WorldWideScience

Sample records for beam processing technology

  1. Status of electron beam processing technology in Malaysia

    International Nuclear Information System (INIS)

    Ghazali, Zulkafli; Dahlan, Khairul Zaman; Aiasah, S.H.; Khomsaton, A.B.; Ting, T.M.

    2003-01-01

    The electron beam processing in Malaysia starting in 1991 at MINT (Malaysian Institute for Nuclear Technology Research) has been focussed on medical product sterilization, curing of surface coating and polymer modifications. Subsequent installation of accelerators by private companies promoted the development of radiation processing technologies for the use of production of heat-shrinkable products, pilot-scale flue gas purification, as well as wires, cables, tubes and hydrogels. Decomposition of a wide range of volatile organic compounds from industrial exhausts (car painting lines, volatile dioxin and furan from municipal waste incinerators) and purification of liquid wastewater and drinking water are also being under R and D work. Malaysia will continue to play an active part in the program on radiation technology to strengthen environmentally sustainable development in line with FNCA objectives. (S. Ohno)

  2. METI/NEDO Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Yamada, Isao; Matsuo, Jiro; Toyoda, Noriaki

    2003-01-01

    Since the initial study of gas cluster ion beams (GCIB) was started in the Ion Beam Engineering Experimental Laboratory of Kyoto University, more than 15 years have passed. Some of the results of that study have already been applied for industrial use. Unique characteristics of gas cluster ion bombardment have been found to offer potential for various other industrial applications. The impact of an accelerated cluster ion upon a target surface imparts very high energy densities into the impact area and produces non-linear effects that are not associated with the impacts of atomic ions. Among prospective applications for these effects are included shallow ion implantation, high rate sputtering, surface cleaning and smoothing, and low temperature thin film formation

  3. Electron beam processing in food industry - technology and costs

    International Nuclear Information System (INIS)

    Gallien, Cl.L.; Ferradini, C.; Paquin, J.; Sadat, T.

    1985-01-01

    After nearly 40 years of research and thousands of positive experimentations, the fact that ionising radiations could be used for food preservation has been taken into account by the joint Expert Committee of the UN agencies, FAO, WHO and IAEA, who recommended this type of treatment in 1981 allowing doses up to 10 kGy. The market for irradiated food is actually small, but it could develop rapidly. National authorities who establish the regulations are becoming very active: so, in 1984, the US FDA has issued a proposed rule to regulate the commercial applications of food irradiation. It is timely to propose a MODEL that should really convince administration, food industry executives and consumers organizations that food irradiation is more than academic speculation: an industrial processing and an economical imperative. To this aim, we have defined an integrated model assembling (a) a sample product; (b) the optimal treatment conditions for this product, including a reliable dosimetry control system; and (c) a most efficient and competitive treatment unit that can suit a wide range of industrial needs. (author)

  4. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Yamada, Isao; Toyoda, Noriaki; Matsuo, Jiro

    2008-01-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R and D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  5. Focused ion beam technology

    International Nuclear Information System (INIS)

    Gamo, K.

    1993-01-01

    Focussed ion beam (FIB) technology has the advantage of being a maskless process compatible with UHV processing. This makes it attractive for use in in situ processing and has been applied to the fabrication of various mesoscopic structures. The present paper reviews these results whilst putting emphasis on in situ processing by a combined FIB and molecular beam epitaxy system. The typical performance of present FIB systems is also presented. In order to utilize the potential advantages of FIB processing, reduction of damage and improvement of throughput are important, and much effort has been devoted to developing processing techniques which require a reduced dose. The importance of low-energy FIB is discussed. (author)

  6. Development of high-current pulsed heavy-ion-beam technology for applications to materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroaki; Ochiai, Yasushi; Masugata, Katsumi [University of Toyama, Toyama (Japan)

    2011-12-15

    Development of intense pulsed heavy ion beam technology for applications to materials processing is described. We have developed a magnetically insulated ion diode for the generation of intense pulsed metallic ion beams in which a vacuum arc plasma gun is used as the ion source. When the ion diode was successfully operated at a diode voltage of 220 kV and a diode current of 10 kA, an ion beam with an ion current density of >200 A/cm{sup 2} and a pulse duration of 40 ns was obtained. The ion composition was evaluated by using a Thomson parabola spectrometer, and the ion beam consisted of aluminum ions (Al{sup (1-3)+}) with an energy of 140 - 740 keV and protons with an energy of 160 - 190 keV; the purity was estimated to be 89%, which was much higher than that of the pulsed ion beam produced in a conventional ion diode. The development of a bipolar pulse accelerator (BPA) was reported in order to improve the purity of intense pulsed ion beams. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. When a bipolar pulse with a voltage of {+-}90 kV and a pulse duration of about 65 ns was applied to the drift tube of the BPA, the ion beam with an ion current density of 2 A/cm{sup 2} and a pulse duration of 30 ns was observed 25 mm downstream from the cathode surface, which suggested bipolar pulse acceleration.

  7. Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.

    Science.gov (United States)

    Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin

    2017-09-01

    Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200  mm×200  mm×12  mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.

  8. Electron beam processing technology for modification of different types of cellulose pulps for production of derivatives

    International Nuclear Information System (INIS)

    Iller, E.; Kukielka, A.; Mikolajczyk, W.; Starostka, P.; Stupinska, H.

    2002-01-01

    Institute of Nuclear Chemistry and Technology, Pulp and Paper Research Institute and Institute of Chemical Fibers carry out a joint research project in order to develop the radiation methods modification of cellulose pulps for production of cellulose derivatives such as carbamate (CC), carboxymethyl cellulose (CMC) and methylcellulose (MC). Three different types of textile pulps: Alicell (A); Borregaard (B), Ketchikan (K) and Kraft softwood (PSS) and hardwood (PSB) pulps have been irradiated with 10 MeV electron beam from LAE 13/9 linear accelerator with doses of 5, 10, 15, 20, 25 and 50 kGy. After electron beam treatment the samples of cellulose pulps have been examined by using of structural and physico-chemical methods. Electron paramagnetic resonance spectroscopy (EPR), gel permeation chromatography (GPC) and infrared spectroscopy (IRS) were applied for determination of structural changes in irradiated cellulose pulps. By means of analytical methods, such parameters as: viscosity, average degree of polymerization (DP) and α-cellulose contents were evaluated. Based on EPR and GPC investigations the relationship between concentrations of free radicals and decreasing polymerization degrees in electron beam treatment pulps has been confirmed. The carboxymethylcellulose, methylcellulose and cellulose carbamate were prepared using the raw material of radiation modified pulps. Positive results of investigations will allow for determination of optimum conditions for electron beam modification of selected cellulose paper and textile pulps. Such procedure leads to limit the amounts of chemical activators used in methods for preparation cellulose derivatives. The proposed electron beam technology is new approaches in technical solution and economic of process of cellulose derivatives preparation. (author)

  9. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  10. Current status of electron beam processing applications and accelerator technology in India

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Lavale, D.S.; Sabharwal, S.

    2001-01-01

    Full text: Electron Beam (EB) processing is now a well established technology world over in a few specific sections of the industry, particularly the polymer industry. The actual use of the technology however is dependent upon the specific socioeconomic needs of the individual country. In India, an industrial type EB accelerator has been operative since 1988 at Bhabha Atomic Research Centre, Mumbai. This 2 MeV, 20 kW machine is being utilized to develop and optimize process and material process techniques for research, development and industry in the fields viz., crosslinking, degradation and grafting of polymers; color enhancement in precious and semi-precious stones, lifetime control in semi-conductor devices; food irradiation. Some of these processes have developed into products that are now being carried out on regular commercial basis, meeting the requirements of the Indian industry. These include crosslinked high temperature PE 'O' rings, wire and cable insulation, heat shrinkable tubes; micro-fine PTFE powder, degraded viscose rayon pulp and color diamonds, With the collaboration of Indian cable industry, EB crosslinkable insulation formulations were developed. Suitable irradiation parameters and techniques have been studied, optimized and standardized. Over 100 km length of cables based on PE, PVC and elastomer blends has been irradiated and the results were found to be very encouraging. Since the main parameters to be monitored in the radiation processing is the absorbed dose and its uniformity in the product, dose evaluation and optimization hb been carried out specific to the process and the product under treatment. EB dosimetry based on the graphite calorimetry, thin film and alanine powder dosimeters has been standardized and being used in the facility for dose evaluation and optimization studies. An endless stainless steel mesh conveyor is available in the facility to carry out product irradiation. An eight type cable irradiation gadget has been

  11. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  12. Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM).

    Science.gov (United States)

    Druzinec, Damir; Weiss, Katja; Elseberg, Christiane; Salzig, Denise; Kraume, Matthias; Pörtner, Ralf; Czermak, Peter

    2014-01-01

    Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.

  13. Current status of electron beam processing applications and the latest accelerator technologies in Japan

    International Nuclear Information System (INIS)

    Hoshi, Yasuhisa

    1998-01-01

    Electron Beam (EB) processing has been increasing in popularity as a cross-linking process since the beginning of its industrial use. Examples are heat resistance improvement of electric wires, high quality foamed polyethylene (PE) and polypropylene (PP), automotive tire manufacturing and heat shrinkable products. EB is also used in the tire manufacturing process as a pre-vulcanisation of rubber sheet before forming process. Cross-linking of electric wire insulators is the most popular industrial application of electron beam accelerators in Japan. EB cross-linked wires are widely used in electrical appliances and automotive wire harnesses. Curing of inks or coating is a promising application of low energy EB. EB cure is often compared with Ultra-Violet (UV) curing. Both has a common advantage compared with a conventional heat curing process such as no solvent requirement. A typical advantage is that no initiators are required to start curing process. EB can also be used to remove SO 2 and NO x from coal flue gas. This paper reports some of these applications and discusses the latest equipment design. (author)

  14. Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for a continuous granulation-drying-milling process.

    Science.gov (United States)

    Kumar, Vijay; Taylor, Michael K; Mehrotra, Amit; Stagner, William C

    2013-06-01

    Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation-drying-milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of 0.05).

  15. FY 2000 report on the results of the research and development project for new industry creation type industrial science technologies. Cluster ion beam process technology; 2000 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seido seika hokokusho. Cluster ion beam process technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of cluster ion beams. This technology generates the strong ion beams of atom and molecule clusters, and irradiate them onto the solid surfaces, to create new materials or treat materials. It allows the nano-level treatment. The program for high-current cluster ion beam generation/irradiation technology for industrial purposes attains the target high-current beam of 500{mu}m. It is necessary to establish the optimum cluster size, irradiated energy and ion species for the highly functional surface treatment, for which applicable technologies, e.g., those related to time of flight and molecular dynamics, are developed. Studies on high-current, large-area irradiation technologies are started. The program for material processing technologies involves evaluation of crystalline defects formed during the beam implantation by photoluminescence spectroscopy, and studies on semiconductor surface processing technologies. The surface smoothening technology is investigated to reduce crystalline defects and stress-induced strains for difficult-to-process materials, e.g., SiC and diamond, and the good results are produced. The program for development of superflat/superhard thin film formation technology involves irradiation of the Ar ion beams during the deposition of C{sub 60}(fullerene), to produce the superhard thin film. (NEDO)

  16. Electron beam technology as a new industrial processing tool in Malaysia

    International Nuclear Information System (INIS)

    Zaman, K.

    1996-01-01

    Electron beam cross-linked products such as heat resistant automobile and home appliance wires, heat shrinkable tubes, sleeves, end caps for power and electronic industries, plastic packaging and semiconductors are commercially available in Malaysia and most of them are imported products. However, recently there are three newly established in-house industrial electron beam accelerators, in operation in Malaysia for cross-linking of home appliance wires and plastic packaging. Another electron beam accelerator of 3.0 MV, 90 kW is stationed in MINT which is used for research as well as for irradiation services. Research on electron beam cross-linking of natural polymer is one of the main subjects of interest. (author)

  17. Electron beam processing system

    International Nuclear Information System (INIS)

    Kashiwagi, Masayuki

    2004-01-01

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  18. The application of image acquisition and processing technology in measurement of beam profile on particle accelerator

    International Nuclear Information System (INIS)

    Nie Zhenpeng; Zheng Yong; Shen Zhiqing; Wang Shaoming

    2000-01-01

    An introduction is given to the real-time measuring method which can measure the intensity and profile of the beam by a scintillator screen on HIRFL (Heavy Ion Research Facility of Lanzhou). Hardware structure is described briefly, methods of the software design are mainly presented. The system can make a dynamic analysis on the faculae image and has many advantages, such as good reliability, high precision, intuitional measurement, friendly interface of the application software etc. Finally some results of measurement are given

  19. Industrial applications of electron beam technology

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan

    1997-01-01

    Electron beam technology was first introduced in Malaysia in 1989 with the conclusion of the bilateral cooperation between the Malaysian Institute for Nuclear Technology Research (MINT) and Japan International Co-operation Agency (JICA) on Radiation Application Projects. Two electron beam accelerators with energy of 3.0 MeV and 200 keV were installed at MINT. These two accelerators pave the way for R and D to be carried out in radiation processing of polymers for cross-linking and surface curing. In 1994, another electron beam accelerator was installed in the private sector for cross-linking of home appliance wires. Since then, two more accelerators were installed in the private sector for cross-linking of heat shrinkable plastic films. Recently, a local company has acquired a low energy electron beam machine for cross-linking of plastic film. Within a period of 7 years, industrial applications of electron beam technology in Malaysia have increased significantly

  20. Electron beam accelerators—trends in radiation processing technology for industrial and environmental applications in Latin America and the Caribbean

    International Nuclear Information System (INIS)

    Parejo Calvo, Wilson A.; Duarte, Celina L.; Machado, Luci Diva B.; Manzoli, Jose E.; Geraldo, Aurea Beatriz C.; Kodama, Yasko; Silva, Leonardo Gondim A.; Pino, Eddy S.; Somessari, Elizabeth S.R.; Silveira, Carlos G.

    2012-01-01

    The radiation processing technology for industrial and environmental applications has been developed and used worldwide. In Latin America and the Caribbean and particularly in Brazil there are 24 and 16 industrial electron beam accelerators (EBA) respectively with energy from 200 keV to 10 MeV, operating in private companies and governmental institutions to enhance the physical and chemical properties of materials. However, there are more than 1500 high-current electron beam accelerators in commercial use throughout the world. The major needs and end-use markets for these electron beam (EB) units are R and D, wire and electric cables, heat shrinkable tubes and films, PE foams, tires, components, semiconductors and multilayer packaging films. Nowadays, the emerging opportunities in Latin America and the Caribbean are paints, adhesives and coatings cure in order to eliminate VOCs and for less energy use than thermal process; disinfestations of seeds; and films and multilayer packaging irradiation. For low-energy EBA (from 150 keV to 300 keV). For mid-energy EBA (from 300 keV to 5 MeV), they are flue gas treatment (SO 2 and NO X removal); composite and nanocomposite materials; biodegradable composites based on biorenewable resources; human tissue sterilization; carbon and silicon carbide fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; electrocatalysts nanoparticles production; and natural polymers irradiation and biodegradable blends production. For high-energy EBA (from 5 MeV to 10 MeV), they are sterilization of medical, pharmaceutical and biological products; gemstone enhancement; treatment of industrial and domestic effluents and sludge; preservation and disinfestations of foods and agricultural products; soil disinfestations; lignocellulosic material irradiation as a pretreatment to produce ethanol biofuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; and

  1. Electron beam accelerators—trends in radiation processing technology for industrial and environmental applications in Latin America and the Caribbean

    Science.gov (United States)

    Parejo Calvo, Wilson A.; Duarte, Celina L.; Machado, Luci Diva B.; Manzoli, Jose E.; Geraldo, Aurea Beatriz C.; Kodama, Yasko; Silva, Leonardo Gondim A.; Pino, Eddy S.; Somessari, Elizabeth S. R.; Silveira, Carlos G.; Rela, Paulo R.

    2012-08-01

    The radiation processing technology for industrial and environmental applications has been developed and used worldwide. In Latin America and the Caribbean and particularly in Brazil there are 24 and 16 industrial electron beam accelerators (EBA) respectively with energy from 200 keV to 10 MeV, operating in private companies and governmental institutions to enhance the physical and chemical properties of materials. However, there are more than 1500 high-current electron beam accelerators in commercial use throughout the world. The major needs and end-use markets for these electron beam (EB) units are R and D, wire and electric cables, heat shrinkable tubes and films, PE foams, tires, components, semiconductors and multilayer packaging films. Nowadays, the emerging opportunities in Latin America and the Caribbean are paints, adhesives and coatings cure in order to eliminate VOCs and for less energy use than thermal process; disinfestations of seeds; and films and multilayer packaging irradiation. For low-energy EBA (from 150 keV to 300 keV). For mid-energy EBA (from 300 keV to 5 MeV), they are flue gas treatment (SO2 and NOX removal); composite and nanocomposite materials; biodegradable composites based on biorenewable resources; human tissue sterilization; carbon and silicon carbide fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; electrocatalysts nanoparticles production; and natural polymers irradiation and biodegradable blends production. For high-energy EBA (from 5 MeV to 10 MeV), they are sterilization of medical, pharmaceutical and biological products; gemstone enhancement; treatment of industrial and domestic effluents and sludge; preservation and disinfestations of foods and agricultural products; soil disinfestations; lignocellulosic material irradiation as a pretreatment to produce ethanol biofuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; and

  2. Fiscal 2000 survey report on the survey of trends of quantum beam process technologies for development of high-speed large-capacity digital electronic information devices; 2000 nendo kosoku daiyoryo digital denshi joho device kaihatsu no tame no ryoshi beam process technology no doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The effort clarifies the tasks and problems of the next-generation WDM (wavelength division multiplexing) device, the tasks and problems of domestic information digital devices, and the characteristics, and matters wanting further development, of quantum beam technologies that are to contribute to the development of the said devices. In concrete terms, quantum process technologies involving the ultralow energy ion beam, gas cluster ion beam, electron beam, laser beam, radiation, and the like, are to be studied and developed as device processes, and the product of the effort will be utilized for accelerating the currently difficult development of the semiconductor laser diode, high-speed photoelectric conversion diode, optical circuit device, and the next-generation plastic liquid crystal display device. That is to say, process technologies for a high-speed undamaged compound semiconductor device, high-precision optical circuit device, and a totally plastic liquid crystal display device will be established, and verified as valid. Furthermore, novel digital devices will be developed. In this research and development work, manufacturing process technologies will also be established, which as practical technologies will clear the rigorous goals that the industry demand for process stability, process yield, process amount, and the like. (NEDO)

  3. Pre Design of Beam Parameter Control System for Electron Beam Machine (EBM) 350 keV/10 mA in the Center for Accelerator and Material Process Technology - BATAN Yogyakarta

    International Nuclear Information System (INIS)

    Sutanto

    2009-01-01

    Pre design of beam parameter control system for Electron Beam Machine (EBM) 350 keV/10 mA had an objective to find a control system algorithm for EBM in The Center For Accelerator and Material Process Technology (Pusat Teknologi dan Proses Bahan/PTAPB) - BATAN Yogyakarta. The design was based on the beam parameter model of EBM. The model shown a relationship between the dose parameter setting and the beam energy setting which it was being a problem in setting the beam parameters.The control system algorithm was found by getting compensator equations from the beam parameter model of EBM. The equations would omit the relation between the radiation dose parameter and beam energy parameter, so that the parameters could be adjusted easily. The result of the control system algorithm examine based on simulation shown that the setting of beam parameter value could be done by giving the accelerating voltage value and the filament current value as the operator had determined the value. The value of radiation dose and beam energy would be adjusted as its function of the filament current value and the accelerating voltage value. (author)

  4. Electron beam processing of wastewater in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khairul Zaman Dahlan; Ting Teo Ming; Khomsaton A. Bakar

    2006-01-01

    Electron beam processing technology started in Malaysia in 1991 when two accelerators were installed through JICA cooperation to perform medical product sterilization project. Since then several private companies have installed electron accelerators to develop in removing volatile organic materials and to demonstrate flue gas treatment. In this country report, effort on electron beam processing of wastewater or contaminated groundwater is presented: After de-coloration tests using gamma rays as function of radiation doses, electron beam treatment of textile industry wastewater as function of beam energy and current intensity as well as with combined treatment such as aeration or biological treatment to examine the effectiveness in color and BOD or COD change has been carried out and the main results are reported. Furthermore, the present technique was examined to apply in river water treatment for use as drinking water. Techno-economic feasibility study for recycling of industrial waste water using electron beam technology is now underway. (S. Ohno)

  5. Advanced neutral-beam technology

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1980-09-01

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described

  6. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  7. Introduction to electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Waichiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs.

  8. Introduction to electron beam processing

    International Nuclear Information System (INIS)

    Waichiro Kawakami

    1994-01-01

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs

  9. Electron beam processing of combustion flue gases

    International Nuclear Information System (INIS)

    1987-07-01

    This report contains the papers presented at the consultants' meeting on electron beam processing of combustion flue gases. The meeting provided an excellent opportunity for exchanging information and reviewing the current status of technology development. Characteristics of the electron beam processing recognized by the meeting are: capability of simultaneous removals of SO 2 and NO x , safe technology and simplicity of control, dry process without waste water to be treated, cost benefit of electron beam processing compared with conventional technology and the conversion of SO 2 and NO x to a by-product that can be used as agricultural fertilizer. A separate abstract was prepared for each of the 22 papers in this technical report

  10. Beam processing of advanced materials

    International Nuclear Information System (INIS)

    Singh, J.; Copley, S.M.

    1993-01-01

    International Conference on Beam Processing of Advanced Materials was held at the Fall TMS/ASM Materials Week at Chicago, Illinois, November 2--5, 1992. The symposium was devoted to the recent advances in processing of materials by an energy source such as laser, electron, ion beams, etc. The symposium served as a forum on the science of beam-induced materials processing and implications of this science to practical implementation. An increased emphasis on obtaining an understanding of the fundamental mechanisms of beam-induced surface processes was a major trend observed at this years symposium. This has resulted in the increased use of advanced diagnostic techniques and modeling studies to determine the rate controlling steps in these processes. Individual papers have been processed separately for inclusion in the appropriate data bases

  11. Development and Application of Chlorinated, Fluorinated and Technological Polymer Films Modified by Grafting Process Using Electron Beam and Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Manzoli, J E [Nuclear Energy National Commission, Nuclear and Energetic Research Institute, Sao Paulo (Brazil); Universidade Sao Judas Tadeu, Sao Paulo (Brazil); Geraldo, A B.C.; Moura, E; Somesari, E S.R.; Silveira, C G; Oikawa, H; Moreira, N S; Forbicini, C [Nuclear Energy National Commission, Nuclear and Energetic Research Institute, Sao Paulo (Brazil); Tenorio, E [FATEC, Tatui (Brazil); Augusto, C G [IFSP, Sao Paulo (Brazil); Universidade Sao Judas Tadeu, Sao Paulo (Brazil); Panzarini, L C.G.A. [FEI, Sao Bernardo do Campo (Brazil)

    2012-09-15

    The ionizing irradiation (electron beam and gamma irradiation) induced grafting to fluorinated and chlorinated polymeric films were studied. Styrene grafting onto fluorinated and perfluorinated polymers and their ulterior sulfonation constitute a process to produce ionomers for many applications. The modification of polyvinylchloride with dimethylaminethylmethacrylate-heparin grafting attempt for the fact that grafting can be applied in packaging industry as an alternative for decreasing of plasticizer or another chemical species migration, in many cases nocivus contaminant for human health, and, in the specific study of this project, to obtain a less thrombogenic polymer surface to be used in medical applications. The results indicate mutual styrene grafting performed by industrial EB accelerator can be a fast alternative to produce ionomers that can compete in market. The numerical method to simulate diffusion process evolved is simple and fast and applied to fit experimental results. (author)

  12. Shimmed electron beam welding process

    Science.gov (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  13. Electron beam processing of polymers

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Dias, Djalma B.; Calvo, Wilson A.P.; Miranda, Leila F. de

    2011-01-01

    The aim of this work is the use of electron beam produced by industrial electron accelerators to process polymers. There are several applications, such as, irradiation of wires and electric cables for automotive, aerospace, household appliance, naval and computing industries. The effect of different radiation doses in low density polyethylene (LDPE) was also studied. After irradiation and crosslinking it was thermally expanded forming LDPE foam. In addition, poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels using electron beam processing were prepared. In all cases studied crosslinking percentages of the samples were determined. (author)

  14. The dose distribution determination in two kinds of polyethylene materials irradiated by electron beams-an experimental method for optimizing technology of radiation processing

    International Nuclear Information System (INIS)

    Zhang Daming

    2000-01-01

    The dose distribution in two kinds of polyethylene materials were determined by use of electron beam from 1.0-3.0 MeV electron accelerator. The effects of four different metal base-plate such as Al, Fe, Cu and Pb for dose depth distribution in materials were compared. And the boundary effects of absorbed dose were also observed. The expand uncertainty of absorbed dose measurement was 7.8%. This work is a useful experimental method for optimizing technology of radiation processing and realizing quality control of irradiation products

  15. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  16. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  17. Focused ion beam technology and ultimate applications

    International Nuclear Information System (INIS)

    Gierak, Jacques

    2009-01-01

    In this topical review, the potential of the focused ion beam (FIB) technology and ultimate applications are reviewed. After an introduction to the technology and to the operating principles of liquid metal ion sources (LMIS), of ion optics and instrument architectures, several applications are described and discussed. First, the application of FIB for microcircuit inspection, metrology and failure analysis is presented. Then, we introduce and illustrate some advanced patterning schemes we propose as next generation FIB processing examples. These patterning schemes are (i) local defect injection or smoothing in magnetic thin film direct patterning, (ii) functionalization of graphite substrates to guide organization of clusters, (iii) local and selective epitaxy of III–V semiconductor quantum dots and (iv) FIB patterned solid-state nanopores for biological molecules manipulation and analysis. We conclude this work by giving our vision of the future developments for FIB technology. (topical review)

  18. Study of device mass production capability of the character projection based electron beam direct writing process technology toward 14 nm node and beyond

    Science.gov (United States)

    Kojima, Yoshinori; Takahashi, Yasushi; Takakuwa, Masaki; Ohshio, Shuzo; Sugatani, Shinji; Tujimura, Ryo; Takita, Hiroshi; Ogino, Kozo; Hoshino, Hiromi; Ito, Yoshio; Miyajima, Masaaki; Kon, Jun-ichi

    2012-03-01

    Techniques to appropriately control the key factors for a character projection (CP) based electron beam direct writing (EBDW) technology for mass production are shown and discussed. In order to achieve accurate CD control, the CP technique using the master CP is adopted. Another CP technique, the Packed CP, is used to obtain suitable shot count. For the alignment on the some critical layers which have the normally an even surface, the alignment methodology differ from photolithography is required. The process that etches the SiO2 material in the shallow trench isolation is added and then the alignment marks can be detected using electron beam even at the gate layer, which is normally on an even surface. The proximity effect correction using the simplified electron energy flux model and the hybrid exposure are used to obtain enough process margins. As a result, the sufficient CD accuracy, overlay accuracy, and yield are obtained on the 65 nm node device. The condition in our system is checked using self-diagnosis on a regular basis, and scheduled maintenances have been properly performed. Due to the proper system control, more than 10,000 production wafers have been successfully exposed so far without any major system downtime. It is shown that those techniques can be adapted to the 32 nm node production with slight modifications. For the 14 nm node and beyond, however, the drastic increment of the shot count becomes more of a concern. The Multi column cell (MCC) exposure method, the key concept of which is the parallelization of the electron beam columns with a CP, can overcome this concern. It is expected that by using the MCC exposure system, those techniques will be applicable to the rapid establishment for the 14 nm node technology.

  19. Leading survey and research report for fiscal 1999. Survey and research on 3-dimensional ion beam processing technology; 1999 nendo sanjigen ion kokan gijutsu no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Application of ion beam processing to 2-dimensional shapes in the past has been limited to flat shapes or small areas. There is a 3-dimensional plasma-based ion implantation (PBII) technology for which high-density plasma is generated using plural metal ion sources and gas ion sources for the application of pulse voltages. Using this technology, ions are implanted into intricate shapes, large areas, and surfaces of 3-dimensional shapes, and surface reforming is accomplished through thin film formation. It is low in cost and high in productivity, and finds a great demand for use in the fabrication of members of large and complicated engines for automobiles, spacecraft, and aircraft, members of precision machines, and members of electric power facilities and chemical plants where high resistance to abrasion, corrosion, and heat are mandatory. Research and development for its practical application, however, has just started and, before its commercialization, technologies have to be completed involving surface treatment using gas plasma for ion implantation, thin film formation using metal ion plasma, and their hybrid. Similarly important is the technology of generating homogenous plasma. This new technology is expected to enhance economic efficiency, provide means to deal with environmental matters, and improve on energy efficiency. An outline of the proposition for the project is compiled in this report. (NEDO)

  20. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  1. Ion beams in silicon processing and characterization

    International Nuclear Information System (INIS)

    Chason, E.; Picraux, S.T.; Poate, J.M.; Borland, J.O.; Current, M.I.; Diaz de la Rubia, T.; Eaglesham, D.J.; Holland, O.W.; Law, M.E.; Magee, C.W.; Mayer, J.W.; Melngailis, J.; Tasch, A.F.

    1997-01-01

    General trends in integrated circuit technology toward smaller device dimensions, lower thermal budgets, and simplified processing steps present severe physical and engineering challenges to ion implantation. These challenges, together with the need for physically based models at exceedingly small dimensions, are leading to a new level of understanding of fundamental defect science in Si. In this article, we review the current status and future trends in ion implantation of Si at low and high energies with particular emphasis on areas where recent advances have been made and where further understanding is needed. Particularly interesting are the emerging approaches to defect and dopant distribution modeling, transient enhanced diffusion, high energy implantation and defect accumulation, and metal impurity gettering. Developments in the use of ion beams for analysis indicate much progress has been made in one-dimensional analysis, but that severe challenges for two-dimensional characterization remain. The breadth of ion beams in the semiconductor industry is illustrated by the successful use of focused beams for machining and repair, and the development of ion-based lithographic systems. This suite of ion beam processing, modeling, and analysis techniques will be explored both from the perspective of the emerging science issues and from the technological challenges. copyright 1997 American Institute of Physics

  2. Electron beam irradiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1992-01-01

    This paper reviews research and development of application of electron beam (EB) irradiation technology for treatment of flue gas and waste water, and for disinfection of sewage sludge. Feasibility studies on EB purification of flue gases have been performed with pilot-scale experiments in Japan, the USA and Germany, and is being carried out in Poland for flue gases from iron-sintering furnaces or coal burning boilers. Based on results obtained by experiments using simulated flue gas, pilot scale test for treatment of flue gas of low-sulfur containing coal combustion has recently started in Japan. Organic pollutants in waste water and ground water have been found to be decomposed by EB irradiation. Synergetic effect of EB irradiation and ozone addition was found to improve the decomposition efficiency. Electron beam irradiation technology for disinfection of water effluent from water treatment plants was found to avoid formation of chlorinated organic compounds which are formed in using chlorine. Efficient process for composting of sewage sludge disinfected by EB irradiation has been developed by small scale and pilot scale experiments. In the new process, disinfection by EB irradiation and composing can be done separately and optimum temperature for composting can be, therefore, selected to minimize period of composting. (author)

  3. Broad beam ion sources and some surface processes

    International Nuclear Information System (INIS)

    Neumann, H.; Scholze, F.; Tarz, M.; Schindler, A.; Wiese, R.; Nestler, M.; Blum, T.

    2005-01-01

    Modern broad-beam multi-aperture ion sources are widely used in material and surface technology applications. Customizing the generated ion beam properties (i. e. the ion current density profile) for specific demands of the application is a main challenge in the improvement of the ion beam technologies. First we introduce ion sources based on different plasma excitation principles shortly. An overview of source plasma and ion beam measurement methods deliver input data for modelling methods. This beam profile modelling using numerical trajectory codes and the validation of the results by Faraday cup measurements as a basis for ion beam profile design are described. Furthermore possibilities for ex situ and in situ beam profile control are demonstrated, like a special method for in situ control of a linear ion source beam profile, a grid modification for circular beam profile design and a cluster principle for broad beam sources. By means of these methods, the beam shape may be adapted to specific technological demands. Examples of broad beam source application in ion beam figuring of optical surfaces, modification of stainless steel, photo voltaic processes and deposition of EUVL-multilayer stacks are finally presented. (Author)

  4. Ion beams in materials processing and analysis

    CERN Document Server

    Schmidt, Bernd

    2012-01-01

    This book covers ion beam application in modern materials research, offering the basics of ion beam physics and technology and a detailed account of the physics of ion-solid interactions for ion implantation, ion beam synthesis, sputtering and nano-patterning.

  5. Accelerators in industrial electron beam processing

    International Nuclear Information System (INIS)

    Becker, R.C.

    1984-01-01

    High power electron beam accelerators are being used for a variety of industrial processes. Such machines can process a wide range of products at very high thruput rates and at very low unit processing costs. These industrial accelerators are now capable of producing up to 200 kW of electron beam power at 4.0 MV and 100 kW at 5.0 MV. At this writing, even larger units are contemplated. The reliability of these high power devices also makes it feasible to consider bremsstrahlung (x-ray) processing as well. In addition to the advance of accelerator technology, microprocessor control systems now provide the capability to coordinate all the operations of the irradiation facility, including the accelerator, the material handling system, the personnel safety system and various auxiliary services. Facility designs can be adapted to many different industrial processes, including use of the dual purpose electron/x-ray accelerator, to ensure satisfactory product treatment with good dose uniformity, high energy efficiency and operational safety and simplicity. In addition, equipment manufacturers like RDI are looking beyond their conventional DC accelerator technology; looking at high power 10-12 MeV linear accelerators with power levels up to 25 kW or more. These high power linear accelerators could be the ideal processing tool for many sterilization and food irradiation applications. (author)

  6. Photodissociation processes in molecular beams

    International Nuclear Information System (INIS)

    Carlson, L.R.

    1979-05-01

    A description is presented of a study of the photodissociation dynamics of molecules in a molecular beam. Photo-fragmentation translational spectroscopy has been utilized to observe the photodissociation dynamics of ozone. Using a supersonic molecular beam and a 10 nanosecond pulsed laser at lambda = 266 nm, the velocities of the fragment products are measured by the method of time of flight. The resolution of the time of flight spectrum of ozone is sufficiently high that the electronic and vibrational states are clearly resolved and identified. Above the threshold (lambda 1 D) has been estimated in the past to be unity for the process O 3 ( 1 A 1 ) + hν)lambda 3 ( 1 B 2 ) → O 2 ( 1 Δ/sub g/) + O( 1 D). However a small production of O 2 ( 3 Σ/sub g/ - ) + O( 3 P) has been observed in this study. The O 2 ( 1 Δ/sub g/) product yields four vibrational states (v = 0, 1, 2, 3) which yields a vibrational temperature of 2700 0 K along with narrow energy distributions of rotational levels. These energy distributions are compared with photodissociation models along with the polarization dependence of the dissociative process which was also measured. 143 references

  7. Photodissociation processes in molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, L.R.

    1979-05-01

    A description is presented of a study of the photodissociation dynamics of molecules in a molecular beam. Photo-fragmentation translational spectroscopy has been utilized to observe the photodissociation dynamics of ozone. Using a supersonic molecular beam and a 10 nanosecond pulsed laser at lambda = 266 nm, the velocities of the fragment products are measured by the method of time of flight. The resolution of the time of flight spectrum of ozone is sufficiently high that the electronic and vibrational states are clearly resolved and identified. Above the threshold (lambda < 310 nm), the quantum yield for the production of O(/sup 1/D) has been estimated in the past to be unity for the process O/sub 3/ (/sup 1/A/sub 1/) + h..nu..)lambda < 300 nm) ..-->.. O/sub 3/(/sup 1/B/sub 2/) ..-->.. O/sub 2/(/sup 1/..delta../sub g/) + O(/sup 1/D). However a small production of O/sub 2/ (/sup 3/..sigma../sub g//sup -/) + O(/sup 3/P) has been observed in this study. The O/sub 2/(/sup 1/..delta../sub g/) product yields four vibrational states (v = 0, 1, 2, 3) which yields a vibrational temperature of 2700/sup 0/K along with narrow energy distributions of rotational levels. These energy distributions are compared with photodissociation models along with the polarization dependence of the dissociative process which was also measured. 143 references.

  8. Plasma and ion beam processing at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Davis, H.A.; Henins, I.

    1994-01-01

    Efforts are underway at Los Alamos National Laboratory to utilize plasma and intense ion beam science and technology of the processing of advanced materials. A major theme involves surface modification of materials, e.g., etching, deposition, alloying, and implantation. In this paper, we concentrate on two programs, plasma source ion implantation and high-intensity pulsed ion beam deposition

  9. Electron beam application in industrial polymer processing - Review and outlook

    International Nuclear Information System (INIS)

    Gielenz, G.

    2001-01-01

    Full text: The various established industrial electron beam (EB) applications as related to polymers, their corresponding material and process fundamentals are discussed in this paper. The basics of nowadays most common irradiation processes, which are for continuous stranded products: Single Beam, Rotary Technique; Single Beam, Multiple Pass Technique; Dual Beam, Multiple Pass Technique; and Single Beam, Single (Multiple) Pass Technique by means of a conveyor belt or cart system for discontinuous goods are briefly addressed together with some typical examples for illustration. Some comments on the (dis)advantages and the future economic optimization potential which EB processing technologies could provide to the respective polymer processing industries are presented with respect to material, accelerator equipment and related product handling hardware. The future competitiveness of irradiation crosslinking technologies, which offer numerous advantages in comparison to conventional CV curing and silane crosslinking technologies, only can be maintained by increasing their economic attractiveness, which is: high processing speeds, high material throughput at low production costs and comparatively low capital investment of the hardware involved. Other, more sophisticated irradiation process proposals found in the literature and respective patent publications will be briefly presented, although all of which lack more or less practical evidence for industrial economic and reliable application. Finally, the authors vision of a more efficient, economical EB-process design, by combining quasi state of the art EB-equipment components with a novel beam deflection system to practically achieve a 'Dual Beam, Four Side Crossfiring Process' for continuous strand-products, will be presented. (author)

  10. Ion Beams in Nanoscience and Technology

    CERN Document Server

    Hellborg, Ragnar

    2010-01-01

    Energetic ion beam irradiation is the basis of a wide plethora of powerful research- and fabrication-techniques for materials characterisation and processing on a nanometre scale. This book is suitable for practitioners, researchers and graduate students working in the field of ion beams and application

  11. Applications of neutral beam and rf technologies

    International Nuclear Information System (INIS)

    Haselton, H.H.

