WorldWideScience

Sample records for beam photodissociation methods

  1. Ultraviolet Photodissociation of Molecular Beams.

    Science.gov (United States)

    1980-12-15

    Continue on reerse side if neceesry and identify by block number) Photodissociation , excimer laser, nitrocompounds, carbon disulfide, sulfur dioxide ...4 ULTRAVIOLET PHOTODISSOCIATION OF MOLECULAR BEAMS. * TYPE OF REPORT (TECHNICAL, FINAL, ETC.) FINAL REPOT OR PERIOD 0/01/77 - 9/30/80 AUTHOR (S... Photodissociation of Final report for period 10/01/77 - 9/30/80 Molecular Beams 6. PERFORMIN, CRG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(e) R

  2. Development of laser-ion beam photodissociation methods. Progress report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Russell, D.H.

    1992-08-01

    Research efforts were concentrated on developing the tandem magnetic sector (EB)/reflection-time-of-flight (TOF) instrument, preliminary experiments with tandem TOF/TOF instruments, developing method for performing photodissociation with pulsed lasers, experiments with laser ionization of aerosol particles, matrix-assisted laser desorption ionization (MALDI), and ion-molecule reaction chemistry of ground and excited state transition metal ions. This progress report is divided into: photodissociation, MALDI (including aerosols), and ion chemistry fundamentals.

  3. Fast beam studies of free radical photodissociation

    Energy Technology Data Exchange (ETDEWEB)

    Neumark, D.M. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The authors have developed a novel technique for studying the photodissociation spectroscopy and dynamics of free radicals. In these experiments, radicals are generated by laser photodetachment of a fast (6-8 keV) mass-selected negative ion beam. The resulting radicals are photodissociated with a second laser, and the photofragments are collected and detected with high efficiency using a microchannel plate detector. The overall process is: ABC{sup -} {yields} ABC + e{sup -} {yields} A + BC, AB + C. Two types of fragment detection schemes are used. To map out the photodissociation cross-section of the radical, the photodissociation laser is scanned and the total photofragment yield is measured as a function of wavelength. In other experiments, the photodissociation frequency is fixed and the photofragment masses, kinetic energy release, and scattering angle is determined for each photodissociation event.

  4. Development of laser-ion beam photodissociation methods. Progress report, December 1991--November 1994

    Energy Technology Data Exchange (ETDEWEB)

    Russell, D.H.

    1994-06-01

    This project emphasizes the development of laser mass spectrometry methods for fundamental and applied studies of gas-phase processes. The current studies are focussed on the photochemistry and photophysics of peptides and other biological molecules. Matrix-assisted laser desorption ionization (MALDI) is used to produce ions that are subsequently subjected to photoexcitation and dissociation. MALDI is still very much in the developmental stages, thus a significant portion of this research focusses on fundamental studies of the MALDI ion formation/energy transfer process. The authors view is that excited state H+-transfer reactions play an important role in MALDI, consequently a significant portion of their research activities are focussed on such studies. Fundamental studies of the role of the matrix in MALDI are an integral part of this project. A new MALDI experiment, MALDI of aerosol particles generated from solutions, has been demonstrated and new developmental research in this area is planned. The authors are also actively pursuing a research program on gas-phase H+-transfer processes that mimic the MALDI process. In addition, they are developing photodissociation experiments, based on tandem time-of-flight mass spectrometers, for structural characterization of complex organic molecules. The photodissociation studies use MALDI as the ionization method. These research areas involve the development of new instrumentation, new instrument methodologies, and data processing.

  5. Fast beam studies of free radical photodissociation

    Energy Technology Data Exchange (ETDEWEB)

    Cyr, Douglas Robert [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    The photodissociation of free radicals is studied in order to characterize the spectroscopy and dissociation dynamics of the dissociative electronic states in these species. To accomplish this, a novel method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with a highly complementary form of photofragment translational spectroscopy. The optical spectroscopy of transitions to dissociative states is determined by monitoring the total photofragment yield as a function of dissociation photon energy. Branching ratios to various product channels, internal energy distributions of the fragments, bond dissociation energies, and the translational energy-dependent photofragment recoil angular distributions are then determined at selected excitation energies. A detailed picture of the dissociation dynamics can then be formulated, allowing insight concerning the interactions of potential energy surfaces involved in the dissociation. After an introduction to the concepts and techniques mentioned above, the experimental apparatus used in these experiments is described in detail. The basis and methods used in the treatment of data, especially in the dissociation dynamics experiments, are then put forward.

  6. UV multiphoton ionization and IR photodissociation of CF{sub 3}I cluster beams

    Energy Technology Data Exchange (ETDEWEB)

    Lokhman, V.N.; Ogurok, D.D. [Institute of Spectroscopy, Russian Academy of Sciences, 142 190 Troitsk, Moscow Region (Russian Federation); Ryabov, E.A. [Institute of Spectroscopy, Russian Academy of Sciences, 142 190 Troitsk, Moscow Region (Russian Federation)], E-mail: ryabov@isan.troitsk.ru

    2007-03-06

    This paper presents the results of studies into the ultraviolet multiphoton ionization (UV MPI) and infrared photodissociation of (CF{sub 3}I){sub n} clusters formed upon the ultrasonic outflow of CF{sub 3}I molecules from a pulsed jet nozzle. The clusters were found to undergo UV MPI under the action of the XeCl-laser radiation (308 nm) to yield I{sup +} and I{sub 2}{sup +} ions as final products. The UV MPI yield was measured as a function of the radiation intensity and stagnation pressure. The efficiency of the UV MPI process was found to depend on the size of the clusters. The IR photodissociation of the (CF{sub 3}I){sub n} clusters was investigated as a function of the energy fluence and frequency of the CO{sub 2}-laser radiation acting on the {nu}{sub 1} mode of the CF{sub 3}I molecule. The size of the clusters and their binding energy were estimated on the basis of the measurement results and model calculations. The main velocity characteristics of the (CF{sub 3}I){sub n} clusters in the beam, namely, the velocity of their directed motion and also the perpendicular and parallel velocity components of their thermal motion, were measured as a function of the CF{sub 3}I gas outflow conditions using their UV MPI and combined UV MPI + IR photodissociation. The thermal motion velocity distributions were demonstrated to be bimodal at the least.

  7. The Wigner method applied to the photodissociation of CH3I

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm

    1985-01-01

    The Wigner method is applied to the Shapiro-Bersohn model of the photodissociation of CH3I. The partial cross sections obtained by this semiclassical method are in very good agreement with results of exact quantum calculations. It is also shown that a harmonic approximation to the vibrational...

  8. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy

    Science.gov (United States)

    Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.; Neumark, Daniel M.

    2016-07-01

    The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS- anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.

  9. Molecular photodissociation

    CERN Document Server

    van Dishoeck, Ewine F

    2011-01-01

    Photodissociation is the dominant removal process of molecules in any region exposed to intense ultraviolet (UV) radiation. This includes diffuse and translucent interstellar clouds, dense photon-dominated regions, high velocity shocks, the surface layers of protoplanetary disks, and cometary and exoplanetary atmospheres. The rate of photodissociation depends on the cross sections for absorption into a range of excited electronic states, as well as on the intensity and shape of the radiation field at each position into the region of interest. Thus, an acccurate determination of the photodissociation rate of even a simple molecule like water or carbon monoxide involves many detailed considerations ranging from its electronic structure to its dissociation dynamics and the specifics of the radiation field that the molecule is exposed to. In this review chapter, each of these steps in determining photodissociation rates is discussed systematically and examples are provided.

  10. NO sub 3 , the study of molecular properties and photodissociation by ab initio method, spectroscopy, and translational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.

    1990-10-01

    This report discusses the following topics: molecular structure of NO{sub 3} radical studied by laser induced fluorescence; photodissociation and fluorescence spectroscopy of NO{sub 3} in molecular beam; vertical electronic spectrum of NO{sub 3}:{sup 2}A{prime}{sub 2}, {sup 2}E{double prime}({sup 2}A{sub 2}{sup 2}B{sub 1}), and {sup 2}E{prime} states; and Ab initio study of the vibrational spectra of NO{sub 3}.

  11. Bidirectional beam propagation method

    Science.gov (United States)

    Kaczmarski, P.; Lagasse, P. E.

    1988-05-01

    A bidirectional extension of the beam propagation method (BPM) to optical waveguides with a longitudinal discontinuity is presented. The algorithm is verified by computing a reflection of the TE(0) mode from a semiconductor laser facet. The bidirectional BPM is applicable to other configurations such as totally reflecting waveguide mirrors, an abruption transition in a waveguide, or a waveguide with many discontinuities generating multiple reflections. The method can also be adapted to TM polarization.

  12. Photochemistry of hydrogen bonded heterocycles probed by photodissociation experiments and ab initio methods.

    Science.gov (United States)

    Slavíček, Petr; Fárník, Michal

    2011-07-14

    In this perspective article, we focus on the photochemistry of five-membered nitrogen containing heterocycles (pyrrole, imidazole and pyrazole) in clusters. These heterocycles represent paradigmatic structures for larger biologically active heterocyclic molecules and complexes. The dimers of the three molecules are also archetypes of different bonding patterns: N-H···π interaction, N-H···N hydrogen bond and double hydrogen bond. We briefly review available data on photochemistry of the title molecules in the gas phase, but primarily we focus on the new reaction channels opened upon the complexation with other heterocycles or solvent molecules. Based on ab initio calculations we discuss various possible reactions in the excited states of the clusters: (1) hydrogen dissociation, (2) hydrogen transfer between the heterocyclic units, (3) molecular ring distortion, and (4) coupled electron-proton transfer. The increasing photostability with complexity of the system can be inferred from experiments with photodissociation in these clusters. A unified view on photoinduced processes in five-membered N-heterocycles is provided. We show that even though different deactivation channels are energetically possible for the complexed heterocycles, in most cases the major result is a fast reconstruction of the ground state. The complexed or solvated heterocycles are thus inherently photostable although the stability can in principle be achieved via different reaction routes.

  13. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C2H5O, and linear Cn (n = 4--6).

  14. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, Choi

    1999-12-16

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C{sub 2}H{sub 5}O, and linear C{sub n} (n = 4--6).

  15. Photodissociation of NaH using time-dependent Fourier grid method

    Indian Academy of Sciences (India)

    Anindita Bhattacharjee; Krishna Rai Dastidar

    2002-03-01

    We have solved the time dependent Schrödinger equation by using the Chebyshev polynomial scheme and Fourier grid Hamiltonian method to calculate the dissociation cross section of NaH molecule by 1-photon absorption from the 1+ state to the 1 state. We have found that the results differ significantly from an earlier calculation [1] although we have used the same set of potential energy curves [2].

  16. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...

  17. Beam-propagation method - Analysis and assessment

    Science.gov (United States)

    van Roey, J.; van der Donk, J.; Lagasse, P. E.

    1981-07-01

    A method for the calculation of the propagation of a light beam through an inhomogeneous medium is presented. A theoretical analysis of this beam-propagation method is given, and a set of conditions necessary for the accurate application of the method is derived. The method is illustrated by the study of a number of integrated-optic structures, such as thin-film waveguides and gratings.

  18. Generalized rectangular finite difference beam propagation method.

    Science.gov (United States)

    Sujecki, Slawomir

    2008-08-10

    A method is proposed that allows for significant improvement of the numerical efficiency of the standard finite difference beam propagation algorithm. The advantages of the proposed method derive from the fact that it allows for an arbitrary selection of the preferred direction of propagation. It is demonstrated that such flexibility is particularly useful when studying the properties of obliquely propagating optical beams. The results obtained show that the proposed method achieves the same level of accuracy as the standard finite difference beam propagation method but with lower order Padé approximations and a coarser finite difference mesh.

  19. Multireference Calculation of the Photodissociation of Benzyl Chloride

    Institute of Scientific and Technical Information of China (English)

    CAO Jun; LIU Ya-Jun; FANG Wei-Hai

    2007-01-01

    The photodissociation mechanism of benzyl chloride (BzCl) under 248 nm has been investigated by the complete active space SCF (CASSCF) method by calculating the geometries of the ground (S0) and lower excited states,the vertical (Tv) and adiabatic (T0) excitation energies of the lower states,and the dissociation reaction pathways on the potential energy surfaces (PES) of S1, T1 and T2 states.The calculated results clearly elucidated the photodissociation mechanism of BzCl,and indicated that the photodissociation on the PES of T1 state is the most favorable.

  20. Quantum yield for O-atom production in the VUV photodissociation of CO2 using the time-sliced velocity-mapped imaging (TS-VMI) method

    Science.gov (United States)

    Jackson, William M.

    2016-10-01

    VUV photodissociation above 10.5 eV is considered the primary region for photochemical destruction of CO2 by solar radiation. There is enough photon energy in this region so that in addition to ground state O(3PJ) and CO(1Σ +) that can be produced during photodissociation excited species such as atomic oxygen O(1D) and O(1S), as well as excited carbon monoxide CO(a3Π, a'3Σ+) also can be formed. Electronic excited oxygen atom and carbon monoxide are the species that are responsible for the airglows in atmospheres of the solar planets and comets. Therefore, detail photodissociation quantum yields for these excited species from CO2 are critical in interpreting the chemistry in these solar system bodies. We have previously shown that the time-sliced velocity-mapped imaging (TS-VMI) technique can provide detailed branching ratio information about photodissociation of diatomic molecules.1, 2 However, to date we have not been able to show how this technique can be use to determine absolute quantum yields for the products produced in the VUV photodissociation of CO2. In this talk we will describe how the known quantum yields for the photodissociation O2 to O(3P2), O(3P1), O(3P0) and O(1D) can be used to determine quantum yields of similar products in the photodissociation of CO2.[1] Yu Song, Hong Gao, Yih Chung Chang, D. Hammouténe, H. Ndome, M. Hochlaf, William M. Jackson, and C. Y. Ng, Ap. J., 819:23 (13pp), 2016; doi:10.3847/0004-637X/819/1/23.[2] Hong Gao, Yu Song, William M. Jackson and C. Y. Ng, J. Chem. Phys, 138, 191102, 2013.

  1. Inner Crack Detection Method for Cantilever Beams

    Science.gov (United States)

    Li, Zheng; Zhang, Wei; Li, Yixuan; Su, Xianyue

    2008-02-01

    In this paper, continuous wavelet transform has been performed to extract the inner crack information from the guided waves in cantilever beams, and the location and size of crack can be detected exactly. Considering its best time-frequency property, Gabor continuous wavelet transform is employed to analyze the complicated flexible wave signals in cantilever beam, which is inspirited by an impact on the free end. Otherwise, in order to enhance the sensitivity of detection for some small cracks, an improved method is discussed. Here, both computational and experimental methods are carried out for comparing the influence of different crack location in beam. Therefore, the method proposed can be expected to expand to a powerful damage detection method in a broad engineering application.

  2. Photodissociation of neutron deficient nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2006-03-15

    The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)

  3. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D.L.

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E{sub T}), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  4. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, David Lewis [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(ET), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  5. Beam Parameters Measurement Based On Tv Methods

    CERN Document Server

    Klimenkov, E; Milichenko, Yu; Voevodin, V

    2004-01-01

    The paper describes hardware and software used to control TV-cameras and to process TV-images of luminescent screens placed along the beam transfer lines. Industrial devices manually control the movements and focusing of the cameras. All devices are linked to PC via PCI interfaces with homemade drivers for Linux OS and provide both selection of camera and digitizing of video signal synchronized with beam. One part of software provides means to set initial parameters using PC consol. Thus an operator can choose contrast, brightness, some number of significant points on TV-image to calculate beam position and its size. Second part supports remote TV controls and data processing from Control Rooms of U-70 complex using set initial parameters. First experience and results of the method realization are discussed.

  6. Controlling of Beam Halo-chaos by Adaptation Method

    Institute of Scientific and Technical Information of China (English)

    FANGJin-qing; GAOYuan; LUOXiao-shu

    2003-01-01

    In this paper, the parametric adaptation method for controlling the beam halo-chaos in the periodic focusing channels of high-current proton linacs is proposed. The study of proton beam halo-chaos based on controlled beam envelope equation and the Particles-in-Cell simulations for proton beam dynamics show that the proton beam chaotic envelope as well as the beam rsm radius can be controlled to the matched radius using this method.

  7. Mixed quantum/classical investigation of the photodissociation of NH3(A) and a practical method for maintaining zero-point energy in classical trajectories.

    Science.gov (United States)

    Bonhommeau, David; Truhlar, Donald G

    2008-07-07

    The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode nu(2) with n(2)=0,[ellipsis (horizontal)],6 quanta of vibration) in the A electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTUSD+trajectory projection onto ZPE orbit (TRAPZ) and FSTUSD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH(2) internal energy distributions obtained for n(2)=0 and n(2)>1, as observed in experiments. Distributions obtained for n(2)=1 present an intermediate behavior between distributions obtained for smaller and larger n(2) values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH(2) internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n(2)=0 and n(2)=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.

  8. Photodissociation cross section of ClOOCl at 330 nm.

    Science.gov (United States)

    Jin, Bing; Chen, I-Cheng; Huang, Wen-Tsung; Lien, Chien-Yu; Guchhait, Nikhil; Lin, Jim J

    2010-04-15

    The photolysis rate of ClOOCl is crucial in the catalytic destruction of polar stratospheric ozone. In this work, we determined the photodissociation cross section of ClOOCl at 330 nm with a molecular beam and with mass-resolved detection. The photodissociation cross section is the product of the absorption cross section and the dissociation quantum yield. We formed an effusive molecular beam of ClOOCl at a nozzle temperature of 200 or 250 K and determined its photodissociation probability by measuring the decrease of the ClOOCl intensity upon laser irradiation. By comparing with a reference molecule (Cl(2)), of which the absorption cross section and dissociation quantum yield are well-known, we determined the absolute photodissociation cross section of ClOOCl at 330 nm to be (2.31 +/- 0.11) x 10(-19) cm(2) at 200 K and (2.47 +/- 0.12) x 10(-19) cm(2) at 250 K. Impurity interference has been a well-recognized problem in conventional spectroscopic studies of ClOOCl; our mass-resolved measurement directly overcomes such a problem. This measurement of the ClOOCl photolysis cross section at 330 nm is particularly useful in constraining its atmospheric photolysis rate, which in the polar stratosphere peaks near this wavelength.

  9. Beam imaging sensor and method for using same

    Science.gov (United States)

    McAninch, Michael D.; Root, Jeffrey J.

    2017-01-03

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature. In another embodiment, the beam imaging sensor of the present invention comprises, among other things, a discontinuous partially circumferential slit. Also disclosed is a method for using the various beams sensor embodiments of the present invention.

  10. Rovibrationally resolved photodissociation of SH+

    Science.gov (United States)

    McMillan, E. C.; Shen, G.; McCann, J. F.; McLaughlin, B. M.; Stancil, P. C.

    2016-04-01

    Photodissociation cross sections for the SH+ radical are computed from all rovibrational (RV) levels of the ground electronic state {{X}}{}3{{{Σ }}}- for wavelengths from threshold to 500 Å. The five electronic transitions, 2{}3{{{Σ }}}- ≤ftarrow {{X}}{}3{{{Σ }}}-,3{}3{{{Σ }}}- ≤ftarrow {{X}}{}3{{{Σ }}}-, A{}3{{\\Pi }} ≤ftarrow {{X}}{}3{{{Σ }}}-,2{}3{{\\Pi }} ≤ftarrow {{X}}{}3{{{Σ }}}-, and 3{}3{{\\Pi }} ≤ftarrow {{X}}{}3{{{Σ }}}-, are treated with a fully quantum-mechanical two-state model, i.e. nonadiabatic couplings between excited states were not included. The photodissociation calculations incorporate adiabatic potentials and transition dipole moment functions computed in the multireference configuration interaction approach along with the Davidson correction (MRCI+Q), but adjusted to match available experimental molecular data and asymptotic atomic limits. Local thermodynamic equilibrium (LTE) photodissociation cross sections were computed which assume a Boltzmann distribution of RV levels in the {{X}}{}3{{{Σ }}}- molecular state of the SH+ cation. The LTE cross sections are presented for temperatures in the range 1000-10 000 K. Applications of the current photodissociation cross sections to interstellar gas, photon-dominated regions, and stellar atmospheres are briefly discussed.

  11. Photodissociation of Cl 2 in helium clusters: an application of hybrid method of quantum wavepacket dynamics and path integral centroid molecular dynamics

    Science.gov (United States)

    Takayanagi, Toshiyuki; Shiga, Motoyuki

    2003-04-01

    The photodissociation dynamics of Cl 2 embedded in helium clusters is studied by numerical simulation with an emphasis on the effect of quantum character of helium motions. The simulation is based on the hybrid model in which Cl-Cl internuclear dynamics is treated in a wavepacket technique, while the helium motions are described by a path integral centroid molecular dynamics approach. It is found that the cage effect largely decreases when the helium motion is treated quantum mechanically. The mechanism is affected not only by the zero-point vibration in the helium solvation structure, but also by the quantum dynamics of helium.

  12. Photodissociation and chemistry of N$_2$ in the circumstellar envelope of carbon-rich AGB stars

    CERN Document Server

    Li, Xiaohu; Walsh, Catherine; Heays, Alan N; van Dishoeck, Ewine F

    2014-01-01

    The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\\to$ N (also, CO $\\to$ C $\\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads...

  13. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  14. Facilities and methods for radioactive ion beam production

    CERN Document Server

    Blumenfeld, Y; Van Duppen, P

    2013-01-01

    Radioactive ion beam facilities are transforming nuclear science by making beams of exotic nuclei with various properties available for experiments. New infrastructures and development of existing installations enlarges the scientific scope continuously. An overview of the main production, separation and beam handling methods with focus on recent developments is done, as well as a survey of existing and forthcoming facilities world-wide.

  15. Modal Perturbation Method for the Dynamic Characteristics of Timoshenko Beams

    OpenAIRE

    2005-01-01

    Timoshenko beams have been widely used in structural and mechanical systems. Under dynamic loading, the analytical solution of a Timoshenko beam is often difficult to obtain due to the complexity involved in the equation of motion. In this paper, a modal perturbation method is introduced to approximately determine the dynamic characteristics of a Timoshenko beam. In this approach, the differential equation of motion describing the dynamic behavior of the Timoshenko beam can be transformed int...

  16. Oxyhemoglobin photodissociation efficiency in biological tissue exposed to laser radiation

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.

    2011-09-01

    We have obtained quantitative data on the differential (with respect to depth) and the integrated oxyhemoglobin photodissociation efficiency in the dermis when the skin surface is exposed to a light beam in the wavelength range 300-650 nm. With this aim, we have used our own previously developed optical model for skin tissue and analytical procedure for calculating the characteristics of optical fields in a medium. We have estimated the number of oxygen molecules formed at different depths in the medium, and also their integrated number over the entire thickness of the dermis as a function of the irradiation wavelength. We consider models for a dermis that is homogeneous with respect to depth and a dermis that has a layered structure. We show that the spectral photodissociation efficiency has a number of maxima associated with the absorption spectrum of oxyhemoglobin and the optical properties of all the layers of skin tissue. We discuss the effect of the epidermis on these maxima.

  17. Confined ion beam sputtering device and method

    Science.gov (United States)

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  18. Controlling Beam Halo-chaos Using a Special Nonlinear Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry,medicine, and national defense. Some general engineering methods for chaos control have been developedin recent years, but they generally are unsuccessful for beam halo-chaos suppression due to manytechnical constraints. Beam halo-chaos is essentially a spatotemporal chaotic motion within a high power

  19. Photodissociation of OH in interstellar clouds

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Dalgarno, A.

    1984-01-01

    Calculations are presented of the lifetime of OH against photodissociation by the interstellar radiation field as a function of depth into interstellar clouds containing grains of various scattering properties. The effectiveness of the different photodissociation channels changes with depth into a c

  20. Photodissociation of sodium iodide and resonant ionization of sodium atom produced

    Institute of Scientific and Technical Information of China (English)

    HUO Bing-hai; Z.T.Salim; A.H.Bakery

    2004-01-01

    Resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) are employed to detect the photodissociation product of sodium iodide molecules in a molecular beam in an intense laser field in the absence of the buffer gases. Time of flight mass spectra is recorded. In particular, the appearances of multiphoton ionization are discussed.

  1. Photodissociation of interstellar N2

    CERN Document Server

    Li, Xiaohu; Visser, Ruud; Ubachs, Wim; Lewis, Brenton R; Gibson, Stephen T; van Dishoeck, Ewine F

    2013-01-01

    Molecular nitrogen is one of the key species in the chemistry of interstellar clouds and protoplanetary disks and the partitioning of nitrogen between N and N2 controls the formation of more complex prebiotic nitrogen-containing species. The aim of this work is to gain a better understanding of the interstellar N2 photodissociation processes based on recent detailed theoretical and experimental work and to provide accurate rates for use in chemical models. We simulated the full high-resolution line-by-line absorption + dissociation spectrum of N2 over the relevant 912-1000 \\AA\\ wavelength range, by using a quantum-mechanical model which solves the coupled-channels Schr\\"odinger equation. The simulated N2 spectra were compared with the absorption spectra of H2, H, CO, and dust to compute photodissociation rates in various radiation fields and shielding functions. The effects of the new rates in interstellar cloud models were illustrated for diffuse and translucent clouds, a dense photon dominated region and a ...

  2. Analytical Evaluation of Beam Deformation Problem Using Approximate Methods

    DEFF Research Database (Denmark)

    Barari, Amin; Kimiaeifar, A.; Domairry, G.

    2010-01-01

    The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified...

  3. Accurate Method for Determining Adhesion of Cantilever Beams

    Energy Technology Data Exchange (ETDEWEB)

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  4. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-Up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  5. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  6. C$_{60}$ in Photodissociation Regions

    CERN Document Server

    Castellanos, Pablo; Sheffer, Yaron; Wolfire, Mark G; Tielens, Alexander G G M

    2014-01-01

    Recent studies have confirmed the presence of buckminsterfullerene (C$_{60}$) in different interstellar and circumstellar environments. However, several aspects regarding C$_{60}$ in space are not well understood yet, such as the formation and excitation processes, and the connection between C$_{60}$ and other carbonaceous compounds in the interstellar medium, in particular polycyclic aromatic hydrocarbons (PAHs). In this paper we study several photodissociation regions (PDRs) where C$_{60}$ and PAHs are detected and the local physical conditions are reasonably well constrained, to provide observational insights into these questions. C$_{60}$ is found to emit in PDRs where the dust is cool ($T_d = 20-40$ K) and even in PDRs with cool stars. These results exclude the possibility for C$_{60}$ to be locked in grains at thermal equilibrium in these environments. We observe that PAH and C$_{60}$ emission are spatially uncorrelated and that C$_{60}$ is present in PDRs where the physical conditions (in terms of radi...

  7. Carbon Dioxide Photodissociation on Iapetus

    Science.gov (United States)

    Palmer, Eric; Brown, R. H.

    2009-09-01

    Carbon dioxide has been detected on Iapetus (Buratti et al., 2005) and is correlated with the dark material, mostly at mid-latitudes on the leading face of Iapetus (Palmer and Brown, in preparation). The average absorption feature of CO2 in the dark region is 24.7%; if it were a thin veneer of CO2 ice, it would be 14 um thick. Estimating the surface area of dark material and extrapolating gives a total CO2 budget of 8 x 107 kg on the surface of Iapetus. Volatile studies indicate that the surface of Iapetus is too hot to have CO2 ice remain on the surface for more than a few hundred years (Palmer and Brown, 2008). It has been suggested that complexing of volatiles, such as in clathrates, fluid or gas inclusions, or adsorption, would increase the stability on the Jovian and Saturnian satellites, increasing their residence times (McCord; et al., 1998; Hibbitts et al., 2001, 2002, 2007). While complexing would increase carbon dioxide's thermal stability, the resident time of CO2 on Iapetus would remain short due to the effect of UV radiation. We calculated the photodissociation rate for CO2 and found that the entire budget of CO2 on Iapetus would be destroyed in less than one Earth year. If we assume a steady-state system on Iapetus (photodissociation equal to photo-generation) approx. 108 kg will be destroyed and produced every Earth year. Unless the complexing mechanism provides some shielding from UV radiation while still allowing the detection of the 4.26-micron CO2 band, then a source of CO2 is required. We suggest that the source of CO2 is photolytic production from water ice and carbonaceous material.

  8. A novel method for beam misalignment correction of an accelerated charged-particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Rahighi, J. [Van de Graaff Laboratory, Nuclear Science Research School, NSTRI, P.O. Box 14395-836, Tehran, Iran (Iran, Islamic Republic of)]. E-mail: jrahighi@aeoi.org.ir; Lamehi-Rachti, M. [Van de Graaff Laboratory, Nuclear Science Research School, NSTRI, P.O. Box 14395-836, Tehran, Iran (Iran); Kakuee, O.R. [Van de Graaff Laboratory, Nuclear Science Research School, NSTRI, P.O. Box 14395-836, Tehran, Iran (Iran)

    2007-07-21

    A novel method is presented for misalignment correction of an accelerated charged-particle beam in a typical charged-particle scattering experiment employing large-solid-angle detectors. The correction method is based on Rutherford scattering and is quite straightforward to apply when a large solid angle and axially symmetric detection system is used in the experimental measurements. A Monte Carlo computer program and its formalism based on Rutherford scattering cross-section have been described. The program is used to calculate beam misalignment offline after data collection is completed. The method has been successfully applied to correct for misalignment calculated to be typically of the order of a few mm in a {sup 6}He radioactive beam of 27 MeV total energy emerging from a cyclotron and produced via {sup 7}Li(p,2p){sup 6}He reaction.

  9. Koehler-illumination-based method to improve beam size controllability

    Science.gov (United States)

    Hattori, Kiyoshi; Sunaoshi, Hitoshi; Ando, Atsushi

    1998-06-01

    We have developed a new EB calibration method for adjusting both Koehler illumination condition and beam current density precisely in the EB direct writing system EX-8D. Koehler illumination condition is adjusted by controlling the condenser lens so that the beam size change on the target vs. focus change of the objective is minimized. Beam current density is adjusted to the desired value by controlling the two condenser lenses which acts as a zoom lens function and maintaining above Koehler illumination condition. Using this method, beam size deviation was improved to less than 2 nm for a focus change of 10 micrometers , and beam current density was controlled to less than 0.5 percent error from the desired value. This beam calibration was executed in less than 10 minutes. We have also evaluated the pattern roughness and the pattern size deviation depending on the focus change by delineating a 0.125 micrometers line and space pattern. The pattern roughness was controlled to less than 2 nm and the pattern size deviation was less than 2 nm for a focus change of +/- micrometers .

  10. Research into the sampling methods of digital beam position measurement

    Institute of Scientific and Technical Information of China (English)

    邬维浩; 赵雷; 陈二雷; 刘树彬; 安琪

    2015-01-01

    A fully digital beam position monitoring system (DBPM) has been designed for SSRF (Shanghai Synchrotron Radiation Facility). As analog-to-digital converter (ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and com-pared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn (TBT) position resolution better than 1 µm is achieved, and the slow-acquisition (SA) position resolution is improved from 4.28 µm to 0.17 µm.

  11. Surface chemistry in photodissociation regions

    CERN Document Server

    Esplugues, G B; Meijerink, R; Spaans, M; Caselli, P

    2016-01-01

    The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in d...

  12. Photostability of amino acids: photodissociation dynamics of phenylalanine chromophores.

    Science.gov (United States)

    Tseng, Chien-Ming; Lin, Ming-Fu; Yang, Yi Lin; Ho, Yu Chieh; Ni, Chi-Kung; Chang, Jia-Lin

    2010-05-21

    The theoretical prediction of H atom elimination on the excited state of phenol, imidazole and indole, the respective chromophores for the amino acids tyrosine, histidine and tryptophan, and the confirmation of theoretical prediction by experimental observations have a great impact on the explanation of photostability of amino acids upon irradiation with UV photons. On the other hand, no theoretical prediction of the excited state photodissociation dynamics has been made on the other aromatic amino acid, phenylalanine. In this work, photodissociation dynamics for various phenylalanine chromophores, including, phenylethylamine, N-methyl-phenylethylamine, and N-acetyl phenylalanine methyl ester was investigated in a molecular beam at 248 and 193 nm using multimass ion imaging techniques. The major dissociation channel for these compounds is the C-C bond cleavage. However, the photofragment translational energy distribution of phenylethylamine contains two components. The slow component corresponds to the dissociation on the ground state surface after internal conversion, and the fast component represents the dissociation from an excited state with a large exit barrier. The competition between the dissociation on the ground state and on the excited state changes as the size of chromophores increases. Internal conversion to the ground state prior to dissociation becomes the major nonradiative process for large chromophores. This study reveals the size-dependent photostability for these amino acid chromophores.

  13. Novel methods for treatment planning in Ion Beam Therapy

    OpenAIRE

    Cabal Arango, Gonzalo Alfonso

    2012-01-01

    One of the biggest challenges in ion beam therapy is the mitigation of the impact of uncertainties in the quality of treatment plans. Some of the strategies used to reduce this impact are based on concepts developed decades ago for photon therapy. In this thesis novel methods and concepts, tailored to the specifi c needs of ion beam therapy, are proposed which reduce the effect of uncertainties on treatment plans. This is done in two steps: First, we revisit the concept of the Planning Target...

  14. The photodissociation of CO in circumstellar envelopes

    Science.gov (United States)

    Mamon, G. A.; Glassgold, A. E.; Huggins, P. J.

    1988-01-01

    The CO photodissociation rate for the unshielded ISM is calculated using recent laboratory results which confirm that photodissociation occurs by way of line absorption. A value of 2.0 x 10 to the -10th/s, an order of magnitude higher than the rate used in the past, is obtained. The new rate and a treatment of the radiative transfer and shielding are used to develop a theory for the CO abundance in the circumstellar envelopes of cool, evolved stars, and results are presented on the spatial variation of CO, C, and C(+). It is shown that these distributions play important roles in determining the observational properties of circumstellar envelopes.

  15. 14th international symposium on molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  16. 14th international symposium on molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  17. Photodissociation of RbI in an Intense Laser Field: Detection of the Product Metal Atom Rb Using RIMS

    Institute of Scientific and Technical Information of China (English)

    HUO Binghai; GAO Jie; CUI Shuanjin; H. H. Telle; Z. T. Salim

    2000-01-01

    It is reported on the recent research using resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) to detect the photodissociation product of Rubidium iodide molecules in a molecular beam in an intense laser field. Time of flight mass spectra is recorded. In particular, the appearances of multiphoton ionization are discussed.

  18. Method for enhancing stability in multi-beam microscopy

    Science.gov (United States)

    Huang, Yujia; Wang, Yifan; Kuang, Cuifang; Liu, Xu

    2016-10-01

    A method based on close loop control of four degrees of freedom (4DF) is proposed to enhance angular and translational stability of beams in multi-beam microscopy including STED, RESOLFT and CARS, etc. Deviations of multi-beams can be measured and corrected by our module, which is composed of four degrees of freedom position sensitive detectors (4DF PSD) and two actuator mirrors (AM) with motor and piezo servos. An output crosslink matrix obtained by a self-learning process is used to control four actuators to compensate for 4DF independently in beam deviations. We realize a standard deviation within about 2 µm at the entrance pupil plane (a spatial optical path of 180 cm for the whole system) using a compact stabilization system, which is equivalent to around 3 nm at the sample plane under the 100×  objective lens with a focal length of 2 mm, corresponding to an improvement of stability by an order of magnitude. Our method can react fast in real time and compensate for large disturbances caused by air agitation or temperature variation.

  19. Method and apparatus for laser-controlled proton beam radiology

    Science.gov (United States)

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  20. Dynamic Response of Inextensible Beams by Improved Energy Balance Method

    DEFF Research Database (Denmark)

    Sfahani, M. G.; Barari, Amin; Omidvar, M.

    2011-01-01

    An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam with a rotationa......An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam...... procedure for a particular value of the initial condition is then used to estimate the constants. This semi-analytical representation gives excellent approximations to the exact solutions for the whole range of the oscillation amplitude, reducing the respective error of angular frequency in comparison...

  1. Method to render second order beam optics programs symplectic

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, D.; Servranckx, R.V.

    1984-10-01

    We present evidence that second order matrix-based beam optics programs violate the symplectic condition. A simple method to avoid this difficulty, based on a generating function approach to evaluating transfer maps, is described. A simple example illustrating the non-symplectricity of second order matrix methods, and the effectiveness of our solution to the problem, is provided. We conclude that it is in fact possible to bring second order matrix optics methods to a canonical form. The procedure for doing so has been implemented in the program DIMAT, and could be implemented in programs such as TRANSPORT and TURTLE, making them useful in multiturn applications. 15 refs.

  2. The photodissociation and chemistry of interstellar CO

    NARCIS (Netherlands)

    Dishoeck, van E.F.; Black, J.H.

