vertebral bones. The difference between the tumor reproducibility and the vertebral bone uncertainty represents the change in the tumor position relative to the vertebral bone. The relative tumor positions along the coronal, sagittal and transverse axes were measured based on the reference CT image. The correlations between the vertebral bone uncertainty, the relative tumor position, the total treatment time and the tumor reproducibility were evaluated using the Pearson correlations. Pre-correction, the systematic/random errors of tumor reproducibility were 4.5/2.6 (medial-lateral, ML), 5.1/4.8 (cranial-caudal, CC) and 4.0/3.6 mm (anterior-posterior, AP). These errors were significantly decreased to within 3 mm, both post-correction and post-treatment. The corresponding PTV margins were 4.7 (ML), 7.4 (CC) and 5.4 (AP) mm. The changes in the tumor position relative to the vertebral bone displayed systematic/random errors of 2.2/2.0 (ML), 4.1/4.4 (CC) and 3.1/3.3 (AP) mm. The uncertainty of the vertebral bone significantly correlated to the reproducibility of the tumor position (P < 0.05), except in the CC direction post-treatment. However, no significant correlation was detected between the relative tumor position, the total treatment time and the tumor reproducibility (P > 0.05). Using ABC for single-breath-hold CBCT guidance is an

  3. Development of a postal dosimetric system for quality assurance programs in radiotherapy using fotons beams in non references conditions

    International Nuclear Information System (INIS)

    In radiotherapy, to cure the primary tumor, the absorbed dose delivered at the target volume should have an accuracy better than ± 5%. As the basic aim in radiotherapy is the eradication of the primary tumor with the smallest possible damage to the health tissues, it is necessary to guarantee that the dose delivered to the patient in different depths and treatment configurations has the right accuracy. For this reason, a quality control program should be carried out by regulatory authorities and national standardization programs including postal evaluation of the beam dosimetry are also necessary. Since many years Brazil is running a postal quality control program in radiotherapy in reference conditions, Nevertheless it should be increased to include also measurements in non reference conditions. In this paper we present a new dosimetric postal system using thermoluminescent dosimeters (TLD-100 in powder) for photon beams quality control in radiotherapy, in non reference conditions. This system has been checked and applied in different units, confirming its adequacy to the proposed measurements. (author)

  4. Measurement of skin and target dose in post-mastectomy radiotherapy using 4 and 6 MV photon beams

    International Nuclear Information System (INIS)

    For patients with high risk breast cancer and mastectomy, radiotherapy is the treatment of choice to improve survival and local control. Target dose is mainly limited due to skin reactions. The feasibility of using 4 MV beams for chest wall treatment was studied and compared to standard 6 MV bolus radiotherapy. Post-mastectomy IMRT was planned on an Alderson-phantom using 4 and 6 MV photon beams without/with a 0.5 cm thick bolus. Dose was measured using TLDs placed at 8 locations in 1 and 3 mm depth to represent skin and superficial target dose, respectively. 4 MV and 6 MV beams with bolus perform equally regarding target coverage. The minimum and mean superficial target dose for the 6 MV and 4 MV were 93.0% and 94.7%, and 93.1% and 94.4%, respectively. Regarding skin dose the 4 MV photon beam was advantageous. The minimum and mean skin dose for the 6 MV and 4 MV was 76.7% and 81.6%, and 69.4% and 72.9%, respectively. The TPS was able to predict dose in the build-up region with a precision of around 5%. The use of 4 MV photon beams are a good alternative for treating the thoracic wall without the need to place a bolus on the patient. The main limitation of 4 MV beams is the limited dose rate

  5. Influence of boost technique (external beam radiotherapy or brachytherapy) on the outcome of patients with carcinoma of the base of the tongue

    International Nuclear Information System (INIS)

    We reviewed 90 patients with squamous cell carcinoma of the base of the tongue. Fifty-three patients were treated with external beam radiotherapy alone (3 T1, 11 T2, 21 T3, and 18 T4 tumors) and thirty-seven patients were treated with external beam radiotherapy plus brachytherapy boost (4 T1, 15 T2, 11 T3, and 7 T4 tumors). For patients with T1, T2 and T3 primaries, the actuarial 3-year local relapse-free survival was 42% following external beam radiotherapy alone and 67% following external beam radiotherapy plus brachytherapy (p<0.05). The actuarial 3-year cause specific survival for these T-stages was 37% for patients treated with external beam radiotherapy alone and 53% for patients treated with external beam radiotherapy plus brachytherapy (p=0.1). In the Cox multivariate analyses restricted patients with T1, T2 and T3 staged tumors, treatment modality was the only predictor for local control but no influence on specific survival was found. The trend towards significant differences in specific survival found in the univariate comparison of both treatment modalities was probably due to the significantly higher number of N-positive patients treated with external beam radiotherapy alone. When all stages were included in the Cox analysis, low hemoglobin level, invasion of deep muscle, number of palpable nodes, and history of weight loss significantly influenced the outcome. Soft tissue necrosis occurred more frequently in patients treated with external beam radiotherapy plus brachytherapy (33% vs. 10%, p=0.52). (orig.)

  6. Secondary external-beam radiotherapy and hyperthermia for local recurrence after 125-iodine implantation in adenocarcinoma of the prostate

    International Nuclear Information System (INIS)

    At Standford, six patients underwent a course of external radiotherapy after local recurrence following 125-iodine implantation. Four of the six patients also received concomitant hyperthermia. Four patients were initially managed with hormonal manipulation at time of local relapse and subsequently received external beam radiotherapy with or without hyperthermia. The hyperthermia was non-invasively induced using an annular phased array radiative electromagnetic system. Treatment was well tolerated, and none of the patients experienced severe rectal or bladder complications. Three patients are free from disease; one patient experience local-regional recurrence based on biopsy; one recurred in the bladder, was treated with cystoprostatectomy and subsequently succumbed to metastatic disease; and one patient died of presumed metastatic disease. External-beam irradiation with concurrent hyperthermia can be safely delivered to treat locally recurrent prostatic carcinoma after 125-iodine implantation

  7. Urinary incontinence in prostate cancer patients treated with external beam radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: To describe the incidence of urinary incontinence among prostate cancer patients treated with external beam radiotherapy (RT) and to investigate associated risk factors. Patients and methods: One thousand and hundred ninety-two patients with ≥24 months follow-up were the subjects of this series. All patients received between 50 and 72 Gy in 20-37 fractions (median 66 Gy/33). Post-RT urinary incontinence was scored by direct patient interviewing according to the modified RTOG/SOMA scale: Grade 1-occasional use of incontinence pads, Grade 2-intermittent use of incontinence pads, Grade 3-persistent use of incontinence pads, and Grade 4-permanent catheter. Risk-factors investigated were: age, diabetes, TURP prior to RT, elapsed time from TURP to RT, clinical stage, RT dose and presence of Grade ≥2 acute GU and GI toxicity. Non-parametric, actuarial univariate (Kaplan-Meier) and multivariate tests (MVA, Cox regression) were performed. Results: Median follow-up for the group is 52 months (24-109). Thirty-four patients (2.9%) had incontinence prior to RT, which was more common in TURP patients (7.8% vs 1.6% P<0.001). These are excluded from further analysis. Fifty-seven patients (4.9%) developed Grade 1 incontinence, 7 (0.6%) Grade 2, and 7 (0.6%) Grade 3. There was no Grade 4 incontinence. Actuarial rates for Grade ≥1 and ≥2 incontinence at 5 years are 7 and 1.7%, respectively. Risk factors on MVA associated with the development of Grade 1 or worse incontinence are pre-RT TURP (5-year rates 10% vs 6%, P=0.026), presence of Grade ≥2 acute GU toxicity (5-year rates 11% vs 5%, P=0.002). Age, diabetes, clinical stage, elapsed time from TURP to RT, RT dose or fraction size, acute GI toxicity were not significant. Patients who underwent post-RT TURP or dilatation for obstructive symptoms (4.3%), were more likely to develop Grade 2-3 incontinence (5-year rate 8 vs 1.5%, P=0.0015). Conclusions: Grade 2 or greater urinary incontinence is rare

  8. A survey of techniques to reduce and manage external beam radiation-induced xerostomia in British oncology and radiotherapy departments

    Energy Technology Data Exchange (ETDEWEB)

    Macknelly, Andrew [Norfolk and Norwich University Hospital (United Kingdom); Day, Jane [Faculty of Health, Wellbeing and Science, University Campus Suffolk, Waterfront Building, Neptune Quay, Ipswich (United Kingdom)], E-mail: j.day@ucs.ac.uk

    2009-11-15

    Xerostomia is the most common side effect of external beam radiotherapy to the head and neck [Anand A, Jain J, Negi P, Chaudhoory A, Sinha S, Choudhury P, et-al. Can dose reduction to one parotid gland prevent xerostomia? - A feasibility study for locally advanced head and neck cancer patients treated with intensity-modulated radiotherapy. Clinical Oncology 2006;18(6):497-504.]. A survey was carried out in British oncology departments to determine what treatment regimes, to minimise xerostomia, are used for patients with head-and-neck cancers treated with external beam radiotherapy. A semi-structured questionnaire consisting of both quantitative and qualitative questions was designed that asked departments which of the identified methods they used, why a method might not be currently employed, and whether its use had ever been considered. The study found that there are wide disparities between the techniques employed by oncology departments to avoid and reduce xerostomia in patients with cancers of the head and neck. The National Institute of Clinical Health and Excellence, [National Institute for Clinical Health and Excellence (NICE). Improving outcomes in head and neck cancers: the manual. London: Office of Public Sector Information; 2004.] for example, recommends that patients are given dental care and dietary advice but some departments did not appear to be doing this. Less than half of departments stated that they offer complementary therapies and less than 40% prescribed pilocarpine, a saliva-stimulant. Only two respondents stated that they use amifostine, a radioprotector, during radiotherapy treatment to the head and neck. The results also suggested a move toward using Intensity Modulated Radiotherapy (IMRT) for treating head-and-neck cancers which offers better normal tissue sparing than three-dimensional conformal radiotherapy. [Anand A, Jain J, Negi P, Chaudhoory A, Sinha S, Choudhury P, et al. Can dose reduction to one parotid gland prevent xerostomia

  9. A survey of techniques to reduce and manage external beam radiation-induced xerostomia in British oncology and radiotherapy departments

    International Nuclear Information System (INIS)

    Xerostomia is the most common side effect of external beam radiotherapy to the head and neck [Anand A, Jain J, Negi P, Chaudhoory A, Sinha S, Choudhury P, et-al. Can dose reduction to one parotid gland prevent xerostomia? - A feasibility study for locally advanced head and neck cancer patients treated with intensity-modulated radiotherapy. Clinical Oncology 2006;18(6):497-504.]. A survey was carried out in British oncology departments to determine what treatment regimes, to minimise xerostomia, are used for patients with head-and-neck cancers treated with external beam radiotherapy. A semi-structured questionnaire consisting of both quantitative and qualitative questions was designed that asked departments which of the identified methods they used, why a method might not be currently employed, and whether its use had ever been considered. The study found that there are wide disparities between the techniques employed by oncology departments to avoid and reduce xerostomia in patients with cancers of the head and neck. The National Institute of Clinical Health and Excellence, [National Institute for Clinical Health and Excellence (NICE). Improving outcomes in head and neck cancers: the manual. London: Office of Public Sector Information; 2004.] for example, recommends that patients are given dental care and dietary advice but some departments did not appear to be doing this. Less than half of departments stated that they offer complementary therapies and less than 40% prescribed pilocarpine, a saliva-stimulant. Only two respondents stated that they use amifostine, a radioprotector, during radiotherapy treatment to the head and neck. The results also suggested a move toward using Intensity Modulated Radiotherapy (IMRT) for treating head-and-neck cancers which offers better normal tissue sparing than three-dimensional conformal radiotherapy. [Anand A, Jain J, Negi P, Chaudhoory A, Sinha S, Choudhury P, et al. Can dose reduction to one parotid gland prevent xerostomia

  10. GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    OpenAIRE

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there i...

  11. Sci—Thur PM: Planning and Delivery — 02: Treatment planning workflow for very high-energy electron beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova, Magdalena; Qu, Bradley; Palma, Bianey; Maxim, Peter; Loo, Billy [Stanford University, Stanford, CA (United States); Hårdemark, Bjorn; Hynning, Elin [RaySearch Laboratories AB, Stockholm (Sweden)

    2014-08-15

    Purpose: To develop treatment planning workflow for rapid radiotherapy delivered with very-high energy electron (VHEE) scanning beam. Methods: VHEE radiotherapy treatment planning was performed by linking Monte Carlo (MC) dose calculations with inverse optimization in a research version of RayStation. In order to study a number of treatment parameters, a Matlab graphical user interface (GUI) for calculation of VHEE beamlet dose was developed. Through the GUI, EGSnrc MC simulations were run for a number of beam energies, number of beams, beamlet spot and grid sizes, and machine bore sizes. VHEE plans for a pediatric patient with a 4.3 cm{sup 3} brain target optimized with spot-scanning algorithm in RayStation were compared to the clinically delivered 6 MV VMAT plan. Results and Discussion: VHEE beam energy had the largest effect on the quality of dose distributions. For the same target dose, the mean doses to critical organs decreased by 10–15% when planned with 100 MeV compared to 60 MeV. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams. While beamlet spacing and bore size had a small effect on VHEE dose distributions, 0.1-3mm beamlet sizes resulted in identical dose distributions. Critical organ doses were by up to 70% lower in the best VHEE plan compared to the clinical 6 MV VMAT plan. Conclusions: We have developed a GUI for MC beamlet generation for treatment planning of VHEE radiotherapy. We have demonstrated that pediatric VHEE plans resulted in significant critical organ dose sparing compared to the clinical VMAT plan.

  12. Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Nobuhide, E-mail: wakai@naramed-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan and Department of Radiation Oncology, Nara Medical University, Kashihara, Nara 634-8522 (Japan); Sumida, Iori; Otani, Yuki; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Hasegawa, Masatoshi [Department of Radiation Oncology, Nara Medical University, Kashihara, Nara 634-8522 (Japan)

    2015-05-15

    Purpose: The authors sought to determine the optimal collimator leaf margins which minimize normal tissue dose while achieving high conformity and to evaluate differences between the use of a flattening filter-free (FFF) beam and a flattening-filtered (FF) beam. Methods: Sixteen lung cancer patients scheduled for stereotactic body radiotherapy underwent treatment planning for a 7 MV FFF and a 6 MV FF beams to the planning target volume (PTV) with a range of leaf margins (−3 to 3 mm). Forty grays per four fractions were prescribed as a PTV D95. For PTV, the heterogeneity index (HI), conformity index, modified gradient index (GI), defined as the 50% isodose volume divided by target volume, maximum dose (Dmax), and mean dose (Dmean) were calculated. Mean lung dose (MLD), V20 Gy, and V5 Gy for the lung (defined as the volumes of lung receiving at least 20 and 5 Gy), mean heart dose, and Dmax to the spinal cord were measured as doses to organs at risk (OARs). Paired t-tests were used for statistical analysis. Results: HI was inversely related to changes in leaf margin. Conformity index and modified GI initially decreased as leaf margin width increased. After reaching a minimum, the two values then increased as leaf margin increased (“V” shape). The optimal leaf margins for conformity index and modified GI were −1.1 ± 0.3 mm (mean ± 1 SD) and −0.2 ± 0.9 mm, respectively, for 7 MV FFF compared to −1.0 ± 0.4 and −0.3 ± 0.9 mm, respectively, for 6 MV FF. Dmax and Dmean for 7 MV FFF were higher than those for 6 MV FF by 3.6% and 1.7%, respectively. There was a positive correlation between the ratios of HI, Dmax, and Dmean for 7 MV FFF to those for 6 MV FF and PTV size (R = 0.767, 0.809, and 0.643, respectively). The differences in MLD, V20 Gy, and V5 Gy for lung between FFF and FF beams were negligible. The optimal leaf margins for MLD, V20 Gy, and V5 Gy for lung were −0.9 ± 0.6, −1.1 ± 0.8, and −2.1 ± 1.2 mm, respectively, for 7 MV FFF compared

  13. Targeted intraoperative radiotherapy (TARGIT) yields very low recurrence rates when given as a boost

    International Nuclear Information System (INIS)

    Purpose: Patients undergoing breast-conserving surgery were offered boost radiotherapy with targeted intraoperative radiotherapy (TARGIT) using the Intrabeam system to test the feasibility, safety, and efficacy of the new approach. Methods and Materials: We treated 302 cancers in 301 unselected patients. This was not a low-risk group. One-third of patients (98/301) were younger than 51 years of age. More than half of the tumors (172, 57%) were between 1 cm and 2 cm, and one-fifth (62, 21%) were >2 cm; 29% (86) had a Grade 3 tumor and, in 29% (87), axillary lymph nodes contained metastasis. After primary surgery, 20 Gy was delivered intraoperatively to the surface of the tumor bed, followed by external-beam radiotherapy (EBRT), but excluding the usual boost. Results: The treatment was well tolerated. The follow-up ranged from 3 to 80 months (164 and 90 patients completed 2 and 3 years follow-up, respectively). Four patients (1.3%) had local recurrence. The Kaplan-Meier estimate of local recurrence is 2.6% (SE = 1.7) at 5 years. This compares favorably with the 4.3% recurrence rate in boosted patients from the EORTC boost study, in which only 8.1% patients were node-positive, as opposed to 29% in our series. Conclusion: Targeted intraoperative radiotherapy combined with EBRT results in a low local recurrence rate. This could be attributed to both accurate targeting and timeliness of the treatment. These data support the need for a randomized trial to test whether the TARGIT boost is superior to conventional external boost, especially in high-risk women

  14. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, E. M.; James, H.; Bonora, M.; Yarnold, J. R.; Evans, P. M. [Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton SM2 5PT (United Kingdom); Physics Department, Ipswich Hospital NHS Foundation Trust, Ipswich IP4 5PD (United Kingdom); Department of Academic Radiotherapy, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton SM2 5PT, United Kingdom and School of Radiotherapy, University of Milan, Milan 20122 (Italy); Department of Academic Radiotherapy, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton SM2 5PT (United Kingdom); Centre for Vision Speech and Signal Processing, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2012-10-15

    Purpose: To compare organ specific cancer incidence risks for standard and complex external beam radiotherapy (including cone beam CT verification) following breast conservation surgery for early breast cancer.Method: Doses from breast radiotherapy and kilovoltage cone beam CT (CBCT) exposures were obtained from thermoluminescent dosimeter measurements in an anthropomorphic phantom in which the positions of radiosensitive organs were delineated. Five treatment deliveries were investigated: (i) conventional tangential field whole breast radiotherapy (WBRT), (ii) noncoplanar conformal delivery applicable to accelerated partial beast irradiation (APBI), (iii) two-volume simultaneous integrated boost (SIB) treatment, (iv) forward planned three-volume SIB, and (v) inverse-planned three volume SIB. Conformal and intensity modulated radiotherapy methods were used to plan the complex treatments. Techniques spanned the range from simple methods appropriate for patient cohorts with a low cancer recurrence risk to complex plans relevant to cohorts with high recurrence risk. Delineated organs at risk included brain, salivary glands, thyroid, contralateral breast, left and right lung, esophagus, stomach, liver, colon, and bladder. Biological Effects of Ionizing Radiation (BEIR) VII cancer incidence models were applied to the measured mean organ doses to determine lifetime attributable risk (LAR) for ages at exposure from 35 to 80 yr according to radiotherapy techniques, and included dose from the CBCT imaging. Results: All LAR decreased with age at exposure and were lowest for brain, thyroid, liver, and bladder (<0.1%). There was little dependence of LAR on radiotherapy technique for these organs and for colon and stomach. LAR values for the lungs for the three SIB techniques were two to three times those from WBRT and APBI. Uncertainties in the LAR models outweigh any differences in lung LAR between the SIB methods. Constraints in the planning of the SIB methods ensured that

  15. Response of Chinese hamster ovary cells to fast neutron radiotherapy beams. I. Relative biological effectiveness and oxygen enhancement ratio

    International Nuclear Information System (INIS)

    The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) were determined for fast neutron beams produced by both 16-MeV and 50-MeV 2H on Be at the Texas A and M Variable Energy Cyclotron (TAMVEC). These beams have average neutron energies of 7 and 21 MeV, respectively. The biological system used in these experiments was Chinese hamster ovary cells in tissue culture. The results indicated that although the RBE of the 21-MeV beam was about 15 percent lower than that for the 7-MeV beam at 0.1 percent survival there was no change in RBE for either beam with depth in a tissue-equivalent phantom. The OER of the 7-MeV beam was found to be 1.5 +- 0.3 and the 21-MeV beam had an OER of 1.2 +- 0.2, which resulted in gain factors of 1.7 and 2.1, respectively, when compared to 60Co gamma rays (OER = 2.5). No variation in OER with depth was detected. It was concluded that the 21-MeV TAMVEC beam should be as applicable to radiotherapy from the radiobiological point of view as a 7-MeV beam

  16. Nondosimetric quality assurance of radiotherapy treatment planning system using multi-leaf collimator beam geometry phantom

    International Nuclear Information System (INIS)

    Radiotherapy treatment planning system (RTPS) plays an important role in overall treatment delivery process. Nondosimetric quality assurance (QA) of the RTPS was carried out to assess the accuracy of nondosimetric parameters of the RTPS for regular/irregular fields obtained with jaws/multi-leaf collimator (MLC) using a dedicated MLC beam geometry phantom. Simulated radiation beams of field sizes 1 x 2 cm, 10 x 10 cm and 15 x 15 cm were created in RTPS using jaws for combinations of (i) 0° couch and gantry angles, and (ii) 323° gantry and 204° couch angles on computed tomography (CT) images of the phantom. Digitally reconstructed radiographs (DRR) for these setups were also generated. MLC co-ordinates were set in the RTPS corresponding to preset irregular field (formed by over travel of A or B bank of leaves) and resulting leaves positions were manually adjusted to fit the structures provided in the phantom. The dimensions of known geometries were measured and compared against the actual dimensions. The variation in measured and expected values of field sizes created by jaws was within 1.8 mm. In the case of DRR for 0° couch and gantry angles, the variation ranged from - 2.7 mm to 1.7 mm and for 204° couch and 323° gantry angles it was in the range of - 1.5-1.3 mm. The maximum variation between set leaf positions and manually adjusted positions for irregular field of MLC were found in the range of 2-4 mm. Nondosimetric QA of an RTPS was carried out, and results of the test provide confidence for its safe use for clinical practice. (author)

  17. Malignant obstructive jaundice: treatment with external-beam and intracavitary radiotherapy

    International Nuclear Information System (INIS)

    Eleven patients with obstructive jaundice from unresectable cholangiocarcinoma, metastatic porta hepatis adenopathy, or direct compression from a pancreatic malignancy were treated at the Stanford University Medical Center from 1978-1983 with an external drainage procedure followed by high-dose external-beam radiotherapy and by an intracavitary boost to the site of obstruction with Iridium192 (Ir192). A median dose of 5000 cGy was delivered with 4-6 Mv photons to the tumor bed and regional lymphatics in 9 patients, 1 patient received 2100 cGy to the liver in accelerated fractions because of extensive intrahepatic disease, and 1 patient received 7000 equivalent cGy to his pancreatic tumor bed and regional lymphatics with neon heavy particles. An Ir192 wire source later delivered a 3100-10,647 cGy boost to the site of biliary obstruction in each patient, for a mean combined dose of 10,202 cGy to a point 5 mm from the line source. Few acute complications were noted, but 3/11 patients (27%) subsequently developed upper gastrointestinal bleeding from duodenitis or frank duodenal ulceration 4 weeks, 4 months, and 7.5 months following treatment. Eight patients died - 5 with local recurrence +/- distant metastasis, 2 with sepsis, and 1 with widespread systemic metastasis. Autopsies revealed no evidence of biliary tree obstruction in 3/3 patients. Evolution of radiation treatment technqiues for biliary obstruction in the literature is reviewed. High-dose external-beam therapy followed by high-dose Ir192 intracavitary boost is well tolerated and provides significant palliation

  18. Malignant obstructive jaundice: treatment with external-beam and intracavitary radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.W.; Safai, C.; Goffinet, D.R.