    1987-04-01

    This presentation provides an update on the applications of neutral beams and radiofrequency (rf) power in the fusion program; highlights of the ion cyclotron heating (ICH) experiments now in progress, as well as the neutral beam experiments; and heating requirements of future devices and some of the available options. Some remarks on current drive are presented because this area of technology is one that is being considered for future devices

  12. Applications and technology of electron beam accelerators

    International Nuclear Information System (INIS)

    Sethi, R.C.

    2005-01-01

    Traditionally, accelerators have been employed for pursuing research in basic sciences. But over the last couple of decades their uses have proliferated into the applied fields as well. The major credit for which goes to the electron beams. Electron beams or the radiations generated by them are being extensively used in almost all the applied areas. This article is a brief account of the impact made by the accelerator based electron beams and the attempts initiated by DAE for building a base in this technology. (author)

  13. Mineral Processing Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-09-01

    This document represents the roadmap for Processing Technology Research in the US Mining Industry. It was developed based on the results of a Processing Technology Roadmap Workshop sponsored by the National Mining Association in conjunction with the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Industrial Technologies. The Workshop was held January 24 - 25, 2000.

  14. Ion beam sputter coatings for laser technology

    Science.gov (United States)

    Ristau, Detlev; Gross, Tobias

    2005-09-01

    The initial motivation for the development of Ion Beam Sputtering (IBS) processes was the need for optical coatings with extremely low optical scatter losses for laser gyros. Especially, backscattering of the gyro-mirrors couples the directional modes in the ring resonator leading to the lock in effect which limits the sensitivity of the gyro. Accordingly, the first patent on IBS was approved for an aircraft company (Litton) in 1978. In the course of the rapid development of the IBS-concept during the last two decades, an extremely high optical quality could be achieved for laser coatings in the VIS- and NIR-spectral region. For example, high reflecting coatings with total optical losses below 1 ppm were demonstrated for specific precision measurement applications with the Nd:YAG-laser operating at 1.064 μm. Even though the high quality level of IBS-coatings had been confirmed in many applications, the process has not found its way into the production environment of most optical companies. Major restrictions are the relatively low rate of the deposition process and the poor lateral homogeneity of the coatings, which are related to the output characteristics of the currently available ion sources. In the present contribution, the basic principles of IBS will be discussed in the context of the demands of modern laser technology. Besides selected examples for special applications of IBS, aspects will be presented for approaches towards rapid manufacturing of coatings and the production of rugate filters on the basis of IBS-techniques.

  15. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Halasz, L.; Zsigmond, B.; Czvikovszky, T.

    2002-01-01

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  16. Ion beam processes in Si

    International Nuclear Information System (INIS)

    Holland, O.W.; Narayan, J.; Fathy, D.

    1984-07-01

    Observation of the effects of implants of energetic ions at high dose rates into Si have produced some exciting and interesting results. The mechanism whereby displacement damage produced by ions self-anneals during high dose rate implantation is discussed. It is shown that ion beam annealing (IBA) offers in certain situations unique possibilities for damage annealing. Annealing results of the near surface in Si with a buried oxide layer, formed by high dose implantation, are presented in order to illustrate the advantages offered by IBA. It is also shown that ion irradiation can stimulate the epitaxial recrystallization of amorphous overlayers in Si. The nonequilibrium alloying which results from such epitaxial processes is discussed as well as mechanisms which limit the solid solubility during irradiation. Finally, a dose rate dependency for the production of stable damage by ion irradiation at a constant fluence has been observed. For low fluence implants, the amount of damage is substantially greater in the case of high flux rather than low flux implantation

  17. Recent developments in electron beam machine technology

    International Nuclear Information System (INIS)

    Sadat, T.; Ross, A.; Leveziel, H.

    1994-01-01

    Electron beam accelerator provides ionisation energy for industrial processing. Electron beam accelerators are increasingly used for decontamination, conservation and disinfestation of food, for sterilization of medical products, and for polymerisation of materials. These machines are easy to install into a production factory as the radiation stops as soon as the machine is switched off. This safety advantage, together with the flexibility of use of these highly automated machines, has allowed the electron beam accelerator to become an important production tool. (author). 23 refs., 6 figs., 2 tabs

  18. Materials processing with superposed Bessel beams

    Science.gov (United States)

    Yu, Xiaoming; Trallero-Herrero, Carlos A.; Lei, Shuting

    2016-01-01

    We report experimental results of femtosecond laser processing on the surface of glass and metal thin film using superposed Bessel beams. These beams are generated by a combination of a spatial light modulator (SLM) and an axicon with >50% efficiency, and they possess the long depth-of-focus (propagation-invariant) property as found in ordinary Bessel beams. Through micromachining experiments using femtosecond laser pulses, we show that multiple craters can be fabricated on glass with single-shot exposure, and the 1+(⿿1) superposed beam can reduce collateral damage caused by the rings in zero-order Bessel beams in the scribing of metal thin film.

  19. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  20. Electron beam processing of fresh produce - A critical review

    Science.gov (United States)

    Pillai, Suresh D.; Shayanfar, Shima

    2018-02-01

    To meet the increasing global demand for fresh produce, robust processing methods that ensures both the safety and quality of fresh produce are needed. Since fresh produce cannot withstand thermal processing conditions, most of common safety interventions used in other foods are ineffective. Electron beam (eBeam) is a non-thermal technology that can be used to extend the shelf life and ensure the microbiological safety of fresh produce. There have been studies documenting the application of eBeam to ensure both safety and quality in fresh produce, however, there are still unexplored areas that still need further research. This is a critical review on the current literature on the application of eBeam technology for fresh produce.

  1. Technology or Process First?

    DEFF Research Database (Denmark)

    Siurdyban, Artur Henryk; Svejvig, Per; Møller, Charles

    Enterprise Systems Management (ESM) and Business Pro- cess Management (BPM), although highly correlated, have evolved as alternative and mutually exclusive approaches to corporate infrastruc- ture. As a result, companies struggle to nd the right balance between technology and process factors...... in infrastructure implementation projects. The purpose of this paper is articulate a need and a direction to medi- ate between the process-driven and the technology-driven approaches. Using a cross-case analysis, we gain insight into two examples of sys- tems and process implementation. We highlight the dierences...... between them using strategic alignment, Enterprise Systems and Business Process Management theories. We argue that the insights from these cases can lead to a better alignment between process and technology. Implications for practice include the direction towards a closer integration of process...

  2. Desalination processes and technologies

    International Nuclear Information System (INIS)

    Furukawa, D.H.

    1996-01-01

    Reasons of the development of desalination processes, the modern desalination technologies, such as multi-stage flash evaporation, multi-effect distillation, reverse osmosis, and the prospects of using nuclear power for desalination purposes are discussed. 9 refs

  3. Laser power beaming applications and technology

    Science.gov (United States)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  4. Materials processing with intense pulsed ion beams

    International Nuclear Information System (INIS)

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-01-01

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 μm) and high-energy density (1-50 J/cm 2 ) of these short-pulsed (≤ 1 μs) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10 10 K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology

  5. TECHNOLOGY MANAGEMENT PROCESS FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Ikura Yamamoto

    2012-02-01

    Full Text Available The effective management of technology as a source of competitive advantage is of vital importance for many organizations. It is necessary to understand, communicate and integrate technology strategy with marketing, financial, operations and human resource strategies. This is of particular importance when one considers the increasing cost, pace and complexity of technology developments, combined with shortening product life cycles. A five process model provides a framework within which technology management activities can be understood: identification, selection, acquisition, exploitation and protection. Based on this model, a technology management assessment procedure has been developed, using an ``action research’’ approach. This paper presents an industrial case study describing the first full application of the procedure within a high-volume manufacturing business. The impact of applying the procedure is assessed in terms of benefits to the participating business, together with improvements to the assessment procedure itself, in the context of the action research framework. Keyword: Technology, Strategy, Management, Assessment

  6. Development of electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Tanaka, T.

    1995-01-01

    The electron beam flue gas treatment technology is expected to bring many advantages such as the simultaneous reduction of SO x and NO x emissions, a dry process without waste water, valuable fertilizer byproducts, etc. In order to verify the feasibility and performances of the process, a practical application test is carried out with a pilot plant which treats the actual flue gas from a coal-fired boiler. Results are presented. 4 figs., 2 tabs

  7. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  8. Materials processing with superposed Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaoming [Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506 (United States); Trallero-Herrero, Carlos A. [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States); Lei, Shuting, E-mail: lei@ksu.edu [Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2016-01-01

    Graphical abstract: - Highlights: • Superpositions of Bessel beams can be generated with >50% efficiency using an SLM and an axicon. • These beams have orders-of-magnitude increase in depth-of-focus compared to Gaussian beams. • Multiple craters can be fabricated on glass with single-shot exposure. • The 1+(−1) superposition can reduce collateral damage caused by the rings in the zero-order Bessel beams. - Abstract: We report experimental results of femtosecond laser processing on the surface of glass and metal thin film using superposed Bessel beams. These beams are generated by a combination of a spatial light modulator (SLM) and an axicon with >50% efficiency, and they possess the long depth-of-focus (propagation-invariant) property as found in ordinary Bessel beams. Through micromachining experiments using femtosecond laser pulses, we show that multiple craters can be fabricated on glass with single-shot exposure, and the 1+(−1) superposed beam can reduce collateral damage caused by the rings in zero-order Bessel beams in the scribing of metal thin film.

  9. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  10. Applications of electron beam technology for healthcare and environment

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2013-01-01

    Radiation technology has matured from lab scale to industrial scale in many areas of interests to industry, healthcare, agriculture and environment. Some of the well established applications include radiation sterilization, wires and cable, composites for automobiles, radiation surface curing, nanomaterials, hydrogels and special materials for nuclear and aerospace industry, radiation treatment of effluents, sewage sludge etc. These applications are as a result of characteristics of high energy radiation like gamma and electron beams which are able to deliver energy directly at molecular level. Unlike nuclear based radiations, electron beam accelerator technology is amenable to easy acceptance by public as well has capability to manipulate processes and product treatment to produce varieties of advanced/smart materials for healthcare and environment. Faster dose rates and depth profiling are the important characteristics of electron beam technology which gives it an edge over gamma radiation processing. Department of Atomic Energy has an ambitious program to indigenously develop accelerator technology and utilize them for national progress. In the presentation some important applications of radiation technology will be discussed. (author)

  11. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  12. Ion beam therapy fundamentals, technology, clinical applications

    CERN Document Server

    2012-01-01

    The book provides a detailed, up-to-date account of the basics, the technology, and the clinical use of ion beams for radiation therapy. Theoretical background, technical components, and patient treatment schemes are delineated by the leading experts that helped to develop this field from a research niche to its current highly sophisticated and powerful clinical treatment level used to the benefit of cancer patients worldwide. Rather than being a side-by-side collection of articles, this book consists of related chapters. It is a common achievement by 76 experts from around the world. Their expertise reflects the diversity of the field with radiation therapy, medical and accelerator physics, radiobiology, computer science, engineering, and health economics. The book addresses a similarly broad audience ranging from professionals that need to know more about this novel treatment modality or consider to enter the field of ion beam therapy as a researcher. However, it is also written for the interested public an...

  13. Particle processing technology

    Science.gov (United States)

    Sakka, Yoshio

    2014-02-01

    includes two papers on the fabrication of mechanically reliable nanocomposites by dispersing graphene into a ceramic matrix, and on supercapacitors with high energy densities in a Co(OH)2 system decorated with graphene and carbon nanotubes. As a novel preparation method of oxide films, the fabrication of alumina films with laminated structures by ac anodization is reviewed. Moreover a new type of nanosheet has been fabricated by the exfoliation of layered, ternary transition-metal carbide and nitride compounds, known as Mn + 1AXn phases (or MAX phases) where M is an early transition metal, such as Ti or Nb, A is an A group element, such as Si or Al, X is carbon and/or nitrogen and n = 1-3 [4]. Among the MAX phases, those containing Mo have been theoretically calculated by first-principles calculations to be a source for obtaining Mo2C nanosheets with potentially unique properties. As an example of improving bulk ceramic properties, texturing by using a high magnetic field [5] and sintering by the electric current activated/assisted sintering (ECAS) technology [6] have been demonstrated for ultra-high temperature ceramics with high-temperature strength. A project on the development of materials and particle processing for the field of environment and energy has been ongoing at the National Institute for Materials Science since April 2011. This project employs various core competence technologies for particle processing such as ion beam irradiation for nanoparticle fabrication [7], fullerene nanomaterial processing using liquid-liquid interface precipitation [8], a gas reduction nitridation process to obtain Si3N4-based phosphor materials [9], advanced phosphors via novel processing [10, 11], ultra-high pressure technology for processing and in situ analysis [12, 13], colloidal processing in a high magnetic field to obtain laminated, textured ceramics [1, 3, 5], the ECAS process for nanostructuring ceramics [6] and so forth. Here, I would like to introduce some research

  14. Beam-generated plasmas for processing applications

    Science.gov (United States)

    Meger, R. A.; Blackwell, D. D.; Fernsler, R. F.; Lampe, M.; Leonhardt, D.; Manheimer, W. M.; Murphy, D. P.; Walton, S. G.

    2001-05-01

    The use of moderate energy electron beams (e-beams) to generate plasma can provide greater control and larger area than existing techniques for processing applications. Kilovolt energy electrons have the ability to efficiently ionize low pressure neutral gas nearly independent of composition. This results in a low-temperature, high-density plasma of nearly controllable composition generated in the beam channel. By confining the electron beam magnetically the plasma generation region can be designated independent of surrounding structures. Particle fluxes to surfaces can then be controlled by the beam and gas parameters, system geometry, and the externally applied rf bias. The Large Area Plasma Processing System (LAPPS) utilizes a 1-5 kV, 2-10 mA/cm2 sheet beam of electrons to generate a 1011-1012cm-3 density, 1 eV electron temperature plasma. Plasma sheets of up to 60×60 cm2 area have been generated in a variety of molecular and atomic gases using both pulsed and cw e-beam sources. The theoretical basis for the plasma production and decay is presented along with experiments measuring the plasma density, temperature, and potential. Particle fluxes to nearby surfaces are measured along with the effects of radio frequency biasing. The LAPPS source is found to generate large-area plasmas suitable for materials processing.

  15. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  16. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  17. Study on laser beam welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2012-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  18. Development of beam utilization/application technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B H; Kim, Y K; Song, T Y [and others

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized forindustries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs.

  19. Development of beam utilization/application technology

    International Nuclear Information System (INIS)

    Choi, B. H.; Kim, Y.K.; Song, T.Y.

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized for industries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs

  20. Electron Beam Technology for Environmental Pollution Control.

    Science.gov (United States)

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  1. VLSI signal processing technology

    CERN Document Server

    Swartzlander, Earl

    1994-01-01

    This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer elec­ tronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining al­ gorithms, architectures, and design strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) pro­ cessors and architectures - several examples and case studies of existing DSP chips are discussed in...

  2. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  3. Development of applications for Indian industry using electron beam technology

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Khader, S.A.; Sabharwal, S.

    2009-01-01

    This paper presents a report on the industrial applications that have been developed and demonstrated to the Indian industry using 2MeV/20kW Electron Beam accelerator at BARC-BRIT in the field of polymer modifications (crosslinking and degradation), gem stone coloration etc. Technological scale demonstration of the applications citing the benefits in terms of clean technology and better economics, encouraged three companies in private industry to set up EB facilities for the treatment of cable insulations, heat shrinkable products, diamond and gem stones during the last five years. Recent work on EB processing of automobile rubber tires is also included. (author)

  4. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B S; Lee, J S; Sim, C M [and others

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  5. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    Seong, B. S.; Lee, J. S.; Sim, C. M.

    2007-06-01

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  6. Beam diagnostics based on virtual instrument technology for HLS

    International Nuclear Information System (INIS)

    Sun Baogen; Lu Ping; Wang Xiaohui; Wang Baoyun; Wang Junhua; Gu Liming; Fang Jia; Ma Tianji

    2009-01-01

    The paper introduce the beam diagnostics system using virtual instrument technology for Hefei Light Source (HLS), which includes a GPIB bus-based DCCT measurement system to measure the beam DC current and beam life, a VXIbus-based closed orbit measurement system to measure the beam position, a PCIbus-based beam profile measurement system to measure the beam profile and emittance, a GPIB-LAN based bunch length system using photoelectric method, and a Ethernet-based photon beam position measurement system. The software is programmed by LabVIEW, which reduces much developing work. (authors)

  7. Vaccine process technology.

    Science.gov (United States)

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory

  8. Utilization of electron beam accelerators for polymer processing

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2013-01-01

    During the last decade, electron beam processing has been amply demonstrated to the Indian cable industry by BARC using 2 MeV/20 kW electron beam (EB) accelerator (ILU-6 EBA facility) located at BARC-BRIT complex, Vashi. The electron beam accelerator is a machine producing high energy electrons which are made to impinge on the materials for inducing physical, chemical and biological modifications. The process is carried out at room temperature and in ambient atmospheric conditions. Lately, quite a few numbers of accelerators have been installed by the private cable industry and carrying out cross-linking of cable insulations for high performance viz. high temperature stability, good flame retardancy, lesser solvent-swelling, thinner insulations etc. The indigenously made accelerators at EB centre, particularly the 3 MeV/30 kW accelerator will be of much help for Indian industry for polymer processing as the market is poised to grow by adapting the technology

  9. A new process of electron beam refining of niobium

    International Nuclear Information System (INIS)

    Pinatti, D.G.

    1981-01-01

    A review of thermodynamic equilibrium, the kinetic theory and experimental results of the metal-gas interaction in refractory metals is presented. N 2 , H 2 and CO absorption and desorption take place by a reversible process while O 2 takes place by a irreversible process with atom absorption and metal oxide desorption. A new technology of electron beam refining of Niobium is proposed based on four points: 1) preparation of the aluminothermic reduced electrode, 2) zone refining in the first melt, 3) kinetic theory of refining in the following melts and 4) design of a compact furnace. Experimental results in a pilot plant of 300 KW have shown complete agreement with the proposed technology yielding a productivity 2.4 times larger than the value predicted by the conventional technology of electron beam refining of Niobium. (Author) [pt

  10. Environmental applications of electron-beam technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    2001-01-01

    The main directions of modern environmental applications of electron-beam technology are the following: 1) treatment of polluted natural and drinking water, municipal and industrial wastewater, other liquid wastes; 2) purification of gases; 3) treatment of sewage sludges; 4) treatment of solid wastes (medical wastes, contaminated soil and so on). In some cases, the results of respective researches and developments found a large-scale application. For example, recently several industrial plants for electron-beam purification of flue gases of thermal power plants from SO2 and NOx were created in China, Poland and Japan. In the report, a brief summary of the most important results obtained in the mentioned directions will be presented. A special attention will be paid to the data in the first direction. In particular, the recent results on radiation treatment of some liquid systems obtained in the laboratory under author's leadership will be considered. One of them is water polluted with petroleum products (motor oil, diesel fuel, residual fuel oil). The pollutants were present in water in dissolved form and as a separate phase. It was found that irradiation (dose 25-40 kGy) decomposes and removes the pollutants as a precipitate. The second system is natural oil gas consisting of gaseous and low-boiling hydrocarbons, water and so on. Laboratory- and pilot-scale (with electron accelerator of 0.7 MeV and 30 kW) studies have shown that electron-beam treatment (in a recycling regime with continuous sampling the liquid phase) of this gas leads to the formation of a mixture of liquid branched hydrocarbons, alcohols, ethers and so on, i.e., there is a radiation-induced liquefaction of the natural oil gas. The mechanism of radiolytic conversions occurring in the mentioned systems will be discussed

  11. Advances in beam physics and technology: Colliders of the future

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.

    1994-11-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (ie, photons). Often, they interact with each other (eg, in high energy colliders) or with other forms of matter (eg, in fixed targets, sychrotron radiation, neutron scattering, laser chemistry/physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams -- always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades -- nonlinear dynamics, superconducting magnets and rf cavities, beam instrumentation and control, novel concepts and collider praradigms, to name a few. We illustrate this progress with a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use -- the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We close with an outline of future oppotunities and outlook.

  12. Advances in beam physics and technology: Colliders of the future

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1994-11-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (ie, photons). Often, they interact with each other (eg, in high energy colliders) or with other forms of matter (eg, in fixed targets, sychrotron radiation, neutron scattering, laser chemistry/physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams -- always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades -- nonlinear dynamics, superconducting magnets and rf cavities, beam instrumentation and control, novel concepts and collider praradigms, to name a few. We illustrate this progress with a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use -- the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We close with an outline of future oppotunities and outlook

  13. Technology integration box beam failure study

    Science.gov (United States)

    Shuart, M. J.; Ambur, Damodar R.; Davis, D. D., Jr.; Davis, R. C.; Farley, G. L.; Lotts, C. G.; Wang, J. T.

    1993-01-01

    Composite structures have the potential to be cost-effective, structurally efficient primary aircraft structures. The Advanced Composites Technology (ACT) Program has the goal to develop the technology to exploit this potential for heavily loaded aircraft structures. As part of the ACT Program, Lockheed Aeronautical Systems Company completed the design and fabrication of the Technology Integration Box Beam (TIBB). The TIBB is an advanced composite prototype structure for the center wing section of the C-130 aircraft. Lockheed subjected the TIBB to downbending, upbending, torsion and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. The objective of this paper is to describe the mechanisms that led to the failure of the TIBB. The results of a comprehensive analytical and experimental study are presented. Analytical results include strain and deflection results from both a global analysis of the TIBB and a local analysis of the failure region. These analytical results are validated by experimental results from the TIBB tests. The analytical and experimental results from the TIBB tests are used to determine a sequence of events that resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Analytical and experimental results are also presented for a stiffener runout specimen that was used to simulate the TIBB failure mechanisms.

  14. HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.ELECTRON BEAM TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...

  15. Process variation in electron beam sterilization

    International Nuclear Information System (INIS)

    Beck, Jeffrey A.

    2012-01-01

    The qualification and control of electron beam sterilization can be improved by the application of proven statistical analysis techniques such as Analysis of Variance (ANOVA) and Statistical Tolerance Limits. These statistical techniques can be useful tools in: •Locating and quantifying the minimum and maximum absorbed dose in a product. •Estimating the expected process maximum dose, given a minimum sterilizing dose. •Setting a process minimum dose target, based on an allowance for random measurement and process variation. •Determining the dose relationship between a reference dosimeter and process minimum and maximum doses. This study investigates and demonstrates the application of these tools in qualifying electron beam sterilization, and compares the conclusions obtained with those obtained using practices recommended in Guide for Process Control in Radiation Sterilization. The study supports the following conclusions for electron beam processes: 1.ANOVA is a more effective tool for evaluating the equivalency of absorbed doses than methods suggested in . 2.Process limits computed using statistical tolerance limits more accurately reflect actual process variability than the AAMI method, which applies +/−2 sample standard deviations (s) regardless of sample size. 3.The use of reference dose ratios lends itself to qualification using statistical tolerance limits. The current AAMI recommended approach may result in an overly optimistic estimate of the reference dose adjustment factor, as it is based on application of +/−2(s) tolerances regardless of sample size.

  16. Use of mathematical modelling in electron beam processing: A guidebook

    International Nuclear Information System (INIS)

    2010-01-01

    The use of electron beam irradiation for industrial applications, like the sterilization of medical devices or cross-linking of polymers, has a long and successful track record and has proven itself to be a key technology. Emerging fields, including environmental applications of ionizing radiation, the sterilization of complex medical and pharmaceutical products or advanced material treatment, require the design and control of even more complex irradiators and irradiation processes. Mathematical models can aid the design process, for example by calculating absorbed dose distributions in a product, long before any prototype is built. They support process qualification through impact assessment of process variable uncertainties, and can be an indispensable teaching tool for technologists in training in the use of radiation processing. The IAEA, through various mechanisms, including its technical cooperation programme, coordinated research projects, technical meetings, guidelines and training materials, is promoting the use of radiation technologies to minimize the effects of harmful contaminants and develop value added products originating from low cost natural and human made raw materials. The need to publish a guidebook on the use of mathematical modelling for design processes in the electron beam treatment of materials was identified through the increased interest of radiation processing laboratories in Member States and as a result of recommendations from several IAEA expert meetings. In response, the IAEA has prepared this report using the services of an expert in the field. This publication should serve as both a guidebook and introductory tutorial for the use of mathematical modelling (using mostly Monte Carlo methods) in electron beam processing. The emphasis of this guide is on industrial irradiation methodologies with a strong reference to existing literature and applicable standards. Its target audience is readers who have a basic understanding of electron

  17. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  18. Statistical process control for electron beam monitoring.

    Science.gov (United States)

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Advances in beam physics and technology: Colliders of the future

    Science.gov (United States)

    Chattopadhyay, Swapan

    1996-02-01

    Beams may be viewed as directed and focussed flow of energy and information, carried by particles and electromagnetic radiation fields (i.e. photons). Often, they are brought into interaction with each other (e.g. in high energy colliders) or with other forms of matter (e.g. in fixed target physics, synchrotron radiation sciences, neutron scattering experiments, laser chemistry and physics, medical therapy, etc.). The whole art and science of beams revolve around the fundamental quest for, and ultimate implementation of, mechanisms of production, storage, control and observation of beams—always directed towards studies of the basic structures and processes of the natural world and various practical applications. Tremendous progress has been made in all aspects of beam physics and technology in the last decades—nonlinear dynamics, superconducting magnets and radio frequency cavities, beam instrumentation and control, novel concepts and collider paradigms, to name a few. We will illustrate this progress via a few examples and remark on the emergence of new collider scenarios where some of these progress might come to use—the Gamma-Gamma Collider, the Muon Collider, laser acceleration, etc. We will close with an outline of future opportunities and outlook.

  20. Frequency response of slow beam extraction process

    International Nuclear Information System (INIS)

    Toyama, Takeshi; Sato, Hikaru; Marutsuka, Katsumi; Shirakata, Masashi.

    1994-01-01

    A servo control system has been incorporated into the practical slow extraction system in order to stabilize the spill structure less than a few kHz. Frequency responses of the components of the servo-spill control system and the open-loop frequency response were measured. The beam transfer function of the slow extraction process was derived from the measured data and approximated using a simple function. This is utilized to improve the performance of the servo-loop. (author)

  1. Radiation processing of carrageenan using electron beam

    International Nuclear Information System (INIS)

    Abad, L.V.; Aranilla, C.T.; Relleve, L.; Dela Rosa, A.M.

    2005-01-01

    Electron beam accelerator has been widely employed in the modification of natural polymers for the development of materials used in biomedical and agricultural applications. The carrageenans are among these materials that show a vast potential for these types of applications. Previous studies at the Philippine Nuclear Research Institute focused on the utilization of gamma radiation to modify the carrageenans. Radiation degradation of carrageenan found valuable use as plant growth promoter. Hydrogels for burn dressing using blends of carrageenan and synthetic polymers have also been made using gamma radiation. While previous studies have been focused on the use of gamma radiation to modify the carrageenans, recent studies expanded the technology to electron beam. Concretely, researches are along the following two areas: a) Degradation studies of aqueous carrageenan using the LEEB and b) Preparation of blend polysaccharide derivatives such as carboxymethylcellulose (CMC), and hydroxypropylcellulose (HPC) with kappa-carrageenan (KC) by EB radiation. These works were done at the Takasaki Radiation Chemistry Research Establishment (TRCRE) by two PNRI colleagues under the nuclear researcher exchange program of the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). The first area had already been reported and discussed in the last project meeting held in Malaysia. (author)

  2. Electron beam processing - status and prospects

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1989-01-01

    A variety of commercial products now on the market are being produced by electron beam processing, which involves the treatment of materials with high-energy electrons to obtain beneficial effects. Ongoing applications include the high-speed curing of printing inks, clear and pigmented coatings, release coatings and adhesive films, the crosslinking of plastic film, foam, tubing, pipe, molded parts, electrical wire and cable, the cold vulcanization of rubber sheets for automobile tires and factory roofing as well as the sterilization of medical devices and packaging materials, and the preservation of food. Continuing growth is being driven by some inherent advantages of electron beam processing over alternative chemical and thermal treatment processes, such as enhanced product quality and lower unit costs that result from higher production rates, dynamic process control, quicker process start-up and shutdown, and reductions in scrap loss, energy consumption, floor space requirements, and toxic residues. Other potential applications that have not yet reached commercial fruition are focused on environmental protection and the reclamation of waste materials. These include the disinfection of potable water supplies, municipal waste water, sewage sludge, and the infectious wastes from hospitals and airports, the modification of toxic chemicals, the degradation of cellulosic materials, the cracking of crude oil and residual tars from refineries, and the extraction of sulfur and nitrogen oxides from combustion gases to reduce the effects of acid rain

  3. The synchrotron and its related technology for ion beam therapy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo; Umezawa, Masumi; Saito, Kazuyoshi; Tootake, Satoshi; Nishiuchi, Hideaki; Hara, Shigemistu; Tanaka, Masanobu; Matsuda, Koji; Sakurabata, Hiroaki; Moriyama, Kunio

    2007-01-01

    Hitachi has developed several new technologies for the synchrotron and its related system to realize reliable and flexible operation of a proton therapy system. Especially important among them are a non-resonant RF acceleration cavity using FINEMET core with multiple power feeding and radio frequency driven beam extraction technique (RF-DE) for a synchrotron. Various treatment operations such as variable acceleration energy or respiration gating became possible and simple due to the above technique. For beam transport, a beam steering method for the beam, using transfer matrix realizes quick and precise correction of the beam orbit. A compact microwave ion source has also been developed for the injector to obtain further higher reliability and availability. Most of these technologies are also effective to enhance the reliability and flexibility of other ion beam therapy systems

  4. Low energy electron beam processing in Europe at the end of the 20th century

    International Nuclear Information System (INIS)

    Lauppi, U.V.

    1999-01-01

    Overview of low energy electron beam processing in Europe was presented. The presentation contained the following topics: the early installations, years of growth, stagnation, status 1999 and the future of this technology

  5. Plasma processes including electron beam for off-gases purification

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Witman, S.; Licki, J.

    2011-01-01

    Complete text of publication follows. Non-thermal plasma technologies based on different methods of plasma generation are being applied for ozone generation for different applications, waste water and off-gases treatment. Plasmas create reactive species, in particular ions, radicals or other reactive compounds, which can decompose pollutant molecules, organic particulate matter or soot. Electron beam flue gas treatment is another plasma-based technology which has been successfully demonstrated on industrial scale coal fired power plants. High efficiency of SO 2 (> 95%) and NO x (> 70%) has been obtained and industrial plant applying this process has been built in Poland. The further investigations carried out all over the world have illustrated that the process can be applied for poly-aromatic hydrocarbons (PAH) destruction as well, and just recently research laboratories in the US and South Korea have reported in the feasibility of the process for mercury removal from the flue gas. The recent studies concern a new type of accelerators implementation in the industrial scale, application of the process in the high sulfur oil fired boilers and Diesel off - gases purification. The treatment of the flue gases with the high NOx concentration is a special challenge for the technology since the main energy consumption (and applied accelerators power) is related to this pollutant content in the processed off gases. The pulse beams and scavenger application can be a solution to reduce investment and operational costs. The further development of the technology is directly connected with high power accelerators development. Acknowledgement: The R and D activities are supported by the European Regional Development Found in the frame of the project PlasTEP 'Dissemination and fostering of plasma based technological innovation for environment protection in the Baltic Sea Region'.

  6. Status report on the relativistic electron beam technology

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Rohatgi, V.K.

    1974-01-01

    The status of technology of the pulsed relativistic electron beam (REB) has been examined and summarised in this report. With the present technology the beam generator can be used either as a source of intense electron burst or to produce bursts of positive ions x and γ-rays, and neutrons by suitable secondary reactions. A large number of applications have been identified where this technology can play an important role. Typical applications of the technology include : (a) generation and heating of fusion plasma (b) development of high power laser and (c) sterilisation and radiation sources. The present day cost of radiation produced by REB is competitive with the cost of radiation produced from Co 60 source. At the same time there are indications that the cost of radiation from REB source can be significantly reduced with advanced technology. The type of equipment developed by various laboratories to study realitivistic electron beams is also included in this report. (author)

  7. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  8. Laser Processing Technology using Metal Powders

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jeong-Hwan; Moon, Young-Hoon [Pusan National University, Busan (Korea, Republic of)

    2012-03-15

    The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

  9. Flue gas cleaning by electron beam technology in 21st

    International Nuclear Information System (INIS)

    Xu Guang; Luo Jingyu; Zhang Ming

    2005-01-01

    China is paying great attention to the pollution caused by flue gases including sulfur oxides, nitrogen oxides, fine particles, and volatile organic compounds (VOC) for the environmental protection and sustainable development of China economy for 21st century. Among several promising processes, applicable to industrial scale, the electron beam (EB) scrubbing process can simultaneously remove SO 2 , NOx, PM-10 (particulate matter 10 μm or less in diameter), VOC and CO 2 from the flue gas is a new high technology combined with radiation chemistry and electron accelerator technique. The EB flue gas purification process consists of the producing ionization in the EB irradiated gases followed by the formation of free radicals and active species which ultimately forming foggy sulfur acid and nitrate acid. These acids react further with added ammonia to form ammonium sulfate and nitrates as by-products, which can be fertilizer usable in agriculture. The next stage for this technology is its optimization for the reduction of electricity energy consumption and an effective collection of by-products. Lastly the investment cost for EB method is shown to be the most economic compared with other competing methods. (S. Ohno)

  10. Fundamentals of semiconductor processing technology

    CERN Document Server

    El-Kareh, Badih

    1995-01-01

    The drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac­ turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil­ ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech­ n...

  11. Electron Beam Processing of Polymers: Facts and Opportunities

    International Nuclear Information System (INIS)

    Gielenz, G.

    2006-01-01

    Electron Beam (EB) processing of polymers is a well established and mature technology in a multitude of industrial polymer applications for more than 40 years. Constant research effort in combination with emerging tailored EB process technologies, have led to numerous new (niche) applications and products within the past decade. Nonetheless, and despite the fact, that nowadays a large variety of EB and related process equipment is readily available for use by the respective industries, EB processing of polymers still takes up only a small niche in comparison to the overall polymer business. In this lecture the author attempts to present a short overview on the current industrial established and emerging radiation processing applications and the related EB equipment suppliers. Then some selected plastics business facts and figures with a forecast of the global plastics consumption situation up to 2010 will be shown. As a conclusion from these facts, some comments will be deduced, regarding the future potential, attractiveness and economical relevance of irradiation processing technologies in present day competitive global markets

  12. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    Science.gov (United States)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  13. Technology of substrates for molecular beam homo epitaxy of wide - gap AII-BVI semiconductors and construction of a simplified setup for this process

    International Nuclear Information System (INIS)

    Mycielski, A.; Szadkowski, A.; Kaliszek, W.

    2000-01-01

    The technology of 'epi-ready' substrate plates (for MBE) of the wide gap AII-BVI semiconductor compounds, i. e. - preparation of the ultra pure elements, synthesis of the source material, crystallization by the physical vapour transport technique, cutting of the oriented plates, mechano-chemical polishing and preparation of the 'epi-ready' surface - is described, as well as the construction of a simplified version of the MBE setup for covering the substrate plates with the homoepitaxial layer. The results of the characterization of the substrate crystals and plates are presented. (author)

  14. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  15. TECHNOLOGIES FOR DELIVERY OF PROTON AND ION BEAMS FOR RADIOTHERAPY

    CERN Document Server

    Owen, H; Alonso, J; Mackay, R

    2014-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  16. Development of Beam Utilization Technologies and Support for Users

    International Nuclear Information System (INIS)

    Kim, Kyeryung; Jung, Myunghwan; Noh, Yongoh; Lee, Sooyeon; Kim, Hyukwook; Kil, Jaekeun; Lee, Nayoung; Ra, Sekin; Lee, Miejeen; Kim, Sora

    2013-02-01

    The Final goals are to achieve the 2nd goals of the Proton Engineering Frontier Project, development of proton beam utilization technologies, to incubate the potential users, and to develop fundamental technologies. Based on these achievements, we are going to enhance the accelerator utilization and maximize contribution to the local society after accelerator construction completion. For the these goals, we were operating user program reflecting the results of 3rd step planning. We support 38 small projects during 2 years. As results of activation of beam utilization, we acquired 768 users at the end of 2012. We survey proton beam technology proposals, individuals and institutions participation letter of intent through the research of 'Planning of a support program for both basic research by using accelerator and manpower cultivation'. And inaugurated KOPUA (Korea Proton Accelerator User Association) on March 28, 2012 with 152 members. We secured experimental conditions at TR23 and TR103 and reflected in the target room design and operation scenarios via investigate the requirements. Through these requirements, we make a remote sample transfer system, beam regulating system, hot cell and sample transport container. Moreover, we develop proton beam technologies such as in-vivo proton beam irradiation system, comparison of the biological effects for pulse beam and continuous beam, basic experiments for the metal nanopaticle synthesis, research for radioactivatied samples and devices, conceptual design and calculation for neutron source target and calculation of the isotope production yield. Proton accelerator can be utilized in a variety of field, including NT, BT, IT, ST, ET, Nuclear, medical, and some of the user facilities required were constructed through this project, Experience for the construction and operation of these facilities can be reflected to the construction of the rest 8 target room of proton accelerator center

  17. Beam-beam dynamics during the injection process at the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1991-10-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory based on PEP (PEP-2). For symmetric colliders, the primary source of the beam-beam effect is the head-on collision at the interaction point (IP), and this effect can be mitigated by separating the beams during the injection process. For an asymmetric collider, which intrinsically consists of two separate rings, the bunches not only collide at the IP but experience a long-range beam-beam force on the way into and out of the IP region. These collisions are called ''parasitic crossings (PC).'' The parasitic crossings emerge as a potential source of far stronger beam-beam impact during the injection process for the following reason. In the proposed injection scheme of the APIARY-6.3d design, the bunches are injected horizontally into the two rings with large horizontal offset of 8σ Ox sptm where σ Ox sptm is the nominal horizontal storage ring beam size at the end of the septum magnet. Then, the injected beam starts to travel around the ring oscillating horizontally. For the sake of discussion, let us assume that the beam in the other ring has already been fully stored. When the injected beam arrives at the 1st PC, where the two nominal orbits are separated horizontally by about 7.6 times the nominal horizontal beam size of the low energy ring, it may pass through the other beam far more closely than at the nominal separation distance, or it may even strike the other beam head-on

  18. Technology choices for the Integrated Beam Experiment (IBX)

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2002-10-31

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete ''source-to-target'' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current ({approx}1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing. This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets.