    1988-01-01

    Recent work on the vacuum UV absorption spectrum of CO to the description of the photodissociation of interstellar CO and its principal isotopic varieties is discussed. The effects of line broadening, self-shielding, shielding by H and H2, and isotope-selective shielding are examined as functions of

  3. Analysis of reinforced concrete beams by the equivalent section method

    CERN Document Server

    Schulz, Mauro

    2014-01-01

    This research investigates the analysis of reinforced concrete beams subjected to combined axial load, bending moment and shear force. Cross-sections of general shape are divided, along the height, into plane elements. The biaxial behavior is represented according to the smeared rotating crack approach. Using traditionally accepted hypotheses for beams, the shear flow is determined by applying the Jouravski formula to an "equivalent section", which takes into account the nonlinear material behavior. The "Equivalent Section Method", originally proposed by Diaz (1980) and Diaz and Schulz (1981), is improved and simplified. The formulation is implemented applying the bidimensional constitutive model A, proposed by Vecchio and Collins (1993). The tension-stiffening effect is considered as adopted by Polak and Vecchio (1993). Shear slip at crack surfaces, Poisson's ratio and other secondary effects are not considered. Validation is undertaken by comparison with experimental results obtained by other researchers. T...

  4. Design method for automotive high-beam LED optics

    Science.gov (United States)

    Byzov, Egor V.; Moiseev, Mikhail A.; Doskolovich, Leonid L.; Kazanskiy, Nikolay L.

    2015-09-01

    New analytical method for the calculation of the LED secondary optics for automotive high-beam lamps is presented. Automotive headlamps should illuminate the road and the curb at the distance of 100-150 meters and create a bright, flat, relatively powerful light beam. To generate intensity distribution of this kind we propose to use TIR optical element (collimator working on the total internal reflection principle) with array of microlenses (optical corrector) on the upper surface. TIR part of the optical element enables reflection of the side rays to the front direction and provides a collimated beam which incidents on the microrelief. Microrelief, in its turn, dissipates the light flux in horizontal direction to meet the requirements of the Regulations 112, 113 and to provide well-illuminated area across the road in the far field. As an example, we computed and simulated the optical element with the diameter of 33 millimeters and the height of 22 millimeters. Simulation data shows that three illuminating modules including Cree XP-G2 LED and lens allow generating an appropriate intensity distribution for the class D of UNECE Regulations.

  5. An investigation of acoustic beam patterns for the sonar localization problem using a beam based method.

    Science.gov (United States)

    Guarato, Francesco; Windmill, James; Gachagan, Anthony; Harvey, Gerald

    2013-06-01

    Target localization can be accomplished through an ultrasonic sonar system equipped with an emitter and two receivers. Time of flight of the sonar echoes allows the calculation of the distance of the target. The orientation can be estimated from knowledge of the beam pattern of the receivers and the ratio, in the frequency domain, between the emitted and the received signals after compensation for distance effects and air absorption. The localization method is described and, as its performance strongly depends on the beam pattern, the search of the most appropriate sonar receiver in order to ensure the highest accuracy of target orientation estimations is developed in this paper. The structure designs considered are inspired by the ear shapes of some bat species. Parameters like flare rate, truncation angle, and tragus are considered in the design of the receiver structures. Simulations of the localization method allow us to state which combination of those parameters could provide the best real world implementation. Simulation results show the estimates of target orientations are, in the worst case, 2° with SNR = 50 dB using the receiver structure chosen for a potential practical implementation of a sonar system.

  6. An Improved Peak Sidelobe Reduction Method for Subarrayed Beam Scanning

    Directory of Open Access Journals (Sweden)

    Hang Hu

    2015-01-01

    Full Text Available This paper focused on PSL (peak sidelobe level reduction for subarrayed beam scanning in phased array radars. The desired GSP (Gaussian Subarray Patterns are achieved by creating a subarray weighting network. The GSP-based method could reduce PSL of array pattern; compared with the method based on the desired subarray pattern which is defined by ideal space-domain filter, the PSL reduction performance is improved remarkably. Further, based on the concept adopting superelement patterns to approximately express original subarray patterns, the simplified GSP-based method is proposed. So the dimension of each matrix required for creating the weighting network, which was originally the same as the element number, could be reduced to the same as the subarray number. Consequently, we achieve remarkable reduction of the computation burden; simultaneously, the PSL mitigation performance is degraded slightly. Simulation results demonstrate the validity of the introduced methods.

  7. Probing the role of polycyclic aromatic hydrocarbons in the photoelectric heating within photodissociation regions

    NARCIS (Netherlands)

    Okada, Y.; Pilleri, P.; Berné, O.; Ossenkopf, V.; Fuente, A.; Goicoechea, J. R.; Joblin, C.; Kramer, C.; Röllig, M.; Teyssier, D.; van der Tak, F. F. S.

    2013-01-01

    Aims: We observationally investigate the relation between the photoelectric heating efficiency in photodissociation regions (PDRs) and the charge of polycyclic aromatic hydrocarbons (PAHs), which are considered to play a key role in photoelectric heating. Methods: Using PACS onboard Herschel, we obs

  8. Photodissociation dynamics of triatomic molecule in presence of pulsed and bichromatic laser field

    Science.gov (United States)

    Ahamed Khan, Basir

    2014-04-01

    The photodissociation dynamics of a triatomic molecule in the presence of pulsed and bichromatic electric field have been investigated. We have considered MgH2 molecule in its ground state potential energy surface. The time-dependent Fourier Grid Hamiltonian method is invoked to follow the dissociation dynamics as a function of field strength, frequency, phase difference, etc.

  9. Photodissociation Studies of Metal-Containing Clusters and Complexes

    Science.gov (United States)

    Pilgrim, Jeffrey Scott

    1995-01-01

    There have been two major areas of investigation for researchers working with laser ablation in molecular beams. The first area is the study of weakly-bound complexes. These complexes are bound by electrostatic interactions. In the present study the weakly bound interactions of the rare gases with the magnesium ion are investigated with electronic spectroscopy. The second major area is the study of metal and metal-containing clusters. Examples of previous investigations are the alkali metal clusters and the fullerenes. The present investigation is on metal -carbon clusters. The so-called metallo-carbohedrenes and metal-carbon nanocrystals are studied. Resonance enhanced photodissociation spectroscopy is used to obtain electronic excitation spectra of the Mg^+-rare gas species in the ultraviolet region. This investigation is facilitated by a reflectron time-of-flight mass spectrometer. The interaction of the rare gas with the metal ion is attributed to a "solvation" of the atomic ion transition. Simple bonding arguments predict that the excited state is more bound than the ground state for these complexes. This will result in a shift of the complex vibronic origin to lower energy from the atomic ion transition. This is exactly what is observed in the experiment with progressively larger shifts for the heavier rare gases. The electronic excitation spectra allow the vibrational frequencies and anharmonicities for these complexes to be obtained for the excited state. In turn, the excited state bond dissociation energies can be determined. Finally, conservation of energy allows calculation of the ground state bond dissociation energies. In the metal-carbon systems the stability of the metallo-carbohedrene, met-car, stoichiometry is shown to extend into the transition period at least to the iron group. Photodissociation with a 532 nm laser causes a loss of metal atoms for met-cars formed with first row transition metals and a loss of metal-carbon units for met

  10. Photoisomerization and photodissociation dynamics of reactive free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Bise, Ryan T.

    2000-08-24

    The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociative {tilde A}{sup 2}A{sub 1} and {tilde B}{sup 2}A{sub 2} states of CH{sub 3}S have been investigated. At all photon energies, CH{sub 3} + S({sup 3}P{sub j}), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH{sub 3} umbrella mode and the S({sup 3}P{sub j}) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N{sub 2} photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C{sub 2V} transition state. Resolved vibrational structure of the N{sub 2} photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic transition state. In contrast to the radicals mentioned above, resolved

  11. Photoisomerization and photodissociation dynamics of reactive free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Bise, Ryan T. [Univ. of California, Berkeley, CA (United States)

    2000-08-01

    The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociative $\\tilde{A}$2A1 and $\\tilde{B}$2A2 states of CH3S have been investigated. At all photon energies, CH3 + S(3Pj), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH3 umbrella mode and the S(3Pj) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N2 photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C2V transition state. Resolved vibrational structure of the N2 photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic

  12. Ultraviolet photodissociation of hydrogen iodide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Dulligan, M.; Wittig, C. [Univ. of Southern California, Los Angeles, CA (United States)

    1995-12-01

    Binary hydrogen halide complexes are useful for studying photoinitiated reactions and inelastic processes at ultraviolet wavelengths where hydrogen halides undergo direct photodissociation. In this work, photo-initiated processes in (HI){sub 2} are investigated at 266 nm. This study has been carried out by measuring the atomic hydrogen velocity distributions via high-n Rydberg time-of-flight (HRTOF) spectroscopy, and the translational energy distributions of the hydrogen atom products have been obtained.

  13. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    Science.gov (United States)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  14. Method and apparatus for efficient photodetachment and purification of negative ion beams

    Science.gov (United States)

    Beene, James R.; Liu, Yuan; Havener, Charles C.

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  15. Underwater Environment SDAP Method Using Multi Single-Beam Sonars

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2013-01-01

    Full Text Available A new autopilot system for unmanned underwater vehicle (UUV using multi-single-beam sonars is proposed for environmental exploration. The proposed autopilot system is known as simultaneous detection and patrolling (SDAP, which addresses two fundamental challenges: autonomous guidance and control. Autonomous guidance, autonomous path planning, and target tracking are based on the desired reference path which is reconstructed from the sonar data collected from the environmental contour with the predefined safety distance. The reference path is first estimated by using a support vector clustering inertia method and then refined by Bézier curves in order to satisfy the inertia property of the UUV. Differential geometry feedback linearization method is used to guide the vehicle entering into the predefined path while finite predictive stable inversion control algorithm is employed for autonomous target approaching. The experimental results from sea trials have demonstrated that the proposed system can provide satisfactory performance implying its great potential for future underwater exploration tasks.

  16. A new method for beam stacking in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2008-06-01

    Recently, I developed a new beam stacking scheme for synchrotron storage rings called 'longitudinal phase-space coating' (LPSC). This scheme has been convincingly validated by multi-particle beam dynamics simulations and has been demonstrated with beam experiments at the Fermilab Recycler. Here, I present the results from both simulations and experiments. The beam stacking scheme presented here is the first of its kind.

  17. Monitoring UF/sub 6/ photodissociation via laser multiphoton ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stuke, M.; Reisler, H.; Wittig, C.

    1981-08-01

    Laser multiphoton ionization (MPI) is used to detect nascent photoproducts following the UV photodissociation of UF/sub 6/. Sensitivity is high, and there is no measurable background due to the MPI of parent UF/sub 6/. The technique is very well suited for monitoring isotopically selective photodissociation on a ''single shot'' basis.

  18. New Wideband Beam-forming Method Used in Underwater Communication System%New Wideband Beam-forming Method Used in Underwater Communication System

    Institute of Scientific and Technical Information of China (English)

    苏为; 黄晓燕; 程恩; 袁飞; 孙海信

    2011-01-01

    A novel wideband beam-forming structure with constant beam width based on complex coefficients (FIR) digital filters used in underwater acoustic communication is proposed. First, the received signals are compensated with integer sampling period by using delay line. Then their complex envelopes are calculated by using frequency shift method. Finally, the envelopes are weighted by using complex coefficients FIR digital filters whose coefficients are optimized. Simulation re- sults show that, in the communication band, the maximum difference between the designed beam and desired beam is less than 0.3 dB when the ratio of communication band to carrier frequency is 0. 85.

  19. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    Science.gov (United States)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  20. Suppression of beam halo-chaos using nonlinear feedback discrete control method

    CERN Document Server

    Fang Jin Qing; Chen Guan Rong; Luo Xiao Shu; Weng Jia Qiang

    2002-01-01

    Based on nonlinear feedback control method, wavelet-based feedback controller as a especial nonlinear feedback function is designed for controlling beam halo-chaos in high-current accelerators of driven clean nuclear power system. PIC simulations show that suppression of beam halo-chaos are realized effectively after discrete control of wavelet-based feed-back is applied to five kinds of the initial proton beam distributions, respectively. The beam halo strength factor is quickly reduced to zero, and other statistical physical quantities of beam halo-chaos are more than doubly reduced. These performed PIC simulation results demonstrate that the developed methods are very effective for control of beam halo-chaos. Potential application of the beam halo-chaos control methods is discussed finally

  1. Ultraviolet photodissociation of 1-bromopropane at 234 and 267 nm

    Science.gov (United States)

    Zhang, Song; Wang, Yanmei; Tang, Bifeng; Zheng, Qiusha; Zhang, Bing

    2005-09-01

    The photodissociation of 1-bromopropane was investigated at 234 and 267 nm utilizing ion velocity imaging method. Both the speed and angular distributions of Br*( 2P 1/2) and Br( 2P 3/2) fragments were determined. β(Br) = 0.77 ± 0.07 and β(Br*)= 1.68 ± 0.06 at 234 nm; β(Br) = 0.38 ± 0.02 and β(Br*) = 1.33 ± 0.09 at 267 nm were observed. The total translational energy distributions were single Gaussian distribution and interpreted using soft or rigid implusive mode at different wavelength, respectively. The experiment also shows that Br is dominant in the dissociation and originates mostly from 3A', while Br* corresponds to 4A' ← 3A' coupling.

  2. THE PHOTODISSOCIATION OF FORMALDEHYDE IN COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Paul D., E-mail: pfeldman@jhu.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States)

    2015-10-20

    Observations of comets in the 905–1180 Å spectral band made with the Far Ultraviolet Spectroscopic Explorer in 2001 and 2004 show unusual features in the fluorescent emissions of CO and H{sub 2}. These include emission from a non-thermal high-J rotational population of CO and solar Lyα induced fluorescence from excited vibrational levels of H{sub 2}, both of which are attributed to the photodissociation of formaldehyde. In this paper we model the large number of observed H{sub 2} lines and demonstrate the dependence of the pumping on the heliocentric velocity of the comet and the solar line profiles. We also derive the rotational and vibrational populations of H{sub 2} and show that they are consistent with the results of laboratory studies of the photodissociation of H{sub 2}CO. In addition to the principal series of H i and O i, the residual spectrum is found to consist mainly of the Rydberg series of C i multiplets from which we derive the mean carbon column abundance in the coma. Fluorescent emissions from N i and N{sub 2} are also searched for.

  3. Photodissociation dynamics of ethyl ethynyl ether: A ketenyl radical precursor

    Science.gov (United States)

    Krisch, Maria; Miller, Johanna; Butler, Laurie; Su, Hongmei; Bersohn, Richard; Shu, Jinian

    2006-03-01

    We investigate the photodissociation dynamics of ethyl ethynyl ether at 193.3 nm with crossed laser-molecular beam photofragment translational spectroscopy and laser-induced fluorescence. We establish ethyl ethynyl ether as the first clean precursor to the ketenyl radical, a key species in combustion reactions. One major bond fission channel was observed for the system, cleavage along the HCCO-C2H5 bond, leading to ground state C2H5 (ethyl) radicals and HCCO (ketenyl) radical products in two distinct electronic states. We observed neither cleavage of the other C-O bond nor molecular elimination to form C2H4 + CH2CO (ketene). Ketenyl radicals formed in the higher recoil kinetic energy channel could be either X(^2A") or Ã(^2A') state ketenyl radical. We assign the lower recoil kinetic energy channel to the spin forbidden ã(^4A") state of the ketenyl radical, reached through intersystem crossing. Laser-induced fluorescence from the ketenyl radical peaks after a 20 μs delay, indicating that it is formed with a significant amount of internal energy and subsequently relaxes to the lowest vibrational level of the ground electronic state, a result consistent with the product assignment.

  4. Classical and quantum studies of the photodissociation of a HX (X=Cl,F) molecule adsorbed on ice.

    Science.gov (United States)

    Woittequand, S; Duflot, D; Monnerville, M; Pouilly, B; Toubin, C; Briquez, S; Meyer, H-D

    2007-10-28

    The photodissociation dynamics of a HX (X = Cl,F) molecule adsorbed on a hexagonal ice surface at T = 0 K is studied using time-dependent quantum wave packets and quasiclassical trajectories. The relevant potential energy surfaces are calculated using high-level ab initio methods. We present here two dimensional calculations for the dynamics of the hydrogen photofragment for both HCl and HF molecules. The purpose of this paper is to compare the photodissociation dynamics of the two molecules which are adsorbed on the ice surface with different equilibrium geometries. The total photodissociation cross section and the angular distribution are calculated. The comparison with classical trajectory calculations provides evidence for typical quantum effects and reveals rainbow structures.

  5. Analytical examination of a spiral beam scanning method for uniform irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Mitsuhiro; Okumura, Susumu; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A new circular beam scanning method for uniform irradiation of high-energy, intense ion beams over a large area has been developed. A sweeping speed and a trajectory density in a radial direction are kept constant to obtain uniform fluence distribution. A radial position of a beam spot on a target and an angular frequency of the circular motion are expressed by an irrational function of time. The beam is swept continuously, and a beam trajectory becomes spiral. More than 90 % uniformity of the fluence distribution can been achieved over a large area. (author)

  6. Electrostatic dispersion lenses and ion beam dispersion methods

    Science.gov (United States)

    Dahl, David A [Idaho Falls, ID; Appelhans, Anthony D [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  7. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  8. CRIS: A new method in isomeric beam production

    Directory of Open Access Journals (Sweden)

    Lynch K.M.

    2013-12-01

    Full Text Available The Collinear Resonance Ionization Spectroscopy (CRIS experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DSS. This consists of a rotating wheel implantation system for alpha- and beta-decay spectroscopy, and up to three germanium detectors around the implantation site for gamma-ray detection. Resonance ionization spectroscopy and the new technique of laser assisted nuclear decay spectroscopy have recently been performed at the CRIS beam line on the neutron-deficient francium isotopes. Here an overview of the two techniques will be presented, alongside a description of the CRIS beam line and DSS.

  9. Free Vibration Analysis of Laminated Composite Beams Using Differential Quadrature Method

    Institute of Scientific and Technical Information of China (English)

    冯丽娟; 钟宏志; 郝照平; 吴德隆

    2002-01-01

    A higher-order theory for laminated composite beams is used to study the free vibration of laminated composite beams, and the differential quadrature method is employed to obtain the numerical solution of the governing differential equations. Free vibration analysis of beams with rectangular cross-section for various combinations of end conditions is studied. The results show that the differential quadrature method is reliable and accurate compared with other available results.

  10. The mass angular scattering power method for determining the kinetic energies of clinical electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Blais, N.; Podgorsak, E.B. (Montreal General Hospital, PQ (Canada). Dept. of Medical Physics)

    1992-10-01

    A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author).

  11. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm

    Science.gov (United States)

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-01

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp–Davis–Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  12. Introduction of Meshfree Methods and Implementation of Element Free Galerkin (EFG Method to Beam Problem

    Directory of Open Access Journals (Sweden)

    Someshwar S. Pandey

    2013-10-01

    Full Text Available Numerical simulation using computers has increasingly become a very important approach for solving problems in engineering and science. It plays a valuable role in providing tests and examinations for theories, offering insights to complex physics, and assisting in the interpretation and even the discovery of new phenomena. Grid or mesh based numerical methods such as FDM, CFD, FEM despite of great success, suffer from difficulties in some aspects, which limit their applications in many complex problems. The major difficulties are inherited from the use of grid or mesh. A recent strong interest is focused on the next generation computational methods — meshfree methods, which are expected to be superior to conventional grid-based FDM and FEM in many applications. The Element Free Galerkin (EFG method is a meshless method because only a set of nodes and a description of model’s boundary are required to generate the discrete equations. In this paper the EFG method is applied to 2-D beam problem and results are compared with the analytical solution by using Timoshenko Beam Theory. The step by step algorithm for EFG MATLAB program is also provided inside.

  13. Photodissociation spectroscopy of protonated leucine enkephalin.

    Science.gov (United States)

    Herburger, Andreas; van der Linde, Christian; Beyer, Martin K

    2017-02-24

    Protonated leucine enkephalin (YGGFL) was studied by ultraviolet photodissociation (UVPD) from 225 to 300 nm utilizing an optical parametric oscillator tunable wavelength laser system (OPO). Fragments were identified by absolute mass measurement in a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Bond cleavage was preferred in the vicinity of the two aromatic residues, resulting in high ion abundances for a4, a1, b3, y2 and y1 fragments. a, b and y ions dominated the mass spectrum, and full sequence coverage was achieved for those types. Photodissociation was most effective at the short wavelength end of the studied range, which is assigned to the onset of the La π-π* transition of the tyrosine chromophore, but worked well also at the Lb π-π* chromophore absorption maxima in the 35 000-39 000 cm(-1) region. Several side-chain and internal fragments were observed. H atom loss is observed only above 41 000 cm(-1), consistent with the requirement of a curve crossing to a repulsive (1)πσ* state. It is suggested that the photochemically generated mobile H atom plays a role in further backbone cleavages, similar to the mechanism for electron capture dissociation. The b4 fragment is most intense at the Lb chromophore absorptions, undergoing additional fragmentation at higher photon energies. The high resolution of the FT-ICR MS revealed that out of all x and z-type fragments only x3 and x4 were formed, with low intensity. Other previously reported x- and z-fragments were re-assigned to internal fragments, based on exact mass measurement.

  14. Photodissociation of organic molecules in star-forming regions, III. Methanol

    CERN Document Server

    Pilling, S; Santos, A C F; Boechat-Roberty, H M

    2006-01-01

    The presence of methyl alcohol or methanol (CH$_3$OH) in several astrophysical environments has been characterized by its high abundance that depends on both the production rate and the destruction rate. In the present work, the photoionization and photodissociation processes of methanol have been experimentally studied, employing soft X-ray photons (100-310 eV) from a toroidal grating monochromator (TGM) beamline of the Brazilian Synchrotron Light Laboratory (LNLS). Mass spectra were obtained using the photoelectron photoion coincidence (PEPICO) method. Kinetic energy distribution and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Absolute photoionization and photodissociation cross sections were also determined. We have found, among the channels leading to ionization, about 11-16% of CH$_3$OH survive the soft X-rays photons. This behavior, together with an efficient formation pathways, may be associated with the high column densi...

  15. Photodissociation of organic molecules in star-forming regions II: Acetic acid

    CERN Document Server

    Pilling, S; Boechat-Roberty, H M

    2006-01-01

    Fragments from organic molecule dissociation (such as reactive ions and radicals) can form interstellar complex molecules like amino acids. The goal of this work is to experimentally study photoionization and photodissociation processes of acetic acid (CH$_3$COOH), a glycine (NH$_2$CH$_2$COOH) precursor molecule, by soft X-ray photons. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator (TGM) beamline (100 - 310 eV). Mass spectra were obtained using the photoelectron photoion coincidence (PEPICO) method. Kinetic energy distribution and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Absolute photoionization and photodissociation cross sections were also determined. We have found, among the channels leading to ionization, that only 4-6% of CH$_3$COOH survive the strong ionization field. CH$_3$CO$^+$, COOH$^+$ and CH$_3^+$ ions are the mai...

  16. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  17. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Science.gov (United States)

    Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  18. A calculation method of cracking moment for the high strength concrete beams under pure torsion

    Indian Academy of Sciences (India)

    Metin Husem; Ertekin Oztekin; Selim Pul

    2011-02-01

    In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal reinforcements. Two plain high strength concrete (without reinforcement) and eight high strength reinforced concrete beams which have two different cross-sections (150 × 250 mm and 150 × 300 mm) were produced to examine the validity of the proposed method. The predictions of the proposed approach for the calculation of the cracking moment of beams under pure torsion were compared with the experimental and the analytical results of previous studies. From these comparisons it is concluded that the predictions of the proposed equations for the cracking moment of plain and reinforced high strength concrete beams under pure torsion are closer to the experimental data compared to the analytical results of previous theories.

  19. Classical photodissociation dynamics with Bohr quantization: Application to the fragmentation of a van der Waals cluster

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo-Gonzalez, W., E-mail: wilmer@instec.cu [Institut des Sciences Moleculaires, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France); Departamento de Fisica General, Instituto Superior de Tecnologias y Ciencias Aplicadas, Habana 10600 (Cuba); Bonnet, L., E-mail: l.bonnet@ism.u-bordeaux1.fr [Institut des Sciences Moleculaires, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France); Larregaray, P.; Rayez, J.-C. [Institut des Sciences Moleculaires, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France); Rubayo-Soneira, J. [Departamento de Fisica General, Instituto Superior de Tecnologias y Ciencias Aplicadas, Habana 10600 (Cuba)

    2012-05-03

    Graphical abstract: A recent classical description of photodissociation dynamics in a quantum spirit is applied for the first time to a realistic process, the fragmentation of NeBr{sub 2}. Highlights: Black-Right-Pointing-Pointer The photo-dissociation of NeBr{sub 2} is studied by means of two approaches. Black-Right-Pointing-Pointer The first is the standard classical one with Gaussian binning. Black-Right-Pointing-Pointer The second is a new method applied for the first time to a realistic system. Black-Right-Pointing-Pointer The new method leads to exactly the same results as the standard one. Black-Right-Pointing-Pointer However, it requires about 10 times less trajectories in the present case. - Abstract: The recent classical dynamical approach of photodissociations with Bohr quantization [L. Bonnet, J. Chem. Phys. 133 (2010) 174108] is applied for the first time to a realistic process, the photofragmentation of the van der Waals cluster NeBr{sub 2}. We illustrate the fact that this approach, formally equivalent to the standard one, may be numerically much more efficient.

  20. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V{yields}T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V{yields}T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH{sub 3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  1. Interaction of high power laser beams with plasma in ICF hohlraum using the FDTD method

    Science.gov (United States)

    Lin, Zhili

    2016-11-01

    In the indirect-drive Inertial confinement fusion (ICF) system, groups of laser beams are injected into a gold cylindrical hohlraum and plasma is stimulated with the ablation of the wall of hohlraum by the laser beams. In our work, the finite-difference time-domain (FDTD) method associated with the bilinear transform and Maclaurin series expansion approaches is utilized to examine the laser beam propagation in plasma described by the Drude model. The state-of-the-art approaches for generating the laser beams are presented and realized according to the full utilization of the TF/SF source condition. Base on the previous technologies, the quantitatively numerical analysis of the propagation characteristics of laser beams in the plasma is conducted. The obtained results are illustrated and discussed that are helpful for the parameter optimization of laser beams for an ICF system.

  2. Method of temperature rising velocity and threshold control of electron beam brazing

    Institute of Scientific and Technical Information of China (English)

    Xuedong Wang; Shun Yao

    2005-01-01

    In order to accommodate electron beam to the brazing of the joints with various curve shapes and the brazing of thermo sensitive materials, the method of electron beam scanning and brazing temperature control was developed, in which electron beam was controlled to scan according to predefined scanning track, and the actual temperature rising velocity of the brazed seam was limited in an allowed scope by detecting the brazed seam temperature, calculating the temperature rising velocity and adjusting the beam current during the brazing process; in addition, through the setting of the highest allowed temperature, the actual temperature of the brazed seam could be controlled not exceeding the threshold set value, and these two methods could be employed alone or jointly. It is shown that high precision temperature control in electron beam brazing could be realized and the productivity be increased by the proposed method.

  3. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER.

    Energy Technology Data Exchange (ETDEWEB)

    QIAN,S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-08-25

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately.

  4. Development of atomic-beam resonance method to measure the nuclear moments of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T., E-mail: sugimoto@ribf.riken.jp [SPring-8 (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Kawamura, H.; Murata, J. [Rikkyo University, Department of Physics (Japan); Nagae, D.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H.; Yoshimi, A. [RIKEN Nishina Center (Japan)

    2008-01-15

    We have been working on the development of a new technique of atomic-beam resonance method to measure the nuclear moments of unstable nuclei. In the present study, an ion-guiding system to be used as an atomic-beam source have been developed.

  5. A simple method for boosting the beam quality of commercial DPL

    Institute of Scientific and Technical Information of China (English)

    张光寅; 焦志勇; 颜彩繁; 丁欣; 张潮波; 张晓华; 顾学文; 宋峰

    2003-01-01

    A simple method for boosting the beam quality of a commercial laser diode pumped laser (DPL) is put forward.By keeping one of the mirrors unchanged and the moving the other mirror a proper distance away from the laser rod,high beam quality laser output is realized.

  6. More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method.

    Science.gov (United States)

    Shu, Hong; Mokhov, Sergiy; Zeldovich, Boris Ya; Bass, Michael

    2009-01-01

    A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.

  7. Three-dimensional beam propagation method based on the variable transformed Galerkin's method

    Institute of Scientific and Technical Information of China (English)

    XIAO Jinbiao; SUN Xiaohan; ZHANG Mingde

    2004-01-01

    A novel three-dimensional beam propagation method (BPM) based on the variable transformed Galerkin's method is introduced for simulating optical field propagation in three-dimensional dielectric structures. The infinite Cartesian x-y plane is mapped into a unit square by a tangent-type function transformation. Consequently, the infinite region problem is converted into the finite region problem. Thus, the boundary truncation is eliminated and the calculation accuracy is promoted. The three-dimensional BPM basic equation is reduced to a set of first-order ordinary differential equations through sinusoidal basis function, which fits arbitrary cladding optical waveguide, then direct solution of the resulting equations by means of the Runge-Kutta method. In addition,the calculation is efficient due to the small matrix derived from the present technique.Both z-invariant and z-variant examples are considered to test both the accuracy and utility of this approach.

  8. On the role of ion-based imaging methods in modern ion beam therapy

    Science.gov (United States)

    Magallanes, L.; Brons, S.; Marcelos, T.; Takechi, M.; Voss, B.; Jäkel, O.; Rinaldi, I.; Parodi, K.

    2014-11-01

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  9. On the role of ion-based imaging methods in modern ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Magallanes, L., E-mail: lorena.magallanes@med.uni-heidelberg.de; Rinaldi, I., E-mail: ilaria.rinaldi@med.uni-heidelberg.de [Heidelberg University Clinic (Dep. Radiation Therapy and Radiation Oncology). Im Neuenheimer Feld 400 69120 Heidelberg, Germany and Ludwig Maximilians University Munich. Am Coulombwall 1, D-85748, Garching (Germany); Brons, S., E-mail: stephan.brons@med.uni-heidelberg.de [Heidelberg Ion Therapy Center. Im Neuenheimer Feld 450 69120 Heidelberg (Germany); Marcelos, T., E-mail: tiago.marcelos@physik.uni-muenchen.de; Parodi, K., E-mail: katia.parodi@physik.uni-muenchen.de [Ludwig Maximilians University Munich. Am Coulombwall 1, D-85748, Garching (Germany); Takechi, M., E-mail: m.takechi@gsi.de [GSI Heimholtz Center for Heavy Ion Research. Planckstraße 1, 64291, Darmstadt (Germany); Voss, B., E-mail: b.voss@gsi.de [GSI Heimholte Center for Heavy Ion Research. Planckstraße 1, 64291, Darmstadt (Germany); Jäkel, O., E-mail: o.jaekel@dkfz-heidelberg.de [Heidelberg University Clinic (Dep. Radiation Therapy and Radiation Oncology). Im Neuenheimer Feld 400 69120 Heidelberg (Germany); Heidelberg Ion Therapy Center. Im Neuenheimer Feld 450 69120 Heidelberg (Germany); German Cancer Research Center, Im N (Germany)

    2014-11-07

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  10. A Modified Beam Propagation Method Based on the Galerkin Method with Hermite-Gauss Basis Functions

    Institute of Scientific and Technical Information of China (English)

    Xiao Jinbiao; Liu Xu; Cai Chun; Fan Hehong; Sun Xiaohan

    2006-01-01

    A beam propagation method based on the Galerkin method with Hermite-Gauss basis functions for studying optical field propagation in weakly guiding dielectric structures is described. The selected basis functions naturally satisfy the required boundary conditions at infinity so that the boundary truncation is avoided. The paraxial propagation equation is converted into a set of first-order ordinary differential equations,which are solved by means of standard numerical library routines. Besides, the calculation is efficient due to its small resulted matrix. The evolution of the injected field and its normalized power along the propagation distance in an asymmetric slab waveguide and directional coupler are presented, and the solutions are good agreement with those obtained by finite difference BPM, which tests the validity of the present approach.

  11. Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method

    Science.gov (United States)

    Lee, Usik; Kim, Daehwan; Park, Ilwook

    2013-03-01

    The health of thin laminated composite beams is often monitored using the ultrasonic guided waves excited by wafer-type piezoelectric transducers (PZTs). Thus, for the smart composite beams which consist of a laminated composite base beam and PZT layers, it is very important to develop a very reliable mathematical model and to use a very accurate computational method to predict accurate dynamic characteristics at very high ultrasonic frequency. In this paper, the axial-bending-shear-lateral contraction coupled differential equations of motion are derived first by the Hamilton's principle with Lagrange multipliers. The smart composite beam is represented by a Timoshenko beam model by adopting the first-order shear deformation theory (FSDT) for the laminated composite base beam. The axial deformation of smart composite beam is improved by taking into account the effects of lateral contraction by adopting the concept of Mindlin-Herrmann rod theory. The spectral element model is then formulated by the variation approach from coupled differential equations of motion transformed into the frequency domain via the discrete Fourier transform. The high accuracy of the present spectral element model is verified by comparing with other solution methods: the finite element model developed in this paper and the commercial FEA package ANSYS. Finally the dynamics and wave characteristics of some example smart composite beams are investigated through the numerical studies.

  12. Magnetic Field Strengths in Photodissociation Regions

    CERN Document Server

    Balser, Dana S; Jeyakumar, S; Bania, T M; Montet, Benjamin T; Shitanishi, J A

    2015-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four HII regions with the Green Bank Telescope (GBT) to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi (2007) suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic (MHD) waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 micro Gauss in W3 and NGC6334A. Our results for W49 and NGC6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 micro Gauss. HI and OH Zeeman measurements of the line-of-sight magnetic field strength (B_los), taken from the literature, are between a facto...

  13. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  14. Analysis of infilled beams using method of initial functions and comparison with FEM

    Directory of Open Access Journals (Sweden)

    Rakesh Patel

    2014-09-01

    Full Text Available This paper presents a study carried out on reinforced concrete infilled beams. In reinforced concrete beams, less stressed concrete near neutral axis can be replaced by some light weight material like bricks to reduce the weight of the structure and also achieve the economy. Infilled zone is obtained with the help of stress block diagram, used for limit state design of reinforced concrete beams as per IS 456. Method of initial functions is used for the analysis of infilled reinforced concrete composite beams. The method of initial function (MIF is an analytical method of elasticity theory. The results obtained by MIF are compared with those predicting by Finite Element Method (FEM based software ANSYS, and it is observed that they are comparable.

  15. Modeling laser beam diffraction and propagation by the mode-expansion method.

    Science.gov (United States)

    Snyder, James J

    2007-08-01

    In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster.

  16. Damage assessment of laminated composite beam structures using damage locating vector (DLV) method

    Institute of Scientific and Technical Information of China (English)

    T. VO-DUY[1,3; N. NGUYEN-MINH[1,3; H. DANG-TRUNG[1,3; A. TRAN-VIET[2,3; T. NGUYEN-THOI[1,3

    2015-01-01

    In this paper, the damage locating vector employed to locate multiple damage sites in laminated (DLV) method using normalized cumulative energy (nce) is composite beam structures. Numerical simulations of two laminated composite beams are employed to investigate several damage scenarios in which the degradation of elements is modeled by the reduction in the longitudinal Young's modulus and transverse Young's modulus of beam layers. The results show that the DLV method gives good performance for this kind of structure.

  17. Dispersion-free monochromatization method for selecting a single-order harmonic beam

    CERN Document Server

    Takahashi, Eiji J; Ichimaru, Satoshi; Midorikawa, Katsumi

    2015-01-01

    We propose a method to monochromatize multiple orders of high harmonics by using a proper designed multilayer mirror. Multilayer mirrors designed by our concept realize the perfect extraction of a single-order harmonic from multiple-order harmonic beam, and exhibit broadband tenability and high reflectivity in the soft-x-ray region. Furthermore, the proposed monochromatization method can preserve the femtosecond to attosecond pulse duration for the reflected beam. This device is very useful for ultrafast soft x-ray experiments that require high-order harmonic beams, such as femtosecond/attosecond, time-resolved, pump-probe spectroscopy.

  18. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Danielache, Sebastian O. [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Earth-Life Science Institute (ELSI), Tokyo Institute of Technology (Japan); Department of Environmental Science and Techonology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yoohama 226-8502 (Japan); Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-05-01

    Highlights: • Photodissociation dynamics of H{sub 2}SO{sub 4} at low-lying electronically excited states were investigated. • Photochemical processes were simulated by on-the-fly ab initio MD. • Sulfuric acid after the excitation to the S{sub 1} state dissociated to HSO{sub 4}(1{sup 2}A″) + H({sup 2}S). • Sulfuric acid after the excitation to the S{sub 2} state dissociated to HSO{sub 4}(2{sup 2}A″) + H({sup 2}S). • The energy region of the UV spectra where NMD fractionation may occur is predicted. - Abstract: Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S{sub 1} and S{sub 2}) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu–Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning’s augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO{sub 4}(1{sup 2}A″) + H({sup 2}S) by S{sub 1}-excitation, and (ii) HSO{sub 4}(2{sup 2}A″) + H({sup 2}S) by S{sub 2}-excitation. The direct dissociation dynamics yield products different from the SO{sub 2} + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO{sub 4} fragment{sub .} The trajectories running on S{sub 2} do not hop with S{sub 0} and a nonadiabatic transition happens at the S{sub 2}–S{sub 1} conical intersection located at a longer OH bond-length than the S{sub 1}–S{sub 0} intersection producing an electronic excited state (2{sup 2}A″) of HSO{sub 4} product.