    1985-02-01

    Eleven patients with obstructive jaundice from unresectable cholangiocarcinoma, metastatic porta hepatis adenopathy, or direct compression from a pancreatic malignancy were treated at the Stanford University Medical Center from 1978-1983 with an external drainage procedure followed by high-dose external-beam radiotherapy and by an intracavitary boost to the site of obstruction with Iridium/sup 192/ (Ir/sup 192/). A median dose of 5000 cGy was delivered with 4-6 Mv photons to the tumor bed and regional lymphatics in 9 patients, 1 patient received 2100 cGy to the liver in accelerated fractions because of extensive intrahepatic disease, and 1 patient received 7000 equivalent cGy to his pancreatic tumor bed and regional lymphatics with neon heavy particles. An Ir/sup 192/ wire source later delivered a 3100-10,647 cGy boost to the site of biliary obstruction in each patient, for a mean combined dose of 10,202 cGy to a point 5 mm from the line source. Few acute complications were noted, but 3/11 patients (27%) subsequently developed upper gastrointestinal bleeding from duodenitis or frank duodenal ulceration 4 weeks, 4 months, and 7.5 months following treatment. Eight patients died - 5 with local recurrence +/- distant metastasis, 2 with sepsis, and 1 with widespread systemic metastasis. Autopsies revealed no evidence of biliary tree obstruction in 3/3 patients. Evolution of radiation treatment technqiues for biliary obstruction in the literature is reviewed. High-dose external-beam therapy followed by high-dose Ir/sup 192/ intracavitary boost is well tolerated and provides significant palliation.

  19. Radiation Dose From Kilovoltage Cone Beam Computed Tomography in an Image-Guided Radiotherapy Procedure

    International Nuclear Information System (INIS)

    Purpose: Image-guided radiation therapy has emerged as the new paradigm in radiotherapy. This work is to provide detailed information concerning the additional imaging doses to patients' radiosensitive organs from a kilovoltage cone beam computed tomography (kV CBCT) scan procedure. Methods and Materials: The Vanderbilt-Monte-Carlo-Beam-Calibration (VMCBC; Vanderbilt University, Nashville, TN) algorithm was used to calculate radiation dose to organs resulting from a kV CBCT imaging guidance procedure. Eight patients, including 3 pediatric and 5 adult patients, were investigated. The CBCT scans in both full- and half-fan modes were studied. Results: For a head-and-neck scan in half-fan mode, dose-volume histogram analyses show mean doses of 7 and 8 cGy to the eyes, 5 and 6 cGy to the spinal cord, 5 and 6 cGy to the brain, and 18 and 23 cGy to the cervical vertebrae for an adult and a 29-month-old child, respectively. The dose from a scan in full-fan mode is 10-20% lower than that in half-fan mode. For an abdominal scan, mean doses are 3 and 7 cGy to prostate and 7 and 17 cGy to femoral heads for a large adult patient and a 31-month-old pediatric patient, respectively. Conclusions: Doses to radiosensitive organs can total 300 cGy accrued over an entire treatment course if kV CBCT scans are acquired daily. These findings provide needed data for clinicians to make informed decisions concerning additional imaging doses. The dose to bone is two to four times greater than dose to soft tissue for kV x-rays, which should be considered, especially for pediatric patients

  20. Fractionated External Beam Radiotherapy as a Suitable Preparative Regimen for Hepatocyte Transplantation After Partial Hepatectomy

    International Nuclear Information System (INIS)

    Purpose: Hepatocyte transplantation is strongly considered to be a promising option to correct chronic liver failure through repopulation of the diseased organ. We already reported on extensive liver repopulation by hepatocytes transplanted into rats preconditioned with 25-Gy single dose selective external beam irradiation (IR). Herein, we tested lower radiation doses and fractionated protocols, which would be applicable in clinical use. Methods and Material: Livers of dipeptidylpeptidase IV (DPPIV)-deficient rats were preconditioned with partial liver external beam single dose IR at 25 Gy, 8 Gy, or 5 Gy, or fractionated IR at 5 x 5 Gy or 5 x 2 Gy. Four days after completion of IR, a partial hepatectomy (PH) was performed to resect the untreated liver section. Subsequently, 12 million wild-type (DPPIV+) hepatocytes were transplanted via the spleen into the recipient livers. The degree of donor cell integration and liver repopulation was studied 16 weeks after transplantation by means of immunofluorescence and DPPIV-luminescence assay. Results: Donor hepatocyte integration and liver repopulation were more effective in the irradiated livers following pretreatment with the IR doses 1 x 25 Gy and 5 x 5 Gy (formation of large DPPIV-positive cell clusters) than single-dose irradiation at 8 Gy or 5 Gy (DPPIV-positive clusters noticeably smaller and less frequent). Quantitative analysis of extracted DPPIV revealed signals exceeding the control level in all transplanted animals treated with IR and PH. Compared with the standard treatment of 1 x 25 Gy, fractionation with 5 x 5 Gy was equally efficacious, the Mann-Whitney U test disclosing no statistically significant difference (p = 0.146). The lower doses of 1 x 5 Gy, 1 x 8 Gy, and 5 x 2 Gy were significantly less effective with p < 0.05. Conclusion: This study suggests that fractionated radiotherapy in combination with PH is a conceivable pretreatment approach to prime the host liver for hepatocyte transplantation, thus

  1. An advanced rectal carcinoma treated with radical radiotherapy using a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Miyo, Yasushi; Koyama, Shohei; Kobayashi, S. (Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine) (and others)

    1991-07-01

    The authors present the case of a 72-year-old man admitted to hospital because of anal bleeding. A barium enema and subsequent endoscopic studies revealed a Borrmann type 3, well-differentiated adenocarcinoma of the rectum, with marked narrowing at the Rb to Ra region. On the basis of CT scans, a metastasis to the regional lymph nodes and the softer fatty tissue in the pelvic space was suspected. As surgery was contraindicated since an abnormal antibody against the erythrocytes was detected in the patient's blood, radical radiotherapy was pursued to cure the rectal cancer. Thus, a 250 MeV proton beam was administered to the primary lesion, and a total dose of 90 Gy was delivered in 28 fractions of 3 to 4 Gy daily over 64 days. In addition, X-ray therapy, using a 12 MV linear accelerator and a total dose of 50.4 Gy in 28 fractions of 1.8 Gy, was used for the treatment of a regional lymph node metastasis in the pelvic space. Three years and five months later, the patient died of an occlusive ileus of the rectum. On autopsy, the rectum revealed organized cicatricial fibrosis with marked stenosis. Further, the histological findings of the irradiated tumor cells showed massive fibrosis and hyalinized connective tissue. Vital cancer cells only were found in small parts of the primary rectal lesion, and the biological significance of these small clusters of vital tumor cells is discussed. Finally, neither a regional lymph node metastasis nor a distant metastasis, i.e., to the liver and/or lung, were observed. In conclusion, proton beam therapy was seen to have a beneficial effect on this rectal cancer and on the local control of the disease. (author).

  2. Regional MLEM reconstruction strategy for PET-based treatment verification in ion beam radiotherapy

    International Nuclear Information System (INIS)

    In ion beam radiotherapy, PET-based treatment verification provides a consistency check of the delivered treatment with respect to a simulation based on the treatment planning. In this work the region-based MLEM reconstruction algorithm is proposed as a new evaluation strategy in PET-based treatment verification. The comparative evaluation is based on reconstructed PET images in selected regions, which are automatically identified on the expected PET images according to homogeneity in activity values. The strategy was tested on numerical and physical phantoms, simulating mismatches between the planned and measured β+ activity distributions. The region-based MLEM reconstruction was demonstrated to be robust against noise and the sensitivity of the strategy results were comparable to three voxel units, corresponding to 6 mm in numerical phantoms. The robustness of the region-based MLEM evaluation outperformed the voxel-based strategies. The potential of the proposed strategy was also retrospectively assessed on patient data and further clinical validation is envisioned. (paper)

  3. A review of setup error in supine breast radiotherapy using cone-beam computed tomography.

    Science.gov (United States)

    Batumalai, Vikneswary; Holloway, Lois; Delaney, Geoff P

    2016-01-01

    Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registering CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT. PMID:27311516

  4. Precision high-dose radiotherapy with helium-ion beams: treatment of malignant tumors in humans

    International Nuclear Information System (INIS)

    The advantages of the Bragg peak and sharp penumbra of the helium-ion beam emphasize its importance in radiotherapy. Perhaps the best example of this type of treatment is that for the treatment of malignant melanoma of the eye. The authors treated 181 such patients, 46 in the last 12 months. They continue to have very encouraging results in this group. Only eight patients have had a recurrence of their tumor, and in all eight a second treatment, usually removal of the eye, has apparently cured the tumor. They have generally been able to preserve the pretreatment visual acuity as long as the edge of the tumor is at least 3-4 mm away from the optic disc or macula. Four different tumor doses have been used since this program was begun. The first 20 patients received 70 GyE; the dose was then raised to 80 GyE for the next 69 patients. The group of patients treated with 80 GyE began to develop an unacceptable incidence of glaucoma in the treated eye, so the dose was then decreased to 60 GyE. So far, 4 of 61 patients (or 7%) in the 60-GyE group have developed glaucoma

  5. Reducing the risk of radiocarcinogenesis in paediatric patients treated with external beam radiotherapy

    International Nuclear Information System (INIS)

    Full text: The aim of this study was to determine readily-implementable means of out-of-field dose reduction in paediatric patients undergoing external beam radiotherapy for intracranial lesions. [n this way, the risk of secondary cancer induction may be reduced. Dose measurements were taken using LiF:Mg, Cu, P TLD100H chips in a 5 year old paediatric phantom. Multiple TLDs were placed at: the right and left lenses of the eye, optic nerve, brain, thyroid, lungs, heart, kidneys, abdomen and gonads. Varian 600C and Varian Trilogy linear accelerators, both at 6 MV, were investigated, using different delivery parameters. Most of the out-of-field dose at large distances is attributable to leakage. The difference between stereotactic and larger field sizes is less significant far from the primary field. Out-of-field dose from the Trilogy was 40% higher than the 600e. Aligning the craniocaudal axis of the patient with the x-plane of the collimator results in a dose reduction of 40%, for both machines. - A simple shielding arrangement may halve out-of-field dose. (author)

  6. The Effect of the Size of Radiotherapy Photon Beams on the Absorbed Dose to an Al2O3 Dosimeter

    Institute of Scientific and Technical Information of China (English)

    陈少文; 张文澜; 范丽仙; 唐强; 刘小伟

    2012-01-01

    The effect of the size of radiotherapy photon beams on the absorbed dose to an Al2O3 dosimeter was investigated using the Monte Carlo method. The EGSnrc/DOSRZnrc program code was used to simulate the absorbed dose to the Al2O3 dosimeter, as well as the absorbed dose to water at the corresponding position in the absence of the dosimeter. The incident beams were 60Co γ and 6 MV with a different beam radius ranging from 0.1 cm to 2 cm. Results revealed that the absorbed dose ratio factor depends on the size of the incident photon beam. When the radius of the incident beam is smaller than that of the dosimeter, the absorbed dose ratio factor decreases as the incident beam size increases. The absorbed dose ratio factor reaches its minimum when the radius of the incident beam is almost the same as that of the dosimeter. When the radius of the incident beam is larger than that of the dosimeter, the absorbed dose ratio factor increases as the incident beam size increases. The maximum difference among these absorbed dose ratio factors can be up to 14% in 60Co γ beams and 23% in 6 MV beams. However, when the size of the incident beam is much larger than that of the dosimeter, the effect of the incident beam size on the absorbed dose ratio factor becomes quite small. The maximum discrepancy between the absorbed dose ratio factors and the average value is not more than 1%.

  7. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki;

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  8. Role of radiotherapy in the chemotherapy-containing multidisciplinary management of patients with resected pancreatic adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Claudio V. [Instituto de Radiomedicina (IRAM), Department of Radiation Oncology, Santiago (Chile); Complutense University, School of Medicine, Madrid (Spain); Calvo, Felipe A. [Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Atahualpa, Freddy; Gonzalez-Bayon, Luis; Garcia-Sabrido, Jose Luis [Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, General Surgery Service III, Madrid (Spain); Berlin, Alejandro [Clinica Alemana de Santiago, Department of Radiation Oncology, Santiago (Chile); Herranz, Rafael [Hospital General Universitario Gregorio Maranon, Department of Radiation Oncology, Madrid (Spain)

    2014-10-08

    To analyze prognostic factors associated with long-term outcomes in patients with resected pancreatic cancer treated with chemotherapy (CT) and surgery with or without external beam radiotherapy (EBRT). From January 1995 to December 2012, 95 patients with adenocarcinoma of the pancreas and locoregional disease [clinical stage IB-IIA (n = 45; 47 %), IIB-IIIC (n = 50; 53 %)] were treated with curative resection [R0 (n = 52; 55 %), R1 (n = 43, 45 %)] and CT with (n = 60; 63 %) or without (n = 35; 37 %) EBRT (45-50.4 Gy). Additionally, 29 patients (48 %) also received a pre-anastomosis IOERT boost (applicator diameter size, 7-10 cm; dose, 10-15 Gy; beam energy, 9-18 MeV). With a median follow-up of 17.2 months (range, 1-182), 2-year overall survival (OS), disease-free survival (DFS), and locoregional control were 28, 20, and 53 %, respectively. Univariate analyses showed that IIB-IIIC stage (HR, 2.23; p = 0.04), R1 margin resection status (HR, 2.09; p = 0.04), no vascular resection (HR, 0.42; p = 0.02), and not receiving external beam radiotherapy (HR, 2.70; p = 0.004) were associated with locoregional recurrence. In the multivariate analysis, only R1 margin resection status (HR, 2.63; p = 0.009) and not receiving EBRT (HR, 2.91; p = 0.002) retained significance with regard to locoregional recurrence. We observed no difference in toxicity between patients treated with or without EBRT (p = 0.44). Overall treatment mortality was 3 %. No long-term treatment-related death occurred. Although adjuvant CT is still the standard of care for resected pancreatic tumors, OS remains modest owing to the high risk of distant metastases. Locoregional treatment needs to be tested in the context of more efficient systemic therapy. (orig.) [German] Zur Evaluierung von Prognosefaktoren im Rahmen von Langzeitresultaten bei Patienten mit reseziertem Pankreaskarzinom und verabreichter Chemotherapie (CT) mit oder ohne zusaetzlicher externer Radiotherapie (EBRT). Von Januar 1995 bis Dezember

  9. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Via, Riccardo, E-mail: riccardo.via@polimi.it; Fassi, Aurora; Fattori, Giovanni [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133 (Italy); Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario [CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100 (Italy); Riboldi, Marco; Baroni, Guido [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy and CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100 (Italy); Orecchia, Roberto [CNAO Centro Nazionale di Adroterapia Oncologica, Pavia 27100, Italy and European Institute of Oncology, Milano 20141 (Italy)

    2015-05-15

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  10. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    International Nuclear Information System (INIS)

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  11. The use of electron beams in radiotherapy: 1st e-learning course in Latin America

    International Nuclear Information System (INIS)

    Full text: Radiotherapy in Brazil has now about 80 linear accelerators with electron beams. Due to the continental dimensions of the country, training of medical physicists is still a problem, because many of these physicists are far from the main training centers (Rio de Janeiro and Sao Paulo) and cannot afford to spend any time there. In other cases, they cannot leave the work since there are not enough physicists at their hospital. Then, the Quality Assurance Programme of the National Cancer Institute, whose mission is to improve the quality of the radiotherapeutic treatments in Brazil, decided to create its 1st e-learning course to help the medical physicists perform a correct electron beam dosimetry, according to the IAEA TRS-398 and quality control tests based on the IAEA-TECDOC-1151. The course had the collaboration of the Public Health National School (Fiocruz) and covers the following subjects: 1) therapeutic linear accelerator electron beams: history, production and clinical application, 2) dosimetric equipment and calibration methods, 3) quality control. It is a 60 hour course, totally at a distance and pedagogically based on the basic principle of constructivism. It is the 1st course on the subject and under this model in Brazil and all Latin America. The students receive a high quality book and CD-ROM (with all the material of the course, including four films with the dosimetric measurements in practice). They also count on full time tutors specially trained in a virtual environment, through which they can communicate with the tutors and among themselves, access a virtual library and participate in special forums. By the end of each subject of the course, the students have to answer questions or perform measurements, which are evaluated by the tutors (receiving specific degrees). The course has been announced during only two weeks. We received 161 registrations. Five times more than anticipated. We selected 81 candidates that have been divided in four

  12. Treatment planning considerations in contrast-enhanced radiotherapy: energy and beam aperture optimization

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M, E-mail: hgarnica@cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL CP 66600 (Mexico)

    2011-01-21

    It has been shown that the use of kilovoltage x-rays in conjunction with a contrast agent incorporated into the tumor can lead to acceptable treatment plans with regard to the absorbed dose distribution produced in the target as well as in the tissue and organs at risk surrounding it. In this work, several key aspects related to the technology and irradiation techniques necessary to clinically implement this treatment modality are addressed by means of Monte Carlo simulation. The Zubal phantom was used to model a prostate radiotherapy treatment, a challenging site due to the depth of the prostate and the presence of bony structures that must be traversed by the x-ray beam on its way to the target. It is assumed that the concentration levels of the enhancing agent present in the tumor are at or below 10 mg per 1 g of tissue. The Monte Carlo code PENELOPE was used to model a commercial x-ray tube having a tungsten target. X-ray energy spectra for several combinations of peak electron energy and added filtration were obtained. For each energy spectrum, a treatment plan was calculated, with the PENELOPE Monte Carlo code, by modeling the irradiation of the patient as 72 independent conformal beams distributed at intervals of 5{sup 0} around the phantom in order to model a full x-ray source rotation. The Cimmino optimization algorithm was then used to find the optimum beam weight and energy for different treatment strategies. It is shown that for a target dose prescription of 72 Gy covering the whole tumor, the maximum rectal wall and bladder doses are kept below 52 Gy for the largest concentration of contrast agent of 10 mg per 1 g of tissue. It is also shown that concentrations of as little as 5 mg per 1 g of tissue also render dose distributions with excellent sparing of the organs at risk. A treatment strategy to address the presence of non-uniform distributions of the contrast agent in the target is also modeled and discussed.

  13. Treatment planning considerations in contrast-enhanced radiotherapy: energy and beam aperture optimization

    International Nuclear Information System (INIS)

    It has been shown that the use of kilovoltage x-rays in conjunction with a contrast agent incorporated into the tumor can lead to acceptable treatment plans with regard to the absorbed dose distribution produced in the target as well as in the tissue and organs at risk surrounding it. In this work, several key aspects related to the technology and irradiation techniques necessary to clinically implement this treatment modality are addressed by means of Monte Carlo simulation. The Zubal phantom was used to model a prostate radiotherapy treatment, a challenging site due to the depth of the prostate and the presence of bony structures that must be traversed by the x-ray beam on its way to the target. It is assumed that the concentration levels of the enhancing agent present in the tumor are at or below 10 mg per 1 g of tissue. The Monte Carlo code PENELOPE was used to model a commercial x-ray tube having a tungsten target. X-ray energy spectra for several combinations of peak electron energy and added filtration were obtained. For each energy spectrum, a treatment plan was calculated, with the PENELOPE Monte Carlo code, by modeling the irradiation of the patient as 72 independent conformal beams distributed at intervals of 50 around the phantom in order to model a full x-ray source rotation. The Cimmino optimization algorithm was then used to find the optimum beam weight and energy for different treatment strategies. It is shown that for a target dose prescription of 72 Gy covering the whole tumor, the maximum rectal wall and bladder doses are kept below 52 Gy for the largest concentration of contrast agent of 10 mg per 1 g of tissue. It is also shown that concentrations of as little as 5 mg per 1 g of tissue also render dose distributions with excellent sparing of the organs at risk. A treatment strategy to address the presence of non-uniform distributions of the contrast agent in the target is also modeled and discussed.

  14. Volumetric Modulation Arc Radiotherapy With Flattening Filter-Free Beams Compared With Static Gantry IMRT and 3D Conformal Radiotherapy for Advanced Esophageal Cancer: A Feasibility Study

    International Nuclear Information System (INIS)

    Purpose: A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥5 Gy was <60%, that receiving 20 Gy was <20%–30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. Results: RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). Conclusion: RA

  15. Optimum radiotherapy schedule for uterine cervical cancer based-on the detailed information of dose fractionation and radiotherapy technique

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Ho; Kim, Hyun Chang; Suh, Chang Ok [Yonsei University Medical School, Seoul (Korea, Republic of)] (and others)

    2005-09-15

    The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of 23.4 {approx} 59.4 Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-ICBT) was also performed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of 14.4{approx} 43.2 Gy (Median 36.0) of EBRT in 495 patients, while in the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder and rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor ({alpha} / {beta} = 10) and late-responding tissues ({alpha} /{beta} = 3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED Gy{sub 3} and the risk of complication was assessed using serial multiple logistic regressions models. The associations between R

  16. Feasibility and early results of interstitial intensity-modulated HDR/PDR brachytherapy (IMBT) with/without complementary external-beam radiotherapy and extended surgery in recurrent pelvic colorectal cancer

    International Nuclear Information System (INIS)

    Background: A new multimodality treatment concept consisting of extended resection and postoperative fractionated intensity-modulated interstitial brachytherapy (IMBT) was introduced for pelvic recurrence of colorectal carcinoma. Patients and Methods: 46 patients received extended resection and single plastic tubes were sutured directly onto the tumor bed. IMBT was started within 2 weeks postoperatively with a median dose of 24.5 Gy (5-35 Gy). Patients were treated either with high-dose-rate brachytherapy (HDR; n=23) or with pulsed-dose-rate brachytherapy (PDR; n=23). 25 patients received complementary 45-Gy external-beam irradiation (EBRT) to the pelvic region after explanting the plastic tubes. Results: Median follow-up was 20.6 months (7-107 months) and mean patient survival 25.7±25.8 months (median 17, range 1-107 months). After 5 years overall survival, disease-free survival and local control rate were 23%, 20% and 33%, significantly influenced by the resectional state. There was a trend in favor of PDR compared to HDR, which reached statistical significance in patients who had not received additional EBRT. Conclusion: The combination of extended surgery and postoperative interstitial IMBT is feasible and offers effective interdisciplinary treatment of recurrent colorectal cancer. In this small and inhomogeneous cohort of patients PDR seems to be more effective than HDR, particularly when application of complementary EBRT is not possible. None of the patients who required resection of distant metastasis survived >2 years in this study. (orig.)

  17. Customizable radiotherapy enhancement (CuRE) for prostate cancer using platinum based nanoparticles

    Science.gov (United States)

    Cifter, Gizem

    New approach to prostate cancer (PCa) therapy titled "Customizable Radiotherapy Enhancement (CuRE)" employs cisplatin (C), carboplatin (Ca) and oxaliplatin (O) nanoparticles (CNPs, CaNPs and ONPs) as adjuvants to brachytherapy and external beam radiation therapy (EBRT), with the CNPs/CaNPs/ONPs released in situ from either brachytherapy spacers or fudicials loaded with the nanoparticles. The chemotherapy dose from the nanoparticles released in situ from within the prostate capsule, is enhanced by the physical dose due to photon interactions with the nanoparticles. The physical dose enhancement is due to low energy photons from the brachytherapy and EBRT sources interacting with the high-Z platinum component of the nanoparticles, causing emission of short-range photoelectrons to boost dose to the tumor. By varying the nanoparticle parameters, such as size, initial concentration, functionalization, location of spacer or fiducial, and intra-tumor biodistribution, the dose enhancement can be customized to maximize dose to tumor cells while minimizing toxicity to healthy cells. The hypothesis is that the CuRE approach will be a more efficacious method for concomitant cisplatin/carboplatin/oxaliplatin and radiotherapy treatment of localized prostate cancer due to significant dose boost to the PCa cells with minimal toxicity to healthy tissue. To investigate this hypothesis, microdosimetry calculations employing the energy loss formula of Cole were used to calculate the dose enhancement to the PCa cells from the CNPs/CaNPs/OPNs. The dose enhancement ratio (DEF) representing the ratio of the overall dose in the presence of CNPs/CaNPs/ONPs to the dose without CNPs/CaNPs/ONPs was determined for a range of CNP/CaNP/OPN concentrations up to their FDA approved limits. The dose enhancement to endothelial cells with (EDEF) with single concentration of cisplatin (42.8 mg/g) was found 2.6 with Pd-103. When EBRT source was used with single concentration of cisplatin, with 10cm x 10

  18. Factors influencing the development of ulcers and strictures in carcinoma of the esophagus treated with radiotherapy with or without concurrent chemotherapy

    Directory of Open Access Journals (Sweden)

    Khurana Rohini

    2007-01-01

    Full Text Available Purpose: To ascertain factors that could influence the development of ulcers and strictures in the definitive management of squamous cell carcinoma (SCC of esophagus treated with external beam radiotherapy (EBRT, high-dose-rate (HDR intralumenal radiotherapy (ILRT with or without concurrent weekly cisplatin (CDDP @ 35 mg/m2 chemotherapy (CT. Materials and Methods: Between 1990-2005, 244 patients with inoperable SCC of esophagus were identified from our database and grouped into one of the following: those receiving at least 60Gy EBRT (Gp E, n=44; EBRT followed by HDR-ILRT (Gp E+I, n=98; at least 50Gy EBRT with CT (Gp E+C, n=68; EBRT+HDR-ILRT + CT (Gp E+I+C, n=34. Ulcers (discovered on endoscopy and strictures evident on a barium swallow (which needed dilatations were scored as treatment induced, if the biopsy was negative. Factors likely to influence their outcome were analyzed. Results: The groups were matched for all patient and disease characteristics except pretreatment hemoglobin and Karnofsky performance score (KPS, which were lower in Gp E. The incidence of ulcers was 7%, 8%, 6% and 21% ( P =0.08 while that of strictures was 14%, 9%, 21% and 41% ( P =0.00 for the groups E, E+I, E+C and E+I+C respectively. On univariate analysis, patients with better KPS ( P =0.03, treated with narrow applicators (6 mm vs. 10 mm, P =0.00, received CT ( P =0.00 or assigned to Gp E+I+C ( P =0.00 were more likely to develop strictures, with a trend for development of ulcers in Gp. E+I+C ( P =0.08. Logistic regression retained only Gp E+I+C for development of ulcers (OR 10.36, 95% CI 1.2-89.1, P =0.03 and strictures (OR 4.2, 95% CI 1.4-12.6, P =0.00. Conclusion: Treatment intensification as in Gp E+I+C results in about a three-fold increase in treatment induced late morbidity which can adversely impact on swallowing function and therefore emphasizes the need for optimisation of HDR-ILRT when used in a CT+RT protocol.