  19. Induction Accelerator Technology Choices for the Integrated Beam Experiment (IBX)

    International Nuclear Information System (INIS)

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Logan, B.G.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2003-01-01

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete 'source-to-target' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current (∼1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing.This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets

  20. Electron beam processing programme: Wastewater and sludge treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Vieira, J.M.

    1998-01-01

    The Institute for Energetic and Nuclear Research, working on environmental applications, has an extensive research programme using high energy electron beam in treating industrial wastewater and sludge. The experiments are being conducted in a pilot plant using an industrial electron beam 1.5MeV, 25mA, where the streams are presented to the scanned electron beam in counter flow. This pilot plant is designed to process approximately 3.0m 3 /h with an average dose 5kGy and the absorbed dose measurement is performed continuously by calorimetric system in real time. Combined biological and radiation treatment of domestic sewage and sludge were carried out to investigate disinfestation and removal of organic matter. The experiments showed that total and fecal coliforms were decreased by about 5 logs cycles with a 3.0kGy radiation dose in raw sewage and biological effluents, respectively. Concerning the industrial wastewater in the first stage of the programme, the irradiation was conducted using batch systems with samples originating from a Governmental Wastewater Treatment Plant. The data showed a significant color reduction effect when delivered dose was increased, and the opposite was noted for turbidity and total suspended solids. Other experiments were focused to process real industrial effluents from one of the most important chemical and pharmaceutical industries in Brazil. A special transport truck was used to transfer the liquid waste from the Industry to the Electron Beam Pilot Plant. Large quantities of liquid waste were irradiated with and without air addition with the doses from 2kGy to 20kGy. Such experiences performed in association with the Industry demonstrated that this technology has a great potential to be transferred and to contribute with a permanent cleanup alternative for hazardous wastes

  1. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1993-01-01

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs

  2. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Cirstea, E.; Craciun, G.; Ighigeanu, D.; Marin, Gheorghe G.

    2002-01-01

    conditions, is rather small, of about 1 kGy, that makes the use of electron beam processing very economically attractive in this type of application. Thus, if all auxiliary systems are made and suitable adapted, the estimation of processing rate is 3600 kg/h. The acrylamide - acrylic acid copolymers are used in the range of 4 to 8 g per 1 m 3 of wastewater. A vegetable oil plant which processes 100 000 ton/year of sunflower produces about 1 260 000 m 3 /year wastewater. The necessary amount of polyelectrolytes is 315-630 kg/year. This value can by ensured by our technology in a very short time, from 315 s to 630 s. (authors)

  3. Plasma technology in metallurgical processing

    Energy Technology Data Exchange (ETDEWEB)

    Haile, O.

    1995-12-31

    This literature work is mainly focusing on the mechanisms of plasma technology and telling about metallurgical processing, particularly iron and steelmaking as well as the advantage of the unique properties of plasma. The main advantages of plasma technology in metallurgical operations is to direct utilization of naturally available raw materials and fuels without costly upgrading andlor beneficiation, improved environmental impact, improve process control, significant amplification of reactor and process equipment utilization and increased efficiency of raw materials, energy and man power. This literature survey is based on the publication `plasma technology in metallurgical processing` presents a comprehensive account of the physical, electrical, and mechanical aspects of plasma production and practical processing. The applications of plasma technology in metallurgical processing are covered in depth with special emphasis on developments in promising early stages. Plasma technology of today is mature in the metallurgical process applications. A few dramatic improvements are expected in the near future this giving an impetus to the technologists for the long range planning. (18 refs.) (author)

  4. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1990-01-01

    The present report is prepared for planners of radiation processing of any material. Sources with cobalt-60 are treated marginally, because most probably, there will be no installation of technically meaningful activity in Poland before the year 2000. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV and accelerators of lower energy, below 2 MeV, of better energetical yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of twenty years of exploitation of the machine. One has to realize that from the 150 kV input power from the mains, only 5 kV of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, sometimes only a few percent, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of losses at the edges of the scanned area and in the spaces between boxes, and of losses during the dead time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical in case of objects of optimum type. At the first stage, that is of the conversion of electrical power into that of the low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating bremsstrahlung similar to gamma radiation. The advantages of these technologies, which make it possible to control the shape of the processed object are stressed. Ten parameters necessary for a proper calculation of technological yields of radiation processing are listed. Additional conditions which must be taken into account in the comparison of the cost of radiation processing with the cost of other technologies are also

  5. Ion beam processing of bio-ceramics

    Science.gov (United States)

    Ektessabi, A. M.

    1995-05-01

    Thin films of bio-inert (TiO 2+α, Al 2O 3+α) and bio-active (compounds of calcium and phosphorus oxides, hydroxyapatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate.

  6. Radiation processing technology in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan

    2004-01-01

    Radiation processing technology is widely used in industry to enhance efficiency and productivity, improve product quality and competitiveness. Efforts have been made by MINT to expand the application of radiation processing technology for modification of indigenous materials such as natural rubber and rubber based products, palm oil and palm oil based products and polysaccharide into new and high value added products. This paper described MINT experiences on developing products through R and D from the laboratory to the pilot plant stage and commercialization. The paper also explained some issues and challenges that MINT encountered in the process of commercialization of its R and D results. (author)

  7. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  8. Radiation-beam technologies of structural materials treatment

    International Nuclear Information System (INIS)

    Kalin, B.A.

    2001-01-01

    Considered in the paper are the most advanced and prospective radiation-beam technologies (RBT) for treatment of structural materials, as applied to modifying the structural-phase state in the surface layers of half-finished products and articles with the purpose to improve their service properties. Ion-beam, plasma, and ion-plasma, as well as the technologies based on the use of concentrated fluxes of energy, generated by laser radiation, high-power pulsed electron and ion beams, and high-temperature pulsed plasma fluxes are analysed. As applied to improvement of the corrosion and erosion resistance, breaking strength, friction and wear resistance, and crack resistance, the directions of the choice and the use of RBT have been considered for changes of the surface layer state by applying covers and films, and by a change of the surface topography (relief), surface structure and defects, and the element composition and phase state of materials [ru

  9. Radiation processing technology for preparation of fine shaped biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M.; Yoshida, M.; Asano, M. (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Yamanaka, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-06-01

    Radiation processing technology for the preparation of fine shaped biomedical materials was studied from the aspect of a development of the technology and its application. Electron beam irradiation technology was applied to the preparation of fine shaped biomedical materials such as thin polymer films in diagnosis, in which enzyme and antibody were used as a bioactive substance. Electron beam cast-polymerization and electron beam repeat surface-polymerization, that are surface irradiation techniques of homogeneous hydrophilic monomer solution containing enzymes made it possible to form the immobilized antibody films. In this technique, the films with various thicknesses (50-500 [mu]m) were obtained by regulating the electron beam energy. The thin polymer films immobilizing anti-[alpha]-fetoprotein were evaluated from the aspect of immunoagents for diagnosis of liver cancer. (Author).

  10. Application of electron beams to environmental conservation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1992-01-01

    The paper is a review of current status of the application of electron beams to environmental conservation technology. Different aspects of radiation treatment of natural and polluted drinking water, radiation purification of industrial and municipal wastes, radiation treatment of sewage sludge and radiation purification of exhaust gases are considered. The special attention is paid to the respective pilot and industrial facilities. (author) 70 refs

  11. Purification technology for flue/off gases using electron beams

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2004-01-01

    The present paper describes research and development on purification technology using electron beams for flue/off gases containing pollutants: removal of sulfate oxide and nitrogen oxide from flue gases of coal/oil combustion power plants, decomposition of dioxins in waste incineration flue gas, and decomposition/removal of toxic volatile organic compounds from off gas. (author)

  12. CERN's web application updates for electron and laser beam technologies

    CERN Document Server

    Sigas, Christos

    2017-01-01

    This report describes the modifications at CERN's web application for electron and laser beam technologies. There are updates at both the front and the back end of the application. New electron and laser machines were added and also old machines were updated. There is also a new feature for printing needed information.

  13. Status and future outlook for the beam process

    International Nuclear Information System (INIS)

    Frank, N.W.

    1991-10-01

    This work refers to one of the first papers written on the commercial aspects of the electron beam process given on October 1984 at the Fifth International Meeting on Radiation Processing in San Diego, California. (Author)

  14. Ion beam processing of bio-ceramics

    International Nuclear Information System (INIS)

    Ektessabi, A.M.

    1995-01-01

    Thin films of bio-inert (TiO 2+α , Al 2 O 3+α ) and bio-active (compounds of calcium and phosphorus oxides, hydroxy-apatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate. (orig.)

  15. Radiation processing of polymers with high energy electron beams: novel materials and processes

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Sabharwal, Sunil

    2002-01-01

    High-energy ionizing radiation available from electron beam (EB) accelerators has the ability to create extremely reactive species like free radicals or ions at room temperature or even at low temperature in any phase and in a variety of substrates without addition of external additives. This unique advantage of high energy has been utilized in the recent years to produce better quality materials in an environment friendly and cost-effective manner. The availability of high power and reliable EB accelerators has provided new tools to modify the materials and/or processes for a variety of applications. At BARC, a 2 MeV, 20 kW electron beam accelerator has been the nucleus of developing industrial applications of radiation processing in India for last 10 years. The focus has been on developing technologies that are of relevance to Indian socio-economic conditions and also provide economic benefits to the industry. In the areas of polymer processing industry, commercial success has already been achieved while for exploring its applications in the areas of food and agriculture and environment, technology demonstration plants are being set up. The current status of the programme, the new developments and future direction of radiation processing technology shall be presented in this paper. (author)

  16. E-Beam - a new transfer system for isolator technology

    International Nuclear Information System (INIS)

    Sadat, Theo; Huber, Thomas

    2002-01-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2 O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2 O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  17. Distillation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  18. Process Engineering Technology Center Initiative

    Science.gov (United States)

    Centeno, Martha A.

    2002-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  19. The development of MEMS device packaging technology using proton beam

    International Nuclear Information System (INIS)

    Hyeon, J. W.; Kong, Y. J.; Kim, E. H.; Kim, H. S.; No, S. J.

    2006-05-01

    Wafer-bonding techniques are key issues for the commercialization of MEMS(MicroElectroMechanical Systems) devices. The anodic bonding method and the wafer direct-bonding method are well-known major techniques for wafer bonding. Due to the anodic bonding method includes high voltage processes above 1.5 kV, the MEMS devices can be damaged during the bonding process or malfunctioned while long-term operation. On the other hand, since the wafer direct-bonding method includes a high temperature processes above 1000 .deg. C, temperature-sensitive materials and integrated circuits will be damaged or degraded during the bonding processes. Therefore, high-temperature bonding processes are not applicable for fabricating or packaging devices where temperature-sensitive materials exist. During the past few years, much effort has been undertaken to find a reliable bonding process that can be conducted at a low temperature. Unfortunately, these new bonding processes depend highly on the bonding material, surface treatment and surface flatness. In this research, a new packaging method using proton beam irradiation is proposed. While the energy loss caused in an irradiated material by X-rays or electron beams decreases with the surface distance, the energy loss caused by proton beams has a maximum value at the Bragg peak. Thus, the localized energy produced at the Bragg peak of the proton beams can be used to bond pyrex glass on a silicon wafer, so the MEMS damage is expected to be minimized. The localized heating caused by as well as the penetration depth, or the proton beam has been investigated. The energy absorbed in a stack of pyrex glass/silicon wafers due to proton-beam irradiation was numerically calculated for various proton energies by using the SRIM program. The energy loss was shown to be sufficiently localized at the interface between the pyrex glass and the silicon wafer. Proton beam irradiation was performed in the common environment of room temperature and

  20. The use of low energy ion beams for the growth and processing of solid materials

    International Nuclear Information System (INIS)

    Armour, D.G.; Al-Bayati, A.H.; Gordon, J.S.

    1992-01-01

    Low energy ion bombardment forms the basis of ion assisted etching and growth of materials in plasma and ion beam systems. The growing demands for low temperature, highly controlled processing has led a rapid increase in both the application of low energy beams and the study of the fundamental ion surface interactions involved. The growth in the practical applications of ion beams in the few eV to a few hundred eV range has presented new problems in the production and transport of ion beams and has led to the development of highly specialised, ultra-low energy systems. These technological developments, in conjunction with the improvements in understanding of fundamental processes have widened the range of applications of low energy beams. (author) 52 refs

  1. Pyro processing technology at KAERI

    International Nuclear Information System (INIS)

    Lee, Hansoo; Kim, Eungho; Park, Seongwon

    2008-01-01

    KAERI has studied on the pyro processing as a spent fuel treatment method for more than decade. The process includes voloxidation, electroreduction, electrorefining with solid and liquid cathodes, and waste salt treatment. Each process has developed its own characteristics which are suitable for treating high mass flow. In the electroreduction process, a magnesia filter was used for integrated electrolytic reduction. More than 99% of reduction yield was achieved. Electrorefining process employs the continuous operation concept. Uranium deposits on the surface of graphite cathode and it is stripped off spontaneously to the bottom of the reactor, which allows continuous operation. Crystallization method was used for treating waste salt. Pure salt is recovered by Czochralski method or zone freezing method and subsequently recycled to the reactor. These advanced technologies ensure the operation of pyro processing in a larger scale

  2. Structural testing of the technology integration box beam

    Science.gov (United States)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  3. The development of enabling technologies for producing active interrogation beams.

    Science.gov (United States)

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  4. Fiscal 2000 survey report on technological trends. Survey on trend of high-density energy beam technology concerning conservation of energy; 2000 nendo gijutsu doko nado chosa hokokusho. Energy shiyo gorika ni kakawaru komitsudo energy beam technology no doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    There is a possibility that machining technology using high-density energy beam will bring an epoch-making change to micro-nano area processing. In particular, a laser beam having high controllability is indispensable. This is a report of the fiscal 2000 survey. The survey was conducted on laser beam generation, control and nano-diagnostic techniques, micro-nano optics technologies and machining technologies, with the development problems and targets summarized. Laser beam generation/control technologies, which become the basic tools for micro-nano manufacturing, were investigated, as were inspection technologies for the purpose of checking the functions of nano structures created. Particularly, the investigation elucidated the significance of development of a femtosecond solid state laser based on a semiconductor laser and the control techniques of their phase. Further, necessity was emphasized in developing X-ray probing, infrared and terahertz spectroscopy which are essential for nano-diagnostic techniques. In optics technologies, the paper described the importance of photonic crystals which enable less-than-wavelength machining or electrical beam control using interference effect. The possibility of fabricating photocatalysts with nano-particles was also mentioned, as was the manufacturing of nano-functional structures. (NEDO)

  5. Technology development life cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  6. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  7. NOx reduction by compact electron beam processing

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Wallman, P.H.; Vogtlin, G.E.

    1995-01-01

    Among the new methods being investigated for the post-combustion removal of nitrogen oxides (NO x ) are based on non-thermal plasmas. These plasmas can be produced by electrical discharge methods or electron beam irradiation. The application of electron beam irradiation for NO x removal in power plant flue gases has been investigated since the early 1970's in both laboratory- and pilot-scale experiments. Electrical discharge methods are relatively new entrants in the field of flue gas cleanup. Pulsed corona and dielectric-barrier discharge techniques are two of the more commonly used electrical discharge methods for producing nonthermal plasmas at atmospheric pressure. There are basically two types of reactions responsible for the depletion of NO by non-thermal plasmas: oxidation and reduction

  8. Microwave waste processing technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  9. Microwave waste processing technology overview

    International Nuclear Information System (INIS)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the open-quotes coldclose quotes demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge

  10. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A. V., E-mail: ponomarev@ipc.rssi.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Pershukov, V. A. [ROSATOM National Nuclear Corporation (Russian Federation); Smirnov, V. P. [CJSC “Nauka i Innovatsii” (Russian Federation)

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  11. Advanced Technology Composite Fuselage - Materials and Processes

    Science.gov (United States)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  12. Electron beam accelerator at BARC-BRIT complex - electron beam processing of materials and industrial utilization

    International Nuclear Information System (INIS)

    Khader, S.A.; Patkari, R.K.; Sharma, K.S.S.

    2013-01-01

    During the last decade, the 2MeV/20kW electron beam (EB) accelerator located at BARC-BRIT complex, Vashi has been successfully utilised for non-thermal applications to develop speciality products useful for the industry. Polymer materials are exposed to high energy electrons to induce crosslinking and degradation reactions in a number of industrial products without the use of external chemicals and additives. Various EB crosslinked products viz. PE O-rings, automotive components, automobile tyres, electrical insulations, etc have been found to be much superior in quality compared to those produced conventionally. A process has been developed to enhance colours in the polished diamonds and gem stones using EB irradiation at the facility which has attracted much attention in the Indian diamond industry as a value-addition process. Recycling of polymer waste processed under EB to produce microfine PTFE powder, to reuse in automobile industry etc. has shown good potential for the industrial use. The process feasibility both in terms of economics and technology have been amply demonstrated on a technological scale by installing special conveyors at our facility for irradiating various industrial products. Around 100 km cable insulations, 1.5 million PE O-rings and more than 40000 carats of polished diamonds have been processed in our facility over a period of time on commercial scale. Encouraged with the results, Indian private entrepreneurs have set up dedicated EB machines in some of the most significant industries producing wire and cables, electrical gadgets based on polymer composites, automobile tyres and diamonds. The products are unique in properties and are in some cases, became import substitutes. The industry is now fully geared up to adapt the technology by realising the advantages viz ease in adaptability, convenient, safe and environmental-friendly nature. Encouraged by the process demonstrations, while five EB accelerators were setup and are in operation

  13. Environmental and process monitoring technologies

    International Nuclear Information System (INIS)

    Vo-Dinh, Tuan

    1993-01-01

    The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art methods and instrumentation for environmental and process monitoring. In the last few years, important advances have been made in improving existing analytical methods and developing new techniques for trace detection of chemicals. These monitoring technologies are a topic of great interest for environmental and industrial control in a wide spectrum of areas. Sensitive detection, selective characterization, and cost-effective analysis are among the most important challenges facing monitoring technologies. This conference integrating interdisciplinary research and development was aimed to present the most recent advances and applications in the important areas of environmental and process monitoring. Separate abstracts have been prepared for 34 papers for inclusion in the appropriate data bases

  14. Use of energetic ion beams in materials synthesis and processing

    International Nuclear Information System (INIS)

    Appleton, B.R.

    1992-01-01

    A brief review of the use energetic ion beams and related techniques for the synthesis, processing, and characterization of materials is presented. Selected opportunity areas are emphasized with examples, and references are provided for more extensive coverage. (author)

  15. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    Science.gov (United States)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  16. Spiral Light Beams and Contour Image Processing

    Science.gov (United States)

    Kishkin, Sergey A.; Kotova, Svetlana P.; Volostnikov, Vladimir G.

    Spiral beams of light are characterized by their ability to remain structurally unchanged at propagation. They may have the shape of any closed curve. In the present paper a new approach is proposed within the framework of the contour analysis based on a close cooperation of modern coherent optics, theory of functions and numerical methods. An algorithm for comparing contours is presented and theoretically justified, which allows convincing of whether two contours are similar or not to within the scale factor and/or rotation. The advantages and disadvantages of the proposed approach are considered; the results of numerical modeling are presented.

  17. Technology of niobium and molybdenum refining by electron beam

    International Nuclear Information System (INIS)

    Conti, R.A.; Pinatti, D.G.; Sandim, H.R.Z.

    1988-01-01

    The uses of metals and alloys in superconductors (Nb46%Ti), aerospatial industry (Ti6Al4V), electroeletronic industry (Nb, Mo, W) and in surgical implants (Ti, Nb) are increasing nowadays. A refining process of niobium and molybdenum by electron beam technique, since the oxides reduction till the obtention of a high purity ingot is presented. (C.G.C.) [pt

  18. Research on electron beam welding technology of steel HR-4

    International Nuclear Information System (INIS)

    Guo Peng; Guan Kai

    2001-01-01

    The electron beam weldability of HR- 4 steels (J75 and J90) is studied and the welding parameters needed for design and usage are presented. The assessment on the effect of mechanical properties by different processing order of welding and heat-treatment is made

  19. Molecular-beam studies of primary photochemical processes

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser

  20. Molecular-beam studies of primary photochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.

  1. Possibility for implementation of e-beam technology in TPS Sviloza

    International Nuclear Information System (INIS)

    Dutskinov, N.; Pelovski, Y.; Nikolov, K.; Stamatov, L.

    2011-01-01

    The electron beam flue gas treatment process is one of the most promising technologies in the modern environmental protection. The technology allows the simultaneous removal of acidic pollutants such as SO 2 and NO x with high efficiency and decomposition of VOC (volatile organic compounds) without generating any wastes. These pollutants are named “acid gases” that cause acid rain and damage forests, agriculture fields and flora as well as public health. After successful operation of Electron Beam Flue Gas Treatment Pilot Plant at Maritsa East 2 TPS, the Bulgarian Ministry of Economy and Energy has taken decision for implementation EB technology in the industrial scale at “Sviloza” TPS in Svishtov, Bulgaria. The Industrial Electron Beam Flue Gas Treatment Plant (IEBFGTP) covers 100% of the flue gases generated from all units of TPS “Sviloza” JSC, Svishtov. This Thermal Power Station generates flue gases from all boilers – 600 000 Nm3/h, with emission of SO 2 → 2800 – 4800 mg/Nm 3 , NOx → 1200 – 1600 mg/Nm 3 and dust → 200 – 1400 mg/Nm3. The major objective of the electron beam project is to reduce harmful emissions of SO x , NO x and VOC by 85%. The byproduct generated by the electron beam plant is ammonium sulfate and ammonium nitrate and it can be used as fertilizer in the Bulgarian agriculture sector and abroad. (author)

  2. Possibility for implementation of e-beam technology in TPS Sviloza

    Energy Technology Data Exchange (ETDEWEB)

    Dutskinov, N. [Ministry of Energy, NEK, Sofia (Bulgaria); Pelovski, Y. [University of Chemical Technology and Metallurgy, Sofia (Bulgaria); Nikolov, K.; Stamatov, L. [Sviloza Power Station, Svishtov (Bulgaria)

    2011-07-01

    The electron beam flue gas treatment process is one of the most promising technologies in the modern environmental protection. The technology allows the simultaneous removal of acidic pollutants such as SO{sub 2} and NO{sub x} with high efficiency and decomposition of VOC (volatile organic compounds) without generating any wastes. These pollutants are named “acid gases” that cause acid rain and damage forests, agriculture fields and flora as well as public health. After successful operation of Electron Beam Flue Gas Treatment Pilot Plant at Maritsa East 2 TPS, the Bulgarian Ministry of Economy and Energy has taken decision for implementation EB technology in the industrial scale at “Sviloza” TPS in Svishtov, Bulgaria. The Industrial Electron Beam Flue Gas Treatment Plant (IEBFGTP) covers 100% of the flue gases generated from all units of TPS “Sviloza” JSC, Svishtov. This Thermal Power Station generates flue gases from all boilers – 600 000 Nm3/h, with emission of SO{sub 2} → 2800 – 4800 mg/Nm{sup 3}, NOx → 1200 – 1600 mg/Nm{sup 3} and dust → 200 – 1400 mg/Nm3. The major objective of the electron beam project is to reduce harmful emissions of SO{sub x}, NO{sub x} and VOC by 85%. The byproduct generated by the electron beam plant is ammonium sulfate and ammonium nitrate and it can be used as fertilizer in the Bulgarian agriculture sector and abroad. (author)

  3. Sensorial analysis of peanuts processed by e-beam

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Priscila V.; Furgeri, Camilo; Salum, Debora C.; Rogovschi, Vladimir D.; Villavicencio, Anna Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: villavic@ipen.br

    2007-07-01

    The development of the sensorial analysis was influenced by frequent changes in the technology of production and distribution of foods. Currently the sensorial analysis has represented a decisive part in some sectors of the nourishing industry with the purpose to improve the quality of its products. The food irradiation has as purpose to improve the product quality, in order to eliminate the diverse microorganisms that can spoil the food. The process of irradiation in the recommended doses causes very few chemical alterations in some foods, the nutritional losses are considered insignificant and some of the alterations known found in irradiated foods is not harmful or dangerous. The present study evaluated the sensorial characteristics of peanuts processed by electron beam machine and was made a test of acceptance using a hedonic scale. Samples of peanut had been processed in the doses of 0, 5 and 7 kGy. Thirty volunteer panelists had participated of that acceptance study. The evaluating parameters were: appearance, odor and flavor. The result showed that the consumers had approved the peanut in the dose of 5 and 7 kGy, not having significant difference between the samples controlled and irradiated. (author)

  4. Sensorial analysis of peanuts processed by e-beam

    International Nuclear Information System (INIS)

    Silva, Priscila V.; Furgeri, Camilo; Salum, Debora C.; Rogovschi, Vladimir D.; Villavicencio, Anna Lucia C.H.

    2007-01-01

    The development of the sensorial analysis was influenced by frequent changes in the technology of production and distribution of foods. Currently the sensorial analysis has represented a decisive part in some sectors of the nourishing industry with the purpose to improve the quality of its products. The food irradiation has as purpose to improve the product quality, in order to eliminate the diverse microorganisms that can spoil the food. The process of irradiation in the recommended doses causes very few chemical alterations in some foods, the nutritional losses are considered insignificant and some of the alterations known found in irradiated foods is not harmful or dangerous. The present study evaluated the sensorial characteristics of peanuts processed by electron beam machine and was made a test of acceptance using a hedonic scale. Samples of peanut had been processed in the doses of 0, 5 and 7 kGy. Thirty volunteer panelists had participated of that acceptance study. The evaluating parameters were: appearance, odor and flavor. The result showed that the consumers had approved the peanut in the dose of 5 and 7 kGy, not having significant difference between the samples controlled and irradiated. (author)

  5. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  6. Technology and applications of broad-beam ion sources used in sputtering. Part II. Applications

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Kaufman, H.R.

    1982-01-01

    The developments in broad-beam ion source technology described in the companion paper (Part I) have stimulated a rapid expansion in applications to materials processing. These applications are reviewed here, beginning with a summary of sputtering mechanisms. Next, etching applications are described, including microfabrication and reactive ion beam etching. The developing area of surface layer applications is summarized, and related to the existing fields of oxidation and implantation. Next, deposition applications are reviewed, including ion-beam sputter deposition and the emerging technique of ion-assisted vapor deposition. Many of these applications have been stimulated by the development of high current ion sources operating in the energy range of tens of hundreds of eV. It is in this energy range that ion-activated chemical etching is efficient, self-limiting compound layers can be grown, and the physical properties of vapor-deposited films can be modified. In each of these areas, broad ion beam technology provides a link between other large area plasma processes and surface analytical techniques using ion beams

  7. Technologies to support industrial processes

    International Nuclear Information System (INIS)

    Palazzi, G.; Savelli, D.

    1989-05-01

    Control and measuring techniques applied to industry have the common aim of increasing safety, reliability and plant availability. The industrial monitoring system needs a lot of sensors, whose signals, elaborated and interpreted, allow one to define the best working condition; moreover control instruments perform a diagnosis related to damages and breakages. The Experimental Engineering Division of ENEA's Thermal Reactor Department has developed sensors and measuring apparatus and has acquired advanced control techniques. All these systems, containing an original software, have been applied to industrial process problems and/or to experimental facilities both to increase reliability and to understand better process physics. Division activities are grouped in four sectors: non-destructive examinations (ultrasonic, eddy current, thermography, holographic interpherometry, penetrant liquids and magnetoscopy); innovative sensors (heated thermocouples, optical fiber sensors); advanced measuring systems (laser technology for fluidodynamic measures, nuclear radiation techniques, infrared measuring, mass spectrometer, hot-film anemometer, chromatographic apparatus); advanced technologies for diagnosis and signal analysis (digital image processing, statistical analysis). (author)

  8. Radiant-and-plasma technology for coal processing

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.

  9. Membrane processes in nuclear technologies

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2006-01-01

    The treatment of radioactive wastes is necessary taking into account the potential hazard of radioactive substances to human health and surrounding environment. The choice of appropriate technology depends on capital and operational costs, wastes amount and their characteristics, appointed targets of the process, e.g. the values of decontamination factors and volume reduction coefficients. The conventional technologies applied for radioactive waste processing, such as precipitation coupled with sedimentation, ion exchange and evaporation have many drawbacks. These include high energy consumption and formation of secondary wastes, e.g. the sludge from sediment tanks, spent ion exchange adsorbents and regeneration solutions. There are also many limitations of such processes, i.e. foaming and drop entrainment in evaporators, loses of solvents and production of secondary wastes in solvent extraction or bed clogging in ion exchange columns. Membrane processes as the newest achievement of the process engineering can successfully supersede many non-effective, out-of-date methods. But in some instances they can also complement these methods whilst improving the parameters of effluents and purification economy. This monograph presents own research data on the application of recent achievements in the area of membrane processes for solving selected problems in nuclear technology. Relatively big space was devoted to the use of membrane processing of low and intermediate radioactive liquid wastes because of numerous applications of these processes in nuclear centres over the world and also because of the interests of the author that was reflected by her recent research projects and activity. This work presents a review on the membrane methods recently introduced into the nuclear technology against the background of the other, commonly applied separation techniques, with indications of the possibilities and prospects for their further developments. Particular attention was paid

  10. Application of electron beam curing technology for paper products

    International Nuclear Information System (INIS)

    Takaharu Miura

    1999-01-01

    The electron beam (EB) curing technology has rapidly advanced in recent years. However there were few examples applying this technology to paper products. One reason comes from the high price of EB equipment and the other comes from the difficulty of controlling the irradiation which gives damages to paper. In spite of these problems, the EB cured coating layer shows remarkable features, such as solvent-resistance, water-resistance, heat-resistance and high smoothness using the drum casting technique. Concentrating on application of this technology to paper, we have already developed some products. For example, paper for printings (Super Mirror PN) and for white boards (Super Mirror WB) have been manufactured. In this presentation, we are going to introduce this EB curing technique and the products

  11. The pilot plant for electron beam food processing

    International Nuclear Information System (INIS)

    Migdal, W.; Kosmal, W.; Malec-Czechowska, K.; Maciszewski, W.

    1992-01-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plants is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established. (author). 9 refs, 5 figs, 1 tab

  12. The pilot plant for electron beam food processing

    Science.gov (United States)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  13. The technology of surface coatings by electron-beam (EB) with special reference to the wood industry

    International Nuclear Information System (INIS)

    Dahlan bin Haji Mohd

    1989-01-01

    The use of electron-beam as a processing means in surface coatings is discussed. Special attention has been given to this technology in relation to the surface coatings of wood. The main features of its technology and industrial requirements are outlined. (author)

  14. Study on laser beam welding technology for nuclear power plants title

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2011-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  15. Process of cracking in reinforced concrete beams (simulation and experiment

    Directory of Open Access Journals (Sweden)

    I. N. Shardakov

    2016-10-01

    Full Text Available The paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and solved using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. A series of sequential quasi-static 4-point bend tests leading to the formation of cracks in a reinforced concrete beam were performed. At each loading step, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. During the first stage the nonconservative process of deformation begins to develope, but has not visible signs. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the ordinary concrete beams and the beams strengthened with a carbon-fiber polymer. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring crack formation and assessing the quality of measures aimed at strengthening concrete structures

  16. Initial stages of the ion beam mixing process

    International Nuclear Information System (INIS)

    Traverse, A.; Le Boite, M.G.; Nevot, L.; Pardo, B.; Corno, J.

    1987-01-01

    The grazing x-ray reflectometry technique, performed on irradiated periodic multilayers, was used to study the early stages of the ion beam mixing process. We present our first results, obtained on NiAu samples irradiated with He ions. The experimental fluence dependence of the effective diffusion coefficient is in good agreement with a calculation based on a purely ballistic process

  17. Effects of parasitic beam-beam interaction during the injection process at the PEP-II B Factory

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1992-06-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory, PEP-II. It is shown that the parasitic beam-beam interaction can lead to a significant blowup in the vertical size of the injected beam. Simulation results for the horizontal and the vertical injection schemes are presented, and their performances are studied

  18. Fiscal 1998 research report. Application technology of next-generation high-density energy beams; 1998 nendo chosa hokokusho. Jisedai komitsudo energy beam riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Survey was made on application technologies of next- generation high-density energy beams. For real application of laser power, application to not exciting source of YAG crystal but machining directly is highly efficient. For generation of semiconductor laser high-power coherent beam, phase synchronization and summing are large technological walls. Short pulse, high intensity and high repeatability are also important. Since ultra-short pulse laser ends before heat transfer to the periphery, it is suitable for precise machining, in particular, ultra-fine machining. To use beam sources as tool for production process, development of transmission, focusing and control technologies, and optical fiber and device is indispensable. Applicable fields are as follows: machining (more than pico seconds), surface modification (modification and functionalization of tribo- materials and biocompatible materials), complex machining, fabrication of quantum functional structured materials (thin film, ultra-fine particle), agriculture, ultra-precise measurement, non-destructive measurement, and coherent chemistry in chemical and environment fields. (NEDO)

  19. Commercial Parts Technology Qualification Processes

    Science.gov (United States)

    Cooper, Mark S.

    2013-01-01

    Many high-reliability systems, including space systems, use selected commercial parts (including Plastic Encapsulated Microelectronics or PEMs) for unique functionality, small size, low weight, high mechanical shock resistance, and other factors. Predominantly this usage is subjected to certain 100% tests (typically called screens) and certain destructive tests usually (but not always) performed on the flight lot (typically called qualification tests). Frequently used approaches include those documented in EEE-INST-002 and JPL DocID62212 (which are sometimes modified by the particular aerospace space systems manufacturer). In this study, approaches from these documents and several space systems manufacturers are compared to approaches from a launch systems manufacturer (SpaceX), an implantable medical electronics manufacturer (Medtronics), and a high-reliability transport system process (automotive systems). In the conclusions section, these processes are outlined for all of these cases and presented in tabular form. Then some simple comparisons are made. In this introduction section, the PEM technology qualification process is described, as documented in EEE-INST-002 (written by the Goddard Space Flight Center, GSFC), as well as the somewhat modified approach employed at the Jet Propulsion Laboratory (JPL). Approaches used at several major NASA contractors are also described

  20. Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.

    Science.gov (United States)

    Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz

    2010-08-01

    The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such

  1. Electron beam technology for production of preparations of immobilized enzymes

    International Nuclear Information System (INIS)

    Gonchar, A.M.; Auslender, V.L.; Polyakov, V.A.

    1995-01-01

    Possibility of electron beam usage for proteases immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease is done due to free-radical linking of enzyme and carrier with formation of mycelium-like structures. Immobilization improves heat resistance of enzyme up to 60 centigrade without substrate and up to 80 centigrade in presence of substrate, widens range pH activity in comparison with non-immobilized forms. Immobilized proteases does not contain peroxides and long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology

  2. Management of Technology - a political process approach

    DEFF Research Database (Denmark)

    Koch, Christian

    1999-01-01

    Most management of technology writings fail to address enterprise developments as political processes, where visions, coalitions and emergence are central features. The paper report of a participants observation study of management of technology processes.......Most management of technology writings fail to address enterprise developments as political processes, where visions, coalitions and emergence are central features. The paper report of a participants observation study of management of technology processes....

  3. The application and processing of paints hardened by electron beams

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Electron beam hardening is a process for changing liquid surface coatings of different thicknesses by irradiation with electrons of high energy into solid, hard, elastic films. In contrast to the UV process, one can harden pigmented paints with electron beams. An electron accelerator, which remits free electrons is used as the energy source for starting the chemical reaction in the coating material. In order to irradiate flat parts, which were coated with liquid paint by rolling, pouring or spraying, equally with electrons, one must produce an 'electron curtain', similar to that in a paint pouring machine. (orig./PW) [de

  4. Recent advances in electron beam processing of polymers

    International Nuclear Information System (INIS)

    Gueven, Olgun

    2005-01-01

    The synergy achieved through developments on the design and manufacturing of new low, medium and high energy electron accelerators with relatively high powers and innovative solutions in material formulation better responding to radiation processing has opened new application opportunities in electron beam treatment of polymers. All these developments are still based however, on the major ultimate effects of ionizing radiation on polymers namely, crosslinking, curing, grafting and chain scissionning. The objective of this paper is to provide an overview of recent developments and emerging applications toward commercialization of electron beam processing of polymers. (author)

  5. 76 FR 30696 - Technology Evaluation Process

    Science.gov (United States)

    2011-05-26

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... (DOE) seeks comments and information related to a commercial buildings technology evaluation process... evaluation efforts. The goal of creating this standard process is to evaluate energy-saving technologies in a...

  6. 76 FR 37344 - Technology Evaluation Process

    Science.gov (United States)

    2011-06-27

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... seeks comments and information related to a commercial buildings technology evaluation process. DOE is seeking to create a process for evaluating emerging and underutilized energy efficient technologies for...

  7. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Gillin, Michael T.; Sahoo, Narayan; Zhu, X. Ronald; Lee, Andrew K.; Lippy, Denise

    2011-01-01

    Purpose: To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. Methods: The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. Results: The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 ± 35 patients. Conclusions: This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use

  8. Evaluation of electron beam stabilization for ion implant processing

    Science.gov (United States)

    Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.

    1999-06-01

    With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.

  9. Materials of the Regional Training Course on Validation and Process Control for Electron Beam Radiation Processing

    International Nuclear Information System (INIS)

    Kaluska, I.; Gluszewski, W.

    2007-01-01

    Irradiation with electron beams is used in the polymer industry, food, pharmaceutical and medical device industries for sterilization of surfaces. About 20 lectures presented during the Course were devoted to all aspects of control and validation of low energy electron beam processes. They should help the product manufacturers better understand the application of the ANSI/AAMI/ISO 11137 norm, which defines the requirements and standard practices for validation of the irradiation process and the process controls required during routine processing

  10. Development of ion beam sputtering technology for mold and die

    International Nuclear Information System (INIS)

    Lee, Jaehyung; Park, J.; Lee, J.; Jil, J.; Yang, D.; Noh, Y.; You, B.; You, J.