  19. Accurate finite difference beam propagation method for complex integrated optical structures

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    A simple and effective finite-difference beam propagation method in a z-varying nonuniform mesh is developed. The accuracy and computation time for this method are compared with a standard finite-difference method for both the 3-D and 2-D versions......A simple and effective finite-difference beam propagation method in a z-varying nonuniform mesh is developed. The accuracy and computation time for this method are compared with a standard finite-difference method for both the 3-D and 2-D versions...

  20. Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)

    2011-09-15

    Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.

  1. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  2. State-correlated DC slice imaging of formaldehyde photodissociation

    Science.gov (United States)

    Suits, Arthur G.; Chambreau, Steven D.; Lahankar, Sridhar A.

    High-resolution slice imaging methods allow for detection of single product quantum states with sufficient velocity resolution to infer the full correlated product state distribution of the undetected fragment. This is a level of detail not available in previous studies of formaldehyde photodissociation, and in this application it reveals startling new aspects of unimolecular decomposition. The CO rotational distributions from near ultraviolet dissociation of formaldehyde are bimodal, and the imaging experiments allow us to decompose these into two dynamically distinct components: the conventional molecular dissociation over a high exit barrier, and a novel `roaming atom' reaction in which frustrated radical dissociation events lead to intramolecular H abstraction, bypassing the transition state entirely. In probing the dynamics of the conventional molecular dissociation over the barrier, we use the complete vH2-jCO correlation to model the exit channel dynamics in new detail. Furthermore, these state-correlated measurements provide insight into radical-radical reactions and the underlying dynamics and energy dependence of the roaming pathway.

  3. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    CERN Document Server

    Dunning, Alexander; Showalter, Steven J; Puri, Prateek; Kotochigova, Svetlana; Hudson, Eric R

    2015-01-01

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl$^+$. The cross section for the photon energy range 35,500 cm$^{-1}$ to 47,500 cm$^{-1}$ is measured using an integrated ion trap and time-of-flight mass spectrometer, and we observe a broad, asymmetric profile that is peaked near 43,000 cm$^{-1}$. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl$^+$ is unprecedentedly complex due to the presence of multiple open electronic shells, including 4f$^{10}$ orbitals. The molecule has nine attractive potentials with ionically-bonded electrons and 99 repulsive potentials dissociating to a ground state Dy$^+$ ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between t...

  4. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  5. C{sub 60} in photodissociation regions

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Pablo; Tielens, Alexander G.G.M. [Leiden Observatory, P.O. Box 9513, 2300 RA Leiden (Netherlands); Berné, Olivier [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Sheffer, Yaron; Wolfire, Mark G., E-mail: pablo@strw.leidenuniv.nl [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2014-10-10

    Recent studies have confirmed the presence of buckminsterfullerene (C{sub 60}) in different interstellar and circumstellar environments. However, several aspects regarding C{sub 60} in space are not yet well understood, such as the formation and excitation processes, and the connection between C{sub 60} and other carbonaceous compounds in the interstellar medium, in particular polycyclic aromatic hydrocarbons (PAHs). In this paper, we study several photodissociation regions (PDRs) where C{sub 60} and PAHs are detected and the local physical conditions are reasonably well constrained to provide observational insights into these questions. C{sub 60} is found to emit in PDRs where the dust is cool (T{sub d} = 20-40 K) and even in PDRs with cool stars. These results exclude the possibility for C{sub 60} to be locked in grains at thermal equilibrium in these environments. We observe that PAH and C{sub 60} emission are spatially uncorrelated and that C{sub 60} is present in PDRs where the physical conditions (in terms of radiation field and hydrogen density) allow for full dehydrogenation of PAHs, with the exception of Ced 201. We also find trends indicative of an increase in C{sub 60} abundance within individual PDRs, but these trends are not universal. These results support models where the dehydrogenation of carbonaceous species is the first step toward C{sub 60} formation. However, this is not the only parameter involved and C{sub 60} formation is likely affected by shocks and PDR age.

  6. Optical stochastic cooling method in application to the beams of charged particles

    CERN Document Server

    Gessonov, E G

    2014-01-01

    We discuss the optical stochastic cooling (OSC) method in applications to the beams of charged particles, circulating in accelerators and storage rings. In this publication we concentrated on various OSC schemes in a diluted beam approximation, when the heating of selected particle by its neighboring ones could be neglected. Even so, this approximation allows us to identify important features in the beam cooling. In the forthcoming publication, on the basis of approach developed here, we will include effects of heating in the dynamics of cooling.

  7. Electron beam inspection methods for imprint lithography at 32 nm

    Science.gov (United States)

    Selinidis, Kosta; Thompson, Ecron; Sreenivasan, S. V.; Resnick, Douglas J.

    2009-01-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  8. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  9. Evidence for direct molecular oxygen production in CO2 photodissociation

    OpenAIRE

    Z. Lu; Chang, YC; Yin, Q-Z; Ng, CY; Jackson, WM

    2014-01-01

    Photodissociation of carbon dioxide (CO2) has long been assumed to proceed exclusively to carbon monoxide (CO) and oxygen atom (O) primary products. However, recent theoretical calculations suggested that an exit channel to produce C + O2 should also be energetically accessible. Here we report the direct experimental evidence for the C + O2channel in CO2 photodissociation near the energetic threshold of the C(3P) + O2(X3Σg -) channel with a yield of 5 ± 2% using vacuum ultraviolet laser pump-...

  10. A surrogate-based metaheuristic global search method for beam angle selection in radiation treatment planning

    Science.gov (United States)

    Zhang, H. H.; Gao, S.; Chen, W.; Shi, L.; D'Souza, W. D.; Meyer, R. R.

    2013-03-01

    An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.

  11. Material-point Method Analysis of Bending in Elastic Beams

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    The aim of this paper is to test different types of spatial interpolation for the materialpoint method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...

  12. Material-Point Method Analysis of Bending in Elastic Beams

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    2007-01-01

    The aim of this paper is to test different types of spatial interpolation for the material-point method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...

  13. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J.; Gluckstern, R.L.

    1992-11-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.

  14. Interlaminar Stresses by Refined Beam Theories and the Sinc Method Based on Interpolation of Highest Derivative

    Science.gov (United States)

    Slemp, Wesley C. H.; Kapania, Rakesh K.; Tessler, Alexander

    2010-01-01

    Computation of interlaminar stresses from the higher-order shear and normal deformable beam theory and the refined zigzag theory was performed using the Sinc method based on Interpolation of Highest Derivative. The Sinc method based on Interpolation of Highest Derivative was proposed as an efficient method for determining through-the-thickness variations of interlaminar stresses from one- and two-dimensional analysis by integration of the equilibrium equations of three-dimensional elasticity. However, the use of traditional equivalent single layer theories often results in inaccuracies near the boundaries and when the lamina have extremely large differences in material properties. Interlaminar stresses in symmetric cross-ply laminated beams were obtained by solving the higher-order shear and normal deformable beam theory and the refined zigzag theory with the Sinc method based on Interpolation of Highest Derivative. Interlaminar stresses and bending stresses from the present approach were compared with a detailed finite element solution obtained by ABAQUS/Standard. The results illustrate the ease with which the Sinc method based on Interpolation of Highest Derivative can be used to obtain the through-the-thickness distributions of interlaminar stresses from the beam theories. Moreover, the results indicate that the refined zigzag theory is a substantial improvement over the Timoshenko beam theory due to the piecewise continuous displacement field which more accurately represents interlaminar discontinuities in the strain field. The higher-order shear and normal deformable beam theory more accurately captures the interlaminar stresses at the ends of the beam because it allows transverse normal strain. However, the continuous nature of the displacement field requires a large number of monomial terms before the interlaminar stresses are computed as accurately as the refined zigzag theory.

  15. Oblique Du-Fort Frankel Beam Propagation Method

    Directory of Open Access Journals (Sweden)

    Ken Chan

    2011-01-01

    Full Text Available The oblique BPM based on the Du-Fort Frankel method is presented. The paper demonstrates the accuracy and the computational improvements of the scheme compared to the oblique BPM based on Crank-Nicholson (CN scheme.

  16. Adaptive synthesis method for broadband array with frequency invariant beam pattern

    Institute of Scientific and Technical Information of China (English)

    ZHUWeijie; SUNJincai; ZENGXiangyang

    2003-01-01

    Based on adaptive technique, a design method for broadband array with frequency invariant beam pattern is presented. For a given beam pattern, the all design process can be completed automatically by computer without deriving expression of weight vector. The design process is divided into three steps: (1) Evaluate the weight vector in reference frequency by numerical method. (2) Obtain the weight vectors in other frequency by adaptive technique.(3) For the design target of frequency response given by weight vector at different frequency point, design FIR filter. The proposed method can be applied to arbitrary array and have no restriction on element patterns.

  17. LHC Machine Protection System: Method for Balancing Machine Safety and Beam Availability

    CERN Document Server

    Wagner, Sigrid; Schmidt, R

    The Large Hadron Collider (LHC) at CERN in Geneva, Switzerland, exceeds existing particle accelerators in terms of size and complexity. The most remarkable machine damage potential is held by the amount of stored energy. This thesis introduces a quantitative method for the reliability analysis of the LHC Machine Protection System (MPS) in terms of machine safety and beam availability. It is based on object-oriented modelling of the primary signal path, where the components’ behaviour is described by a simple Markov model with two failure states. The explicit inclusion of machine failure allows for the quantification of five scenarios. They include the safety-relevant scenario of a missed emergency shutdown and the scenario of a preventive shutdown, which is crucial with regard to beam availability. The presented MPS model covers two of the main MPS subsystems, namely the Beam Loss Monitor System and the Beam Interlock System. The model includes almost 5000 individually modelled components. It is implemented...

  18. Infrared Photodissociation Spectroscopy of Vanadium-Carbon Dioxide Cations: Evidence for AN Intracluster Reaction.

    Science.gov (United States)

    Brathwaite, Antonio D.; Ricks, Allen M.; Duncan, Michael A.

    2012-06-01

    Cationic vanadium-carbon dioxide clusters, consisting of up to ten carbon dioxide ligands, are produced in a molecular beam via laser vaporization in a pulsed nozzle source. The cations are mass selected and studied via infrared photodissociation spectroscopy in the 600-4000 cm1 region. The number of infrared active bands, their frequency positions and their relative intensities, allows us to gain insight into the structure and bonding of these species. The sudden appearance of new infrared bands in the spectra of complexes having seven or more ligands provides evidence for an intracluster reaction. We explore possible reaction products by comparing these spectra to those of vanadium and vanadium oxide-carbonyls. Low frequency measurements and DFT calculations have allowed us to identify complexes containing a metal atom bonded to an oxalate-like structure as the product of these reactions.

  19. Photodissociation studies of calcium-coronene and calcium-pyrene cation clusters

    Science.gov (United States)

    Scott, A. C.; Buchanan, J. W.; Flynn, N. D.; Duncan, M. A.

    2008-01-01

    Gas-phase cluster cations combining calcium atoms and the polycyclic aromatic hydrocarbons (PAHs) coronene (C24H12) and pyrene (C16H10) are produced in a molecular beam using laser vaporization in a pulsed nozzle cluster source. Time-of-flight mass spectrometry reveals the formation of clusters of the form Cax(coronene)y+ for up to x = 4 and y = 3 and Cax(pyrene)y+ for up to x = 2 and y = 3. Mass-selected photodissociation studies show that the calcium cation is the most prominent fragment for each system. Photoinduced calcium carbide formation is prominent when two or more calcium atoms are present. Additionally, there is evidence that these clusters can form sandwich structures.

  20. A New Method to Measure the Divergence of X-Ray Beams from Capillaries

    Institute of Scientific and Technical Information of China (English)

    LIN Xiao-Yan; LI Yu-De; CHI Ji-Hong; LIU An-Dong; TAN Guo-Tai

    2006-01-01

    @@ A new method to measure the divergence of x-ray beams propagated out from several capillaries is introduced.This new method is based on Bragg's law and is proven efficiently by the experimental measurement with collimators and straight polycapillaries.

  1. Photodissociation and photoionization studies of the OH free radical

    NARCIS (Netherlands)

    Radenovi´c, Dragana C.

    2007-01-01

    In this PhD thesis photodissociation, photoionization and fluorescence emission of the hydroxyl (OH) free radical is studied. The hydroxyl radical, as in intermediate species in many chemical reactions, play a key role in astrophysics,atmospheric chemistry, combustion and many other chemical process

  2. ANALYSIS OF DYNAMICAL BUCKLING AND POST BUCKLING FOR BEAMS BY FINITE SEGMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    YIN Xue-gang; DU Si-yi; HU Ji-yun; DING Jian-ping

    2005-01-01

    Based on the multi-rigid body discretization model, namely, finite segment model,a chain multi-rigid-body-hinge-spring system model of a beam was presented,then a nonlinear parametrically exacted vibration equation of multi-degrees of freedom system was established using the coordination transformation method, and its resonance fields were derived by the restriction parameter method, that is, the dynamical buckling analysis of the beam. Because the deformation of a beam is not restricted by the discrete model and dynamic equation, the post buckling analysis can be done in above math model. The numerical solutions of a few examples were obtained by direct integrated method, which shows that the mechanical and math model gotten is correct.

  3. A new method of emittance measurement for electron beams from the Micro-emitter

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, Hiroshi [Fukuoka Inst. of Technology (Japan); Nakahara, Yuriko; Kawasaki, Sunao; Musyoki, Stephen; Shimizu, Hiroshi; Watanabe, Akihiko; Shiho, Makoto

    1994-03-01

    Recently a new type of cathode called Micro-emitter is in progress. This cathode is micro fabricated field emitter having the characteristics of very low emittance and high brightness. We can not measure the emittance of the cathode with conventional method like pepper-pot method. The reasons are ; 1. The angle between the electron orbit and the axis is very small. ; and 2. We can not focus the electron beam in the vacuum or on the surface of the material since the current density of the cathode is extremely high. For the emittance measurement for such low emittance and high brightness cathode, we need to expand the beam, and measure the beam cross section without any slits or apertures. We study and propose a new emittance measurement method for the Micro-emitter. (author).

  4. A novel method involving Matlab coding to determine the distribution of a collimated ionizing radiation beam

    Science.gov (United States)

    Ioan, M.-R.

    2016-08-01

    In ionizing radiation related experiments, precisely knowing of the involved parameters it is a very important task. Some of these experiments are involving the use of electromagnetic ionizing radiation such are gamma rays and X rays, others make use of energetic charged or not charged small dimensions particles such are protons, electrons, neutrons and even, in other cases, larger accelerated particles such are helium or deuterium nuclei are used. In all these cases the beam used to hit an exposed target must be previously collimated and precisely characterized. In this paper, a novel method to determine the distribution of the collimated beam involving Matlab coding is proposed. The method was implemented by using of some Pyrex glass test samples placed in the beam where its distribution and dimension must be determined, followed by taking high quality pictures of them and then by digital processing the resulted images. By this method, information regarding the doses absorbed in the exposed samples volume are obtained too.

  5. Design method for a laser line beam shaper of a general 1D angular power distribution

    Science.gov (United States)

    Oved, E.; Oved, A.

    2016-05-01

    Laser line is a beam of laser, spanned in one direction using a beam shaper to form a fan of light. This illumination tool is important in laser aided machine vision, 3D scanners, and remote sensing. For some applications the laser line should have a specific angular power distribution. If the distribution is nonsymmetrical, the beam shaper is required to be nonsymmetrical freeform, and its design process using optical design software is time consuming due to the long optimization process which usually converges to some local minimum. In this paper we introduce a new design method of a single element refractive beam shaper of any predefined general 1D angular power distribution. The method makes use of a notion of "prism space", a geometrical representation of all double refraction prisms, and any 1D beam shaper can be described by a continuous curve in this space. It is shown that infinitely many different designs are possible for any given power distribution, and it is explained how an optimal design is selected among them, based on criteria such as high transmission, low surface slopes, robustness to manufacturing errors etc. The method is non-parametric and hence does not require initial guess of a functional form, and the resultant optical surfaces are described by a sequence of points, rather than by an analytic function.

  6. Photodissociation of Peroxynitric Acid in the Near-IR

    Science.gov (United States)

    Roehl, Coleen M.; Nizkorodov, Sergey A.; Zhang, Hui; Blake, Geoffrey A.; Wennberg, Paul O.

    2002-01-01

    Temperature-dependent near-IR photodissociation spectra were obtained for several vibrational overtone transitions of peroxynitric acid (HNO4) with a tunable OPO photolysis/OH laser-induced-fluorescence system. Band-integrated photodissociation cross-sections (definity integral of sigma(sub diss)), determined relative to that for the 3nu(sub 1), OH stretching overtone, were measured for three dissociative bands. Assuming unit quantum efficiency for photodissociation of 3nu(sub 1), we find 2nu(sub 1) + nu(sub 3)(8242/cm) = (1.21 x 10(exp -20) (independent of temperature), 2nu(sub 1) (6900/cm) = 4.09 x 10(exp 18) * e(sup (-826,5/T)) (295 K greater than T greater than 224 K), and nu(sub 1) + 2nu(sub 3) (6252/cm) = 1.87 x 10(exp -19) * e(sup (- 1410.7/T)) (278 K greater than T greater than 240 K) sq cm/molecule cm. The photodissociation cross-sections are independent of pressure over the range 2 to 40 Torr. Temperature-dependent quantum yields (phi) for these transitions were obtained using integrated absorption cross-sections (definity integral of sigma(sub abs)) of HNO4 overtone vibrations measured with a FTIR spectrometer. In the atmosphere, photodissociation in the infrared is dominated by excitation of the first overtone of the OH stretching vibration (2nu((sub 1)). Inclusion of all dissociative HNO4 overtone and combination transitions yields a daytime IR photolysis rate of approximately 1 x 10(esp -1)/s. This process significantly shortens the estimated lifetime of HNO4 in the upper troposphere and lower stratosphere.

  7. A finite element beam propagation method for simulation of liquid crystal devices.

    Science.gov (United States)

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  8. A Simple and Accurate Method for Calculating the Gaussian Beam Expansion Coefficients

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; YANG Jun

    2010-01-01

    @@ The calculation of the diffraction field radiated from the ultrasonic transducer can be simplified by using the Gaussian beam expansion technique.The key problem of this technique is how to determine the coefficients of Gaussian functions.We present a simple and accurate optimization method to calculate the Gaussian beam expansion Coefficients.Half of the coefficients are obtained by solving linear equations.The other half are derived from the Fourier series expansion.Wave field simulation results demonstrate the validity of the new method.

  9. Application of Energy Finite Element Method in Active Vibration Control of Piezoelectric Intelligent Beam

    Directory of Open Access Journals (Sweden)

    Jinhua Xie

    2012-01-01

    Full Text Available Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through Energy Finite Element Method (EFEM and classical wave theory were compared to verify the EFEM model, which presented a good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and arrangement of piezoelectric patches on characteristics of system energy density distribution.

  10. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

  11. Iterative method for determination of the laser beam profile and τV-T

    Directory of Open Access Journals (Sweden)

    Rabasović Mihailo D.

    2008-01-01

    Full Text Available Measuring the vibrational-to-translational relaxation time τV-T in gases is one of the first applications of the photoacoustic effect. The spatial profile of the laser beam is crucial in these measurements because the multiphoton excitation is investigated. The multiphoton absorption is a non-linear process. Because of this, the top hat profile is preferable. It allows one to deal with nonlinearity in a simple manner. In order to reveal the real laser beam profile, we have slightly changed the theoretical profiles in such a manner that the best matching is obtained between theoretical and experimental photoacoustic signals. Still, there was a question: Is it possible to deduce the laser beam profile directly from the photoacoustic signal, thus avoiding manual changing of the laser beam profile? According to this paper, it is possible. The appropriate method has been found in another photoacoustics application: photoacoustic tomography. Thus, the method for the simultaneous determination of the spatial profile of the laser beam and vibrational-to-translational relaxation time is presented in this paper. It employs pulsed photoacoustics and an algorithm developed for photoacoustic tomography.

  12. Riccati discrete time transfer matrix method for elastic beam undergoing large overall motion

    Energy Technology Data Exchange (ETDEWEB)

    He Bin [Sun Yat-sen University, College of Engineering (China)], E-mail: njhebin@gmail.com; Rui Xiaoting, E-mail: ruixt@163.net; Wang Guoping [Nanjing University of Science and Technology, Institute of Power Engineering (China)

    2007-11-15

    An efficient method for dynamics simulation for elastic beam with large overall spatial motion and nonlinear deformation, namely, the Riccati discrete time transfer matrix method (Riccati-DT-TMM), is proposed in this investigation. With finite segments, continuous deformation field of a beam can be decomposed into many rigid bodies connected by rotational springs. Discrete time transfer matrices of rigid bodies and rotational springs are used to analyze the dynamic characteristic of the beam, and the Riccati transform is used to improve the numerical stability of discrete time transfer matrix method of multibody system dynamics. A predictor-corrector method is used to improve the numerical accuracy of the Riccati-DT-TMM. Using the Riccati-DT-TMM in dynamics analysis, the global dynamics equations of the system are not needed and the computation time required increases linearly with the system's number of degrees of freedom. Three numerical examples are given to validate the method for the dynamic simulation of a geometric nonlinear beam undergoing large overall motion.

  13. Method of the ion beam emittance measurement in the injection beam line of DC-72 cyclotron in the presence of its space charge using the scanner to determine beam dimensions

    CERN Document Server

    Kasarinov, N Y; Kalagin, I V; Kazacha, V I

    2002-01-01

    The gradient method for measuring the transversal emittance of a high current ion beam in the injection channel of the cyclotron DC-72 is considered. The standard scanner is proposed for measuring the transversal dimensions of the beam. The formulae for determination of the mean square beam dimensions by current signals from the scanner needle are adduced. The method of the emittance recovery for axial-symmetric ion beam is set for the case when the space charge effect is essential. The algorithm for tuning of the quadrupole lenses in the injection channel of the cyclotron DC-72 for obtaining the axial-symmetric ion beam is proposed. The evaluations of the expected accuracy of the proposed method for the emittance recovery have been carried out.

  14. A simple method for energy calibration of heavy-ion beams

    NARCIS (Netherlands)

    Evers, E.J.; Vries, J.W.; Engelbertink, G.A.P.; Leun, C. van der

    1987-01-01

    A method is described for the calibration of analyzing-magnet systems of heavy-ion accelerators. It makes use of resonances in inverse (p, αγ) reactions, i.e. with heavy-ion beams on hydrogen targets. Instead of a gas target we use the very thin hydrogen-containing surface layer on a gold foil, whic

  15. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  16. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    Energy Technology Data Exchange (ETDEWEB)

    Maunoury, L., E-mail: maunoury@ganil.fr; Delahaye, P.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C. [GANIL, CEA/CNRS, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Angot, J.; Lamy, T. [LPSC, Université Joseph Fourier Grenoble 1, Grenoble INP, 53 rue des martyrs, 38026 Grenoble Cedex (France)

    2014-02-15

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  17. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    Science.gov (United States)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  18. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence....

  19. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence....

  20. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  1. Damping of rotating beams with particle dampers: Discrete element method analysis

    Science.gov (United States)

    Els, D. N. J.

    2013-06-01

    The performance of particle dampers (PDs) under centrifugal loads was investigated. A test bench consisting of a rotating cantilever beam with a particle damper at the tip was developed (D. N. J. Els, AIAA Journal 49, 2228-2238 (2011)). Equal mass containers with different depths, filled with a range of uniform-sized steel ball bearings, were used as particle dampers. The experiments were duplicated numerically with a discrete element method (DEM) model, calibrated against the experimental data. The DEM model of the rotating beam with a PD at the tip captured the performance of the PD very well over a wide range of tests with different configurations and rotation velocities.

  2. Fractal Two-Level Finite Element Method For Free Vibration of Cracked Beams

    Directory of Open Access Journals (Sweden)

    A.Y.T. Leung

    1998-01-01

    Full Text Available The fractal two-level finite element method is extended to the free vibration behavior of cracked beams for various end boundary conditions. A cracked beam is separated into its singular and regular regions. Within the singular region, infinite number of finite elements are virturally generated by fractal geometry to model the singular behavior of the crack tip. The corresponding numerous degrees of freedom are reduced to a small set of generalized displacements by fractal transformation technique. The solution time and computer storage can be remarkably reduced without sacrifying accuracy. The resonant frequencies and mode shapes computed compared well with the results from a commercial program.

  3. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Directory of Open Access Journals (Sweden)

    A. Sathe

    2014-10-01

    Full Text Available A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner, and the derived turbulence statistics (using both methods such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence.

  4. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Science.gov (United States)

    Sathe, A.; Mann, J.; Vasiljevic, N.; Lea, G.

    2015-02-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w) of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence.

  5. The FLUKA code for application of Monte Carlo methods to promote high precision ion beam therapy

    CERN Document Server

    Parodi, K; Cerutti, F; Ferrari, A; Mairani, A; Paganetti, H; Sommerer, F

    2010-01-01

    Monte Carlo (MC) methods are increasingly being utilized to support several aspects of commissioning and clinical operation of ion beam therapy facilities. In this contribution two emerging areas of MC applications are outlined. The value of MC modeling to promote accurate treatment planning is addressed via examples of application of the FLUKA code to proton and carbon ion therapy at the Heidelberg Ion Beam Therapy Center in Heidelberg, Germany, and at the Proton Therapy Center of Massachusetts General Hospital (MGH) Boston, USA. These include generation of basic data for input into the treatment planning system (TPS) and validation of the TPS analytical pencil-beam dose computations. Moreover, we review the implementation of PET/CT (Positron-Emission-Tomography / Computed- Tomography) imaging for in-vivo verification of proton therapy at MGH. Here, MC is used to calculate irradiation-induced positron-emitter production in tissue for comparison with the +-activity measurement in order to infer indirect infor...

  6. The Analysis of Curved Beam Using B-Spline Wavelet on Interval Finite Element Method

    Directory of Open Access Journals (Sweden)

    Zhibo Yang

    2014-01-01

    Full Text Available A B-spline wavelet on interval (BSWI finite element is developed for curved beams, and the static and free vibration behaviors of curved beam (arch are investigated in this paper. Instead of the traditional polynomial interpolation, scaling functions at a certain scale have been adopted to form the shape functions and construct wavelet-based elements. Different from the process of the direct wavelet addition in the other wavelet numerical methods, the element displacement field represented by the coefficients of wavelets expansions is transformed from wavelet space to physical space by aid of the corresponding transformation matrix. Furthermore, compared with the commonly used Daubechies wavelet, BSWI has explicit expressions and excellent approximation properties, which guarantee satisfactory results. Numerical examples are performed to demonstrate the accuracy and efficiency with respect to previously published formulations for curved beams.

  7. High precision beam momentum determination in a synchrotron using a spin resonance method

    CERN Document Server

    Goslawski, P; Gebel, R; Hartmann, M; Kacharava, A; Lehrach, A; Lorentz, B; Maier, R; Mielke, M; Papenbrock, M; Prasuhn, D; Stassen, R; Stein, H J; Stockhorst, H; Ströher, H; Wilkin, C

    2009-01-01

    In order to measure the mass of the eta meson with high accuracy using the d+p -> 3He+eta reaction, the momentum of the circulating deuteron beam in the Cooler Synchrotron COSY of the Forschungszentrum Juelich has to be determined with unprecedented precision. This has been achieved by studying the spin dynamics of the polarized deuteron beam. By depolarizing the beam through the use of an artificially induced spin resonance, it was possible to evaluate its momentum p with a precision of dp/p < 10-4 for a momentum of roughly 3 GeV/c. Different possible sources of error in the application of the spin resonance method are discussed in detail and its possible use during a standard experiment is considered.

  8. Single shot laser multiphoton ionization detection of UF/sub 5/ following the 266 nm photodissociation of UF/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Chou, J.S.; Sumida, D.; Stuke, M.; Wittig, C.

    1982-10-01

    By using laser multiphoton ionization and time-of-flight mass filter, nascent uranium pentafluoride has been detected from the 266 nm laser photodissociation of uranium hexafluoride, following a single laser firing. The method can be used to monitor these species under conditions wherein isotopically selective excitation is responsible for the dissociation of uranium hexafluoride. 10 references, 2 figures.

  9. Large amplitude free vibrations of Timoshenko beams at higher modes using coupled displacement field method

    Science.gov (United States)

    Krishna Bhaskar, K.; Meera Saheb, K.

    2015-12-01

    A simple but accurate continuum solution for the shear flexible beam problem using the energy method involves in assuming suitable single term admissible functions for the lateral displacement and total rotation. This leads to two non-linear temporal differential equations in terms of the lateral displacement and the total rotation and are difficult, if not impossible, to solve to obtain the large amplitude fundamental frequencies of beams as a function of the amplitude and slenderness ratios of the vibrating beam. This situation can be avoided if one uses the concept of coupled displacement field where in the fields for lateral displacement and the total rotation are coupled through the static equilibrium equation. In this paper the lateral displacement field is assumed and the field for the total rotation is evaluated through the coupling equation. This approach leads to only one undetermined coefficient which can easily be used in the principle of conservation of total energy of the vibrating beam at a given time, neglecting damping. Finally, through a number of algebraic manipulations, one gets a nonlinear equation of Duffing type which can be solved using any standard method. To demonstrate the simplicity of the method discussed above the problem of large amplitude free vibrations of a uniform shear flexible hinged beam at higher modes with ends immovable to move axially has been solved. The numerical results obtained from the present formulation are in very good agreement with those obtained through finite element and other continuum methods for the fundamental mode, thus demonstrating the efficacy of the proposed method. Also some interesting observations are made with variation of frequency Vs amplitude at different modes.

  10. Photodissociation of the carbon monoxide dication in the 3Σ- manifold: Quantum control simulation towards the C2+ + O channel

    Science.gov (United States)

    Vranckx, S.; Loreau, J.; Vaeck, N.; Meier, C.; Desouter-Lecomte, M.

    2015-10-01

    The photodissociation and laser assisted dissociation of the carbon monoxide dication X3Π CO2+ into the 3Σ- states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X 3Π state are performed for 13 excited 3Σ- states of CO2+. The photodissociation cross section, calculated by time-dependent methods, shows that the C+ + O+ channels dominate the process in the studied energy range. The carbon monoxide dication CO2+ is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground 3Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this 3Π state to a manifold of 3Σ- excited states leading to numerous C+ + O+ channels and a single C2+ + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the "laser distillation" strategy. Finally, the local pulse is compared with optimal control theory.

  11. Development of Kilovoltage X-ray Dosimetry Methods and Their Application to Cone Beam Computed Tomography

    Science.gov (United States)

    Lawless, Michael J.

    The increase in popularity of pre-treatment imaging procedures in radiation therapy, such as kilovoltage cone beam computed tomography (CBCT), has been accompanied by an increase in the dose delivered to the patient from these imaging procedures. The measurement of dose from CBCT scans is complicated, as currently available kilovoltage dosimetry protocols are based on air-kerma standards and radiation detectors exhibit large energy responses at the low photon energies used in the imaging procedures. This work aims to provide the tools and methodology needed to measure the dose from these scans more accurately and precisely. Through the use of a validated Monte Carlo (MC) model of the moderately filtered (M-series) x-ray beams at the University of Wisconsin Accredited Dosimetry Calibration Laboratory, dose-to-water rates were obtained in a water phantom for the M-series x-ray beams with tube potentials from 40-250 kVp. The resulting dose-to-water rates were consistent with previously established methods, but had significantly reduced uncertainties. While detectors are commonly used to measure dose in phantom, previous investigations of the energy response of common detectors in the kilovoltage energy range have been limited to in-air geometries. The newly determined dose-to-water rates were used to characterize the in-phantom energy and depth response of thermoluminescent dosimeters and ionization chambers. When compared to previous investigations of the in-air detector response, the impact of scatter and absorption of the photon beam by the water medium was found to have a significant impact on the response of certain detectors. The dose to water in the NIST-traceable M-series x-ray beams was transferred to clinical CBCT beams and the resulting doses agreed with other dose-to-water measurement techniques. The dose to water in the CBCT beams was used to characterize the energy and depth responses of a number of detectors. The energy response in the CBCT beams agreed

  12. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).

    Science.gov (United States)

    Clement, S D; Choi, J R; Zamenhof, R G; Yanch, J C; Harling, O K

    1990-01-01

    Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCT epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 micrograms/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the MITR-II epithermal beams is expected to improve the available beams.

  13. Note: Vibrationally mediated photodissociation of carbon dioxide cation

    Science.gov (United States)

    Mao, Rui; Zhang, Qun; Chen, Min; He, Chao; Zhou, Dan-na; Bai, Xi-lin; Zhang, Limin; Chen, Yang

    2013-10-01

    The photodissociation dynamics of carbon dioxide cation, CO_2^ +, mediated by its different tilde A{}^2Π _{u,1/2} (\\upsilon _1,\\upsilon _2,0) vibronic states has been investigated by means of time-sliced velocity map imaging. Through analysis of the recorded translational energy release spectra of photofragment CO+, we found that the photodissociation of CO_2^ + exhibits drastic change in a rather narrow energy region. A conformational barrier in the CO_2^ + ( {tilde A{}^2A_1 } ) state is suggested to be ˜5600 cm-1 relative to the CO_2^ + ( {tilde A{}^2Π _{u,1/2} ( {0,0,0} )}) state, in reasonable agreement with previous prediction.

  14. Photochemistry. Evidence for direct molecular oxygen production in CO₂ photodissociation.

    Science.gov (United States)

    Lu, Zhou; Chang, Yih Chung; Yin, Qing-Zhu; Ng, C Y; Jackson, William M

    2014-10-03

    Photodissociation of carbon dioxide (CO2) has long been assumed to proceed exclusively to carbon monoxide (CO) and oxygen atom (O) primary products. However, recent theoretical calculations suggested that an exit channel to produce C + O2 should also be energetically accessible. Here we report the direct experimental evidence for the C + O2 channel in CO2 photodissociation near the energetic threshold of the C((3)P) + O2(X(3)Σ(g)(-)) channel with a yield of 5 ± 2% using vacuum ultraviolet laser pump-probe spectroscopy and velocity-map imaging detection of the C((3)PJ) product between 101.5 and 107.2 nanometers. Our results may have implications for nonbiological oxygen production in CO2-heavy atmospheres.

  15. Stimulated Emission at 722.9 nm by Laser Photodissociation of PbI2 Vapor

    Institute of Scientific and Technical Information of China (English)

    MAN Bao-Yuan; ZHANG Jie; NI Pei-Gen; ZHANG Dao-Zhong

    2000-01-01

    The stimulated emission at 722.9nm is observed by a direct photodissociation of the PbI2 molecules with a 266nm pulse laser. The possible dissociation channels are discussed. Two-photon resonant photodissociation mechanism is used to explain the generation of the 722.9 nm emission. The emission is measured at different incident laser energy and heat-pipe temperature. The obtained experimental result is well supported by the photodissociation mechanism given by us.

  16. Photodissociation of Cycloketones by Ultraintense Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Photodissociation of cyclopentanone (C5H8O) and cyclohexanone (C6H10O) was studied with 800nm, 50fs laser pulse at intensities of 5.0-13.0×1013 W/cm2. A time of flight mass spectrometer was employed to detect the ion signals. Parent ions dominated at lower laser intensities. Fragmentation of the parent ions increases with increasing laser intensity and molecular size. The fragmentation mechanism was discussed.

  17. Photodissociation of carbon dioxide in the Mars upper atmosphere

    Science.gov (United States)

    Barth, C. A.

    1974-01-01

    Calculation of the intensity of two of the emissions produced during the dissociative excitation of carbon dioxide in the upper atmosphere of Mars by solar ultraviolet radiation. The calculation tangential column emission rates of the atomic oxygen 2972-A line and the carbon monoxide Cameron bands produced by the photodissociative mechanism are found to be factors of 3 and 10, respectively, smaller than the emission rates observed by Mariner ultraviolet spectrometers.

  18. A double expansion method for the frequency response of finite-length beams with periodic parameters

    Science.gov (United States)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response

  19. PH2 internal energy distribution produced by the 193 nm photodissociation of PH3

    Science.gov (United States)

    Baugh, D.; Koplitz, B.; Xu, Z.; Wittig, C.

    1988-01-01

    Experimental results involving 193 nm PH3 photodissociation are reported. Detection of the PH2 fragment using laser induced fluorescence suggests that PH2 is formed with appreciable internal excitation, but no quantitative results concerning nascent PH2 could be obtained using this direct method. In related kinetics studies, the reaction of thermalized (300 K) PH2 with O2 yields a rate coefficient of 2.7×10-13 cm3 molecule-1 s-1, while PH2+NO is rather unreactive (k<10-14 cm3 molecule-1 s-1). In separate experiments, sub-Doppler spectroscopy on the H-atom fragment at Lyman-α (121.6 nm) allowed the center-of-mass kinetic energy distribution to be extracted; the PH2 internal energy distribution was obtained using energy conservation. Most of the available energy (E° ≂hν-D0=22 000 cm-1) appears as PH2 internal excitation; the mean internal energy is 14 000 cm-1 and the distribution peaks at ˜19 000 cm-1. The experimental distribution compares favorably with a simple statistical (prior) calculation, and the agreement is discussed in terms of possible photodissociation mechanisms.