  19. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yimei, E-mail: yhuang2@hfhs.org; Gardner, Stephen J.; Wen, Ning; Zhao, Bo; Gordon, James; Brown, Stephen; Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Boulevard, Detroit, Michigan 48202 (United States)

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followed by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization at OM

  20. Evaluation of thermoluminescent BeO samples in standard radiotherapy beams; Avaliacao de amostras termoluminescentes de BeO em feixes padroes de radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, Daniela P.; Silva, Jonas O.; Caldas, Linda V.E., E-mail: daniela.piai.groppo@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-08-15

    Beryllium oxide thermoluminescent samples were evaluated in standard radiotherapy beams of low energy. Results for response reproducibility, dose-response curve and energy dependence were obtained. The lower detection limit was determined. The pellets of BeO showed their usefulness for beam dosimetry. (author)

  1. Long-term biochemical results after high-dose-rate intensity modulated brachytherapy with external beam radiotherapy for high risk prostate cancer

    International Nuclear Information System (INIS)

    Biochemical control from series in which radical prostatectomy is performed for patients with unfavorable prostate cancer and/or low dose external beam radiation therapy are given remains suboptimal. The treatment regimen of HDR brachytherapy and external beam radiotherapy is a safe and very effective treatment for patients with high risk localized prostate cancer with excellent biochemical control and low toxicity

  2. Volumetric Modulated Arc Radiotherapy for Early Stage Non-Small-Cell Lung Carcinoma: Is It Better Than the Conventional Static Beam Intensity Modulated Radiotherapy?

    Directory of Open Access Journals (Sweden)

    Vincent Wing Cheung Wu

    2014-01-01

    Full Text Available This study compared the performance of volumetric modulated arc therapy (VMAT techniques: single arc volumetric modulated arc therapy (SA-VMAT and double arc volumetric modulated arc therapy (DA-VMAT with the static beam conventional intensity modulated radiotherapy (C-IMRT for non-small-cell lung carcinoma (NSCLC. Twelve stage I and II NSCLC patients were recruited and their planning CT with contoured planning target volume (PTV and organs at risk (OARs was used for planning. Using the same dose constraints and planning objectives, the C-IMRT, SA-VMAT, and DA-VMAT plans were optimized. C-IMRT consisted of 7 static beams, while SA-VMAT and DA-VMAT plans consisted of one and two full gantry rotations, respectively. No significant difference was found among the three techniques in target homogeneity and conformity. Mean lung dose in C-IMRT plan was significantly lower than that in DA-VMAT plan P=0.04. The ability of OAR sparing was similar among the three techniques, with no significant difference in V20, V10, or V5 of normal lungs, spinal cord, and heart. Less MUs were required in SA-VMAT and DA-VMAT. Besides, SA-VMAT required the shortest beam on time among the three techniques. In treatment of early stage NSCLC, no significant dosimetric superiority was shown by the VMAT techniques over C-IMRT and DA-VMAT over SA-VMAT.

  3. Volumetric Modulated Arc Radiotherapy for Early Stage Non-Small-Cell Lung Carcinoma: Is It Better Than the Conventional Static Beam Intensity Modulated Radiotherapy?

    International Nuclear Information System (INIS)

    This study compared the performance of volumetric modulated arc therapy (VMAT) techniques: single arc volumetric modulated arc therapy (SA-VMAT) and double arc volumetric modulated arc therapy (DA-VMAT) with the static beam conventional intensity modulated radiotherapy (C-IMRT) for non-small-cell lung carcinoma (NSCLC). Twelve stage I and II NSCLC patients were recruited and their planning CT with contoured planning target volume (PTV) and organs at risk (OARs) was used for planning. Using the same dose constraints and planning objectives, the C-IMRT, SA-VMAT, and DA-VMAT plans were optimized. C-IMRT consisted of 7 static beams, while SA-VMAT and DA-VMAT plans consisted of one and two full gantry rotations, respectively. No significant difference was found among the three techniques in target homogeneity and conformity. Mean lung dose in C-IMRT plan was significantly lower than that in DA-VMAT plan(Ρ =0.04). The ability of OAR sparing was similar among the three techniques, with no significant difference in V20, V10, or V5 of normal lungs, spinal cord, and heart. Less MUs were required in SA-VMAT and DA-VMAT. Besides, SA-VMAT required the shortest beam on time among the three techniques. In treatment of early stage NSCLC, no significant dosimetric superiority was shown by the VMAT techniques over C-IMRT and DA-VMAT over SA-VMAT.

  4. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    Science.gov (United States)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  5. On-line optimization of intraoperative electron beam radiotherapy of the breast

    International Nuclear Information System (INIS)

    Purpose: To optimize the dose delivery to the breast lumpectomy target treated with intraoperative electron beam radiotherapy (IOERT). Materials and methods: Two tools have been developed in our MU calculation software NEMO X to improve the dose homogeneity and the in-vivo dosimetry effectiveness for IOERT treatments. Given the target (tumor bed) thickness measured by the surgeon, NEMO X can provide auto dose normalization to cover 95% of the target volume with 95% of the prescription dose (PD) and a “best guess” of the expected dosimeter dose (EDD) for a deep seated in-vivo dosimeter. The tools have been validated with the data of 91 patients treated with IOERT on a LIAC mobile accelerator. In-vivo dosimetry has been performed with microMOSFETs positioned on the shielding disk inserted between the tumor bed and the chest wall. Results: On average the auto normalization showed to provide better results if compared to conventional normalization rules in terms of mean target dose (|MTD–PD|/PD ⩽ 5% in 95% vs. 53% of pts) and V107 percentage (〈V107〉 = 19% vs. 32%). In-vivo dosimetry MOSFET dose (MD) showed a better correlation with the EDD guessed by our tool than just by assuming that EDD = PD (|MD–EDD|/EDD ⩽ 5% in 57 vs. 26% of pts). Conclusions: NEMO X provides two useful tools for the on-line optimization of the dose delivery in IOERT. This optimization can help to reduce unnecessary large over-dosage regions and allows introducing reliable action levels for in-vivo dosimetry.

  6. Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy

    Science.gov (United States)

    Guan, Huaiqun; Dong, Hang

    2009-10-01

    This study is to evaluate the dose calculation accuracy using Varian's cone-beam CT (CBCT) for pelvic adaptive radiotherapy. We first calibrated the Hounsfield Unit (HU) to electron density (ED) for CBCT using a mini CT QC phantom embedded into an IMRT QA phantom. We then used a Catphan 500 with an annulus around it to check the calibration. The combined CT QC and IMRT phantom provided correct HU calibration, but not Catphan with an annulus. For the latter, not only was the Teflon an incorrect substitute for bone, but the inserts were also too small to provide correct HUs for air and bone. For the former, three different scan ranges (6 cm, 12 cm and 20.8 cm) were used to investigate the HU dependence on the amount of scatter. To evaluate the dose calculation accuracy, CBCT and plan-CT for a pelvic phantom were acquired and registered. The single field plan, 3D conformal and IMRT plans were created on both CT sets. Without inhomogeneity correction, the two CT generated nearly the same plan. With inhomogeneity correction, the dosimetric difference between the two CT was mainly from the HU calibration difference. The dosimetric difference for 6 MV was found to be the largest for the single lateral field plan (maximum 6.7%), less for the 3D conformal plan (maximum 3.3%) and the least for the IMRT plan (maximum 2.5%). Differences for 18 MV were generally 1-2% less. For a single lateral field, calibration with 20.8 cm achieved the minimum dosimetric difference. For 3D and IMRT plans, calibration with a 12 cm range resulted in better accuracy. Because Catphan is the standard QA phantom for the on-board imager (OBI) device, we specifically recommend not using it for the HU calibration of CBCT.

  7. Feasibility study on effect and stability of adaptive radiotherapy on kilovoltage cone beam CT

    International Nuclear Information System (INIS)

    We have analyzed the stability of CT to density curve of kilovoltage cone-beam computerized tomography (kV CBCT) imaging modality over the period of six months. We also, investigated the viability of using image value to density table (IVDT) generated at different time, for adaptive radiotherapy treatment planning. The consequences of target volume change and the efficacy of kV CBCT for adaptive planning issues is investigated. Standard electron density phantom was used to establish CT to electron density calibrations curve. The CT to density curve for the CBCT images were observed for the period of six months. The kV CBCT scans used for adaptive planning was acquired with an on-board imager system mounted on a “Trilogy” linear accelerator. kV CBCT images were acquired for daily setup registration. The effect of variations in CT to density curve was studied on two clinical cases: prostate and lung. The soft tissue contouring is superior in kV CBCT scans in comparison to mega voltage CT (MVCT) scans. The CT to density curve for the CBCT images was found steady over six months. Due to difficulty in attaining the reproducibility in daily setup for the prostate treatment, there is a day-to-day difference in dose to the rectum and bladder. There is no need for generating a new CT to density curve for the adaptive planning on the kV CBCT images. Also, it is viable to perform the adaptive planning to check the dose to target and organ at risk (OAR) without performing a new kV CT scan, which will reduce the dose to the patient

  8. A new strategy for online adaptive prostate radiotherapy based on cone-beam CT

    International Nuclear Information System (INIS)

    Interfractional organ motion and patient positioning errors during prostate radiotherapy can have deleterious clinical consequences. It has become clinical practice to re-position the patient with image-guided translational position correction before each treatment to compensate for those errors. However, tilt errors can only be corrected with table corrections in six degrees of freedom or ''full'' adaptive treatment planning strategies. Organ shape deformations can only be corrected by ''full'' plan adaptation. This study evaluates the potential of instant treatment plan adaptation (fast isodose line adaptation with real-time dose manipulating tools) based on cone-beam CT (CBCT) to further improve treatment quality. Using in-house software, CBCTs were modified to approximate a correct density calibration. To evaluate the dosimetric accuracy, dose distributions based on CBCTs were compared with dose distributions calculated on conventional planning CTs (PCT) for four datasets (one inhomogeneous phantom, three patient datasets). To determine the potential dosimetric benefit of a ''full'' plan adaptation over translational position correction, dose distributions were re-optimized using graphical ''online'' dose modification tools for three additional patients' CT-datasets with a substantially distended rectum while the original plans have been created with an empty rectum (single treatment fraction estimates). Absolute dose deviations of up to 51% in comparison to the PCT were observed when uncorrected CBCTs were used for replanning. After density calibration of the CBCTs, 97% of the dose deviations were ≤3% (gamma index: 3%/3 mm). Translational position correction restored the PTV dose (D95) to 73% of the corresponding dose of the reference plan. After plan adaptation, larger improvements of dose restoration to 95% were observed. Additionally, the rectal dose (D30) was further decreased by 42 percentage points (mean of three patient datasets). An accurate dose

  9. Intensified adjuvant therapy for pancreatic and periampullary adenocarcinoma: survival results and observations regarding patterns of failure, radiotherapy dose and CA19-9 levels

    International Nuclear Information System (INIS)

    Purpose: Primary endpoints were 1. To determine if, in the context of postoperative adjuvant therapy of pancreatic and nonpancreatic periampullary adenocarcinoma, continuous infusion (C.I.) 5-fluorouracil (5-FU) and leucovorin (Lv), combined with continuous-course external-beam radiotherapy (EBRT) to liver (23.4-27.0 Gy), regional lymph nodes (50.4-54.0 Gy) and tumor bed (50.4-57.6 Gy), followed by 4 months of C.I. 5-FU/Lv without EBRT could be given with acceptable toxicity. 2. To determine an estimate of disease-free and overall survival (DFS, OS) with this treatment in this context. Secondary endpoints were 1. To observe the effects of therapy at two different dose levels of irradiation, and 2. To observe for correlations among DFS, OS and CA 19-9 levels during therapy. Methods: Patients received C.I. 5-FU 200 mg/m2 and Lv 5 mg/m2 Monday through Friday during EBRT, and 4 cycles of the same chemotherapy without EBRT were planned for each 2 weeks of 4, beginning 1 month following the completion of EBRT. Therapy was to begin within 10 weeks of surgery and patients were monitored for disease recurrence, toxicity, and CA 19-9 levels before the start of EBRT/5-FU/Lv, before each cycle of C.I. 5-FU/Lv, and periodically after the completion of therapy. There were two EBRT dosage groups: Low EBRT, 23.4 Gy to the whole liver, 50.4 Gy to regional nodes and 50.4 Gy to the tumor bed; High EBRT, 27.0 Gy to the whole liver, 54.0 Gy to regional nodes, and 57.6 Gy to the tumor bed. Results: 29 patients were enrolled and treated (23 with pancreatic cancer, and 6 with nonpancreatic periampullary cancer). Of these, 18 had tumor sizes ≥ 3 cm and 23 had at least one histologically involved lymph node; 6 had histologically positive resection margins. Mean time to start of EBRT/5-FU/Lv was 53 ± 2 days following surgery. The first 18 patients were in the Low EBRT Group and the last 11 in the High EBRT Group. Toxicity was moderate and manageable, including a possible case of late

  10. Development of silicon monolithic arrays for dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bisello, Francesca, E-mail: francesca.bisello@iba-group.com [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Friedrich-Alexander Universität Erlangen—Nürnberg, Erlangen (Germany); Menichelli, David [IBA Dosimetry GmbH, Schwarzenbruck (Germany); Scaringella, Monica [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy); Talamonti, Cinzia; Zani, Margherita; Bucciolini, Marta [University of Florence, Firenze (Italy); Azienda Ospedaliera Unversitaria Careggi, Firenze (Italy); Bruzzi, Mara [University of Florence, Firenze (Italy); INFN—Florence Division, Sesto Fiorentino (Italy)

    2015-10-01

    New tools for dosimetry in external beam radiotherapy have been developed during last years in the framework of the collaboration among the University of Florence, INFN Florence and IBA Dosimetry. The first step (in 2007) was the introduction in dosimetry of detector solutions adopted from high energy physics, namely epitaxial silicon as the base detector material and a guard ring in diode design. This allowed obtaining state of the art radiation hardness, in terms of sensitivity dependence on accumulated dose, with sensor geometry particularly suitable for the production of monolithic arrays with modular design. Following this study, a 2D monolithic array has been developed, based on 6.3×6.3 cm{sup 2} modules with 3 mm pixel pitch. This prototype has been widely investigated and turned out to be a promising tool to measure dose distributions of small and IMRT fields. A further linear array prototype has been recently design with improve spatial resolution (1 mm pitch) and radiation hardness. This 24 cm long device is constituted by 4×64 mm long modules. It features low sensitivity changes with dose (0.2%/kGy) and dose per pulse (±1% in the range 0.1–2.3 mGy/pulse, covering applications with flattened and unflattened photon fields). The detector has been tested with very satisfactory results as a tool for quality assurance of linear accelerators, with special regards to small fields, and proton pencil beams. In this contribution, the characterization of the linear array with unflattened MV X-rays, {sup 60}Co radiation and 226 MeV protons is reported. - Highlights: • A silicon monolithic 1D array with 1 mm pixel pitch was developed. • The detector was characterized with {sup 60}Co, unflattened MV X-rays, 226 MeV protons. • Dose linearity in clinical relevance range and dose profiles were measured. • The detector performs good agreement with reference detectors. • The technology is suitable in dose profiling in MV X-ray and proton therapy.

  11. A simple technique for treating age-related macular degeneration with external beam radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To develop a simple external beam photon radiotherapy technique to treat age-related macular degeneration without the need for simulation, planning computed tomography (CT) or computer dosimetry. Methods and Materials: The goal was to enable the treatment to be set up reliably on the treatment machine on Day 1 with the patient supine in a head cast without any prior planning. Using measurements of ocular globe topography from Karlsson et al. (Int J Radiat Oncol Biol Phys 1996; 33: 705-712), we chose a point 1.5 cm behind the anterior surface of the upper eyelid (ASUE) as the isocentre of a half-beam, blocked, 5.0 x 3.0-cm, angled lateral field to treat the involved eye. This would position the isocentre about 0.5 cm behind the posterior surface of the lens, and a little over 1 cm in front of the macula, according to Karlsson et al. The setup requires initial adjustment of the gantry from horizontal (to account for any asymmetry of position of the eyes), then angling 15 deg. posteriorly to avoid the contralateral eye. Finally, the couch is raised to position the isocentre 1.5 cm behind the ASUE. Results: To verify the applicability of the technique, we performed CT and computer dosimetry on the first 11 eyes so treated. Our CT measurements were in good agreement with Karlsson et al. The lens dose was < 5% and the macula was within the 95% isodose curve in each case (6-MV linac). Treatment setup time is approximately 10 min each day. The 11 patients were treated with 5 x 2.00 Gy (2 patients) or 5 x 3.00 Gy (9 patients), and subjective response on follow-up over 1 to 12 months (median 4 months) was comparable to previously reported results, with no significant acute side effects. Conclusion: Our technique is easy to set up and reliably treats the macula, with sparing of the lens and contralateral eye. It enables treatment to commence rapidly and cost-effectively without the need for simulation or CT computer planning

  12. Organ doses can be estimated from the computed tomography (CT) dose index for cone-beam CT on radiotherapy equipment.

    Science.gov (United States)

    Martin, Colin J; Abuhaimed, Abdullah; Sankaralingam, Marimuthu; Metwaly, Mohamed; Gentle, David J

    2016-06-01

    Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within  ±21% for the stomach and liver in thorax scans and 2  ×  CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff. PMID:26975735

  13. Normal tissue dosimetric comparison between hdr prostate implant boost and conformal external beam radiotherapy boost: potential for dose escalation

    International Nuclear Information System (INIS)

    Purpose: To compare the dose and volume of bladder and rectum treated using high-dose-rate (HDR) prostate implant boost versus conformal external beam radiotherapy boost, and to use the dose-volume information to perform a critical volume tolerance (CVT) analysis and then estimate the potential for further dose escalation using HDR brachytherapy boost. Methods and Materials: Using CT scan data collected before and after patients underwent HDR prostate implant, a 7-field conformal prostate-only external beam treatment plan and HDR brachytherapy treatment plan were constructed for each patient. Doses to the normal structures were calculated. Dose-volume histograms (DVH) were plotted for comparison of the two techniques. Wilcoxon signed rank test was performed at four dose levels to compare the dose to normal structures between the two treatment techniques. The acute and late effects of HDR brachytherapy were calculated based on the linear-quadratic (LQ) model. CVT analyses were performed to calculate the potential dose gain (PDG) using HDR brachytherapy boost. Results: The volume of bladder and rectum receiving high dose was significantly less from implant boost. On the average, 0.19 cc of the bladder received 100% of the brachytherapy prescription dose, compared with 5.1 cc of the bladder receiving 100% of the prescription dose in the 7-field conformal external beam radiotherapy boost. Similarly, 0.25 cc of the rectum received 100% of the dose with the implant boost, as compared to 2.9 cc in the conformal external beam treatment. The implant also delivered higher doses inside the prostate volume. On average, 47% of the prostate received ≥150% of the prescription dose. The CVT analysis revealed a range of PDG using the HDR brachytherapy boost which depended on the following variables: critical volume (CV), critical volume tolerance dose (CVTD), number of HDR fractions (N), and the dose of external beam radiotherapy (XRT) delivered with brachytherapy boost. The PDG

  14. An optimization method for importance factors and beam weights based on genetic algorithms for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    We propose a new method for selecting importance factors (for regions of interest like organs at risk) used to plan conformal radiotherapy. Importance factors, also known as weighting factors or penalty factors, are essential in determining the relative importance of multiple objectives or the penalty ratios of constraints incorporated into cost functions, especially in dealing with dose optimization in radiotherapy treatment planning. Researchers usually choose importance factors on the basis of a trial-and-error process to reach a balance between all the objectives. In this study, we used a genetic algorithm and adopted a real-number encoding method to represent both beam weights and importance factors in each chromosome. The algorithm starts by optimizing the beam weights for a fixed number of iterations then modifying the importance factors for another fixed number of iterations. During the first phase, the genetic operators, such as crossover and mutation, are carried out only on beam weights, and importance factors for each chromosome are not changed or 'frozen'. In the second phase, the situation is reversed: the beam weights are 'frozen' and the importance factors are changed after crossover and mutation. Through alternation of these two phases, both beam weights and importance factors are adjusted according to a fitness function that describes the conformity of dose distribution in planning target volume and dose-tolerance constraints in organs at risk. Those chromosomes with better fitness are passed into the next generation, showing that they have a better combination of beam weights and importance factors. Although the ranges of the importance factors should be set in advance by using this algorithm, it is much more convenient than selecting specific numbers for importance factors. Three clinical examples are presented and compared with manual plans to verify this method. Three-dimensional standard displays and dose-volume histograms are shown to

  15. Effect of fractionated regional external beam radiotherapy on peripheral blood cell count

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to assess the need for obtaining weekly complete blood count (CBC) values and to identify the pattern of changes in CBC during regional conventional fractionated radiotherapy. Methods and Materials: A retrospective analysis of CBC data on 299 adult cancer patients who received definitive conventional radiotherapy to head and neck (n=95), chest (n=96), and pelvis (n=108) was performed. Temporal patterns and magnitude of change in white blood cells, neutrophils, lymphocytes, and platelets during radiotherapy were examined. Results: There were statistically significant declines in all counts, albeit not clinically significant. Notable differences between disease sites were found. The greatest weekly interval change in counts occurred during the first week of radiotherapy for all groups of patients. The mean WBC nadir values during treatment were 5.8 for head and neck, 6.8 for chest, and 5.4 for pelvis. The nadirs for all counts occurred toward the middle-to-end of radiotherapy. Lymphocytes were found to be more sensitive to radiotherapy than other leukocyte subcomponents. Conclusion: Our study suggests that weekly CBC monitoring is not necessary for all patients undergoing standard fractionated radiotherapy. Baseline blood counts may be used to determine an optimal schedule for monitoring CBCs in patients receiving conventional radiation alone. Reduced monitoring of CBC may result in significant financial savings

  16. Optical-fiber guided Al2O3:C radioluminescence dosimetry for external beam radiotherapy

    International Nuclear Information System (INIS)

    Small luminescence point-detectors coupled to optical-fiber cables (typically 1 mm diameter and 15 m length) may be used for medical dosimetry. Currently, the main luminescence materials are Al2O3:C and organic scintillator materials. The potential applications include, for example, online in vivo dose verification during remotely afterloaded brachytherapy, in vivo time-resolved IMRT dosimetry and dose-per-pulse measurements in megavolt x-ray beams. In the present work, we specifically explored the use of a new readout protocol for Al2O3:C for accelerator characterization measurements, and eventually, small-field dosimetry in external beam radiotherapy. Al2O3:C can in principle be used for radioluminescence (RL) dosimetry as well as optically stimulated luminescence (OSL) dosimetry. In the new readout protocol, however, we have eliminated the OSL readout. The main advantage of this so-called saturated RL protocol compared with the combined RL/OSL readout protocol is that it provides an RL sensitivity which is almost constant. Furthermore, the new readout protocol is much simpler and faster to use in the clinic. In contract to the main organic scintillators, it is noteworthy that the RL signal from Al2O3:C has a long luminescence life-time which allows for almost complete removal of any interference from light generated in the optical fiber cable due to stray radiation from pulsed beams. Measurements were conducted in a 6 MV beam (Varian iX linear accelerator, USA) using a solid- water phantom (type 457, Gammex, USA) and a 2 mg Al2O3:C crystal (Landauer Inc, USA) attached to a PMMA optical-fiber cable. The data acquisition system recorded both the RL signal from the Al2O3:C and the number of accelerator gun pulses (deduced from the so-called target current signal). The new RL-protocol with saturated Al2O3:C was found to be highly sensitive (-5x106 counts pr. Gy) and doses in the range from 10 mGy to above 15 Gy could be measured using a single calibration factor