    2003-06-01

    Ion beam sputtering technique, one of the surface modification techniques, is to reduce surface roughness of materials with selective detaching atoms and micro particles from the surface by bombarding energetic ions of a few to a few tens keV onto the materials surfaces. This technique can be applied for the surfaces that need to have sub micrometer surface roughness, and it has already been used by companies and/or Institute over the world. Although this is relatively high cost process, it has been widely demanded in the industries with developing the eco-friend equipment due to its high quality of products. In the domestic industry, it has been pointed out that the mechanical polishing technique for molds and dies is relatively expensive and does not produce the required surface roughness. Therefore, in this R and D, techniques obtained from the ion source and the ion beam irradiation techniques developed for the proton accelerator has been applied to polish the surface of molds and dies to solve the above-mentioned problems that take place during mechanical polishing. In case that ion beam polishing technique is used, we expect not only producing the high quality polished surfaces but also producing the economically valuable end-products. In this R and D project, we are aiming at establishing ion beam techniques for industrialization as well as mass production of low cost products with developing the economical instrumentation techniques. Also, as a result of this R and D it is expected that importing of precise molds and dies may be reduced and technical competitiveness will be enhanced

  11. austenitic stainless steel by electron beam welding process

    African Journals Online (AJOL)

    user

    Electron beam welding (EBW) is a fusion joining process that produces a ... fabrication of engineering parts with low-distortion joints, although its application to large assemblies is often restricted by the ... speed, focal point location, focal spot size, etc. ... Experimental data were collected as per central composite design and ...

  12. Electron beam welding: study of process capabilities and limitations towards development of nuclear components

    International Nuclear Information System (INIS)

    Vadolia, Gautam; Singh, Kongkham Premjit

    2015-01-01

    Electron beam (EB) welding technology is an established and widely adopted technique in nuclear research and development area. Electron Beam welding is thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor @ BARC, Mumbai and Niobium Superconducting accelerator Cavitity @ BARC has adopted the EB welding technique as a fabrication route. The highly concentrated energy input of the electron beam has added the advantages over the conventional welding as being less HAZ and provided smooth and clean surface. EB Welding has also been used for the joining of various reactive and refractory materials. EB system as heat source has also been used for vacuum brazing application. The Welding Institute (TWI) has demonstrated that EBW is potentially suitable to produce high integrity joints in 50 mm pure copper. TWI has also examined 150 kV Reduced Pressure Electron Beam (RPEB) gun in welding 140 mm and 147 mm thickness Nuclear Reactor Pressure Vessel Steel (SA 508 grade). EBW in 10 mm thick SS316 plates were studied at IPR and results were encouraging. In this paper, the pros and cons and role of electron beam process will be studied to analyze the importance of electron beam welding in nuclear components fabrication. Importance of establishing the high precision Wire Electro Discharge Machining (WEDM) facility will also be discussed. (author)

  13. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  14. The future of focused electron beam-induced processing

    International Nuclear Information System (INIS)

    Hagen, C.W.

    2014-01-01

    A perspective is sketched for the field of focused electron beam-induced processing (FEBIP). The FEBIP lithography technique is compared to the very successful resist-based electron beam lithography (EBL) technique. The advantages of FEBIP over EBL are identified, the main advantage being its high spatial resolution. This will enable FEBIP to become an important lithography technique for the fabrication of devices with critical dimension in the range between 1 and 20 nm and serve as a complementary technique to EBL. It will be discussed what needs to be done to achieve this and what the potential applications are. (orig.)

  15. Two-process approach to electron beam welding control

    International Nuclear Information System (INIS)

    Lastovirya, V.N.

    1987-01-01

    The analysis and synthesis of multi-dimensional welding control systems, which require the usage of computers, should be conducted within the temporal range. From the general control theory point two approaches - one-process and two-process - are possible to electron beam welding. In case of two-process approach, subprocesses of heat source formation and direct metal melting are separated. Two-process approach leads to two-profile control system and provides the complete controlability of electron beam welding within the frameworks of systems with concentrated, as well as, with distributed parameters. Approach choice for the given problem solution is determined, first of all, by stability degree of heat source during welding

  16. ICAT and the NASA technology transfer process

    Science.gov (United States)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  17. Optimization of processing technology of Rhizoma Pinelliae ...

    African Journals Online (AJOL)

    soaking time and processing temperature on processing technology of Rhizoma ... Results: During the processing of Rhizoma Pinelliae Praeparatum, the size of influence of licorice .... Table 1: Factors and levels of orthogonal experiment.

  18. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    International Nuclear Information System (INIS)

    Cho, Donghwan; Cheon, Jinsil

    2013-01-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm -1 . The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network

  19. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Donghwan; Cheon, Jinsil [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2013-07-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm{sup -1}. The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network.

  20. Consistency check of photon beam physical data after recommissioning process

    International Nuclear Information System (INIS)

    Kadman, B; Chawapun, N; Ua-apisitwong, S; Asakit, T; Chumpu, N; Rueansri, J

    2016-01-01

    In radiotherapy, medical linear accelerator (Linac) is the key system used for radiation treatments delivery. Although, recommissioning was recommended after major modification of the machine by AAPM TG53, but it might not be practical in radiotherapy center with heavy workloads. The main purpose of this study was to compare photon beam physical data between initial commissioning and recommissioning of 6 MV Elekta Precise linac. The parameters for comparing were the percentage depth dose (PDD) and beam profiles. The clinical commissioning test cases followed IAEA-TECDOC-1583 were planned on REF 91230 IMRT Dose Verification Phantom by Philips’ Pinnacle treatment planning system. The Delta 4PT was used for dose distribution verification with 90% passing criteria of the gamma index (3%/3mm). Our results revealed that the PDDs and beam profiles agreed within a tolerance limit recommended by TRS430. Most of the point doses and dose distribution verification passed the acceptance criteria. This study showed the consistency of photon beam physical data after recommissioning process. There was a good agreement between initial commissioning and recommissioning within a tolerance limit, demonstrated that the full recommissioning process might not be required. However, in the complex treatment planning geometry, the initial data should be applied with great caution. (paper)

  1. Modified process for refining niobium by electron beam

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Takano, C.

    1982-01-01

    The experimental results, thermodynamic equilibrium and kinetic theory of the metal/gas interaction in refractory metals are reviewed. The adsorption and desorption of nitrogen, hydrogen and CO are reversible, whereas those of oxygen are irreversible, with adsorption of an oxygen atom and volatilisation of the metal oxide. Based upon this fact, a new electron beam refining technology is proposed for niobium, consisting of four points: preparation of an electrode by aluminothermic reduction; zone refining in the first melt; kinetic refining in subsequent melts and compact design of the refining plant. Experimental results from a 300 kW pilot plant were in complete agreement with the technology proposed, giving 2.4 times the productivity predicted by the conventional technology. (Author) [pt

  2. Purification and treatment of industrial wastewater by electron beam process: it's potential and effectiveness evaluation

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khomsaton Abu Bakar; Ting Teo Ming; Siti Aiasah Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Demand for water has grown dramatically globally. We have seen how acute is the demand for treated water in Malaysia during dry spell of late. Between 1900 and 1995, water consumption increased by over six times, globally, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industries, and the increasing use for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Electron beam treatment (E-Beam treatment) is a comparatively new method of wastewater purification. E-beam treatment is also an environment-friendly approach for the cleanup of contaminated groundwater and industrial wastewater. E-beam treatment treats multi-components waste streams and does not require any hazardous chemical additives nor does it create any secondary wastes. It uses fast formation of short-lived reactive particles, which are capable of efficient decomposition of pollutants inside wastewater. This paper highlights the practical treatment of wastewater using E-Beam method that gives essential conveniences and advantages of the followings: - strongest reducing and oxidizing agents; - universality and interchangeability of redox agents; - variety of paths for pollutant conversion; - process controllability; - wide choice of equipment and technological regimes; - compatibility with conventional methods. (Author)

  3. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in a research contract between CNEA and the IAEA to evaluate projects of nuclear desalination. This paper analyses the benefits and drawbacks of each desalination technology, the distinctive characteristics of the technology that fit better the different uses, and outlines the related antecedents of its application in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations made in the last years for the different technologies are also described. (author)

  4. Combining people, processes, and technology.

    Science.gov (United States)

    Fishman, Julia

    2017-06-01

    Julia Fishman, managing director and vice-President, Clinical Strategy, at TeleTracking Technologies, discusses the in-use benefits of patient, staff, and asset tracking and flow technologies, arguing that their effective deployment across an NHS under considerable pressure on many fronts can free up more time to care, bring considerable cost and wider efficiencies, and help to address the perennial issue of 'bed blocking'.

  5. Education in a rapidly advancing technology: Accelerators and beams

    International Nuclear Information System (INIS)

    Month, Mel

    2000-01-01

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers

  6. Development of aromatic VOC control technology by electron beam hybrid

    International Nuclear Information System (INIS)

    Kim, Jo-Chun; Kim, Ki-Joon

    2006-01-01

    As a fundamental study, the decomposition of volatile organic compounds (VOCs) using electron beam (EB) irradiation has been extensively investigated. EB treatments of VOCs such as toluene and styrene are discussed. The degradation characteristics were intensively investigated under various concentrations and irradiation doses to determine and improve VOC removal efficiencies. This work illustrates that the removal efficiencies of aromatic VOCs generally increase as their concentrations decrease and the irradiation doses increase. Based on these basic studies, it was found that by-products produced from EB irradiation of VOCs would cause a secondary pollution problem. Therefore, a novel hybrid technology has been applied to control aromatic VOC emissions by annexing the catalyst technique with conventional treatment study using EB technology. The experiments were carried out using a bench-scale at first, then a pilot-scale system was followed. Toluene was selected as a typical VOC for EB hybrid control to investigate by-products, effects of ceramic and catalyst, and factors affecting overall efficiency of degradation. It was concluded that VOCs could be destroyed more effectively by a novel hybrid system than single EB irradiation. (author)

  7. Perspectives on Multienzyme Process Technology

    DEFF Research Database (Denmark)

    Santacoloma, Paloma A.; Woodley, John M.

    2014-01-01

    . One consequence is that decisions about the format of the biocatalyst and reactor type as well as the process flowsheet require more extensive knowledge. In this chapter, some of the background to these decisions and decision-making tools to help establish effective multienzyme processes in a timely......There is little doubt that chemical processing of the future will involve an increasing number of biocatalytic processes using more than one enzyme. There are good reasons for developing such innovative biocatalytic processes and interesting new biocatalyst and process options will be introduced...

  8. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible, and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in the research contract CNEA - IAEA to evaluate projects of nuclear desalination. The objective and scope of this work is to know the advantages and disadvantages of each desalination technology, distinctive characteristics of each of them, that make them adapt better to different uses and outline conditions and analysis of related antecedents of its use in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations found in the last years for the different technologies are also included. (author)

  9. Processing of food and agricultural commodities with electron beam from microtron

    International Nuclear Information System (INIS)

    Sharma, Arun; Behere, Arun; Jadhav, S.S.; Bongirwar, D.R.; Kaul, Ahinsa; Soni, H.C.; Ganesh, S.

    2001-01-01

    A microtron machine source installed by the Centre for Advanced Technology (CAT), Indore, at Mangalore University, was used in the study. The machine was operated at a beam power of 1.8 W, beam energy of 8.6 MeV, and a beam current of 20 mA. After initial standardization, the irradiation of commodities was carried out. The doses employed were 0.06 kGy for onion, 0.10 kGy for potato, 0.25 kGy for rawa, and 8 kGy for spices. The desired dose was delivered by exposing the samples from the two opposite sides of the box. The microbial load in spice samples was determined immediately after the experiment, as well as after six months of storage at the ambient temperature (26±2 degC). Onion and potato samples were stored for a six months period both at ambient temperature and 15 degC for observing the effect of electron beam irradiation on sprouting in these commodities. Rawa samples were stored at ambient temperature for observing the effect of electron beam irradiation on insect disinfestation. The electron beam irradiation at the recommended doses was found to be as effective as gamma radiation in bringing down the microbial load of the tested spices to the desired level, disinfestations of rawa, and inhibition of sprouting in onion. In the case of potato even four-side irradiation of the product box did not inhibit the sprouting completely. This indicated the necessity of standardization of machine parameters for uniform dose distribution in the product box for each commodity. These lab-scale studies showed that electron beam could in principle be used for processing of various food products after standardizing the machine parameters and ensuring uniform dose distribution in the product. Use of this technology on commercial scale would need standardization on larger machines

  10. Receivers for processing electron beam pick-up electrode signals

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    There are several methods of determining the transverse position of the electron beam, based upon sensing either the electric field, the magnetic field, or both. At the NSLS the transverse beam position monitors each consist of a set of four circular electrodes. There are 48 sets of pick-up electrodes in the X-ray ring and 24 in the VUV storage ring for determining the electron orbit, and a few extra sets installed for specialized purposes. When the beam passes between the four electrodes, charge is induced on each electrode, the amount depending upon the distance of the beam from that electrode. If V a , V b , V c and V d given by a difference between pairs of electrodes normalized for variations in beam current by dividing by the sum of electrode voltages. The method of processing these signals depends upon their time structure. The electrons circulating around the vacuum chamber are concentrated in short bunches within stability buckets produced by the accelerating voltage in the RF cavities. The charges induced on the pickup electrodes then are narrow pulses, a fraction of a nanosecond long, and would result in a monopolar voltage pulses if it were not for the impedance of the cable connecting the electrode to the processing apparatus. The capacitance between each electrode and the chamber wall is only a few picofarads and is effectively in parallel with the cable impedance (50 ohms). Thus an appreciable amount of the charge flows off the electrode while the bunch is between the electrodes, resulting in potential of opposite sign as the bunch is leaving the vicinity of the electrode. The resulting signal consists of a series of bipolar pulses, each of less than one nanosecond duration

  11. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  12. Quantum-beam technology: A versatile tool for developing polymer electrolyte fuel-cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2010-09-15

    This paper describes the versatile application of quantum beam-based technology to the development of proton exchange membranes (PEMs) for fuel-cell applications. The {gamma}-ray or electron-beam induced radiation grafting offers a way to prepare PEMs; typically, the radical-initiated polymerization of a styrene or styrene-derivative monomer on a base polymer is followed by a sulfonation step. Novel PEMs were previously obtained using radiation-crosslinked fluoropolymers as the base material. Interestingly, combining this radiation-crosslinking process with the well-known chemical crosslinker method enabled one to obtain the ''multiply''-crosslinked PEMs, in which both the main and grafted chains have covalently bridged structures leading to a high durability. The bombardment of heavy ions accelerated to MeV or higher energies produces a continuous trail of excited and ionized molecules in polymers, which is known as a latent track. The approach using this ion-track technology is based on the chemical etching and/or modification of each track with diameters of tens to hundreds of nanometers. The resulting ''nano-structure controlled'' PEM was found to have perfect one-dimensional proton-conductive pathways parallel to its thickness direction, while, in contrast, other existing PEMs mostly exhibited proton transport in the three-dimensional random media. The hierarchical structures of the PEMs, ranging from nanometers to micrometers, were revealed by small-angle neutron scattering experiments using a cold or thermal neutron beam. The information in such a wide length scale led to a deep insight into the dynamic properties inside the PEM from a molecular to macroscopic level, which can provide feedback for the reconsideration and optimization of the preparation procedure. As demonstrated above in the author's studies, it is important to understand that every quantum beam is different, thereby making the right beam choice

  13. History and status of beamed power technology and applications at 2.45 Gigahertz

    Science.gov (United States)

    Brown, William C.

    1989-01-01

    Various applications of beamed power technology are discussed. An experimental microwave powered helicopter, rectenna technology, the use of the Solar Power Satellite to beam energy to Earth via microwaves, the use of cyclotron resonance devices, microwave powered airships, and electric propulsion are discussed.

  14. Processing of food and agricultural commodities with electron beam from microtron

    International Nuclear Information System (INIS)

    Sharma, Arun; Behere, Arun; Jadhav, S.S.; Bongirwar, D.R.; Kaul, Ahinsa; Soni, H.C.; Ganesh, S.

    2001-01-01

    A microtron machine source installed by the Centre for Advanced Technology (CAT), Indore, at Mangalore University, was used to study effects of irradiation on onion, potato, rava, and spices. The microbial load in spice samples was determined immediately after the experiment, as well as after six months of storage at the ambient temperature (26±2 deg C). Onion and potato samples were stored for a six months period both at ambient temperature and 15 deg C for observing the effect of electron beam irradiation on sprouting in these commodities. Rawa samples were stored at ambient temperature for observing the effect of electron beam irradiation on insect disinfestation. The results are discussed in detail in this paper. These lab-scale studies showed that electron beam could in principle be used for processing of various food products after standardizing the machine parameters and ensuring uniform dose distribution in the product. (author)

  15. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    Science.gov (United States)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-01

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  16. Electron-beam generated plasmas for processing applications

    Science.gov (United States)

    Meger, Robert; Leonhardt, Darrin; Murphy, Donald; Walton, Scott; Blackwell, David; Fernsler, Richard; Lampe, Martin; Manheimer, Wallace

    2001-10-01

    NRL's Large Area Plasma Processing System (LAPPS) utilizes a 5-10 mA/cm^2, 2-4 kV, 1 cm x 30-60 cm cross section beam of electrons guided by a magnetic field to ionize a low density (10-100 mTorr) gas.[1] Beam ionization allows large area, high density, low temperature plasmas to be generated in an arbitrary gas mixture at a well defined location. Energy and composition of particle fluxes to surfaces on both sides of the plasma can be controlled by gas mixture, location, rf bias, and other factors. Experiments have been performed using both pulsed and cw beams. Extensive diagnostics (Langmuir probes, mass and ion energy analyzers, optical emissions, microwave interferometry, etc.) have been fielded to measure the plasma properties and neutral particle fluxes (ions, neutrals, free radicals) with and without rf bias on nearby surfaces both with the beam on and off. Uniform, cold (Te < 1eV), dense (ne 10^13 cm-3) plasmas in molecular and atomic gases and mixtures thereof have been produced in agreement with theoretical expectations. Initial tests of LAPPS application such as ashing, etching, sputtering, and diamond growth have been performed. Program status will be presented. [1]R.A. Meger, et al, Phys. of Plasmas 8(5), p. 2558 (2001)

  17. Planck 2015 results. VII. HFI TOI and beam processing

    CERN Document Server

    Adam, R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bock, J.J.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leahy, J.P.; Lellouch, E.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Watson, R.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This paper describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map-making are described in a companion paper. The main pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the non-linearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a...

  18. Electron beam irradiation: novel technology for phytosanitary purposes

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Dwivedi, J.; Gautam, S.; Sharma, Arun

    2015-01-01

    In the WTO regime, flow of agricultural commodities has increased, posing risk of inadvertent introduction of exotic pests. This can be minimized by undertaking quarantine measures. Quarantine/phytosanitary disinfestation treatments demand a very high level of security as the pest tolerance in quarantine is zero. Methyl bromide, a potent fumigant has been restricted in its use due to ozone depleting effect. Also, the conventional chemicals/fumigants being used world over are being restricted globally because of the various associated problems. Therefore, there is a need for an alternative ecofriendly strategy for controlling the pests. Irradiation, an approved technology by International Plant Protection Convention, appears to be a viable, nonchemical, residue-free strategy. Disinfestation of pulses with low energy electron irradiation potentially will have less deleterious effects on commodity quality than irradiation with other sources. Internationally, new radiation generating sources as Electron beam (EB) are being explored to meet import standards of quality and quarantine. The EB has a machine source and can be simply switched on or off. Irradiation of legume seeds viz., blackgram, greengram and soybean infested with pulse beetles (Callosobruchus maculatus and C. chinensis) at different doses at an energy level of 500 keV using the Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore revealed the dose-dependent effects on the insect growth parameters. Adult emergence from seeds infested with different stages was negligible and eggs laid by beetles that survived treatment did not develop into adults at higher doses. The lower doses viz., 170, 340 and 510 Gy on the other hand caused sterility effect on the insect but showed stimulatory effect on the physiological seed parameters . viz., seedling vigour and vigour index. Electron beam irradiation has a great potential for use in the disinfestation for phytosanitary purposes. Nevertheless

  19. Introduction to Innovative Food Processing and Technology

    OpenAIRE

    Tokusoglu, Ozlem

    2015-01-01

    Consumers, the food industry and the regulatory agencies demand the innovative technologies to provide safe and stable foods. Nonthermal processing technologies offer unprecedented opportunities and challenges for the food industry to market safe, high quality health-promoting foods. Those innovative food processing is often perceived as an alternative to thermal food processing, yet there are many nonthermal preparatory unit operations as well as food processing and preservation opportunitie...

  20. Increasing productivity by improved arc and beam welding technologies

    International Nuclear Information System (INIS)

    Dilthey, Ulrich; Stein, Lars

    2005-01-01

    In the early sixties, GMA welding methods were introduced into industrial manufacturing and they have been consequently developed further ever since. Recent advances do not only refer to power-source technology but also improved wire feed systems and new consumables such as filler materials and shielding gases. Great efforts have been made to increase deposition rates, and with this efficiency and welding speeds, by extending the frontiers of known processes and by developing new ones

  1. TECHNOLOGIES OF BRAIN IMAGES PROCESSING

    Directory of Open Access Journals (Sweden)

    O.M. Klyuchko

    2017-12-01

    Full Text Available The purpose of present research was to analyze modern methods of processing biological images implemented before storage in databases for biotechnological purposes. The databases further were incorporated into web-based digital systems. Examples of such information systems were described in the work for two levels of biological material organization; databases for storing data of histological analysis and of whole brain were described. Methods of neuroimaging processing for electronic brain atlas were considered. It was shown that certain pathological features can be revealed in histological image processing. Several medical diagnostic techniques (for certain brain pathologies, etc. as well as a few biotechnological methods are based on such effects. Algorithms of image processing were suggested. Electronic brain atlas was conveniently for professionals in different fields described in details. Approaches of brain atlas elaboration, “composite” scheme for large deformations as well as several methods of mathematic images processing were described as well.

  2. The process for technology transfer in Baltimore

    Science.gov (United States)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  3. Ion-beam technology for novel rice improvement

    International Nuclear Information System (INIS)

    Sobri Hussin; Azhar Mohammad; Abd Rahim Hussin; Rusli Ibrahim; Anna, L.P.K.

    2009-01-01

    In Malaysia, rice is the most important food crop and is cultivated in about 670,000 ha of arable land in the country. Conventional rice breeding carried out for the last 37 years resulted in the release of 34 modern varieties having an average yield of 5 t per/ha. The major objectives of the rice-breeding program in Malaysia are to develop high-yielding cultivars and to improve yield stability through higher levels of resistance to diseases, insect pests and other stresses. Most of these cultivars have been developed through conventional breeding. In this study, a new method through nuclear technology was used to develop novel superior cultivars. A total number of 100 seeds per dose (0, 10, 20, 40, 60, 80, 100, 120, 160, 200 Gy) of MR219 were exposed to carbone-ion irradiation (Ion Beam). The irradiated seeds were successfully planted under Controlled Environment Greenhouse for mutation frequency observation. After 2 months, it was revealed that the shoulder dose was significant obtained at 60 and 80 Gy. It was found that germination rates of the mutants were more than 60% for the doses range from 0 to 120 Gy and significantly decreased after 120 Gy. (Author)

  4. Expectations for prospective applications of new beam technology to atomic energy research

    International Nuclear Information System (INIS)

    Tomimasu, Takio; Yamazaki, Tetsuo; Tanaka, Ryuichi; Tanigawa, Shoichiro; Konashi, Kenji; Mizumoti, Motoharu.

    1991-01-01

    Recently, the new beam technology based on high energy electron beam, for example free electron laser, low speed positrons and so on, has developed remarkably. Moreover, also in the field of ion beams, toward the utilization of further high level, the plans of using micro-beams, heightening energy, increasing electric current and so on are in progress. In near future, it is expected that the advanced application of such new beam technology expands more and more in the fields of materials, physical properties, isotope separation, biology, medical science, medical treatment and so on. In this report, placing emphasis on the examples of application, the development and application of new beam technology are described. Takasaki ion accelerators for advanced radiation application in Japan Atomic Energy Research Institute, the generation of low speed positrons and the utilization for physical property studies, the annihilation treatment of long life radioactive nuclides, and the generation of free electron laser and its application are reported. (K.I.)

  5. Nano-scale processes behind ion-beam cancer therapy

    Science.gov (United States)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  6. Towards a magnetic field separation in Ion Beam Sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Malobabic, Sina, E-mail: s.malobabic@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Jupé, Marco [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Kadhkoda, Puja [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Ristau, Detlev [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany)

    2015-10-01

    Defects embedded in coatings due to particle contamination are considered as a primary factor limiting the quality of optical coatings in Ion Beam Sputtering. An approach combining the conventional Ion Beam Sputtering process with a magnetic separator in order to remove these particles from film growth is presented. The separator provides a bent axial magnetic field that guides the material flux towards the substrate positioned at the exit of the separator. Since there is no line of sight between target and substrate, the separator prevents that the particles generated in the target area can reach the substrate. In this context, optical components were manufactured that reveal a particle density three times lower than optical components which were deposited using a conventional Ion Beam Sputtering process. - Highlights: • We use bent magnetic fields to guide and separate the sputtered deposition material. • No line of sight between substrate and target prevents thin films from particles. • The transport efficiency of binary and ternary oxides is investigated. • The defect statistics of manufactured dielectric ternary multilayers are evaluated. • The phase separation leads to a drastically reduction of particle contamination.

  7. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  8. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  9. RP process studies with radioactive beams at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K E [Argonne National Lab., Physics Div., Argonne, IL (United States)

    1998-06-01

    Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F(T{sub 1/2}=110 min) and {sup 56}Ni(T{sub 1/2}=6.1 d) have been produced. The reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed. (orig.)

  10. Optimization of signal processing algorithm for digital beam position monitor

    International Nuclear Information System (INIS)

    Lai Longwei; Yi Xing; Leng Yongbin; Yan Yingbing; Chen Zhichu

    2013-01-01

    Based on turn-by-turn (TBT) signal processing, the paper emphasizes on the optimization of system timing and implementation of digital automatic gain control, slow application (SA) modules. Beam position including TBT, fast application (FA) and SA data can be acquired. On-line evaluation on Shanghai Synchrotron Radiation Facility (SSRF) shows that the processor is able to get the multi-rate position data which contain true beam movements. When the storage ring is 174 mA and 500 bunches filled, the resolutions of TBT data, FA data and SA data achieve 0.84, 0.44 and 0.23 μm respectively. The above results prove that the design could meet the performance requirements. (authors)

  11. Current status of electron beam processing system and its applications

    International Nuclear Information System (INIS)

    Taniguchi, S.

    2005-01-01

    The feature and application fields of electron beam processing systems (EPS), the selection of machine ratings and safety measures for EPS are described. EPS has the various features: a) Chemical reactions occurs independent of the temperature, b) it occurs without any added substances such as catalysts, c) mass productivity, d) easy operation, as is exemplified by switch ON and OFF, and e) easy maintenance, compared with radioisotope sources. After briefly explaining acceleration type (DC or AC), power supply (Van-de-Graaf or Cockcroft-walton and others), beam scanning to be used for large area irradiation, and some typical applications (cross-linking, radical polymerization, the paper describes necessary safety measures such as X-ray shielding, ozone control including ozone generation and its disposal, interlock system, warning buzzer, and monitoring and measuring. (S. Ohno)

  12. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  13. Process Guide for Deburring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Frey, David L.

    2012-10-25

    This report is an updated and consolidated view of the current deburring processes at the Kansas City Plant (KCP). It includes specific examples of current burr problems and the methods used for their detection. Also included is a pictorial review of the large variety of available deburr tools, along with a complete numerical listing of existing tools and their descriptions. The process for deburring all the major part feature categories is discussed.

  14. Plasma assisted surface coating/modification processes: An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  15. Plasma assisted surface coating/modification processes - An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  16. Technology and plasma-materials interaction processes of tokamak disruptions

    International Nuclear Information System (INIS)

    McGrath, R.T.; Kellman, A.G.

    1992-01-01

    A workshop on the technology and plasma-materials interaction processes of tokamak disruptions was held April 3, 1992 in Monterey, California, as a satellite meeting of the 10th International Conference on Plasma-Surface Interactions. The objective was to bring together researchers working on disruption measurements in operating tokamaks, those performing disruption simulation experiments using pulsed plasma gun, electron beam and laser systems, and computational physicists attempting to model the evolution and plasma-materials interaction processes of tokamak disruptions. This is a brief report on the workshop. 4 refs

  17. The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology

    CERN Document Server

    Zagozdzinska, Agnieszka Anna

    2016-01-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...

  18. Technology Assessment of Laser-Assisted Materials Processing in Space

    Science.gov (United States)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  19. Decomposition of organic pollutants in industrial Effluent induced by advanced oxidation process with Electron beam irradiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.; Silveira, C.G.

    2001-01-01

    Advanced Oxidation Process (AOP) by electron beam irradiation induce the decomposition of pollutants in industrial effluent. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37 Kew power. Experiments were conducted using samples from a Governmental Wastewater Treatment Plant (WTP) that receives about 20% of industrial wastewater, with the objective of use the electrons beam technology to destroy the refractory organic pollutants. Samples from WTP main Industrial Receiver Unit influent (IRU), Coarse Bar Screens effluent (CBS), Medium Bar Screens effluent (MBS), Primary Sedimentation effluent (PS) and Final Effluent (FE), were collected and irradiated in the electron beam accelerator in a batch system. The delivered doses were 5.0kGy, 10.0kGy and 20.0kGy. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol. The necessary dose to remove 90% of the most organic compounds from industry effluent was 20 kGy. The removal of organic compounds from this complex mixture were described by the destruction G value (Gd) that were obtained for those compounds in different initial concentration and compared with literature

  20. Technology of electron beam welding for Zr-4 alloy spacer grid

    International Nuclear Information System (INIS)

    Pei Qiusheng; Wu Xueyi; Yang Qishun

    1989-10-01

    The welding technology for Zr-4 alloy spacer grid by using vacuum electron beam was studied. Through a series of welding technological experiments, metallographic examinations of seam structure and detecting tests for welding defect by X-ray defectoscopy, a good welding technology was selected to meet the requirements. The experimental results indicated that the Zr-4 alloy spacer grid welded by vacuum electron beam welding is feasible

  1. Portal monitoring technology control process

    International Nuclear Information System (INIS)

    York, R.L.

    1998-01-01

    Portal monitors are an important part of the material protection, control, and accounting (MPC and A) programs in Russia and the US. Although portal monitors are only a part of an integrated MPC and A system, they are an effective means of controlling the unauthorized movement of special nuclear material (SNM). Russian technical experts have gained experience in the use of SNM portal monitors from US experts ad this has allowed them to use the monitors more effectively. Several Russian institutes and companies are designing and manufacturing SNM portal monitors in Russia. Interactions between Russian and US experts have resulted in improvements to the instruments. SNM portal monitor technology has been effectively transferred from the US to Russia and should be a permanent part of the Russian MPC and A Program. Progress in the implementation of the monitors and improvements to how they are used are discussed

  2. Novel process windows, part 1: Boosted micro process technology

    NARCIS (Netherlands)

    Hessel, V.; Wang, Q.

    2011-01-01

    Novel Process Windows (NPW) is the use of highly intensified, unusual and typically harsh process conditions to boost micro process technology and flow chemistry for the production of high-added value fine chemicals, pharmaceuticals, etc.. It is far from conventional processing and also from

  3. Technology entrepreneurship : a process framework

    NARCIS (Netherlands)

    Zhou, Zhao

    2013-01-01

    Scholars are in search of an integrated perspective to explain entrepreneurship in a coherent way. This study sets to contribute to this search with a process framework for understanding similar patterns of entrepreneurship actions over time in different settings. This research uses the multi-case

  4. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  5. Electron beam processing of sugar cane bagasse to cellulose hydrolysis

    International Nuclear Information System (INIS)

    Ribeiro, Marcia A.; Cardoso, Vanessa M.; Mori, Manoel N.; Duarte, Celina L.

    2009-01-01

    Sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, 40% hemicelluloses, and 20% lignin. Pure cellulose is readily depolymerised by radiation, but in biomass, the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study is the evaluation of the electron beam irradiation as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Iracema Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 100 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose increase about 40 % with 30 kGy of absorbed dose. (author)

  6. Plasma processing: Technologies and applications

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2005-01-01

    This study aims to present the fundamentals of physics of plasmas, methods of generation, diagnostics, and applications for processing of materials. The first chapter defines plasma in general as well as its main parameters, the most important differential equations in plasma physics, and classifies the types of plasmas. the various methods and techniques to create and sustain plasma are presented in the second chapter. Chapter 3 focuses on plasma diagnostic methods and tools. While chapter 4 deals with applications of plasma processing such as; surface modification of materials, plasma ashing and etching, plasma cutting, and the environmental applications of plasma. Plasma polymerization and its various applications have been presented in more details in the last chapter. (Author)

  7. Effects of beam, target and substrate potentials in ion beam processing

    International Nuclear Information System (INIS)

    Harper, J.M.E.

    1982-01-01

    Ion beam etching and deposition are normally carried out with beam, target and substrate potentials near ground potential. In this paper, the effects of intentional or unintentional changes in these potentials are described. Examples include beam neutralization, a single extraction grid, substrate bias, and target bias. Each example is described in terms of beam plasma parameters. (Auth.)

  8. Electron Beam Technology and Other Irradiation Technology Applications in the Food Industry.

    Science.gov (United States)

    Pillai, Suresh D; Shayanfar, Shima

    2017-02-01

    Food irradiation is over 100 years old, with the original patent for X-ray treatment of foods being issued in early 1905, 20 years after there discovery by W. C. Roentgen in 1885. Since then, food irradiation technology has become one of the most extensively studied food processing technologies in the history of mankind. Unfortunately, it is the one of the most misunderstood technologies with the result that there are rampant misunderstandings of the core technology, the ideal applications, and how to use it effectively to derive the maximum benefits. There are a number of books, book chapters, and review articles that provide overviews of this technology [25, 32, 36, 39]. Over the last decade or so, the technology has come into greater focus because many of the other pathogen intervention technologies have been unable to provide sustainable solutions on how to address pathogen contamination in foods. The uniqueness of food irradiation is that this technology is a non-thermal food processing technology, which unto itself is a clear high-value differentiator from other competing technologies.

  9. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  10. Medium Energy Industrial Electron Beam Accelerator (ILU-EBA) at Navi Mumbai for technology demonstration and commercial operations

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2017-01-01

    BARC in early nineties installed a unique high pulse-powered electron beam accelerator of energy 2 MeV, (for the first time in India), in Trombay for developing industrial applications. The accelerator was capable of delivering powered electron beams up to 20kW average beam power (with 1200kW peak pulse power) with energy range from 1 to 2 MeV. Several applications have been developed and commercially exploited in the field of polymer cross linking, degradation, crystalline alterations etc. In addition, applications pertaining to the environmental remediation using electron beams were also worked out. The facility has been relocated at Navi Mumbai a decade ago operated under BARC safety regulatory body and was developed into a technology demonstration cum commercial plant with several product handling gadgets to evaluate the feasibility of different EB treatment processes for the industry viz. waste water treatment, polymer modifications, recycling to name a few

  11. The key physics and technology issues in the intense-beam proton accelerators

    International Nuclear Information System (INIS)

    Fu Shinian; Fang Shouxian

    2002-01-01

    Beam power is required to raise one order in the next generation spallation neutron source. There are still some physics and technology difficulties need to be overcome, even though no fatal obstacle exists due to the rapid development of the technology in intense-beam accelerator in recent years. Therefore, it is highly demanded to clarify the key issues and to lunch an R and D program to break through the technological barriers before author start to build the expansive machine. The new technological challenge arises from the high beam current, the high accelerator power and the high demand on the reliability and stability of the accelerator operation. The author will discuss these issues and the means to resolve them, as well as the state of the art in a few of major technological disciplines. Finally, the choice the framework of intense-beam accelerator is discussed

  12. Application of electron and Bremsstrahlung beams for composite materials processing

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Avilov, A.M.; Popov, G.F.; Rudychev, V.G.

    1998-01-01

    In Kharkiv University the radiation process of obtaining composite polymer materials, CPM, with high strength properties and corrosion resistance was studied. CPM are manufactured by vacuum impregnating capillary-porous materials with synthetic monomers and oligomers or by molding granular waste and resins which are further treated by relativistic electron or Bremsstrahlung beam. Such radiation treatment yields new CPM in which capillary-porous structure acting as reinforcement is filled with polymer. The results of the applied research with industrial electron accelerator in the field of thick CPM formation are presented

  13. European consumers' acceptance of beef processing technologies

    DEFF Research Database (Denmark)

    de Barcellos, Marcia Dutra; Kügler, Jens Oliver; Grunert, Klaus G.

    2010-01-01

    The use of new technologies in beef production chains may affect consumers' opinion of meat products. A qualitative study was performed to investigate consumers' acceptance of seven beef processing technologies: marinating by injection aiming for increased 1) healthiness; 2) safety; and 3) eating...... adults (19-60 years old) participated in eight focus groups in Spain, France, Germany and the UK. Results suggested a relationship between acceptance of new beef products, technology familiarity and perceived risks related to its application. Excessive manipulation and fear of moving away from 'natural......' beef were considered negative outcomes of technological innovations. Beef processing technologies were predominantly perceived as valuable options for convenience shoppers and less demanding consumers. Overall, respondents supported the development of 'non-invasive' technologies that were able...

  14. National Security Technology Incubator Evaluation Process

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-31

    This report describes the process by which the National Security Technology Incubator (NSTI) will be evaluated. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the components, steps, and measures of the proposed evaluation process. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. An effective evaluation process of the NSTI is an important step as it can provide qualitative and quantitative information on incubator performance over a given period. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The mission of the NSTI is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. To achieve success for both incubator businesses and the NSTI program, an evaluation process is essential to effectively measure results and implement corrective processes in the incubation design if needed. The evaluation process design will collect and analyze qualitative and quantitative data through performance evaluation system.

  15. Quantum information processing : science & technology.

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Rebecca; Carroll, Malcolm S.; Tarman, Thomas David

    2010-09-01

    Qubits demonstrated using GaAs double quantum dots (DQD). The qubit basis states are the (1) singlet and (2) triplet stationary states. Long spin decoherence times in silicon spurs translation of GaAs qubit in to silicon. In the near term the goals are: (1) Develop surface gate enhancement mode double quantum dots (MOS & strained-Si/SiGe) to demonstrate few electrons and spin read-out and to examine impurity doped quantum-dots as an alternative architecture; (2) Use mobility, C-V, ESR, quantum dot performance & modeling to feedback and improve upon processing, this includes development of atomic precision fabrication at SNL; (3) Examine integrated electronics approaches to RF-SET; (4) Use combinations of numerical packages for multi-scale simulation of quantum dot systems (NEMO3D, EMT, TCAD, SPICE); and (5) Continue micro-architecture evaluation for different device and transport architectures.