  20. Rovibrational analysis of the XUV photodissociation of HeH{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Loreau, J. [Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Lecointre, J.; Urbain, X. [Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Vaeck, N. [Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles, CP160/09, B-1050 Bruxelles (Belgium)

    2011-11-15

    We investigate the dynamics of the photodissociation of the helium hydride ion HeH{sup +} by XUV radiation with the aim to establish a detailed comparison with a recent experimental work carried out at the FLASH free electron laser using both vibrationally hot and cold ions. We determine the corresponding rovibrational distributions using a dissociative charge transfer setup and the same source conditions as in the FLASH experiment. Using a nonadiabatic time-dependent wave-packet method, we calculate the partial photodissociation cross sections for the n=1-3 coupled electronic states of HeH{sup +}. We find good agreement with the experiment for the cross section into the He + H{sup +} dissociative channel. On the other hand, we show that the experimental observation of the importance of the electronic states with n>3 cannot be well explained theoretically, especially for cold (v=0) ions. We find a good agreement with the experiment on the relative contribution of the {Sigma} and {Pi} states to the cross section for the He{sup +} + H channel, but only a qualitative one for the He + H{sup +} channel. We discuss the factors that could explain the remaining discrepancies between theory and experiment.

  1. Photodissociation of organic molecules in star-forming regions. II. Acetic acid

    Science.gov (United States)

    Pilling, S.; Santos, A. C. F.; Boechat-Roberty, H. M.

    2006-04-01

    Fragments from organic molecule dissociation (such as reactive ions and radicals) can form interstellar complex molecules like amino acids. The goal of this work is to experimentally study photoionization and photodissociation processes of acetic acid (CH3COOH), a glycine (NH2CH2COOH) precursor molecule, by soft X-ray photons. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator (TGM) beamline (100-310 eV). Mass spectra were obtained using the photoelectron photoion coincidence (PEPICO) method. Kinetic energy distribution and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Absolute photoionization and photodissociation cross sections were also determined. We have found, among the channels leading to ionization, that only 4-6% of CH3COOH survive the strong ionization field. CH3CO^+, COOH+ and CH3+ ions are the main fragments, and the presence of the former may indicate that the production-destruction process of acetic acid in hot molecular cores (HMCs) could decrease the H2O abundance since the net result of this process converts H2O into OH + H^+. The COOH+ ion plays an important role in ion-molecule reactions to form large biomolecules like glycine.

  2. Direct ab initio molecular dynamics study of the two photodissociation channels of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru; Yokoyama, Keiichi; Teranishi, Yoshiaki

    2005-01-31

    A total of {approx}1200 trajectories have been integrated for the two photodissociation channels of formic acid, HCOOH {yields} H{sub 2}O + CO (1) and HCOOH {yields} CO{sub 2} + H{sub 2} (2), which occur with 248 and 193 nm photons, using the direct ab initio molecular dynamics method at the RMP2(full)/cc-pVDZ level of theory. It was found that the percentage of the energy distributed to a relative translational mode in reaction is much larger than that in reaction . This is mainly due to the difference in the geometry of transition state (TS); the H{sub 2}O geometry in the TS of reaction was predicted to significantly deviate from the equilibrium one, whereas the CO{sub 2} and H{sub 2} geometries in the TS of reaction were found to be more similar to their equilibrium ones. It was also found that the product diatomic molecules, CO and H{sub 2}, are both vibrationally and rotationally excited. The calculated relative population of the vibrationally excited CO for the 248 nm photodissociation was consistent with experiment.

  3. Lyman- photodissociation of CH3CFCl2 (HCFC-141b): Quantum yield and translational energy of hydrogen atoms

    Indian Academy of Sciences (India)

    Almuth Laeuter; Hans-Robert Volpp; Jai P Mittal; Rajesh K Vatsa

    2007-07-01

    The collision-free, room temperature gas-phase photodissociation dynamics of CH3CFCl2 (HCFC-141b) was studied using Lyman- laser radiation (121.6 nm) by the laser photolysis/laserinduced fluorescence `pump/probe’ technique. Lyman- radiation was used both to photodissociate the parent molecule and to detect the nascent H atom products via (22P → 12S) laser-induced fluorescence. Absolute H atom quantum yield, H = (0.39 ± 0.09) was determined by calibration method in which CH4 photolysis at 121.6 nm was used as a reference source of well-defined H atom concentrations. The line shapes of the measured H atom Doppler profiles indicate a Gaussian velocity distribution suggesting the presence of indirect H atom formation pathways in the Lyman- photodissociation of CH3CFCl2. The average kinetic energy of H atoms calculated from Doppler profiles was found to be T(lab) = (50 ± 3) kJ/mol. The nearly statistical translational energy together with the observed Maxwell-Boltzmann velocity distribution indicates that for CH3CFCl2 the H atom forming dissociation process comes closer to the statistical limit.

  4. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    Science.gov (United States)

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  5. Photodissociation of ultracold diatomic strontium molecules with quantum state control

    Science.gov (United States)

    McDonald, M.; McGuyer, B. H.; Apfelbeck, F.; Lee, C.-H.; Majewska, I.; Moszynski, R.; Zelevinsky, T.

    2016-07-01

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  6. Ultraviolet photodissociation action spectroscopy of the N-pyridinium cation

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Christopher S., E-mail: csh297@uowmail.edu.au; Trevitt, Adam J., E-mail: adamt@uow.edu.au [School of Chemistry, University of Wollongong, NSW 2522 (Australia); Blanksby, Stephen J. [Central Analytical Research Facility, Queensland University of Technology, QLD 4000 (Australia); Chalyavi, Nahid; Bieske, Evan J. [School of Chemistry, The University of Melbourne, VIC 3010 (Australia); Reimers, Jeffrey R. [School of Physics and Materials Science, University of Technology Sydney, NSW 2007 (Australia); International Centre for Quantum and Molecular Structure, Shanghai University, Shanghai 200444 (China)

    2015-01-07

    The S{sub 1}←S{sub 0} electronic transition of the N-pyridinium ion (C{sub 5}H{sub 5}NH{sup +}) is investigated using ultraviolet photodissociation (PD) spectroscopy of the bare ion and also the N{sub 2}-tagged complex. Gas-phase N-pyridinium ions photodissociate by the loss of molecular hydrogen (H{sub 2}) in the photon energy range 37 000–45 000 cm{sup −1} with structurally diagnostic ion-molecule reactions identifying the 2-pyridinylium ion as the exclusive co-product. The photodissociation action spectra reveal vibronic details that, with the aid of electronic structure calculations, support the proposal that dissociation occurs through an intramolecular rearrangement on the ground electronic state following internal conversion. Quantum chemical calculations are used to analyze the measured spectra. Most of the vibronic features are attributed to progressions of totally symmetric ring deformation modes and out-of-plane modes active in the isomerization of the planar excited state towards the non-planar excited state global minimum.

  7. Beam-Based Error Identification and Correction Methods for Particle Accelerators

    CERN Document Server

    AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas

    2014-06-10

    Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...

  8. Comparison of neutron spectrum measurement methods used for the epithermal beam of the LVR-15 research reactor.

    Science.gov (United States)

    Viererbl, L; Klupák, V; Lahodová, Z; Marek, M

    2012-07-01

    The LVR-15 research reactor's horizontal channel with its epithermal neutron beam is used mainly for boron neutron capture therapy. Neutrons from the reactor core pass through a special filter before the collimator and the beam outlet. Neutron fluence and spectrum are the basic characteristics of an epithermal neutron beam. Three methods used to measure the beam's neutron spectrum are described: the activation method, a Bonner sphere spectrometer with gold activation detectors and a Bonner sphere spectrometer with LiI(Eu) scintillation detector. Examples of results are compared and discussed.

  9. Kinetic and internal energy distributions via velocity-aligned Doppler spectroscopy: The 193 nm photodissociation of H/sub 2/S and HBr

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Koplitz, B.; Wittig, C.

    1987-07-15

    We report center-of-mass kinetic energy distributions for the 193 nm photodissociation of H/sub 2/S and HBr using the method of velocity--aligned Doppler spectroscopy. Nascent H atoms are detected by sequential two-photon photoionization via Lyman-..cap alpha.. (121.6 nm + 364.7 nm), and internal SH(X /sup 2/Pi) and Br excitations are observed directly in the H-atom kinetic energy distributions. The kinetic energy resolution is much better than in ''conventional'' sub-Doppler resolution spectroscopy and results from detecting spatially selected species whose velocities are aligned with the wave vector of the probe radiation, k/sub probe/, thereby providing a kinetic energy distribution for a specific laboratory direction. This improved resolution is achieved in the present experiments by using pulsed, collimated, and overlapped photolysis and probe beams, but the vital aspect of the technique involves increasing the delay between the two lasers in order to discriminate against species having velocity components perpendicular to k/sub probe/.

  10. Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams

    Science.gov (United States)

    Tang, Bin

    2008-01-01

    A method has been developed for determining the transient response of a beam. The beam is divided into several continuous Timoshenko beam elements. The overall dynamic stiffness matrix is assembled in turn. Using Leung's equation, we derive the overall mass and stiffness matrices which are more suitable for response analysis than the overall dynamic stiffness matrix. The forced vibration of the beam is computed by the precise time integration method. Three illustrative beams are discussed to evaluate the performance of the current method. Solutions calculated by the finite element method and theoretical analysis are also enumerated for comparison. In these examples, we have found that the current method can solve the forced vibration of structures with a higher precision.

  11. Robust high-resolution beam-forming based on high order cross sensor processing method

    Institute of Scientific and Technical Information of China (English)

    Changyu Sun

    2015-01-01

    In order to obtain the robust high-resolution beam-forming, a high order cross sensor processing (CSP) approach is developed. According to the relation ship between the target bear-ing and the phase difference of each element receiving signal, this method exploits the property that the same diagonal of covariance matrix with the same phase difference and obtains (2M−1)(N−1) virtual elements (N is the original array number) by executing M order CSP. The extended virtual elements can effectively increase the physical aperture of linear array, reduce the main lobe width of beam-forming, and improve the bearing resolution. The CSP method accumulates the data on the same sub-diagonal of the covariance matrix, which can decrease the impact of background noise on beam-forming. The theoretical analysis and experimental results both show that this method has high resolution in bearing estimation, compared with the MUSIC method, which has better robustness under the lower signal-to-noise ratio (SNR).

  12. In situ baking method for degassing of a kicker magnet in accelerator beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu [Japan Atomic Energy Agency, J-PARC Center, Ooaza Shirakata 2-4, Tokai, Naka, Ibaraki 319-1195 (Japan); Yasuda, Yuichi [SAKAGUCHI E.H VOC CORP., Sakura Dai-san Kogyodanchi 1-8-6, Osaku, Sakura, Chiba 285-0802 (Japan)

    2016-03-15

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.

  13. Preparation of PbSe nanoparticles by electron beam irradiation method

    Indian Academy of Sciences (India)

    Zhen Li; Chao Wu; Yanyan Liu; Tiebing Liu; Zheng Jiao; Minghong Wu

    2008-11-01

    A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric pressure without any kind of toxic reagents. The structure and morphology of prepared PbSe nanoparticles were analysed by X-ray diffraction, transmission electron microscope and atomic force microscope. The results indicated that the obtained materials were cubic nanocrystalline PbSe with an average grain size of 30 nm. The optical properties of prepared PbSe nanocrystalline were characterized by using photoluminescence spectroscopy. The possible mechanism of the PbSe grain growth by electron beam irradiation method is proposed.

  14. A modified time-of-flight method for precise determination of high speed ratios in molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Salvador Palau, A.; Eder, S. D., E-mail: sabrina.eder@uib.no; Kaltenbacher, T.; Samelin, B.; Holst, B. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); Bracco, G. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); CNR-IMEM, Department of Physics, University of Genova, V. Dodecaneso 33, 16146 Genova (Italy)

    2016-02-15

    Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beam using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.

  15. VIBRATION ANALYSIS ON A COMPOSITE BEAM TO IDENTIFY DAMAGE AND DAMAGE SEVERITY USING FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    E.V.V.Ramanamurthy

    2011-07-01

    Full Text Available The objective of this paper is to develop a damage detection method in a composite cantilever beam with an edge crack has been studied using finite element method. A number of analytical, numerical andexperimental techniques are available for the study of damage identification in beams. Studies were carried out for three different types of analysis on a composite cantilever beam with an edge crack as damage. The material used in this analysis is glass-epoxy composite material. The finite element formulation was carried out in the analysis section of the package, known as ANSYS. The types of vibration analysis studied on a composite beam are Modal, Harmonic andTransient analysis. The crack is modeled such that the cantilever beam is replaced with two intact beams with the crack as additional boundary condition. Damage algorithms are used to identify and locate the damage. Damage index method is also used to find the severity of the damage. The results obtained from modal analysis were compared with the transient analysis results.The vibration-based damage detection methods are based on the fact that changes of physical properties (stiffness, mass and damping due to damage will manifest themselves as changes in the structural modal parameters (natural frequencies, mode shapes and modal damping. The task is then to monitor the selected indicators derived from modal parameters to distinguish between undamaged and damaged states. However, the quantitative changes of global modal parameters are not sufficiently sensitive to a local damage. The proposed approach, on the other hand, interprets the dynamic changes caused by damage in a different way. Although the basis for vibration-based damage detection appears intuitive, the implementation in real structures may encounter many significant challenges. The most fundamental issue is the fact that damage typically is a local phenomenon and may not dramatically influence the global dynamic response of a

  16. Complexity Theory of Beam Halo-Chaos and Its Control Methods With Prospective Applications

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This article offers an overview and comprehensive survey of the complexity theory of beamhalo-chaos and its control methods with prospective applications. In recent years, there has been growinginterest in proton beams of high power linear accelerator due to its attractive features in possiblebreakthrough applications, such as production of nuclear materials (e.g., tritium, transforming 232Th to233U), transmutation of radioactive wastes, productions of radioactive isotopes for medical use, heavy ion

  17. Method for beam hardening correction in quantitative computed X-ray tomography

    Science.gov (United States)

    Yan, Chye Hwang (Inventor); Whalen, Robert T. (Inventor); Napel, Sandy (Inventor)

    2001-01-01

    Each voxel is assumed to contain exactly two distinct materials, with the volume fraction of each material being iteratively calculated. According to the method, the spectrum of the X-ray beam must be known, and the attenuation spectra of the materials in the object must be known, and be monotonically decreasing with increasing X-ray photon energy. Then, a volume fraction is estimated for the voxel, and the spectrum is iteratively calculated.

  18. Application of propagating beam methods to electromagnetic and acoustic wave propagation problems - a review

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, P.E.; Baets, R.

    1987-12-01

    The advantages and disadvantages of various propagating beam methods (BPMs) used in the solution of electromagnetic and acoustical problems are considered. The basic assumptions and approximations which are necessary for the derivation of the BPM algorithm are discussed with respect to applications to acoustics and optics and linear and nonlinear materials. Particular attention is given to the case of passive waveguiding structures and the role that BPM can play in the analysis of nonlinear structures such as semiconductor lasers. 28 references.

  19. Application of propagating beam methods to electromagnetic and acoustic wave propagation problems - A review

    Science.gov (United States)

    Lagasse, P. E.; Baets, R.

    1987-12-01

    The advantages and disadvantages of various propagating beam methods (BPMs) used in the solution of electromagnetic and acoustical problems are considered. The basic assumptions and approximations which are necessary for the derivation of the BPM algorithm are discussed with respect to applications to acoustics and optics and linear and nonlinear materials. Particular attention is given to the case of passive waveguiding structures and the role that BPM can play in the analysis of nonlinear structures such as semiconductor lasers.

  20. A Numerical Method for Cavity Identification in Beams on an Elastic Foundation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An analytical solution for the natural frequencies of a beam containing a cavity on an elastic foundation is presented. Based on the analytical solution, a numerical method for identifying cavities in the foundation is developed. The position and size of the cavities are identified by minimizing an objective function, which is formulated according to the difference between the computed and measured natural frequencies of the system. The conjugate gradient algorithm is adopted for minimizing the objective function. Some numerical examples are presented to demonstrate the applicability of the presented cavity determination method. The results show that the presented method can be used to identify the cavity position and size conveniently and efficiently.

  1. Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method

    Science.gov (United States)

    Sedighi, Hamid M.; Shirazi, Kourosh H.

    2013-04-01

    This paper presents a new asymptotic procedure to predict the nonlinear vibrational behavior of micro-beams pre-deformed by an electric field. The nonlinear equation of motion includes both even and odd nonlinearities. A powerful analytical method called Parameter Expansion Method (PEM) is employed to obtain the approximated solution and frequency-amplitude relationship. It is demonstrated that the first two terms in series expansions are sufficient to produce an acceptable solution of mentioned system. The obtained results from numerical methods verify the soundness of the analytical procedure. Finally, the influences of basic parameters on pull-in instability and natural frequency are investigated.

  2. Dispersion and stability analysis for a finite difference beam propagation method.

    Science.gov (United States)

    de-Oliva-Rubio, J; Molina-Fernández, I; Godoy-Rubio, R

    2008-06-09

    Applying continuous and discrete transformation techniques, new analytical expressions to calculate dispersion and stability of a Runge- Kutta Finite Difference Beam Propagation Method (RK-FDBPM) are obtained. These expressions give immediate insight about the discretization errors introduced by the numerical method in the plane-wave spectrum domain. From these expressions a novel strategy to adequately set the mesh steps sizes of the RK-FDBPM is presented. Assessment of the method is performed by studying the propagation in several linear and nonlinear photonic devices for different spatial discretizations.

  3. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  4. An indirect method of X-ray spectra measurement by simultaneous attenuations of the scattered beam

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, Raul T. [Facultad de Matematica, Astronomia y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA-Cordoba (Argentina)], E-mail: mainardi@famaf.unc.edu.ar; Bonzi, Edgardo V. [Facultad de Matematica, Astronomia y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA-Cordoba (Argentina)

    2008-05-15

    Direct and indirect methods of X-ray spectra determination present obstacles to their practical use since they must position either the collimator-detector assembly or the attenuators-ionization chamber, respectively, along the X-ray beam direction. These arrangements require considerable space and in many instances the detectors promptly saturate. An indirect procedure, which overcomes the aforementioned problems, is developed. It consists of the scattering of the X-ray beam from a carbon disk, which is detected simultaneously by several detectors placed away from the beam. The X-ray flux reaching each of these detectors is attenuated in metal sheets of different thicknesses, thus obtaining simultaneously the attenuation curve values. A set of analytical equations are derived to calculate attenuation curves by taking into account all the absorption and elastic and inelastic scattering processes that a beam of photons undergoes when going from the X-ray tube to the detector. Users, even those who are not well acquainted with computer programming, can easily obtain the X-ray spectrum by a least square fitting of a measured attenuation curve to a previously derived analytical expression. A simulated Monte Carlo program of photon transport from the X-ray tube to the detector provided simulated attenuation curves data. Analytically calculated and simulated attenuation curves for the same input spectrum wholly overlap and furthermore, reconstructed spectra from both sets of curves for different kilovoltages are also in full agreement. Finally, in addition to the importance of having the detectors out of the beam direction, the proposed arrangement features other main advantages, namely, only one X-ray tube shot is needed to obtain the required data, the physical processes involved are very well known, analytical equations are easily interpreted, and the measuring apparatuses can be comparatively simple to assemble and operate.

  5. SU-E-J-126: An Online Replanning Method for FFF Beams Without Couch Shift

    Energy Technology Data Exchange (ETDEWEB)

    Ahunbay, E; Ates, O; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2015-06-15

    Purpose: In a situation that couch shift for patient positioning is not preferred or prohibited (e.g., MR-Linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening filter free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here we propose a new 2-step process to address both the translational effect of FFF beams and the target deformation. Methods: The replanning method consists of an offline and an online steps. The offline step is to create a series of pre-shifted plans (PSP) obtained by a so called “warm start” optimization (starting optimization from the original plan, rather from scratch) at a series of isocenter shifts with fixed distance (e.g. 2 cm, at x,y,z = 2,0,0 ; 2,2,0 ; 0,2,0; …;− 2,0,0). The PSPs all have the same number of segments with very similar shapes, since the warm-start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated, and instantaneously fast (no optimization or dose calculation needed). The previously-developed SAM algorithm is then applied for daily deformation. We tested the method on sample prostate and pancreas cases. Results: The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. The whole process takes the same time as the previously reported SAM process (5–10 min). Conclusion: The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation requiring no additional time from the SAM process. This research was supported by Elekta inc. (Crawley, UK)

  6. A new method for designing dual foil electron beam forming systems. II. Feasibility of practical implementation of the method

    Science.gov (United States)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work a new method for designing dual foil electron beam forming systems was introduced. In this method, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of system performance in function of its parameters. At each point of the scan, Monte Carlo method is used to calculate the off-axis dose profile in water taking into account detailed and complete geometry of the system. The new method, while being computationally intensive, minimizes the involvement of the designer. In this Part II paper, feasibility of practical implementation of the new method is demonstrated. For this, a prototype software tools were developed and applied to solve a real life design problem. It is demonstrated that system optimization can be completed within few hours time using rather moderate computing resources. It is also demonstrated that, perhaps for the first time, the designer can gain deep insight into system behavior, such that the construction can be simultaneously optimized in respect to a number of functional characteristics besides the flatness of the off-axis dose profile. In the presented example, the system is optimized in respect to both, flatness of the off-axis dose profile and the beam transmission. A number of practical issues related to application of the new method as well as its possible extensions are discussed.

  7. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO_2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle; Fabien; Luo; Aiping; Marin; Emmanuel; Meunier; Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  8. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle Fabien; Luo Aiping; Marin Emmanuel; Meunier Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  9. Canonical finite element method for solving nonconvex variational problems to post buckling beam problem

    Science.gov (United States)

    Ali, Elaf Jaafar; Gao, David Yang

    2016-10-01

    The goal of this paper is to solve the post buckling phenomena of a large deformed elastic beam by a canonical dual mixed finite element method (CD-FEM). The total potential energy of this beam is a nonconvex functional which can be used to model both pre-and post-buckling problems. Different types of dual stress interpolations are used in order to verify the triality theory. Applications are illustrated with different boundary conditions and external loads by using semi-definite programming (SDP) algorithm. The results show that the global minimum of the total potential energy is stable buckled configuration, the local maximum solution leads to the unbuckled state, and both of these two solutions are numerically stable. While the local minimum is unstable buckled configuration and very sensitive to both stress interpolations and the external loads.

  10. A new and simple calibration-independent method for measuring the beam energy of a cyclotron.

    Science.gov (United States)

    Gagnon, Katherine; Jensen, Mikael; Thisgaard, Helge; Publicover, Julia; Lapi, Suzanne; McQuarrie, Steve A; Ruth, Thomas J

    2011-01-01

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of (nat)Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies.

  11. A new and simple calibration-independent method for measuring the beam energy of a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Katherine, E-mail: kgagnon1@ualberta.c [Cross Cancer Institute, Edmonton PET Centre, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Jensen, Mikael; Thisgaard, Helge [Hevesy Laboratory, Risoe-DTU, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Publicover, Julia; Lapi, Suzanne [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); McQuarrie, Steve A. [Cross Cancer Institute, Edmonton PET Centre, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Ruth, Thomas J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)

    2011-01-15

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of {sup nat}Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies.

  12. A review of flexibility-based finite element method for beam-column elements

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; ZHAI Changhai; XIE Lili

    2009-01-01

    For material nonlinear problem, elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.

  13. A new source number estimation method based on the beam eigenvalue

    Institute of Scientific and Technical Information of China (English)

    JIANG Lei; CAI Ping; YANG Juan; WANG Yi-ling; XU Dan

    2007-01-01

    Most source number estimation methods based on the eigenvalues are decomposed by covariance matrix in MUSIC algorithm. To develop the source number estimation method which has lower signal to noise ratio and is suitable to both correlated and uncorrelated impinging signals, a new source number estimation method called beam eigenvalue method (BEM) is proposed in this paper.Through analyzing the space power spectrum and the correlation of the line array, the covariance matrix is constructed in a new way, which is decided by the line array shape when the signal frequency is given.Both of the theory analysis and the simulation results show that the BEM method can estimate the source number for correlated signals and can be more effective at lower signal to noise ratios than the normal source number estimation methods.

  14. Application of digital image correlation method for analysing crack variation of reinforced concrete beams

    Indian Academy of Sciences (India)

    Ming-Hsiang Shih; Wen-Pei Sung

    2013-08-01

    The Digital Image Correlation (DIC) method is a fast-growing emerging technology that provides a low-cost method for measuring the strain of an object. In this study, the feasibility of using this method to observe cracks developed in reinforced concrete beams will be explored so that a practical application can be proposed. The DIC method has been applied for analysing the field of surface displacement and strain; it is not applicable for measuring non-continuous field of displacement. However, if a singular point (i.e., crack points) can be considered as the area of concentrated strain by imitating the treatment of micro-cracks using the finite element method, the region of concentrated strain field based on analyses of digital images can be applied for determining the locations of cracks. Laboratory results show that cracks developed in reinforced cement beams can be observed with a good precision using the von Mises strain field, and that smaller grids lead to clearer crack images. In addition to identifying visible cracks, the DIC image analysis will enable researchers to identify minute cracks that are not visible to naked eyes. Additionally, the DIC method has more accuracy and precision than visual observation for analysing crack loadings so that earlier warnings can be realized before cracks develop in the specimen.

  15. New Density Estimation Methods for Charged Particle Beams With Applications to Microbunching Instability

    Energy Technology Data Exchange (ETDEWEB)

    Balsa Terzic, Gabriele Bassi

    2011-07-01

    In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.

  16. Zeeman effects in the hyperfine structure of atomic iodine photodissociation laser emission.

    Science.gov (United States)

    Hwang, W. C.; Kasper, J. V. V.

    1972-01-01

    Observation of hyperfine structure in laser emission from CF3I and C2F5I photodissociation lasers. Constant magnetic fields affect the time behavior of the emission by changing the relative gains of the hyperfine transitions. Time-varying fields usually present in photodissociation lasers further complicate the emission.

  17. On the origin of the asymmetric shape of the HCl photodissociation cross section

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht; Johnson, Matthew Stanley; Grage, Mette Marie-Louise;

    2009-01-01

    A first principles treatment of the photodissociation of HCl and DCl from 50000 cm1 to 75000 cm1 is presented. The treatment is the first to correctly reproduce the asymmetric absorption profile observed for HCl. The theoretical model for the HCl and DCl photodissociation presented in this study ...

  18. Reconstruction of Sound Source Pressures in an Enclosure Using the Phased Beam Tracing Method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2009-01-01

    Source identification in an enclosure is not an easy task due to complicated wave interference and wall reflections, in particular, at mid-high frequencies. In this study, a phased beam tracing method was applied to the reconstruction of source pressures inside an enclosure at medium frequencies......-directional sphere and a cubic source in a rectangular enclosure were taken as examples in the simulation tests. A reconstruction error was investigated by Monte Carlo simulation in terms of field point locations. When the source information was reconstructed by the present method, it was shown that the sound power...

  19. On Approximate Analytical Solutions of Nonlinear Vibrations of Inextensible Beams using Parameter-Expansion Method

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo;

    2010-01-01

    In this work, an analytical method, which is referred to as Parameter-expansion Method is used to obtain the exact solution for the problem of nonlinear vibrations of an inextensible beam. It is shown that one term in the series expansion is sufficient to obtain a highly accurate solution, which ...... is valid for the whole domain of the problem. A comparison of the obtained the numerical solution demonstrates that PEM is effective and convenient for solving such problems. After validation of the obtained results, the system response and stability are also discussed....

  20. Waveform synthesis of surface waves in a laterally heterogeneous earth by the Gaussian beam method

    Science.gov (United States)

    Yomogida, K.; Aki, K.

    1985-01-01

    The present investigation is concerned with an application of the Gaussian beam method to surface waves in the laterally heterogeneous earth. The employed method has been developed for ray tracing and synthesizing seismograms of surface waves in cases involving the laterally heterogeneous earth. The procedure is based on formulations derived by Yomogida (1985). Vertical structure of the wave field is represented by the eigenfunctions of normal mode theory, while lateral variation is expressed by the parabolic equation as in two-dimensional acoustic waves or elastic body waves. It is demonstrated that a large-amplitude change can result from a slight perturbation in the phase velocity model.

  1. Intracluster superelastic scattering via sequential photodissociation in small HI clusters

    Science.gov (United States)

    Chastaing, D.; Underwood, J.; Wittig, C.

    2003-07-01

    The photodissociation of expansion-cooled HI monomer by using 266 nm radiation yields H atoms having 12 830 and 5287 cm-1 of translational energy in the HI center-of-mass system for the I(2P3/2) and I(2P1/2) (i.e., I and I*, respectively) co-fragments. Irradiating HI clusters [i.e., (HI)n, with n=2 being the dominant cluster] with 266 nm radiation produces, among other things, some H atoms whose translational energies are peaked at 20 285 cm-1, which is 7455 cm-1 higher in energy than the more energetic of the monomer peaks. These very fast H atoms arise from sequential photodissociation within the clusters. Namely, a weakly bound I*ṡ(HI)n-1 complex is first created by the photodissociation of an HI moiety within (HI)n, and then the photodissociation of a second HI moiety [within I*ṡ(HI)n-1] produces a fast H atom that scatters from the nearby I*, in some cases deactivating it in the process. Thus, the latter superelastically scattered H atom acquires, as translational energy, nearly all of the I* energy (7603 cm-1). For example, for the dimer, the first dissociation event, (HI)2+hv→H+I(I*)ṡHI, is followed by I*ṡHI+hv→Hsuperelastic+I-I. High quality potentials for the relevant HI excited states have been calculated recently, and coupling between 3Π0+ (which correlates with I*) and 1Π (which correlates with I) has been shown to be due to spin-rotation interaction. There is a high degree of separability between the photodissociation of the second HI moiety and the subsequent H+I* scattering (within a given cluster). This is due mainly to the shape of the 3Π0+ potential; specifically, it has a shallow well that persists to small r. The shape of the 3Π0+ potential is influenced by relativity; i.e., strong spin-orbit coupling maintains the I* spherical electron density to relatively small r. The 3Π0+→1Π transition probabilities are calculated for H+I* collisions having different values of the collisional orbital angular momentum quantum number, l, by

  2. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2015-01-01

    Full Text Available Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.

  3. Unified field analysis method for IR/MW micro-mirror array beam combiner.

    Science.gov (United States)

    Tian, Yi; Sun, Gang; Yan, Hui; Zhang, Li; Li, Zhuo

    2014-07-01

    The aperture field integration method (AFIM) is proposed and utilized to efficiently compute the field distributions of infrared/microwave (IR/MW) micro-mirror array beam combiners, including the MW near-field distribution and the IR far-field distribution. The MW near-field distributions of single-dielectric-layer beam combiners with 1, 11, and 101 micromirrors are analyzed by AFIM. Compared to the commonly used multilevel fast multipole method (MLFMM) in the computation of MW near-field distribution, the memory requirement and CPU time consumption are reduced drastically from 16.92 GB and 3.26 h to 0.66 MB and 0.55 s, respectively. The calculation accuracy is better than 96%, when the MW near-field distribution is computed. The IR far-field computational capability is validated by comparing the results obtained through AFIM and experiment. The MW near field and IR far field of a circular and a square shape of three-layer micro-mirror array beam combiners are also analyzed. Four indicators E pv , E rms , φ pv , and φ rms representing the amplitude and phase variations are proposed to evaluate the MW near-field uniformity. The simulation results show that the increase of beam combiner size can improve the uniformity of the MW near field, and that the square shape has less influence on the uniformity of the MW near field than the circular one. The zeroth-order diffraction primary maximum intensity of the IR far field is decreased by 1/cos 2  α 0 times compared to that of the equivalent mirror, where α 0 is the oblique angle of each micromirror. When the periodic length of the micro-mirror array is less than 0.1 mm, the position of the secondary maximum will exceed the size of the focal plane array. Simultaneously, the half-width of the zeroth-order diffraction primary maximum is less than the size of a single pixel. Thus, IR images with high quality will be obtained. The simulation results show that the AFIM as a unified method can be applied to design

  4. Vacuum ultraviolet photoionization and photodissociation of polyatomic molecules and radicals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y. [Iowa State Univ., Ames (United States)

    1993-12-01

    In the past decade, tremendous progress has been made in understanding the photodissociation (PD) dynamics of triatomic molecules. However, the PD study of radicals, especially polyatomic radicals, has remained essentially an unexplored research area. Detailed state-to-state PD cross sections for radicals in the UV and VUV provide challenges not only for dynamical calculations, but also for ab initio quantum chemical studies. The authors have developed a laser based pump-probe apparatus for the measurement of absolute PD cross sections for CH{sub 3}S and HS is summarized.

  5. An efficient method to improve the proximity effect for electron beam optical disc mastering

    Science.gov (United States)

    Pan, C. T.; Chen, M. F.

    2005-04-01

    For the next-generation optical disc, electron beam mastering has been considered as a high-potential technique to fabricate a high-density optical disc. However, for electron beam mastering, the proximity effect caused by electron backscattering is an important problem. In this study, the influence of the proximity effect on the linewidth (full width at half magnitude, FWHM) and thickness of the residual resist is discussed. Some methods are presented to solve the proximity effect for optical disc mastering, i.e., by raising the electron beam voltage and depositing thin film material with low atomic number on a silicon substrate. In the study, thin film materials such as Al, Ni, SiO2, and Si3N4 are deposited on a silicon wafer to explore the proximity effect. The preliminary experimental results show that raising the electron beam voltage and depositing SiO2 or Si3N4 thin film on a silicon substrate can efficiently solve this problem. Later, the resist with a nano-pattern is transferred into a metal Ni-Co (nickel-cobalt) mould by electroplating. The technique of the Ni-Co electroplating process with hardness at least Vicker hardness (Hv) 650 and residual stress below 1.5 kg mm-2 is developed. Then, with the Ni-Co mould, a modified LIGA process is applied to produce a high-density optical disc. The Ni-Co mould serves as the master for the hot embossing process to replicate the nano-pattern onto the PMMA sheet. Since the feature size is down to the nanometre range, the study presents an innovative demoulding mechanism to demould the master from the PMMA sheet without damaging the nanometre patterns.

  6. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    Science.gov (United States)

    Degtiarenko, Pavel V.; Dotson, Danny Wayne

    2007-10-09

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  7. Discrete time transfer matrix method for dynamics of multibody system with flexible beams moving in space

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ting Rui; Edwin Kreuzer; Bao Rong; Bin He

    2012-01-01

    In this paper,by defining new state vectors and developing new transfer matrices of various elements moving in space,the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of muhibody system with flexible beams moving in space.Formulations and numerical example of a rigidflexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov ing in space,the global dynamics equations of system are not needed,the orders of involved matrices of the system are very low and the computational speed is high,irrespective of the size of the system.The new method is simple,straightforward,practical,and provides a powerful tool for multi-rigid-flexible-body system dynamics.

  8. COMPUTATION OF SUPER-CONVERGENT NODAL STRESSES OF TIMOSHENKO BEAM ELEMENTS BY EEP METHOD

    Institute of Scientific and Technical Information of China (English)

    王枚; 袁驷

    2004-01-01

    The newly proposed element energy projection (EEP) method has been applied to the computation of super-convergent nodal stresses of Timoshenko beam elements. General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given. Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions. The EEP method gives super-convergent nodal stresses, which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude. And in addition, it can overcome the "shear locking" difficulty for stresses even when the displacements are badly affected. This research paves the way for application of the EEP method to general onedimensional systems of ordinary differential equations.

  9. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    CERN Document Server

    Huang, Kuidong; Zhang, Dinghua; Zhang, Hua; Shi, Wenlong

    2015-01-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification. The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corre...

  10. Modified convolution method to reconstruct particle hologram with an elliptical Gaussian beam illumination.

    Science.gov (United States)

    Wu, Xuecheng; Wu, Yingchun; Yang, Jing; Wang, Zhihua; Zhou, Binwu; Gréhan, Gérard; Cen, Kefa

    2013-05-20

    Application of the modified convolution method to reconstruct digital inline holography of particle illuminated by an elliptical Gaussian beam is investigated. Based on the analysis on the formation of particle hologram using the Collins formula, the convolution method is modified to compensate the astigmatism by adding two scaling factors. Both simulated and experimental holograms of transparent droplets and opaque particles are used to test the algorithm, and the reconstructed images are compared with that using FRFT reconstruction. Results show that the modified convolution method can accurately reconstruct the particle image. This method has an advantage that the reconstructed images in different depth positions have the same size and resolution with the hologram. This work shows that digital inline holography has great potential in particle diagnostics in curvature containers.

  11. Investigation of tissue oxygenation by in vivo laser-induced photodissociation of cutaneous arterial blood oxyhemoglobin

    Science.gov (United States)

    Asimov, M. M.; Korolevich, A. N.