  17. Radiotherapy for pituitary adenomas: long-term outcome and complications

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chai Hong; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Lee, Jung AE; Kim, Chul Yong [Korea University Medical Center, Seoul (Korea, Republic of)

    2011-09-15

    To evaluate long-term local control rate and toxicity in patients treated with external beam radiotherapy (EBRT) for pituitary adenomas. We retrospectively reviewed the medical records of 60 patients treated with EBRT for pituitary adenoma at Korea University Medical Center from 1996 and 2006. Thirty-fi ve patients had hormone secreting tumors, 25 patients had non-secreting tumors. Fifty-seven patients had received postoperative radiotherapy (RT), and 3 had received RT alone. Median total dose was 54 Gy (range, 36 to 61.2 Gy). The definition of tumor progression were as follows: evidence of tumor progression on computed tomography or magnetic resonance imaging, worsening of clinical sign requiring additional operation or others, rising serum hormone level against a previously stable or falling value, and failure of controlling serum hormone level so that the hormone level had been far from optimal range until last follow-up. Age, sex, hormone secretion, tumor extension, tumor size, and radiation dose were analyzed for prognostic significance in tumor control. Median follow-up was 5.7 years (range, 2 to 14.4 years). The 10-year actuarial local control rates for non-secreting and secreting adenomas were 96% and 66%, respectively. In univariate analysis, hormone secretion was significant prognostic factor (p = 0.042) and cavernous sinus extension was marginally significant factor (p = 0.054) for adverse local control. All other factors were not significant. In multivariate analysis, hormone secretion and gender were significant. Fifty-three patients had mass-effect symptoms (headache, dizziness, visual disturbance, hypopituitarism, loss of consciousness, and cranial nerve palsy). A total of 17 of 23 patients with headache and 27 of 34 patients with visual impairment were improved. Twenty-seven patients experienced symptoms of endocrine hypersecretion (galactorrhea, amenorrhea, irregular menstruation, decreased libido, gynecomastia, acromegaly, and Cushing

  18. Radiotherapy for pituitary adenomas: long-term outcome and complications

    International Nuclear Information System (INIS)

    To evaluate long-term local control rate and toxicity in patients treated with external beam radiotherapy (EBRT) for pituitary adenomas. We retrospectively reviewed the medical records of 60 patients treated with EBRT for pituitary adenoma at Korea University Medical Center from 1996 and 2006. Thirty-fi ve patients had hormone secreting tumors, 25 patients had non-secreting tumors. Fifty-seven patients had received postoperative radiotherapy (RT), and 3 had received RT alone. Median total dose was 54 Gy (range, 36 to 61.2 Gy). The definition of tumor progression were as follows: evidence of tumor progression on computed tomography or magnetic resonance imaging, worsening of clinical sign requiring additional operation or others, rising serum hormone level against a previously stable or falling value, and failure of controlling serum hormone level so that the hormone level had been far from optimal range until last follow-up. Age, sex, hormone secretion, tumor extension, tumor size, and radiation dose were analyzed for prognostic significance in tumor control. Median follow-up was 5.7 years (range, 2 to 14.4 years). The 10-year actuarial local control rates for non-secreting and secreting adenomas were 96% and 66%, respectively. In univariate analysis, hormone secretion was significant prognostic factor (p = 0.042) and cavernous sinus extension was marginally significant factor (p = 0.054) for adverse local control. All other factors were not significant. In multivariate analysis, hormone secretion and gender were significant. Fifty-three patients had mass-effect symptoms (headache, dizziness, visual disturbance, hypopituitarism, loss of consciousness, and cranial nerve palsy). A total of 17 of 23 patients with headache and 27 of 34 patients with visual impairment were improved. Twenty-seven patients experienced symptoms of endocrine hypersecretion (galactorrhea, amenorrhea, irregular menstruation, decreased libido, gynecomastia, acromegaly, and Cushing's disease

  19. Intraoperative radiotherapy (IORT) with low-energy photons as a boost in patients with early-stage oral cancer with the indications for postoperative radiotherapy. Treatment feasibility and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Tomasz; Wygoda, Andrzej; Hutnik, Marcin; Skladowski, Krzysztof; Wydmanski, Jerzy; Maciejewski, Boguslaw [Dept. of Radiation Oncology, Maria Sklodowska-Curie Memorial Cancer and Inst. of Oncology, Gliwice Branch (Poland); Maciejewski, Adam; Szymczyk, Cezary; Wierzgon, Janusz [Dept. of Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Inst. of Oncology, Gliwice Branch (Poland); Orlef, Andrzej [Dept. of Physics, Maria Sklodowska-Curie Memorial Cancer Center and Inst. of Oncology, Gliwice Branch (Poland)

    2010-09-15

    Purpose: To evaluate the feasibility and preliminary results of intraoperative radiotherapy (IORT) with low-energy photons as a boost in patients with early-stage oral cancer with the indications for postoperative radiotherapy. Patients and Methods: Between 2003 and 2006, 16 patients with early-stage cancer of mobile tongue (n = 10 [63%]) or floor of the mouth (n = 6 [37%]) treated at Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland, were evaluated for IORT boost with the INTRABEAM {sup registered} System (Carl Zeiss Surgical GmbH; IORT-PRS) because of the high risk of local recurrence due to positive margins on frozen pathologic section. After tumor resection, the applicator was positioned in the tumor bed. The applicator's diameter (range: 1.5-5 cm) was selected to encompass high-risk area of tumor recurrence. The dose (5 Gy, 7 Gy, or 7.5 Gy) was applied according to tumor volume and bone proximity. External-beam radiotherapy (EBRT) was provided to the tumor bed in all patients (50 Gy) and to the nodal area, when needed. Toxicity and local tumor control were assessed. Results: Median follow-up was 36 months. IORT did not increase acute mucosal reaction. Local tumor control was found in all cases. Early mucosal reaction did not exceed 3 according to the RTOG scale and healed in median time of 35 days after completion of EBRT. No late adverse effects were observed. Conclusion: This preliminary report has demonstrated the feasibility of IORT-PRS for patients with early oral cancer with the indications for postoperative radiotherapy. This method may be considered an alternative boost technique, although additional studies are needed to establish long-term results in a larger group of patients. (orig.)

  20. Radiotherapy in the management of keloids. Clinical experience with electron beam irradiation and comparison with X-ray therapy

    Energy Technology Data Exchange (ETDEWEB)

    Maarouf, M. [Dept. of Radiotherapy, Univ. of Technology (RWTH), Aachen (Germany); Dept. of Stereotactic and Functional Neurosurgery, Univ. of Cologne (Germany); Schleicher, U.; Schmachtenberg, A.; Ammon, J. [Dept. of Radiotherapy, Univ. of Technology (RWTH), Aachen (Germany)

    2002-06-01

    Background: Aim of this study was to evaluate the advantages of electron beam irradiation compared to kilovoltage X-ray therapy in the treatment of keloids. Furthermore, the risk of developing malignancy following keloid radiotherapy was assessed. Patients and Methods: An automatic water phantom was used to evaluate the dose distribution in tissue. Furthermore, a series of measurements was done on the patients using thermoluminescence dosimeters (TLD) to estimate the doses absorbed by the organs at risk. We also report our clinical experience with electron beam radiation of 134 keloids following surgical excision. Results: Electron beam irradiation offers a high control rate (84%) with minimal side effects for keloids. Electron irradiation provides better dose distribution in tissue, and therefore less radiation burden to the organs at risk. After a mean follow-up period of 7.2 years, no severe side effects or malignancies were observed after keloid radiotherapy. Conclusions: Electron radiation therapy is superior to kilovoltage irradiation for treating keloids due to better dose distribution in tissue. In agreement with the literature, no cases of malignancy were observed after keloid irradiation. (orig.)

  1. Intravitreal bevacizumab for macular edema due to proton beam radiotherapy: Favorable results shown after eighteen months follow-up

    Directory of Open Access Journals (Sweden)

    Eleni Loukianou

    2010-05-01

    Full Text Available Eleni Loukianou, Dimitrios Brouzas, Eleni Georgopoulou, Chrysanthi Koutsandrea, Michael ApostolopoulosEye Department, University of Athens, Athens, GreecePurpose: To evaluate the safety and efficacy of intravitreal injections of bevacizumab (Avastin® as a treatment option for radiation maculopathy secondary to proton beam radiotherapy for choroidal melanoma.Case: A 61-year-old woman presented with a gradual decrease in left eye visual acuity (VA 29 months after proton beam radiotherapy for choroidal melanoma. On presentation, her best-corrected VA (BCVA was 2/10 in the left eye and the intraocular pressure was 15 mmHg. Fundoscopy revealed cystoid macular edema, intraretinal hemorrhages, epiretinal membrane in the posterior pole, and residual tumor scar with exudative retinal detachment and hard exudates in the periphery of the superotemporal quadrant. A treatment with intravitreal injections of bevacizumab (Avastin® was recommended. The injections were performed on a six-weekly basis.Results: The central retinal thickness prior to the treatment was 458 μm. After the first intravitreal injection of bevacizumab, the retinal thickness at the centre of the fovea was reduced to 322 μm. After the third injection, the central retinal thickness was 359 μm and 18 months after presentation, it reduced to 334 μm. The BCVA increased to 3/10 after the intravitreal injections of bevacizumab and remained stable during the follow-up period. The intraocular pressure was within normal range during the follow-up period.Conclusion: Bevacizumab should be regarded as a treatment option for macular edema due to proton beam radiotherapy for choroidal melanoma. By reducing the central retinal thickness, intravitreal bevacizumab can improve VA or ameliorate further decline caused by radiation maculopathy.Keywords: bevacizumab (Avastin®, choroidal melanoma, macular edema, radiation retinopathy

  2. Investigations on the quality of treatment plans for carbon ion radiotherapy. Beam delivery systems and radiobiological models

    Energy Technology Data Exchange (ETDEWEB)

    Gillmann, Clarissa

    2014-07-01

    In a worldwide effort in research and development, radiation therapy with carbon ions has evolved to a technologically challenging but clinically very promising treatment option for cancer patients. To further improve patient benefit, optimal use of the physical and biological characteristics of carbon ions as well as of the available technologies should be made. The present thesis investigates the impact of different beam delivery systems and radiobiological models on the quality of treatment plans in carbon ion radiotherapy. The results of the study may provide pointers as to the role and the possible future implementation of the different techniques and radiobiological models in existing and upcoming particle therapy centers.

  3. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    OpenAIRE

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck c...

  4. Dosimetry and microdosimetry using LET spectrometer based on the track-etch detector: radiotherapy Bremsstrahlung beam, onboard aircraft radiation field

    International Nuclear Information System (INIS)

    The spectrometer of linear energy transfer (Let) based on the chemically etched poly-allyl-diglycol-carbonate (P.A.D.C.) track-etch detector was developed several years ago in our institute. This Let spectrometer enables determining Let of particles approximately from 10 to 700 keV/μm. From the Let spectra, dose characteristics can be calculated. The contribution presents the Let spectra and other dosimetric characteristics obtained onboard a commercial aircraft during more than 6 months long exposure and in the 18 MV radiotherapy Bremsstrahlung beam. (authors)

  5. Radiotherapy may improve overall survival of patients with T3/T4 transitional cell carcinoma of the renal pelvis or ureter and delay bladder tumour relapse

    International Nuclear Information System (INIS)

    Since transitional cell carcinoma (TCC) of the upper urinary tract is a relatively uncommon malignancy, the role of adjuvant radiotherapy is unknown. We treated 133 patients with TCC of the renal pelvis or ureter at our institution between 1998 and 2008. The 67 patients who received external beam radiotherapy (EBRT) following surgery were assigned to the radiation group (RT). The clinical target volume included the renal fossa, the course of the ureter to the entire bladder, and the paracaval and para-aortic lymph nodes, which were at risk of harbouring metastatic disease in 53 patients. The tumour bed or residual tumour was targeted in 14 patients. The median radiation dose administered was 50 Gy. The 66 patients who received intravesical chemotherapy were assigned to the non-radiation group (non-RT). The overall survival rates for the RT and non-RT groups were not significantly different (p = 0.198). However, there was a significant difference between the survival rates for these groups based on patients with T3/T4 stage cancer. A significant difference was observed in the bladder tumour relapse rate between the irradiated and non-irradiated bladder groups (p = 0.004). Multivariate analysis indicated that improved overall survival was associated with age < 60 years, T1 or T2 stage, absence of synchronous LN metastases, and EBRT. Acute gastrointestinal and bladder reactions were the most common symptoms, but mild non-severe (> grade 3) hematologic symptoms also occurred. EBRT may improve overall survival for patients with T3/T4 cancer of the renal pelvis or ureter and delay bladder tumour recurrence in all patients

  6. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1–T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins ± 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9° to 1.6°, respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image guidance, residual setup

  7. Incorporating Androgen Deprivation With Dose-Escalated External-Beam Radiotherapy for Prostate Cancer.

    Science.gov (United States)

    Dosoretz, Arie P; Yu, James B

    2016-05-20

    was concerned about the potential for greater urinary incontinence and/or urinary irritation associated with these treatments compared with external-beam radiotherapy (RT).(1,2). PMID:27001587

  8. External beam radiotherapy for basal cell carcinoma. Local control and cosmetic outcome; Strahlentherapie des Basalzellkarzinoms. Lokale Kontrolle und kosmetisches Ergebnis

    Energy Technology Data Exchange (ETDEWEB)

    Seegenschmiedt, M.H.; Oberste-Beulmann, S.; Guntrum, F.; Olschewski, T. [Krankenhaus Essen (Germany). Klinik fuer Radioonkologie, Strahlentherapie und Nuklearmedizin; Lang, E.; Lang, B. [Praxis fuer Dermatologie, Essen (Germany)

    2001-05-01

    Background: The basal cell carcinoma which is often occurring in the elderly can be well treated by surgery. For large and recurrent lesions and in cosmetically difficult locations external beam radiotherapy provides an equally effective treatment alternative. Patients and Methods: From 1986 to 1999, 60 females and 39 males received primary radiotherapy for a total of 127 histologically verified basal cell carcinoma lesions. Tumors were mostly localized in the face at the temple, nose and forehead. Radiotherapy was applied with orthovoltage equipment and energies of up to 100 kV. Single doses ranged from 2 to 5 Gy related to the 80%-isodose depth. Weekly doses ranged from 8 to 25 Gy and total doses from 25 to 60 Gy. The mean follow-up period was 36{+-}21 months. The acute sequelae were scored according to CTC criteria. Radiogenic late effects as single events were related to the radiation portal. Results: 3 months after treatment all besides one patient (99%) experienced complete tumor remission (CR). In all cases, acute radiation reaction occurred within the radiation portal: CTC Grade 1 in 100%, CTC Grade 2 in 54% and CTC Grade 3 in 30% of the cases. All side effects regressed under simple local measures without further complications. Late sequelae were observed in three cases. Overall cosmetic outcome was good to excellent in almost all patients (98%). In two cases (2%) a local recurrence was observed 6 and 20 months after radiotherapy. Conclusion: External beam (orthovoltage) radiotherapy is very effective and yields high tumor control rates and good cosmetic results in long-term follow-up. Former dermatological treatment concepts should be replaced by an ICRU-based radiophysical dose prescription and should respect the newer radiobiological fractionation principles. (orig.) [German] Hintergrund: Das Basaliom oder Basalzellkarzinom ist ein im Alter haeufig vorkommender Hauttumor, der chirurgisch gut behandelbar ist. Bei grossen und rezidivierenden Tumoren und

  9. Prognostic Value of External Beam Radiation Therapy in Patients Treated With Surgical Resection and Intraoperative Electron Beam Radiation Therapy for Locally Recurrent Soft Tissue Sarcoma: A Multicentric Long-Term Outcome Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Felipe A. [Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); School of Medicine, Complutense University, Madrid (Spain); Sole, Claudio V., E-mail: cvsole@uc.cl [Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); School of Medicine, Complutense University, Madrid (Spain); Service of Radiation Oncology, Instituto de Radiomedicina, Santiago (Chile); Cambeiro, Mauricio [Service of Radiation Oncology, Clínica Universitaria, Universidad de Navarra, Pamplona (Spain); Montero, Angel; Polo, Alfredo [Service of Radiation Oncology, Hospital Universitario Ramón y Cajal, Universidad de Alcala, Madrid (Spain); Gonzalez, Carmen [School of Medicine, Complutense University, Madrid (Spain); Service of Radiation Oncology, Instituto de Radiomedicina, Santiago (Chile); Service of Radiation Oncology, Clínica Universitaria, Universidad de Navarra, Pamplona (Spain); Service of Radiation Oncology, Hospital Universitario Ramón y Cajal, Universidad de Alcala, Madrid (Spain); Service of Radiation Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Cuervo, Miguel [Service of Orthopedics and Traumatology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); San Julian, Mikel [Service of Orthopedics and Traumatology, Clínica Universitaria, Universidad de Navarra, Pamplona (Spain); and others

    2014-01-01

    Background: A joint analysis of data from centers involved in the Spanish Cooperative Initiative for Intraoperative Electron Radiotherapy was performed to investigate long-term outcomes of locally recurrent soft tissue sarcoma (LR-STS) patients treated with a multidisciplinary approach. Methods and Materials: Patients with a histologic diagnosis of LR-STS (extremity, 43%; trunk wall, 24%; retroperitoneum, 33%) and no distant metastases who underwent radical surgery and intraoperative electron radiation therapy (IOERT; median dose, 12.5 Gy) were considered eligible for participation in this study. In addition, 62% received external beam radiation therapy (EBRT; median dose, 50 Gy). Results: From 1986 to 2012, a total of 103 patients from 3 Spanish expert IOERT institutions were analyzed. With a median follow-up of 57 months (range, 2-311 months), 5-year local control (LC) was 60%. The 5-year IORT in-field control, disease-free survival (DFS), and overall survival were 73%, 43%, and 52%, respectively. In the multivariate analysis, no EBRT to treat the LR-STS (P=.02) and microscopically involved margin resection status (P=.04) retained significance in relation to LC. With regard to IORT in-field control, only not delivering EBRT to the LR-STS retained significance in the multivariate analysis (P=.03). Conclusion: This joint analysis revealed that surgical margin and EBRT affect LC but that, given the high risk of distant metastases, DFS remains modest. Intensified local treatment needs to be further tested in the context of more efficient concurrent, neoadjuvant, and adjuvant systemic therapy.

  10. Prognostic Value of External Beam Radiation Therapy in Patients Treated With Surgical Resection and Intraoperative Electron Beam Radiation Therapy for Locally Recurrent Soft Tissue Sarcoma: A Multicentric Long-Term Outcome Analysis

    International Nuclear Information System (INIS)

    Background: A joint analysis of data from centers involved in the Spanish Cooperative Initiative for Intraoperative Electron Radiotherapy was performed to investigate long-term outcomes of locally recurrent soft tissue sarcoma (LR-STS) patients treated with a multidisciplinary approach. Methods and Materials: Patients with a histologic diagnosis of LR-STS (extremity, 43%; trunk wall, 24%; retroperitoneum, 33%) and no distant metastases who underwent radical surgery and intraoperative electron radiation therapy (IOERT; median dose, 12.5 Gy) were considered eligible for participation in this study. In addition, 62% received external beam radiation therapy (EBRT; median dose, 50 Gy). Results: From 1986 to 2012, a total of 103 patients from 3 Spanish expert IOERT institutions were analyzed. With a median follow-up of 57 months (range, 2-311 months), 5-year local control (LC) was 60%. The 5-year IORT in-field control, disease-free survival (DFS), and overall survival were 73%, 43%, and 52%, respectively. In the multivariate analysis, no EBRT to treat the LR-STS (P=.02) and microscopically involved margin resection status (P=.04) retained significance in relation to LC. With regard to IORT in-field control, only not delivering EBRT to the LR-STS retained significance in the multivariate analysis (P=.03). Conclusion: This joint analysis revealed that surgical margin and EBRT affect LC but that, given the high risk of distant metastases, DFS remains modest. Intensified local treatment needs to be further tested in the context of more efficient concurrent, neoadjuvant, and adjuvant systemic therapy

  11. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    Science.gov (United States)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  12. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    International Nuclear Information System (INIS)

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  13. SU-D-213-02: Characterization of the Effect of a New Commercial Transmission Detector On Radiotherapy Beams

    International Nuclear Information System (INIS)

    Purpose: To evaluate the influence of a new commercial transmission detector on radiotherapy beams of various energies. Methods: A transmission detector designed for online treatment monitoring was characterized on a TrueBeam STx linear accelerator with 6MV, 6FFF, 10MV, and 10FFF beams. Measurements of beam characteristics including percentage depth doses (PDDs), inplane and crossplane off-axis profiles at different depths, transmission factors, and skin dose were acquired at field sizes of 3×3cm, 5×5m, 10×10cm, and 20×20cm at 100cm and 80cm source-to-surface distance (SSD). All measurements were taken with and without the transmission detector in the path of the beam. A CC04 chamber was used for all profile and transmission factor measurements. Skin dose was assessed at 100cm, 90cm, and 80cm SSD and using a variety of detectors (Roos and Markus parallel-plate chambers, and OSLD). Results: The PDDs showed small differences between the unperturbed and perturbed beams for both 100cm and 80cm SSD (≤4mm dmax difference and <1.2% average profile difference). The differences were larger for the flattened beams and at larger field sizes. The off-axis profiles showed similar trends. The penumbras looked similar with and without the transmission detector. Comparisons in the central 80% of the profile showed a maximum average (maximum) profile difference between all field sizes of 0.756% (1.535%) and 0.739% (3.682%) for 100cm and 80cm SSD, respectively. The average measured skin dose at 100cm (80cm) SSD for 10×10cm field size was <4% (<35%) dose increase for all energies. For 20×20cm field size, this value increased to <10% (≤45%). Conclusion: The transmission detector has minimal effect on the clinically relevant radiotherapy beams for IMRT and VMAT (field sizes 10×10cm and less). For larger field sizes, some perturbations are observable which would need to be assessed for clinical impact. The authors of this publication has research support from IBA Dosimetry

  14. MO-H-19A-01: FEATURED PRESENTATION - Treatment Planning Tool for Radiotherapy with Very High-Energy Electron Beams

    International Nuclear Information System (INIS)

    Purpose: To develop a tool for treatment planning optimization for fast radiotherapy delivered with very high-energy electron beams (VHEE) and to compare VHEE plans to state-of-the-art plans for challenging pelvis and H'N cases. Methods: Treatment planning for radiotherapy delivered with VHEE scanning pencil beams was performed by integrating EGSnrc Monte Carlo (MC) dose calculations with spot scanning optimization run in a research version of RayStation. A Matlab GUI for MC beamlet generation was developed, in which treatment parameters such as the pencil beam size and spacing, energy and number of beams can be selected. Treatment planning study for H'N and pelvis cases was performed and the effect of treatment parameters on the delivered dose distributions was evaluated and compared to the clinical treatment plans. The pelvis case with a 691cm3 PTV was treated with 2-arc 15MV VMAT and the H'N case with four PTVs with total volume of 531cm3 was treated with 4-arc 6MV VMAT. Results: Most studied VHEE plans outperformed VMAT plans. The best pelvis 80MeV VHEE plan with 25 beams resulted in 12% body dose sparing and 8% sparing to the bowel and right femur compared to the VMAT plan. The 100MeV plan was superior to the 150MeV plan. Mixing 100 and 150MeV improved dose sparing to the bladder by 7% compared to either plan. Plans with 16 and 36 beams did not significantly affect the dose distributions compared to 25 beam plans. The best H'N 100MeV VHEE plan decreased mean doses to the brainstem, chiasm, and both globes by 10-42% compared to the VMAT plan. Conclusion: The pelvis and H'N cases suggested that sixteen 100MeV beams might be sufficient specifications of a novel VHEE treatment machine. However, optimum machine parameters will be determined with the presented VHEE treatment-planning tool for a large number of clinical cases. BW Loo and P Maxim received research support from RaySearch Laboratories. E Hynning and B Hardemark are employees of