  16. Combustion process science and technology

    Science.gov (United States)

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  17. Microwave plasma emerging technologies for chemical processes

    NARCIS (Netherlands)

    de la Fuente, Javier F.; Kiss, Anton A.; Radoiu, Marilena T.; Stefanidis, Georgios D.

    2017-01-01

    Microwave plasma (MWP) technology is currently being used in application fields such as semiconductor and material processing, diamond film deposition and waste remediation. Specific advantages of the technology include the enablement of a high energy density source and a highly reactive medium,

  18. Technological innovation: a structrational process view

    NARCIS (Netherlands)

    Fehse, K.I.A.; Wognum, P.M.

    1999-01-01

    The central aim of our research is to describe and explain how the introduction of a computer-based technology, which supports co-operative work in engineering departments, induces change processes. The employment of computer-based technologies in product development organisations to support

  19. Roadmap for Process Equipment Materials Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  20. Effect of accelerated electron beams on technological properties of ferriquarzites of the Mikhajlovskij ore deposit

    International Nuclear Information System (INIS)

    Potapov, S.A.; Chakturiya, V.A.; Polyakov, V.A.; Rostovtsev, V.I.

    1989-01-01

    Method for enrichment of ferruginous quartzites of the Kursk magnetic anomaly, using electron irradiation was tested. Samples were irradiated by 2 MeV accelerated electron beam from IZU-6 industrial accelerator. The absorbed dose was equal to 0.14; 0.40; 0.75 Mrad for different types of quartzites. It is shown that sample irradiation elevates grindability of ferrugineous quartzites of all technological types. Enrichment factors increase. Iron extraction to concentrate grows. Extraction of easily enriched ores increases after irradiation by 2.86 %, quality - by 0.6 %; for oxidized ferruginous quartzites - 3.7 % and 1.5 % respectively. Productivity of grinding process increases 1.8-1.3 times. The described technique is promising and should be introduced possibility of elevating grinding productivity 2.0-2.2 times with increase of technological indices of magnetic separation by 2.5-4.0 % when using more powerful accelerators was established

  1. Process analytical technology (PAT) for biopharmaceuticals

    DEFF Research Database (Denmark)

    Glassey, Jarka; Gernaey, Krist; Clemens, Christoph

    2011-01-01

    Process analytical technology (PAT), the regulatory initiative for building in quality to pharmaceutical manufacturing, has a great potential for improving biopharmaceutical production. The recommended analytical tools for building in quality, multivariate data analysis, mechanistic modeling, novel...

  2. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  3. TECHNOLOGICAL PROCESS OF EFFLUENTS DEPHENOLYSATION

    Directory of Open Access Journals (Sweden)

    В. Трачевський

    2011-02-01

    Full Text Available The one of the important physical factors impacting on the environmental safety of industrial wastewater generated in the production of paints and varnishes is considered. Identification wastewater formation sources, composition, its amount in a particular type of resin is an essential point for developing methods of cleaning industrial wastewater treatment design and industrial plants. Deep cleaning of wastewater from phenol is a major challenge. Studies that mostly focused on the known methods of disposal of waste waters from phenol have been analyzed. It was shown that the shortcomings of many methods of sewage treatment of phenols by condensation at atmospheric pressure are the long duration of the process, significant cost of heat, and large residual phenol concentration in water, respectively. The most effective method of reducing the concentration of phenol in waste water is its oxidation in MnO2 suspension. The interaction of manganese oxides with sulfuric acid produces oxygen, which can oxidise phenol contained in the waste water. As a result of wastewater treatment of phenolic resins by manganese oxides in acidic sulfate medium phenol concentration  was decreased by 98.6 - 99.6%.

  4. Development of functionally-oriented technological processes of electroerosive processing

    Science.gov (United States)

    Syanov, S. Yu

    2018-03-01

    The stages of the development of functionally oriented technological processes of electroerosive processing from the separation of the surfaces of parts and their service functions to the determination of the parameters of the process of electric erosion, which will provide not only the quality parameters of the surface layer, but also the required operational properties, are described.

  5. Astrophysical r- and rp-processes, and radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    1998-01-01

    The modern description of the r-process follows naturally from α-rich freezeout, thought to occur in the hot neutrino wind just beyond the nascent neutron star in a type II supernova. Initially, all pre-existing nuclei are reduced to α-particles and neutrons. As the environment cools, nuclei up to about mass 90 to 100 u are synthesized, in nuclear statistical equilibrium, in about 1 s. In the next few seconds, the remaining neutrons are captured to form the r-process progenitors, which then decay to the r-process nuclides. The rp-process occurs in a high-temperature H-rich environment. It is one of the processes that synthesize the p-process nuclei, the most neutron-poor nuclei in the periodic table. It is thought to occur during the explosion of a C-O white dwarf in a type Ia supernova or in a binary system during accretion onto a white dwarf or a neutron star. It appears to be capable of forming the p-nuclei up to about mass 90 u. Both processes pass through nuclei that are far from stability. Thus, their description requires the masses, half-lives, decay modes, and structure of these nuclei. The next generation of radioactive beam facilities promises to allow the study of many such nuclei. (author)

  6. Ultrafast Bessel beams: advanced tools for laser materials processing

    Science.gov (United States)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  7. Medium and high energy electron beam processing system

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Masayuki [Nissin-High Voltage Co., Ltd., Kyoto (Japan)

    2003-02-01

    Electron Beam Processing System (EPS) is a useful and powerful tool for industrial irradiation process. The specification of EPS is decided by consideration to irradiate what material with how thick and wide, how much dose, how to handle, in what atmosphere. In designing an EPS, it is necessary to consider safety measure such as x-ray shielding, ozone control and interlock system. The initial costs to install typical EPS are estimated for acceleration voltages from 500 kV to 5 MV, including following items; those are electron beam machine, x-ray shielding, auxiliary equipment, material handling, survey for installation, ozone exhaust duct, cooling water system, wiring and piping. These prices are reference only because the price should be changed for each case. The price of x-ray shielding should be changed by construction cost. Auxiliary equipment includes window, cooling blower, ozone exhaust blower and SF6 gas handling equipment. In installation work at site, actual workers of 3 - 4 persons for 2 months are necessary. Material handling system is considered only rolls provided in the shielding room as reference. In addition to the initial installation, operators and workers may be required to wear a personal radiation monitor. An x-ray monitor of suitable design should be installed outside the shield room to monitor x-ray level in the working area. (Y. Tanaka)

  8. A new ion-beam laboratory for materials research at the Slovak University of Technology

    Science.gov (United States)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  9. Fabrication of nano structures in thin membranes with focused ion beam technology

    NARCIS (Netherlands)

    Gadgil, V.J.; Tong, D.H.; Cesa, Y.; Bennink, Martin L.

    2009-01-01

    In recent years, Focused Ion Beam (FIB) technology has emerged as an important tool for nanotechnology [V.J. Gadgil, F. Morrissey, Encyclopaedia of Nanoscience and Nanotechnology, vol. 1, American Science Publishers, ISBN: 1-58883-057-8, 2004, p101.]. In this paper, applications of focused ion beam

  10. Proceedings of the national symposium on vacuum science and technology and power beams. Volume 2

    International Nuclear Information System (INIS)

    Venkatramani, N.; Ray, A.K.

    1997-11-01

    This volume contains the proceedings of the national symposium on vacuum science and technology and power beams. The main topics dealt with are: accelerators and vacuum systems, thin films deposition techniques, lasers and electron power beams and their applications in nuclear facilities. Papers relevant to INIS are indexed separately

  11. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    Science.gov (United States)

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  12. PREVAIL: IBM's e-beam technology for next generation lithography

    Science.gov (United States)

    Pfeiffer, Hans C.

    2000-07-01

    PREVAIL - Projection Reduction Exposure with Variable Axis Immersion Lenses represents the high throughput e-beam projection approach to NGL which IBM is pursuing in cooperation with Nikon Corporation as alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam so that the beam effectively remains on axis. The resist images obtained with the Proof-of-Concept (POC) system demonstrate that PREVAIL effectively eliminates off- axis aberrations affecting both resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulomb interaction.

  13. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  14. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    Science.gov (United States)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  15. Friction Stir Welding Process: A Green Technology

    OpenAIRE

    Esther T. Akinlabi; Stephen A. Akinlabi

    2012-01-01

    Friction Stir Welding (FSW) is a solid state welding process invented and patented by The Welding Institute (TWI) in the United Kingdom in 1991 for butt and lap welding of metals and plastics. This paper highlights the benefits of friction stir welding process as an energy efficient and a green technology process in the field of welding. Compared to the other conventional welding processes, its benefits, typical applications and its use in joining similar and dissimilar materia...

  16. Dehydration process of fish analyzed by neutron beam imaging

    International Nuclear Information System (INIS)

    Tanoi, K.; Hamada, Y.; Seyama, S.; Saito, T.; Iikura, H.; Nakanishi, T.M.

    2009-01-01

    Since regulation of water content of the dried fish is an important factor for the quality of the fish, water-losing process during drying (squid and Japanese horse mackerel) was analyzed through neutron beam imaging. The neutron image showed that around the shoulder of mackerel, there was a part where water content was liable to maintain high during drying. To analyze water-losing process more in detail, spatial image was produced. From the images, it was clearly indicated that the decrease of water content was regulated around the shoulder part. It was suggested that to prevent deterioration around the shoulder part of the dried fish is an important factor to keep quality of the dried fish in the storage.

  17. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  18. Improvisation during Process-Technology Adoption

    DEFF Research Database (Denmark)

    Tjørnehøj, Gitte; Mathiassen, Lars

    2010-01-01

    SPI technology adoption and events that causes the process to drift in unpredictable directions. To further understand how management's attempt to control the process is complemented by drifting, this article investigates the role of improvisation in adoption of SPI technology in a Danish software......Most software firms struggle to take advantage of the potential benefits of software process improvement (SPI) as they adopt this technology into the complex and dynamic realities of their day-to-day operation. Such efforts are therefore typically fluctuating between management's attempt to control...... firm, SmallSoft, over a 10-year period (1996–2005). We found that micro-level and macro-level improvisations interacted, often in uncoordinated ways, to shape SPI technology adoption at SmallSoft. The improvisations enhanced employee creativity, motivation and empowerment, created momentum...

  19. Computer system for the beam line data processing at JT-60 prototype neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kawai, Mikito; Ohara, Yoshihiro

    1987-08-01

    The present report describes the hard and soft wares of the data acquisition computer system for the prototype neutral injector unit for JT-60. In order to operate the unit, more than hundreds of signals of the beam line components have to be measured. These are mainly differential thermometers for the coolant waters and thermocouples for the beam dump components but not include those for the cryo system. Since the unit operates in a series of pulses, the measurement should be conducted very quickly in order to ensure the simultaneity of large number of the measured data. The present system actualize fast data acquisition using a small computer of 128 kB and measuring instruments connected through the bus. The system is connected to the JAERI computer center since the data capacity is fairly large to completely process them by the small computer. Therefore the measured data can be transferred to the computer center to calculate there, and the results can be received. After the system was completed the computer quickly print out the power flow data, which needed much work to calculate with hands. This system was very useful. It enhanced the experiments at the unit and reduced the labor. It enables us to early demonstrate the rated operation of the unit and to accurately estimate such operation data of the JT-60 NBI as the injection power. (author)

  20. Application of various technological processes in red clover seed processing

    OpenAIRE

    Đokić, Dragoslav; Stanisavljević, Rade; Terzić, Dragan; Marković, Jordan; Radivojević, Gordana; Anđelković, Bojan; Barać, Saša

    2012-01-01

    This paper presents the results of the processing of natural red clover seed on the processing equipment using different technological methods. Red clover seed, for the establishment and crop utilization, must be of high purity, germination, and high genetic values. These requirements are achieved by processing, or removing impurities and poor quality seeds. Red clover seed processing involves a number of operations, of which the most important are: cleaning, packaging, labeling and storage. ...

  1. Multi-beam backscatter image data processing techniques employed to EM 1002 system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.; Chakraborty, B.

    to compensate outer-beam backscatter strength data in such a way that the effect of angular backscatter strength is removed. In this work we have developed backscatter data processing techniques for EM1002 multi-beam system...

  2. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol; Park, Ji Hyun; Bae, Hyung Bin; Park, Changmoon

    2013-01-01

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances

  3. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  4. Organic Process Technology Valuation: Cyclohexanone Oxime Syntheses

    Science.gov (United States)

    Cannon, Kevin C.; Breen, Maureen P.

    2010-01-01

    Three contemporary processes for cyclohexanone oxime synthesis are evaluated in a case study. The case study introduces organic chemistry students to basic cost accounting to determine the most economical technology. Technical and financial aspects of these processes are evaluated with problem-based exercises that may be completed by students…

  5. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  6. Technologies for Collaborative Business Process Management

    NARCIS (Netherlands)

    Sadiq, Shazia; Reichert, M.U.; Schulz, Karsten

    Business process management (BPM) has become an extensive area of research with several specialized aspects. BPM is viewed from highly diverse angles ranging from a management strategy to a software system. It is widely acknowledged that process enforcement technologies hold the potential to provide

  7. Information technology, knowledge processes, and innovation success

    NARCIS (Netherlands)

    Song, X.M.; Zang, F.; Bij, van der J.D.; Weggeman, M.C.D.P.

    2001-01-01

    Despite the obvious linkage between information technologies (IT) and knowledge processes and the apparent strategic importance of both, little research has done to explicitly examine how, if at all, IT and knowledge processes affect firm outcomes. The purpose of this study is to bridge this

  8. Optimization of processing technology of Rhizoma Pinelliae ...

    African Journals Online (AJOL)

    Methods: Orthogonal design method was applied to analyze the effects of factors such as licorice concentration volume, soaking time and processing temperature on processing technology of Rhizoma Pinelliae Praeparatum; MTT assay and flow cytometry were used to determine the inhibitory effect of Rhizoma Pinelliae ...

  9. Design process for NIF laser alignment and beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Grey, A., LLNL

    1998-06-09

    In a controller for an adaptive optic system designed to correct phase aberrations in a high power laser, the wavefront sensor is a discrete Hartmann-Shack design. It uses an army of lenslets (like a fly` s eye) to focus the laser into 77 spots on a CCD camera. Average local tilt of the wavefront across each lenslet changes the position of its focal spot. The system requires 0.1 pixel accuracy in determining the focal spot location. We determine a small area around each spot` s previous location. Within this area, we calculate the centroid of the light intensity in x and y. This calculation fails if the spot regions overlap. Especially during initial acquisition of a highly distorted beam, distinguishing overlapping spots is difficult. However, low resolution analysis of the overlapping spots allows the system to estimate their positions. With this estimate, it can use the deformable mirror to correct the beam enough so we can detect the spots using conventional image processing.

  10. Dosimetry study for electron beam irradiation in radiation processing

    International Nuclear Information System (INIS)

    Sunaga, Hiromi; Haruyama, Yasuyuki; Takizawa, Haruki; Kojima, Takuji; Yotsumoto, Keiichi

    1995-01-01

    For certain critical applications such as medical device sterilization and food irradiation, accurate calibration of electron energy and absorbed dose is required to assure the quality of irradiated products. To meet this requirement, TRCRE, JAERI has carried out research and development on high dose radiation dosimetry for electron beams in the energy range used in radiation processing (0.15 - 3.0 MeV). JAERI has developed a simultaneous electron beam energy and dosimeter calibration system that consist of a total absorption calorimeter, an electron current density meter, and a stacked thin-film dosimeter set. For low energy electrons, where it is important to measure the depth-dose profile in materials with high depth resolution, we studied the feasibility of a method using Gafchromic film dosimeters. This film, which has an 8-μm thick sensitive layer, is combined with a stepped array of absorber films of the same thickness to produce a high-resolution depth-dose profile on the Gafchromic film. The depth-dose profile obtained in this manner has about five times greater resolution than conventional radiochromic film dosimetry. (author)

  11. Techniques for evaluation of E-beam evaporative processes

    International Nuclear Information System (INIS)

    Meier, T.C.; Nelson, C.M.

    1996-01-01

    High dynamic range video imaging of the molten pool surface has provided insight regarding process responses at the melt pool liquid-vapor interface. A water-cooled video camera provides continuous high resolution imaging of the pool surface from a low angle position within 20 cm of the liquid-vapor interface. From the vantage point, the e-beam footprint is clearly defined and melt pool free surface shape can be observed. Effects of changes in a beam footprint, power distribution, and sweep frequency on pool surface shape and stability of vaporization are immediately shown. Other events observed and recorded include: formation of the pool and dissipation of ''rafts'' on the pool surface during startup, behavior of feed material as it enters the pool, effects of feed configuration changes on mixing of feed entering the pool volume and behaviors of co-evaporated materials of different vapor pressures at the feed/pool boundary. When used in conjunction with laser vapor monitoring, correlation between pool surface phenomena and vaporizer performance has been identified. This video capability was used in verifying the titanium evaporation model results presented at this conference by confirming the calculated melt pool surface deformations caused by vapor pressure of the departing evaporant at the liquid-vapor interface

  12. Techniques for evaluation of E-beam evaporative processes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, T.C.; Nelson, C.M.

    1996-10-01

    High dynamic range video imaging of the molten pool surface has provided insight regarding process responses at the melt pool liquid-vapor interface. A water-cooled video camera provides continuous high resolution imaging of the pool surface from a low angle position within 20 cm of the liquid-vapor interface. From the vantage point, the e-beam footprint is clearly defined and melt pool free surface shape can be observed. Effects of changes in a beam footprint, power distribution, and sweep frequency on pool surface shape and stability of vaporization are immediately shown. Other events observed and recorded include: formation of the pool and dissipation of ``rafts`` on the pool surface during startup, behavior of feed material as it enters the pool, effects of feed configuration changes on mixing of feed entering the pool volume and behaviors of co-evaporated materials of different vapor pressures at the feed/pool boundary. When used in conjunction with laser vapor monitoring, correlation between pool surface phenomena and vaporizer performance has been identified. This video capability was used in verifying the titanium evaporation model results presented at this conference by confirming the calculated melt pool surface deformations caused by vapor pressure of the departing evaporant at the liquid-vapor interface.

  13. Aspects of input processing in the numerical control of electron beam machines

    International Nuclear Information System (INIS)

    Chowdhury, A.K.

    1981-01-01

    A high-performance Numerical Control has been developed for an Electron Beam Machine. The system is structured into 3 hierarchial levels: Input Processing, Realtime Processing (such as Geometry Interpolation) and the Interfaces to the Electron Beam Machine. The author considers the Input Processing. In conventional Numerical Controls the Interfaces to the control is given by the control language as defined in DIN 66025. State of the art in NC-technology offers programming systems of differing competence covering the spectra between manual programming in the control language to highly sophisticated systems such as APT. This software interface has been used to define an Input Processor that in cooperation with the Hostcomputer meets the requirements of a sophisticated NC-system but at the same time provides a modest stand-alone system with all the basic functions such as interactive program-editing, program storage, program execution simultaneous with the development of another program, etc. Software aspects such as adapting DIN 66025 for Electron Beam Machining, organisation and modularisation of Input Processor Software has been considered and solutions have been proposed. Hardware aspects considered are interconnections of the Input Processor with the Host and the Realtime Processors. Because of economical and development-time considerations, available software and hardware has been liberally used and own development has been kept to a minimum. The proposed system is modular in software and hardware and therefore very flexible and open-ended to future expansion. (Auth.)

  14. Developments in broad-beam, ion-source technology and applications

    International Nuclear Information System (INIS)

    Kaufman, H.R.; Harper, J.M.E.; Cuomo, J.J.

    1982-01-01

    Recent advances in broad-beam, ion-source technology are summarized, including low-energy ion optics, improved extraction grid fabrication, a compact ion-source design and a gridless ion-source design. Recent applications have emphasized concepts such as stress modification of vapor deposited films, very low energy ion beams to minimize the physical sputtering portion in reactive etching, and the use of multiple sources and targets to sputter deposit alloys and compounds. A comprehensive critical review by the same authors appears concurrently, describing in detail the developments in broad-beam, ion-source technology 1 and the applications of these sources. 2

  15. Some novel concepts in radiation processing technology applications

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2014-01-01

    Search for better materials and processes has been a part of the evolution of mankind and it still continues to be so as it is being realized that earth's resources are not everlasting and effect of rapid growth on environment may adversely affect the future development. Sustainable development is the only choice for today for long term survival. Better quality and high functional materials, made by superior technologies are being demanded by the society. Radiation processing technology has significantly contributed to meet the expectation of the people in providing superior products and processes while preserving the environment. Processes are being developed where resources are fully utilized with maximum advantages and little disturbance to the environment. More than 1500 electron beam accelerators and about 500 Gamma Irradiators are presently in use and many are being deployed for radiation processing of medical supplies, pharmaceuticals and herbal materials, treat effluents and preserve food and agricultural products and several industrial products. DAE has an ambitious plan to deploy radiation technology for societal benefits in India. In the presentations some interesting applications of Radiation Processing Technology will be discussed which includes (1) Radiation Processing of Cashew Apple fruit for bio-ethanol production (2) High Energy Battery separators (3) Plant Growth Promoters and (4) Tunable biodegradability. The discussion would reveal how a waste product like cashew apple can be converted to useful materials and advanced materials like HEB separators and Tunable Biodegradable films can be made using radiation technology. Use of radiation de-polymerized polysaccharides in some experiments have shown unexpected increase in agriculture output giving new concepts to increase the productivity. (author)

  16. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Walton, T.C.; Crivello, J.V.

    1995-01-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T g s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  17. Power balance equation in electron beam evaporation process

    International Nuclear Information System (INIS)

    Blumenfeld, L.; Soubbaramayer.

    1994-01-01

    The aim of the paper is to solve the equation giving the total power of the gun, used in the electron beam evaporation process, in terms of the power used to generated the vapor stream and the three main power losses due to three parasite phenomena: turbulent thermal convection in the molten pool, electron back scattering and heat radiation from the vapor emitting surface. Scaling laws are first reviewed and results are given with the example of the evaporation of aluminium with a 5 kW axisymmetric gun working in steady state mode. The influence of an applied magnetic field on the evaporation rate is also examined. 5 refs., 3 figs., 1 tab

  18. Business process modeling for processing classified documents using RFID technology

    Directory of Open Access Journals (Sweden)

    Koszela Jarosław

    2016-01-01

    Full Text Available The article outlines the application of the processing approach to the functional description of the designed IT system supporting the operations of the secret office, which processes classified documents. The article describes the application of the method of incremental modeling of business processes according to the BPMN model to the description of the processes currently implemented (“as is” in a manual manner and target processes (“to be”, using the RFID technology for the purpose of their automation. Additionally, the examples of applying the method of structural and dynamic analysis of the processes (process simulation to verify their correctness and efficiency were presented. The extension of the process analysis method is a possibility of applying the warehouse of processes and process mining methods.

  19. Electron beam facilities and technologies developed in the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Walis, L.; Zimek, Z.

    1992-01-01

    The operation of the first electron accelerator has been started at Institute /former Institute for Nuclear Research/ in 1971. This LAE-13/9 accelerator is a two-section lineac with adjustable energy of electrons: 5 to 13 MeV and the beam power up to 9 kW. The main technologies developed on the basis of LAE-13/9 are: sterilization, manufacturing of thermoshrinkable materials and modification of semiconductors. The accelerator is operated 4000 hours per year and used for small scale production and services in these fields. The other problems investigated in laboratory scale are: food preservation and hygenization, hygenization of municipal sewage sludge, and bio-conversion of pig-farm wastes into animal fodder. The laboratory experiments are basis for pilot construction and other industrial applications. The mentioned technology of thermoshrinkable tube production was implemented in industrial scale at ZWUT Czluchow which factory is equipped in the accelerator ILU-6 /20 kW, 2 MeV/. On the basis of similar unit a technological installation was built at Institute. The plant is furnished with a conveyer and the rewinding machines for tubes and tapes manufacturing. This allows continuous production of these materials. The plant will start operation next year and linear accelerator /10 MeV, 15 kW/ for this purpose is already delivered. The pilot plant for food preservation and hygenization has been built. It is equipped in small pilot accelerator 10 MeV, 1 kW and will be furnished with 10 MeV, 10 kW lineac this year. Beside of this technological lines Institute is furnished in Van de Graff accelerator /2, MeV, 100 μA/ and another laboratory unit LAE-10 /10 MeV, 10-100 ns 2 us/ is under construction. (J.P.N.)

  20. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  1. The IBA Easy-E-Beam Integrated Processing System

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Galloway, Richard A.; Lisanti, Thomas F.

    2011-01-01

    IBA Industrial Inc., (formerly known as Radiation Dynamics, Inc.) has been making high-energy and medium-energy, direct-current proton and electron accelerators for research and industrial applications for many years. Some industrial applications of high-power electron accelerators are the crosslinking of polymeric materials and products, such as the insulation on electrical wires, multi-conductor cable jackets, heat-shrinkable plastic tubing and film, plastic pipe, foam and pellets, the partial curing of rubber sheet for automobile tire components, and the sterilization of disposable medical devices. The curing (polymerization and crosslinking) of carbon and glass fiber-reinforced composite plastic parts, the preservation of foods and the treatment of waste materials are attractive possibilities for future applications. With electron energies above 1.0 MeV, the radiation protection for operating personnel is usually provided by surrounding the accelerator facility with thick concrete walls. With lower energies, steel and lead panels can be used, which are substantially thinner and more compact than the equivalent concrete walls. IBA has developed a series of electron processing systems called Easy-e-Beam for the medium energy range from 300 keV to 1000 keV. These systems include the shielding as an integral part of a complete radiation processing facility. The basic concepts of the electron accelerator, the product processing equipment, the programmable control system, the configuration of the radiation shielding and some performance characteristics are described in this paper.

  2. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    Science.gov (United States)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-03-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.

  3. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    International Nuclear Information System (INIS)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-01-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8–12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed–fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than −25 dB and an insertion loss of around 0.1 dB at 8–12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW −1 at 8, 10 and 12 GHz, respectively. (paper)

  4. Radiation processing of natural polymers using low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2004-01-01

    Radiation processing is widely used in Japan and the economic scale of radiation application amounted to about 71 b$ (ratio relative to GDP: 1.7%) in total. It consisted of 60 b$ (85%) in industry, 10 b$ (14%) in medicine and 1 b$ (1%) in agriculture. Irradiation using gamma-ray from 60 Co and electron beam is commercially used for the sterilization and modification of materials. Utilization of natural polymers by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin were easily degraded by irradiation and induced various kinds of biological activities, i.e. anti-bacterial activity, elicitor activity, plant growth promotion, suppression of environmental stress on plants. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. Low energy electron beam (EB) irradiation has a variety of applications and good safety. A self-shielded low energy electron accelerator system needs an initial investment much lower than a 60 Co facility. It was demonstrated that the liquid sample irradiation system using low energy EB was effective not only for the preparation of degraded polysaccharides but also for radiation vulcanization of natural rubber latex (RVNRL). Some carbohydrate derivatives, carboxymethylcellulose (CMC), carboxymethyl-starch and carboxymethyl-chitin/chitosan, can be crosslinked under certain radiation condition and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  5. Development of electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Namba, Hideki; Tanaka, Tadashi; Ogura, Yoshimi; Doi, Yoshitake; Aoki, Shinji; Izutsu, Masahiro.

    1995-01-01

    Smoke treatment system making use of electron beam irradiation made it possible to simultaneously eliminate SOx and NOn from exhaust gas. The fundamental study of the system was started in the seventies and at present, its application in practical use is under way. A pilot plant for the smoke treatment system was constructed in cooperation of Chubu Electric Power Company, Inc., Japan Atomic Energy Research Institute and Ebara Corporation and several tests with the actual exhaust gas were conducted during the period, Oct. 1992-Dec. 1993 and the treatment efficiency and the control capacity of this system was confirmed to be so high as the conventional systems and many engineering data were obtained. A high treatment efficiency (>94% for desulfurization and >80% for denitrification) was obtainable by choosing the optimum irradiation amount of electron beam and the optimum temperature of gas to treat. And this system was found superior from a financial aspect to the conventional smoke treatment system. (M.N.)

  6. Cone beam computerized tomography of face. Technological assessment report

    International Nuclear Information System (INIS)

    Saint-Pierre, Francoise; Fanelli, Gaelle; Mosnegutu, Lavinia; Devaux, Frederique

    2009-12-01

    Cone beam computerized tomography is an imagery technique notably used for the maxillofacial complex or a complete or limited exploration of maxillo-mandibular and dento-alveolar structures. Typically, this technique is implemented with devices which are different from scanners in various respects (performance of several linear cuts, use of an open cone beam). Based on a literature survey, this document reports an assessment which aimed at determining technical and dosimetric performances of the device, potential benefits in terms of diagnosis and therapy with respect to existing imagery techniques, specifications and role of this technique in odonto-stomatology, maxillofacial surgery, and even in ENT, and operation conditions and training to perform this act

  7. Novel field emission SEM column with beam deceleration technology

    Energy Technology Data Exchange (ETDEWEB)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-11-15

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications.

  8. Novel field emission SEM column with beam deceleration technology

    International Nuclear Information System (INIS)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-01-01

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications

  9. Design process and modeling studies of SSRL beam line wunder

    International Nuclear Information System (INIS)

    Bachrach, R.Z.; Bringans, R.D.

    1984-01-01

    SSRL Beam Line Wunder will be the first soft X-ray energy range synchrotron radiation beam line specifically designed to exploit the unique aspects of periodic insertion devices in the wiggler-undulator (wunder) regime. Aspects of the development of this beam line are described in this paper and in particular, we discuss the design methodology adopted and emphasize the joint optical, thermal and mechanical optimization studies that were required. (orig.)

  10. Potential applications of fusion neutral beam facilities for advanced material processing

    International Nuclear Information System (INIS)

    Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H.

    1994-01-01

    Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source ion implantation is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exists. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m 2 . Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum of 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces

  11. PHYSICAL RESOURCES OF INFORMATION PROCESSES AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Mikhail O. Kolbanev

    2014-11-01

    Full Text Available Subject of study. The paper describes basic information technologies for automating of information processes of data storage, distribution and processing in terms of required physical resources. It is shown that the study of these processes with such traditional objectives of modern computer science, as the ability to transfer knowledge, degree of automation, information security, coding, reliability, and others, is not enough. The reasons are: on the one hand, the increase in the volume and intensity of information exchange in the subject of human activity and, on the other hand, drawing near to the limit of information systems efficiency based on semiconductor technologies. Creation of such technologies, which not only provide support for information interaction, but also consume a rational amount of physical resources, has become an actual problem of modern engineering development. Thus, basic information technologies for storage, distribution and processing of information to support the interaction between people are the object of study, and physical temporal, spatial and energy resources required for implementation of these technologies are the subject of study. Approaches. An attempt is made to enlarge the possibilities of traditional cybernetics methodology, which replaces the consideration of material information component by states search for information objects. It is done by taking explicitly into account the amount of physical resources required for changes in the states of information media. Purpose of study. The paper deals with working out of a common approach to the comparison and subsequent selection of basic information technologies for storage, distribution and processing of data, taking into account not only the requirements for the quality of information exchange in particular subject area and the degree of technology application, but also the amounts of consumed physical resources. Main findings. Classification of resources

  12. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  13. BUSINESS PROCESS MANAGEMENT SYSTEMS TECHNOLOGY COMPONENTS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Andrea Giovanni Spelta

    2007-05-01

    Full Text Available The information technology that supports the implementation of the business process management appproach is called Business Process Management System (BPMS. The main components of the BPMS solution framework are process definition repository, process instances repository, transaction manager, conectors framework, process engine and middleware. In this paper we define and characterize the role and importance of the components of BPMS's framework. The research method adopted was the case study, through the analysis of the implementation of the BPMS solution in an insurance company called Chubb do Brasil. In the case study, the process "Manage Coinsured Events"" is described and characterized, as well as the components of the BPMS solution adopted and implemented by Chubb do Brasil for managing this process.

  14. Organizational Development: Values, Process, and Technology.

    Science.gov (United States)

    Margulies, Newton; Raia, Anthony P.

    The current state-of-the-art of organizational development is the focus of this book. The five parts into which the book is divided are as follows: Part One--Introduction (Organizational Development in Perspective--the nature, values, process, and technology of organizational development); Part Two--The Components of Organizational Developments…

  15. Exploring novel food proteins and processing technologies

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine

    2016-01-01

    Foods rich in protein are nowadays high in demand worldwide. To ensure a sustainable supply and a high quality of protein foods, novel food proteins and processing technologies need to be explored to understand whether they can be used for the development of high-quality protein foods. Therefore,

  16. Improvisation during Process-Technology Adoption

    DEFF Research Database (Denmark)

    Tjørnehøj, Gitte; Mathiassen, Lars

    2010-01-01

    Most software firms struggle to take advantage of the potential benefits of software process improvement (SPI) as they adopt this technology into the complex and dynamic realities of their day-to-day operation. Such efforts are therefore typically fluctuating between management's attempt to contr...

  17. Angular scattering in electron capture and loss D- beam formation processes

    International Nuclear Information System (INIS)

    Coggiola, M.J.; Hodges, R.V.; Huestis, D.L.; Peterson, J.R.

    1980-01-01

    The development of high energy (> 150 keV) neutral beams for heating and fueling magnetic fusion devices depends on the ability to produce well-collimated negative ion beams. The double capture charge-exchange technique is a known, scalable method. In order to maximize the overall efficiency of the process and to achieve the desired beam characteristics, it is necessary to examine the optical qualities of the beams as well as the total efficiency of beam production. A combined modeling and experimental study of the angular scattering effects in negative ion formation and loss processes has therefore been undertaken

  18. Deterministic ion beam material adding technology for high-precision optical surfaces.

    Science.gov (United States)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2013-02-20

    Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.

  19. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  20. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization

    Directory of Open Access Journals (Sweden)

    Philipp Drescher

    2016-12-01

    Full Text Available Selective electron beam melting (SEBM is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  1. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization.

    Science.gov (United States)

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-12-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  2. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  3. Development of Food Preservation and Processing Technologies by Radiation Technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun

    2007-07-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  4. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun [and others

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  5. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun (and others)

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  6. Improving drug manufacturing with process analytical technology.

    Science.gov (United States)

    Rodrigues, Licinia O; Alves, Teresa P; Cardoso, Joaquim P; Menezes, José C

    2006-01-01

    Within the process analytical technology (PAT) framework, as presented in the US Food and Drug Administration guidelines, the aim is to design, develop and operate processes consistently to ensure a pre-defined level of quality at the end of the manufacturing process. Three PAT implementation scenarios can be envisaged. Firstly, PAT could be used in its most modest version (in an almost non-PAT manner) to simply replace an existing quality control protocol (eg, using near-infrared spectroscopy for an in-process quality control, such as moisture content). Secondly, the use of in-process monitoring and process analysis could be integrated to enhance process understanding and operation for an existing industrial process. Thirdly, PAT could be used extensively and exclusively throughout development, scale-up and full-scale production of a new product and process. Although the first type of implementations are well known, reports of the second and third types remain scarce. Herein, results obtained from PAT implementations of the second and third types are described for two industrial processes for preparing bulk active pharmaceutical ingredients, demonstrating the benefits in terms of increased process understanding and process control.

  7. The nuclear interaction analysis methods for diagnostics of high power ion beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhkov, V A; Grushin, I I; Remnev, G E [Nuclear Physics Inst., Tomsk (Russian Federation)

    1997-12-31

    The complex of Nuclear Interaction Analysis Methods including charged particle activation analysis (CPAA and HIAA), spectrometry of ion induced gamma-emission (PIGE and HIIGE) , characteristic X-ray emission (PIXE), and Rutherford Backscattering Spectrometry (RBS), have been used for diagnostics of the High Power Ion Beam (HPIB) assisted technologies. Accelerated ion beams from the EG-2.5 electrostatic generator and U-120 cyclotron were used for implementation of the techniques. The complex allows a lot of problems of elemental and isotopic analysis to be addressed. First, it is the determination of micro- and macrocomponents of modified materials; second, determination of surface density of thin films, multilayers and coatings, total surface gaseous contamination and amounts of the elements implanted in specimens; third, measurement of concentration depth profiles of the elements. Experiments have shown that the preferable application of nuclear analysis methods allows us to avoid the considerable errors arising when the concentration depth profiles of elements are measured by SIMS or AES in studies of mass transfer processes induced by HPIBs. (author). 1 tab., 2 figs., 3 refs.

  8. Integration thermal processes through Pinch technology

    International Nuclear Information System (INIS)

    Rios H, Carlos Mario; Grisales Rincon, Rogelio; Cardona, Carlos Ariel

    2004-01-01

    This paper presents the techniques of heat integration used for process optimization, their fortresses and weaknesses during the implementation in several specific process are also discussed. It is focused to the pinch technology, explaining algorithms for method applications in the industry. The paper provides the concepts and models involved in different types of commercial software applying this method for energy cost reduction, both in design of new plants and improve of old ones. As complement to benefits of the energy cost reduction it is analysed other favorable aspects of process integration, as the emissions waste reduction and the combined heat end power systems

  9. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  10. Application of repetitive pulsed power technology to chemical processing

    International Nuclear Information System (INIS)

    Kaye, R.J.; Hamil, R.

    1995-01-01

    The numerous sites of soil and water contaminated with organic chemicals present an urgent environmental concern that continues to grow. Electron and x-ray irradiation have been shown to be effective methods to destroy a wide spectrum of organic chemicals, nitrates, nitrites, and cyanide in water by breaking molecules to non-toxic products or entirely mineralizing the by-products to gas, water, and salts. Sandia National Laboratories is developing Repetitive High Energy Pulsed Power (RHEPP) technology capable of producing high average power, broad area electron or x-ray beams. The 300 kW RHEPP-II facility accelerates electrons to 2.5 MeV at 25 kA over 1,000 cm 2 in 60 ns pulses at repetition rates of over 100 Hz. Linking this modular treatment capability with the rapid optical-sensing diagnostics and neutral network characterization software algorithms will provide a Smart Waste Treatment (SWaT) system. Such a system would also be applicable for chemical manufacture and processing of industrial waste for reuse or disposal. This talk describes both the HREPP treatment capability and sensing technologies. Measurements of the propagated RHEPP-II beam and dose profiles are presented. Sensors and rapid detection software are discussed with application toward chemical treatment

  11. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology.