    2008-06-01

    A novel method of direct control of local tissue oxygenation based on laser-induced photodissociation of oxyhemoglobin in cutaneous blood vessels is discussed. New technology in selective and local increase of the concentration of free molecular oxygen in tissue that enhances metabolism of cells is demonstrated. Direct in vivo measurements of the tissue oxygen tension are carried out on human skin. Kinetics of oxygen tension in tissue is investigated under the effect of He-Ne laser radiation at the power of 1mW relatively to initial value of tissue oxygen tension. The results of experimental study the kinetics of oxygen distribution into tissue from arterial blood is presented. Biomedical applications of proposed new technology in laser therapy of pathologies where elimination of local tissue hypoxia is critical are discussed.

  12. Comparison of methods to measure the rate of neutral free radical production by photo-deionization of negative ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Keiji E-mail: khayashi@neptune.kanazawa-it.ac.jp; Konno, Hiroshi; Oseki, Takashi; Kojima, Hideki; Kanayama, Takuo

    2003-05-01

    Two measurement methods to determine the rate of neutral free radical production by the photo-deionization of negative ion beams (PDINIB) are introduced. These methods, namely, photoelectron-current measurement by low-frequency electro-modulation probe (PMMP) and measurement of decrease in the negative-ion beam current (DNIC) were employed to evaluate the production rate in a trial surface-processing apparatus developed in the author's laboratory utilizing a steady-flux refined beam of neutral free radicals (RBNR) produced by the PDINIB procedure. A {sup 63}Cu{sup -} negative ion beam of kinetic energy E{sub i} varied up to 15 keV was irradiated with a 514.5 nm visible light beam from a 25 W CW Ar{sup +} ion laser. The detection limit of the production rate by the PMMP setup was as high as 6 x 10{sup 9} s{sup -1} under the condition that E{sub i}=15 keV, the negative-ion beam current I{sub i}=4 {mu}A and the laser power P=6 W. The DNIC method is simpler but less reliable than the PMMP method owing to larger uncertainty resulting from the fluctuation of the negative-ion beam current.

  13. Analytical Investigation of Beam Deformation Equation using Perturbation, Homotopy Perturbation, Variational Iteration and Optimal Homotopy Asymptotic Methods

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Mowlaee, P.; Barari, Amin;

    2011-01-01

    The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified...

  14. Single Cell Element of Chalcogenide Random Access Memory Fabricated with the Focused Ion Beam Method

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; SONG Zhi-Tang; FENG Song-Lin; CHEN Bomy

    2004-01-01

    A single cell element of chalcogenide random access memory was fabricated by using the focused ion beam method. The contact size between the Ge2Sb2 Te5 phase change film and the top electrode film is about 600nm (diameter) and the contact area is calculated to be 0.28pm2. The thickness of the phase change film is 83nm.The current-voltage characteristics of the cell element are studied using the home-made current-voltage tester in our laboratory. The minimum threshold current of about 0.6mA is obtained.

  15. Optical Device, System, and Method of Generating High Angular Momentum Beams

    Science.gov (United States)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  16. Vibration analysis of a rotating closed section composite Timoshenko beam by using differential transform method

    Directory of Open Access Journals (Sweden)

    Saeed Talebi

    2015-07-01

    Full Text Available This study introduces the Differential Transform Method (DTM to analyse the free vibration response of a rotating, closed section, composite, Timoshenko beam which features material coupling between flapwise bending and torsional vibrations due to ply orientation. The governing differential equations of motion are derived using Hamilton’s principle and solved by applying DTM. The natural frequencies are calculated and the effects of the bending-torsion coupling, the slenderness ratio and several other parameters on the natural frequencies are investigated using the computer package, Mathematica. Wherever possible, comparisons are made with the studies in open literature.

  17. A method of beam combination of high-power incoherent fiber laser

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Diffraction efficiency of grating plays an important role in output power of incoherent fiber laser beam combination.Through theoretic analysis and numerical simulations it has been proved that the diffraction efficiency would increase with the decrease of grating frequency and wavelength bandwidth. On the condition that the width of a fiber array is fixed at W=10 cm, an optimum grating frequency were numerically simulated as f=230 mm-1. Also an unequal interval method was proposed to improve the system efficiency of diffraction into 0.4293, which is higher than 0.3824 under the equal interval condition.

  18. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  19. Uv Photodissociation Spectroscopy of Temperature Controlled Hydrated Phenol Cluster Cation

    Science.gov (United States)

    Kurusu, Itaru; Yagi, Reona; Kasahara, Yasutoshi; Ishikawa, Haruki

    2016-06-01

    Owing to various developments of spectroscopic techniques, microscopic hydration structures of various clusters in the gas phase have been determined so far. The next step for further understanding of the microscopic hydration is to reveal the temperature effect, such as a fluctuation of the hydration structure. Thus, we have been carrying out photodissociation spectroscopy on the hydrated phenol cation clusters, [PhOH(H_2O)_n]^+, trapped in our temperature-variable ion trap. After the last symposium, we succeeded in improving our experimental condition and recorded the UV photodissociation spectra of [PhOH(H_2O)_5]^+ at the trap temperatures of 20, 50, and 100 K. We identified three groups of bands by their temperature dependence in the spectra. Based on the results of the DFT calculations, we estimated the temperature dependence of the relative populations among the isomers. As a results, the isomers were grouped into three groups having different motifs of the hydrogen-bond structures. Comparing the experimental with the theoretical results, we assigned the relation between the band carriers and the hydrogen-bond structure motifs. Details of the discussion will be presented in the paper. H. Ishikawa, T. Nakano, T. Eguchi, T. Shibukawa, K. Fuke, Chem. Phys. Lett. 514, 234 (2011) R. Yagi, Y. Kasahara, H. Ishikawa, WH12, the 70th International Symposium on Molecular Spectroscopy (2015)

  20. Analytic H i-to-H2 Photodissociation Transition Profiles

    Science.gov (United States)

    Bialy, Shmuel; Sternberg, Amiel

    2016-05-01

    We present a simple analytic procedure for generating atomic (H i) to molecular ({{{H}}}2) density profiles for optically thick hydrogen gas clouds illuminated by far-ultraviolet radiation fields. Our procedure is based on the analytic theory for the structure of one-dimensional H i/{{{H}}}2 photon-dominated regions, presented by Sternberg et al. Depth-dependent atomic and molecular density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity-dependent H2 formation rate coefficient, and dust absorption cross section in the Lyman-Werner photodissociation band. We use our procedure to generate a set of {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth, the {{H}} {{I}} and {{{H}}}2 density profiles depend primarily on the Sternberg “α G parameter” (dimensionless) that determines the dust optical depth associated with the total photodissociated {{H}} {{I}} column. We derive a universal analytic formula for the {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition points as a function of just α G. Our formula will be useful for interpreting emission-line observations of H i/{{{H}}}2 interfaces, for estimating star formation thresholds, and for sub-grid components in hydrodynamics simulations.

  1. A Novel Contactless Method for Characterization of Semiconductors: Surface Electron Beam Induced Voltage in Scanning Electron Microscopy

    Institute of Scientific and Technical Information of China (English)

    朱世秋; E.I.RAU; 杨富华; 郑厚植

    2002-01-01

    We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64pf. It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.

  2. Dual axis translation apparatus and system for translating an optical beam and related method

    Science.gov (United States)

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  3. A fast high-order method to calculate wakefield forces in an electron beam

    CERN Document Server

    Qiang, Ji; Ryne, Robert D

    2012-01-01

    In this paper we report on a high-order fast method to numerically calculate wakefield forces in an electron beam given a wake function model. This method is based on a Newton-Cotes quadrature rule for integral approximation and an FFT method for discrete summation that results in an $O(Nlog(N))$ computational cost, where $N$ is the number of grid points. Using the Simpson quadrature rule with an accuracy of $O(h^4)$, where $h$ is the grid size, we present numerical calculation of the wakefields from a resonator wake function model and from a one-dimensional coherent synchrotron radiation (CSR) wake model. Besides the fast speed and high numerical accuracy, the calculation using the direct line density instead of the first derivative of the line density avoids numerical filtering of the electron density function for computing the CSR wakefield force.

  4. An effective method for trapping ion beams in superfluid helium for laser spectroscopy experiments

    Directory of Open Access Journals (Sweden)

    Yang X.F

    2014-03-01

    Full Text Available A novel laser spectroscopy technique -“OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher has been proposed. This method aimed to investigate the structure of exotic nuclei systematically by measuring nuclear spins and moments. For in-situ laser spectroscopy of atoms in He II, a method to trap atoms precisely at the observation region of laser is highly needed. In this work, a setup composed of a degrader, two plastic scintillators and a photon detection system is further tested and verified for adjusting and checking the stopping position of 84–87Rb beam. Details of the current setup, experimental results using this method are presented.

  5. Hα Fluorescence Intensity and Polarization from Photodissociated H2, D2 and HD

    Science.gov (United States)

    Machacek, J. R.; Andrianarijaona, V. M.; Furst, J. E.; Gay, T. J.; Kilcoyne, A. L. D.; Landers, A. L.; McLaughlin, K. W.

    2009-05-01

    We have measured the intensity and linear polarization of Hα (n=3->n=2) 656.3 nm fluorescence resulting from H and D atoms created by photodissociation of H2, D2 and HD using linearly-polarized photons with energies ranging from 16.5 to 17.6 eV. Between the threshold for atomic n=3 production at 16.6 eV and the n=4 production threshold at 17.3 eV, the relative cross section and polarization data are free from cascade contributions due to higher-lying atomic states. The photon beam energy width used for this work was 3 meV. Comparison of relative intensities to previous measurements [1] show marked differences. However, the polarization is in qualitative agreement. [1] H. Frohlich et al., Z. Phys. D 34, 119 (1995). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  6. Mapping photodissociation and shocks in the vicinity of Sagittarius A*

    Science.gov (United States)

    Amo-Baladrón, M. A.; Martín-Pintado, J.; Martín, S.

    2011-02-01

    Aims: We study the chemistry in the harsh environments of galactic nuclei using the nearest one, the Galactic center (GC). Methods: We have obtained maps of the molecular emission within the central five arcminutes (12 pc) of the GC in selected molecular tracers: SiO(2-1), HNCO(50,5-40,4), and the J = 1 → 0 transition of H13CO+, HN13C, and C18O at an angular resolution of 30'' (1.2 pc). The mapped region includes the circumnuclear disk (CND) and the two surrounding giant molecular clouds (GMCs) of the Sgr A complex, known as the 20 and 50 km s-1 molecular clouds. Additionally, we simultaneously observed the J = 2 → 1 and J = 3 → 2 transitions of SiO toward selected positions to estimate the physical conditions of the molecular gas using the large velocity gradient approximation. Results: The SiO(2-1) emission shows all the molecular features identified in previous studies, covering the same velocity range as the H13CO+(1-0) emission, which also presents a similar distribution. In contrast, HNCO(5-4) emission appears in a narrow velocity range mostly concentrated in the 20 and 50 km s-1 GMCs. A similar trend follows the HN13C(1-0) emission. The HNCO column densities and fractional abundances present the highest contrast, with difference factors of ≥60 and 28, respectively. Their highest values are found toward the cores of the GMCs, whereas the lowest ones are measured at the CND. SiO abundances do not follow this trend, with high values found toward the CND, as well as the GMCs. By comparing our abundances with those of prototypical Galactic sources we conclude that HNCO, similar to SiO, is ejected from grain mantles into gas-phase by nondissociative C-shocks. This results in the high abundances measured toward the CND and the GMCs. However, the strong UV radiation from the Central cluster utterly photodissociates HNCO as we get closer to the center, whereas SiO seems to be more resistant against UV-photons or it is produced more efficiently by the strong

  7. Structural system identification of buildings by a wave method based on a layered Timoshenko beam model

    Science.gov (United States)

    Ebrahimian, Mahdi; Todorovska, Maria I.

    2014-03-01

    A layered Timoshenko beam (TB) model of a high-rise building is presented and applied to system identification of a full-scale building from recorded seismic response. This model is a new development in a wave method for earthquake damage detection and structural health monitoring being developed by the authors' research group. The method is based on monitoring changes in the wave properties of the structure, such as the velocity of wave propagation vertically through the structure. This model is an improvement over the previously used layered shear beam (SB) model because it accounts for wave dispersion caused by flexural deformation present in addition to shear. It also accounts for the rotatory inertia and the variation of the building properties with height. The case study is a 54-story steel frame building located in downtown Los Angeles. Recorded accelerations during the Northridge earthquake of 1994 are used for system identification of the NS response. The model parameters are identified by matching, in the least squares sense, the model and observed impulse response functions at all levels where motion was recorded. The model is then used to compute the building vertical phase and group velocities. Impulse responses computed by deconvolution of the recorded motions with the roof response are used, which represent the building response to a virtual source at the roof. The better match of transfer-function amplitudes of the fitted TB model than of previously fitted SB model indicates that the layered TB model is a better physical model for this building.

  8. Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method

    Science.gov (United States)

    Bekhoucha, F.; Rechak, S.; Cadou, J. M.

    2016-12-01

    In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.

  9. Photodissociation dynamics of ethyl ethynyl ether: A new ketenyl radical precursor

    Science.gov (United States)

    Krisch, M. J.; Miller, J. L.; Butler, L. J.; Su, H.; Bersohn, R.; Shu, J.

    2003-07-01

    The work presented here investigates the dynamics of the photodissociation of ethyl ethynyl ether at 193.3 nm with photofragment translational spectroscopy and laser-induced fluorescence. The data from two crossed laser-molecular beam apparatuses, one with vacuum ultraviolet photoionization detection and one with electron bombardment detection, showed that only cleavage of the C-O bond to form a C2HO radical and a C2H5 (ethyl) radical occurs. We observed neither cleavage of the other C-O bond nor molecular elimination to form C2H4+CH2CO (ketene). The C2HO radical is formed in two distinct product channels, with 37% of the radicals formed from a channel with recoil kinetic energies extending from about 10 to 70 kcal/mole and the other 63% formed from a channel with lower average recoil energies ranging from 0 to 40 kcal/mole. The measurements using photoionization detection reveal that the C2HO radical formed in the higher recoil kinetic-energy channel has a larger ionization cross section for photon energies between 10.3 and 11.3 eV than the radical formed in the lower recoil kinetic-energy channel, and that the transition to the ion is more vertical. The radicals formed in the higher recoil kinetic-energy channel could be either X˜(2A″) or Ã(2A') state ketenyl (HCCO) product and the shape of the recoil kinetic-energy distribution fitting this data does not vary with ionization energy between 10.3 and 11.3 eV. The C2HO formed in the channel with the lower kinetic-energy release is likely the spin forbidden ã(4A″) state of the ketenyl radical, reached through intersystem crossing. The B˜ state of ketenyl is energetically inaccessible. We also consider the possibility that the lower kinetic-energy channel forms two other C2HO isomers, the CCOH (hydroxyethynyl) radical or the cyclic oxiryl radical. Signal from laser-induced fluorescence of the HCCO photofragment was detected at the electronic origin and the 510 band. The fluorescence signal peaks after a 20

  10. Observations on some acoustic methods used in studying the elastic properties of metals. [resonant frequency measurements on metal beams

    Science.gov (United States)

    Velceanu, C. I.

    1974-01-01

    An experimental setup is reported that permits very accurate measurements of the resonance frequencies of long cylindrical beams fixed in the middle and whose size can vary within wide limits. It also permits measurement of the width of the resonance curve. It is shown that the Poisson effect can be brought to light for relatively long beams and for relatively short beams. Poisson ratio, values obtained with this method argue in favor of using the low frequency region for determining elastic constants of solids.

  11. Propensities toward C2H(Ã 2Π) in acetylene photodissociation

    Science.gov (United States)

    Zhang, J.; Riehn, C. W.; Dulligan, M.; Wittig, C.

    1995-10-01

    When expansion-cooled acetylene is excited to the ν″1+3ν″3 vibrational level (4 quanta of CH-stretch) and then photodissociated at 248.3 nm, the dominant product channel is C2H(Ã 2Π). This differs markedly from one-photon 193.3 nm photodissociation, which provides 1200 cm-1 less energy and yields C2H(X˜ 2Σ+) as the primary product. Photodissociation at 121.6 nm yields C2H(Ã 2Π) exclusively.

  12. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Progress report, July 1993--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J.; Gluckstern, R.L.

    1994-08-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: the computation of charged particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates. Substantial progress in research has been made during the past year. These achievements are summarized in the following report.

  13. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Progress report, August 1992--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J.; Gluckstern, R.L.

    1993-06-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: Charged Particle Beam Transport and the Computation of Electromagnetic Fields and Beam-Cavity Interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates.

  14. Ion beam analysis of zeolites type Li-ABW synthesized by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E.; De Lucio, O. G.; Solis, C.; Zavala, E. P.; Cruz, J. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Alfaro, S.; Rodriguez, C.; Valenzuela, M. A. [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacantenco, 07738 Mexico D. F. (Mexico); Rocha, M. F. [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, Av. Instituto Politecnico Nacional s/n, Col. Lindavista, 07738 Mexico D. F. (Mexico); Murillo, G.; Policroniades, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-02-15

    This work reports a method to synthesize and characterize Li-ABW zeolites by a hydrothermal method. These materials are good candidates for CO{sub 2} capture because of the high reactivity between the Li{sup +} with CO{sub 2} to form Li{sub 2}CO{sub 3}. We performed and elemental profile concentration using ion beam analysis. The elastic backscattered proton energy spectra from the Al, Si, O and Li nuclei, in combination with the {alpha} particles from the {sup 7}Li ({rho}, {alpha}){sup 4}He nuclear reaction energy spectra, were employed for this task. X-ray diffraction was also applied to determine the crystalline structure. (Author)

  15. Phased Beam Tracing Method Using the Reflection Coefficient Calculated from the Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon; Rindel, Jens Holger

    2005-01-01

    the measured surface impedance. However, it is not always possible to get the measured impedance data of the surface, so that a practical way of getting reflection characteristics is needed. Generally, in the architectural acoustics field, the absorption coefficients have been employed in the calculations...... in spite of the fact that the usual assumptions of geometric acoustics still hold. In the calculation of pressure impulse response, it is essential to have the reflection characteristics of the surfaces in the enclosed space. There is a method to obtain the reflection coefficient of the surface using......, whereas Rindel proposed the angle dependent reflection coefficient which can be calculated from absorption coefficient under the several assumptions. In this research, the angle dependent reflection coefficients were adopted in the phased beam tracing method and the results are compared with measurement...

  16. Application of robot kinematics methods to the simulation and control of neutron beam line positioning systems

    Energy Technology Data Exchange (ETDEWEB)

    James, Jonathan A. [Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)]. E-mail: j.a.j.james@open.ac.uk; Edwards, Lyndon [Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)

    2007-02-11

    Neutron stress measurements require specimens of complex geometry to be speedily and accurately positioned and oriented with respect to the neutron beam. Recognition that a majority of the specimen positioning systems in use at strain scanning facilities are effectively serial robot manipulators, suggests that the methods of serial robot kinematic modelling may be applied to advantage. The adoption of robotics methods provides a simple and reliable framework for controlling positioning systems of arbitrary geometry and complexity. In addition the numerical solution of the inverse kinematic problem is facilitated, allowing specimens to be automatically positioned and orientated so that pre-determined strain components are measured. It is also shown that, given sufficient degrees of freedom, a secondary characteristic of the measurement position such as the measurement count time may be simultaneously optimised.

  17. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-Ray microplanar beams

    Science.gov (United States)

    Dilmanian, F. Avraham; McDonald, III, John W.

    2007-12-04

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  18. Application of the differential transformation method and variational iteration method to large deformation of cantilever beams under point load

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, Pouya [Semnan Univ., Semnan (Iran, Islamic Republic of); Yaghoobi, Hessamed Din; Torabi, Mohsen [City Univ. of Hong Kong, Hong Kong (China)

    2012-09-15

    Large deflection of a cantilever beam subjected to a tip concentrated load is governed by a non-linear differential equation. Since it is hard to find exact or closed form solutions for this non-linear problem, this paper investigates the aforementioned problem via the differential transformation method (DTM) and the variational iteration method (VIM), which are well known approximate analytical solutions. The mathematical formulation is yielded to a non-linear two-point boundary value problem. In this study, we compare the DTM and VIM results, with those of Adomian decomposition method (ADM) and the established numerical solution obtained by the Richardson extrapolation in order to verify the accuracy of the proposed methods. As an important result, it is depicted from tabulated data that the DTM results are more accurate in comparison with those obtained by the VIM and ADM, which is one of the objectives of this article. Moreover, the effects of dimensionless end point load, {alpha} , on the slope of any point along the arc length and the dimensionless vertical and horizontal displacements are illustrated and explained. The results reveal that these methods are very effective and convenient in predicting the solution of such problems, and it is predicted that the DTM and VIM can find a wide application in new engineering problems.

  19. Three-Dimensional Reconstruction from Cone-Beam Projections for Flat and Curved Detectors: Reconstruction Method Development.

    Science.gov (United States)

    Hu, Hui

    This dissertation is principally concerned with improving the performance of a prototype image-intensifier -based cone-beam volume computed tomography system by removing or partially removing two of its restricting factors, namely, the inaccuracy of current cone-beam reconstruction algorithm and the image distortion associated with the curved detecting surface of the image intensifier. To improve the accuracy of cone-beam reconstruction, first, the currently most accurate and computationally efficient cone-beam reconstruction method, the Feldkamp algorithm, is investigated by studying the relation of an original unknown function with its Feldkamp estimate. From this study, a partial knowledge on the unknown function can be derived in the Fourier domain from its Feldkamp estimate. Then, based on the Gerchberg-Papoulis algorithm, a modified iterative algorithm efficiently incorporating the Fourier knowledge as well as the a priori spatial knowledge on the unknown function is devised and tested to improve the cone-beam reconstruction accuracy by postprocessing the Feldkamp estimate. Two methods are developed to remove the distortion associated with the curved surface of image intensifier. A calibrating method based on a rubber-sheet remapping is designed and implemented. As an alternative, the curvature can be considered in the reconstruction algorithm. As an initial effort along this direction, a generalized convolution -backprojection reconstruction algorithm for fan-beam and any circular detector arrays is derived and studied.

  20. Free Transverse Vibration Analysis of Axially Functionally Graded Tapered Euler-Bernoulli Beams through Spline Finite Point Method

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-01-01

    Full Text Available A new model for the free transverse vibration of axially functionally graded (FG tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.

  1. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    Science.gov (United States)

    Koplow, Jeffrey P [San Ramon, CA

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  2. Hydrogen isotope separation by multiple photodissociation of dichlorofluoromethane

    Energy Technology Data Exchange (ETDEWEB)

    Arisawa, T.; Kato, M.; Maruyama, Y.; Shiba, K. (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)

    1982-06-14

    Multiple photodissociation rates of dichlorofluoromethane were measured from the dissociated products and/or the residual gases which escaped dissociation. It is shown that the relationship between the separation factor for the hydrogen isotopes in the residual gases and that in the products is in good agreement with theory. It is also verified that hydrogen isotope separation is influenced by the chlorine isotopes contained in the molecules. The experimental data obtained are compared with the theoretical dissociation model including two-sets of kinetic equations in which energy exchanges between two kinds of isotopic molecules are considered. This gives a good explanation for the dependence of the dissociation rate on the laser intensity and pressure, and the pressure dependence of the separation factor.

  3. Photodissociation of methyl formate: Conical intersections, roaming and triple fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, King-Chuen; Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Chao, Meng-Hsuan [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Lombardi, Andrea [Dipartimento di Chimica, Università di Perugia, 06123 Perugia (Italy); Palazzetti, Federico [Scuola Normale Superiore, 56126 Pisa (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica, Università di Perugia, 06123 Perugia (Italy); Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, 00016 Roma (Italy)

    2015-12-31

    The photodissociation channels of methyl formate have been extensively investigated by two different advanced experimental techniques, ion imaging and Fourier-Transform-Infrared emission spectroscopy, combined with quantum chemical calculations and molecular dynamics simulations. Our aim is to characterize the role of alternative routes to the conventional transition-state mediated pathway: the roaming and the triple fragmentation processes. The photolysis experiments, carried out at a range of laser wavelengths in the vicinity of the triple fragmentation threshold, beside the simulation of large bunches of classical trajectories with different initial conditions, have shown that both mechanisms share a common path that involves a conical intersection during the relaxation process from the electronic excited state S{sub 1} to the ground state S{sub 0}.

  4. Production of Excited Atomic Hydrogen and Deuterium from HD Photodissociation

    Science.gov (United States)

    Machacek, J. R.; Bozek, J. D.; Furst, J. E.; Gay, T. J.; Gould, H.; Kilcoyne, A. L. D.; McLaughlin, K. W.

    2008-05-01

    We have measured the production of Lyα, Hα, and Hβ fluorescence from atomic H and D for the photodissociation of HD by linearly-polarized photons with energies between 20 and 66 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Theoretical calculation are not yet available for HD, but comparison between the relative cross sections for H2, D2 and HD targets and the available theory for H2 and D2 [1] allow for an estimate of the relative strength of each dissociation channel in this energy range. [1] J. D. Bozek et al., J. Phys. B 39, 4871 (2006). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  5. Photodissociation pathways and lifetimes of protonated peptides and their dimers

    DEFF Research Database (Denmark)

    Gopalan, Aravind; Klærke, Benedikte; Rajput, Jyoti

    2012-01-01

    channel in the dimer was found to result in cleavage of the H-bonds after energy transfer through these H-bonds. In general, the dissociation of these protonated peptides is non-prompt and the decay time was found to increase with the size of the peptides. Quantum RRKM calculations of the microcanonical......Photodissociation lifetimes and fragment channels of gas-phase, protonated YAn (n = 1,2) peptides and their dimers were measured with 266 nm photons. The protonated monomers were found to have a fast dissociation channel with an exponential lifetime of ∼200 ns while the protonated dimers show...... of the equipartition theorem. It demonstrates encouraging results in predicting fragmentation lifetimes of protonated peptides. Finally, we present the first experimental evidence for a photo-induced conversion of tyrosine-containing peptides into monocyclic aromatic hydrocarbon along with a formamide molecule both...

  6. Lone-pair interactions and photodissociation of compressed nitrogen trifluoride.

    Science.gov (United States)

    Kurzydłowski, D; Wang, H B; Troyan, I A; Eremets, M I

    2014-08-14

    High-pressure behavior of nitrogen trifluoride (NF3) was investigated by Raman and IR spectroscopy at pressures up to 55 GPa and room temperature, as well as by periodic calculations up to 100 GPa. Experimentally, we find three solid-solid phase transitions at 9, 18, and 39.5 GPa. Vibrational spectroscopy indicates that in all observed phases NF3 remains in the molecular form, in contrast to the behavior of compressed ammonia. This finding is confirmed by density functional theory calculations, which also indicate that the phase transitions of compressed NF3 are governed by the interplay between lone‑pair interactions and efficient molecule packing. Although nitrogen trifluoride is molecular in the whole pressure range studied, we show that it can be photodissociated by mid-IR laser radiation. This finding paves the way for the use of NF3 as an oxidizing and fluorinating agent in high-pressure reactions.

  7. Lone-pair interactions and photodissociation of compressed nitrogen trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Kurzydłowski, D., E-mail: dkurzydlowski@uw.edu.pl [Centre of New Technologies, University of Warsaw, 02-097 Warsaw (Poland); Department of Biogeochemistry, Max Planck Institute for Chemistry, 55128 Mainz (Germany); Wang, H. B.; Eremets, M. I. [Department of Biogeochemistry, Max Planck Institute for Chemistry, 55128 Mainz (Germany); Troyan, I. A. [Department of Biogeochemistry, Max Planck Institute for Chemistry, 55128 Mainz (Germany); A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333 Moscow (Russian Federation)

    2014-08-14

    High-pressure behavior of nitrogen trifluoride (NF{sub 3}) was investigated by Raman and IR spectroscopy at pressures up to 55 GPa and room temperature, as well as by periodic calculations up to 100 GPa. Experimentally, we find three solid-solid phase transitions at 9, 18, and 39.5 GPa. Vibrational spectroscopy indicates that in all observed phases NF{sub 3} remains in the molecular form, in contrast to the behavior of compressed ammonia. This finding is confirmed by density functional theory calculations, which also indicate that the phase transitions of compressed NF{sub 3} are governed by the interplay between lone‑pair interactions and efficient molecule packing. Although nitrogen trifluoride is molecular in the whole pressure range studied, we show that it can be photodissociated by mid-IR laser radiation. This finding paves the way for the use of NF{sub 3} as an oxidizing and fluorinating agent in high-pressure reactions.

  8. A method to increase the hologram viewing angle by the beam reconfiguration

    Science.gov (United States)

    Ohmura, Naoyuki; Kang, Hoonjong; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2008-02-01

    A liquid crystal panel is often used for holographic television. However, its pixel size and pixel number are not enough for practical holographic 3D display. Therefore, multi-panel configuration is often used to increase the viewing angle and displayed image size. However, many spatial light modulators should be used in them. In this paper, we propose a novel method to increase the viewing angle of a holographic display system. The proposed method, which is implemented by a mirror module, is to reconfigure the beam shape reflected by a spatial light modulator. In this paper, the equipment is applied to a holographic display system, which has only a single spatial light modulator and can display a hologram in wider viewing angle than that of the conventional method. By the proposed method, the resolution of the reconfigured spatial light modulator has double resolution in horizontal direction. Inversely, the vertical resolution is decreased because the human get more 3D information in horizontal direction. We have experimented using a Liquid Crystal on Silicon, whose resolution is 4,096 x 2,160 pixels. And the reconfigured resolution by the mirror module is 8,192 x 1,080 pixels. From the experimental results, the horizontal viewing angle is almost two times wider than that of the conventional method without the mirror module. We have achieved that the hologram can be observed binocularly.

  9. CT metal artifact reduction method correcting for beam hardening and missing projections

    Science.gov (United States)

    Verburg, Joost M.; Seco, Joao

    2012-05-01

    We present and validate a computed tomography (CT) metal artifact reduction method that is effective for a wide spectrum of clinical implant materials. Projections through low-Z implants such as titanium were corrected using a novel physics correction algorithm that reduces beam hardening errors. In the case of high-Z implants (dental fillings, gold, platinum), projections through the implant were considered missing and regularized iterative reconstruction was performed. Both algorithms were combined if multiple implant materials were present. For comparison, a conventional projection interpolation method was implemented. In a blinded and randomized evaluation, ten radiation oncologists ranked the quality of patient scans on which the different methods were applied. For scans that included low-Z implants, the proposed method was ranked as the best method in 90% of the reviews. It was ranked superior to the original reconstruction (p = 0.0008), conventional projection interpolation (p implants, and better as compared to the original reconstruction (p combining algorithms tailored to specific types of implant materials.

  10. Ultrafast studies of photodissociation in solution: Dissociation, recombination and relaxation

    Energy Technology Data Exchange (ETDEWEB)

    King, Jason Christopher [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    Photodissociation of M(CO)6 (M=Cr,Mo,W) and the formation of solvated M(CO)5•S complex was studied in cyclohexane; rate-limiting step is vibrational energy relaxation from the new bond to the solvent. For both M=Cr and Mo, the primary relaxation occurs in 18 ps; for Cr, there is an additional vibrational relaxation (150 ps time scale) of a CO group poorly coupled to other modes. Relaxation of M=W occurs in 42 ps; several possible mechanisms for the longer cooling are discussed. Vibrational relaxation is also investigated for I2- and IBr- in nonpolar and slightly polar solvents. Attempts were made to discover the mechanism for the fast energy transfer in nonpolar solvent. The longer time scale dynamics of I3- and IBr2- were also studied; both formed a metastable complex following photodissociation and 90-95% return to ground state in 100 ps, implying a barrier to recombination of 4.3 kcal/mol and a barrier to escape of ≥5.5 kcal/mol. The more complex photochemistry of M3(CO)12 (M=Fe,Ru) is also investigated, using visible and ultraviolet radiations, dissociation, geminate recombination, vibrational relaxation, and bridging structures and their reactions were studied. Attempts were made to extend ultrafast spectroscopy into the mid-infrared, but signal-to-noise was poor.

  11. A chemical study of the photodissociation region NGC 7023

    Science.gov (United States)

    Fuente, A.; Martin-Pintado, J.; Cernicharo, J.; Bachiller, R.

    1993-09-01

    To investigate the effects of the UV radiation on the chemistry of nitrogenated molecules in molecular clouds, we have carried out an observational study of the photodissociation region (PDR) associated with the reflection nebula NGC 7023. We mapped a region of 3' × 3' over the PDR in millimeter transitions of 12CO, 13CO, C18O, HCO+, HCN, HNC and N2H+. Spectra of CS, CN and C2H and of the rarer isotopic species H13CO+, H13CN, and HN13C, were also obtained at selected positions. We find evidences of selective photodissociation in the estimated 13CO/C15O ratio. Furthermore, all molecular abundances, except those of CN and perhaps C2H, decrease towards the star, and significant gradients in the values of some molecular abundance ratios (the HNC/HCN ratio decreases by a factor of 5, the N2H+/HCO+ ratio decreases by a factor of 12, the CN/HCN ratio increases by a factor of 8 and the (CN+HCN+HNC)/NH3 ratio increases by a factor of 30 towards the star position) reveal the existence of important chemical changes in this direction. Chemical equilibrium model calculations have been also carried out in order to interpret the observed behavior. Our results show that the variations found in molecular abundances cannot be explained by the kinetic temperature and/or the hydrogen density gradients measured in this region. The observed behavior is well explained by the influence of the stellar UV radiation on the chemistry of the molecular gas if the emission arises in a region at a visual extinction between 6 and 10 mag from the star. Molecular destruction in this region (Aυ ˜ 6 mag) is due mainly to reactions with H+, C, H, C+, O, and to electronic recombination. The CN/HCN ratio is suggested as a tracer of enhanced UV fields.

  12. Multiple product pathways in photodissociation of nitromethane at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Masataka; Kohge, Yasunori; Yamasaki, Katsuyoshi; Kohguchi, Hiroshi, E-mail: kohguchi@hiroshima-u.ac.jp [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2016-02-14

    In this paper, we present a photodissociation dynamics study of nitromethane at 213 nm in the π → π{sup *} transition. Resonantly enhanced multiphoton ionization spectroscopy and ion-imaging were applied to measure the internal state distributions and state-resolved scattering distributions of the CH{sub 3}, NO(X {sup 2}Π, A {sup 2}Σ{sup +}), and O({sup 3}P{sub J}) photofragments. The rotationally state-resolved scattering distribution of the CH{sub 3} fragment showed two velocity components, of which the slower one decreased the relative intensity as the rotational and vibrational excitations. The translational energy distribution of the faster CH{sub 3} fragment indicated the production of the NO{sub 2} counter-product in the electronic excited state, wherein 1 {sup 2}B{sub 2} was the most probable. The NO(v = 0) fragment exhibited a bimodal translational energy distribution, whereas the NO(v = 1 and 2) fragment exhibited a single translational energy component with a relatively larger internal energy. The translational energy of a portion of the O({sup 3}P{sub J}) photofragment was found to be higher than the one-photon dissociation threshold, indicating the two-photon process involved. The NO(A {sup 2}Σ{sup +}) fragment, which was detected by ionization spectroscopy via the Rydberg ←A {sup 2}Σ{sup +} transition, also required two-photon energy. These experimental data corroborate the existence of competing photodissociation product pathways, CH{sub 3} + NO{sub 2},CH{sub 3} + NO + O,CH{sub 3}O + NO, and CH{sub 3}NO + O, following the π → π{sup *} transition. The origins of the observed photofragments are discussed in this report along with recent theoretical studies and previous dynamics experiments performed at 193 nm.

  13. Ludwig-Soret effect of non-ionic surfactant aqueous solution studied by beam deflection method

    Science.gov (United States)

    Maeda, Kousaku; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin

    2013-02-01

    We have studied the thermal diffusion of non-ionic surfactant aqueous solutions by a beam deflection method. The thermal diffusion of pentaethylene glycol monododecyl ether (C12E5) and hexaethylene glycol monododecyl ether (C12E6) is studied in the concentration range of 1.0-99.0 wt% and in the temperature range of 20.0-35.0 °C. A stable temperature gradient is applied to the solution, where solute molecules shift to the cold side of the solution for lowconcentration samples. The concentration dependence of the Soret coefficient ST of the C12E6 aqueous solution shows a sign inversion behavior. At all concentrations, the developed concentration gradient is proportionally related to the applied temperature gradient. The results confirm that the magnitude of ST has no temperature gradient dependence under the studied experimental conditions.

  14. Adaptive support for aircraft panel testing: New method and its experimental verification on a beam structure

    Science.gov (United States)

    Sachau, Delf; Baschke, Manuel

    2017-04-01

    Acoustic transmissibility of aircraft panels is measured in full-scale test rigs. The panels are supported at their frames. These boundary conditions do not take into account the dynamic influence of the fuselage, which is significant in the frequency range below 300 Hz. This paper introduces a new adaptive boundary system (ABS). It combines accelerometers and electrodynamic shakers with real-time signal processing. The ABS considers the dynamic effect of the fuselage on the panel. The frames are dominating the dynamic behaviour of a fuselage in the low-frequency range. Therefore, the new method is applied to a beam representing a frame of the aircraft structure. The experimental results are evaluated and the precision of the ABS is discussed. The theoretical apparent mass representing the cut-off part of a frame is calculated and compared with the apparent mass, as provided by the ABS. It is explained how the experimental set-up limits the precision of the ABS.