  15. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey; Jensen, Christopher; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Hårdemark, Björn; Hynning, Elin [RaySearch Laboratories AB, Stockholm SE-103 65 (Sweden)

    2015-05-15

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric

  16. Application Monte Carlo code calculates dose distribution of the emitted photon beams from linear accelerator in case radiotherapy lung cancer

    International Nuclear Information System (INIS)

    The dose distribution calculation is one of major steps in cancer radiotherapy. This paper applies Monte Carlo code, MCNP5, in simulation 15 MV photon beams from linear accelerator of General Hospital of Kien Giang in a case treatment of lung cancer. The settings for beam direction, field size and isocenter position used in MCNP5 must be the same as in treatment plan at hospital to ensure the results from MCNP5 are accurate. We also built a program CODIM by using MATLAB® programming software. This program is used to construct digital voxel phantoms from lung CT images obtained from cancer treatment cases at Kien Giang hospital and then simulate the delivered dose of linac in these phantoms by using MCNP5 simulation code. The results show that there is a difference of 5% in comparison to Prowess Panther program - a semi-empirical simulation program which is being used for treatment planning in Kien Giang hospital. (author)

  17. Application of a tandem ionization chamber in a quality control program of X-ray beams, radiotherapy level

    International Nuclear Information System (INIS)

    A tandem ionization chamber, developed at the Instituto de Pesquisas Energeticas e Nucleares (IPEN), for X radiation beams, radiotherapy level, was applied into a quality control program of the Calibration Laboratory of IPEN. This ionization chamber is composed by two ionization chambers, with a volume of 0.6 cm3 each one. Its inner plane-parallel electrodes and guard rings are made of different materials: one is made of aluminum and the other is made of graphite. Because of this difference in materials, the ionization chamber forms a tandem system. The relative response of the calibration factors of both sides of the chamber allows an easy verification of the X-ray beam qualities stability. The ionization chamber was submitted to some tests to verify the stability of its response: leakage current before and after exposure, repeatability and reproducibility. The performance of the ionization chamber was satisfactory. (author)

  18. Multicenter study differentiated thyroid carcinoma (MSDS). Diminished acceptance of adjuvant external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, M.; Pixberg, M.K.; Schober, O. [Muenster Univ. (Germany). Dept. of Nuclear Medicine; Schuck, A.; Willich, N. [Muenster Univ. (Germany). Dept. of Radiooncology; Heinecke, A.; Koepke, W. [Muenster Univ. (Germany). Dept. of Medical Informatics and Biomathematics; Schmid, K.W. [Essen Univ. (Germany). Dept. of Pathology; Dralle, H. [Halle-Wittenberg Univ., Halle (Germany). Dept. of Surgery

    2003-12-01

    Aim: The Multicenter Study Differentiated Thyroid Carcinoma (MSDS) is an ongoing study in Germany, Austria, and Switzerland on the clinical benefit of adjuvant external beam radiotherapy (RTx) for locally invasive differentiated thyroid carcinoma (DTC) in TNM stages pT4 pNO/1/xMO/x (5th ed. 1997). Methods: MSDS was designed as a prospective randomized trial. Patients receive thyroidectomy, radioiodine therapy (RIT) to ablate the thyroid remnant, and TSH-suppressive L-thyroxine therapy with or without RTx after documented elimination of cervical iodine-131 uptake (http://msds-studie.uni-muenster.de). Results: 311 patients were enrolled between January 2000 and March 2003. 279 patients met the trial's inclusion criteria. 45 consented to randomization, of whom 17 were randomized into treatment arm A (RTx) and 18 into arm B (no RTx). Advised by the trial's independent Data Monitoring and Safety Committee, the MSDS steering committee decided to terminate randomization in April 2003 and continue MSDS as a prospective cohort study. 23 of the 234 patients in the observation arm of the trial were prescribed RTx by their physicians. Thus, 14% of the trial cohort were randomized or assigned to receive RTx (intention-to-treat analysis). In contrast, at least 44% of all patients with pT4 papillary DTC in Germany in the nationwide PCES study underwent RTx in 1996 (p<0.001, {chi}{sup 2}-test). Conclusions: Acceptance of external beam RTx as a treatment modality for DTC has receded to a degree that accrual of a sufficient number of patients for a randomized trial has been impossible. Observation of the trial cohort is continued in order to assess clinical event rates with and without RTx and chronic RTx toxicity. (orig.) [German] Ziel: Die Multizentrische Studie Differenziertes Schilddruesenkarzinom (MSDS) ist eine laufende Studie in Deutschland, Oesterreich und der Schweiz zum klinischen Nutzen der adjuvanten perkutanen Strahlentherapie (RTx) bei lokal invasivem

  19. External beam radiotherapy and high dose rate brachytherapy in lung cancer: a phase I/II study

    International Nuclear Information System (INIS)

    Background: For patients with localized non operable bronchial carcinoma, combination of radiotherapy and chemotherapy can achieve only a 15 to 20 % local control rate. For some selected cases, high dose rate brachytherapy (HDRB) could be added to external beam radiotherapy to increase local tumour control. The risk of such a combined treatment is of increased toxicity. A feasibility study was developed in our Department. Methods: The HDRB is given once a week (I192 source) during the last four weeks of a conventional radiotherapy giving 60 Gy in 6 Weeks (4 x 2.5 Gy/week). A dose escalation study was planned with 4 x 3 Gy HDRB, then 4 x 4 Gy and 4 x 5Gy. Five patients have been treated at a dose of 4 x 3 Gy and two at 4 x 4 Gy. The given dose was prescribed according to the target volume and the physical dose was specified at 1 cm. The treatment catheter was positioned by the pneumologist (P.B.), and the treatment volume defined according to the endoscopy and to pre-treatment CT scanner, with a 2 cm safety margin on each extremity of the macroscopic tumour. The catheter was checked by X rays before any HDR treatment. Results: Median age of the patients was 65 year, with an OMS status <2. The location of the tumour was an upper lobe in 4 cases and a lower lobe in 3 cases. The mean treated volume was 14 cm3. With a mean follow up time of 6 months one fistulae, one pneumothorax and one radiation induced pneumonitis have been observed. Four patients have died: two from distant metastases with local tumour control, one from a myocardial infarct and one from local recurrence. Conclusion: In this feasibility study, some toxicity of combined external beam irradiation and HDRB has been found. The role of such a combined approach has to be very carefully assessed in the future

  20. Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams

    International Nuclear Information System (INIS)

    Normoxic type polyacrylamide gel (nPAG) dosimeters are established for dose quantification in three-dimensions for radiotherapy and hence represent an adequate dosimeter for quantification of the dose variation due to the existence of the gold nanoparticles (AuNPs) in the target during irradiation. This work compared the degree of polymerisation in gel doped with nanoparticles (nPAG–AuNP) with control gel samples when irradiated by various sources. Samples were irradiated with a synchrotron radiation source of mean energy 125 keV, 80 kV X-ray beams from superficial therapy machine (SXRT), 6 MV X-rays and 6 MeV electron beams from linear accelerator. Analysis of the dose–response relation was used to determine a dose enhancement factor (DEF) of 1.76 ± 0.34 and 1.64 ± 0.44 obtained for samples irradiated with kilovoltage X-rays energy from synchrotron source and SXRT respectively. Similarly, including AuNPs in gel results in a DEF of approximately 1.37 ± 0.35 when irradiated by an electron beam and 1.14 ± 0.28 for high energy X-ray beams. The results demonstrate the use of AuNPs embedded in polymer gels for measuring the enhancement of radiation caused by metallic nanoparticles.

  1. Measurement and modeling of the dose distribution in homogenous medium for a proton beam devoted to radiotherapy

    International Nuclear Information System (INIS)

    A theoretical and experimental study of the dose distribution in the proton beams of the proton therapy center at Orsay has been investigated. The theoretical study highlighted the prominent interactions of protons used for radiotherapy with the biological media, are the energy loss by inelastic collisions with electrons, and the multiple coulomb diffusions with nuclei. Experimental measurements have been realised with a small size diode in homogenous and heterogenous medium. The measurements in a water phantom lead to the finalizing of a lateral penumbra model for the intra skull beam. The measurements in heterogenous medium highlighted the importance of the fine structure of heterogeneities on the yield in depth curve shape. Concerning the simple fine structure heterogeneities, we defined the notions of equivalence to water for the heterogeneities, specific to protons, concerning the yields in depth and the diffusion. Moreover, a calculation of dose distribution, for a mono energy beam in a phantom of simple geometry, using the mini beam technique and the Highland formalism was implemented. This approach is compatible with a definition of heterogeneities as macroscopic structure. Concerning the heterogeneities of fine structure (equally complex), an analysis of the degradation of yield in depth curves was lead, indicating that it was possible to to take them into account from the scanner images. A such approach implies calculation models using directly the electronic density relative to water of each of voxel intercepted by the radiation. (N.C.)

  2. Assessment of the effect of beam modifiers on skin dose for external beam radiotherapy using Gafchromic EBT2 film

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the effect of different beam modifiers on the skin dose for 60Co and 15 MV photon beams. Skin doses were measured for solid water (PMMA) phantoms with Gafchromic films. It was observed that, skin dose for all the beam modifiers as well as that for the open beams increases as field size increases. At SSD of 80 cm, skin doses for 10 x 10 cm2 and 25 x 25 cm2 were, 36.9%, and 61.8% respectively for the 60Co unit. It was observed that, for a particular field size, skin dose for the 15 MV photon beam was much lower than that for 60Co beam, which gives an advantage of using the 15 MV photon beam over 60Co beam. As SSD increases skin dose reduces for both 60Co and 15 MV photon beams. For wedged fields (with 600 motorized wedge, it was found that there were very little effects on skin dose for smaller fields but significant effects for the larger fields (≥15 x 15 cm2) as compared with open beams for the 15 MV photon beam. Skin dose for bolus was higher compared with that of open beam and were 57.4% and 73.8% for 10 x 10 cm2 and 20 x 20 cm2 at 100 cm SSD respectively. For 60Co beam, the physical wedges and the 1.5 cm thickness compensator greatly reduced skin doses as compared to all the other beam modifiers. The skin doses for 10 × 10 cm2 field were 21.3%, 19.4%, 18.7%, 19.1% and 23.6% for 150, 300, 450, 600 and the 1.5 cm thickness compensators respectively, at SSD of 80 cm). These compared with 35.4% and 33.7% for the tray and open fields at the same SSD and field size as those for the wedges and compensator above. Skin doses reduced as the compensator thickness was increased. (au)

  3. Contribution of secondary particles to the dose in 12C radiotherapy and other heavy ion beams

    Czech Academy of Sciences Publication Activity Database

    Jadrníčková, Iva; Spurný, František; Molokanov, A. G.

    2007-01-01

    Roč. 126, 1-4 (2007), s. 657-659. ISSN 0144-8420 R&D Projects: GA ČR GA202/04/0795 Institutional research plan: CEZ:AV0Z10480505 Keywords : secondery particles * radiotherapy * LET spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.528, year: 2007

  4. Brachytherapy Improves Biochemical Failure–Free Survival in Low- and Intermediate-Risk Prostate Cancer Compared With Conventionally Fractionated External Beam Radiation Therapy: A Propensity Score Matched Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Graham D. [University of Western Ontario, London, Ontario (Canada); Pickles, Tom [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Crook, Juanita [Department of Radiation Oncology, Kelowna General Hospital, Kelowna, British Columbia (Canada); Martin, Andre-Guy; Vigneault, Eric [Department of Radiation Oncology, L' Hotel Dieu de Quebec, Quebec City, Quebec (Canada); Cury, Fabio L. [Department of Radiation Oncology, Montreal General Hospital, Montreal, Quebec (Canada); Morris, Jim [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Catton, Charles [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Lukka, Himu [Department of Radiation Oncology, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Warner, Andrew [Department of Radiation Oncology, London Health Sciences Center, London, Ontario (Canada); Yang, Ying [University of Waterloo, Waterloo, Ontario (Canada); Rodrigues, George, E-mail: George.Rodrigues@lhsc.on.ca [University of Western Ontario, London, Ontario (Canada); Department of Radiation Oncology, London Health Sciences Center, London, Ontario (Canada)

    2015-03-01

    Purpose: To compare, in a retrospective study, biochemical failure-free survival (bFFS) and overall survival (OS) in low-risk and intermediate-risk prostate cancer patients who received brachytherapy (BT) (either low-dose-rate brachytherapy [LDR-BT] or high-dose-rate brachytherapy with external beam radiation therapy [HDR-BT+EBRT]) versus external beam radiation therapy (EBRT) alone. Methods and Materials: Patient data were obtained from the ProCaRS database, which contains 7974 prostate cancer patients treated with primary radiation therapy at four Canadian cancer institutions from 1994 to 2010. Propensity score matching was used to obtain the following 3 matched cohorts with balanced baseline prognostic factors: (1) low-risk LDR-BT versus EBRT; (2) intermediate-risk LDR-BT versus EBRT; and (3) intermediate-risk HDR-BT+EBRT versus EBRT. Kaplan-Meier survival analysis was performed to compare differences in bFFS (primary endpoint) and OS in the 3 matched groups. Results: Propensity score matching created acceptable balance in the baseline prognostic factors in all matches. Final matches included 2 1:1 matches in the intermediate-risk cohorts, LDR-BT versus EBRT (total n=254) and HDR-BT+EBRT versus EBRT (total n=388), and one 4:1 match in the low-risk cohort (LDR-BT:EBRT, total n=400). Median follow-up ranged from 2.7 to 7.3 years for the 3 matched cohorts. Kaplan-Meier survival analysis showed that all BT treatment options were associated with statistically significant improvements in bFFS when compared with EBRT in all cohorts (intermediate-risk EBRT vs LDR-BT hazard ratio [HR] 4.58, P=.001; intermediate-risk EBRT vs HDR-BT+EBRT HR 2.08, P=.007; low-risk EBRT vs LDR-BT HR 2.90, P=.004). No significant difference in OS was found in all comparisons (intermediate-risk EBRT vs LDR-BT HR 1.27, P=.687; intermediate-risk EBRT vs HDR-BT+EBRT HR 1.55, P=.470; low-risk LDR-BT vs EBRT HR 1.41, P=.500). Conclusions: Propensity score matched analysis showed that BT options led

  5. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation.

    Science.gov (United States)

    Hao, Yao; Altundal, Yucel; Moreau, Michele; Sajo, Erno; Kumar, Rajiv; Ngwa, Wilfred

    2015-09-21

    Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs). Using Monte Carlo-generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5-14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV. For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected. The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV

  6. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation

    International Nuclear Information System (INIS)

    Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs).Using Monte Carlo–generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5–14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV.For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected.The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV

  7. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation

    Science.gov (United States)

    Hao, Yao; Altundal, Yucel; Moreau, Michele; Sajo, Erno; Kumar, Rajiv; Ngwa, Wilfred

    2015-09-01

    Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs). Using Monte Carlo-generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5-14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV. For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected. The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV

  8. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta SynergyTM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  9. Consensus and differences in primary radiotherapy for localized and locally advanced prostate cancer in Switzerland. A survey on patterns of practice

    Energy Technology Data Exchange (ETDEWEB)

    Panje, Cedric M. [Kantonsspital St. Gallen, Department of Radiation Oncology, St. Gallen (Switzerland); Universitaetsspital Zuerich, Department of Radiation Oncology, Zurich (Switzerland); Dal Pra, Alan [Inselspital Bern, Department of Radiation Oncology, Bern (Switzerland); Zilli, Thomas [Hopitaux Universitaires de Geneve, Department of Radiation Oncology, Geneva (Switzerland); Zwahlen, Daniel R. [Kantonsspital Graubuenden, Department of Radiation Oncology, Chur (Switzerland); Papachristofilou, Alexandros [Universitaetsspital Basel, Department of Radiation Oncology, Basel (Switzerland); Herrera, Fernanda G. [Centre Hospitalier Universitaire Vaudois, Department of Radiation Oncology, Lausanne (Switzerland); Matzinger, Oscar [Hopital Riviera-Chablais, Department of Radiation Oncology, Vevey (Switzerland); Plasswilm, Ludwig; Putora, Paul Martin [Kantonsspital St. Gallen, Department of Radiation Oncology, St. Gallen (Switzerland)

    2015-10-15

    External beam radiotherapy (EBRT), with or without androgen deprivation therapy (ADT), is an established treatment option for nonmetastatic prostate cancer. Despite high-level evidence from several randomized trials, risk group stratification and treatment recommendations vary due to contradictory or inconclusive data, particularly with regard to EBRT dose prescription and ADT duration. Our aim was to investigate current patterns of practice in primary EBRT for prostate cancer in Switzerland. Treatment recommendations on EBRT and ADT for localized and locally advanced prostate cancer were collected from 23 Swiss radiation oncology centers. Written recommendations were converted into center-specific decision trees, and analyzed for consensus and differences using a dedicated software tool. Additionally, specific radiotherapy planning and delivery techniques from the participating centers were assessed. The most commonly prescribed radiation dose was 78 Gy (range 70-80 Gy) across all risk groups. ADT was recommended for intermediate-risk patients for 6 months in over 80 % of the centers, and for high-risk patients for 2 or 3 years in over 90 % of centers. For recommendations on combined EBRT and ADT treatment, consensus levels did not exceed 39 % in any clinical scenario. Arc-based intensity-modulated radiotherapy (IMRT) is implemented for routine prostate cancer radiotherapy by 96 % of the centers. Among Swiss radiation oncology centers, considerable ranges of radiotherapy dose and ADT duration are routinely offered for localized and locally advanced prostate cancer. In the vast majority of cases, doses and durations are within the range of those described in current evidence-based guidelines. (orig.) [German] Die Radiotherapie (RT) ist als Monotherapie oder in Kombination mit einer Androgendeprivationstherapie (ADT) eine etablierte Behandlungsoption fuer das lokalisierte und lokal fortgeschrittene Prostatakarzinom. Trotz der guten Evidenzlage durch zahlreiche

  10. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the performance of the algorithm to localize the prostate on cone-beam CT (CBCT) scans acquired on the treatment machine was evaluated. Methods and Materials: Five to 17 CBCT scans of 32 prostate cancer patients (332 scans in total) were used. For 18 patients (190 CBCT scans), the CBCT scans were acquired with a collimated field of view (FOV) (craniocaudal). This procedure improved the image quality considerably. The prostate (i.e., prostate plus seminal vesicles) in each CBCT scan was registered to the prostate in the planning CT scan by automatic 3D gray-value registration (normal GR) starting from a registration on the bony anatomy. When these failed, registrations were repeated with a fixed rotation point locked at the prostate apex (fixed apex GR). Registrations were visually assessed in 3D by one observer with the help of an expansion (by 3.6 mm) of the delineated prostate contours of the planning CT scan. The percentage of successfully registered cases was determined from the combined normal and fixed apex GR assessment results. The error in gray-value registration for both registration methods was determined from the position of one clearly defined calcification in the prostate gland (9 patients, 71 successful registrations). Results: The percentage of successfully registered CBCT scans that were acquired with a collimated FOV was about 10% higher than for CBCT scans that were acquired with an uncollimated FOV. For CBCT scans that were acquired with a collimated FOV, the percentage of successfully registered cases improved from 65%, when only normal GR was applied, to 83% when the results of normal and fixed apex GR were combined. Gray-value registration mainly failed (or

  11. Organ localization in fractionated external beam radiotherapy for early stage prostatic adenocarcinoma

    International Nuclear Information System (INIS)

    Purpose: Trends toward higher target doses and more conformal radiation field shaping place strict requirements on geometric localisation of the target and surrounding normal structures. Daily localization of these structures is not possible on a conventional treatment machine. For this reason, margins must be incorporated in the field shaping to accommodate any target or normal structure displacement. There are few studies which examine the magnitude of these displacements. We hypothesize that these uncertainties can be reduced by daily radiographic imaging of bony anatomy as an alternative to skin tattoos. This hypothesis is tested using multiple (15-19) CT scans on five patients receiving external beam radiotherapy of the prostate. Materials and Methods: Five patients were CT scanned in treatment position (with immobilization device) on every second day of their initial XRT course (non-boost). Radiopaque markers were placed on the skin tattoos to make them visible in the CT datasets. The scans were collected on a helical CT scanner (SR-7000, 3mm and 5mm slice thickness, 120kVp) and transferred to a workstation for analysis. The structures (prostate, rectum, bladder, and seminal vesicles) on all 80 CT datasets were contoured (manually) by two physicians. A reference dataset was chosen for each patient. The 3D transformations between the study datasets and the reference set were determined using an automated technique. A separate transformation was determined for the alignment of (i) bone (excluding femora) and (ii) skin marks. The contours from each dataset were then transformed back to the reference dataset. The resulting contours show the position of organ relative to either the skin marks (tattoos) or the bony anatomy. The displacement and distortion of the organs were parameterized by the displacement of the volume edge (AP, LAT, SUP-INF), volume, and center-of-mass (COM). Each calculation was performed for an individual patient. Population averages were also

  12. Minimal requirements for quality controls in radiotherapy with external beams; Controlli di qualita' essenziali in radioterapia con fasci esterni

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Physical dosimetric guidelines have been developed by the Italian National Institute of Health study group on quality assurance in radiotherapy to define protocols for quality controls in external beam radiotherapy. While the document does not determine strict rules or firm recommendations, it suggests minimal requirements for quality controls necessary to guarantee an adequate degree of accuracy in external beam radiotherapy. [Italian] Il gruppo di studio Assicurazione di qualita' in radioterapia dell'Istituto Superiore di Sanita' presenta le linee guida per la stesura dei protocolli di controllo di qualita' essenziali necessari a garantire un adeguato livello di accuratezza del trattamento radiante e rappresenta pertanto una parte essenziale del contributo fisico-dosimetrico globale di assicurazione di qualita' in radioterapia con fasci esterni.

  13. The feasibility and safety of high-intensity focused ultrasound combined with low-dose external beam radiotherapy as supplemental therapy for advanced prostate cancer following hormonal therapy

    OpenAIRE

    Wu, Rui-Yi; Wang, Guo-Min; Xu, Lei; ZHANG, BO-HENG; Xu, Ye-Qing; Zeng, Zhao-Chong; Chen, Bing

    2011-01-01

    The aim of this study was to investigate the feasibility and safety of high-intensity focused ultrasound (HIFU) combined with (+) low-dose external beam radiotherapy (LRT) as supplemental therapy for advanced prostate cancer (PCa) following hormonal therapy (HT). Our definition of HIFU+LRT refers to treating primary tumour lesions with HIFU in place of reduced field boost irradiation to the prostate, while retaining four-field box irradiation to the pelvis in conventional-dose external beam r...