    Science.gov (United States)

    Li, Yanlu; Zhu, Jinghao; Duperron, Matthieu; O'Brien, Peter; Schüler, Ralf; Aasmul, Soren; de Melis, Mirko; Kersemans, Mathias; Baets, Roel

    2018-02-05

    This paper describes an integrated six-beam homodyne laser Doppler vibrometry (LDV) system based on a silicon-on-insulator (SOI) full platform technology, with on-chip photo-diodes and phase modulators. Electronics and optics are also implemented around the integrated photonic circuit (PIC) to enable a simultaneous six-beam measurement. Measurement of a propagating guided elastic wave in an aluminum plate (speed ≈ 909 m/s @ 61.5 kHz) is demonstrated.

  12. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  13. Design and optimization of sustainable process technologies

    DEFF Research Database (Denmark)

    Mussatto, Solange I.; Qin, Fen; Yamakawa, Celina Kiyomi

    has been then considered a keypoint to achieve such purposes, being also able to result in potential environmental, economic, and social benefits. In this sense, the Biomass Conversion and Bioprocess TechnologyGroup (BCBT) has been working on the development of newstrategies for the use of biomass......, minimizing the costs and maximizing the efficiencyand productivity.Once the optimal conditions are identified, the process scale-up can be then evaluated. This could be translated in a faster time to market for newprocess technologies....

  14. Binary codes storage and data encryption in substrates with single proton beam writing technology

    International Nuclear Information System (INIS)

    Zhang Jun; Zhan Furu; Hu Zhiwen; Chen Lianyun; Yu Zengliang

    2006-01-01

    It has been demonstrated that characters can be written by proton beams in various materials. In contributing to the rapid development of proton beam writing technology, we introduce a new method for binary code storage and data encryption by writing binary codes of characters (BCC) in substrates with single proton beam writing technology. In this study, two kinds of BCC (ASCII BCC and long bit encrypted BCC) were written in CR-39 by a 2.6 MeV single proton beam. Our results show that in comparison to directly writing character shapes, writing ASCII BCC turned out to be about six times faster and required about one fourth the area in substrates. The approach of writing long bit encrypted BCC by single proton beams supports preserving confidential information in substrates. Additionally, binary codes fabricated by MeV single proton beams in substrates are more robust than those formed by lasers, since MeV single proton beams can make much deeper pits in the substrates

  15. Control of processes using isotopic diagnostic's technologies

    International Nuclear Information System (INIS)

    Vargas, Celso; Chaverri, Oscar; Chine, Bruno; Conejo, Mario

    2005-01-01

    The Escuela de Ciencias e Ingenieria de los Materiales of the Instituto Tecnologico de Costa Rica, in cooperation with OIEA, develops a project of dowry of capacity oriented to the formation of professionals and equipment for the use of two important technologies of isotopic diagnostic. The first of them is the technology of tracers that operates the unique properties that present different radioactive isotopics like open sources. The second one well known as scanning or profile gamma, uses sealed source, of the some nature that the previous ones, to obtain profiles in different processes and thus to determine its internal condition and operation. The objective of this article is to present both technologies, its benefits and to promote the use in the country [es

  16. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  17. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  18. Surface morphology evolution in silicon during ion beam processing; TOPICAL

    International Nuclear Information System (INIS)

    Bedrossian P; Caturla, M; Diaz de la Rubia, T; Johnson, M

    1999-01-01

    The Semiconductor Industry Association (SIA) projects that the semiconductor chips used in personal computers and scientific workstations will reach five times the speed and ten times the memory capacity of the current pentium-class processor by the year 2007. However, 1 GHz on-chip clock speeds and 64 Gbits/Chip DRAM technology will not come easy and without a price. Such technologies will require scaling the minimum feature size of CMOS devices (the transistors in the silicon chip) down to below 100nm from the current 180 to 250 nm. This requirement has profound implications for device manufacturing. Existing processing techniques must increasingly be understood quantitatively and modeled with unprecedented precision. Indeed, revolutionary advances in the development of physics-based process simulation tools will be required to achieve the goals for cost efficient manufacturing, and to satisfy the needs of the defense industrial base. These advances will necessitate a fundamental improvement in our basic understanding of microstructure evolution during processing. In order to cut development time and costs, the semiconductor industry makes extensive use of simple models of dopant implantation, and of phenomenological models of defect annealing and diffusion. However, the production of a single device often requires more than 200 processing steps, and the cumulative effects of the various steps are far too complex to be treated with these models. The lack of accurate process modeling simulators is proving to be a serious impediment to the development of next generation devices. New atomic-level models are required to describe the point defect distributions produced by the implantation process, and the defect and dopant diffusion resulting from rapid thermal annealing steps. In this LDRD project, we investigated the migration kinetics of defects and dopants in silicon both experimentally and theoretically to provide a fundamental database for use in the development

  19. Electron beam processing of materials-R and D and industrial utilization

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2005-01-01

    The early sixties witnessed the beginning of Electron Beam (EB) processing of materials using high-energy electrons and has emerged as a well established technology, presently being adapted by the industry. The process and the processed materials showed definite and distinct advantages/characteristics over the available conventional methods. Even though the commercial exploitation started initially in polymer modifications for better (and suitable) performance through polymerization, cross-linking, degradation and grafting, the processing fields are now diverged to sterilization of health care, food irradiation, controlled defects in semiconductor devices and semi and/or precious stones, waste water/flue gas treatment etc. The availability of electron accelerators that operate as per the requirement of the industrial needs, easy maintenance, expertise availability etc brought the EB processing industry into a multi dollar business world wide. In USA and Japan there are more than 1200 accelerators currently operative in automobile tire, wire and cable and heat shrinkable industry. Output beam powers exceeding 400 kW with electron energy ranging from few hundred keV up to 10 MeV are made available to the industry. In BARC EB processing started with the 2MeV/20 kW electron accelerator and suitable processing techniques have been developed for applications like polymer cross linking (heat resistant LDPE O-rings, wire and cable insulation), color enhancement in precious stones (diamonds) on industrial scale and polymer curing, grafting, degradation on R and D/pilot scale. The commercial success of the process enabled the private cable industry to set up accelerators at their factories. On research and development front, the accelerator is being utilized to develop new polymer blends for high temperature applications, for solid and liquid waste treatment, polypropylene grafting experiments for uranium extraction from sea water, surface curing etc. This paper gives

  20. The Plasma Hearth Process Technology Development Project

    International Nuclear Information System (INIS)

    Geimer, R.; Batdorf, J.; Wolfe, P.

    1993-01-01

    The US DOE Office of Technology Development (OTD) is currently evaluating the Plasma Hearth Process (PHP) for potential treatment of several DOE waste types. The PHP is a high-temperature vitrification process that has potential application for a wide range of mixed waste types in both the low-level and transuranic mixed waste categories. The PHP is being tested under both the OTD Mixed Waste Integrated Program and the Buried Waste Integrated Demonstration. Initial testing has been completed on several different surrogate waste forms that are representative of some of the DOE mixed waste streams. Destruction of organic material exceeds that of conventional incineration technologies. The vitrified residual has leaching characteristics comparable to glass formulations produced in the high-level waste program. The first phase of the PHP demonstration project has been successfully completed, and the project is currently beginning a comprehensive second phase of development and testing

  1. Similarity search processing. Paralelization and indexing technologies.

    Directory of Open Access Journals (Sweden)

    Eder Dos Santos

    2015-08-01

    The next Scientific-Technical Report addresses the similarity search and the implementation of metric structures on parallel environments. It also presents the state of the art related to similarity search on metric structures and parallelism technologies. Comparative analysis are also proposed, seeking to identify the behavior of a set of metric spaces and metric structures over processing platforms multicore-based and GPU-based.

  2. Developing technological process of obtaining giality casts

    Directory of Open Access Journals (Sweden)

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  3. Accelerators for E-beam and X-ray processing

    Energy Technology Data Exchange (ETDEWEB)

    Auslender, V.L. E-mail: auslen@inp.nsk.su; Bryazgin, A.A.; Faktorovich, B.L.; Gorbunov, V.A.; Kokin, E.N.; Korobeinikov, M.V.; Krainov, G.S.; Lukin, A.N.; Maximov, S.A.; Nekhaev, V.E.; Panfilov, A.D.; Radchenko, V.N.; Tkachenko, V.O.; Tuvik, A.A.; Voronin, L.A

    2002-03-01

    During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90 deg. beam bending system are also given.

  4. Prospects for utilization of Electron Beam Accelerators (EBAs) for processing of food products

    International Nuclear Information System (INIS)

    Sarma, K.S.

    2014-01-01

    Radiation processing using gamma radiation and high energy electron beams has been in practice for more than three decades in the industry. Since gamma radiation has the ability of higher penetration in the material, large scale irradiators (mainly based on mega curies of 60 Co radioactive source) are successfully employed for treating bulk products in sterilization and food preservation applications. Electron beam, due to its low penetration, has been exploited exclusively for applications involving polymer modifications to irradiate thin finished end products like electrical cable insulations, heat shrinkable sheets, tubes, automobile tyres etc using high power EBAs (energies 0.5 MeV-4 MeV and powers around ∼100 kW). Out of around 2500 industrial EB units currently employed worldwide (with total installed power above 150 MWL 90% are in the low to medium energy range (0.5 MeV to 4 MeV) being used for polymer modifications. However, recent technological advances in the manufacturing sector of industrial high energy EBAs and product handling systems resulted in widening utilization of EB technology for applications involving bulk product irradiation

  5. Digital signal processing - growth of a technology

    International Nuclear Information System (INIS)

    Peek, J.B.H.

    1985-01-01

    The rapid development of microelectronics has led to an increasing extent in circuits and systems for digital signal processing. This happened first in professional applications, e.g. geophysics, astronomy and space flight, and now, with the Compact Disc player, these techniques have entered the consumer field. In the near future digital TV applications will undoubtedly follow. This article outlines a number of the developments behind the advancing 'digitization' of modern technology. The article also considers the main advantages and disadvantages of digital signal processing the main modules now used and some common applications. Particular attention is paid to medical applications. (Auth.)

  6. Electron pulsed beam induced processing of thin film surface by Nb3Ge deposited into a stainless steel tape

    International Nuclear Information System (INIS)

    Vavra, I.; Korenev, S.A.

    1988-01-01

    A surface of superconductive thin film of Nb 3 Ge deposited onto a stainless steel tape was processed using the electron beam technique. The electron beam used had the following parameters: beam current density from 400 to 1000 A/cm 2 ; beam energy 100 keV; beam impulse length 300 ns. By theoretical analysis it is shown that the heating of film surface is an adiabatic process. It corresponds to our experimental data and pictures showing a surface remelting due to electron beam influence. After beam processing the superconductive parameters of the film remain unchanged. Roentgenograms have been analysed of Nb 3 Ge film surface recrystallized due to electron beam influence

  7. Radiation processing: a versatile technology for industry

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1996-01-01

    Soon after the discovery of x-ray in 1895 and radioactivity in 1896, it was recognized that ionizing radiation can modify the chemical, physical and/or biological properties of materials. However, it was only in the late 50's, when large radiation sources become available, has this unique property of radiation found industrial applications in radiation processing. Today, radiation processing has been used by industry in such diverse applications, such as radiation sterilization/decontamination of medical products, pharmaceuticals, cosmetics and their raw materials; radiation cross-linking of wire and cable insulation; production of heat shrinkable materials and polymer foam; and radiation curing of coatings, adhesives and inks on a wide variety of substrates. In addition to being a clean environment-friendly technology, radiation processing can also be used for the conservation of the environment by such processes as radiation treatment of flue gases to remove SO 2 and NO x and disinfection of sewage sludge. Because of the many advantages offered by radiation processing, industry is showing strong interest in the technology as evidenced by the growing number of industrial radiation facilities in many countries. (author)

  8. Plasma Technologies of Solid Fuels Processing

    International Nuclear Information System (INIS)

    Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.

    2003-01-01

    Use of fuel processing plasma technologies improves ecological and economical indexes of low-grade coal utilization at thermal power plants. This paper presents experimental plasma plant 70 k W of power and 11 kg per hour of coal productivity. On the base of material and heat balances integral indexes of the process of plasma gasification of Podmoskovny brown coal 48% of ash content were found. Synthesis gas with concentration 85.2% was got. Hydrogen concentration in the synthesis gas was higher than carbon monoxide one. Ratio H 2 :CO in synthesis gas was 1.4-1.5. It was shown that steam consumption and temperature of the process increase causes H 2 concentration and coal gasification degree increase. Fulfilled experiments and comparison of their result with theoretical investigations allowed creating pilot experimental plant for plasma processing of low-grade coals. The power of the pilot plant is 1000 k W and coal productivity is 300 kg/h. (author)

  9. Influence Processes for Information Technology Acceptance

    DEFF Research Database (Denmark)

    Bhattacherjee, Anol; Sanford, Clive Carlton

    2006-01-01

    This study examines how processes of external influence shape information technology acceptance among potential users, how such influence effects vary across a user population, and whether these effects are persistent over time. Drawing on the elaboration-likelihood model (ELM), we compared two...... alternative influence processes, the central and peripheral routes, in motivating IT acceptance. These processes were respectively operationalized using the argument quality and source credibility constructs, and linked to perceived usefulness and attitude, the core perceptual drivers of IT acceptance. We...... further examined how these influence processes were moderated by users' IT expertise and perceived job relevance and the temporal stability of such influence effects. Nine hypotheses thus developed were empirically validated using a field survey of document management system acceptance at an eastern...

  10. A line beam electron gun for rapid thermal processing

    Science.gov (United States)

    Pauli, M.; Müller, J.; Hartkopf, K.; Barth, T.

    1992-04-01

    A line beam electron gun based on the Pierce gun type was developed. The line cathode was realized by a directly heated tungsten rod. The temperature distribution along the tungsten rod was simulated numerically. The simulation shows a flat temperature across 2/3 of the cathode length and it agrees with appropriate measurable parameters. The beam profiles of the electron gun perpendicular to the line direction were examined as a function of electrical and geometrical parameters: The space-charge distribution in front of the cathode was found to be responsible for the shape of the beam profile. The shape of the beam profile is weakly influenced by the acceleration to the anode. The heating current induced voltage drop along the cathode was found to be responsible for the nonuniform emission in line direction. A model for the emission behavior of the line beam electron gun was developed. The model is based on the results of the measurements and on a numerical simulation of the potential distribution in the area between Pierce reflectors and anode. The emission model shows a solution to homogenize the emission by a suitable variation of geometrical parameters in line direction. A linear variation was realized in experiment which enables a uniform emission across 2/3 of the cathode length. The beam profile is adjustable by a bias voltage between the cathode and the Pierce reflectors.

  11. Application of focused ion beam technology for photonic nanostructures

    NARCIS (Netherlands)

    Ay, F.; Gadgil, V.J.; Geskus, D.; Aravazhi, S.; Worhoff, Kerstin; Pollnau, Markus

    Al2O3 and KY(WO4)2 are promising materials for photonic applications with excellent optical properties and of interest for obtaining on chip resonator structures. However, there is no method available to fabricate these structures except FIB technology. We will discuss strategies to optimize the

  12. Process for producing a novel copolymer. [electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Oiwa, M; Matsumoto, A; Tojima, M; Matsumoto, K; Sasaki, H

    1970-11-27

    Diaryl oxalate present in a polymer not only decomposes at lower temperatures, but also provides for stronger free radicals initiating polymerization than diaryl oxalate present in a monomer. A copolymer of vinyl monomers is produced by providing a diaryl oxalate polymer or a diaryl oxalate monomer-co-vinyl monomer, decomposing them to release the diaryl oxalate units by heating or irradiating with radiation thereby copolymerizing the vinyl monomer with the polymer radicals by utilizing the diaryl oxalate unit. For example, a single diaryl oxalate polymer or a copolymer containing the diaryl oxalate polymer as a constituent of the copolymer are irradiated or heated with a vinyl monomer, i.e. methyl methacrylate, acrylnitrile, vinyl acetate, styrene etc., to form a copolymer without difficulty. In one of the examples, 500 g of diaryl oxalate monomer, 1,200 ml of benzene and 0.2 mol/l of benzoil peroxide as an initiator were mixed and polymerized in nitrogen gas at 70/sup 0/C for 8 hrs. From this polymerized solution, a polymer was deposited in methanol. The produced polymer had an iodin value of 77.7 with a yield of 35%. The gel content of the produced polymer was 98.9% for 10 Mrad. This polymer was dissolved in methyl methacrylate, thereafter filled in a mold and irradiated with electron beams of 2 MeV in nitrogen gas to harden it. The advantage of this process is that the polymerization is effected with low energy radiations at room temperature without requiring any catalyst.

  13. Electron beam processed plasticized epoxy coatings for surface protection

    International Nuclear Information System (INIS)

    Ibrahim, Mervat S.; Mohamed, Heba A.; Kandile, Nadia G.; Said, Hossam M.; Mohamed, Issa M.

    2011-01-01

    Highlights: · Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass -1 irradiation dose showed the best adhesion and passed bending tests. · The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. · The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass -1 ) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass -1 irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion protection for carbon steel and compete the

  14. Electron beam lithographic modeling assisted by artificial intelligence technology

    Science.gov (United States)

    Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi

    2017-07-01

    We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.

  15. Workshop on CEBAF [Continuous Electron Beam Accelerator Facility] spectrometer magnet design and technology: Proceedings

    International Nuclear Information System (INIS)

    1986-09-01

    The planned experimental program at CEBAF includes high-resolution, large acceptance spectrometers and a large toroidal magnetic, detector. In order to take full advantage of the high quality beam characteristics, the performances required will make these devices quite unique instruments compared to existing facilities in the same energy range. Preliminary designs have shown that such performances can be reached, but key questions concerning design concepts and most appropriate and cost-effective technologies had to be answered before going further with the designs. It was the purpose of the Workshop on CEBAF Spectrometer Magnet Design and Technology, organized by the CEBAF Research and Engineering Divisions, to provide the most complete information about the state-of-the-art tools and techniques in magnet design and construction and to discuss the ones most appropriate to the CEBAF spectrometers. In addition, it is expected that this Workshop will be the staring point for further interactions and collaborations between international magnet experts and the CEBAF staff, during the whole process of designing and building the spectrometers

  16. Robotic inspection technology-process an toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Markus [ROSEN Group (United States). R and D Dept.

    2005-07-01

    Pipeline deterioration grows progressively with ultimate aging of pipeline systems (on-plot and cross country). This includes both, very localized corrosion as well as increasing failure probability due to fatigue cracking. Limiting regular inspecting activities to the 'scrapable' part of the pipelines only, will ultimately result into a pipeline system with questionable integrity. The confidence level in the integrity of these systems will drop below acceptance levels. Inspection of presently un-inspectable sections of the pipeline system becomes a must. This paper provides information on ROSEN's progress on the 'robotic inspection technology' project. The robotic inspection concept developed by ROSEN is based on a modular toolbox principle. This is mandatory. A universal 'all purpose' robot would not be reliable and efficient in resolving the postulated inspection task. A preparatory Quality Function Deployment (QFD) analysis is performed prior to the decision about the adequate robotic solution. This enhances the serviceability and efficiency of the provided technology. The word 'robotic' can be understood in its full meaning of Recognition - Strategy - Motion - Control. Cooperation of different individual systems with an established communication, e.g. utilizing Bluetooth technology, support the robustness of the ROSEN robotic inspection approach. Beside the navigation strategy, the inspection strategy is also part of the QFD process. Multiple inspection technologies combined on a single carrier or distributed across interacting container must be selected with a clear vision of the particular goal. (author)

  17. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  18. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    Energy Technology Data Exchange (ETDEWEB)

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Rodt, Sven, E-mail: srodt@physik.tu-berlin.de; Reitzenstein, Stephan [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Strittmatter, André [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg (Germany)

    2015-07-15

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  19. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2017-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  20. ANALYSIS ON TECHNOLOGICAL PROCESSES CLEANING OIL PIPELINES

    Directory of Open Access Journals (Sweden)

    Mariana PǍTRAŞCU

    2015-05-01

    Full Text Available In this paper the researches are presented concerning the technological processes of oil pipelines.We know several technologies and materials used for cleaning the sludge deposits, iron and manganese oxides, dross, stone, etc.de on the inner walls of drinking water pipes or industries.For the oil industry, methods of removal of waste materials and waste pipes and liquid and gas transport networks are operations known long, tedious and expensive. The main methods and associated problems can be summarized as follows: 1 Blowing with compressed air.2 manual or mechanical brushing, sanding with water or dry.3 Wash with water jet of high pressure, solvent or chemical solution to remove the stone and hard deposits.4 The combined methods of cleaning machines that use water jets, cutters, chains, rotary heads cutters, etc.

  1. Developing electron beam bunching technology for improving light sources

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source

  2. Nanoscale particles in technological processes of beneficiation

    Directory of Open Access Journals (Sweden)

    Sergey I. Popel

    2014-04-01

    Full Text Available Background: Cavitation is a rather common and important effect in the processes of destruction of nano- and microscale particles in natural and technological processes. A possible cavitation disintegration of polymineral nano- and microparticles, which are placed into a liquid, as a result of the interaction of the particles with collapsed cavitation bubbles is considered. The emphasis is put on the cavitation processes on the interface between liquid and fine solid particles, which is suitable for the description of the real situations.Results: The results are illustrated for the minerals that are most abundant in gold ore. The bubbles are generated by shock loading of the liquid heated to the boiling temperature. Possibilities of cavitation separation of nano- and microscale monomineral fractions from polymineral nano- and microparticles and of the use of cavitation for beneficiation are demonstrated.Conclusion: The cavitation disintegration mechanism is important because the availability of high-grade deposits in the process of mining and production of noble metals is decreasing. This demands for an enhancement of the efficiency in developing low-grade deposits and in reprocessing ore dumps and tailings, which contain a certain amount of noble metals in the form of finely disseminated fractions. The cavitation processes occuring on the interface between liquid and fine solid particles are occasionally more effective than the bulk cavitation processes that were considered earlier.

  3. Application of PLC technology in measurement of beam profile on 100 MeV accelerator

    International Nuclear Information System (INIS)

    Yu Luyang; Chinese Academy of Sciences, Beijing; Chen Yongzhong; Chen Yongzhong; Liu Dekang; Chinese Academy of Sciences, Beijing

    2005-01-01

    A comprehensive introduction is given to the real-time measuring method, which is based on the Programmable Logic Controller (PLC) technology and can measure intensity and profile of the beam by a scintillator screen. The whole system has many advantages, such as good reliability, high precision, intuitional measurement, etc. due to the use of the PLC and Labview software. (authors)

  4. Limiting technologies for particle beams and high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1985-07-01

    Since 1930 the energy of accelerators had grown by an order of magnitude roughly every 7 years. Like all exponential growths, be they human population, the size of computers, or anything else, this eventually will have to come to an end. When will this happen to the growth of the energy of particle accelerators and colliders. Fortunately, as the energy of accelerators has grown the cost per unit energy has decreased almost as fast as has the increase in energy. The result is that while the energy has increased so dramatically the cost per new installation has increased only by roughly an order of magnitude since the 1930's (corrected for inflation), while the number of accelerators operating at the frontier of the field has shrunk. As is shown in the by now familiar Livingston chart this dramatic decrease in cost has been achieved largely by a succession of new technologies, in addition to the more moderate gains in efficiency due to improved design, economies of scale, etc. We are therefore facing two questions: (1) Is there good reason scientifically to maintain the exponential growth, and (2) Are there new technologies in sight which promise continued decreases in unit costs. The answer to the first question is definitely yes; the answer to the second question is maybe

  5. Investigation and optimisation of a plasma cathode electron beam gun for material processing applications

    OpenAIRE

    Del Pozo Rodriguez, Sofia

    2016-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University London. This thesis describes design, development and testing work on a plasma cathode electron beam gun as well as plasma diagnosis experiments and Electron Beam (EB) current measurements carried out with the aim of maximising the power of the EB extracted and optimising the electron beam gun system for material processing applications. The elements which influence EB gun design are described...

  6. Comparing composts formed by different technological processing

    Science.gov (United States)

    Lyckova, B.; Mudrunka, J.; Kucerova, R.; Glogarova, V.

    2017-10-01

    The presented article compares quality of composts which were formed by different technological processes. The subject to comparison was a compost which was created in a closed fermenter where ideal conditions for decomposition and organic substances conversion were ensured, with compost which was produced in an open box of community composting. The created composts were analysed to determine whether it is more important for the final compost to comply with the composting conditions or better sorting of raw materials needed for compost production. The results of the carried out experiments showed that quality of the resulting compost cannot be determined unequivocally.

  7. Atmospheric processes on ice nanoparticles in molecular beams

    Czech Academy of Sciences Publication Activity Database

    Fárník, Michal; Poterya, Viktoriya

    2014-01-01

    Roč. 2, č. 2014 (2014), s. 4 ISSN 2296-2646 R&D Projects: GA ČR GA203/09/0422; GA ČR GAP208/11/0161 Institutional support: RVO:61388955 Keywords : molecular beams * photodissociation * water clusters Subject RIV: BL - Plasma and Gas Discharge Physics

  8. Plasma technologies: applications to waste processing

    International Nuclear Information System (INIS)

    Fauchais, P.

    2007-01-01

    Since the 1990's, plasma technologies have found applications in the processing of toxic wastes of military and industrial origin, like the treatment of contaminated solids and low level radioactive wastes, the decontamination of soils etc.. Since the years 2000, this development is becoming exponential, in particular for the processing of municipal wastes and the recovery of their synthesis gas. The advantage of thermal plasmas with respect to conventional combustion techniques are: a high temperature (more than 6000 K), a pyrolysis capability (CO formation instead of CO 2 ), about 90% of available energy above 1500 K (with respect to 23% with flames), a greater energy density, lower gas flow rates, and plasma start-up and shut-down times of only few tenth of seconds. This article presents: 1 - the present day situation of thermal plasmas development; 2 - some general considerations about plasma waste processing; 3 - the plasma processes: liquid toxic wastes, solid wastes (contaminated soils and low level radioactive wastes, military wastes, vitrification of incinerators fly ash, municipal wastes processing, treatment of asbestos fibers, treatment of chlorinated industrial wastes), metallurgy wastes (dusts, aluminium slags), medical and ship wastes, perspectives; 4 -conclusion. (J.S.)

  9. Assembly process of the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the

  10. New technological developments in gas processing

    International Nuclear Information System (INIS)

    Draper, R.C.

    1996-01-01

    The changes that the natural gas industry has undergone over the last few years was discussed. Low natural gas prices forced companies to react to their high reserves replacements costs. They were forced to downsize and undergo major restructuring because they were losing money due to high operating costs; the future for natural gas prices looked pessimistic. The changes have led to a new kind of business practice, namely 'partnering with third party processor', mid-stream companies known as aggregators, to build and operate facilities as part of a move towards cost effective improvements for gas producers. Besides reducing capital and operating costs, the producer under this arrangements can dedicate his capital to finding new gas which is the basis of growth. Recent technological changes in the gas processing industry were also touched upon. These included enhanced technologies such as increased liquid hydrocarbon recovery, segregation of C3+ and C5+, installation of gas separation membrane systems, small sulphur plants, acid gas injection and selective or mixed solvents. Details of some of these technologies were described. 2 refs., 2 figs

  11. Use of radiation processing technology gradually expands in industry

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The use of radioisotopes and radiation is expanding in the fields of industries and medicine with a high potentiality of the application to environmental protection. The technology transfer on the use of isotopes and radiation is progressing in the framework of international cooperation. But the industry has maintained wait and see attitude on the commercialization of food irradiation. Such present features were the highlight in the 19th Japan Conference on Radiation and Radioisotopes held on November 14-16. 72 papers from 19 countries were presented and discussed in 13 sessions. The progress of accelerator technology has contributed to the expansion of radiation processing market. The importance of the application of isotopes and radiation to environmental protection has been gradually acknowledged, and the electron beam treatment of flue gas for acid rain abatement and the elimination of chlorinated ethylene from drinking water were discussed. Drastic change has not been seen in the climate of food irradiation, however there are several positive indicators which support the prediction of slow but steady progress in the commercialization of the process and the trade of irradiated foods. (K.I.)

  12. Process qualification and control in electron beams--requirements, methods, new concepts and challenges

    International Nuclear Information System (INIS)

    Mittendorfer, J.; Gratzl, F.; Hanis, D.

    2004-01-01

    In this paper the status of process qualification and control in electron beam irradiation is analyzed in terms of requirements, concepts, methods and challenges for a state-of-the-art process control concept for medical device sterilization. Aspects from process qualification to routine process control are described together with the associated process variables. As a case study the 10 MeV beams at Mediscan GmbH are considered. Process control concepts like statistical process control (SPC) and a new concept to determine process capability is briefly discussed

  13. Technology development for DUPIC process safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J S; Kim, H D; Lee, Y G; Kang, H Y; Cha, H R; Byeon, K H; Park, Y S; Choi, H N [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    As the strategy for DUPIC(Direct Use of spent PWR fuel In CANDU reactor) process safeguards, the neutron detection method was introduced to account for nuclear materials in the whole DUPIC process by selectively measuring spontaneous fission neutron signals from {sup 244}Cm. DSNC was designed and manufactured to measure the account of curium in the fuel bundle and associated process samples in the DUPIC fuel cycle. The MCNP code had response profile along the length of the CANDU type fuel bundle. It was found experimentally that the output signal variation due to the overall azimuthal asymmetry was less than 0.2%. The longitudinal detection efficiency distribution at every position including both ends was kept less than 2% from the average value. Spent fuel standards almost similar to DUPIC process material were fabricated from a single spent PWR fuel rod and the performance verification of the DSNC is in progress under very high radiation environment. The results of this test will be eventually benchmarked with other sources such as code simulation, chemical analysis and gamma analysis. COREMAS-DUPIC has been developed for the accountability management of nuclear materials treated by DUPIC facility. This system is able to track the controlled nuclear materials maintaining the material inventory in near-real time and to generate the required material accountability records and reports. Concerning the containment and surveillance technology, a focused R and D effort is given to the development of unattended continuous monitoring system. Currently, the component technologies of radiation monitoring and surveillance have been established, and continued R and D efforts are given to the integration of the components into automatic safeguards diagnostics. (author).

  14. Health technology assessment: the process in Brazil.

    Science.gov (United States)

    Lessa, Fernanda; Ferraz, Marcos Bosi

    2017-06-08

    To describe, analyze, and compare the opinions of decisionmakers involved in the health technology assessment (HTA) process in Brazil in 2011. A cross-sectional study was conducted using a structured questionnaire to evaluate the opinions of a convenience sample of health care professionals from both the public and private health care systems (HCS). The survey collected demographic data for each respondent along with their input on national regulations. Data analysis included descriptive statistics, including chi-square tests to compare groups. Of the 200 completed questionnaires, 65% of the respondents were 31-50 years of age; 36% were HCS managers, 49.3% from the public and 50.7% from the private system. The majority of respondents (85%) considered the time permitted for submission of new technology to be inadequate; 88% also stated that the composition of the evaluation committee needed improvement. Respondents from the private health system more frequently stated that submission times were inappropriate (P = 0.019) and that the deadline for a decision by the committee should be defined (P = 0.021), with a maximum of no more than 180 days / 6 months (P < 0.001). Respondents indicated that the HTA process should be improved to meet their expectations. Given that new legislation has been enacted to continuously accept submissions, to make decisions within 180 days, and to expand the committee to represent more stakeholders, most of the respondents concerns have been addressed. This study is valuable as an historical analysis of HTA process improvement. Further surveys are needed to track the new HTA process, its application, and its contribution to health care needs in Brazil.

  15. Comparison of Failure Process of Bended Beams Reinforced with Steel Bars and GFRP Bars

    Science.gov (United States)

    Kaszyńska, Maria; Błyszko, Jarosław; Olczyk, Norbert

    2017-10-01

    The Fibre Reinforced Polymer (FRP) composite rebar has been used in civil engineering structures for several years. It has many characteristics, which not only are equal to those of steel rebar, but significantly surpass them. The composite rebar has high corrosion resistance, electromagnetic neutrality and has much higher tensile strength than steel. Also, because of its low weight and easy processing composite rebar is convenient for shipment and use. Development of architectural concrete technology in past years opens new, interesting perspectives for use of composite rebar. However, implementation of those concretes in structures is often burdened with many issues, especially concerning faulty performance. One of it is rebar’s corrosion, visible on the surface of the element as rusty stains. Even if the structure was properly developed meeting all the requirements for texture, porosity or colour uniformity, and rusty stains can completely destroy the final decorative effect of concrete’s surface. Despite many advantages, the use of composite rebar in reinforced structures creates significant number of new “behaviours” in its different working stages. Structures reinforced with the steel rebar will behave differently than the ones with composite FRP rebar under continuous load, in case of a fire, exposed to aggressive environment or at breaking point. In the latter, significant role plays its linear-elastic behaviour in the whole tensile range till rupture. This means that the FPR rebar does not exhibit plastic deformation and reaches its bearing capacity suddenly without any visible signs. This should be considered during designing stage and included as an additional reduction coefficient. The article presents result of research and analysis of destructive tests performed on concrete beams reinforced with traditional steel rebar and composite rebar made of glass fibre and braided with basaltic (GFRP). Four single-span simply supported beams under static

  16. Beam-pointing error compensation method of phased array radar seeker with phantom-bit technology

    Directory of Open Access Journals (Sweden)

    Qiuqiu WEN

    2017-06-01

    Full Text Available A phased array radar seeker (PARS must be able to effectively decouple body motion and accurately extract the line-of-sight (LOS rate for target missile tracking. In this study, the real-time two-channel beam pointing error (BPE compensation method of PARS for LOS rate extraction is designed. The PARS discrete beam motion principium is analyzed, and the mathematical model of beam scanning control is finished. According to the principle of the antenna element shift phase, both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed, and the effect of BPE caused by phantom-bit technology (PBT on the extraction accuracy of the LOS rate is examined. A compensation method is given, which includes coordinate transforms, beam angle margin compensation, and detector dislocation angle calculation. When the method is used, the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle. The simulation results validate the proposed method.

  17. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    Osher, J.E.; Perkins, L.J.

    1983-01-01

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D 0 and T 0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T 0 + T + space-charge-neutralized beam incident on either a LiD or gas D 2 target with calculated 14-MeV neutron yields of 2 x 10 15 /s, 7 x 10 15 /s, or 1.6 x 10 16 /s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm 2

  18. Statistical processing of technological and radiochemical data

    International Nuclear Information System (INIS)

    Lahodova, Zdena; Vonkova, Kateřina

    2011-01-01

    The project described in this article had two goals. The main goal was to compare technological and radiochemical data from two units of nuclear power plant. The other goal was to check the collection, organization and interpretation of routinely measured data. Monitoring of analytical and radiochemical data is a very valuable source of knowledge for some processes in the primary circuit. Exploratory analysis of one-dimensional data was performed to estimate location and variability and to find extreme values, data trends, distribution, autocorrelation etc. This process allowed for the cleaning and completion of raw data. Then multiple analyses such as multiple comparisons, multiple correlation, variance analysis, and so on were performed. Measured data was organized into a data matrix. The results and graphs such as Box plots, Mahalanobis distance, Biplot, Correlation, and Trend graphs are presented in this article as statistical analysis tools. Tables of data were replaced with graphs because graphs condense large amounts of information into easy-to-understand formats. The significant conclusion of this work is that the collection and comprehension of data is a very substantial part of statistical processing. With well-prepared and well-understood data, its accurate evaluation is possible. Cooperation between the technicians who collect data and the statistician who processes it is also very important. (author)

  19. Diversity and Multiplexing Technologies by 3D Beams in Polarized Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Xin Su

    2016-01-01

    Full Text Available Massive multiple input, multiple output (M-MIMO technologies have been proposed to scale up data rates reaching gigabits per second in the forthcoming 5G mobile communications systems. However, one of crucial constraints is a dimension in space to implement the M-MIMO. To cope with the space constraint and to utilize more flexibility in 3D beamforming (3D-BF, we propose antenna polarization in M-MIMO systems. In this paper, we design a polarized M-MIMO (PM-MIMO system associated with 3D-BF applications, where the system architectures for diversity and multiplexing technologies achieved by polarized 3D beams are provided. Different from the conventional 3D-BF achieved by planar M-MIMO technology to control the downtilted beam in a vertical domain, the proposed PM-MIMO realizes 3D-BF via the linear combination of polarized beams. In addition, an effective array selection scheme is proposed to optimize the beam-width and to enhance system performance by the exploration of diversity and multiplexing gains; and a blind channel estimation (BCE approach is also proposed to avoid pilot contamination in PM-MIMO. Based on the Long Term Evolution-Advanced (LTE-A specification, the simulation results finally confirm the validity of our proposals.

  20. Underwater laser beam welding technology for reactor vessel nozzles of PWRs

    International Nuclear Information System (INIS)

    Yoda, Masaki; Tamura, Masataka; Tamura, Masataka

    2010-01-01

    Toshiba has developed an underwater laser beam welding technology for the maintenance of reactor vessel nozzles of pressurized water reactors (PWRs), which eliminates the need for the drainage of water from the reactor vessel. The new welding system makes it possible to both reduce the work period and minimize the radiation exposure of workers compared with conventional technologies for welding in ambient air. We have confirmed the effectiveness of this technology through experiments in which stress corrosion cracking (SCC) was mitigated on the inner surfaces of nozzles. We are promoting its practical application in Japan and overseas in cooperation with Westinghouse Electric Company, a group company of Toshiba. (author)

  1. Quantitative strain analysis for advanced CMOS technology by Nano Beam Diffraction

    KAUST Repository

    Wang, Qingxiao; Zhu, Jinmin; Du, Anyan; Liu, Jinping; Hua, YouNan

    2010-01-01

    Nano Beam Diffraction has been used to analyze the local strain distribution in MOS transistors. The influence of wafer process on the channel strain has been systematically analyzed in this paper. The source/drain implantation can cause a little strain loss but the silicidation step is the key process in which dramatic strain loss has been found. © 2010 IEEE.

  2. Quantitative strain analysis for advanced CMOS technology by Nano Beam Diffraction

    KAUST Repository

    Wang, Qingxiao

    2010-07-01

    Nano Beam Diffraction has been used to analyze the local strain distribution in MOS transistors. The influence of wafer process on the channel strain has been systematically analyzed in this paper. The source/drain implantation can cause a little strain loss but the silicidation step is the key process in which dramatic strain loss has been found. © 2010 IEEE.