  15. Experimental studies of superhard materials carbon nitride CNx prepared by ion-beam synthesis method

    Institute of Scientific and Technical Information of China (English)

    辛火平; 林成鲁; 许华平; 邹世昌; 石晓红; 吴兴龙; 朱宏; P.L.FHemment

    1996-01-01

    Formation of superhard materials carbon nitride CNt by using ion-beam synthesis method is reported.100-keV high-dose N+ ions were implanted into carbon thin films at different temperatures.The samples were evaluated by X-ray photoelectron spectroscopy (XPS),Fourier transformation-infrared absorption spectroscopy (FTIR),Raman spectroscopy,cross-sectional transmission electron microscopy (XTEM),Rutherford backscattering spectroscopy (RBS).X-ray diffraction analysis (XRD) and Vickers microhardness measurement.The results show that the buried carbon nitride CN> layer has been successfully formed by using 100-keV high-dose N+ ions implantation into carbon thin film.Implantation of reactive ions into silicon (IRIS) computer program has been used to simulate the formation of the buried β-C3N4 layer as N+ ions are implanted into carbon.A good agreement between experimental measurements and IRIS simulation is found.

  16. Photodissociation of HBr/LiF(001): A quantum mechanical model

    Science.gov (United States)

    Seideman, Tamar

    1993-01-01

    The photodissociation dynamics of HBr adsorbed on a LiF(001) surface is studied using time-independent quantum mechanics. The photodissociation lineshape and the Br(P(sub 1/2)-2)/Br(P(sub 3/2)-2) yield ratio are computed and compared with the corresponding quantities for gas phase photodissociation. The angular distribution of the hydrogen photofragments following excitation of adsorbed HBr is computed and found to agree qualitatively with experimental data. The effect of polarization of the photon is illustrated and discussed. The field polarization is found to affect significantly the magnitude of the photodissociation signal but not the angular dependence of the photofragment distribution, in agreement with experiment and in accord with expectations for a strongly aligned adsorbed phase.

  17. Photodissociation of HBr/LiF(001) - A quantum mechanical model

    Science.gov (United States)

    Seideman, Tamar

    1993-01-01

    The photodissociation dynamics of HBr adsorbed on an LiF(001) surface is studied using time-independent quantum mechanics. The photodissociation line shape and the Br(2P(1/2))/Br(2P(3/2)) yield ratio are computed and compared with the corresponding quantities for gas phase photodissociation. The angular distribution of the hydrogen photofragments following excitation of adsorbed HBr is computed and found to agree qualitatively with experimental data. The effect of polarization of the photon is illustrated and discussed. We find the field polarization to affect significantly the magnitude of the photodissociation signal but not the angular dependence of the photofragment distribution, in agreement with experiment and in accord with expectations for a strongly aligned adsorbed phase.

  18. Application of Modal Parameter Estimation Methods for Continuous Wavelet Transform-Based Damage Detection for Beam-Like Structures

    Directory of Open Access Journals (Sweden)

    Zhi Qiu

    2015-02-01

    Full Text Available This paper presents a hybrid damage detection method based on continuous wavelet transform (CWT and modal parameter identification techniques for beam-like structures. First, two kinds of mode shape estimation methods, herein referred to as the quadrature peaks picking (QPP and rational fraction polynomial (RFP methods, are used to identify the first four mode shapes of an intact beam-like structure based on the hammer/accelerometer modal experiment. The results are compared and validated using a numerical simulation with ABAQUS software. In order to determine the damage detection effectiveness between the QPP-based method and the RFP-based method when applying the CWT technique, the first two mode shapes calculated by the QPP and RFP methods are analyzed using CWT. The experiment, performed on different damage scenarios involving beam-like structures, shows that, due to the outstanding advantage of the denoising characteristic of the RFP-based (RFP-CWT technique, the RFP-CWT method gives a clearer indication of the damage location than the conventionally used QPP-based (QPP-CWT method. Finally, an overall evaluation of the damage detection is outlined, as the identification results suggest that the newly proposed RFP-CWT method is accurate and reliable in terms of detection of damage locations on beam-like structures.

  19. A method for the dynamic range extension of a pixelated Silicon detector beam profilometer based on the incomplete reset mechanism

    Science.gov (United States)

    Caccia, M.; Santoro, R.; Antonello, M.

    2017-03-01

    The SUCIMA collaboration, within a project supported by the European Commission in the Fifth Framework Program, developed a sensor for non-disruptive real-time beam profilometry for hadron therapy centres. The sensor, named MIMOTERA, has been used at different European facilities, imaging beams by direct impact on the sensor and by the detection of secondary electrons emitted by thin targets. In 2015, the detector has been thinned to 50 μm, integrated in a high vacuum and cryogenic temperature compliant assembly and successfully commissioned as antiproton beam monitor for the AEbar gIS experiment at CERN. The detector contributed to the optimisation of the experiment functionality providing the shape and position of the beam on a spill-by-spill basis. However, it failed in measuring the fluctuations of the beam intensity because the deposited energy exceeded the full well capacity and saturated the output signal. In order to recover this information, a method was developed based on the persistence of the signal in a series of frames that follows the one corresponding to the beam impact, due to the incomplete sensor reset. A laboratory test that makes use of a laser with tuneable intensity was designed and the method was qualified. This paper reports the description of the procedure and the main outcomes.

  20. Novel bismuth tri-iodide nanostructures obtained by the hydrothermal method and electron beam irradiation

    Science.gov (United States)

    Aguiar, Ivana; Olivera, Alvaro; Mombrú, Maia; Bentos Pereira, Heinkel; Fornaro, Laura

    2017-01-01

    Bismuth tri-iodide is a layered compound semiconductor which has suitable properties as material for ionizing radiation detection devices. Monocrystals and polycrystalline thin films have been studied for this application, but only recently, the development of nanostructures of this compound has emerged as an interesting alternative for using such nanostructures in new types of radiation detectors or for including them in other applications. Considering this, we present in this work BiI3 nanoparticles successfully synthesized by the hydrothermal method, using a Teflon-lined stainless steel autoclave, at a temperature of 180 °C during 8-20 h, with BiCl3 and NaI as source materials. We characterized the nanoparticles by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS). We obtained small rounded or hexagonal particles (10-20 nm in size) and larger structures. The maximum orientation of the nanostructures is along the (0 0 l) family planes and occurs after 16 h of synthesis, which arises as the best condition for obtaining BiI3 oriented nanostructures. When a 100 kV TEM electron beam was converged on the larger structures, we obtained highly oriented BiI3 hexagonal and rod shaped nanostructures. We found that particles' shape does not depend on the synthesis time. In addition, results were compared with the ones obtained for nanoparticles synthesized from solution. The present work is an advance in the synthesis of BiI3 nanostructures by the hydrothermal method, and is also the first step on seeking the amenable control of morphology and size of such structures using electron beam irradiation. This last process may be particularly appropriate for producing nanostructures for future applications in new devices.

  1. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    Science.gov (United States)

    Huang, Kui-Dong; Xu, Zhe; Zhang, Ding-Hua; Zhang, Hua; Shi, Wen-Long

    2016-06-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corrected slice images. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Aeronautical Science Fund of China (2014ZE53059), and Fundamental Research Funds for Central Universities of China (3102014KYJD022)

  2. Full-vectorial finite-difference beam propagation method based on the modified alternating direction implicit method

    Institute of Scientific and Technical Information of China (English)

    Xiao Jin-Biao; Sun Xiao-Han

    2006-01-01

    A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.

  3. The use of the stationary phase method as a mathematical tool to determine the path of optical beams

    OpenAIRE

    Carvalho, Silvânia A.; Leo, Stefano de

    2015-01-01

    We use the stationary phase method to determine the path of optical beams which propagate through a dielectric block. In the presence of partial internal reflection, we recover the geometrical result obtained by using the Snell law. For total internal reflection, the stationary phase method overreaches the Snell law predicting the Goos-Haenchen shift.

  4. Energy resolution methods efficiency depending on beam source position of potassium clusters in time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    Ş Şentürk; F Demiray; O Özsoy

    2007-09-01

    Energy resolution of the time-of-flight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.

  5. Ab initio implementation of quantum trajectory mean-field approach and dynamical simulation of the N{sub 2}CO photodissociation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Binbin; Liu, Lihong; Cui, Ganglong; Fang, Wei-Hai, E-mail: fangwh@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Cao, Jun [Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Normal College, Guiyang 550018 (China); Feng, Wei; Li, Xin-qi [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2015-11-21

    In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N{sub 2}CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N{sub 2}CO photodissociation at λ > 335 nm is an ultrafast process and the two C—N bonds are broken in a stepwise way, giving birth to CO and N{sub 2} as the final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C—N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes.

  6. Photodissociation of CS and SiO from Excited Rovibrational Levels

    Science.gov (United States)

    Stancil, P. C.; Pattillo, R. J.; McLaughlin, B. M.; McCann, J. F.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Photodissociation due to ultraviolet (UV) photons is a dominant molecular destruction process in a variety of UV-irradiated interstellar (IS) environments. While most astrochemical models adopt photodissociation rates computed from cross sections out of the molecule's ground rovibrational level (v = 0 , J = 0), they also assume a standard local IS radiation field and opacity due to standard IS dust. However, none of these conditions are satisfied in a host of environments including photodissociation regions, protoplanetary disks, and outflows from AGB stars. To allow for the calculation of reliable photodissociation rates, we compute cross sections from all bound v , J levels of the ground electronic state for two example molecules, CS and SiO. The cross sections are computed for a large number of excited electronic states using a two-state fully quantum perturbation approach. New ab initio potential energies and transition dipole moment functions, used in the photodissociation calculations, were obtained at the MRCI+Q level of theory using the quantum chemistry package MOLPRO. Applications of the v , J -state-resolved cross sections will be presented as well as LTE photodissociation cross sections which assume a Boltzmann distribution of initial v , J levels. This work is supported at UGA by NASA grant NNX15AI61G.

  7. Photodissociation of CS and SiO+ from Excited Rovibrational Levels

    Science.gov (United States)

    Pattillo, Ryan; Stancil, Phillip C.; McLaughlin, Brendan; McCann, Jim; Forrey, Robert C.; Babb, James

    2016-06-01

    Photodissociation due to ultraviolet (UV) photons is a dominant molecular destruction process in a variety of UV-irradiated interstellar (IS) environments. While most astrochemical models adopt photodissociation rates computed from cross sections out of the molecule's ground rovibrational level (v=0,J=0), they also assume a standard local IS radiation field and opacity due to standard IS dust. However, none of these conditions are satisfied in a host of environments including photodissociation regions, protoplanetary disks, and outflows from AGB stars. To allow for the calculation of reliable photodissociation rates, we compute cross sections from all bound v,J levels of the ground electronic state for two example molecules, CS and SiO+. The cross sections are computed for a large number of excited electronic states using a two-state fully quantum perturbation approach. New ab initio potential energies and transition dipole moment functions, used in the photodissociation calculations, were obtained at the MRCI+Q level of theory using the quantum chemistry package MOLPRO. Applications of the v,J-state-resolved cross sections will be presented as well as LTE photodissociation cross sections which assume a Boltzmann distribution of initial v,J levels.This work is supported at UGA by NASA grant NNX15AI61G.

  8. Beam Shape Sensing Using Inverse Finite Element Method: Theory and Experimental Validation

    Science.gov (United States)

    2011-09-01

    within a simple inverse beam-frame element. The element is based on Timoshenko beam theory which includes the axial, bending, torsional and...moment of inertia P y zI I I= + . Consistent with the hypotheses of Timoshenko beam theory (each cross-section remains flat and rigid with respect to...equilibrium equations of Timoshenko beam theory which relate the bending moments ( yM , zM ) to the transverse shear forces ( yQ , zQ ) 2 23, 5 2

  9. Multi-cracks identification method for cantilever beam structure with variable cross-sections based on measured natural frequency changes

    Science.gov (United States)

    Zhang, Kai; Yan, Xiaojun

    2017-01-01

    Cantilever beam's crack identification can provide critical information which is helpful to determine whether the structure be healthy or not. Among all crack identification methods, the methods based on measured structure's natural frequency changes own advantages of simplicity and easy for operation in practical engineering. To accurately identify multi-cracks' characteristics for cantilever beam structure with variable cross-sections, a mathematical model, which is based on the concept of modal strain energy, is established in this investigation. And to obtain cantilever beam's natural frequency result with higher resolution, a signal processing method based on Hilbert-Huang Transform (HHT) is also proposed, which can overcome the disadvantage of fast Fourier transform (FFT) in the aspect of frequency resolution and incapability of handling nonlinear vibration caused by crack breathing phenomenon. Based on above mathematical model and signal processing method, the method of identifying multi-cracks on cantilever beam with variable cross-sections is presented. To verify the accuracy of this multi-cracks identification method, experimental examples are conducted, and the results show that the method proposed in this investigation can accurately identify the cracks' characteristics, including their locations and relative depths.

  10. Analytical method of capsizing probability in the time domain for ships in the random beam seas

    Institute of Scientific and Technical Information of China (English)

    LIU Liqin; TANG Yougang; LI Hongxia

    2007-01-01

    The methods for constructing safe basins of ships and predicting their survival probability in random waves were studied.The nonlinear differential equation of the rolling motion of ships in random beam seas was established considering nonlinear damping,nonlinear restoring moment,and random waves.The random rolling differential equation was solved in the time domain by applying the harmonic acceleration method and by synthetically considering the instantaneous state of ships and the narrowband wave energy spectrum.The numerical simulation of random capsizing course was brought forward,the safe basins were constructed for safe navigation,and the survival probabilities of ships were calculated.As an example,the safe basins on the rolling initial value plane were constructed for a 30.27-meter-long fishing vessel according to different initial conditions and random wave parameters.The survival probabilities of the fishing vessel under different significant wave heights were predicted.Thus,the survival probabilities of ships in random seas can be predicted quantitatively by the proposed method.

  11. Structure of bicomponent metal–oxide composites synthesized by electron beam irradiation method

    Energy Technology Data Exchange (ETDEWEB)

    Kugai, Junichiro, E-mail: kugai@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Moriya, Toshiharu, E-mail: t-moriya@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Seino, Satoshi, E-mail: seino@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakagawa, Takashi, E-mail: nakagawa@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohkubo, Yuji, E-mail: okubo@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueno, Koji, E-mail: Kji_Ueno@EBIS.shi.co.jp [Japan Electron Beam Irradiation Service Co., 5-3 Odushima-cho Izumi-ohtsu, Osaka 595-0074 (Japan); Nitani, Hiroaki, E-mail: hiroaki.nitani@kek.jp [Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yamamoto, Takao A., E-mail: takao@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-11-15

    Highlights: •In radiation-induced process, transition metal precipitates only with Pt or support. •Reduced Cu atom stabilizes by forming Pt–Cu alloy or oxidatively depositing on CeO{sub 2}. •Sulfate stabilizes metals allowing their growth against oxidative deposition on CeO{sub 2}. •FeO{sub x} is directly formed without being reduced to metal due to its oxophilicity. •Fe{sup 3+} in the precursor inhibits reduction of Pt yielding highly oxidic Pt on support. -- Abstract: In order to understand the formation process of metal–oxide composite in an electron beam irradiation method in aqueous phase, the structure and composition of obtained solid were correlated to the synthesis parameters. Transition metal did not precipitate alone by the electron beam irradiation, but they did in the presence of platinum or support. Due to the relatively high reduction potential, copper underwent reduction to metallic state and readily precipitated by forming Pt–Cu alloy and/or copper oxide on solid surface. In the Pt–Cu/CeO{sub 2} system, the structure of Pt–Cu was ruled by two competing factors, growth of alloy nanoparticles promoted by sulfate ion and deposition of metal (alloy) on CeO{sub 2} support with their concomitant partial oxidation. CeO{sub 2} was suggested to immobilize the metals oxidatively before they coalesce. Iron barely formed alloy with Pt, but it directly precipitated on support as oxide without being reduced to metal due to its oxophilicity. Oxide was formed either via reduction to metallic state (for Pt and Cu) or through direct oxygenation or hydroxylation on solid (for Fe). Under the restriction of reduction potential, the size and composition of alloy nanoparticles and the content of oxide phase were drastically modified by support surface property and anion species in the solution.

  12. Enhancement of breast calcification visualization and detection using a modified PG method in Cone Beam Breast CT.

    Science.gov (United States)

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing; Benitez, Ricardo Betancourt

    2012-01-01

    Cone Beam Breast CT is a promising diagnostic modality in breast imaging. Its isotropic 3D spatial resolution enhances the characterization of micro-calcifications in breasts that might not be easily distinguishable in mammography. However, due to dose level considerations, it is beneficial to further enhance the visualization of calcifications in Cone Beam Breast CT images that might be masked by noise. In this work, the Papoulis-Gerchberg method was modified and implemented in Cone Beam Breast CT images to improve the visualization and detectability of calcifications. First, the PG method was modified and applied to the projections acquired during the scanning process; its effects on the reconstructed images were analyzed by measuring the Modulation Transfer Function and the Noise Power Spectrum. Second, Cone Beam Breast CT images acquired at different dose levels were pre-processed using this technique to enhance the visualization of calcification. Finally, a computer-aided diagnostic algorithm was utilized to evaluate the efficacy of this method to improve calcification detectability. The results demonstrated that this technique can effectively improve image quality by improving the Modulation Transfer Function with a minor increase in noise level. Consequently, the visualization and detectability of calcifications were improved in Cone Beam Breast CT images. This technique was also proved to be useful in reducing the x-ray dose without degrading visualization and detectability of calcifications.

  13. Analysis of regular and chaotic dynamics of the Euler-Bernoulli beams using finite difference and finite element methods

    Institute of Scientific and Technical Information of China (English)

    J. Awrejcewicz; A.V. Krysko; J. Mrozowski; O.A. Saltykova; M.V. Zhigalov

    2011-01-01

    Chaotic vibrations of flexible non-linear EulerBernoulli beams subjected to harmonic load and with various boundary conditions (symmetric and non-symmetric) are studied in this work. Reliability of the obtained results is verified by the finite difference method (FDM) and the finite element method (FEM) with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes (regular and non-regular). The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly, dynamic behavior vs. control parameters {ωp, q0} is reported, and scenarios of the system transition into chaos are illustrated.

  14. Beam hardening and motion artifacts in cardiac CT: evaluation and iterative correction method

    Science.gov (United States)

    Shen, Zeyang; Lee, Okkyun; Taguchi, Katsuyuki

    2016-03-01

    For myocardial perfusion CT exams, beam hardening (BH) artifacts may degrade the accuracy of myocardial perfusion defect detection. Meanwhile, cardiac motion may make BH process inconsistent, which makes conventional BH correction (BHC) methods ineffective. The aims of this study were to assess the severity of BH artifacts and motion artifacts and propose a projection-based iterative BHC method which has a potential to handle the motion-induced inconsistency better than conventional methods. In this study, four sets of forward projection data were first acquired using both cylindrical phantoms and cardiac images as objects: (1) with monochromatic x-rays without motion; (2) with polychromatic x-rays without motion; (3) with monochromatic x-rays with motion; and (4) with polychromatic x-rays with motion. From each dataset, images were reconstructed using filtered back projection; for datasets 2 and 4, one of the following BHC methods was also performed: (A) no BHC; (B) BHC that concerns water only; and (C) BHC that takes both water and iodine into account, which is an iterative method we developed in this work. Biases of images were quantified by the mean absolute difference (MAD). The MAD of images with BH artifacts alone (dataset 2, without BHC) was comparable or larger than that of images with motion artifacts alone (dataset 3): In the study of cardiac image, BH artifacts account for over 80% of the total artifacts. The use of BHC was effective: with dataset 4, MAD values were 170 HU with no BHC, 54 HU with water BHC, and 42 HU with the proposed BHC. Qualitative improvements in image quality were also noticeable in reconstructed images.

  15. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  16. A fast algorithm for depth migration by the Gaussian beam summation method

    Science.gov (United States)

    Gao, Zhenghui; Sun, Jianguo; Sun, Xu; Wang, Xueqiu; Sun, Zhangqing; Liu, Zhiqiang

    2017-02-01

    Depth migration by the Gaussian beam summation method has no limitation on the seismic acquisition configuration. In the past, this migration method applied the steepest descent approximation to reduce the dimension of the integrals over the ray parameters at the cost of a precision loss. However, the simplified formula was still in the frequency domain, thereby impairing the computational efficiency. We present a new fast algorithm which can increase the computational efficiency without losing precision. To develop the fast algorithm, we change the order of the integrals and treat the two innermost integrals as a couple of two-dimensional continuous functions with respect to the real and imaginary parts of the total traveltime. A couple of lookup tables corresponding to the values of the two innermost integrals are constructed at the sampling points. The results of the two innermost integrals at a certain imaging point can be obtained through interpolation in the two constructed lookup tables. Both the numerical analysis and examples validate the precision and efficiency of the fast algorithm. With the advantage of handling rugged topography, we apply the fast algorithm to the 2D Canadian Foothills velocity model.

  17. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method

    Science.gov (United States)

    Yang, Xiaofeng; Zhao, Jia; Wang, Qi

    2017-03-01

    The Molecular Beam Epitaxial model is derived from the variation of a free energy, that consists of either a fourth order Ginzburg-Landau double well potential or a nonlinear logarithmic potential in terms of the gradient of a height function. One challenge in solving the MBE model numerically is how to develop proper temporal discretization for the nonlinear terms in order to preserve energy stability at the time-discrete level. In this paper, we resolve this issue by developing a first and second order time-stepping scheme based on the "Invariant Energy Quadratization" (IEQ) method. The novelty is that all nonlinear terms are treated semi-explicitly, and the resulted semi-discrete equations form a linear system at each time step. Moreover, the linear operator is symmetric positive definite and thus can be solved efficiently. We then prove that all proposed schemes are unconditionally energy stable. The semi-discrete schemes are further discretized in space using finite difference methods and implemented on GPUs for high-performance computing. Various 2D and 3D numerical examples are presented to demonstrate stability and accuracy of the proposed schemes.

  18. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  19. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  20. Imaging characteristics of distance-driven method in a prototype cone-beam computed tomography (CBCT)

    Science.gov (United States)

    Choi, Sunghoon; Kim, Ye-seul; Lee, Haenghwa; Lee, Donghoon; Seo, Chang-Woo; Kim, Hee-Joung

    2016-03-01

    Cone-beam computed tomography (CBCT) has widely been used and studied in both medical imaging and radiation therapy. The aim of this study was to evaluate our newly developed CBCT system by implementing a distance-driven system modeling technique in order to produce excellent and accurate cross-sectional images. For the purpose of comparing the performance of the distance-driven methods, we also performed pixel-driven and ray-driven techniques when conducting forward- and back-projection schemes. We conducted the Feldkamp-Davis-Kress (FDK) algorithm and simultaneous algebraic reconstruction technique (SART) to retrieve a volumetric information of scanned chest phantom. The results indicated that contrast-to-noise (CNR) of the reconstructed images by using FDK and SART showed 8.02 and 15.78 for distance-driven, whereas 4.02 and 5.16 for pixel-driven scheme and 7.81 and 13.01 for ray-driven scheme, respectively. This could demonstrate that distance-driven method described more closely the chest phantom compared to pixel- and ray-driven. However, both elapsed time for modeling a system matrix and reconstruction time took longer time when performing the distance-driven scheme. Therefore, future works will be directed toward reducing computational time to acceptable limits for real applications.

  1. A two-dose-rate method for general recombination correction for liquid ionization chambers in pulsed beams

    Energy Technology Data Exchange (ETDEWEB)

    Toelli, Heikki; Sjoegren, Rickard; Wendelsten, Mikael, E-mail: heikki.tolli@radfys.umu.s [Department of Radiation Sciences, Radiation Physics, Umeaa University, SE-901 85 Umeaa (Sweden)

    2010-08-07

    The correction for general recombination losses in liquid ionization chambers (LICs) is more complex than that in air-filled ionization chambers. The reason for this is that the saturation charge in LICs, i.e. the charge that escapes initial recombination, depends on the applied voltage. This paper presents a method, based on measurements at two different dose rates in a pulsed beam, for general recombination correction in LICs. The Boag theory for pulsed beams is used and the collection efficiency is determined by numerical methods which are equivalent to the two-voltage method used in dosimetry with air-filled ionization chambers. The method has been tested in experiments in water in a 20 MeV electron beam using two LICs filled with isooctane and tetramethylsilane. The dose per pulse in the electron beam was varied between 0.1 mGy/pulse and 8 mGy/pulse. The relative standard deviations of the collection efficiencies determined with the two-dose-rate method ranged between 0.1% and 1.5%. The dose-rate variations of the general recombination corrected charge measured with the LICs are in excellent agreement with the corresponding values obtained with an air-filled plane parallel ionization chamber.

  2. Recursive Differentiation Method for Boundary Value Problems: Application to Analysis of a Beam-Column on an Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Taha Mohamed

    2014-06-01

    Full Text Available In the present work, the recursive differentiation method (RDM is introduced and implemented to obtain analytical solutions for differential equations governing different types of boundary value prob- lems (BVP. Then, the method is applied to investigate the static behaviour of a beam-column resting on a two parameter foundation subjected to different types of lateral loading. The analytical solutions obtained using RDM and Adomian decomposition method (ADM are found similar but the RDM requires less mathematical effort. It is indicated that the RDM is reliable, straightforward and efficient for investigation of BVP in finite domains. Several examples are solved to describe the method and the obtained results reveal that the method is convenient for solving linear, nonlinear and higher order ordinary differential equations. However, it is indicated that, in the case of beam-columns resting on foundations, the beam-column may be buckled in a higher mode rather than a lower one, then the critical load in that case is that accompanies the higher mode. This result is very important to avoid static instability as it is widely common that the buckling load of the first buckling mode is always the smaller one, which is true only in the case of the beam-columns without foundations.

  3. Quantification of dental prostheses on cone-beam CT images by the Taguchi method.

    Science.gov (United States)

    Kuo, Rong-Fu; Fang, Kwang-Ming; Ty, Wong; Hu, Chia Yu

    2016-01-08

    The gray values accuracy of dental cone-beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone-beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis-free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis-free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1-9 were below 12% and gray value differences for ROIs 13-18 away from pros-theses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant-supported titanium prosthesis, and between 46% and 59% for regions between double implant

  4. High resolution acoustic measurement system and beam pattern reconstruction method for bat echolocation emissions.

    Science.gov (United States)

    Gaudette, Jason E; Kloepper, Laura N; Warnecke, Michaela; Simmons, James A

    2014-01-01

    Measurements of the transmit beam patterns emitted by echolocating bats have previously been limited to cross-sectional planes or averaged over multiple signals using sparse microphone arrays. To date, no high-resolution measurements of individual bat transmit beams have been reported in the literature. Recent studies indicate that bats may change the time-frequency structure of their calls depending on the task, and suggest that their beam patterns are more dynamic than previously thought. To investigate beam pattern dynamics in a variety of bat species, a high-density reconfigurable microphone array was designed and constructed using low-cost ultrasonic microphones and custom electronic circuitry. The planar array is 1.83 m wide by 1.42 m tall with microphones positioned on a 2.54 cm square grid. The system can capture up to 228 channels simultaneously at a 500 kHz sampling rate. Beam patterns are reconstructed in azimuth, elevation, and frequency for visualization and further analysis. Validation of the array measurement system and post-processing functions is shown by reconstructing the beam pattern of a transducer with a fixed circular aperture and comparing the result with a theoretical model. To demonstrate the system in use, transmit beam patterns of the big brown bat, Eptesicus fuscus, are shown.

  5. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  6. An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer.

    Science.gov (United States)

    Chen, Benyong; Zhang, Enzheng; Yan, Liping; Liu, Yanna

    2014-10-01

    Correct return of the measuring beam is essential for laser interferometers to carry out measurement. In the actual situation, because the measured object inevitably rotates or laterally moves, not only the measurement accuracy will decrease, or even the measurement will be impossibly performed. To solve this problem, a novel orthogonal return method for linearly polarized beam based on the Faraday effect is presented. The orthogonal return of incident linearly polarized beam is realized by using a Faraday rotator with the rotational angle of 45°. The optical configuration of the method is designed and analyzed in detail. To verify its practicability in polarization interferometry, a laser heterodyne interferometer based on this method was constructed and precision displacement measurement experiments were performed. These results show that the advantage of the method is that the correct return of the incident measuring beam is ensured when large lateral displacement or angular rotation of the measured object occurs and then the implementation of interferometric measurement can be ensured.

  7. Respiratory triggered 4D cone-beam computed tomography: A novel method to reduce imaging dose

    Science.gov (United States)

    Cooper, Benjamin J.; O’Brien, Ricky T.; Balik, Salim; Hugo, Geoffrey D.; Keall, Paul J.

    2013-01-01

    Purpose: A novel method called respiratory triggered 4D cone-beam computed tomography (RT 4D CBCT) is described whereby imaging dose can be reduced without degrading image quality. RT 4D CBCT utilizes a respiratory signal to trigger projections such that only a single projection is assigned to a given respiratory bin for each breathing cycle. In contrast, commercial 4D CBCT does not actively use the respiratory signal to minimize image dose. Methods: To compare RT 4D CBCT with conventional 4D CBCT, 3600 CBCT projections of a thorax phantom were gathered and reconstructed to generate a ground truth CBCT dataset. Simulation pairs of conventional 4D CBCT acquisitions and RT 4D CBCT acquisitions were developed assuming a sinusoidal respiratory signal which governs the selection of projections from the pool of 3600 original projections. The RT 4D CBCT acquisition triggers a single projection when the respiratory signal enters a desired acquisition bin; the conventional acquisition does not use a respiratory trigger and projections are acquired at a constant frequency. Acquisition parameters studied were breathing period, acquisition time, and imager frequency. The performance of RT 4D CBCT using phase based and displacement based sorting was also studied. Image quality was quantified by calculating difference images of the test dataset from the ground truth dataset. Imaging dose was calculated by counting projections. Results: Using phase based sorting RT 4D CBCT results in 47% less imaging dose on average compared to conventional 4D CBCT. Image quality differences were less than 4% at worst. Using displacement based sorting RT 4D CBCT results in 57% less imaging dose on average, than conventional 4D CBCT methods; however, image quality was 26% worse with RT 4D CBCT. Conclusions: Simulation studies have shown that RT 4D CBCT reduces imaging dose while maintaining comparable image quality for phase based 4D CBCT; image quality is degraded for displacement based RT 4D

  8. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    example for a reactor beam transmitted through a 30 cm Bi filter. The effective cross section differs 0.5% from the capture cross section at 2200 m/s. For a 20 mg/cm2 Au foil the correction for beam attenuation and hardening through the foil is 0.7% and the activity correction is 1.5%.......A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  9. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States)

    2012-10-15

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within {approx}200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  10. Reliability of a method to conduct upper airway analysis in cone-beam computed tomography

    Directory of Open Access Journals (Sweden)

    Karen Regina Siqueira de Souza

    2013-02-01

    Full Text Available The aim of this study was to assess the reliability of a method to measure the following upper airway dimensions: total volume (TV, the nasopharyngeal narrowest areas (NNA, and the oropharyngeal narrowest areas (ONA. The sample consisted of 60 cone-beam computed tomography (CBCT scans, evaluated by two observers twice, using the Dolphin 3D software (Dolphin Imaging & Management solutions, Chatsworth, California, USA, which afforded image reconstruction, and measurement of the aforementioned dimensions. The data was submitted to reliability tests, by the intraclass correlation coefficient (ICC, and the Bland & Altman agreement tests, with their respective confidence intervals (CI set at 95%. Excellent intra- and interobserver reliability values were found for all variables assessed (TV, NNA and ONA, with ICC values ranging from 0.88 to 0.99. The data demonstrated an agreement between the two assessments of each observer and between the first evaluations of both observers, thus confirming the reliability of this methodology. The results suggest that this methodology can be used in further studies to investigate upper airway dimensions (TV, NNA, and ONA, thereby contributing to the diagnosis of upper airway obstructions.

  11. Determination of wafer center position during the transfer process by using the beam-breaking method

    Science.gov (United States)

    Chen, Yi-Cheng; Wang, Zhi-Gen; Huang, Bo-Kai

    2014-09-01

    A wafer on a robot blade may slip due to inertia sliding during the acceleration or deceleration process. This study presents the implementation and experimental verification of a novel real-time wafer positioning system to be used during the transfer process. A system-integration computer program involving a human-machine interface (HMI) was also developed, exhibiting the following functions: (a) moving direction judgment; (b) notch-passing judgment; (c) indicating the sensor by which the notch passes; and (d) computing the wafer center in real time. The position of the wafer center is calculated based on the time-sequence of the beam-breaking signals from two optical sensors, and the geometric relations among the sensing points of the robot blade and wafer. When using eight-inch wafers, the experimental results indicated the capabilities of the proposed positioning system under various conditions, including distinct parameters regarding the moving direction, wafer displacement and notch-passing sensors. The accuracy and precision (repeatability) of the measurement in various conditions were calculated and discussed. Furthermore, the experimental results demonstrate that, after combining the novel wafer positioning system and HMI program, the proposed method can be used to compute the position of the wafer center in real time in various conditions.

  12. Electron Energy Resolution of the ATLAS TILECAL Modules with Fit Filter Method (July 2002 test beam)

    CERN Document Server

    Kulchitskii, Yu A; Vinogradov, V B

    2006-01-01

    The constructed ATLAS detector at the LHC will have the great physics discovery potential, in particular in the detection of a heavy Higgs boson. Calorimeters will play a crucial role in it. It is necessary to have confidence that the calorimeters will perform as expected. With the aim of understanding of performance of the ATLAS Tile hadronic calorimeter to electrons 12\\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron energy resolutions of the $EBM-$ (ANL-44), $EBM+$ (IFA-42) and $BM$ (JINR-55) Modules of the ATLAS Tile Calorimeter at energies E = 10, 20, 50, 100 and 180 GeV and $\\theta = 20^o$ and $90^o $ and $\\eta$ scan from the July 2002 testbeam run data using the fit filter method of the PMT signal reconstruction. We have determined the statistical and constant terms for the electron ene...

  13. DEVICE FOR MEASURING OF THERMAL LENS PARAMETERS IN LASER ACTIVE ELEMENTS WITH A PROBE BEAM METHOD

    Directory of Open Access Journals (Sweden)

    A. N. Zakharova

    2015-01-01

    Full Text Available We have developed a device for measuring of parameters of thermal lens (TL in laser active elements under longitudinal diode pumping. The measurements are based on the probe beam method. This device allows one to determine sign and optical power of the lens in the principal meridional planes, its sensitivity factor with respect to the absorbed pump power and astigmatism degree, fractional heat loading which make it possible to estimate integral impact of the photoelastic effect to the formation of TL in the laser element. The measurements are performed in a linearly polarized light at the wavelength of 532 nm. Pumping of the laser element is performed at 960 nm that makes it possible to study laser materials doped with Yb3+ and (Er3+, Yb3+ ions. The precision of measurements: for sensitivity factor of TL – 0,1 m-1/W, for astigmatism degree – 0,2 m-1/W, for fractional heat loading – 5 %, for the impact of the photoelastic effect – 0,5 × 10-6 K-1. This device is used for characterization of thermal lens in the laser active element from an yttrium vanadate crystal, Er3+,Yb3+:YVO .

  14. Improving the dimensional stability of natural fibers with the fiber polymer penetrant and electron beam method

    Science.gov (United States)

    Woods, Sean R.

    Cellulose-based material absorbs or releases moisture in relation to atmospheric conditions. This research looks to minimize dimensional change with the use of low molecular weight (LMW) monomers polymerized by electron beam (EB) ionizing radiation. Sisal, jute, coir, and hemp natural fibers with average natural swelling of 26.55%, 29.46%, 9.06%, and 32.69%, respectively, and glass fiber as control were used for analysis. Three LMW bulk monomers, hydroxyethyl acrylate (HEA), hydroxyethyl methacrylate (HEMA), and polyethylene glycol diacrylate (EGDA), as well as an encapsulating agent, isodecyl acrylate, and cross-linker, ethoxylated trimethylolpropane triacrylate, were evaluated for resin formulation. In total, 1015 specimens were measured for swelling. Moisture uptake characteristics of the specimens were analyzed. A new method of measuring specimen dimensional changes by a light microscope and image analysis software was used. Results indicate dimensional stability improvement of 39.34% - 91.46% for hemp with HEA and cross-linker, and sisal with HEMA and cross-linker respectively.