  14. Changing prostate-specific antigen outcome after surgery or radiotherapy for localized prostate cancer during the prostate-specific antigen era

    International Nuclear Information System (INIS)

    Purpose: To evaluate the change in prostate-specific antigen (PSA) outcome after radical prostatectomy (RP) or external beam radiotherapy (EBRT), controlling for follow-up during the PSA era. Methods and Materials: The study cohort consisted of 1440 patients with clinically localized prostate cancer managed with RP (n=1059) or EBRT (n=381) between 1989 and 2000. A single genitourinary pathologist reviewed all pathology specimens. For patients with a 2-year minimal follow-up, the 2-year actual PSA outcome stratified by risk group (low vs. high) was calculated for three periods (January 1, 1989 to December 31, 1992; January 1, 1993 to December 31, 1996; and January 1, 1997 to December 31, 2000) and compared for each treatment modality. PSA failure was defined using the American Society for Therapeutic Radiology and Oncology consensus definition for all patients, and comparisons were made using a chi-square metric. Results: During the study period, the proportion of patients treated with RP and EBRT with low-risk disease increased significantly (p <0.0001) from 60% to 89% and from 26% to 76%, respectively. In addition, the 2-year actual PSA outcome also improved from 60% to 82% (RP: p<0.0001) and from 67% to 91% (RT: p=0.0008). The 2-year actual PSA outcome was not significantly different in the low-risk patients but improved during the three periods in the high-risk patients treated with RP (from 20% to 39% to 75%, p=0.0004) or EBRT (from 50% to 59% to 83%, p=0.01). This improvement in PSA outcome could be explained by a shift toward a more favorable PSA level (RP: p=0.0002; RT: p=0.006) and clinical T stage (RP: p=0.0008, RT: p<0.0001) distribution for patients with biopsy Gleason score ≥7 disease. Conclusion: Improved PSA outcome during the PSA era after RP or EBRT has resulted from a shift in presentation toward low-risk disease and earlier detection of high-grade disease

  15. Enteric-coated, highly standardized cranberry extract reduces risk of UTIs and urinary symptoms during radiotherapy for prostate carcinoma

    Directory of Open Access Journals (Sweden)

    Bonetta A

    2012-08-01

    Full Text Available Alberto Bonetta,1 Francesco Di Pierro21Unità Operativa Radioterapia Oncologica, Istituti Ospedalieri di Cremona, Cremona; 2Velleja Research, Milan, ItalyBackground: Cranberry (Vaccinium macrocarpon proanthocyanidins can interfere with adhesion of bacteria to uroepithelial cells, potentially preventing lower urinary tract infections (LUTIs. Because LUTIs are a common side effect of external beam radiotherapy (EBRT for prostate cancer, we evaluated the clinical efficacy of enteric-coated tablets containing highly standardized V. msacrocarpon (ecVM in this condition.Methods: A total of 370 consecutive patients were entered into this study. All patients received intensity-modulated radiotherapy for prostate cancer; 184 patients were also treated with ecVM while 186 served as controls. Cranberry extract therapy started on the simulation day, at which time a bladder catheterization was performed. During EBRT (over 6–7 weeks, all patients underwent weekly examination for urinary tract symptoms, including regular urine cultures during the treatment period.Results: Compliance was excellent, with no adverse effects or allergic reactions being observed, apart from gastric pain in two patients. In the cranberry cohort (n = 184, 16 LUTIs (8.7% were observed, while in the control group (n = 186 45 LUTIs (24.2% were recorded. This difference was statistically significant. Furthermore, lower rates of nocturia, urgency, micturition frequency, and dysuria were observed in the group that received cranberry extract.Conclusion: Cranberry extracts have been reported to reduce the incidence of LUTIs significantly in women and children. Our data extend these results to patients with prostate cancer undergoing irradiation to the pelvis, who had a significant reduction in LUTIs compared with controls. These results were accompanied by a statistically significant reduction in urinary tract symptoms (dysuria, nocturia, urinary frequency, urgency, suggesting a generally

  16. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Nikolaj K. G., E-mail: nkyj@regionsjaelland.dk [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Stewart, Errol [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7 (Canada); Imaging Program, Lawson Health Research Institute, London, Ontario N6C 2R5 (Canada); Lock, Michael; Fisher, Barbara [Radiation Oncology, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Kozak, Roman [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Chen, Jeff [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Lee, Ting-Yim [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7 (Canada); Imaging Program, Lawson Health Research Institute, London, Ontario N6C 2R5 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Wong, Eugene [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

  17. Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

    International Nuclear Information System (INIS)

    Purpose: To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. Methods and Materials: A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. Results: The daily alignment to skin tattoos with no image guidance resulted in systematic (Σ) and random (σ) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic (Σ) and random (σ) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. Conclusion: Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.

  18. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    International Nuclear Information System (INIS)

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT

  19. Radiobiological Characterization of Two Photon-Beam Energies 6 and 15 MV used in Radiotherapy From Linear Accelerator

    International Nuclear Information System (INIS)

    The main objective of this study is to perform radiobiological characterization of two different photon beam energies, 6 MV and 15 MV, from linear accelerator used in radiotherapy, with special regard to late effects of radiation. Two end-points, namely cell survival and micronucleus induction were used for the characterization. Chinese hamster V 79 lung fibroblast cell line to prepare cell culture and to perform the innervate experiments. chromosomes number was counted and found to be 22 chromosomes per cell, this result is in complete agreement with expected 11 pairs of chromosomes representing the genome of this species. Cells were kept in confluent growth for two days and then exposed to two photon beam energies, 6 and 15 MV respectively. Different dose rates were used for the two beam energies, 0.25, 0.5, 1.0, 2.0, 4.0, 7.0 Gy. Cells were counted immediately after irradiation and re seeded, the seeded number of cells was calculated to the dose rate used. Another set of unirradiated cells treated the same as the experimental set was used as a control group. The plating efficiency (PE) was calculated for the control group, then cells were incubated at 37oC for 6 days to construct the survival curve, five samples were counted per dose and the mean was calculated. The two survival curves are similar for photon beam energies (6 and 15 MV) and the surviving fraction was decreased with dose rate. The two curves showed similar values of α and β parameters, this result is expected for the same radiation type (X-ray). For the micronuclei assay three samples for each dose were seeded and incubated at 37oC for 24 hours then Cytochalasin-B was added to block cells in cytokinesis phase of the mitosis. The micronuclei number was counted and plotted with dose. A significant positive correlation was found between dose and micronuclei frequency (P=0.00), moreover, the micronuclei frequency is relatively higher with 15 MV compared with 6 MV energy. This indicates the presence

  20. Patterns of radiotherapy practice for biliary tract cancer in Japan: results of the Japanese radiation oncology study group (JROSG) survey

    International Nuclear Information System (INIS)

    The patterns of radiotherapy (RT) practice for biliary tract cancer (BTC) in Japan are not clearly established. A questionnaire-based national survey of RT used for BTC treatment between 2000 and 2011 was conducted by the Japanese Radiation Oncology Study Group. Detailed information was collected for 555 patients from 31 radiation oncology institutions. The median age of the patients was 69 years old (range, 33–90) and 81% had a good performance status (0–1). Regarding RT treatment, 78% of the patients were treated with external beam RT (EBRT) alone, 17% received intraluminal brachytherapy, and 5% were treated with intraoperative RT. There was no significant difference in the choice of treatment modality among the BTC subsites. Many patients with EBRT were treated with a total dose of 50 or 50.4 Gy (~40%) and only 13% received a total dose ≥60 Gy, even though most institutions (90%) were using CT-based treatment planning. The treatment field consisted of the primary tumor (bed) only in 75% of the patients. Chemotherapy was used for 260 patients (47%) and was most often administered during RT (64%, 167/260), followed by after RT (63%, 163/260). Gemcitabine was the most frequently used drug for chemotherapy. This study established the general patterns of RT practice for BTC in Japan. Further surveys and comparisons with results from other countries are needed for development and optimization of RT for patients with BTC in Japan

  1. Intra-fractional uncertainties in cone-beam CT based image-guided radiotherapy (IGRT) of pulmonary tumors

    International Nuclear Information System (INIS)

    Purpose: Intra-fractional variability of tumor position and breathing motion was evaluated in cone-beam CT (CB-CT) based image-guided radiotherapy (IGRT) of pulmonary tumors. Materials and methods: Twenty-four patients (27 lesions: prim. NSCLC n = 6; metastases n = 21) were treated with stereotactic body radiotherapy (SBRT) (one to eight fractions). Prior to every treatment fraction (n = 66) and immediately after treatment a CB-CT was acquired. Patient motion, absolute drift and drift of the tumor relative to the bony anatomy were measured. Tumor motion was investigated based on the density distribution in the CB-CT. Results: Absolute intra-fractional drift (3D vector) of the tumor position was 2.8 mm ± 1.6 mm (mean ± SD), maximum 7.2 mm. Poor correlation between patient motion and absolute tumor drift was observed. Changes of the tumor position due to patient motion and due to drifts independently from the bony anatomy were of similar magnitude with 2.1 mm ± 1.4 mm and 2.3 mm ± 1.6 mm, respectively. No systematic increase or decrease of breathing motion was seen. The intra-fractional change of breathing motion was more than 2 mm and 3 mm in 39% and 16%, respectively. Conclusion: Intra-fractional tumor position and breathing motion were stable. In IGRT of pulmonary tumors we suggest an ITV-to-PTV margin of 5 mm to compensate intra-fractional changes

  2. Standard operating procedures for quality audits of 60Co external beam radiotherapy facilities

    International Nuclear Information System (INIS)

    The use of radiotherapy implies the necessity of rigorous quality standards in its different components, aimed to provide the best possible treatment and avoid potential patients' risks, that could even cause him death. Projects of technical cooperation developed in Cuba and supported by the International Atomic Energy Agency address the implementation of Programs of Quality Assurance (PGC) in radiotherapy services. The establishment of the National Quality Audit Program (PNAC) is a superior stage. The National Control Center for Medical Devices, as the national regulator entity for the control and supervision of medical devices in the National Health System, is responsible for the making and execution of the PNAC. The audit modality selected was the inspection visit in situ due to its intrinsic advantages, our geographical extension and the number of radiotherapy services. This paper presents the methodology for the execution of the PNAC, in form of a Normalized Procedure of Operation (PNO) that defines the objectives, scope, terms and definitions, responsibilities, composition and selection of the auditor team, security's conditions, materials and equipment, steps of the audit execution, results calculation and interpretation, records, etc. (author)

  3. Radiation Protection of Patients in External Beam Radiotherapy: Introduction of the topic

    International Nuclear Information System (INIS)

    The benefits of radiotherapy can be summarized in the following statement: radiotherapy saves lives, prolongs lives and improves quality of life. On the other hand, to achieve these benefits, normal tissue often receives radiation doses that are on the upper edge of tolerable doses, as a result of which, accidental overdosage has sometimes had devastating consequences; in addition, underdosage, which may not always be detected timely, can also lead to severe consequences. A step-by-step approach is suggested for the prevention of accidental exposures in radiation therapy: (i) design and implementation of a quality and safety programme in accordance with safety standards and quality protocols; (ii) use of lessons from accidental exposures to test whether the quality and safety programme has some gaps or vulnerable aspects; and (iii) use of an anticipative approach to find other latent risks by posing the question ‘What else could go wrong?’ in all steps of the radiotherapy process and evaluating the list of potential events according to a combination of likelihood and severity of outcome. This rational approach facilitates focusing the efforts on a limited number of higher risk events. (author)

  4. The optimal utilization proportion of external beam radiotherapy in European countries: An ESTRO-HERO analysis

    International Nuclear Information System (INIS)

    Background and purpose: The absolute number of new cancer patients that will require at least one course of radiotherapy in each country of Europe was estimated. Material and methods: The incidence and relative frequency of cancer types from the year 2012 European Cancer Observatory estimates were used in combination with the population-based stage at diagnosis from five cancer registries. These data were applied to the decision trees of the evidence-based indications to calculate the Optimal Utilization Proportion (OUP) by tumour site. Results: In the minimum scenario, the OUP ranged from 47.0% in the Russian Federation to 53.2% in Belgium with no clear geographical pattern of the variability among countries. The impact of stage at diagnosis on the OUP by country was rather limited. Within the 24 countries where data on actual use of radiotherapy were available, a gap between optimal and actual use has been observed in most of the countries. Conclusions: The actual utilization of radiotherapy is significantly lower than the optimal use predicted from the evidence based estimates in the literature. This discrepancy poses a major challenge for policy makers when planning the resources at the national level to improve the provision in European countries

  5. Radiotherapy of Teikyo University. (1) Experience and the current status at Itabashi Hospital. External beam therapy

    International Nuclear Information System (INIS)

    Since 1971, Itabashi hospital of Teikyo University began using the practice of radiotherapy. Since then, data has been compiled in notebook form. This was a slow and inconvenient way to log data. We tried to change the out-of-date form to a more convenient and available one. We input the radiotherapy (RT) number, ID, name, sex, primary disease, the refered department and the initial date of the radiotherapy of all cases into a PC. A total of 5072 new patients were summed up by the end of 2001. The number of the new patients has been increasing annually, and there were 235 cases in 2001. The largest group in these patients was head and neck tumors, which consisted 1180 patients (23.3%). The second largest group was gynecologic tumors, 766 cases (15.1%), and the third one was respiratory tumors, 648 cases (12.8%). The number of the respiratory tumors, the digestive tumors and the urological tumors have been increasing markedly, which became more than twice the number in 30 years. Especially, the ratio of the respiratory group and the digestive group have increased every year. The ratio of gynecologic tumors decreased markedly (25.1%→9.3%). To answer the current demand of the information disclosure, we should continue to open the up-to-date status and the therapeutic results of our practice. (author)

  6. Performance evaluation of an algorithm for fast optimization of beam weights in anatomy-based intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    This study aims to evaluate the performance of a new algorithm for optimization of beam weights in anatomy-based intensity modulated radiotherapy (IMRT). The algorithm uses a numerical technique called Gaussian-Elimination that derives the optimum beam weights in an exact or non-iterative way. The distinct feature of the algorithm is that it takes only fraction of a second to optimize the beam weights, irrespective of the complexity of the given case. The algorithm has been implemented using MATLAB with a Graphical User Interface (GUI) option for convenient specification of dose constraints and penalties to different structures. We have tested the numerical and clinical capabilities of the proposed algorithm in several patient cases in comparison with KonRad inverse planning system. The comparative analysis shows that the algorithm can generate anatomy-based IMRT plans with about 50% reduction in number of MUs and 60% reduction in number of apertures, while producing dose distribution comparable to that of beamlet-based IMRT plans. Hence, it is clearly evident from the study that the proposed algorithm can be effectively used for clinical applications. (author)

  7. A technique to re-establish dose distributions for previously treated brain cancer patients in external beam radiotherapy

    International Nuclear Information System (INIS)

    Tumor recurrences or new tumors may develop after irradiation of local lesion(s) in the brain, and additional radiotherapy treatments are often needed for previously treated patients. It is critical to re-establish the dose distributions delivered during the previous treatment in the current patient geometry, so that the previous dose distributions can be accurately taken into consideration in the design of the current treatment plan. The difficulty in re-establishing the previous treatment dose distributions in the current patient geometry arises from the fact that the patient position at the time of reirradiation is different from that at the previous treatment session. Simple re-entry of the previous isocenter coordinates, gantry, and couch and collimator angles into the new treatment plan would result in incorrect beam orientations relative to the new patient anatomy, and therefore incorrect display of the previous dose distributions on the current patient anatomy. To address this issue, a method has been developed so that the previous dose distributions can be accurately re-established in the framework of the current brain treatment. The method involves 3 matrix transformations: (1) transformation of beams from machine coordinate system to patient coordinate system in the previous treatment; (2) transformation of beams from patient coordinate system in the previous treatment to patient coordinate system in the current treatment; and (3) transformation of beams from patient coordinate system in the current treatment to machine coordinate system. The transformation matrices used in the second transformation are determined by registration using a mutual information-based algorithm with which the old and new computed tomography (CT) scan sets are registered automatically without human interpretation. A series of transformation matrices are derived to calculate the isocenter coordinates, the gantry, couch, and collimator angles of the beams for the previous

  8. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Marianne C [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Andersen, Claus E [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Boetter-Jensen, Lars [Radiation Research Department, Risoe National Laboratory, Roskilde (Denmark); Baeck, Sven A J [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden); Mattsson, Soeren [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden); Kjaer-Kristoffersen, Flemming [Department of Radiation Physics, Rigshospitalet, National University Hospital, Copenhagen (Denmark); Medin, Joakim [Department of Medical Radiation Physics, Lund University, Malmoe University Hospital, Malmoe (Sweden)

    2004-05-07

    A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm{sup 3}), high sensitivity, real-time read-out and the ability to measure both dose rate and absorbed dose. The measurements describing reproducibility and output dependence on dose rate, field size and energy all had standard deviations smaller than 1%. The signal variation with the angle of incidence was smaller than 2% (1 SD). Measurements performed in clinical situations suggest the potential of using this real-time system for in vivo dosimetry in radiotherapy.

  9. Abdominal cancer during early childhood: A dosimetric comparison of proton beams to standard and advanced photon radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Evaluation of dosimetric benefits of advanced radiotherapy techniques for the treatment of abdominal lesions during early childhood. Patients and methods: Treatment planning was performed for five Neuroblastoma (NBL) and four Wilms Tumor (WT) patients. Opposing fields (2F), photon intensity modulated radiotherapy (IMXT) and two proton techniques (passively scattered (PT) and scanned beams (IMPT)) were considered. Averaged dose-volume histograms, associated dosimetric parameters and a radiobiological model for the estimation of the therapy related carcinogenic effect were evaluated. Results: With respect to the 2F technique, both proton techniques enabled to reduce mean liver and kidney dose by 40-60%; Organ fractions irradiated at the level of the tolerance dose were reduced by 65% for kidneys and 75% for the liver in NBL patients and by additional 10% for WT patients. IMXT enabled to reduce parameters related to the steep high-dose gradient, e.g., V15Gy for the kidneys was reduced by a factor 2-3 compared to 2F. V12Gy was reduced by 40% in the liver. On the other side, the improvement of those parameters characterizing the low isodose domain was limited for IMXT. The risk for radiation-induced secondary cancer was doubled for IMXT and even more increased for PT if secondary neutrons were taken into account, while this risk remained the same or was reduced by IMPT with respect to 2F. Conclusions: Proton beams improved all dosimetric parameters for NBL and WT patients compared to photon techniques. This improvement was limited for IMXT mainly to parameters related to the steep high-dose gradient. Further research is needed to minimize uncertainties for secondary cancer estimations

  10. The choice of multi-beam IMRT for whole breast radiotherapy in early-stage right breast cancer.

    Science.gov (United States)

    Haciislamoglu, Emel; Colak, Fatma; Canyilmaz, Emine; Zengin, Ahmet Yasar; Yilmaz, Ahmet Hakan; Yoney, Adnan; Bahat, Zumrut

    2016-01-01

    The aim of this study was to identify a rational strategy for the selection of multi-beam IMRT in patients with right breast cancer through the comparison of dosimetric parameters of the planning target volume (PTV) and organs at risk (OARs) using five different radiotherapy modalities. This was a retrospective study using computed tomography scans from ten patients with early-stage right breast cancer who had been treated previously. Three dimensional conformal radiotherapy (3DCRT), forward-planned IMRT (for-IMRT), inverse-planned IMRT (inv-IMRT), helical tomotherapy (HT), and volumetric-modulated arc therapy (VMAT) were planned for each patient. The plans were compared according to dose-volume histogram analysis. The most significant impact of inverse-planned multi-beam modalities for right breast cancer was the reduction of Dmax, Dmean, V53.5 and prescribed dose volume (cc) outside of the PTV (breast) (OB-V50) of the PTV. HT decreased the ipsilateral OAR volumes receiving higher doses. In exchange, HT also increased the volumes receiving low doses, which is known to lead to an increased rate of radiation-induced secondary malignancies. The heart, LAD, and contralateral doses for 3DCRT and for-IMRT were significantly lower than those for inv-IMRT, HT, and VMAT. In addition, inv-IMRT demonstrated an increase in exposed volume of heart, LAD, ipsilateral lung, and contralateral lung compared with those parameters for HT or VMAT. Although it is known to reduce cardiac toxicity with breath hold technique in left sided breast cancer, similarly it is possible for 3DCRT and for-IMRT techniques in right sided breast cancer even in free breathing. PMID:27350922

  11. Local Control Rates of Metastatic Renal Cell Carcinoma (RCC) to Thoracic, Abdominal, and Soft Tissue Lesions Using Stereotactic Body Radiotherapy (SBRT)

    OpenAIRE

    Altoos, Basel; Amini, Arya; Yacoub, Muthanna; Bourlon, Maria T.; Kessler, Elizabeth E.; Flaig, Thomas W.; Fisher, Christine M.; Kavanagh, Brian D.; Lam, Elaine T.; Karam, Sana D.

    2015-01-01

    Background and purpose We report the radiographic response rate of SBRT compared to conventional fractionated radiotherapy (CF-EBRT) for thoracic, abdominal, skin and soft tissue RCC lesions treated at our institution. Material and methods Fifty three lesions where included in the study (36 SBRT, 17 CF-EBRT), treated from 2004 to 2014 at our institution. We included patients that had thoracic, skin & soft tissue (SST), and abdominal metastases of histologically confirmed RCC. The most common ...

  12. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning

    International Nuclear Information System (INIS)

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated

  13. Characterization of standard and oxygenated float zone Si diodes under radiotherapy beams

    Energy Technology Data Exchange (ETDEWEB)

    Casati, M. [INFN Firenze and Dipartimento di Fisiopatologia Clinica, University of Florence (Italy)]. E-mail: marta.casati@unifi.it; Bruzzi, M. [INFN Firenze and Dipartimento di Energetica, University of Florence (Italy); Bucciolini, M. [INFN Firenze and Dipartimento di Fisiopatologia Clinica, University of Florence (Italy); Menichelli, D. [INFN Firenze and Dipartimento di Fisiopatologia Clinica, University of Florence (Italy); Scaringella, M. [INFN Firenze and Dipartimento di Energetica, University of Florence (Italy); Piemonte, C. [ITC-IRST, MIS Division, Povo, Trento (Italy); Fretwurst, E. [Institute for Experimental Physics, University of Hamburg D-22761 (Germany)

    2005-10-21

    The dosimetric response of silicon diodes made from high resistivity float zone (FZ) and diffusion oxygenated FZ (DOFZ) silicon has been studied with a {sup 60}Co clinical radiotherapy gamma source. To investigate the changes in sensitivity with the accumulated dose, the diodes have been exposed to doses of {sup 137}Cs gamma-rays up to 6 kGy. As expected, Si diodes showed a degradation in the signal response with the accumulated dose due to the formation of radiation-induced defects acting as lifetime killers. Nonetheless, the DOFZ Si diode appeared to be moderately radiation harder than the standard FZ sample, with a decay of sensitivity less pronounced.