  3. Factors influencing equipment selection in electron beam processing

    Science.gov (United States)

    Barnard, J. W.

    2003-08-01

    During the eighties and nineties accelerator manufacturers dramatically increased the beam power available for high-energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain per unit costs low for treatment. This philosophy runs counter to certain present-day realities of the sterilization business as well as conditions influencing accelerator selection in other electron beam applications. Recent experience in machine selection is described and factors affecting choice are presented.

  4. Laser material processing with tightly focused cylindrical vector beams

    Energy Technology Data Exchange (ETDEWEB)

    Drevinskas, Rokas, E-mail: rd1c12@soton.ac.uk; Zhang, Jingyu; Beresna, Martynas; Gecevičius, Mindaugas; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Kazanskii, Andrey G. [Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Svirko, Yuri P. [Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Institute of Photonics, University of Eastern Finland, P.O.BOX 111, FI-80101 Joensuu (Finland)

    2016-05-30

    We demonstrate a comprehensive modification study of silica glass, crystalline silicon, and amorphous silicon film, irradiated by tightly focused cylindrical vector beams with azimuthal and radial polarizations. The evidence of the longitudinal field associated with radial polarization is revealed by second harmonic generation in z-cut lithium niobate crystal. Despite the lower threshold of ring-shaped modification of silicon materials, the modification in the center of single pulse radially polarized beam is not observed. The phenomenon is interpreted in terms of the enhanced reflection of longitudinal component at the interface with high-index contrast, demonstrating that the longitudinal component is inefficient for the flat surface modification. Enhanced interaction of the longitudinal light field with silicon nanopillar structures produced by the first pulse of double-pulse irradiation is also demonstrated.

  5. Development of Industrial Process Diagnosis and Measurement Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Kim, Jong Bum; Moon, Jin Ho

    2010-04-01

    Section 1. Industrial Gamma CT Technology for Process Diagnosis: The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section 2. Development of RI Hydraulic Detection Technology for Industrial Application: The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section 3. Development of RT-PAT System for Powder Process Diagnosis: The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  6. Development of industrial process diagnosis and measurement technology

    International Nuclear Information System (INIS)

    Jung, Sunghee; Kim, Jongbum; Moon, Jinho; Suh, Kyungsuk; Kim, Jongyun

    2012-04-01

    Section1. Industrial Gamma CT Technology for Process Diagnosis The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section2. Development of RI Hydraulic Detection Technology for Industrial Application The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section3. Development of RT-PAT System for Powder Process Diagnosis The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  7. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  8. Fiscal 1999 research report. Research on photonic measurement and processing technology (Development of high- efficiency production process technology); 1999 nendo foton keisoku kako gijutsu seika hokokusho. Kokoritsu seisan process gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on R and D of laser processing technology, in-situ measurement technology, and generation and control technology of photon as laser beam source, for energy saving and efficiency improvement of energy-consumptive production processes such as welding, jointing, surface treatment and fine particle fabrication. The research was carried out by a technical center, 9 companies and a university as contract research. The research themes are as follows: (1) Processing technology: simulation technology for laser welding phenomena, synthesis technology for quantum dot functional structures, and fabrication technology for functional composite materials, (2) In-situ measurement technology: fine particle element and size measurement technology, (3) All- solid state laser technology: efficient rod type LD-pumping laser module, pumping chamber of slab type laser, improvement of E/O efficiency of laser diode, high-quality nonlinear crystal growth technology, fabrication technology for nonlinear crystals, and high-efficiency harmonic generation technology. Comprehensive survey was also made on high- efficiency photon generation technologies. (NEDO)

  9. COFS 1: Beam dynamics and control technology overview

    Science.gov (United States)

    Allen, John L.

    1986-11-01

    The Control of Flexible Structures (COFS) 1 Project provides the invaluable opportunity to test, validate, and measure the effectiveness of theories, structural concepts, control systems, and flight certification processes for future missions through a research program focusing on multiple issues in large flexible structures, dynamics, and controls. The COFS 1 Project consists of a series of ground and flight activities building progressively from modeling and dynamic characterization of large space systems to the more complex issues of flexible-body control. The program objectives are to: determine the degree to which theory and ground testing can predict flight performance of next-generation low-frequency structures; evaluate structural fidelity of representative next-generation large deployable precision structure; assess math modeling requirements for large lightweight complex systems on which ground test results are questionable; determine degree to which scale model analysis and tests can be correlated to full-scale performance; evaluate system identification and state estimation algorithms on complex lightweight structures in the space environment; evaluate and verify controls/structures modeling capability; evaluate control laws and control systems; and evaluate damping effects in micro-g environment.

  10. Control system for technological processes in tritium processing plants with process analysis

    International Nuclear Information System (INIS)

    Retevoi, Carmen Maria; Stefan, Iuliana; Balteanu, Ovidiu; Stefan, Liviu; Bucur, Ciprian

    2005-01-01

    Integration of a large variety of installations and equipment into a unitary system for controlling the technological process in tritium processing nuclear facilities appears to be a rather complex approach particularly when experimental or new technologies are developed. Ensuring a high degree of versatility allowing easy modifications in configurations and process parameters is a major requirement imposed on experimental installations. The large amount of data which must be processed, stored and easily accessed for subsequent analyses imposes development of a large information network based on a highly integrated system containing the acquisition, control and technological process analysis data as well as data base system. On such a basis integrated systems of computation and control able to conduct the technological process could be developed as well protection systems for cases of failures or break down. The integrated system responds to the control and security requirements in case of emergency and of the technological processes specific to the industry that processes radioactive or toxic substances with severe consequences in case of technological failure as in the case of tritium processing nuclear plant. In order to lower the risk technological failure of these processes an integrated software, data base and process analysis system are developed, which, based on identification algorithm of the important parameters for protection and security systems, will display the process evolution trend. The system was checked on a existing plant that includes a removal tritium unit, finally used in a nuclear power plant, by simulating the failure events as well as the process. The system will also include a complete data base monitoring all the parameters and a process analysis software for the main modules of the tritium processing plant, namely, isotope separation, catalytic purification and cryogenic distillation

  11. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  12. Plasma spray technology process parameters and applications

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Karthikeyan, J.; Ananthapadmanabhan, P.V.; Venkatramani, N.; Chatterjee, U.K.

    1991-01-01

    The current trend in the structural design philosophy is based on the use of substrate with the necessary mechanical properties and a thin coating to exhibit surface properties. Plasma spray process is a versatile surface coating technique which finds extensive application in meeting advance technologies. This report describes the plasma spray technique and its use in developing coatings for various applications. The spray system is desribed in detail including the different variables such as power input to the torch, gas flow rate, powder properties, powder injection, etc. and their interrelation in deciding the quality of the coating. A brief write-up on the various plasma spray coatings developed for different applications is also included. (author). 15 refs., 15 figs., 2 tabs

  13. Process Technology for Immobilized Lipasecatalyzed Reactions

    DEFF Research Database (Denmark)

    Xu, Yuan

    Biocatalysis has attracted significant attention recently, mainly due to its high selectivity and potential benefits for sustainability. Applications can be found in biorefineries, turning biomass into energy and chemicals, and also for products in the food and pharmaceutical industries. However......, most applications remain in the production of high-value fine chemicals, primarily because of the expense of introducing new technology. In particular lipasecatalyzed synthesis has already achieved efficient operations for high-value products and more interesting now is to establish opportunities...... for low-value products. In order to guide the industrial implementation of immobilized-lipase catalyzed reactions, especially for highvolume low-value products, a methodological framework for dealing with the technical and scientific challenges and establishing an efficient process via targeted scale...

  14. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  15. Radiation processing applications in the Czechoslovak water treatment technologies

    International Nuclear Information System (INIS)

    Vacek, K.; Pastuszek, F.; Sedlacek, M.

    1986-01-01

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone, or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation. (author)

  16. Radiation processing applications in the Czechoslovak water treatment technologies

    Science.gov (United States)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  17. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  18. Biological shielding design and qualification of concreting process for construction of electron beam irradiation facility

    International Nuclear Information System (INIS)

    Petwal, V.C.; Kumar, P.; Suresh, N.; Parchani, G.; Dwivedi, J.; Thakurta, A.C.

    2011-01-01

    A technology demonstration facility for irradiation of food and agricultural products is being set-up by RRCAT at Indore. The facility design is based on linear electron accelerator with maximum beam power of 10 kW and can be operated either in electron mode at 10 MeV or photon modes at 5/7.5 MeV. Biological shielding has been designed in accordance with NCRP 51 to achieve dose rate at all accessible points outside the irradiation vault less than the permissible limit of 0.1 mR/hr. In addition to radiation attenuation property, concrete must have satisfactory mechanical properties to meet the structural requirements. There are number of site specific variables which affect the structural, thermal and radiological properties of concrete, leading to considerable difference in actual values and design values. Hence it is essential to establish a suitable site and environmental specific process to cast the concrete and qualify the process by experimental measurement. For process qualification we have cast concrete test blocks of different thicknesses up to 3.25 m and evaluated the radiological and mechanical properties by radiometry, ultrasonic and mechanical tests. In this paper we describe the biological shielding design of the facility and analyse the results of tests carried out for qualification of the process. (author)

  19. Development of a double beam process for joining aluminum and steel

    Science.gov (United States)

    Frank, Sascha

    2014-02-01

    Multi-material structures pose an attractive option for overcoming some of the central challenges in lightweight design. An exceptionally high potential for creating cost-effective lightweight solutions is attributed to the combination of steel and aluminum. However, these materials are also particularly difficult to join due to their tendency to form intermetallic compounds (IMCs). The growth of these compounds is facilitated by high temperatures and long process times. Due to their high brittleness, IMCs can severely weaken a joint. Thus, it is only possible to create durable steel-aluminum joints when the formation of IMCs can be limited to a non-critical level. To meet this goal, a new joining method has been designed. The method is based on the combination of a continuous wave (pw) and a pulsed laser (pw) source. Laser beams from both sources are superimposed in a common process zone. This makes it possible to apply the advantages of laser brazing to mixed-metal joints without requiring the use of chemical fluxes. The double beam technology was first tested in bead-on-plate experiments using different filler wire materials. Based on the results of these tests, a process for joining steel and aluminum in a double-flanged configuration is now being developed. The double flanged seams are joined using zinc- or aluminum-based filler wires. Microsections of selected seams show that it is possible to achieve good base material wetting while limiting the growth of IMCs to acceptable measures. In addition, the results of tensile tests show that high joint strengths can be achieved.

  20. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir Luiz; Somessari, Elizabeth S. Ribeiro; Silveira, Carlos Gaia da; Calvo, Wilson Aparecido Parejo, E-mail: somessar@ipen.br, E-mail: esomessa@ipen.br, E-mail: cgsilvei@ipen.br, E-mail: wapcalvo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC1500/25/04, in view that radiation processing technology for industrial and environmental applications has been developed and used worldwide. (author)

  1. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz; Somessari, Elizabeth S. Ribeiro; Silveira, Carlos Gaia da; Calvo, Wilson Aparecido Parejo

    2013-01-01

    Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC1500/25/04, in view that radiation processing technology for industrial and environmental applications has been developed and used worldwide. (author)

  2. The space technology demand on materials and processes

    Science.gov (United States)

    Dauphin, J.

    1983-01-01

    Space technology requires a rational and accurate policy of materials and processes selection. This paper examines some areas of space technology where materials and process problems have occurred in the past and how they can be solved in the future.

  3. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  4. Radiation processing technology for industrial waste water treatment

    International Nuclear Information System (INIS)

    2011-01-01

    Radiation sterilization technology, cross-linked polymers and curing, food and environmental applications of the radiation is widely used for many years. At the same time, drinking water and wastewater treatment are the part of the radiation technology applications. For this purpose, drinking water and wastewater treatment plants in various countries has been established. In this project, gamma / electron beam radiation treatment is intended to be used for the treatment of alkaloid, textiles and polychlorinated biphenyls (PCBs) wastewater. In this regard, the chemical characterization of wastewater, the interaction with radiation, biological treatment and determination of toxicological properties are the laboratory studies milestones. After laboratory studies, the establishment of a pilot scale treatment plant has been planned. Within the framework of the project a series of dye used in textile industry were examined. Besides the irradiation, the changes in treatment efficiency were investigated by using of oxygen and hydrogen peroxide in conjunction with the irradiation. Same working methods were implemented in the wastewater treatment of Bolvadin Opium Alkaloid Factory as well. In addition to chemical analysis in this study, aerobic and anaerobic biological treatment process also have been applied. Standard reference materials has been used for the marine sediment study contaminated with polychlorinated biphenyls.

  5. Low Voltage Electron Beam Processing Final Report CRADA No. TC-645-93-A

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wakalopulos, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This CRADA project was established to develop a small, inexpensive sealed-tube electron beam processing system having immediate applications in industrial, high speed manufacturing processes, and in the Department of Energy (DOE) waste treatment/cleanup operations. The technical work involved the development and demonstration of a compact, sealed, 50-75 kilovolt (kV) EB generator prototype, including controls and power supply. The specific goals of this project were to develop a low cost vacuum tube capable of shooting an electron beam several inches into the air, and to demonstrate that wide area materials processing is feasible by stacking the tubes to produce continuous beams. During the project, we successfully demonstrated the producibility of a low cost electron beam system and several material processing operations of interest to US industry, DOE and, since September 11, 2001, the Homeland Security.

  6. Signal processing for longitudinal parameters of the Tevatron beam

    International Nuclear Information System (INIS)

    Pordes, S.; Crisp, J.; Fellenz, B.; Flora, R.; Para, A.; Tollestrup, A.V.

    2005-01-01

    We describe the system known as the Tevatron SBD [1] which is used to provide information on the longitudinal parameters of coalesced beam bunches in the Tevatron. The system has been upgraded over the past year with a new digitizer and improved software. The quantities provided for each proton and antiproton bunch include the intensity, the longitudinal bunch profile, the timing of the bunch with respect to the low-level RF, the momentum spread and the longitudinal emittance. The system is capable of 2 Hz operation and is run at 1 Hz

  7. Application of Java technology in radiation image processing

    International Nuclear Information System (INIS)

    Cheng Weifeng; Li Zheng; Chen Zhiqiang; Zhang Li; Gao Wenhuan

    2002-01-01

    The acquisition and processing of radiation image plays an important role in modern application of civil nuclear technology. The author analyzes the rationale of Java image processing technology which includes Java AWT, Java 2D and JAI. In order to demonstrate applicability of Java technology in field of image processing, examples of application of JAI technology in processing of radiation images of large container have been given

  8. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz

    2017-02-11

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A dedicated pixelated luminosity detector measures coincidences in several three-layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point. The upgraded fast beam conditions monitor measures the particle flux using 24 two-pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background. A new beam-halo monitor at larger radius exploits Cherenkov light produced by relativistic charged particles in fuzed quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All new and upgraded sub-detectors have been taking data from the first day of LHC operation in April 2015. Results on their commissioning and essential characteristics using data since the start-up of LHC will be presented.

  9. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Zheng [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)], E-mail: z.kuang@liv.ac.uk; Perrie, Walter [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Leach, Jonathan [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Sharp, Martin; Edwardson, Stuart P. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Padgett, Miles [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Dearden, Geoff; Watkins, Ken G. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2008-12-30

    High throughput femtosecond laser processing is demonstrated by creating multiple beams using a spatial light modulator (SLM). The diffractive multi-beam patterns are modulated in real time by computer generated holograms (CGHs), which can be calculated by appropriate algorithms. An interactive LabVIEW program is adopted to generate the relevant CGHs. Optical efficiency at this stage is shown to be {approx}50% into first order beams and real time processing has been carried out at 50 Hz refresh rate. Results obtained demonstrate high precision surface micro-structuring on silicon and Ti6Al4V with throughput gain >1 order of magnitude.

  10. Electron beam process design for the treatment of wastes and economic feasibility of the process

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, M R; Fernald, R A; Malcof, S R [High Voltage Engineering Corp., Burlington, MA (USA)

    1984-01-01

    Electron beam irradiation is a practical and economical method to disinfect liquid municipal sludges at high throughput rates. Demonstration facilities have been built in Boston and Miami with treatment capacities of 170,000 gallons per day (650 cubic meters per day) for a minimum dose of 400 kilorads. The electron treatment process is described in some detail. Capital and operating cost estimates are given for continuous sludge disinfection. Total costs for liquid sludge are $7.50 per 1000 gallons. Equivalent costs for residual sewage solids are $50.00 per metric ton. Economic comparisons are made between electron accelerators and gamma-ray sources for liquid and dewatered sludge. The possibilities of treating wastewater and drinking water with high-energy electrons are also reviewed.

  11. COMPLEX PROCESSING TECHNOLOGY OF TOMATO RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    A. M. Gadzhieva

    2015-01-01

    Full Text Available Tomatoes grown in the central and southern parts of the country, which contain 5-6 % of solids, including 0.13 % of pectin, 0.86 % of fat, 0.5 % of organic acids; 0.5 % minerals, etc. were used as a subject of research. These tomatoes, grown in the mountains, on soils with high salinity, contain high amounts of valuable components and have a long-term preservation. For the extraction of valuable components from dried tomato pomace CO2 extraction method was applied. Technological and environmental feasibility of tomatoes stage drying in the atmosphere of inert gas in solar dry kiln were evaluated; production scheme of dried tomatoes is improved; a system for tomato pomace drying is developed; a production scheme of powders of pulp, skin and seeds of tomatoes is developed. Combined method of tomato pomace drying involves the simultaneous use of the electromagnetic field of low and ultra-high frequency and blowing product surface with hot nitrogen. Conducting the drying process in an inert gas atmosphere of nitrogen intensified the process of moisture removing from tomatoes. The expediency of using tomato powder as enriching additive was proved. Based on the study of the chemical composition of the tomato powder made from Dagestan varieties of tomatoes, and on the organoleptic evaluation and physico-chemical studies of finished products, we have proved the best degree of recoverability of tomato powder during the production of reconstituted juice and tomato beverages.

  12. Process technology - rare and refractory metals

    International Nuclear Information System (INIS)

    Gupta, C.K.; Bose, D.K.

    1989-01-01

    India has fairly rich resreves of rare and refractory metals. Abundant sources of ilmenite, rutile, zircon and rare earths are found in the placer deposits of the southern and eastern coasts of the country. Columbite-tantalite occur in mica and the mining belts of Bihar and cassiterite deposits are found in Bastar (Madhya Pradesh). Vanadium as a minor associate occurs in bauxites and in the vast deposits of titaniferrous magnetites. Over the years, research and development and pilot plant works in many research organisations in India have built up a sound technological base in the country for process metallurgy of many refractory and rare earth metals starting from their indigenous sources. The present paper provides a comprehensive view of the developments that have taken place till now on the processing of various refractory and rare earth metals with particular reference to the extensive work carried out at the Department of Atomic Energy. The coverage includes mineral benification separation of individual elements, preparation of pure intermediates, techniques of reduction to metal and final purification. The paper also reviews some of the recent developments that have been taken place in these fields and the potential application of these metals in the foreseeable future. (author). 22 refs., 18 fi g., 7 tabs

  13. Nanostructured surface processing by an intense pulsed ion beam irradiation

    International Nuclear Information System (INIS)

    Yatsuzuka, M.; Masuda, T.; Yamasaki, T.; Uchida, H.; Nobuhara, S.; Hashimoto, Y.; Yoshihara, Y.

    1997-01-01

    Metal surface modification by irradiating an intense pulsed ion beam (IPIB) with short pulse width has been studied experimentally. An IPIB irradiation to a target leads to rapid heating above its melting point. After the beam is turned off, the heated region is immediately cooled by thermal conduction at a cooling rate of typically 10 10 K/s. This rapid cooling and resolidification results in generation of nanostructured phase in the top of surface. The typical hydrogen IPIB parameters are 200 kV of energy, 500 A/cm 2 of current density and 70 ns of pulsewidth. The IPIB was irradiated on a pure titanium to generate nanocrystalline phase. The IPIB-irradiated surface was examined with X-ray diffraction, SEM, and HR-TEM. The randomly oriented lattice fringes as well as a halo diffraction pattern are observed in the HR-TEM micrograph of IPIB-irradiated titanium. The average grain size is found to be 32 nanometers

  14. The Ventriloquist's Dummy? The Role of Technology in Political Processes

    DEFF Research Database (Denmark)

    Koch, Christian

    2000-01-01

    technology and hire versa. In some phases, actors master the technology to the same extent as a ventriloquist masters his dummy. In other phases, however, actors Jinn themselves working hard, 'negotiating' with the technology. The management of technology is characterized as a consequence of these multiple......This article examines the active role of technology in political processes, drawing on organisational politics and sociology of technology. A case study of the processes of the management of technology demonstrates the multiple roles that technology plays in developing a promoting coalition...

  15. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between conventional disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (author)

  16. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between 'conventional' disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (orig.) [de

  17. Research on process management of nuclear power technological innovation

    International Nuclear Information System (INIS)

    Yang Hua; Zhou Yu

    2005-01-01

    Different from the other technological innovation processes, the technological innovation process of nuclear power engineering project is influenced deeply by the extensive environmental factors, the technological innovation of nuclear power engineering project needs to make an effort to reduce environmental uncertainty. This paper had described the mechanism of connection technological innovation process of nuclear power engineering project with environmental factors, and issued a feasible method based on model of bargaining to incorporate technological innovation process management of nuclear power engineering project with environmental factors. This method has realistic meanings to guide the technological innovation of nuclear power engineering project. (authors)

  18. Ion Implantation Processing Technologies for Telecommunications Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T E

    2000-05-01

    The subject CRADA was a collaboration between Oak Ridge National Laboratory and Bell Laboratories, Lucent Technologies (formerly AT and T Bell Laboratories) to explore the development of ion implantation technologies for silicon integrated circuit (IC) manufacturing.

  19. Experimental studies on beam-plasma interaction

    International Nuclear Information System (INIS)

    Kiwamoto, Y.

    1977-01-01

    Beam-handling technology has reached now at such a level as to enable highly controlled experiments of beam-plasma interaction. Varieties of hypotheses and suppositions about the beam propagation and interaction in space plasma can be proved and often be corrected by examining the specific processes in laboratory plasma. The experiments performed in this way by the author are briefed: ion beam instability in unmagnetized plasma; ion beam instability perpendicular to magnetic field; and electron beam instability. (Mori, K.)

  20. Modeling and Experimental Validation of the Electron Beam Selective Melting Process

    Directory of Open Access Journals (Sweden)

    Wentao Yan

    2017-10-01

    Full Text Available Electron beam selective melting (EBSM is a promising additive manufacturing (AM technology. The EBSM process consists of three major procedures: ① spreading a powder layer, ② preheating to slightly sinter the powder, and ③ selectively melting the powder bed. The highly transient multi-physics phenomena involved in these procedures pose a significant challenge for in situ experimental observation and measurement. To advance the understanding of the physical mechanisms in each procedure, we leverage high-fidelity modeling and post-process experiments. The models resemble the actual fabrication procedures, including ① a powder-spreading model using the discrete element method (DEM, ② a phase field (PF model of powder sintering (solid-state sintering, and ③ a powder-melting (liquid-state sintering model using the finite volume method (FVM. Comprehensive insights into all the major procedures are provided, which have rarely been reported. Preliminary simulation results (including powder particle packing within the powder bed, sintering neck formation between particles, and single-track defects agree qualitatively with experiments, demonstrating the ability to understand the mechanisms and to guide the design and optimization of the experimental setup and manufacturing process.

  1. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  2. New Opportunities for eBeam Technologies in One Health. Chapter 2

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, S. D. [National Center for Electron Beam Research, Texas A& M University (United States)

    2014-07-15

    Globally, there is a growing recognition that, in order to address current and emerging risks and provide system-level solutions, one has to look at public health, animal health, and environmental health at a holistic level. Several international and federal agencies such as the United Nations, World Health Organization, the Centers for Disease Control and Prevention (CDC), and the United States Department of Agriculture (USDA) have come to embrace the One Health concept. The One Health concept is based on the premise that the health of humans, animals, and the environment are interconnected. Ionizing radiation technology, especially eBeam (electron beam) technology, can play a major role in providing solutions pertinent to the One Health concept. There can be no discussion of public health without confronting the issue of food safety and quality. There can be no discussion of animal health without tackling the pre-harvest pathogen protection strategies involving vaccination. And there can be no discussion of environmental health without discussing the proper management of the burgeoning levels of animal and human wastes. The salient features of eBeam technology such as high dose rate, economic feasibility, and that it is the ultimate “green technology”, can be exploited commercially to develop materials from natural and man-made sources that can be used for high value agricultural, industrial and therapeutic applications. (author)

  3. Key technology for (V)HTR: laser beam joining of SiC

    International Nuclear Information System (INIS)

    Knorr, J.; Lippmann, W.; Reinecke, A.M.; Wolf, R.; Rasper, R.; Kerber, A.; Wolter, A.

    2005-01-01

    Laser beam joining has numerous advantages over other methods presently known. After having been developed successful for brazing silicon carbide for high temperature applications, this technology is now also available for silicon nitride. Thus the field of application of SiC and Si 3 N 4 which are very interesting materials for the nuclear sector is considerably extended thanks to this new technology. Ceramic encapsulation of fuel and absorber increases the margins for operation at very high temperatures. Additionally, without ceramic encapsulation of the main core components, it will be difficult to continue claiming non-catastrophic behaviour for the (V)HTR. (orig.)

  4. Results from a beam test of silicon strip sensors manufactured by Infineon Technologies AG

    Energy Technology Data Exchange (ETDEWEB)

    Dragicevic, M., E-mail: marko.dragicevic@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Auzinger, G. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); CERN, Geneva (Switzerland); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Gamerith, S.; Hacker, J. [Infineon Technologies Austria AG, Villach (Austria); König, A. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Infineon Technologies Austria AG, Villach (Austria); Kröner, F.; Kucher, E.; Moser, J.; Neidhart, T. [Infineon Technologies Austria AG, Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, Munich (Germany); Schustereder, W. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Wübben, T. [Infineon Technologies Austria AG, Villach (Austria)

    2014-11-21

    Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors were capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European-based semiconductor manufacturer Infineon Technologies AG (Infineon) the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) developed planar silicon strip sensors in p-on-n technology. This work presents the first results from a beam test of strip sensors manufactured by Infineon.

  5. Atmospheric processes on ice nanoparticles in molecular beams

    Directory of Open Access Journals (Sweden)

    Michal eFárník

    2014-02-01

    Full Text Available This review summarizes some recent experiments with ice nanoparticles (large water clusters in molecular beams and outlines their atmospheric relevance: (1 Investigation of mixed water–nitric acid particles by means of the electron ionization and sodium doping combined with photoionization revealed the prominent role of HNO3 molecule as the condensation nuclei. (2 The uptake of atmospheric molecules by water ice nanoparticles has been studied, and the pickup cross sections for some molecules exceed significantly the geometrical sizes of the ice nanoparticles. (3 Photodissociation of hydrogen halides on water ice particles has been shown to proceed via excitation of acidically dissociated ion pair and subsequent biradical generation and H3O dissociation. The photodissociation of CF2Cl2 molecule in clusters is also mentioned. Possible atmospheric consequences of all these results are briefly discussed.

  6. Parallel processing of dose calculation for external photon beam therapy

    International Nuclear Information System (INIS)

    Kunieda, Etsuo; Ando, Yutaka; Tsukamoto, Nobuhiro; Ito, Hisao; Kubo, Atsushi

    1994-01-01

    We implemented external photon beam dose calculation programs into a parallel processor system consisting of Transputers, 32-bit processors especially suitable for multi-processor configuration. Two network conformations, binary-tree and pipeline, were evaluated for rectangular and irregular field dose calculation algorithms. Although computation speed increased in proportion to the number of CPU, substantial overhead caused by inter-processor communication occurred when a smaller computation load was delivered to each processor. On the other hand, for irregular field calculation, which requires more computation capability for each calculation point, the communication overhead was still less even when more than 50 processors were involved. Real-time responses could be expected for more complex algorithms by increasing the number of processors. (author)

  7. Process for producing a coating composition. [electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T; Harada, H; Kobayashi, S; Nakamoto, H; Sunano, K

    1968-07-19

    An easily hardenable acrylic coating composition is produced by irradiation with low energy electron beams to economize the industrial application of the composition. A polymer with molecular weights in the 5,000 to 500,000 range is composed of 1 to 40% by weight of a vinyl monomer containing a glycidyl radical, 30 to 99% of a methacrylic monomer and 0 to 69% of other copolymerizable vinyl monomers. This polymer dissolves in a monomer containing at least 30% of an acrylic monomer and 70% of other vinyl monomers. The reaction takes place between 0.1 to 1.0 mole of vinyl monomer containing a carboxyl radical and one mole of glycidyl radical in the solution. In an embodiment, 17.5% by weight of glycidyl methacrylate and 82.5% of alkyl acrylate are polymerized in suspension in the presence of a catalyst to form a bead like polymer with molecular weights in the 5,000 to 500,000 range. After 120 parts of the bead like polymer are dissolved in 180 parts of the acrylic monomer in the presence of a polymerization inhibitor by heating, 22 parts of ..cap alpha.., ..beta..- unsaturated monocarboxylic acid are added to the solution to react with the glycidyl radical, whereby a non-solvent type coating material containing the polymer having a vinyl radical side chain is produced. In the place of the catalyst, electron beams can be used at an energy level of 0.1 to 20 MeV. The dose rate may be in the range of 0.1 to 2.0 Mrad/sec.

  8. Application specific integrated circuit (ASIC) readout technologies for future ion beam analytical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J. E-mail: harry_j.whitlow@nuclear.lu.se

    2000-03-01

    New possibilities for ion beam analysis (IBA) are afforded by recent developments in detector technology which facilitate the parallel collection of data from a large number of channels. Application specific integrated circuit (ASIC) technologies, which have been widely employed for multi-channel readout systems in nuclear and particle physics, are more net-cost effective (160/channel for 1000 channels) and a more rational solution for readout of a large number of channels than afforded by conventional electronics. Based on results from existing and on-going chip designs, the possibilities and issues of ASIC readout technology are considered from the IBA viewpoint. Consideration is given to readout chip architecture and how the stringent resolution, linearity and stability requirements for IBA may be met. In addition the implications of the restrictions imposed by ASIC technology are discussed.

  9. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    Science.gov (United States)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  10. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting

    Science.gov (United States)

    Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-01-01

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part’s surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM. PMID:28937638

  11. Methods for calculating energy and current requirements for industrial electron beam processing

    International Nuclear Information System (INIS)

    Cleland, M.R.; Farrell, J.P.

    1976-01-01

    The practical problems of determining electron beam parameters for industrial irradiation processes are discussed. To assist the radiation engineer in this task, the physical aspects of electron beam absorption are briefly described. Formulas are derived for calculating the surface dose in the treated material using the electron energy, beam current and the area thruput rate of the conveyor. For thick absorbers electron transport results are used to obtain the depth-dose distributions. From these the average dose in the material, anti D, and the beam power utilization efficiency, F/sub p/, can be found by integration over the distributions. These concepts can be used to relate the electron beam power to the mass thruput rate. Qualitatively, the thickness of the material determines the beam energy, the area thruput rate and surface dose determine the beam current while the mass thruput rate and average depth-dose determine the beam power requirements. Graphs are presented showing these relationships as a function of electron energy from 0.2 to 4.0 MeV for polystyrene. With this information, the determination of electron energy and current requirements is a relatively simple procedure

  12. Uncertainty modeling process for semantic technology

    Directory of Open Access Journals (Sweden)

    Rommel N. Carvalho

    2016-08-01

    Full Text Available The ubiquity of uncertainty across application domains generates a need for principled support for uncertainty management in semantically aware systems. A probabilistic ontology provides constructs for representing uncertainty in domain ontologies. While the literature has been growing on formalisms for representing uncertainty in ontologies, there remains little guidance in the knowledge engineering literature for how to design probabilistic ontologies. To address the gap, this paper presents the Uncertainty Modeling Process for Semantic Technology (UMP-ST, a new methodology for modeling probabilistic ontologies. To explain how the methodology works and to verify that it can be applied to different scenarios, this paper describes step-by-step the construction of a proof-of-concept probabilistic ontology. The resulting domain model can be used to support identification of fraud in public procurements in Brazil. While the case study illustrates the development of a probabilistic ontology in the PR-OWL probabilistic ontology language, the methodology is applicable to any ontology formalism that properly integrates uncertainty with domain semantics.

  13. Transmutation technology development; thermal hydraulic power analysis and structure analysis of the HYPER target beam window

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. H.; Ju, E. S.; Song, M. K.; Jeon, Y. Z. [Gyeongsang National University, Jinju (Korea)

    2002-03-01

    A thermal hydraulic power analysis, a structure analysis and optimization computation for some design factor for the design of spallation target suitable for HYPER with 1000 MW thermal power in this study was performed. Heat generation formula was used which was evaluated recently based on the LAHET code, mainly to find the maximum beam current under given computation conditions. Thermal hydraulic power of HYPER target system was calculated using FLUENT code, structure conducted by inputting the data into ANSYS. On the temp of beam windows and the pressure distribution calculated using FLUENT. Data transformation program was composed apply the data calculated using FLUENT being commercial CFD code and ANSYS being FEM code for CFX structure analysis. A basic study was conducted on various singular target to obtain fundamental data on the shape for optimum target design. A thermal hydraulic power analysis and structure analysis were conducted on the shapes of parabolic, uniform, scanning beams to choose the optimum shape of beam current analysis was done according to some turbulent model to simulate the real flow. To evaluate the reliability of numerical analysis result, benchmarking of FLUENT code reformed at SNU and Korea Advanced Institute of Science and Technology and it was compared to CFX in the possession of Korea Atomic Energy Research Institute and evaluated. Reliable deviation was observed in the results calculated using FLUENT code, but temperature deviation of about 200 .deg. C was observed in the result from CFX analysis at optimum design condition. Several benchmarking were performed on the basis of numerical analysis concerning conventional HYPER. It was possible to allow a beam arrests of 17.3 mA in the case of the {phi} 350 mm parabolic beam suggested to the optimum in nuclear transmutation when stress equivalent to VON-MISES was calculated to be 140 MPa. 29 refs., 109 figs. (Author)

  14. Realization of beam polarization at the linear collider and its application to EW processes

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Sollova, F.

    2006-07-15

    The use of beam polarization at the future ILC e{sup +}e{sup -} linear collider will benefit the physics program significantly. This thesis explores three aspects of beam polarization: the application of beam polarization to the study of electroweak processes, the precise measurement of the beam polarization, and finally, the production of polarized positrons at a test beam experiment. In the first part of the thesis the importance of beam polarization at the future ILC is exhibited: the benefits of employing transverse beam polarization (in both beams) for the measurement of triple gauge boson couplings (TGCs) in the W-pair production process are studied. The sensitivity to anomalous TGC values is compared for the cases of transverse and longitudinal beam polarization at a center of mass energy of 500 GeV. Due to the suppressed contribution of the t-channel {nu} exchange, the sensitivity is higher for longitudinal polarization. For some physics analyses the usual polarimetry techniques do not provide the required accuracy for the measurement of the beam polarization (around 0.25% with Compton polarimetry). The second part of the thesis deals with a complementary method to measure the beam polarization employing physics data acquired with two polarization modes. The process of single-W production is chosen due to its high cross section. The expected precision for 500 fb{sup -1} and W{yields}{mu}{nu} decays only, is {delta}P{sub e{sup -}}/P{sub e{sup -}}=0.26% and {delta}P{sub e{sup +}}/P{sub e{sup +}}=0.33%, which can be further improved by employing additional W-decay channels. The first results of an attempt to produce polarized positrons at the E-166 experiment are shown in the last part of the thesis. The E-166 experiment, located at the Final Focus Test Beam at SLAC's LINAC employs a helical undulator to induce the emission of circularly polarized gamma rays by the beam electrons. These gamma rays are converted into longitudinally polarized electron

  15. Process time optimization of robotic remote laser cutting by utilizing customized beam patterns and redundancy space task sequencing

    DEFF Research Database (Denmark)

    Villumsen, Sigurd

    This dissertation is written as a part of the ROBOCUT project which concerns the development of a new laser cutting technology that seeks to increase the performance of traditional and remote laser cutting by using beam shaping technologies. The resulting customized beam patterns are obtained by ...... axes of the laser cutting system and transforming the sequencing problem into a generalized traveling salesman problem (GTSP)....

  16. Practical applications of ion beam and plasma processing for improving corrosion and wear protection

    CERN Document Server

    Klingenberg, M L; Wei, R; Demaret, J; Hirvonen, J

    2002-01-01

    A multi-year project for the US Army has been investigating the use of various ion beam and plasma-based surface treatments to improve the corrosion and wear properties of military hardware. These processes are intended to be complementary to, rather than competing with, other promising macro scale coating processes such high velocity oxy-fuel (HVOF) deposition, particularly in non-line-of- sight and flash chrome replacement applications. It is believed that these processes can improve the tribological and corrosion behavior of parts without significantly altering the dimensions of the part, thereby eliminating the need for further machining operations and reducing overall production costs. The ion beam processes chosen are relatively mature, low-cost processes that can be scaled-up. The key methods that have been considered under this program include nitrogen ion implantation into electroplated hard chrome, ion beam assisted chromium and chromium nitride coatings, and plasma-deposited diamond- like carbon an...

  17. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  18. Surface modification of the metal plates using continuous electron beam process (CEBP)

    International Nuclear Information System (INIS)

    Kim, Jisoo; Kim, Jin-Seok; Kang, Eun-Goo; Park, Hyung Wook

    2014-01-01

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined

  19. Surface modification of the metal plates using continuous electron beam process (CEBP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jisoo, E-mail: kimjisu16@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of); Kim, Jin-Seok, E-mail: totoro22@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Kang, Eun-Goo, E-mail: egkang@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Park, Hyung Wook, E-mail: hwpark@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of)

    2014-08-30

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined.