  15. Beam neutron energy optimization for boron neutron capture therapy using Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Ali Pazirandeh

    2006-06-01

    Full Text Available  In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b, the treatment of deep seated tumors such as gliobelastoma multiform (GBM requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalize in the proximity of the tumor. Dosage from recoil proton associated with fast neutrons however poses some constraints on maximum neutron energy that can be used in the treatment. For this reason neutrons in the epithermal energy range of 10eV-10keV are generally to be the most appropriate. The simulation carried out by Monte Carlo methods using MCBNCT and MCNP4C codes along with the cross section library in 290 groups extracted from ENDF/B6 main library. The optimal neutron energy for deep seated tumors depends on the size and depth of tumor. Our estimated optimized energy for the tumor of 5cm wide and 1-2cm thick stands at 5cm depth is in the range of 3-5keV

  16. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods

    Indian Academy of Sciences (India)

    K S Shamala; L C S Murthy; K Narasimha Rao

    2004-06-01

    Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated films varied from 2.65 × 10-2 -cm to 3.57 × 10-3 -cm in the temperature range 150–200°C. For undoped spray pyrolyzed films, the resistivity was observed to be in the range 1.2 × 10-1 to 1.69 × 10-2 -cm in the temperature range 250–370°C. Hall effect measurements indicated that the mobility as well as carrier concentration of evaporated films were greater than that of spray deposited films. The lowest resistivity for antimony doped tin oxide film was found to be 7.74 × 10-4 -cm, which was deposited at 350°C with 0.26 g of SbCl3 and 4 g of SnCl4 (SbCl3/SnCl4 = 0.065). Evaporated films were found to be amorphous in the temperature range up to 200°C, whereas spray pyrolyzed films prepared at substrate temperature of 300–370°C were polycrystalline. The morphology of tin oxide films was studied using SEM.

  17. Study of Thermo-Mechanical Effects Induced in Solids by High Energy Particle Beams: Analytical and Numerical Methods

    CERN Document Server

    Dallocchio, Alessandro; Kurtyka, T; Bertarelli, A

    2008-01-01

    Requirements of modern nuclear physics entail big efforts in the field of particle accelerator technology in order to build powerful machines providing particle beams at higher and higher energies; in this context, the Large Hadron Collider represents the future for particle physics. The LHC stores 360 MJ for each circulating beam; this large amount of energy is potentially destructive for accelerator equipments having direct interaction with particles; the need to handle high thermal loads bestows strategic importance to the study of thermo-mechanical problems in accelerator devices. The aim of this work is the study of thermo-mechanical effects induced in solids by high energy particle beams. Development of facilities devoted to the experimental test of accelerator equipments in real working conditions presents several technical difficulties and high cost; the importance of developing reliable methods and accurate models that could be efficiently applied during the design phase of the most critical particle...

  18. Forced Vibration of a Timoshenko Beam Subjected to Stationary and Moving Loads Using the Modal Analysis Method

    Directory of Open Access Journals (Sweden)

    Taehyun Kim

    2017-01-01

    Full Text Available The modal analysis method (MAM is very useful for obtaining the dynamic responses of a structure in analytical closed forms. In order to use the MAM, accurate information is needed on the natural frequencies, mode shapes, and orthogonality of the mode shapes a priori. A thorough literature survey reveals that the necessary information reported in the existing literature is sometimes very limited or incomplete, even for simple beam models such as Timoshenko beams. Thus, we present complete information on the natural frequencies, three types of mode shapes, and the orthogonality of the mode shapes for simply supported Timoshenko beams. Based on this information, we use the MAM to derive the forced vibration responses of a simply supported Timoshenko beam subjected to arbitrary initial conditions and to stationary or moving loads (a point transverse force and a point bending moment in analytical closed form. We then conduct numerical studies to investigate the effects of each type of mode shape on the long-term dynamic responses (vibrations, the short-term dynamic responses (waves, and the deformed shapes of an example Timoshenko beam subjected to stationary or moving point loads.

  19. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Palmans, H. [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F.

    1995-12-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.

  20. Benchmarking of the dose planning method (DPM) Monte Carlo code using electron beams from a racetrack microtron.

    Science.gov (United States)

    Chetty, Indrin J; Moran, Jean M; McShan, Daniel L; Fraass, Benedick A; Wilderman, Scott J; Bielajew, Alex F

    2002-06-01

    A comprehensive set of measurements and calculations has been conducted to investigate the accuracy of the Dose Planning Method (DPM) Monte Carlo code for dose calculations from 10 and 50 MeV scanned electron beams produced from a racetrack microtron. Central axis depth dose measurements and a series of profile scans at various depths were acquired in a water phantom using a Scanditronix type RK ion chamber. Source spatial distributions for the Monte Carlo calculations were reconstructed from in-air ion chamber measurements carried out across the two-dimensional beam profile at 100 cm downstream from the source. The in-air spatial distributions were found to have full width at half maximum of 4.7 and 1.3 cm, at 100 cm from the source, for the 10 and 50 MeV beams, respectively. Energy spectra for the 10 and 50 MeV beams were determined by simulating the components of the microtron treatment head using the code MCNP4B. DPM calculations are on average within +/- 2% agreement with measurement for all depth dose and profile comparisons conducted in this study. The accuracy of the DPM code illustrated in this work suggests that DPM may be used as a valuable tool for electron beam dose calculations.

  1. Selective control of HOD photodissociation using CW lasers

    Indian Academy of Sciences (India)

    Manabendra Sarma; S Adhikari; Manoj K Mishra

    2007-09-01

    Selective control of HOD photodissociation (H-O + D ← HOD → H + O-D) has been theoretically investigated using CW lasers with appropriate carrier frequency and |0, 0〉, |0, 1〉 and |0, 2〉 with zero quantum of excitation in the O-H bond and zero, one and two quanta of excitation in the O-D bond as the initial states. Results indicate that the O-H bond in HOD can be selectively dissociated with a maximum flux of 87% in the H + O-D channel from the ground vibrational state |0, 0〉. For the O-D bond dissociation, it requires two quanta of excitation (|0, 2〉) in the O-D mode to obtain 83% flux in the H-O + D channel. Use of a two colour laser set-up in conjunction with the field optimized initial state (FOIST) scheme to obtain an optimal linear combination of |0, 0〉 and |0, 1〉 vibrational states as the initial state provides an additional 7% improvement to flux in the H-O + D channel as compared to that from the pure |0, 1〉 state.

  2. Evolution and saturation of Autowaves in photodissociation regions

    Science.gov (United States)

    Krasnobaev, K. V.; Tagirova, R. R.; Arafailov, S. I.; Kotova, G. Yu.

    2016-07-01

    The propagation of plane, cylindrical, and spherical waves in a thermally unstable gas-dust medium has been simulated numerically. As applied to the photodissociation regions near O and B stars, we take into account the interaction of ultraviolet radiation with dust grains and large polycyclic aromatic hydrocarbon molecules as well as the gas cooling through the excitation of CII ions and OI atoms and the deexcitation of rotational levels of CO molecules. The instability regions have been determined. The perturbation growth times corresponding to them are ~103-105 yr. We show that wave breaking occurs irrespective of the geometry of motion, while a perturbation in the form of a single pulse gives rise to a sequence of shock waves. The post-shock gas velocity is approximately 0.1-0.5 of the sound velocity, so that the autowaves can contribute noticeably to the observed velocity dispersion of the gas near the boundaries of HII regions. Two-dimensional simulations suggest that the presence of multiple shocks in a thermally unstable medium can accelerate significantly the destruction of preexisting isolated condensations.

  3. The Trumpler 14 photodissociation region in the Carina Nebula

    Science.gov (United States)

    Brooks, K. J.; Cox, P.; Schneider, N.; Storey, J. W. V.; Poglitsch, A.; Geis, N.; Bronfman, L.

    2003-12-01

    We report the results of observations of the fine-structure emission lines [C II] 158 μm and [O I] 63 μm using FIFI on the Kuiper Airborne Observatory (KAO) and the Long Wavelength Spectrometer (LWS) on board ISO, towards the molecular cloud associated with the stellar cluster Trumpler 14 (Tr 14) in the Carina Nebula. These data are compared with selected CO and CS transitions obtained with the SEST as well as IRAS and MSX images to produce a detailed view of the morphology and the physical conditions prevailing in the photodissociation region (PDR) at the interface between the ionized gas and the molecular dust lane. The relative intensity distribution observed for the various tracers is consistent with the stratification expected for a molecular cloud seen edge-on and exposed to a radiation field of ~ 104 G_0, which is dominated by the most massive stars of Tr 14. The grain photoelectric heating efficiency, \\epsilon, is estimated to be ~5 x 10-3 and is comparable to other galactic PDRs. The molecular gas has a complicated velocity structure with a high velocity dispersion resulting from the impact of the stellar winds arising from Tr 14. There is evidence of small-scale clumping with a very low volume filling factor. Despite the rich concentration of massive O stars in Tr 14 we find that the parameters of the PDR are much less-extreme than those of the Orion and M 17 massive star-forming regions.

  4. Photodissociation of CCH: Classical trajectory calculations involving seven electronic states

    Science.gov (United States)

    Apaydın, Gökşin; Fink, William H.; Jackson, William M.

    2004-11-01

    The photodissociation dynamics of ethynyl radical, C2H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1×10-6-1.4×10-5 and 1.7×10-3-3.8×10-3 hartrees, respectively. The photofragments of C2 and H are produced mainly in the X 1Σg+, a 3Πu, b 3Σg-, c 3Σu+, A 1Πu, B 1Δg electronic states of C2 as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C2H2 into C2 and H is a two step process involving C2H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.

  5. Spitzer Mapping of PAHs and H2 in Photodissociation Regions

    CERN Document Server

    Fleming, Brian T; Lupu, Roxana E; McCandliss, Stephan R

    2010-01-01

    The mid-infrared (MIR) spectra of dense photodissociation regions (PDRs) are typically dominated by emission from polycyclic aromatic hydrocarbons (PAHs) and the lowest pure rotational states of molecular hydrogen (H2); two species which are probes of the physical properties of gas and dust in intense UV radiation fields. We utilize the high angular resolution of the Infrared Spectrograph on the Spitzer Space Telescope to construct spectral maps of the PAH and H2 features for three of the best studied PDRs in the galaxy, NGC 7023, NGC 2023 and IC 63. We present spatially resolved maps of the physical properties, including the H2 ortho-to-para ratio, temperature, and G_o/n_H. We also present evidence for PAH dehydrogenation, which may support theories of H2 formation on PAH surfaces, and a detection of preferential self-shielding of ortho-H2. All PDRs studied exhibit average temperatures of ~500 - 800K, warm H2 column densities of ~10^20 cm^-2, G_o/n_H ~ 0.1 - 0.8, and ortho-to-para ratios of ~ 1.8. We find th...

  6. A novel rice transformation method mediated by low energy ion beam

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Transfer the foreign DNA into rice via ion beam was first reported in 1994 in our lab. In this study, we aimed to establish an efficient transformation system mediated by low energy ion beam. Factors influenced the transformation were carefully investigated, including type of ion, parameters of ion energy, dose and dose rate, and plant genotype and receptors. Molecular and genetic characterization of a large number of these plants (more than 250 independent transgenic plants) provided the basis information of this system.

  7. Comparative Studies on Effects of Acid Solutions on Aquatic Plants by Beam Deflection and Absorbance Spectroscopy Methods.

    Science.gov (United States)

    Wu, Xing-Zheng; Nie, Liangjiao; Inoue, Tomomi

    2015-01-01

    The beam deflection method and absorbance spectroscopy were applied to study effects of acid solutions on aquatic plants, and their results were compared. Aquatic plants Egeria densa and Ceratophyllum demersum L were used as model plants. In absorbance experiments, a piece of the plants was put in a beaker with 20 mL HCl solution, and absorbance of the HCl solution was measured every 30 min. In beam deflection experiments, a probe beam from a He-Ne laser was focused to a vicinity of the plants in a culture dish with HCl solution by an objective lens, and deflection signals of the probe beam were monitored by a position sensor. Absorbance spectra of the HCl solutions with immersing of the plants showed absorbance below 410 nm, suggesting that some compounds leaked from the plants into the HCl solutions. Changes of absorbance and deflection signals with immersion time were examined for different pH levels. The changing trends of the absorbance and deflection signals with time were similar, but the absorbance changes were delayed for about 2 - 3 h. The absorbance method could not detect the effect of the pH 5.0 HCl solutions on the aquatic plants, while the deflection method could.

  8. A dose optimization method for electron radiotherapy using randomized aperture beams.

    Science.gov (United States)

    Engel, Konrad; Gauer, Tobias

    2009-09-01

    The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.

  9. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    Institute of Scientific and Technical Information of China (English)

    YANG Min; JIN Xu-Ling; LI Bao-Lei

    2010-01-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress(FDK)algorithm,we propose a simple yet feasible method to accurately measure the projected coordinate origin.This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse.We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography(DR)projections of a group of spherical objects.Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections.Based on the experimental results,this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  10. An Improved Fourier Series Method for the Free Vibration Analysis of the Three-Dimensional Coupled Beams

    Directory of Open Access Journals (Sweden)

    Runze Zhang

    2016-01-01

    Full Text Available This paper presents a free vibration analysis of three-dimensional coupled beams with arbitrary coupling angle using an improved Fourier method. The displacement and rotation of the coupled beams are represented by the improved Fourier series which consisted of Fourier cosine series and closed-form auxiliary functions. The coupling and boundary conditions are accomplished by setting coupling and boundary springs and assigning corresponding stiffness values to the springs. Modal parameters are determined through the application of Rayleigh-Ritz procedure to the system energy formulation. The accuracy and convergence of the present method are demonstrated by finite element method (FEM result. Investigation on vibration of the propulsion shafting structure shows the extensive applicability of present method. The studies on the vibration suppression devices are also reported.

  11. New developments for the analysis of archaeological and artistic artifacts by optical and ion beam methods at LAMFI

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, Marcia A.; Tabacniks, Manfredo H.; Barbosa, Marcel D. L.; Added, Nemitala; Curado, Jessica F.; Kajiya, Elizabet M.; Campos, Pedro H.O.V. de [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Since 2005, the analysis of artistic and cultural heritage objects at LAMFI-USP (Laboratorio de Analises de Materiais com Feixes Ionicos), initially restricted to ion beam methods, is growing steadily. Since then, alternative methodologies and procedures have been incorporated to better characterize these objects, that possess distinctive physical characteristics and also due to their high cultural and monetary value. The examinations were expanded to other non-destructive analytical techniques like portable XRF (X-ray fluorescence) analysis, X-ray radiography, visible, UV (ultraviolet) and IR (infrared) light imaging that are helping to better understand these art objects, particularly paintings, where the techniques are helping to access the conservation state and also reveal underlying drawings, which help understanding the creative process of the artist. The external beam arrangement at LAMFI was recently updated for simultaneous PIXE (Particle induced X-ray emission), RBS (Rutherford back scattering), PIGE (Particle induced gamma-ray emission) and IBL (Ion beam luminescence) analysis in open air. The new setup comprises a 2 {pi} star-like detector assembly with 7 collimated telescopes: two openings have laser beams for optical alignment of the target, 2 are used for X-ray detectors, 1 for a particle detector, 1 for an optical spectrometer, and 1 for a image. The particle and X-ray detector telescopes can be evacuated to reduce signal losses. The 2 telescopes with the X-ray detectors have absorbers to selectively filter low energy X-rays, optimizing the PIXE detection limits. The beam exit window is made of an 8 {mu}m aluminum foil to monitoring integrated beam charge by measuring the Al gamma rays with a NaI detector. The geometry and materials of the assembly have been carefully designed to shield the X-ray detectors from measuring the X-rays from the exit beam window as well as reducing the detection of Ar K {alpha} from the in air beam path. The

  12. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tuecking, Thomas; Oelfke, Uwe [DKFZ, Heidelberg (Germany)

    2009-07-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed, image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping

  13. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.

    Science.gov (United States)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tücking, Thomas; Oelfke, Uwe

    2009-01-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping is

  14. New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints

    Science.gov (United States)

    Ng, Hoi-Tou; Shen, Yu-Tian; Chen, Sheng-Yung; Liu, Chun-Hung; Ng, Philip C. W.; Tsai, Kuen-Yu

    2012-07-01

    Low-energy electron beam lithography is one of the promising next-generation lithography technology solutions for the 21-nm half-pitch node and beyond because of fewer proximity effects, higher resist sensitivity, and less substrate damage compared with high-energy electron beam lithography. To achieve high-throughput manufacturing, low-energy electron beam lithography systems with writing parameters of larger beam size, larger grid size, and lower dosage are preferred. However, electron shot noise can significantly increase critical dimension deviation and line edge roughness. Its influence on patterning prediction accuracy becomes nonnegligible. To effectively maximize throughput while meeting patterning fidelity requirements according to the International Technology Roadmap for Semiconductors, a new method is proposed in this work that utilizes a new patterning prediction algorithm to rigorously characterize the patterning variability caused by the shot noise and a mathematical optimization algorithm to determine optimal writing parameters. The new patterning prediction algorithm can achieve a proper trade-off between computational effort and patterning prediction accuracy. Effectiveness of the new method is demonstrated on a static random-access memory circuit. The corresponding electrical performance is analyzed by using a gate-slicing technique and publicly available transistor models. Numerical results show that a significant improvement in the static noise margin can be achieved.

  15. Multi-Agent Based Beam Search for Real-Time Production Scheduling and Control Method, Software and Industrial Application

    CERN Document Server

    Kang, Shu Gang

    2013-01-01

    The Multi-Agent Based Beam Search (MABBS) method systematically integrates four major requirements of manufacturing production - representation capability, solution quality, computation efficiency, and implementation difficulty - within a unified framework to deal with the many challenges of complex real-world production planning and scheduling problems. Multi-agent Based Beam Search for Real-time Production Scheduling and Control introduces this method, together with its software implementation and industrial applications.  This book connects academic research with industrial practice, and develops a practical solution to production planning and scheduling problems. To simplify implementation, a reusable software platform is developed to build the MABBS method into a generic computation engine.  This engine is integrated with a script language, called the Embedded Extensible Application Script Language (EXASL), to provide a flexible and straightforward approach to representing complex real-world problems. ...

  16. Novel correction method for X-ray beam energy fluctuation of high energy DR system with a linear detector

    Institute of Scientific and Technical Information of China (English)

    YANG Min; CHEN Hao; MENG Fan-Yong; WEI Dong-Bo

    2011-01-01

    A high energy digital radiography (DR) testing system has generated diverse scientific and technological interest in the field of industrial non-destructive testing.However,due to the limitations of manufacturing technology for accelerators,an energy fluctuation of the X-ray beam exists and leads to bright and dark streak artifacts in the DR image.Here we report the utilization of a new software-based method to correct the fluctuation artifacts.The correction method is performed using a high pass filtering operation to extract the high frequency information that reflects the X-ray beam energy fluctuation,and then subtracting it from the original image.Our experimental results show that this method is able to rule out the artifacts effectively and is readily implemented on a practical scanning system.

  17. A Corotational Finite Element Method Combined with Floating Frame Method for Large Steady-State Deformation and Free Vibration Analysis of a Rotating-Inclined Beam

    Directory of Open Access Journals (Sweden)

    Ming Hsu Tsai

    2011-01-01

    Full Text Available A corotational finite element method combined with floating frame method and a numerical procedure is proposed to investigate large steady-state deformation and infinitesimal-free vibrationaround the steady-state deformation of a rotating-inclined Euler beam at constant angular velocity. The element nodal forces are derived using the consistent second-order linearization of the nonlinear beam theory, the d'Alembert principle, and the virtual work principle in a current inertia element coordinates, which is coincident with a rotating element coordinate system constructed at the current configuration of the beam element. The governing equations for linear vibration are obtained by the first-order Taylor series expansion of the equation of motion at the position of steady-state deformation. Numerical examples are studied to demonstrate the accuracy and efficiency of the proposed method and to investigate the steady-state deformation and natural frequency of the rotating beam with different inclined angle, angular velocities, radius of the hub, and slenderness ratios.

  18. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xun; Tian Zhen; Lou Yifei; Sonke, Jan-Jakob; Jiang, Steve B. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318 (United States); Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States)

    2012-09-15

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms implementation on

  19. An experimental study of HF photodissociation: Spin{endash}orbit branching ratio and infrared alignment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Riehn, C.W.; Dulligan, M.; Wittig, C. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    1996-05-01

    Single rotational levels of HF ({ital v}=3) were prepared by using overtone excitation and these molecules were then photodissociated by ultraviolet (UV) radiation at 193.3 nm. Time-of-flight spectra of the hydrogen atom fragment provided the spin{endash}orbit state distribution of the fluorine fragment. Changing the UV photolysis laser polarization confirmed an {ital A}{sup 1}{Pi}{l_arrow}{ital X}{sup 1}{Sigma}{sup +} electronic transition in the photodissociation step. Photodissociation of HF at 121.6 nm is also reported. Infrared (IR) induced alignment of the diatom was studied by monitoring the IR laser polarization dependence of the H-atom product angular distribution. Depolarization due to hyperfine interaction was studied by using the {ital R}(0) transition. Agreement with theory is excellent. {copyright} {ital 1996 American Institute of Physics.}

  20. An experimental study of HF photodissociation: Spin-orbit branching ratio and infrared alignment

    Science.gov (United States)

    Zhang, J.; Riehn, C. W.; Dulligan, M.; Wittig, C.

    1996-05-01

    Single rotational levels of HF (v=3) were prepared by using overtone excitation and these molecules were then photodissociated by ultraviolet (UV) radiation at 193.3 nm. Time-of-flight spectra of the hydrogen atom fragment provided the spin-orbit state distribution of the fluorine fragment. Changing the UV photolysis laser polarization confirmed an A 1Π←X 1Σ+ electronic transition in the photodissociation step. Photodissociation of HF at 121.6 nm is also reported. Infrared (IR) induced alignment of the diatom was studied by monitoring the IR laser polarization dependence of the H-atom product angular distribution. Depolarization due to hyperfine interaction was studied by using the R(0) transition. Agreement with theory is excellent.

  1. Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays

    CERN Document Server

    Heays, Alan N; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R; Gibson, Stephen T; van Dishoeck, Ewine F

    2014-01-01

    Photodissociation of 14N2 and 14N15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to UV radiation from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of complex N-bearing species and influences their isotopic composition. To study the photodissociation rates of 14N15N by UV continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of these on the isotopic composition of more complex molecules. High-resolution photodissociation cross sections of N2 are used from an accurate and comprehensive quantum- mechanical model of the molecule based on laboratory experiments. A similarly high-resolution spectrum of H2 emission following interactions with cosmic rays has been constructed. The spectroscopic data are used to calculate dissociation rates which are input into isotopically differentiated chemical models, describing an interstellar cloud and a protoplane...

  2. Photodissociation of Trapped Rb2+: Implications for Simultaneous Trapping of Atoms and Molecular Ions

    Science.gov (United States)

    Jyothi, S.; Ray, Tridib; Dutta, Sourav; Allouche, A. R.; Vexiau, Romain; Dulieu, Olivier; Rangwala, S. A.

    2016-11-01

    The direct photodissociation of trapped 85Rb2+ (rubidium) molecular ions by the cooling light for the 85Rb magneto-optical trap (MOT) is studied, both experimentally and theoretically. Vibrationally excited Rb2+ ions are created by photoionization of Rb2 molecules formed photoassociatively in the Rb MOT and are trapped in a modified spherical Paul trap. The decay rate of the trapped Rb2+ ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is observed. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  3. Photodissociation of trapped Rb$^+_2$ : Implications for hybrid molecular ion-atom trapping

    CERN Document Server

    Jyothi, S; Dutta, Sourav; Allouche, A R; Vexiau, Romain; Dulieu, Olivier; Rangwala, S A

    2016-01-01

    We observe direct photodissociation of trapped $^{85}$Rb$_2^+$ molecular ions in the presence of cooling light for the $^{85}$Rb magneto optical trap (MOT). Vibrationally excited Rb$_{2}^{+}$ ions are created by photoionization of Rb$_{2}$ molecules formed photoassociatively in the rubidium (Rb) MOT and are trapped in a modified spherical Paul trap co-centric with the MOT. The decay rate of the trapped Rb$_{2}^{+}$ ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is established. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  4. Investigation on the Photodissociation of Oxygen from Oxymyoglobin by Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hua-wei; CAO Hong-yu; TANG Qian; MA Jun-yan; ZHANG Ying-ying; ZHENG Xue-fang

    2011-01-01

    Photodissociation of oxygen from oxymyoglobin(oxyMb)was investigated by means of fluorescence spectroscopy.One of the most important findings of the photodissociation of oxyMb was the discovery of two processes which were affected by excitation intensity,temperature,solvent viscosity,and excitation wavelength.Process Ⅰ(PⅠ)corresponded to oxygen escaping from the binding site at ferrous heme iron atom within the porphyrin ring into the heme pocket,whereas process Ⅱ(PⅡ)was ascribed to oxygen escaping from the heme pocket into the solvent.To elucidate this interesting phenomenon,we proposed a model that oxygen encountered two barriers on its way from the binding site at the ferrous heme iron to the solvent.Reversibility and wavelength sensitivity of the photodissociation were also observed.

  5. Photodissociation of a diatomic molecule in the quantum regime reveals ultracold chemistry

    CERN Document Server

    McDonald, M; Apfelbeck, F; Lee, C -H; Majewska, I; Moszynski, R; Zelevinsky, T

    2015-01-01

    Chemical reactions at temperatures near absolute zero require a full quantum description of the reaction pathways and enable enhanced control of the products via quantum state selection. Ultracold molecule experiments have provided initial insight into the quantum nature of basic chemical processes involving diatomic molecules, for example from studies of bimolecular reactions, but complete control over the reactants and products has remained elusive. The "half-collision" process of photodissociation is an indispensable tool in molecular physics and offers significantly more control than the reverse process of photoassociation. Here we reach a fully quantum regime with photodissociation of ultracold $^{88}$Sr$_2$ molecules where the initial bound state of the molecule and the target continuum state of the fragments are strictly controlled. Detection of the photodissociation products via optical absorption imaging reveals the hallmarks of ultracold chemistry: resonant and nonresonant barrier tunneling, importa...

  6. Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    Science.gov (United States)

    Banks, B. A. (Inventor)

    1984-01-01

    The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.

  7. A novel method for sub-micrometer transverse electron beam size measurements using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aryshev, A; Boogert, S T; Karataev, P [John Adams Institute at Royal Holloway, Egham, Surrey, TW20 0EX (United Kingdom); Howell, D [John Adams Institute at Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Terunuma, N; Urakawa, J, E-mail: alar@post.kek.j [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-06-01

    Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the monitor is defined by so-called Point Spread Function (PSF), source distribution generated by a single electron and projected by an optical system onto a screen. In this paper we represent the development of a novel sub-micrometre electron beam profile monitor based on the measurements of the PSF structure. The first experimental results are presented and future plans on the optimization of the monitor are discussed

  8. FREE VIBRATION ANALYSIS OF A MONOSYMMETRIC OPEN SECTION EULER-BERNOULLI BEAM BY MEANS OF TWO DIFFERENT METHODS

    Directory of Open Access Journals (Sweden)

    Hakan GÖKDAĞ

    2008-02-01

    Full Text Available In this paper, coupled flexural-torsional free vibration of a monosymmetric open section Euler-Bernoulli beam is studied by using two different methods, i.e. the dynamic transfer matrix method (DTMM and the finite element method (FEM. The natural frequencies obtained from the FEM are observed to be closer to the exact values compared to the DTMM, since the beam deformation functions selected in the FEM have the same form as the real deflection curve of beam has. When the two methods are compared in terms of cpu time, the DTMM requires less computation time to yield reasonably accurate natural frequencies. This advantage of the DTMM is mainly due to the size of the transfer matrix, which remains unchanged independent of the number of elements while the size of coefficient matrix leading to the characteristic equation in the FEM increases with increasing element number. In addition, the mode shapes obtained from the DTMM are found to be satisfactorily accurate. Moreover, the DTMM requires less algebra to derive the transfer matrix. It is concluded that the DTMM, due to its advantages mentioned above, would be superior to the FEM especially in handling lattice type structures.

  9. Simulation of temperature and thermally induced stress of human tooth under CO2 pulsed laser beams using finite element method.

    Science.gov (United States)

    Sabaeian, Mohammad; Shahzadeh, Mohammadreza

    2015-02-01

    The authors report the simulation of temperature distribution and thermally induced stresses of human tooth under CO2 pulsed laser beam. A detailed tooth structure comprising enamel, dentin, and pulp with realistic shapes and thicknesses were considered, and a numerical method of finite element was adopted to solve time-dependent bio-heat and stress equations. The realistic boundary conditions of constant temperature for those parts embedded in the gingiva and heat flux condition for those parts out of the gingiva were applied. The results which were achieved as a function of energy density (J/cm(2)) showed when laser beam is irradiated downward (from the top of the tooth), the temperature and thermal stresses decrease quickly as a function of depth that is a result of strong absorption of CO2 beams by enamel. This effect is so influential that one can use CO2 beams to remove micrometer layers while underlying tissues, especially the pulp, are safe from thermal effects.

  10. Probing the Cl-HCl complex via bond-specific photodissociation of (HCl) 2

    Science.gov (United States)

    Liu, K.; Kolessov, A.; Partin, J. W.; Bezel, I.; Wittig, C.

    1999-01-01

    Infrared-ultraviolet double resonance has been used to photodissociate the free HCl bond of the HCl dimer. This creates Cl-HCl in a coherent superposition of electronic and vibrational states. Measurement of the translational energy of the departing H atom using high- n Rydberg time-of-flight spectroscopy enables the Cl-HCl potential surfaces to be probed. The features thus obtained agree with theoretical estimates. At long IR-UV delays, the fastest H atoms derive primarily from UV photodissociation of internally excited HCl (e.g., high rotational levels) formed by (HCl) 2 predissociation.

  11. Isotope selective photodissociation of N-2 by the interstellar radiation field and cosmic rays

    OpenAIRE

    Heays, Alan N.; Visser, Ruud; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R.; Gibson, Stephen T.; van Dishoeck, Ewine F.

    2014-01-01

    Photodissociation of 14N2 and 14N15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to UV radiation from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of complex N-bearing species and influences their isotopic composition. To study the photodissociation rates of 14N15N by UV continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of t...

  12. Photodissociation of p-process nuclei studied by bremsstrahlung induced activation

    CERN Document Server

    Erhard, M; Beyer, R; Grosse, E; Klug, J; Kosev, K; Nair, C; Nankov, N; Rusev, G; Schilling, K D; Schwengner, R; Wagner, A

    2006-01-01

    A research program has been started to study experimentally the near-threshold photodissociation of nuclides in the chain of cosmic heavy element production with bremsstrahlung from the ELBE accelerator. An important prerequisite for such studies is good knowledge of the bremsstrahlung distribution which was determined by measuring the photodissociation of the deuteron and by comparison with model calculations. First data were obtained for the astrophysically important target nucleus 92-Mo by observing the radioactive decay of the nuclides produced by bremsstrahlung irradiation at end-point energies between 11.8 MeV and 14.0 MeV. The results are compared to recent statistical model calculations.

  13. Surface abundance change in vacuum ultraviolet photodissociation of CO2 and H2O mixture ices.

    OpenAIRE

    Kinugawa, Takashi; Yabushita, Akihiro; Kawasaki, Masahiro; Hama, Tetsuya; Watanabe, Naoki

    2011-01-01

    Photodissociation of amorphous ice films of carbon dioxide and water co-adsorbed at 90 K was carried out at 157 nm using oxygen-16 and -18 isotopomers with a time-of-flight photofragment mass spectrometer. O((3)P(J)) atoms, OH (v = 0) radicals, and CO (v = 0, 1) molecules were detected as photofragments. CO is produced directly from the photodissociation of CO(2). Two different adsorption states of CO(2), i.e., physisorbed CO(2) on the surface of amorphous solid water and trapped CO(2) in the...

  14. Properties of Electron-Beam Irradiated CuInSe2 Layers by Multi-Step Sputtering Method.

    Science.gov (United States)

    Kim, Chae-Woong; Kim, Jin Hyeok; Jeong, Chaehwan

    2015-10-01

    Typically, CuInSe2 (CIS) based thin films for photovoltaic devices are deposited by co-evaporation or by deposition of the metals, followed by treatment in a selenium environment. This article describes CIS films that are instead deposited by DC and RF magnetron sputtering from binary Cu2Se and In2Se3 targets without the supply of selenium. As a novel method, electron beam annealing was used for crystallization of Cu2Se/In2Se3 stacked precursors. The surface, cross-sectional morphology, and compositional ratio of CIS films were investigated to confirm the possibility in crystallization without any addition of selenium. Our work demonstrates that the e-beam annealing method can be a good candidate for the rapid crystallization of Cu-In-Se sputtered precursors.

  15. Wavefront-sensor-induced beam size error: physical mechanism, sensitivity-analysis and correction method

    NARCIS (Netherlands)

    Koek, W.D.; Zwet, E.J. van

    2015-01-01

    When using a commonly-used quadri-wave lateral shearing interferometer wavefront sensor (QWLSI WFS) for beam size measurements on a high power CO2 laser, artefacts have been observed in the measured irradiance distribution. The grating in the QWLSI WFS not only generates the diffracted first orders

  16. Longwall mining “cutting cantilever beam theory” and 110 mining method in China—The third mining science innovation

    OpenAIRE

    Manchao He; Guolong Zhu; Zhibiao Guo

    2015-01-01

    With the third innovation in science and technology worldwide, China has also experienced this marvelous progress. Concerning the longwall mining in China, the “masonry beam theory” (MBT) was first proposed in the 1960s, illustrating that the transmission and equilibrium method of overburden pressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called “121 mining method”, which lays a solid foundation for development of mining science and technology in Chin...

  17. Parallel finite difference beam propagation method based on message passing interface: application to MMI couplers with two-dimensional confinement

    Institute of Scientific and Technical Information of China (English)

    Chaojun Yan; Wenbiao Peng; Haijun Li

    2007-01-01

    @@ The alternate-direction implicit finite difference beam propagation method (FD-BPM) is used to analyze the two-dimensional (2D) symmetrical multimode interference (MMI) couplers. The positions of the images at the output plane and the length of multimode waveguide are accurately determined numerically. In order to reduce calculation time, the parallel processing of the arithmetic is implemented by the message passing interface and the simulation is accomplished by eight personal computers.

  18. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses

    Science.gov (United States)

    Ams, Martin; Marshall, G. D.; Spence, D. J.; Withford, M. J.

    2005-07-01

    We report both theoretical and experimental results of a slit beam shaping configuration for fabricating photonic waveguides by use of femtosecond laser pulses. Most importantly we show the method supports focusing objectives with a long depth of field and allows the direct-writing of microstructures with circular cross-sections whilst employing a perpendicular writing scheme. We applied this technique to write low loss (0.39 dB/cm), single mode waveguides in phosphate glass.

  19. Development and First Results of the Width-Tapered Beam Method for Adhesion Testing of Photovoltaic Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Nick; Tracy, Jared; Dauskardt, Reinhold; Kurtz, Sarah

    2016-11-21

    A fracture mechanics based approach for quantifying adhesion at every interface within the PV module laminate is presented. The common requirements of monitoring crack length and specimen compliance are circumvented through development of a width-tapered cantilever beam method. This technique may be applied at both the module and coupon level to yield a similar, quantitative, measurement. Details of module and sample preparation are described and first results on field-exposed modules deployed for over 27 years presented.

  20. Analysis of flexural wave propagation through beams with a breathing crack using wavelet spectral finite element method

    Science.gov (United States)

    Joglekar, D. M.; Mitra, M.

    2016-08-01

    An analytical-numerical method, based on the use of wavelet spectral finite elements (WSFE), is presented for studying the nonlinear interaction of flexural waves with a breathing crack present in a slender beam. The cracked beam is discretized using wavelet spectral finite elements which use compactly supported Daubechies scaling functions for approximating the temporal dependence of the transverse displacement. Rotational spring is used to model the open crack condition, and behavior of the beam in closed-crack condition is assumed to be similar to that of an intact beam. An intermittent switching between the open- and closed-crack conditions simulates crack-breathing, leading to a set of nonlinear equations which is solved using an iterative method. Results of the proposed method are compared with those obtained using the Fourier spectral finite element (FSFE) and 1D finite element (FE) methods, which show a close agreement. Existence of the higher-order harmonic components, indicative of the crack-induced bilinearity, is confirmed in the frequency domain response. Moreover, the time domain analysis reveals separation of harmonics resulting from the dispersive nature of the waveguide, which is further used for localizing the damage. A parametric study is presented to bring out the influence of crack-severity and -location on the extent of harmonic separation and on the relative strength of higher order harmonic. In addition to elaborating the use of WSFE in addressing the nonlinear wave-damage interaction, results of the present investigation can be potentially useful in devising strategies for an inverse analysis.

  1. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  2. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    Institute of Scientific and Technical Information of China (English)

    Li Yan-Chao; Wang Chun-Hui

    2012-01-01

    In this paper,we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse.The measurement of the micro-impulse,which is converted into the measurement of the small tuning angle of the torsion pendulum,is realized by considering the interaction between pulse laser and working medium.Based on Doppler effect and heterodyne technology,the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror,thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously.Processing these values by weighted-average,the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated.Using Polyvinylchlorid+2%C as a working medium,this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium,the obtained result shows that the relative error of this method is just 0.5%.