  14. Characterization of standard and oxygenated float zone Si diodes under radiotherapy beams

    International Nuclear Information System (INIS)

    The dosimetric response of silicon diodes made from high resistivity float zone (FZ) and diffusion oxygenated FZ (DOFZ) silicon has been studied with a 60Co clinical radiotherapy gamma source. To investigate the changes in sensitivity with the accumulated dose, the diodes have been exposed to doses of 137Cs gamma-rays up to 6 kGy. As expected, Si diodes showed a degradation in the signal response with the accumulated dose due to the formation of radiation-induced defects acting as lifetime killers. Nonetheless, the DOFZ Si diode appeared to be moderately radiation harder than the standard FZ sample, with a decay of sensitivity less pronounced

  15. The Relationship Between Local Recurrence and Radiotherapy Treatment Volume for Soft Tissue Sarcomas Treated With External Beam Radiotherapy and Function Preservation Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, Colleen I., E-mail: Colleen.dickie@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada); Griffin, Anthony M. [Division of Orthopaedic Surgery, University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto (Canada); University of Toronto, Toronto (Canada); Parent, Amy L. [Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada); Chung, Peter W.M.; Catton, Charles N. [Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada); University of Toronto, Toronto (Canada); Svensson, Jon [AngliaRuskin University, Cambridge (United Kingdom); Ferguson, Peter C.; Wunder, Jay S.; Bell, Robert S. [Division of Orthopaedic Surgery, University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto (Canada); University of Toronto, Toronto (Canada); Sharpe, Michael B.; O' Sullivan, Brian [Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada); University of Toronto, Toronto (Canada)

    2012-03-15

    Purpose: To examine the geometric relationship between local recurrence (LR) and external beam radiotherapy (RT) volumes for soft-tissue sarcoma (STS) patients treated with function-preserving surgery and RT. Methods and Materials: Sixty of 768 (7.8%) STS patients treated with combined therapy within our institution from 1990 through 2006 developed an LR. Thirty-two received preoperative RT, 16 postoperative RT, and 12 preoperative RT plus a postoperative boost. Treatment records, RT simulation images, and diagnostic MRI/CT data sets of the original and LR disease were retrospectively compared. For LR location analysis, three RT target volumes were defined according to the International Commission on Radiation Units and Measurements 29 as follows: (1) the gross tumor or operative bed; (2) the treatment volume (TV) extending 5 cm longitudinally beyond the tumor or operative bed unless protected by intact barriers to spread and at least 1-2 cm axially (the TV was enclosed by the isodose curve representing the prescribed target absorbed dose [TAD] and accounted for target/patient setup uncertainty and beam characteristics), and (3) the irradiated volume (IRV) that received at least 50% of the TAD, including the TV. LRs were categorized as developing in field within the TV, marginal (on the edge of the IRV), and out of field (occurring outside of the IRV). Results: Forty-nine tumors relapsed in field (6.4% overall). Nine were out of field (1.1% overall), and 2 were marginal (0.3% overall). Conclusions: The majority of STS tumors recur in field, indicating that the incidence of LR may be affected more by differences in biologic and molecular characteristics rather than aberrations in RT dose or target volume coverage. In contrast, only two patients relapsed at the IRV boundary, suggesting that the risk of a marginal relapse is low when the TV is appropriately defined. These data support the accurate delivery of optimal RT volumes in the most precise way using advanced

  16. The Relationship Between Local Recurrence and Radiotherapy Treatment Volume for Soft Tissue Sarcomas Treated With External Beam Radiotherapy and Function Preservation Surgery

    International Nuclear Information System (INIS)

    Purpose: To examine the geometric relationship between local recurrence (LR) and external beam radiotherapy (RT) volumes for soft-tissue sarcoma (STS) patients treated with function-preserving surgery and RT. Methods and Materials: Sixty of 768 (7.8%) STS patients treated with combined therapy within our institution from 1990 through 2006 developed an LR. Thirty-two received preoperative RT, 16 postoperative RT, and 12 preoperative RT plus a postoperative boost. Treatment records, RT simulation images, and diagnostic MRI/CT data sets of the original and LR disease were retrospectively compared. For LR location analysis, three RT target volumes were defined according to the International Commission on Radiation Units and Measurements 29 as follows: (1) the gross tumor or operative bed; (2) the treatment volume (TV) extending 5 cm longitudinally beyond the tumor or operative bed unless protected by intact barriers to spread and at least 1–2 cm axially (the TV was enclosed by the isodose curve representing the prescribed target absorbed dose [TAD] and accounted for target/patient setup uncertainty and beam characteristics), and (3) the irradiated volume (IRV) that received at least 50% of the TAD, including the TV. LRs were categorized as developing in field within the TV, marginal (on the edge of the IRV), and out of field (occurring outside of the IRV). Results: Forty-nine tumors relapsed in field (6.4% overall). Nine were out of field (1.1% overall), and 2 were marginal (0.3% overall). Conclusions: The majority of STS tumors recur in field, indicating that the incidence of LR may be affected more by differences in biologic and molecular characteristics rather than aberrations in RT dose or target volume coverage. In contrast, only two patients relapsed at the IRV boundary, suggesting that the risk of a marginal relapse is low when the TV is appropriately defined. These data support the accurate delivery of optimal RT volumes in the most precise way using advanced

  17. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    International Nuclear Information System (INIS)

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development

  18. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    Science.gov (United States)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  19. Intercomparison of Radiotherapy Treatment Planning Systems Using a Multi-purpose Phantom for External Photon Beams

    International Nuclear Information System (INIS)

    Full text: The requirement of 5 % overall accuracy for the target absorbed dose in radiotherapy implies that the accuracy of the relative dose calculation should be within only a few percent. According to the recommendation of the International Commission on Radiation Units and Measurements (ICRU), a computer generated dose distribution is considered to be accurate enough if it differs from the results of relative dose measurements by less than 2%, or 2 mm in the position of isodose curves involving very steep dose gradients. Considering these requirements, five treatment planning systems, currently used in Czech hospitals, were compared. The intercomparison was made using a multi-purpose phantom involving dose measurements based on thermoluminescent (TLD) and film dosimetry. Seven typical cases of irradiation were tested: regular fields, irregular field, wedge fields, oblique incidence and inhomogenities. Absorbed dose measured by TLD was compared with absorbed dose calculated by the treatment planning systems. The results indicate that the dose distributions generated by different treatment planning systems can differ from each other as well as from the measured dose distributions up to the level that is not acceptable in terms of the ICRU requirement. The method using the multi-purpose phantom seems to be a good tool for regular independent quality control of the treatment planning systems since it shows the real dose outcome as a result of all procedures involved in the radiotherapy chain. (author)

  20. External Beam Radiotherapy of Recurrent Glioma: Radiation Tolerance of the Human Brain

    International Nuclear Information System (INIS)

    Malignant gliomas relapse in close proximity to the resection site, which is the postoperatively irradiated volume. Studies on re-irradiation of glioma were examined regarding radiation-induced late adverse effects (i.e., brain tissue necrosis), to obtain information on the tolerance dose and treatment volume of normal human brain tissue. The studies were analyzed using the linear-quadratic model to express the re-irradiation tolerance in cumulative equivalent total doses when applied in 2 Gy fractions (EQD2cumulative). Analysis shows that the EQD2cumulative increases from conventional re-irradiation series to fractionated stereotactic radiotherapy (FSRT) to LINAC-based stereotactic radiosurgery (SRS). The mean time interval between primary radiotherapy and the re-irradiation course was shortened from 30 months for conventional re-irradiation to 17 and 10 months for FSRT and SRS, respectively. Following conventional re-irradiation, radiation-induced normal brain tissue necrosis occurred beyond an EQD2cumulative around 100 Gy. With increasing conformality of therapy, the smaller the treatment volume is, the higher the radiation dose that can be tolerated. Despite the dose escalation, no increase in late normal tissue toxicity was reported. On basis of our analysis, the use of particle therapy in the treatment of recurrent gliomas, because of the optimized physical dose distribution in the tumour and surrounding healthy brain tissue, should be considered for future clinical trials

  1. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    CERN Document Server

    Gu, Xuejun; Li, Jinsheng; Jia, Xun; Jiang, Steve B

    2011-01-01

    Targeting at developing an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against MCSIM Monte Carlo dose calculations are conducted on 10 IMRT treatment plans with heterogeneous treatment regions (5 head-and-neck cases and 5 lung cases). For head and neck cases, when cavities exist near the target, the improvement with the 3D-density correction over the conventional FSPB algorithm is significant. However, when there are high-density dental filling materials in beam paths, the improvement is small and the accuracy of the new algorithm is still unsatisfactory. On the other hand, significant improvement of dose calculation accuracy is observed in all lung cases. Especially when the target is in the m...

  2. SU-E-T-415: An Ionization Chamber Array with High Spatial Resolution for External Beam Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To characterize an ionization chamber array technology with high spatial resolution and high charge collection efficiency for external beam radiotherapy. Methods: The prototype under test is a linear array of air vented ionization chambers developed by IBA Dosimetry, consisting of 80 pixels with 3.5mm spatial resolution and 4mm3 sensitive volume. The detector was characterized in a plastic phantom with 60 Co radiation and MV X-rays from an ELEKTA Agility LINAC (with flattened and unflattened beam qualities). Bias voltage was varied in order to evaluate charge collection efficiency. A commercial array of ionization chambers (MatriXX Evolution, IBA Dosimetry) and an amorphous silicon flat panel in direct conversion configuration were used as references. Results: Repeatability (0.4%) and stability under continuous gamma irradiation (0.3%) are very good, in spite of low active volume and sensitivity (∼200pC/Gy). Charge collection efficiency is higher than 99% already at 150V with ∼2mGy dose per pulse, leading to a ±1.1% sensitivity change with dose per pulse in the range 0.09-2mGy (covering all flattened and unflattened applications). Measured dose profiles are in agreement with MatriXX for fields larger than 2×2cm2, in which case the linear array offers a much better characterization of the penumbra region. Down to 1×1cm2, measured profiles are in very good agreement with the flat panel. Conclusion: The array represents a valuable tool for the characterization of treatment fields in which high spatial resolution is required, together with the dosimetric performance of air vented ionization chambers. Such a technology would be particularly valuable in association with advanced treatment modalities such as rotational radiotherapy, stereotactic treatments (even with unflattened beam qualities) and proton therapy, due to the insensitivity of the chambers on dose per pulse. In the future, a two dimensional prototype based on this technology will be

  3. Advances of Precise Radiotherapy for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xin WANG

    2011-11-01

    Full Text Available At present lung tumor radiation therapy has entered the accurate radiotherapy era. Precise radiotherapy includes intensity modulated radiotherapy (IMRT, image-guided radiotherapy (IGRT and stereotactic body radiotherapy (SBRT. During the process of implementing precise radiotherapy, these problems should be fully considered to ensure executing precise radiotherapy accurately: patient positioning, controlling of the lung tumor motion, selecting of image techniques, PTV margin, dose prescription and reporting, arrangement of beams, controlling of dose volume and treatment delivering.

  4. Prediction of lung density changes after radiotherapy by cone beam computed tomography response markers and pre-treatment factors for non-small cell lung cancer patients

    DEFF Research Database (Denmark)

    Bernchou, Uffe; Hansen, Olfred; Schytte, Tine; Bertelsen, Anders; Hope, Andrew; Moseley, Douglas; Brink, Carsten

    2015-01-01

    BACKGROUND AND PURPOSE: This study investigates the ability of pre-treatment factors and response markers extracted from standard cone-beam computed tomography (CBCT) images to predict the lung density changes induced by radiotherapy for non-small cell lung cancer (NSCLC) patients. METHODS AND...... MATERIALS: Density changes in follow-up computed tomography scans were evaluated for 135 NSCLC patients treated with radiotherapy. Early response markers were obtained by analysing changes in lung density in CBCT images acquired during the treatment course. The ability of pre-treatment factors and CBCT...... markers to predict lung density changes induced by radiotherapy was investigated. RESULTS: Age and CBCT markers extracted at 10th, 20th, and 30th treatment fraction significantly predicted lung density changes in a multivariable analysis, and a set of response models based on these parameters were...

  5. External Beam Radiotherapy in the Management of Low Grade Astrocytoma of the Brain

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ha Jung [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2009-03-15

    This study was designed to evaluate the effectiveness of postoperative radiotherapy for patients with low-grade astrocytomas and to define an optimal radiotherapeutic regimen and prognostic factors. A total of 69 patients with low-grade astrocytomas underwent surgery and postoperative radiotherapy immediately following surgery at our institution between October 1989 and September 2006. The median patient age was 36 years. Forty-one patients were 40 years or younger and 28 patients were 41 years or older. Fourteen patients underwent a biopsy alone and the remaining 55 patients underwent a subtotal resection. Thirty-nine patients had a Karnofsky performance status of less than 80% and 30 patients had a Karnofsky performance status greater than 80%. Two patients were treated with whole brain irradiation followed by a coned down boost field to the localized area. The remaining 67 patients were treated with a localized field with an appropriate margin. Most of the patients received a dose of 50{approx}55 Gy and majority of the patients were treated with a dose of 54 Gy. The overall 5-year and 7-year survival rates for all of the 69 patients were 49% and 44%, respectively. Corresponding disease free survival rates were 45% and 40%, respectively. Patients who underwent a subtotal resection showed better survival than patients who underwent a biopsy alone. The overall 5-year survival rates for patients who underwent a subtotal resection and patients who underwent a biopsy alone were 57% and 38%, respectively (p<0.05). Forty-one patients who were 40 years or younger showed a better overall 5-year survival rate as compared with 28 patients who were 41 years or older (56% versus 40%, p<0.05). The overall 5-year survival rates for 30 patients with a Karnofsky performance status greater than 80% and 39 patients with a Karnofsky performance status less than 80% were 51% and 47%, respectively. This finding was not statistically significant. Although one patient was not able to

  6. Diode In-vivo Dosimetry for External Beam Radiotherapy: Patient Data Analysis

    International Nuclear Information System (INIS)

    In-vivo dosimetry is known as simple and reliable method for checking the final accuracy of the dose delivered in external radiotherapy making a supplement to the regular quality control. Entrance dose measurements in the beginning of the treatment assure detection of major errors that can affect the therapy outcome. Silicon diodes are often the detectors of choice for their ability of real time dose measurements and the simplicity of use. There are many publications describing the procedures for the implementation of in-vivo dosimetry. Routine in-vivo dosimetry has been introduced in our department after initial procedures including physical characterization, calibration and determination of correction factors for the detectors in use. This work presents patient data analysis with more than 700 field measurements taken in last 2 years period

  7. Dose differences in intensity-modulated radiotherapy plans calculated with pencil beam and Monte Carlo for lung SBRT.

    Science.gov (United States)

    Liu, Han; Zhuang, Tingliang; Stephans, Kevin; Videtic, Gregory; Raithel, Stephen; Djemil, Toufik; Xia, Ping

    2015-01-01

    For patients with medically inoperable early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy, early treatment plans were based on a simpler dose calculation algorithm, the pencil beam (PB) calculation. Because these patients had the longest treatment follow-up, identifying dose differences between the PB calculated dose and Monte Carlo calculated dose is clinically important for understanding of treatment outcomes. Previous studies found significant dose differences between the PB dose calculation and more accurate dose calculation algorithms, such as convolution-based or Monte Carlo (MC), mostly for three-dimensional conformal radiotherapy (3D CRT) plans. The aim of this study is to investigate whether these observed dose differences also exist for intensity-modulated radiotherapy (IMRT) plans for both centrally and peripherally located tumors. Seventy patients (35 central and 35 peripheral) were retrospectively selected for this study. The clinical IMRT plans that were initially calculated with the PB algorithm were recalculated with the MC algorithm. Among these paired plans, dosimetric parameters were compared for the targets and critical organs. When compared to MC calculation, PB calculation overestimated doses to the planning target volumes (PTVs) of central and peripheral tumors with different magnitudes. The doses to 95% of the central and peripheral PTVs were overestimated by 9.7% ± 5.6% and 12.0% ± 7.3%, respectively. This dose overestimation did not affect doses to the critical organs, such as the spinal cord and lung. In conclusion, for NSCLC treated with IMRT, dose differences between the PB and MC calculations were different from that of 3D CRT. No significant dose differences in critical organs were observed between the two calculations. PMID:26699560

  8. The effects of intraoperative electron-beam radiotherapy on the incidence of postoperative complications in patients with unresectable pancreatic cancer

    International Nuclear Information System (INIS)

    Introduction. Intraoperative electron-beam radiotherapy (IOERT) may improve treatment results in patients with pancreatic cancer. However, due to the potential risk of damage to the tumor surrounding tissues, the key-element of the proposed treatment regimen is its safety evaluation. The aim of the study was to evaluate the safety of IOERT in patients with locally advanced, unresectable pancreatic cancer. Methods. The analysis of postoperative outcomes in 97 patients with locally advanced, unresectable pancreatic cancer, including 36 patients undergoing IOERT, was performed. Potential risk factors for postoperative morbidity were evaluated with univariate and multivariate analyses. Results. The IOERT significantly prolonged duration of surgery from 165 ±47 to 222 ±55 minutes (P=0.001) and increased the percentage of patients requiring blood transfusions (from 7% to 19%; P=0.053). Postoperative complications were found in 8 of 36 (22%) patients subjected to IOERT and 21 of 61 (34%) undergoing surgery without radiotherapy (P=0.204). Mortality rates were 3% and 8%, respectively. The incidence of surgical (IOERT 11%, no IOERT 20%; P=0.272) and general (IOERT 14%, no IOERT 20%; P=0.469) complications was similar in both groups. The multivariate analysis of potential variables influencing early postoperative outcome identified preoperative endoscopic biliary drainage (Odds Ratio 2.93; 95% CI 1.02-8.41) and enteric or biliary bypass procedure (Odds Ratio 3.84; 95% CI 1.24-11.97) as the only independent risk factors for complications. Conclusions. IOERT does not increase significantly the risk of postoperative complications in patients with locally advanced, unresectable pancreatic cancer. (authors)

  9. External beam radiotherapy for palliation of painful bone metastases: pooled data bioeffect dose response analysis of dose fractionation

    International Nuclear Information System (INIS)

    Bone metastases develop in up to 70% of newly diagnosed cancer patients and result in immobility, anxiety, and depression, severely diminishing the patients quality of life. Radiotherapy is a frequently used modality for bone metastasis and has been shown to be effective in reducing metastatic bone pain and in some instances, causing tumor shrinkage or growth inhibition. There is controversy surrounding the optimal fractionation schedule and total dose of external beam radiotherapy, despite many randomized trials and overviews addressing the issue. This study was undertaken to apply BED to clinical fractionation data of radiotherapeutic management of bone metastases in order to arrive at optimum BED values for acceptable level of response rate. A computerised literature search was conducted to identify all prospective clinical studies that addressed the issue of fractionation for the treatment of bone metastasis. The results of these studies were pooled together to form the database for the analysis. A total of 4111 number of patients received radiation dose ranging from 4 to 40.5 Gy in 1 to 15 fractions with dose per fraction ranging from 2 to 10 Gy. Single fraction treatments were delivered in 2013 patients and the dose varied from 4 to 10 Gy. Multi fraction treatments were delivered in 2098 patients and the dose varied from 15 to 40.5 Gy. The biological effective dose (BED) was evaluated for each fractionation schedule using the linear quadratic model and an / value of 10 Gy. Response rate increased significantly beyond a BED value of 14.4 Gy (p < 0.01). Based on our analysis and indications from the literature about higher retreatment and fracture rate of single fraction treatments, minimum BED value of 14.4 Gy is recommended. (authors)

  10. Development of a magnetic beam guiding system for tumor-specific radiotherapy using heavy, charged particles

    International Nuclear Information System (INIS)

    An active, magnetic beam guiding system was developed and tested for the purpose of enhanced and tumor-specific irradiation of irregularly shaped target volumina. Combining intensity-controlled wobbling in rapidly changing magnetic fields with the heavy-ion synchrotron's capacity of fast energy variation achieved a new technique allowing good range modulation. This technique allows the calculated dose distribution to be exactly matched to target contours, and at the same time guarantees best possible quality of the radiation beam, since there is no need for use of mechanical beam shaping members. The components of the scanning system and a specifically designed instrumentation and control concept for this configuration were integrated into the synchrotron's control system, so that there is now a system available offering free selection of beam characteristics combined with energy variation along with the pulsed operation of the accelerator. The system was tested at the biophysical measuring unit of the GSI implementing an elaborated irradiation method at this unit equipped with tools for physico-technical irradiation planning and performance. Methods were designed and tested for optimizing the beam path within a given contour, the optimization taking into account the effects of transmission functions of the scanner components on the results of radiation treatments. (orig.)

  11. Novel 3D conformal technique for treament of choroidal melanoma with external beam photon radiotherapy

    International Nuclear Information System (INIS)

    To report a 3D conformal radiotherapy (3D-CRT) technique that utilises a specific eye immobilisation and treatment set-up method as an alternative to stereotactic radiotherapy (SRT), for treatment of juxtapapillary choroidal melanoma (CM) and report early treatment outcomes of this technique. A contact lens and rod system was designed to provide eye immobilisation and a treatment reference point for 3D-CRT. The technique is described in detail in the body of the paper. A retrospective chart review was conducted to report freedom from local progression (FFLP) and radiation toxicity in a cohort of patients treated with a dose of 50Gy in five fractions. Eleven eligible patients with juxtapapillary CM were treated between 2003 and 2009. The median follow-up was 3.2 years (range 1.2–5.3). The FFLP was 100% (95% confidence interval 71.5–100). The reproducibility of the set-up and eye immobilisation for fractionation was excellent. The mean dose to the planning target volume was 51.4Gy (interquartilic range 51.0–51.9). Normal tissue dose constraints were achieved; however, the quality of the 3D-CRT plan was variable. The highest acute radiation toxicity score was Common Toxicity Criteria version 3 grade 1. Vision outcomes were poor. n this small series, a novel non-stereotactic technique was found to be an accurate method for the treatment of CM with a high rate of freedom from tumour progression, in keeping with the SRT series. The quality of the conformal plan was variable. Investigation of the optimal dose-fractionation schedule to minimise late radiation toxicity without compromise of tumour control is the focus of ongoing clinical research at our centre.

  12. Impact of Image Guidance on Outcomes After External Beam Radiotherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To verify whether rectal distention at the time of planning impacts outcomes in patients with localized prostate cancer treated with daily image guidance. Methods and Materials: Between 1998 and 2002, a total of 488 prostate cancer patients were treated with intensity-modulated radiotherapy. The radiation dose was 70 Gy delivered at 2.5 Gy per fraction in all cases. All cases were treated with a 4-mm margin posteriorly. In all cases the total rectal volume documented on the CT scan was used for treatment planning. No special bowel preparation instructions were given, either for the simulation or the daily treatments. Before each daily treatment, alignment of the prostate was performed with the B-mode acquisition and targeting (BAT) transabdominal ultrasound system. The median follow-up for all 488 patients was 60 months (range, 24-96 months). Results: For all patients the biochemical relapse-free survival (bRFS) rate at 5 years was 86%. The 5-year bRFS rate for the rectal distention 3, 50 to 3, and ≥100 cm3 groups was 90%, 83%, and 85%, respectively (p = 0.18). To adjust for other potential variables affecting bRFS rates, a multivariate time-to-failure analysis using the Cox proportional hazards model was performed. Rectal distention was not an independent predictor of biochemical failure on multivariate analysis (p = 0.80). Rectal distention was not a predictor of rectal or urinary toxicity. Conclusion: The use of daily image guidance eliminates errors such as rectal distention at the initial planning stage that can affect outcomes after radiotherapy for localized prostate cancer

  13. Image-Guided Radiotherapy for Liver Cancer Using Respiratory-Correlated Computed Tomography and Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Purpose: To evaluate a novel four-dimensional (4D) image-guided radiotherapy (IGRT) technique in stereotactic body RT for liver tumors. Methods and Materials: For 11 patients with 13 intrahepatic tumors, a respiratory-correlated 4D computed tomography (CT) scan was acquired at treatment planning. The target was defined using CT series reconstructed at end-inhalation and end-exhalation. The liver was delineated on these two CT series and served as a reference for image guidance. A cone-beam CT scan was acquired after patient positioning; the blurred diaphragm dome was interpreted as a probability density function showing the motion range of the liver. Manual contour matching of the liver structures from the planning 4D CT scan with the cone-beam CT scan was performed. Inter- and intrafractional uncertainties of target position and motion range were evaluated, and interobserver variability of the 4D-IGRT technique was tested. Results: The workflow of 4D-IGRT was successfully practiced in all patients. The absolute error in the liver position and error in relation to the bony anatomy was 8 ± 4 mm and 5 ± 2 mm (three-dimensional vector), respectively. Margins of 4-6 mm were calculated for compensation of the intrafractional drifts of the liver. The motion range of the diaphragm dome was reproducible within 5 mm for 11 of 13 lesions, and the interobserver variability of the 4D-IGRT technique was small (standard deviation, 1.5 mm). In 4 patients, the position of the intrahepatic lesion was directly verified using a mobile in-room CT scanner after application of intravenous contrast. Conclusion: The results of our study have shown that 4D image guidance using liver contour matching between respiratory-correlated CT and cone-beam CT scans increased the accuracy compared with stereotactic positioning and compared with IGRT without consideration of breathing motion

  14. Beyond D’Amico risk classes for predicting recurrence after external beam radiotherapy for prostate cancer: the Candiolo classifier

    International Nuclear Information System (INIS)

    The aim of this work is to develop an algorithm to predict recurrence in prostate cancer patients treated with radical radiotherapy, getting up to a prognostic power higher than traditional D’Amico risk classification. Two thousand four hundred ninety-three men belonging to the EUREKA-2 retrospective multi-centric database on prostate cancer and treated with external-beam radiotherapy as primary treatment comprised the study population. A Cox regression time to PSA failure analysis was performed in univariate and multivariate settings, evaluating the predictive ability of age, pre-treatment PSA, clinical-radiological staging, Gleason score and percentage of positive cores at biopsy (%PC). The accuracy of this model was checked with bootstrapping statistics. Subgroups for all the variables’ combinations were combined to classify patients into five different “Candiolo” risk-classes for biochemical Progression Free Survival (bPFS); thereafter, they were also applied to clinical PFS (cPFS), systemic PFS (sPFS) and Prostate Cancer Specific Survival (PCSS), and compared to D’Amico risk grouping performances. The Candiolo classifier splits patients in 5 risk-groups with the following 10-years bPFS, cPFS, sPFS and PCSS: for very-low-risk 90 %, 94 %, 100 % and 100 %; for low-risk 74 %, 88 %, 94 % and 98 %; for intermediate-risk 60 %, 82 %, 91 % and 92 %; for high-risk 43 %, 55 %, 80 % and 89 % and for very-high-risk 14 %, 38 %, 56 % and 70 %. Our classifier outperforms D’Amico risk classes for all the end-points evaluated, with concordance indexes of 71.5 %, 75.5 %, 80 % and 80.5 % versus 63 %, 65.5 %, 69.5 % and 69 %, respectively. Our classification tool, combining five clinical and easily available parameters, seems to better stratify patients in predicting prostate cancer recurrence after radiotherapy compared to the traditional D’Amico risk classes. The online version of this article (doi:10.1186/s13014-016-0599-5) contains supplementary material, which

  15. Monte Carlo investigations of the effect of beam divergence on thick, segmented crystalline scintillators for radiotherapy imaging

    Science.gov (United States)

    Wang, Yi; El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua

    2010-07-01

    The use of thick, segmented scintillators in electronic portal imagers offers the potential for significant improvement in x-ray detection efficiency compared to conventional phosphor screens. Such improvement substantially increases the detective quantum efficiency (DQE), leading to the possibility of achieving soft-tissue visualization at clinically practical (i.e. low) doses using megavoltage (MV) cone-beam computed tomography. While these DQE increases are greatest at zero spatial frequency, they are diminished at higher frequencies as a result of degradation of spatial resolution due to lateral spreading of secondary radiation within the scintillator—an effect that is more pronounced for thicker scintillators. The extent of this spreading is even more accentuated for radiation impinging the scintillator at oblique angles of incidence due to beam divergence. In this paper, Monte Carlo simulations of radiation transport, performed to investigate and quantify the effects of beam divergence on the imaging performance of MV imagers based on two promising scintillators (BGO and CsI:Tl), are reported. In these studies, 10-40 mm thick scintillators, incorporating low-density polymer, or high-density tungsten septal walls, were examined for incident angles corresponding to that encountered at locations up to ~15 cm from the central beam axis (for an imager located 130 cm from a radiotherapy x-ray source). The simulations demonstrate progressively more severe spatial resolution degradation (quantified in terms of the effect on the modulation transfer function) as a function of increasing angle of incidence (as well as of the scintillator thickness). Since the noise power behavior was found to be largely independent of the incident angle, the dependence of the DQE on the incident angle is therefore primarily determined by the spatial resolution. The observed DQE degradation suggests that 10 mm thick scintillators are not strongly affected by beam divergence for

  16. Measurements of LET Spectra of the JINR Phasotron Radiotherapy Proton Beam

    Czech Academy of Sciences Publication Activity Database

    Kubančák, Ján; Molokanov, A. G.