  20. Process for the graft polymerization of polyvinyl chloride. [electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, E; Kusama, Y; Udagawa, A; Hashimoto, S

    1970-08-14

    The graft polymerization of acrylonitrile on polyvinyl chloride is effected by simultaneous irradiation with ionizing radiations in a reaction bath consisting of 30% acrylonitrile and 70% n-hexane. The acrylonitrile-hydrocarbon reaction bath increases the graft efficiency markedly when the content of acrylonitrile is 30%. In this case, the formation rate of acrylonitrile homopolymer decreases with a decrease in the content of acrylonitrile. The immersion time may be from a few minutes to a few hours, depending on the type, property and desired graft efficiency of the polyvinyl chloride resin. The polyvinyl chloride may be any available on the market. The acrylonitrile may contain a small quantity of copolymerizable monomer if it does not influence the thermal property of the polyvinyl chloride graft polymer. The ionizing radiations must have enough energy to form an ion pair by removing one electron from one atom of a gas. In examples, 10 g of polyvinyl chloride in powder form were immersed in 100 cc of a mixed solution consisting of 70% to 90% of n-hexane and 10% to 30% of acrylonitrile. The polyvinyl chloride in the solution was exposed to electron beams of 2 Mrad at a dose rate of 7.2 x 10/sup 7/ rad/hr. under a reduced pressure. The graft efficiency was 50% to 80% and the yield of acrylonitrile homopolymer was 0.42 g to 1.26 g.

  1. Surface processing with ionized cluster beams: computer simulation

    International Nuclear Information System (INIS)

    Insepov, Z.; Yamada, I.

    1999-01-01

    Molecular Dynamics (MD) and Monte Carlo (MC) models of energetic gas cluster irradiation of a solid surface have been developed to investigate the phenomena of crater formation, sputtering, surface treatment, and the material hardness evaluation by irradiation with cluster ions. Theoretical estimation of crater dimensions formed with Ar gas cluster ion irradiation of different substrates, based on hydrodynamics and MD simulation, are presented. The atomic scale shock waves arising from cluster impact were obtained by calculating the pressure, temperature and mass-velocity of the target atoms. The crater depth is given as a unique 1/3 dependence on the cluster energy and on the cold material Brinell hardness number (BHN). A new 'true material hardness' scale which can be very useful for example for thin film coatings deposited on a soft substrate, is defined. This finding could be used as a new technique for measuring of a material hardness. Evolution of surface morphology under cluster ion irradiation was described by the surface relaxation equation which contains a term of crater formation at cluster impact. The formation of ripples on a surface irradiated with oblique cluster ion beams was predicted. MD and MC models of Decaborane ion (B 10 H 14 ) implantation into Si and the following rapid thermal annealing (RTA) have been developed

  2. The pilot plant for electron beam food processing

    International Nuclear Information System (INIS)

    Migdal, W.; Stachowicz, W.

    1993-01-01

    The investigations on food irradiation began in Poland in the end of 50-ties. Till the end of 70-ties the research activity on food irradiation was rather of the random nature and the objectives involved the fundamental research areas of food science. After the JECFI recommended in 1980 the general approval of foods treated with the doses of ionizing radiation up to 10 kG as unconditionally wholesome, the interest on practical application of food irradiation was gained in Poland. In 1986 the governmental bodies decided to recognize the possibilities of practical application of radiation techniques in agriculture, and the Central Research and Development Project No 10.13. ''Radiation Techniques in Agriculture'' was initiated for the period of 5 years. The project in the part that refers to food irradiations involved 3 major objectives: - radiation preservation of food; - radiation hygienization of animal feed; - Pilot plants for food irradiation. The most liable project of the programme was the construction of experimental plant for electron beam food irradiation, intended to be the national center for future testing and implementary works in this field. (orig.)

  3. Adoption of improved oil palm processing technology in Umuahia ...

    African Journals Online (AJOL)

    It was found that a large percentage of the respondents were aware of the 5 improved oil palm processing technologies with friends and relatives as major source of information. Adoption was significant for 3 out of 5 technologies under study. The major constraints to improved oil palm processing technologies were high ...

  4. The Process of Accepting Technology Innovation for Rural Teachers

    Science.gov (United States)

    Cerovski, Jeremy

    2016-01-01

    In order for educational leaders to facilitate effectively the integration of technology, an understanding of the process rural teachers experience with technology integration is critical. The goal of the qualitative study was to discover and understand rural teachers' process for accepting technology innovation in order to improve the…

  5. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  6. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  7. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    Science.gov (United States)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  8. How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?

    Science.gov (United States)

    Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R

    2015-03-01

    The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.

  9. A Technology Approach to Improving Process Management

    Science.gov (United States)

    Dray, Lori; Strasburger, Tom

    2013-01-01

    It is impossible to ignore how technology is infiltrating education. Interactive projectors and other technologies give teachers and students the opportunity to bring lessons to life. Some districts are replacing textbooks with digital content, allowing students to interact with content in new ways. Galion City School District in Galion, Ohio, is…

  10. Electron beam technology for modifying the functional properties of maize starch

    International Nuclear Information System (INIS)

    Nemtanu, M.R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P.K.W.; Popescu, M.I.; Mitru, E.

    2007-01-01

    Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch

  11. The development of maple technology for materials testing, isotope production, and neutron-beam applications

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Gillespie, G.E.; Lee, A.G.; Bishop, W.E.

    1996-01-01

    AECL has been developing MAPLE technology to meet Canadian and international requirements for high-performance research reactors. MAPLE refers to a family of open-tank-in-pool reactors that employ compact H 2 O-cooled cores within D 2 O vessels to efficiently furnish neutrons to various types of irradiation facilities. The initial focus was on a 10-MW t Canadian facility for radioisotope production, the HANARO multipurpose-reactor project, and an associated R and D program. Recently, AECL began to develop the concept for a new Canadian Irradiation Research Facility (IRF) which will support the continued evolution of CANDU (CANadian Deuterium Uranium) technology and generate neutrons for basic and applied materials science. Additionally, AECL is currently developing a standardized MAPLE research-centre design with integrated neutron-application facilities; various reactor-core options have been optimized for different combinations of utilization: a 19-site core for neutron-beam applications and ancillary isotope production, a 31-site core for multipurpose materials testing and neutron-beam applications, and twin 18-site cores for high-flux neutron-beam applications. (author)

  12. Plan for advanced microelectronics processing technology application

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  13. Electron-beam and combined e-b and microwave processing of dried food ingredients

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.; Martin, D.; Tirlea, A.; Badea, M.; Oproiu, C.

    1998-01-01

    Complete text of publication follows. There are summarized and presented the results on the irradiated dried food ingredients, as starches, flour, spices, enzymes, pigments. It has investigated the electron-beam and microwave processing to achieve the hygienic and microbiological quality requirements for these materials. There are presented the results regarding the e-b and microwave effects on the main specific parameters (nutritional; microbiological; physical and chemical) for each item. Irradiation has carried out to different electron accelerators, mainly to ALIN-7 linac (W e ∼6 MeV) and using a special designed microwave equipment (2.45 GHz magnetron of 850 W maximum output power). The samples have been irradiated up to 25 kGy (dose rate ∼ 2.0 kGy/min) and there were treated by microwaves (250 W-550 W) for different exposure time. There have analyzed and presented the influence of these two physical fields on some common physical, biochemical and microbiological properties (mainly the total germ count, CFU/g) of these food materials. The main technological and physical characteristics of the materials are preserved, under irradiation up to 10 kGy and microwave treatment in the case of satisfying the national requirements for food and food grade additives microbiological load. The combined treatment seems to be present a synergistic effect arising on non-thermal basis. From these results it could be pointed out that electron-beam and microwave treatment is feasible and represents an alternative to other hygienization techniques for the dried food ingredients. It should be considered that combined treatments lead to reducing irradiation dose without losing the microbicidal effects

  14. Development process of new bumper beam for passenger car: A review

    International Nuclear Information System (INIS)

    Davoodi, M.M.; Sapuan, S.M.; Aidy, A.; Abu Osman, N.A.; Oshkour, A.A.; Wan Abas, W.A.B.

    2012-01-01

    Highlights: ► The process of new bumper beam development for passenger car is discussed. ► A new bumper system has been added to the previous developed bumper systems. ► The flow chart of design and analysis of bumper beam is shown. ► Different analysis for developing new bumper beam before production is discussed. ► The process of material selection in bumper beam is discussed. -- Abstract: Bumper beam absorbs the accidental kinetic energy by deflection in low-speed impact and by deformation in high-speed impact. The safety regulations “low-, and high-speed, and pedestrian impacts” along with new environmental restrictions “end-of-life vehicles” increased the complexity level of bumper system design. The new bumper design must be flexible enough to reduce the passenger and occupant injury and stay intact in low-speed impact besides being stiff enough to dissipate the kinetic energy in high-speed impact. The reinforcement beam plays a vital role in safety and it must be validated through finite-element analysis (FEA) and experimental tests before mass production. The careful design and analysis of bumper beam effective parameters can optimize the strength, reduce the weight, and increase the possibility of utilizing biodegradable and recyclable materials to reduce the environmental pollution. Developing the correct design and analysis procedures prevents design re-modification. On the other hand, analysis of the most effective parameters conducive to high bumper beam strength increases the efficiency of product development. Cross section, longitudinal curvature, fixing method, rib thickness, and strength are some of the significant design parameters in bumper beam production. This study critically reviews the related literature on bumper design to come up with the optimal bumper beam design process. It particularly focuses on the effective parameters in the design of bumper beam and their most suitable values or ranges of values. The results can

  15. Decision Gate Process for Assessment of a Technology Development Portfolio

    Science.gov (United States)

    Kohli, Rajiv; Fishman, Julianna; Hyatt, Mark

    2012-01-01

    The NASA Dust Management Project (DMP) was established to provide technologies (to TRL 6 development level) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, which will reduce life cycle cost and risk, and will increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product is either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.

  16. Cobalt-60 Machines and Medical Linear Accelerators: Competing Technologies for External Beam Radiotherapy.

    Science.gov (United States)

    Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A

    2017-02-01

    Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment

  17. Status and perspectives for the electron beam technology for flue gases treatment

    International Nuclear Information System (INIS)

    Frank, N.W.

    1992-01-01

    The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may then be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmentally conscious world. (Author)

  18. Search for lepton number violating charged current processes with neutrino beams

    International Nuclear Information System (INIS)

    Kanemura, Shinya; Kuno, Yoshitaka; Ota, Toshihiko

    2013-01-01

    We propose a novel idea on measurements to understand which physics mechanism is responsible for the origin of a small neutrino mass, by searching for the processes of lepton number violating charged current interaction with incident of a neutrino beam. It turns out that only the proposed measurements could provide a potential to discriminate the mechanisms, in particular the ones called loop-induced mechanisms of neutrino mass generation, from the others. The expected rates of these processes based on some theoretical assumptions are estimated. They are found to be sizable so that detection of such processes could be achievable at near detectors in future highly intense neutrino-beam facilities

  19. The Prestressed Track Beam Testing Technology of Shanghai Electromagnetic Levitation Train

    Directory of Open Access Journals (Sweden)

    Qing-biao WANG

    2013-07-01

    Full Text Available Shanghai electromagnetic levitation train (maglev is the first one that is constructed and operated commercially in the world. Many technological problems have to be tackled during its construction, and the most difficult problem in the civil engineering part is the making of prestressed track beam. It requires high precision because of its special function. The stretching control of the pre-tensioning force and the post-tensioning force in the making of prestressed track beam is most important during the construction. This paper introduces and analyses the technical features of vibrating wire sensors as well as the development, the research and the application of force sensor for pulling force measurement of anchor cable.

  20. Removal of chlorinated organic compounds from gas phase using electron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Bulka, S.; Zimek, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)

    2011-07-01

    Selected chlorinated organic compounds (Cl-HC), which are emitted from coal fired power plants, waste incinerators, chemical industry etc., are very harmful to the environment and human’s health. Some of them are listed as carcinogenic compounds by USA EPA. Recent studies show that some chlorinated organic compounds are suspected to be precursors for dioxins formation. Chlorinated organic compounds decomposition in air in an electron beam (EB) generated plasma reactor technology was studied. We selected cis-dichloroethylene (cis-DCE), 1,4-dichlorobenznene(1,4-DCB), 1-chloronaphthalene as studied objects. It is found that chlorinated organic compounds can be decomposed in an electron beam generated plasma reactor. The order of decomposition efficiency of these compounds are: cis-DCE > 1,4-DCB> 1-chloronaphthalene. (author)

  1. The competence accumulation process in the technology transference strategy

    OpenAIRE

    Souza, André Silva de; Segatto-Mendes, Andréa Paula

    2008-01-01

    The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001) and during the technology transference process (2002-2005). Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch...

  2. Processes in a dense long-pulse electron beam focused on a solid target

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, A V; Sominskij, G G [St. Petersburg Technical Univ. (Russian Federation)

    1997-12-31

    The results obtained in beam-target experiments with dense medium-energy electron beam in the regime of long single pulses are presented. The measured power density of the focused beam at the target reached 20 MW/cm{sup 2} in these experiments. The processes caused by dense flows of secondary particles and by a dense target ablation plasma were studied in detail. Substantial target shielding occurs when the energy density at the target exceeds the value of about 1 kJ/cm{sup 2}. The target plasma and the sputtered matter that is responsible for shielding affects also the beam structure, as well as the target etching rates. (J.U.). 3 figs., 5 refs.

  3. Processes in a dense long-pulse electron beam focused on a solid target

    International Nuclear Information System (INIS)

    Arkhipov, A.V.; Sominskij, G.G.

    1996-01-01

    The results obtained in beam-target experiments with dense medium-energy electron beam in the regime of long single pulses are presented. The measured power density of the focused beam at the target reached 20 MW/cm 2 in these experiments. The processes caused by dense flows of secondary particles and by a dense target ablation plasma were studied in detail. Substantial target shielding occurs when the energy density at the target exceeds the value of about 1 kJ/cm 2 . The target plasma and the sputtered matter that is responsible for shielding affects also the beam structure, as well as the target etching rates. (J.U.). 3 figs., 5 refs

  4. Levy-Student processes for a stochastic model of beam halos

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, N. Cufaro [Department of Mathematics, University of Bari, and INFN Sezione di Bari, via E. Orabona 4, 70125 Bari (Italy)]. E-mail: cufaro@ba.infn.it; De Martino, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); De Siena, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); Illuminati, F. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy)

    2006-06-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  5. Levy-Student processes for a stochastic model of beam halos

    International Nuclear Information System (INIS)

    Petroni, N. Cufaro; De Martino, S.; De Siena, S.; Illuminati, F.

    2006-01-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

  6. An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

    Science.gov (United States)

    Grünhaupt, Lukas; von Lüpke, Uwe; Gusenkova, Daria; Skacel, Sebastian T.; Maleeva, Nataliya; Schlör, Steffen; Bilmes, Alexander; Rotzinger, Hannes; Ustinov, Alexey V.; Weides, Martin; Pop, Ioan M.

    2017-08-01

    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic fields, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

  7. Technical advantages of disk laser technology in short and ultrashort pulse processes

    Science.gov (United States)

    Graham, P.; Stollhof, J.; Weiler, S.; Massa, S.; Faisst, B.; Denney, P.; Gounaris, E.

    2011-03-01

    This paper demonstrates that disk-laser technology introduces advantages that increase efficiency and allows for high productivity in micro-processing in both the nanosecond (ns) and picosecond (ps) regimes. Some technical advantages of disk technology include not requiring good pump beam quality or special wavelengths for pumping of the disk, high optical efficiencies, no thermal lensing effects and a possible scaling of output power without an increase of pump beam quality. With cavity-dumping, the pulse duration of the disk laser can be specified between 30 and hundreds of nanoseconds, but is independent of frequency, thus maintaining process stability. TRUMPF uses this technology in the 750 watts average power laser TruMicro 7050. High intensity, along with fluency, is important for high ablation rates in thinfilm removal. Thus, these ns lasers show high removal rates, above 60 cm2/s, in thin-film solar cell production. In addition, recent results in paint-stripping of aerospace material prove the green credentials and high processing rates inherent with this technology as it can potentially replace toxic chemical processes. The ps disk technology meanwhile is used in, for example, scribing of solar cells, wafer dicing and drilling injector nozzles, as the pulse duration is short enough to minimize heat input in the laser-matter interaction. In the TruMicro Series 5000, the multi-pass regenerative amplifier stage combines high optical-optical efficiencies together with excellent output beam quality for pulse durations of only 6 ps and high pulse energies of up to 0.25 mJ.

  8. Application of advanced oxidation process by electron beam irradiation in the organic compounds degradation present in industrial effluents

    International Nuclear Information System (INIS)

    Duarte, Celina Lopes

    1999-01-01

    The inefficacy of conventional methods to destroy toxic organic compounds present in industrial effluent has taken the search for new technologies of treatment. he water irradiation is the most efficient process to generate radicals that mineralise these compounds. A study to evaluate the Advanced Oxidation Process by electron beam irradiation to treat industrial effluent with high toxic organic compounds concentration was carried out. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 power. The effluent samples from a big industrial complex were irradiated using the IPEN's Liquid Effluent Irradiation Pilot Plant and the effluent samples from five steps of a Governmental Wastewater Treatment Plant from SABESP - ETE Suzano (industrial Receiver Unit, Coarse Bar Screens, Medium Bar Screens, Primary Sedimentation and Final Effluent), were irradiated in a batch system. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol and in the decoloring of dyes present in some samples. To remove 90% of the most organic compounds was necessary a 20 kGy dose for industry's ETE, 20 kGy for IRU, CBS and MBS and 10 kGy to 20 kGy for PS and FE. (author)

  9. Combining active chilled beams and air-cleaning technologies to improve the indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2013-01-01

    This project is part of a long-term research programme to study the possibilities of using efficient air-cleaning technologies to improve the indoor air quality in buildings. The purpose of this part of the project was to study the energy-saving potential of combining the cooling and cleaning of ...... than 5 Pa (0.104 Ibf /ft2). Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 h-1. However, the efficiency of the chilled beam in exchanging heat was reduced by 38%....

  10. Combining active chilled beams and air cleaning technologies to improve indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2012-01-01

    This project is part of a long-term research programme studying the possibilities of using efficient air cleaning technologies to improve the indoor air quality in buildings. The purpose of this part of the project is to study energy-saving potential by combining cooling and cleaning of air in of....... Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 (h-1). However, the efficiency of the chilled beam in exchanging the heat reduced by 38%....

  11. Precise focusing and diagnosis technology for laser beams in ICF target chamber

    International Nuclear Information System (INIS)

    Zhu Qixiang

    1999-01-01

    The precise focusing and diagnosis experimental system for laser beams in ICF target chamber is introduced. The system is controlled by computer. In process of focusing a series data of displacement in axial direction and relative area of focus spots are acquired. According to the functional curvature the accurate position of focal plane is determined. The construction of the system is simple, the system is controlled conveniently and runs quickly

  12. Fundamental aspects on ion-beam surface modification: defect production and migration processes

    International Nuclear Information System (INIS)

    Rehn, L.E.; Averback, R.S.; Okamoto, P.R.

    1984-09-01

    Ion-beam modification of metals is generating increasing scientific interest not only because it has exciting technological potential, but also because it has raised fundamental questions concerning radiation-induced diffusion processes. In addition to the implanted species, several defect production and migration mechanisms contribute to changes in the near-surface composition of an alloy during ion bombardment, e.g., atoms exchange positions via displacements and replacement sequences; preferential sputtering effects arise; radiation-enhanced diffusion and radiation-induced segregation occur. The latter two defect migration mechanisms are of particular significance since they can alter the composition to depths which are much greater than the implanted ion range. By altering various parameters such as irradiation temperature, ion mass, energy, and current density, and initial alloying distributions, a rich variety of near-surface composition profiles can be created. We have utilized changes in ion mass and energy, and irradiation temperature to distinguish defect production from defect migration effects. Experimental results are presented which provide a guide to the relative efficiencies of different mechanisms under various irradiation conditions. 46 references

  13. Parameters modelling of amaranth grain processing technology

    Science.gov (United States)

    Derkanosova, N. M.; Shelamova, S. A.; Ponomareva, I. N.; Shurshikova, G. V.; Vasilenko, O. A.

    2018-03-01

    The article presents a technique that allows calculating the structure of a multicomponent bakery mixture for the production of enriched products, taking into account the instability of nutrient content, and ensuring the fulfilment of technological requirements and, at the same time considering consumer preferences. The results of modelling and analysis of optimal solutions are given by the example of calculating the structure of a three-component mixture of wheat and rye flour with an enriching component, that is, whole-hulled amaranth flour applied to the technology of bread from a mixture of rye and wheat flour on a liquid leaven.

  14. Novel technologies for the lost foam casting process

    Science.gov (United States)

    Jiang, Wenming; Fan, Zitian

    2018-03-01

    Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

  15. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  16. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-11-21

    Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a better EBIS.

  17. Knowledge and cognitive process dimensions of Technology ...

    African Journals Online (AJOL)

    Further research is also needed on the reasons why low cognitive demands are made in the teaching of Technology. .... the NCS (Department of Basic Education, 2011), and the topics ..... In the quantitative phase each lesson objective was classified according .... involves the retrieving (listing) of knowledge from memory (at.

  18. Advanced Manufacturing Office Clean Water Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-03-01

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  19. The electron beam treatment process for site remediation

    International Nuclear Information System (INIS)

    Cooper, W.J.; Nickelsen, M.G.; Waite, T.D.; Kurucz, C.N.

    1994-01-01

    This paper summarizes recent studies in the application of high energy electrons for the destruction of toxic organic compounds in hazardous waste leachates. Initial studies have been conducted using single organic solutes in treated groundwater. The solutes of interest are among those most frequently reported in hazardous waste leachates or contaminated ground water. From these studies it has been shown that the process can effectively remove a number of different regulated organic compounds. Using a kinetically based model for open-quotes pure-waterclose quotes the authors have undertaken studies to extend this model to account for the destruction of these compounds in natural waters. Because of the presence of numerous radical scavengers in natural water, e.g., carbonate/biocarbonate ion, dissolved organic carbon, and oxygen, this requires adding a substantial number of bimolecular reaction rate constants. However, it appears that even though many of the reaction rate constants are not known reasonable predictions are possible

  20. Low energy electron beam processing of YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chromik, Š., E-mail: stefan.chromik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Camerlingo, C. [CNR-SPIN, Istituto Superconduttori, Materiali Innovativi e Dispositivi, via Campi Flegrei 34, 80078 Pozzuoli (Italy); Sojková, M.; Štrbík, V.; Talacko, M. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Malka, I.; Bar, I.; Bareli, G. [Department of Physics, Ben Gurion University of the Negev, P.O.B. 653, 84105 Beer Sheva (Israel); Jung, G. [Department of Physics, Ben Gurion University of the Negev, P.O.B. 653, 84105 Beer Sheva (Israel); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2017-02-15

    Highlights: • Improvement of superconducting properties of irradiated bridges under certain conditions. • 30 keV irradiation influence CuO{sub 2} planes as well as oxygen chains. • Direct confirmation of changes in oxygen chains using micro-Raman spectroscopy. • Possibility of electron writing. - Abstract: Effects of low energy 30 keV electron irradiation of superconducting YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films have been investigated by means of transport and micro-Raman spectroscopy measurements. The critical temperature and the critical current of 200 nm thick films initially increase with increasing fluency of the electron irradiation, reach the maximum at fluency 3 − 4 × 10{sup 20} electrons/cm{sup 2}, and then decrease with further fluency increase. In much thinner films (75 nm), the critical temperature increases while the critical current decreases after low energy electron irradiation with fluencies below 10{sup 20} electrons/cm{sup 2}. The Raman investigations suggest that critical temperature increase in irradiated films is due to healing of broken Cu−O chains that results in increased carrier’s concentration in superconducting CuO{sub 2} planes. Changes in the critical current are controlled by changes in the density of oxygen vacancies acting as effective pinning centers for flux vortices. The effects of low energy electron irradiation of YBCO turned out to result from a subtle balance of many processes involving oxygen removal, both by thermal activation and kick-off processes, and ordering of chains environment by incident electrons.

  1. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jochen, E-mail: jochen.schmidt@fau.de; Sachs, Marius; Fanselow, Stephanie; Wirth, Karl-Ernst; Peukert, Wolfgang [Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Particle Technology, Cauerstr. 4, D-91058 Erlangen (Germany); Zhao, Meng; Wudy, Katrin; Drexler, Maximilian; Drummer, Dietmar [Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Polymer Technology, Am Weichselgarten 9, D-91058 Erlangen (Germany)

    2016-03-09

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles are produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.

  2. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    International Nuclear Information System (INIS)

    Schmidt, Jochen; Sachs, Marius; Fanselow, Stephanie; Wirth, Karl-Ernst; Peukert, Wolfgang; Zhao, Meng; Wudy, Katrin; Drexler, Maximilian; Drummer, Dietmar

    2016-01-01

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles are produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.

  3. Fiscal 1998 research achievement report. Development of key technology for high-efficiency semiconductor manufacturing process; 1998 nendo kokoritsu handotai seizo process kiban gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    In the development of large-aperture/high-density plasma technology, research and development was carried out for balanced electron drift plasma technologies for uniform control of plasma density and the like, such as an excited plasma source and plasma drift to enable wide-range plasma generation in a chamber. In the development of high-efficiency exposure technology, studies were made for stable generation and control of short wavelength excimer laser and for higher-speed large-aperture mask writing by use of an electron beam. In the development of higher-speed processing and energy-efficient technologies, research and development was conducted involving probe card technology for increasing the speed of semiconductor inspection, software-aided virtual tester technology, local energy-efficient cleaning technology in wafer processing and transportation, sheet-type flexible manufacturing system, and the like. (NEDO)

  4. Innovative Canadian Process Technology For Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Johar, Sangat; Norton, Kevin

    2010-09-15

    The need for increasing renewable and alternative energy in the global energy mix has been well recognized by Governments and major scientific forums to reduce climate change impact for this living planet. Biodiesel has very high potential for GHG emission reduction. An innovative process developed in Canada provides solution to mitigate the feedstock, yield and quality issues impacting the industry. The Biox process uses a continuous process which reduces reaction times, provides > 99% yield of high quality biodiesel product. The process is feedstock flexible and can use cheaper higher FFA feedstock providing a sustainable approach for biodiesel production.

  5. Organic ice resists for 3D electron-beam processing: Instrumentation and operation

    DEFF Research Database (Denmark)

    Tiddi, William; Elsukova, Anna; Beleggia, Marco

    2018-01-01

    Organic vapors condensed into thin layers of ice on the surface of a cold substrate are exposed with an electron beam to create resist patterns for lithography applications. The entire spin- and development-free lithography process requires a single custom instrument. We report the design, material...... choice, implementation and operation of this apparatus. It is based on a scanning electron microscope fitted with an electron beam control system that is normally used for electron beam lithography in a multi-user open-access laboratory. The microscope was also equipped with a gas injection system......, a liquid nitrogen cooled cryostage, a temperature control system, and a load-lock. Three steps are required to initialize the apparatus for organic ice resist processing, and two steps are required to restore the apparatus for routine multi-user operations. Five steps are needed to create organic ice...

  6. Emerging science and technology of antimatter plasmas and trap-based beams

    International Nuclear Information System (INIS)

    Surko, C.M.; Greaves, R.G.

    2004-01-01

    Progress in the ability to accumulate and cool positrons and antiprotons is enabling new scientific and technological opportunities. The driver for this work is plasma physics research - developing new ways to create and manipulate antimatter plasmas. An overview is presented of recent results and near-term goals and challenges. In atomic physics, new experiments on the resonant capture of positrons by molecules provide the first direct evidence that positrons bind to 'ordinary' matter (i.e., atoms and molecules). The formation of low-energy antihydrogen was observed recently by injecting low-energy antiprotons into a cold positron plasma. This opens up a range of new scientific opportunities, including precision tests of fundamental symmetries such as invariance under charge conjugation, parity, and time reversal, and study of the chemistry of matter and antimatter. The first laboratory study of electron-positron plasmas has been conducted by passing an electron beam through a positron plasma. The next major step in these studies will be the simultaneous confinement of electron and positron plasmas. Although very challenging, such experiments would permit studies of the nonlinear behavior predicted for this unique and interesting plasma system. The use of trap-based positron beams to study transport in fusion plasmas and to characterize materials is reviewed. More challenging experiments are described, such as the creation of a Bose-condensed gas of positronium atoms. Finally, the future of positron trapping and beam formation is discussed, including the development of a novel multicell trap to increase by orders of magnitude the number of positrons trapped, portable antimatter traps, and cold antimatter beams (e.g., with energy spreads ≤1 meV) for precision studies of positron-matter interactions

  7. Neutron beam applications - A development of real-time imaging processing for neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whoi Yul; Lee, Sang Yup; Choi, Min Seok; Hwang, Sun Kyu; Han, Il Ho; Jang, Jae Young [Hanyang University, Seoul (Korea)

    1999-08-01

    This research is sponsored and supported by KAERI as a part of {sup A}pplication of Neutron Radiography Beam.{sup M}ain theme of the research is to develop a non-destructive inspection system for the task of studying the real-time behaviour of dynamic motion using neutron beam with the aid of a special purpose real-time image processing system that allows to capture an image of internal structure of a specimen. Currently, most off-the-shelf image processing programs designed for visible light or X-ray are not adequate for the applications that require neutron beam generated by the experimental nuclear reactor. In addition, study of dynamic motion of a specimen is severely constrained by such image processing systems. In this research, a special image processing system suited for such application is developed which not only supplements the commercial image processing system but allows to use neutron beam directly in the system for the study. 18 refs., 21 figs., 1 tab. (Author)

  8. A novel process control method for a TT-300 E-Beam/X-Ray system

    Science.gov (United States)

    Mittendorfer, Josef; Gallnböck-Wagner, Bernhard

    2018-02-01

    This paper presents some aspects of the process control method for a TT-300 E-Beam/X-Ray system at Mediscan, Austria. The novelty of the approach is the seamless integration of routine monitoring dosimetry with process data. This allows to calculate a parametric dose for each production unit and consequently a fine grain and holistic process performance monitoring. Process performance is documented in process control charts for the analysis of individual runs as well as historic trending of runs of specific process categories over a specified time range.

  9. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  10. Managing Technological Change: The Process is Key

    Science.gov (United States)

    1989-01-01

    performance suggestive of an electronic sweatshop or informa- and the quality of their work lives has been significantly im- tion assembly line than a...changc the rescrvations system, but without docu- systems, databases, and software applications that comprise mentation or access to the person who...and task HAS BEEN SEEN that instead of trying to minimize change. level, the technology’s inherent flexibili- AS A ITATI particularly with respect to

  11. Rheological and mechanical properties of polyamide 6 modified by electron-beam initiated mediation process

    International Nuclear Information System (INIS)

    Shin, Boo Young; Kim, Jae Hong

    2015-01-01

    Polyamide (PA6) has been modified by electron-beam initiated mediator process to improve drawbacks of PA6. Glycidyl methacrylate (GMA) was chosen as a reactive mediator for modification process of PA6. The mixture of the PA6 and GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam irradiation at various doses at room temperature. The modified PA6 were characterized by observing rheological and mechanical properties and compared virgin PA6. Thermal properties, water absorption, and gel fraction were also investigated. Tight gel was not found even when PA6 was irradiated at 200 kGy. Complex viscosity and storage modulus of PA6 were remarkably increased by electron-beam irradiation with medium of GMA. Maximum increase in complex viscosity was 75 times higher than virgin PA6 at 0.1 rad/s when it was irradiated at 200 kGy with the GMA. Mechanical properties were also improved without scarifying of processability. The reaction mechanisms for the mediation process with the reactive mediator of GMA were estimated to elucidate the cause of significantly enhanced rheological and mechanical properties without loss of thermoplasticity. - Highlights: • PA6 was modified by the electron-beam initiated mediation process. • Maximum increase in complex viscosity of modified PA6 was 75 times higher than virgin PA6 at 0.1 rad/s. • Mechanical properties were improved without scarifying of processability. • The GMA as a mediator played a key role in the electron-beam initiated mediation process

  12. Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment

    International Nuclear Information System (INIS)

    Mazzoli, Alida; Germani, Michele; Raffaeli, Roberto

    2009-01-01

    Repairing critical human skull injuries requires the production and use of customized cranial implants and involves the integration of computer aided design and manufacturing (CAD and CAM). The main causes for large cranial defects are trauma, cranial tumors, infected craniotomy bone flaps and external neurosurgical decompression. The success of reconstructive cranial surgery depends upon: the preoperative evaluation of the defect, the design and manufacturing of the implant, and the skill of the operating surgeon. Cranial implant design is usually carried out manually using CAD although this process is very time-consuming and the quality of the end product depends wholly upon the skill of the operator. This paper presents an alternative automated method for the design of custom-made cranial plates in a PHANToM ® -based haptic environment, and their direct fabrication in biocompatible metal using electron beam melting (EBM) technology.

  13. Hybrid process technologies in the financial sector

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Marquard, Morten

    2015-01-01

    Danish mortgage credit institutes deal with highly variable and knowledgeintensive processes. At the same time these processes are required to be strictly conformant to current regulations and laws. In addition different divisions of the business are interested in different views on the same...

  14. Deep n-well MAPS in a 130 nm CMOS technology: Beam test results

    International Nuclear Information System (INIS)

    Neri, N.; Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A.; Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Paoloni, E.; Piendibene, M.

    2010-01-01

    We report on recent beam test results for the APSEL4D chip, a new deep n-well MAPS prototype with a full in-pixel signal processing chain obtained by exploiting the triple well option of the CMOS 0.13μm process. The APSEL4D chip consists of a 4096 pixel matrix (32 rows and 128 columns) with 50x50μm 2 pixel cell area, with custom readout architecture capable of performing data sparsification at pixel level. APSEL4D has been characterized in terms of charge collection efficiency and intrinsic spatial resolution under different conditions of discriminator threshold settings using a 12 GeV/c proton beam in the T9 area of the CERN PS. We observe a maximum hit efficiency of 92% and we estimate an intrinsic resolution of about 14μm. The data driven approach of the tracking detector readout chips has been successfully used to demonstrate the possibility to build a Level 1 trigger system based on associative memories. The analysis of the beam test data is critically reviewed along with the characterization of the device under test.

  15. A Survey on Evaluation Factors for Business Process Management Technology

    NARCIS (Netherlands)

    Mutschler, B.B.; Reichert, M.U.

    2006-01-01

    Estimating the value of business process management (BPM) technology is a difficult task to accomplish. Computerized business processes have a strong impact on an organization, and BPM projects have a long-term cost amortization. To systematically analyze BPM technology from an economic-driven

  16. Sustaining Innovation: Developing an Instructional Technology Assessment Process

    Science.gov (United States)

    Carmo, Monica Cristina

    2013-01-01

    This case study developed an instructional technology assessment process for the Gevirtz Graduate School of Education (GGSE). The theoretical framework of Adelman and Taylor (2001) guided the development of this instructional technology assessment process and the tools to aid in its facilitation. GGSE faculty, staff, and graduate students…

  17. The formalization of innovative processes of food technology equipment

    Directory of Open Access Journals (Sweden)

    V. A. Panfilov

    2016-01-01

    Full Text Available Improving the efficiency of scientific and engineering work to develop methods for converting agricultural raw materials into food is the most important condition of output processing and food sectors of agriculture in the sixth technological structure. The purpose of this article is to formalize the process of creating a progressive technique of food technologies. The process of self-organizing technological systems, presents a model of dual mechanism of control with regard to the processes of food technology. It is shown that in the process of adaptation development of the technological system as purposefully improving the structure and functioning of the system: increases the efficiency of interaction with the external environment. This smoothed out the contradictions of the technological system and its the main thing, the main technical contradiction: «productivity – quality». The steps to be taken to ensure that the technological system of conditions for intensive development. It is concluded that the potential development of some technological systems is hidden in the perspective of automation, and others – is associated with adaptive development processes, in particular machines, devices and bioreactors. The paper shows that innovative and truly breakthrough developments leading to the creation of fundamentally new equipment and new generations of technological systems, possible only with the establishment of patterns of organization, structure, functioning and development of open systems, which are modern technologies of agriculture. The mechanism of control of technological object acts as a core of adaptive development, which implements the anti-entropic entity management object, formalizing the innovation process of innovative food processing technologies.

  18. Emerging Food Processing Technologies and Factors Impacting their Industrial Adoption.

    Science.gov (United States)

    Priyadarshini, Anushree; Rajauria, Gaurav; O'Donnell, Colm P; Tiwari, Brijesh K

    2018-06-04

    Innovative food processing technologies have been widely investigated in food processing research in recent years. These technologies offer key advantages for advancing the preservation and quality of conventional foods, for combatting the growing challenges posed by globalization, increased competitive pressures and diverse consumer demands. However, there is a need to increase the level of adoption of novel technologies to ensure the potential benefits of these technologies are exploited more by the food industry. This review outlines emerging thermal and non-thermal food processing technologies with regard to their mechanisms, applications and commercial aspects. The level of adoption of novel food processing technologies by the food industry is outlined and the factors that impact their industrial adoption are discussed. At an industry level, the technological capabilities of individual companies, their size, market share as well as their absorptive capacity impact adoption of a novel technology. Characteristics of the technology itself such as costs involved in its development and commercialization, associated risks and relative advantage, its level of complexity and compatibility influence the technology's adoption. The review concludes that a deep understanding of the development and application of a technology along with the factors influencing its acceptance are critical for its commercial adoption.

  19. Development of the fabrication process of SiC composite by radiation beam

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Woo, Chang Hyeon; Ryu, Woo Seog

    2006-01-01

    In order to operate the nuclear system at high temperatures, core materials with a good irradiation resistance at high temperatures must be developed. SiC composite is one of candidates for high temperature structural materials. Among several fabrication processes, the PIP process includes the curing and pyrolysis process. Generally, the thermal oxidation curing method has some disadvantages; difficulty in the control of oxygen contents and volatilization of many constituents. To overcome these disadvantages and reduce the process time, a new and improved method like the beam curing process has been proposed as one of the effective methods for the fabrication of SiC composite. In this study, the electron beam curing method in the PIP process was optimized to develop SiCf/SiC composite with low oxygen contents. Using the electron beam curing method with full doses of 2∼10 MGy and the pyrolysis process at 1300∼1400 .deg. C, composite with the oxygen content of less than 1 wt% could be obtained. Additionally, if the slurry impregnation and curing/pyrolysis processes were repeated several times, dense composite could be produced

  20. Conjoint Management of Business Processes and Information Technologies

    DEFF Research Database (Denmark)

    Siurdyban, Artur

    and improve business processes. As a consequence, there is a growing need to address managerial aspects of the relationships between information technologies and business processes. The aim of this PhD study is to investigate how the practice of conjoint management of business processes and information...... technologies can be supported and improved. The study is organized into five research papers and this summary. Each paper addresses a different aspect of conjoint management of business processes and information technologies, i.e. problem development and managerial practices on software...... and information technologies in a project environment. It states that both elements are intrinsically related and should be designed and considered together. The second case examines the relationships between information technology management and business process management. It discusses the multi-faceted role...