    2013-01-01

    Roč. 2013, č. 6 (2013), s. 90-92. ISSN 1562-6016 R&D Projects: GA MŠk LA08002 Institutional support: RVO:61389005 Keywords : LET spectra * proton beam Subject RIV: BO - Biophysics Impact factor: 0.102, year: 2013 http://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_6/article_2013_6_90.pdf

  17. Monte Carlo Commissioning of Low Energy Electron Radiotherapy Beams using NXEGS Software

    Directory of Open Access Journals (Sweden)

    2004-06-01

    Full Text Available This work is a report on the commissioning of low energy electron beams of a medical linear accelerator for Monte Carlo dose calculation using NXEGS software (NXEGS version 1.0.10.0, NX Medical Software, LLC. A unique feature of NXEGS is automated commissioning, a process whereby a combination of analytic and Monte Carlo methods generates beam models from dosimetric data collected in a water phantom. This study uses NXEGS to commission 6, 9, and 12 MeV electron beams of a Varian Clinac 2100C using three applicators with standard inserts. Central axis depth-dose, primary axis and diagonal beam profiles, and output factors are the measurements necessary for commissioning of the code. We present a comparison of measured dose distributions with the distributions generated by NXEGS, using confidence limits on seven measures of error. We find that confidence limits are typically less than 3% or 3 mm, but increase with increasing source to surface distance (SSD and depth at or beyond R50. We also investigate the dependence of NXEGS' performance on the size and composition of data used to commission the program, finding a weak dependence on number of dose profiles in the data set, but finding also that commissioning data need be measured at only two SSDs.

  18. Evaluation of a dose distribution calcul algorithm in patients treated photons beams in radiotherapy

    International Nuclear Information System (INIS)

    The acceptance criteria proposed by J. Van Dyck et. al. is fulfilled in the case of symmetrical fields, while in the asymmetric ones a particular evaluation is required, taking in counts the possibility of a flattening filter influence of beam quality outside the central axis

  19. Multioobjective inverse planning for external beam radiotherapy: decoupling the optimization and decision processes

    International Nuclear Information System (INIS)

    Inverse planning in radiation therapy is a trial and error process and many studies have been published which consider different algorithms, constraints, cases and objective functions. These planning algorithms combine in a specific way the objectives that are in conflict but do not provide the information that is necessary to obtain an optimal solution. Only in the last few years have significant increases in the availability of computing power enabled inverse planning to be performed to provide the information necessary to understand the possibilities of all dose distributions that can be obtained. We consider in this paper this multiobjective approach for external beam radiation therapy inverse planning that decouples the optimization and decision making processes. Inverse planning can now consider the number of beams, their orientation and optimal beam fluences and their dependence on importance factors. In this way it is possible to exploit the possibilities of advanced technologies such as intensity modulated radiation therapy (IMRT) or tomotherapy. Using data mining and visualization techniques a solution can be selected that requires, if possible, a small number of beams, and that also provides the required dose delivery to the target. Additionally, it allows reduction of the dose in the healthy tissue, especially in organs at risk, in such a way that the compromise we have to make for all the objectives in comparison to the best individual values is as small as possible. (author)

  20. Patient safety in external beam radiotherapy – Guidelines on risk assessment and analysis of adverse error-events and near misses: Introducing the ACCIRAD project

    International Nuclear Information System (INIS)

    In 2011 the European Commission launched a tender to develop guidelines for risk analysis of accidental and unintended exposures in external beam radiotherapy. This tender was awarded to a consortium of 6 institutions, including the ESTRO, in late 2011. The project, denominated “ACCIRAD”, recently finished the data collection phase. Data were collected by surveys administered in 38 European countries. Results indicate non-uniform implementation of event registration and classification, as well as incomplete or zero implementation of risk assessment and events analysis. Based on the survey results and analysis thereof, project leaders are currently drafting proposed guidelines entitled “Guidelines for patient safety in external beam radiotherapy – Guidelines on risk assessment and analysis of adverse-error events and near misses”. The present article describes the aims and current status of the project, including results of the surveys

  1. Multi-institutional phase II trial of intermediate risk prostate cancer treated with combination of external beam radiotherapy and high dose rate iridium brachytherapy

    International Nuclear Information System (INIS)

    A total of 84 intermediate risk prostate cancer (T2b or T2c, or 10< prostate specific antigen (PSA) ≤20 ng/ml, or Gleason score =7) patients were enrolled from five institutions. External beam radiotherapy were 3 Gy x 13 fraction =39 Gy and high dose rate iridium brachytherapy were 9 Gy x 2=18 Gy in one or two days. Primary endpoint of this study is the incidence of grade 3 late toxicity (NCI-CTC Ver.3) and secondary endpoint are acute toxicity and PSA relapse free rate. No grade 3 toxicity was observed and only one patient among 84 patients is noted PSA failure. Combined treatment of external beam radiotherapy and high dose rate iridium brachytherapy against intermediate risk of prostate cancer is safe and effective treatment. (author)

  2. External beam irradiation of craniopharyngiomas: long-term analysis of tumor control and morbidity

    International Nuclear Information System (INIS)

    Purpose: To delineate the long-term control and morbidity with external beam radiotherapy (EBRT) of craniopharyngiomas. Methods and Materials: Between 1971 and 1992, 24 craniopharyngioma patients underwent EBRT at the University of Pittsburgh. Most (19 of 24) were treated within 1-3 months after subtotal resection. The other prior surgical procedures were biopsy (n = 2) and gross total resection (n = 1); 2 patients did not undergo any surgical procedure. The median follow-up was 12.1 years. The median patient age was 29 years (range 5-69). The total radiation doses varied from 36 to 70 Gy (median 59.75). The normalized total dose (NTD, biologically equivalent dose given in 2 Gy/fraction [α/β ratio = 2]) varied from 28 to 83 Gy (median 55.35). Results: The actuarial survival rate at 10 and 20 years was 100% and 92.3%, respectively. The actuarial local control rate at 10 and 20 years was 89.1% and 54.0%, respectively. No local failures occurred with doses ≥60 Gy (n=12) or NTDs ≥55 Gy. The complication-free survival rate at 10 and 20 years was 80.1% and 72.1%, respectively. No complications were noted with an NTD of ≤55 Gy. The actuarial survival free from any adverse outcome (recurrence or complication) was 70.1% and 31.8% at 10 and 20 years, respectively. The adverse outcome-free survival appeared optimized (at 73%) with an NTD of 55-63 Gy. Multivariate analysis found that tumor control correlated significantly with the total dose (p=0.02), treatment complications with NTD (p=0.008), and adverse outcome with hypopituitarism on presentation (p=0.03). Conclusion: We recommend treating craniopharyngioma with 1.6-1.7-Gy dose fractions to 60 Gy to optimize outcome from EBRT

  3. A procedure for calculation of monitor units for passively scattered proton radiotherapy beams.

    Science.gov (United States)

    Sahoo, Narayan; Zhu, X Ronald; Arjomandy, Bijan; Ciangaru, George; Lii, MingFwu; Amos, Richard; Wu, Richard; Gillin, Michael T

    2008-11-01

    The purpose of this study is to validate a monitor unit (MU) calculation procedure for passively scattered proton therapy beams. The output dose per MU (d/MU) of a therapeutic radiation beam is traditionally calibrated under specific reference conditions. These conditions include beam energy, field size, suitable depth in water or water equivalent phantom in a low dose gradient region with known relative depth dose, and source to point of calibration distance. Treatment field settings usually differ from these reference conditions leading to a different d/MU that needs to be determined for delivering the prescribed dose. For passively scattered proton beams, the proton specific parameters, which need to be defined, are related to the energy, lateral scatterers, range modulating wheel, spread out Bragg peak (SOBP) width, thickness of any range shifter, the depth dose value relative to the normalization point in the SOBP, and scatter both from the range compensator and inhomogeneity in the patient. Following the custom for photons or electrons, a set of proton dosimetry factors, representing the changes in the d/MU relative to a reference condition, can be defined as the relative output factor (ROF), SOBP factor (SOBPF), range shifter factor (RSF), SOBP off-center factor (SOBPOCF), off-center ratio (OCR), inverse square factor (ISF), field size factor (FSF), and compensator and patient scatter factor (CPSF). The ROF, SOBPF, and RSF are the major contributors to the d/MU and were measured using an ion chamber in water tank during the clinical commissioning of each beam to create a dosimetry beam data table to be used for calculating the monitor units. The following simple formula is found to provide an independent method to determine the d/MU at the point of interest (POI) in the patient, namely, (d/MU) = ROF SOBPF. RSF SOBPOCF.OCR.FSF.ISF.CPSF. The monitor units for delivering the intended dose (D) to the POI can be obtained from MU = D / (d/MU). The accuracy and

  4. A procedure for calculation of monitor units for passively scattered proton radiotherapy beams

    International Nuclear Information System (INIS)

    The purpose of this study is to validate a monitor unit (MU) calculation procedure for passively scattered proton therapy beams. The output dose per MU (d/MU) of a therapeutic radiation beam is traditionally calibrated under specific reference conditions. These conditions include beam energy, field size, suitable depth in water or water equivalent phantom in a low dose gradient region with known relative depth dose, and source to point of calibration distance. Treatment field settings usually differ from these reference conditions leading to a different d/MU that needs to be determined for delivering the prescribed dose. For passively scattered proton beams, the proton specific parameters, which need to be defined, are related to the energy, lateral scatterers, range modulating wheel, spread out Bragg peak (SOBP) width, thickness of any range shifter, the depth dose value relative to the normalization point in the SOBP, and scatter both from the range compensator and inhomogeneity in the patient. Following the custom for photons or electrons, a set of proton dosimetry factors, representing the changes in the d/MU relative to a reference condition, can be defined as the relative output factor (ROF), SOBP factor (SOBPF), range shifter factor (RSF), SOBP off-center factor (SOBPOCF), off-center ratio (OCR), inverse square factor (ISF), field size factor (FSF), and compensator and patient scatter factor (CPSF). The ROF, SOBPF, and RSF are the major contributors to the d/MU and were measured using an ion chamber in water tank during the clinical commissioning of each beam to create a dosimetry beam data table to be used for calculating the monitor units. The following simple formula is found to provide an independent method to determine the d/MU at the point of interest (POI) in the patient, namely, (d/MU)=ROF·SOBPF·RSF·SOBPOCF·OCR·FSF·ISF·CPSF. The monitor units for delivering the intended dose (D) to the POI can be obtained from MU=D divide (d/MU). The accuracy

  5. Photon neutron mixed-beam radiotherapy of locally advanced prostate cancer

    International Nuclear Information System (INIS)

    Purpose: In this article we present the results of mixed-beam, photon/neutron radiation therapy in 45 patients with locally advanced, bulky, or postoperative recurrent prostate cancer treated at the University of Chicago between 1978 and 1991. Survival, disease-free survival, local control, and long-term complications are analyzed in detail. Methods and Materials: Between 1978 and 1991, 45 patients with locally advanced (> 5 cm Stage B2, Stage C, or Stage D1) prostate cancer underwent mixed-beam (photon/neutron) radiation therapy. Forty percent of the treatment was delivered with neutron irradiation at either the University of Chicago or Fermilab. Sixty percent of treatment was delivered with photons at the University of Chicago. Initially, the whole pelvis was irradiated to 50 photon Gy equivalent. This was followed by a boost to the prostate for an additional 20 photon Gy equivalent. Results: The median follow-up for patients in this series is 72 months. The overall 5-year actuarial survival was 72%, and the 5-year disease-free survival was 45%. Thus far, 18 patients have died. Eleven patients have died from prostate cancer and 7 from other medical illness. Twenty-seven patients are alive, and 12 of these patients have recurrent and or metastatic disease. The local control rate was 89% (40 out of 45). Histologic material was available on 18 patients following treatment (i.e., prostate biopsy in 16 patients and autopsy in 2 patients) and was negative for carcinoma in 13 (72%). Significant Grade 3-5 complications occurred in 36% (16 out of 45) of the patients treated with mixed-beam radiation therapy and were related to dose and beam quality. Factors related to survival, disease-free survival, local control, and complications are analyzed. Conclusions: The survival and local control results of mixed-beam radiation therapy at the University of Chicago appear to be superior to those series using photon radiation in patients with locally advanced prostate carcinoma

  6. Real-Time Study of Prostate Intrafraction Motion During External Beam Radiotherapy With Daily Endorectal Balloon

    International Nuclear Information System (INIS)

    Purpose: To prospectively investigate intrafraction prostate motion during radiofrequency-guided prostate radiotherapy with implanted electromagnetic transponders when daily endorectal balloon (ERB) is used. Methods and Materials: Intrafraction prostate motion from 24 patients in 787 treatment sessions was evaluated based on three-dimensional (3D), lateral, cranial-caudal (CC), and anterior-posterior (AP) displacements. The mean percentage of time with 3D, lateral, CC, and AP prostate displacements >2, 3, 4, 5, 6, 7, 8, 9, and 10 mm in 1 minute intervals was calculated for up to 6 minutes of treatment time. Correlation between the mean percentage time with 3D prostate displacement >3 mm vs. treatment week was investigated. Results: The percentage of time with 3D prostate movement >2, 3, and 4 mm increased with elapsed treatment time (p 5 mm was independent of elapsed treatment time (p = 0.11). The overall mean time with prostate excursions >3 mm was 5%. Directional analysis showed negligible lateral prostate motion; AP and CC motion were comparable. The fraction of time with 3D prostate movement >3 mm did not depend on treatment week of (p > 0.05) over a 4-minute mean treatment time. Conclusions: Daily endorectal balloon consistently stabilizes the prostate, preventing clinically significant displacement (>5 mm). A 3-mm internal margin may sufficiently account for 95% of intrafraction prostate movement for up to 6 minutes of treatment time. Directional analysis suggests that the lateral internal margin could be further reduced to 2 mm.

  7. On the feasibility of dose quantification with in-beam PET data in radiotherapy with {sup 12}C and proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, K.

    2004-11-01

    The physical advantages of light ions in combination with technological advances like intensity controlled raster scanning offer a unique tool for high precision radiotherapy. This is particularly applied to delicate clinical situations of inoperable tumours growing in close proximity to critical organs. The potential benefit of such a high selectivity of ion beam therapy demands the complex and strictly conformal dose delivery to be monitored in-situ and non-invasively in three dimensions. In contrast to conventional photon radiation, light ions exhibit a well defined range which determines the position of the maximum dose delivery in the inhomogeneous tumour target. This requires a monitoring technology along the ion trajectory offering millimetre precision. Additionally, accurate control of the lateral position of the irradiation field within the patient can be a crucial issue for the frequent case of portals passing adjacent to organs at risk. At present, positron emission tomography (PET) represents the only feasible method fulfilling these requirements. For this purpose a dedicated in-beam positron camera has been completely integrated into the experimental heavy ion treatment site at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. This allows to measure the minor amount of {beta}{sup +}-activity produced in nuclear reactions between the projectiles and the target nuclei of the tissue simultaneously to the tumour irradiation. The emitted signal is correlated but not directly proportional to the spatial pattern of the delivered dose. Hence, therapy control is achieved by comparing the measured {beta}{sup +}-activity distribution with a prediction based on the treatment plan and the specific time course of the particular irradiation. (orig.)

  8. Enteric-coated, highly standardized cranberry extract reduces risk of UTIs and urinary symptoms during radiotherapy for prostate carcinoma

    International Nuclear Information System (INIS)

    Cranberry (Vaccinium macrocarpon) proanthocyanidins can interfere with adhesion of bacteria to uroepithelial cells, potentially preventing lower urinary tract infections (LUTIs). Because LUTIs are a common side effect of external beam radiotherapy (EBRT) for prostate cancer, we evaluated the clinical efficacy of enteric-coated tablets containing highly standardized V. msacrocarpon (ecVM) in this condition. A total of 370 consecutive patients were entered into this study. All patients received intensity-modulated radiotherapy for prostate cancer; 184 patients were also treated with ecVM while 186 served as controls. Cranberry extract therapy started on the simulation day, at which time a bladder catheterization was performed. During EBRT (over 6–7 weeks), all patients underwent weekly examination for urinary tract symptoms, including regular urine cultures during the treatment period. Compliance was excellent, with no adverse effects or allergic reactions being observed, apart from gastric pain in two patients. In the cranberry cohort (n = 184), 16 LUTIs (8.7%) were observed, while in the control group (n = 186) 45 LUTIs (24.2%) were recorded. This difference was statistically significant. Furthermore, lower rates of nocturia, urgency, micturition frequency, and dysuria were observed in the group that received cranberry extract. Cranberry extracts have been reported to reduce the incidence of LUTIs significantly in women and children. Our data extend these results to patients with prostate cancer undergoing irradiation to the pelvis, who had a significant reduction in LUTIs compared with controls. These results were accompanied by a statistically significant reduction in urinary tract symptoms (dysuria, nocturia, urinary frequency, urgency), suggesting a generally protective effect of cranberry extract on the bladder mucosa

  9. Prognostic analysis of uterine cervical cancer treated with postoperative radiotherapy: importance of positive or close parametrial resection margin

    International Nuclear Information System (INIS)

    To analyze prognostic factors for locoregional recurrence (LRR), distant metastasis (DM), and overall survival (OS) in cervical cancer patients who underwent radical hysterectomy followed by postoperative radiotherapy (PORT) in a single institute. Clinicopathologic data of 135 patients with clinical stage IA2 to IIA2 cervical cancer treated with PORT from 2001 to 2012 were reviewed, retrospectively. Postoperative parametrial resection margin (PRM) and vaginal resection margin (VRM) were investigated separately. The median treatment dosage of external beam radiotherapy (EBRT) to the whole pelvis was 50.4 Gy in 1.8 Gy/fraction. High-dose-rate vaginal brachytherapy after EBRT was given to patients with positive or close VRMs. Concurrent platinum-based chemoradiotherapy (CCRT) was administered to 73 patients with positive resection margin, lymph node (LN) metastasis, or direct extension of parametrium. Kaplan-Meier method and log-rank test were used for analyzing LRR, DM, and OS; Cox regression was applied to analyze prognostic factors. The 5-year disease-free survival was 79% and 5-year OS was 91%. In univariate analysis, positive or close PRM, LN metastasis, direct extension of parametrium, lymphovascular invasion, histology of adenocarcinoma, and chemotherapy were related with more DM and poor OS. In multivariate analysis, PRM and LN metastasis remained independent prognostic factors for OS. PORT after radical hysterectomy in uterine cervical cancer showed excellent OS in this study. Positive or close PRM after radical hysterectomy in uterine cervical cancer correlates with poor prognosis even with CCRT. Therefore, additional treatments to improve local control such as radiation boosting need to be considered

  10. Prognostic analysis of uterine cervical cancer treated with postoperative radiotherapy: importance of positive or close parametrial resection margin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yi Jun; Lee, Kyung Ja; Park, Kyung Ran [Dept. of Radiation Oncology, (Korea, Republic of); and others

    2015-06-15

    To analyze prognostic factors for locoregional recurrence (LRR), distant metastasis (DM), and overall survival (OS) in cervical cancer patients who underwent radical hysterectomy followed by postoperative radiotherapy (PORT) in a single institute. Clinicopathologic data of 135 patients with clinical stage IA2 to IIA2 cervical cancer treated with PORT from 2001 to 2012 were reviewed, retrospectively. Postoperative parametrial resection margin (PRM) and vaginal resection margin (VRM) were investigated separately. The median treatment dosage of external beam radiotherapy (EBRT) to the whole pelvis was 50.4 Gy in 1.8 Gy/fraction. High-dose-rate vaginal brachytherapy after EBRT was given to patients with positive or close VRMs. Concurrent platinum-based chemoradiotherapy (CCRT) was administered to 73 patients with positive resection margin, lymph node (LN) metastasis, or direct extension of parametrium. Kaplan-Meier method and log-rank test were used for analyzing LRR, DM, and OS; Cox regression was applied to analyze prognostic factors. The 5-year disease-free survival was 79% and 5-year OS was 91%. In univariate analysis, positive or close PRM, LN metastasis, direct extension of parametrium, lymphovascular invasion, histology of adenocarcinoma, and chemotherapy were related with more DM and poor OS. In multivariate analysis, PRM and LN metastasis remained independent prognostic factors for OS. PORT after radical hysterectomy in uterine cervical cancer showed excellent OS in this study. Positive or close PRM after radical hysterectomy in uterine cervical cancer correlates with poor prognosis even with CCRT. Therefore, additional treatments to improve local control such as radiation boosting need to be considered.

  11. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60Co γ radiation, ten X-ray beam qualities between TPR20,10=0.639 and 0.802 and ten electron beam qualities between R50=1.75 gcm-2 and 8.54 gcm-2. A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60Co to TPR20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated kQ factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given mass. This

  12. A Monte Carlo simulation of fast neutron beams used for radiotherapy: Pt. 1

    International Nuclear Information System (INIS)

    A Monte Carlo code (NCF) has been developed to calculate the neutron vector flux emerging from a collimator of given composition and geometry and is applied here to the collimator of a Marconi Avionics Hiletron (d,t) facility using up to 107 neutron histories. A second code (MCCND) was used to calculate the dose deposited in a tissue-equivalent phantom using as input the neutron vector flux output from the collimator code NCF. A collimated (d,t) beam of field size 7 cm x 7 cm and an SSD of 0.8 m was assumed and up to 107 neutron histories were followed. Calculations were made of the neutron and gamma dose in the field (0-0.038 m) down the beam axis, the dose profile at the surface, the dose: LET distribution along and across the beam, the dose-and track-averaged LET values and the absolute kerma and dose rates. Calculations predicted that a rather larger fraction of total dose comes from heavy recoil events than is suggested by some, but not all, of the previous calculations. The authors believe that previous experimental measurements have also tended to underestimate high LET contributions. (author)

  13. External-beam radiotherapy as preparative regimen for hepatocyte transplantation after partial hepatectomy

    International Nuclear Information System (INIS)

    Purpose: The transplantation of donor hepatocytes is considered a promising option to correct chronic liver failure through repopulation of the diseased organ. This study describes a novel selective external-beam irradiation technique as a preparative regimen for hepatocyte transplantation. Methods and Materials: Livers of dipeptidylpeptidase IV (DPPIV)-deficient rats were preconditioned with external-beam single-dose irradiation (25 Gy) delivered to two thirds of the liver. Four days later, a one-third partial hepatectomy (PH) was performed to resect the untreated liver section, and 15 million wild-type (DPPIV+) hepatocytes were transplanted via the spleen into the recipient livers. The degree of donor-cell integration and growth was studied 8 h, 3 days, and 5 and 12 weeks after transplantation. Results: Transplanted hepatocytes integrated rapidly into the irradiated liver and proliferated as clusters, finally repopulating the host liver to approximately 20% hepatocyte mass. After 12 weeks, donor cells and their numerous descendents were fully integrated and expressed functional markers to the same extent as host hepatocytes. Conclusions: We demonstrate that external-beam liver irradiation is sufficient to achieve partial repopulation of the host liver after hepatocyte transplantation, under the additional stimulus of one-third PH. The method described has potentially good prospects for its application in a clinically viable form of treatment

  14. Dosimetric consequences of tumor volume changes after kilovoltage cone-beam computed tomography for non-operative lung cancer during adaptive intensity-modulated radiotherapy or fractionated stereotactic radiotherapy