  3. Application of the two-dose-rate method for general recombination correction for liquid ionization chambers in continuous beams

    Science.gov (United States)

    Andersson, Jonas; Tölli, Heikki

    2011-01-01

    A method to correct for the general recombination losses for liquid ionization chambers in continuous beams has been developed. The proposed method has been derived from Greening's theory for continuous beams and is based on measuring the signal from a liquid ionization chamber and an air filled monitor ionization chamber at two different dose rates. The method has been tested with two plane parallel liquid ionization chambers in a continuous radiation x-ray beam with a tube voltage of 120 kV and with dose rates between 2 and 13 Gy min-1. The liquids used as sensitive media in the chambers were isooctane (C8H18) and tetramethylsilane (Si(CH3)4). The general recombination effect was studied using chamber polarizing voltages of 100, 300, 500, 700 and 900 V for both liquids. The relative standard deviation of the results for the collection efficiency with respect to general recombination was found to be a maximum of 0.7% for isooctane and 2.4% for tetramethylsilane. The results are in excellent agreement with Greening's theory for collection efficiencies over 90%. The measured and corrected signals from the liquid ionization chambers used in this work are in very good agreement with the air filled monitor chamber with respect to signal to dose linearity.

  4. Application of the two-dose-rate method for general recombination correction for liquid ionization chambers in continuous beams

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jonas; Toelli, Heikki, E-mail: jonas.andersson@radfys.umu.se [Department of Radiation Sciences, Radiation Physics, Umeaa University, SE-901 85 Umeaa (Sweden)

    2011-01-21

    A method to correct for the general recombination losses for liquid ionization chambers in continuous beams has been developed. The proposed method has been derived from Greening's theory for continuous beams and is based on measuring the signal from a liquid ionization chamber and an air filled monitor ionization chamber at two different dose rates. The method has been tested with two plane parallel liquid ionization chambers in a continuous radiation x-ray beam with a tube voltage of 120 kV and with dose rates between 2 and 13 Gy min{sup -1}. The liquids used as sensitive media in the chambers were isooctane (C{sub 8}H{sub 18}) and tetramethylsilane (Si(CH{sub 3}){sub 4}). The general recombination effect was studied using chamber polarizing voltages of 100, 300, 500, 700 and 900 V for both liquids. The relative standard deviation of the results for the collection efficiency with respect to general recombination was found to be a maximum of 0.7% for isooctane and 2.4% for tetramethylsilane. The results are in excellent agreement with Greening's theory for collection efficiencies over 90%. The measured and corrected signals from the liquid ionization chambers used in this work are in very good agreement with the air filled monitor chamber with respect to signal to dose linearity.

  5. Calculation Method for Horizontal Partition Coefficient of Simply Supported T -shaped beam%简支T梁横向分配系数计算方法

    Institute of Scientific and Technical Information of China (English)

    孙立刚

    2012-01-01

    On account of simply supported T - shaped beam bridge, the horizontal partition coefficient is cal- culated with G- M method, rigid cross beam method and rigid connected beam method and suitable methods are summarized, with certain reference value for design.%针对简支T型梁桥,采用G-M法、刚性横梁法、刚接梁法计算横向分配系数,总结了合适的计算方法,对设计工作具有一定的参考价值。

  6. The application of Monte Carlo method to electron and photon beams transport; Zastosowanie metody Monte Carlo do analizy transportu elektronow i fotonow

    Energy Technology Data Exchange (ETDEWEB)

    Zychor, I. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    The application of a Monte Carlo method to study a transport in matter of electron and photon beams is presented, especially for electrons with energies up to 18 MeV. The SHOWME Monte Carlo code, a modified version of GEANT3 code, was used on the CONVEX C3210 computer at Swierk. It was assumed that an electron beam is mono directional and monoenergetic. Arbitrary user-defined, complex geometries made of any element or material can be used in calculation. All principal phenomena occurring when electron beam penetrates the matter are taken into account. The use of calculation for a therapeutic electron beam collimation is presented. (author). 20 refs, 29 figs.

  7. Simulation of Cone Beam CT System Based on Monte Carlo Method

    CERN Document Server

    Wang, Yu; Cao, Ruifen; Hu, Liqin; Li, Bingbing

    2014-01-01

    Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral dose profiles under 1cm water were compared with the dose calculated by DOSXYZnrc program. The calculated PDD was better than 1% within the depth of 10cm. More than 85% points of calculated lateral dose profiles was within 2%. The correct CBCT system model helps to improve CBCT image quality for dose verification in ART and assess the CBCT image concomitant dose risk.

  8. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Galata, A.; Porcellato, A. M.; Prete, G. F. [INFN-Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T. [LPSC Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); Ban, G. [LPC Caen, 6 bd Marechal Juin, 14050 Caen Cedex (France); Celona, L.; Lunney, D. [INFN-Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5a, 02 093 Warsaw (Poland); Kalvas, T. [Department of Physics, University of Jyvaeskylae, PB 35 (YFL) 40351 Jyvaeskylae (Finland); and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  9. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska, M. [CEA Saclay, IRFU/SPhN, Gif-sur-Yvette (France); Gaffney, L.P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of the West of Scotland, School of Engineering, Paisley (United Kingdom); Wrzosek-Lipska, K. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Clement, E. [GANIL, Caen Cedex (France); Grahn, T.; Pakarinen, J. [University of Jyvaskylae, Department of Physics, Jyvaskylae (Finland); University of Helsinki, Helsinki Institute of Physics, Helsinki (Finland); Kesteloot, N. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Centre, Mol (Belgium); Napiorkowski, P. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Duppen, P. van [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Warr, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-04-15

    With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA. (orig.)

  10. Application of dose kernel calculation using a simplified Monte Carlo method to treatment plan for scanned proton beams.

    Science.gov (United States)

    Mizutani, Shohei; Takada, Yoshihisa; Kohno, Ryosuke; Hotta, Kenji; Tansho, Ryohei; Akimoto, Tetsuo

    2016-03-01

    Full Monte Carlo (FMC) calculation of dose distribution has been recognized to have superior accuracy, compared with the pencil beam algorithm (PBA). However, since the FMC methods require long calculation time, it is difficult to apply them to routine treatment planning at present. In order to improve the situation, a simplified Monte Carlo (SMC) method has been introduced to the dose kernel calculation applicable to dose optimization procedure for the proton pencil beam scanning. We have evaluated accuracy of the SMC calculation by comparing a result of the dose kernel calculation using the SMC method with that using the FMC method in an inhomogeneous phantom. The dose distribution obtained by the SMC method was in good agreement with that obtained by the FMC method. To assess the usefulness of SMC calculation in clinical situations, we have compared results of the dose calculation using the SMC with those using the PBA method for three clinical cases of tumor treatment. The dose distributions calculated with the PBA dose kernels appear to be homogeneous in the planning target volumes (PTVs). In practice, the dose distributions calculated with the SMC dose kernels with the spot weights optimized with the PBA method show largely inhomogeneous dose distributions in the PTVs, while those with the spot weights optimized with the SMC method have moderately homogeneous distributions in the PTVs. Calculation using the SMC method is faster than that using the GEANT4 by three orders of magnitude. In addition, the graphic processing unit (GPU) boosts the calculation speed by 13 times for the treatment planning using the SMC method. Thence, the SMC method will be applicable to routine clinical treatment planning for reproduction of the complex dose distribution more accurately than the PBA method in a reasonably short time by use of the GPU-based calculation engine. PACS number(s): 87.55.Gh.

  11. Processing digital images and calculation of beam emittance (pepper-pot method for the Krion source)

    Science.gov (United States)

    Alexandrov, V. S.; Donets, E. E.; Nyukhalova, E. V.; Kaminsky, A. K.; Sedykh, S. N.; Tuzikov, A. V.; Philippov, A. V.

    2016-12-01

    Programs for the pre-processing of photographs of beam images on the mask based on Wolfram Mathematica and Origin software are described. Angles of rotation around the axis and in the vertical plane are taken into account in the generation of the file with image coordinates. Results of the emittance calculation by the Pep_emit program written in Visual Basic using the generated file in the test mode are presented.

  12. Beam neutron energy optimization for boron neutron capture therapy using Monte Carlo method

    OpenAIRE

    Ali Pazirandeh; Elham Shekarian

    2006-01-01

     In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b), the treatment of deep seated tumors such as gliobelastoma multiform (GBM) requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalize in the proximity of the tumor. Dosage...

  13. Evaluation of algebraic iterative image reconstruction methods for tetrahedron beam computed tomography systems.

    Science.gov (United States)

    Kim, Joshua; Guan, Huaiqun; Gersten, David; Zhang, Tiezhi

    2013-01-01

    Tetrahedron beam computed tomography (TBCT) performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT), it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

  14. Evaluation of Algebraic Iterative Image Reconstruction Methods for Tetrahedron Beam Computed Tomography Systems

    Directory of Open Access Journals (Sweden)

    Joshua Kim

    2013-01-01

    Full Text Available Tetrahedron beam computed tomography (TBCT performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT, it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

  15. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  16. Kinetic and internal energy distributions via velocity-aligned Doppler spectroscopy: The 193 nm photodissociation of H2S and HBr

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Wittig, C.

    1987-07-01

    We report center-of-mass kinetic energy distributions for the 193 nm photodissociation of H2S and HBr using the method of velocity-aligned Doppler spectroscopy. Nascent H atoms are detected by sequential two-photon photoionization via Lyman-α (121.6 nm + 364.7 nm), and internal SH(X 2Π) and Br excitations are observed directly in the H-atom kinetic energy distributions. The kinetic energy resolution is much better than in ``conventional'' sub-Doppler resolution spectroscopy and results from detecting spatially selected species whose velocities are aligned with the wave vector of the probe radiation, kprobe, thereby providing a kinetic energy distribution for a specific laboratory direction. This improved resolution is achieved in the present experiments by using pulsed, collimated, and overlapped photolysis and probe beams, but the vital aspect of the technique involves increasing the delay between the two lasers in order to discriminate against species having velocity components perpendicular to kprobe. In the case of HBr, we identify the Br(2P3/2) and Br(2P1/2) contributions and find that the Br(2P1/2) channel accounts for approximately 14% of the fragmentation associated with perpendicular electronic transitions. Concerning H2S, SH(X 2Π) vibrational structure is clearly evident in the H-atom kinetic energy distribution, and the SH vibrational distribution shows oscillations, with [v″=0]>[v″=1], [v″=1][v″=3], [v″=3][v″=5]. Such oscillatory behavior was predicted theoretically by Kulander. A simulation of our data places 32% of the SH in v″>0 (˜2700 cm-1, which is approximately 14% of the available energy, hν-D0), while the general features of our H2S data are in accord with the TOF study of van Veen et al. Presently, our measurements appear to be limited by the dye laser resolution (˜0.06 cm-1 at 364.7 nm), but a significant improvement of the laser bandwidth is possible using commercially available sources. The velocity-aligned Doppler

  17. Photodissociation dynamics of the iodine-arene charge-transfer complex

    NARCIS (Netherlands)

    Lenderink, Egbert; Duppen, Koos; Everdij, Frank P.X.; Mavri, Janez; Torre, Renato; Wiersma, Douwe A.

    1996-01-01

    The photodissociation reaction of the molecular iodine:arene charge-transfer (CT) complex into an iodine atom and an iodine atom-arene fragment has been investigated using femtosecond pump-probe, resonance Raman, and molecular dynamics simulations. In the condensed phase the reaction proceeds on a t

  18. The effects of polycyclic aromatic hydrocarbons on the chemistry of photodissociation regions

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM

    1998-01-01

    We have investigated the effects of including polycylic aromatic hydrocarbons (PAHs) on the abundance of neutral atoms and molecules for two typical photodissociation regions (PDRs): a high-density case (the Orion complex) and a low-density case. PAHs provide a large surface area for chemistry betwe

  19. Photodissociation of OCS: Deviations between theory and experiment, and the importance of higher order correlation effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht; Olsen, Jógvan Magnus Haugaard

    2014-01-01

    The photodissociation of carbonyl sulfide (OCS) was investigated theoretically in a series of studies by Schmidt and co-workers. Initial studies [J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys.136, 131101 (2012);J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke...

  20. H2 formation on PAHs in photodissociation regions: a high-temperature pathway to molecular hydrogen

    NARCIS (Netherlands)

    Boschman, L.; Cazaux, S.; Spaans, M.; Hoekstra, R.; Schlathölter, T.

    2015-01-01

    Aims: Molecular hydrogen is the most abundant molecule in the Universe. It is thought that a large portion of H2 forms by association of hydrogen atoms to polycyclic aromatic hydrocarbons (PAHs). We model the influence of PAHs on total H2 formation rates in photodissociation regions (PDRs) and asses

  1. Testing models of low-excitation photodissociation regions with far-infrared observations of reflection nebulae

    NARCIS (Netherlands)

    Owl, RCY; Meixner, MM; Fong, D; Haas, MR; Rudolph, AL; Tielens, AGGM

    2002-01-01

    This paper presents Kuiper Airborne Observatory observations of the photodissociation regions ( PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O I] 63 and 145 mum, [C II] 158 mum, and [Si II] 35 mum and the adjacent far-infrared continuu

  2. H-2 formation on PAHs in photodissociation regions : a high-temperature pathway to molecular hydrogen

    NARCIS (Netherlands)

    Boschman, L.; Cazaux, S.; Spaans, M.; Hoekstra, R.; Schlatholter, T.

    2015-01-01

    Aims. Molecular hydrogen is the most abundant molecule in the Universe. It is thought that a large portion of H-2 forms by association of hydrogen atoms to polycyclic aromatic hydrocarbons (PAHs). We model the influence of PAHs on total H-2 formation rates in photodissociation regions (PDRs) and ass

  3. Longwall mining“cutting cantilever beam theory”and 110 mining method in ChinadThe third mining science innovation

    Institute of Scientific and Technical Information of China (English)

    Manchao He; Guolong Zhu; Zhibiao Guo

    2015-01-01

    abstract With the third innovation in science and technology worldwide, China has also experienced this marvelous progress. Concerning the longwall mining in China, the “masonry beam theory” (MBT) was first proposed in the 1960s, illustrating that the transmission and equilibrium method of overburden pressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called “121 mining method”, which lays a solid foundation for development of mining science and technology in China. The“transfer rock beam theory”(TRBT) proposed in the 1980s gives a further understanding for the transmission path of stope overburden pressure and pressure distribution in high-stress areas. In this regard, the advanced 121 mining method was proposed with smaller coal pillar for excavation design, making significant contributions to improvement of the coal recovery rate in that era. In the 21st century, the traditional mining technologies faced great challenges and, under the theoretical developments pioneered by Profs. Minggao Qian and Zhenqi Song, the “cutting cantilever beam theory” (CCBT) was proposed in 2008. After that the 110 mining method is formulated subsequently, namely one stope face, after the first mining cycle, needs one advanced gateway excavation, while the other one is automatically formed during the last mining cycle without coal pillars left in the mining area. This method can be implemented using the CCBT by incorporating the key technologies, including the directional pre-splitting roof cutting, constant resistance and large deformation (CRLD) bolt/anchor supporting system with negative Poisson’s ratio (NPR) effect material, and remote real-time monitoring technology. The CCBT and 110 mining method will provide the theoretical and technical basis for the development of mining industry in China.

  4. Longwall mining “cutting cantilever beam theory” and 110 mining method in China—The third mining science innovation

    Directory of Open Access Journals (Sweden)

    Manchao He

    2015-10-01

    Full Text Available With the third innovation in science and technology worldwide, China has also experienced this marvelous progress. Concerning the longwall mining in China, the “masonry beam theory” (MBT was first proposed in the 1960s, illustrating that the transmission and equilibrium method of overburden pressure using reserved coal pillar in mined-out areas can be realized. This forms the so-called “121 mining method”, which lays a solid foundation for development of mining science and technology in China. The “transfer rock beam theory” (TRBT proposed in the 1980s gives a further understanding for the transmission path of stope overburden pressure and pressure distribution in high-stress areas. In this regard, the advanced 121 mining method was proposed with smaller coal pillar for excavation design, making significant contributions to improvement of the coal recovery rate in that era. In the 21st century, the traditional mining technologies faced great challenges and, under the theoretical developments pioneered by Profs. Minggao Qian and Zhenqi Song, the “cutting cantilever beam theory” (CCBT was proposed in 2008. After that the 110 mining method is formulated subsequently, namely one stope face, after the first mining cycle, needs one advanced gateway excavation, while the other one is automatically formed during the last mining cycle without coal pillars left in the mining area. This method can be implemented using the CCBT by incorporating the key technologies, including the directional pre-splitting roof cutting, constant resistance and large deformation (CRLD bolt/anchor supporting system with negative Poisson's ratio (NPR effect material, and remote real-time monitoring technology. The CCBT and 110 mining method will provide the theoretical and technical basis for the development of mining industry in China.

  5. Photodissociation of the carbon monoxide dication in the {sup 3}Σ{sup −} manifold: Quantum control simulation towards the C{sup 2+} + O channel

    Energy Technology Data Exchange (ETDEWEB)

    Vranckx, S. [Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB), CP 160/09, B-1050 Brussels (Belgium); Laboratoire de Chimie Physique (UMR 8000), Université Paris-Sud, Orsay 91405 (France); Loreau, J.; Vaeck, N. [Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB), CP 160/09, B-1050 Brussels (Belgium); Meier, C. [Laboratoire Collisions Agrégats Réactivité, UMR 5589, IRSAMC, Université Toulouse III Paul Sabatier, Bât. 3R1b4, Toulouse (France); Desouter-Lecomte, M., E-mail: michele.desouter-lecomte@u-psud.fr [Laboratoire de Chimie Physique (UMR 8000), Univ. Paris Sud, Université Paris-Saclay, Orsay 91405 (France); Département de Chimie, B6c Université de Liège, Sart Tilman, 4000 Liège (Belgium)

    2015-10-28

    The photodissociation and laser assisted dissociation of the carbon monoxide dication X{sup 3}Π CO{sup 2+} into the {sup 3}Σ{sup −} states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X {sup 3}Π state are performed for 13 excited {sup 3}Σ{sup −} states of CO{sup 2+}. The photodissociation cross section, calculated by time-dependent methods, shows that the C{sup +} + O{sup +} channels dominate the process in the studied energy range. The carbon monoxide dication CO{sup 2+} is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground {sup 3}Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this {sup 3}Π state to a manifold of {sup 3}Σ{sup −} excited states leading to numerous C{sup +} + O{sup +} channels and a single C{sup 2+} + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the “laser distillation” strategy. Finally, the local pulse is compared with optimal control theory.

  6. E-Beam Synthesis of Optical Organic-Inorganic Waveguide Film, prepared by Sol-gel Processing Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Eun; Chon, Jina; Cho, Byung Gun; Noh, Seung Ju; Kwon, Yong Ku [Inha Univ., Incheon (Korea, Republic of)

    2011-07-01

    Optical organic-inorganic waveguide materials were synthesized by non-hydrolytic sol-gel reaction. To synthesize an alkoxysilane precursor, 3-glycidoxypropyl trimethoxysilane was reacted with azo-type materials at elevated temperature. This precursor was then reacted with 4.4-diphenol to synthesize the organic-inorganic hybrids by sol-gel reaction. The reaction mixture was then heat-treated for thermal condensation and methanol as a byproduct was also eliminated. After product has added 2.2-dimethoxy-2-phenylacetophenone for using UV-curing, the thin film was prepared by spin coating or bulk dropwise methode on the ITO substrate. It was cured by UV-curing methode and their patterned morphology and electro-optical properties were precisely measured. Also, E-beam process was used another cuing methode. This process was more efficient curing method than UV-curing methode. Because E-beam was very short curing time and very strong irradiation power. The detail results will be given in the meeting.

  7. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M

    2014-01-01

    Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 micron can be achieved by DLR and SVD, while k-means clustering suggests 70 micron.

  8. A method to restrain the charging effect on an insulating substrate in high energy electron beam lithography

    Science.gov (United States)

    Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen

    2014-12-01

    Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.

  9. Thin laser beam wandering and intensity fluctuations method for evapotranspiration measurement

    Science.gov (United States)

    Poisson, Antonin; Fernandez, Angel; Perez, Dario G.; Barille, Regis; Dupont, Jean-Charles

    2016-06-01

    We compare in this study two simple optical setups to measure the atmospheric turbulence characterized by the refractive index structure parameter Cn2. The corresponding heat flux values sensed by the laser beam propagation are calculated leading to the plant evapotranspiration. The results are discussed and compared to measurements obtained with a well-known and calibrated eddy-covariant instrument. A fine analysis gives a good insight of the accuracy of the optical devices proposed here to measure the crop evapotranspiration. Additional evapotranspiration values calculated with meteorological sensor data and the use of different models are also compared in parallel.

  10. Interconnection of specific nano-objects by electron beam lithography - A controllable method

    Energy Technology Data Exchange (ETDEWEB)

    Della Torre, A. [National Nanotechnology Laboratory of CNR-INFM, Technological District, ISUFI, University of Lecce, Via per Arnesano, km 5, I-73100, Lecce (Italy)], E-mail: antonio.dellatorre@unile.it; Pompa, P.P.; Mercato, L.L. del; Chiuri, R.; Krahne, R.; Maruccio, G.; Carbone, L.; Manna, L.; Cingolani, R.; Rinaldi, R. [National Nanotechnology Laboratory of CNR-INFM, Technological District, ISUFI, University of Lecce, Via per Arnesano, km 5, I-73100, Lecce (Italy); Shankar, S. Shiv; Sastry, M. [Tata Chemicals Innovation Centre, Pune 411 045 (India)

    2008-03-10

    We report a widely applicable and highly controlled approach, based on electron beam lithography (EBL), to interconnect single nano-objects, previously immobilized onto solid surfaces, and to investigate the transport properties at the level of single nanostructures. In particular, a three-step EBL-procedure was used for this purpose by patterning two planar contacts on the sides of an individual nano-object. To demonstrate this approach, we use two different kinds of active elements: a semiconductor nanocrystal (tetrapod) and a thin triangular gold nanoprism (NT)

  11. Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer

    Institute of Scientific and Technical Information of China (English)

    HU Kexu; HE Guisheng; LU Fan

    2007-01-01

    In this paper,two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP)and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures.The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h.It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

  12. Wideband Direction of Arrival (DOA Estimation: A Comparative Study of Wideband MUSIC Method, Joint Diagonalization Structure (JDS Method and Beam-Space Genetic Algorithm (BGA

    Directory of Open Access Journals (Sweden)

    Sandeep Santosh

    2016-09-01

    Full Text Available In this paper, a comparative study of Wideband MUSIC method, Joint Diagonalization Structure (JDS method and Beam-Space Genetic Algorithm (BGA is presented with respect to resolution probability and Root mean square error (RMSE evaluated in both low and high Signal-to-Noise ratio (SNR regions. The simulation results show that BGA has higher resolution probability than the JDS method and Wideband MUSIC method in low SNR region while in the high SNR region, Wideband MUSIC has higher resolution probability followed by BGA and JDS method. RMSE is smallest for BGA as compared to JDS and Wideband MUSIC in low SNR region. In the high SNR region, Wideband MUSIC has smallest RMSE followed by BGA and JDS method.

  13. Reproducibility of Facial Soft Tissue Thickness Measurements Using Cone-Beam CT Images According to the Measurement Methods.

    Science.gov (United States)

    Hwang, Hyeon-Shik; Choe, Seon-Yeong; Hwang, Ji-Sup; Moon, Da-Nal; Hou, Yanan; Lee, Won-Joon; Wilkinson, Caroline

    2015-07-01

    The purpose of this study was to establish the reproducibility of facial soft tissue (ST) thickness measurements by comparing three different measurement methods applied at 32 landmarks on three-dimensional cone-beam computed tomography (CBCT) images. Two observers carried out the measurements of facial ST thickness of 20 adult subjects using CBCT scan data, and inter- and intra-observer reproducibilities were evaluated. The measurement method of "perpendicular to bone" resulted in high inter- and intra-observer reproducibility at all 32 landmarks. In contrast, the "perpendicular to skin" method and "direct" method, which measures a distance between one point on bone and the other point on skin, presented low reproducibility. The results indicate that reproducibility could be increased by identifying the landmarks on hard tissue images, rather than on ST images, and the landmark description used in this study can be used in the establishment of reliable tissue depth data using CBCT images.

  14. Analysis of residual stresses on the transverse beam of a casting stand by means of drilling method

    Directory of Open Access Journals (Sweden)

    P. Frankovský

    2014-10-01

    Full Text Available The presented paper demonstrates the application of drilling method in the analysis of residual stresses on the transverse beam of a casting stand. In the initial stage of the analysis the determination of strains was done for individual steps of drilling in the area which was determined by means of numerical analysis. The drilling was carried out gradually by 0,5 mm up to the depth of 5 mm, while the diameter of the drilled hole was 3,2 mm. During the analysis we used the drilling device RS-200, strain indicator P3 and SGD 1-RY21-3/120. The paper presents the development of residual stresses throughout the depth of the drilled hole which were determined according to standard ASTM E837-01, by means of integral method, power series method and by means of Power Series method.

  15. Component mode synthesis and large deflection vibration of complex structures. Volume 2: Single-mode large deflection vibrations of beams and plates using finite element method

    Science.gov (United States)

    Mei, Chuh

    1987-01-01

    A finite element method is presented for the large amplitude vibrations of complex structures that can be modelled with beam and rectangular plate elements subjected to harmonic excitation. Both inplane deformation and inertia are considered in the formulation. Derivation of the harmonic force and nonlinear stiffness matrices for a beam and a rectangular plate element are presented. Solution procedures and convergence characteristics of the finite element method are described. Nonlinear response to uniform and concentrated harmonic loadings and improved nonlinear free vibration results are presented for beams and rectangular plates of various boundary conditions.

  16. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    Science.gov (United States)

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  17. Influence of deposition rate on the properties of ZrO2 thin films prepared in electron beam evaporation method

    Institute of Scientific and Technical Information of China (English)

    Dongping Zhang(张东平); Meiqiong Zhan(占美琼); Ming Fang(方明); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)

    2004-01-01

    ZrO2 thin films were prepared in electron beam thermal evaporation method. And the deposition rate changed from 1.3 to 6.3 nm/s in our study. X-ray diffractometer and spectrophotometer were employed to characterize the films. X-ray diffraction (XRD) spectra pattern shows that films structure changed from amorphous to polycrystalline with deposition rate increasing. The results indicate that internal stresses of the films are compressive in most case. Thin films deposited in our study are inhomogeneous, and the inhomogeneity is enhanced with the deposition rate increasing.

  18. Trojan Horse method and radioactive ion beams: study of $^{18}$F(p,$\\alpha$)$^{15}$O reaction at astrophysical energies

    CERN Document Server

    Gulino, M; Rapisarda, G G; Kubono, S; Lamia, L; La Cognata, M; Yamaguchi, H; Hayakawa, S; Wakabayashi, Y; Iwasa, N; Kato, S; Komatsubara, H; Teranishi, T; Coc, A; De Séréville, N; Hammache, F; Spitaleri, C

    2012-01-01

    The Trojan Horse Method was applied for the first time to a Radioactive Ion Beam induced reaction to study the reaction $^{18}$F(p,$\\alpha$)$^{15}$O via the three body reaction $^{18}$F(d,$\\alpha$ $^{15}$O)n at the low energies relevant for astrophysics. The abundance of $^{18}$F in Nova explosions is an important issue for the understanding of this astrophysical phenomenon. For this reason it is necessary to study the nuclear reactions that produce or destroy $^{18}$F in Novae. $^{18}$F(p,$\\alpha$)$^{15}$O is one of the main $^{18}$F destruction channels. Preliminary results are presented in this paper.

  19. FORTRAN source listing for simulating three-dimensional convergent beam patterns with absorption by the Bloch wave method.

    Science.gov (United States)

    Zuo, J M; Gjonnes, K; Spence, J C

    1989-05-01

    The FORTRAN source code is given for a computer program that calculates the two-dimensional intensity distribution in convergent-beam transmission electron microdiffraction (CBED) patterns from perfect crystals. The program uses the eigenvalue or Bloch-wave method. It allows three-dimensional dynamical diffraction, and so includes all higher-order Laue zone effects without approximation. No symmetry reduction is included. The program accepts noncentrosymmetric or centrosymmetric crystal structures and allows absorption corrections to be included. It uses the "EISPACK" subroutines for the diagonalisation of a general complex matrix. Up to 100 CBED disks may be included. The code is also available via "Bitnet."

  20. First results of Trojan horse method using radioactive ion beams: {sup 18}F(p,α) at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, S.; Spitaleri, C.; Puglia, S.; Rapisarda, G.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); Gulino, M. [Università KORE, Enna, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); La Cognata, M. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Kubono, S.; Wakabayashi, Y. [Center for Nuclear Study, University of Tokyo, Tokyo, Japan and present address RIKEN Nishina Center, Wako, Saitama (Japan); Yamaguchi, H.; Hayakawa, S.; Kurihara, Y. [Center for Nuclear Study, University of Tokyo, Tokyo (Japan); Binh, D. [Center for Nuclear Study, University of Tokyo, Tokyo, Japan and present address Institute of Physics and Electronics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Bishop, S. [RIKEN Nishina Center, Wako, Saitama, Japan and present address Physik Department E12, Technische Universität München, Garching (Germany); Coc, A. [Centre de Spectrométrie Nucléaire et de Spectrométrie de masse, IN2P3, Orsay (France); De Séréville, N.; Hammache, F. [Institut de Physique Nucléaire, IN2P3, Orsay (France)

    2014-05-02

    The abundance of {sup 18}F in Nova explosions is considered to be an important piece of information for the understanding of this astrophysical phenomenon. It is then necessary to study the nuclear processess that both produce and destroy this isotope in Novae. Among these latter reactions, the {sup 18}F(p,α){sup 15}O is one of the most important {sup 18}F destruction channels. Here we report on an experiment performed using the CRIB apparatus of the Center for Nuclear Study of the University of Tokyo. This was the first experiment that used the Trojan Horse method applied to a Radioactive Ion Beam induced reaction.

  1. STUDY OF THE REACTION DYNAMICS OF Li + HF, HCl BY THE CROSSED MOLECULAR BEAMS METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Christopher H.; Casavecchia, Piergiorgio; Tiedemann, Peter W.; Valentini, James J.; Lee, Yuan T.

    1980-05-01

    The reactions of (I) Li + HF {yields} LiF + H and (II) Li + HCl {yields} LiCl + H have been studied by the crossed molecular beams method. Angular distributions [N({theta})] of product molecules have been measured at 4 collision energies (E{sub c}) ranging from about 2 to 9 kcal/mole and time-of-flight (TOF) measurements of product velocity distribution were made at approximately E{sub c} = 3 and 9 kcal/mole for both reactions (I) and (II). The combined N({theta}) and TOF results were used to generate contour maps of lithium-halide product flux in angle and recoil velocity in the center-of-mass (c.m.) frame. For reaction (I) at E{sub c} = 3 kcal/mole the c.m. angular distribution [T({theta})] shows evidence of complex formation with near forward-backward symmetry; slightly favored backward peaking is observed. The shape of this T({theta}) indicates there is significant parallel or antiparallel spatial orientation of initial and final orbital angular momentum {rvec L} and {rvec L}', even though with H departing L' must be rather small and {rvec L} = {rvec J}', where {rvec J}' is the final rotational angular momentum vector. It is deduced that coplanar reaction geometries are strongly favored. At E{sub c} = 8.7 kcal/mole the T({theta}) of reaction (I) becomes strongly forward peaked. The product translational energy distributions P(E{sub T}') at both these collision energies give an average E{sub T}' of ~55% of the total available energy; this appears consistent with a theoretically calculated late exit barrier to reaction. The T({theta}) at E{sub c} = 2.9 and 9.2 kcal/mole for reaction (II) are forward-sideways peaked. Most of the available energy (~70%) goes into recoil velocity at both E{sub c} for LiCl formation. This suggests a late energy release for this 11 kcal/mole exoergic reaction. Both reactions (I) and (II) show evidence of no more than a minor partitioning of energy into product vibrational excitation. Integral reactive cross sections ({sigma}{sub R

  2. Contribution of ion beam analysis methods to the development of second generation high temperature superconducting wires

    Science.gov (United States)

    Usov, I. O.; Arendt, P. N.; Foltyn, S. R.; Stan, L.; DePaula, R. F.; Holesinger, T. G.

    2010-06-01

    One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer-layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and intermediate layer providing a suitable lattice match to the superconducting Y 1Ba 2Cu 3O 7 (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA and ERD) was employed for analysis of each buffer layer and the YBCO film. These results assisted in understanding of a variety of physical processes occurring during the buffer layer fabrication and helped to optimize the buffer-layer architecture as a whole.

  3. Analytical methods and monitoring system for E-beam flue gas treatment process

    Science.gov (United States)

    Licki, J.; Chmielewski, A. G.; Iller, E.; Zakrzewska-Trznadel, G.; Tokunaga, O.; Hashimoto, S.

    1998-06-01

    The results of reliable and precise measurement of gas composition in different key points of e-beam installation are necessary for its proper operation and control. Only the composition of flue gas coming into installation is adequate to composition of flue gas emitted from coal-fired boiler. At other points of e-b installation the gas composition is strongly modified by process conditions therefore specific measuring system (sampling and conditioning system and set of gas analyzers) for its determination are required. In the paper system for gas composition measurement at inlet and outlet of e-b installation are described. Process parameters are continuously monitoring by CEM system and occasionally by the grab sample system. Both system have been tested at pilot plant at EPS Kawȩczyn.

  4. 曲线组合梁畸变效应的弹性地基梁有限元解法%Finite element solution for curved composite beams with distortional effect based on elastic foundation beam method

    Institute of Scientific and Technical Information of China (English)

    刘玉玲; 张彦玲; 张德莹

    2016-01-01

    为了对曲线组合梁的畸变效应进行研究,针对钢—混凝土曲线组合梁,首先采用M/r法将曲线转化为直梁,然后基于能量变分原理,并考虑钢梁与混凝土板的材料差异,推导了畸变荷载作用下组合梁的畸变控制微分方程。以哈大线某曲线组合梁为计算模型,根据弹性地基梁比拟法,分别采用初参数法和Midas有限元模型对跨中截面的畸变角和畸变双力矩进行了计算。结果表明,在弹性地基梁原理基础上,初参数法和有限元法均可很好地模拟曲线组合梁的畸变效应。%In order to analyze the distortion effect of curved composite beams, a curved steel-con-crete composite beam was simulated as an equivalent straight one by the M/r method. Based on the energy-variational principle, and considering material difference between the concrete slab and steel girder, the distortional governing differential equation for the composite beam was deduced. A curved composite beam in Harbin-Dalian railway was selected as a computational example. Based on the elastic foundation beam analogy method, the distortional angle and bi-moment were obtained by the initial parameter method and the finite element method, respectively. The results indicate that, based on the elastic foundation beam analogy method, and simulating the curved composite beam to an equivalent straight one by the M/r method, both the initial parameter method and the finite ele-ment method can satisfyingly deduce the distortion effect of the curved composed beam.

  5. Methods for assisting recovery of damaged brain and spinal cord and treating various diseases using arrays of x-ray microplanar beams

    Energy Technology Data Exchange (ETDEWEB)

    Dilmanian, F. Avraham (Yaphank, NY); Anchel, David J. (Rocky Point, NY); Gaudette, Glenn (Holden, MA); Romanelli, Pantaleo (Monteroduni, IT); Hainfeld, James (Shoreham, NY)

    2010-06-29

    A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.

  6. Detection of a coherent population trapping resonance in a beam of 87Rb atoms by the Ramsey method

    Science.gov (United States)

    Sokolov, I. M.

    2015-10-01

    Formation of a coherent population trapping (CPT) resonance is studied in the interaction of a beam of 87Rb atoms with two spatially separated domains of the dichromatic field. Various resonance excitation schemes are compared depending on the choice of operation transitions and type of the polarisation scheme. In the case of a single-velocity atomic beam, the dependence of the CPT resonance profile is studied as a function of principal parameters of the system: beam velocity, distance between optical fields, laser beam dimensions and intensities, and applied permanent magnetic field. Influence of the atomic beam angular divergence and residual beam velocity spread on the resonance quality parameter is estimated.

  7. A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with Improved Bacterial Optimization

    Science.gov (United States)

    Wang, H.; Jing, X. J.

    2017-02-01

    This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.

  8. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  9. A dual-beam dual-camera method for a battery-powered underwater miniature PIV (UWMPIV) system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Binbin; Liao, Qian [University of Wisconsin-Milwaukee, Department of Civil Engineering and Mechanics, Milwaukee, WI (United States); Bootsma, Harvey A. [University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, WI (United States); Wang, Pei-Fang [Space and Naval Warfare Systems Center, Advanced Systems and Applied Sciences, Envrionmental Sciences, San Diego, CA (United States)

    2012-06-15

    A battery-powered in situ Underwater Miniature PIV (UWMPIV) has been developed and deployed for field studies. Instead of generating high-energy laser pulses as in a conventional PIV system, the UWMPIV employs a low-power Continuous Wave (CW) laser (class IIIb) and an oscillating mirror (galvanometer) to generate laser sheets. In a previous version of the UWMPIV, the time between exposures of a pair of particle images, {delta}t, could not be reduced without loss of illumination strength. This limitation makes it unsuitable for high-speed flows. In this paper, we present a technique to solve this problem by adopting two CW lasers with different wavelength and two CCD cameras in a second-generation UWMPIV system. Several issues including optical alignment, non-uniform distribution of {delta}t due to the varying speed of the scanning beam and local flow velocities are discussed. The timing issue is solved through a simple calibration procedure that involves the reconstruction of maps of laser beam arrival time. Comparison of the performance between the new method and a conventional PIV system is presented. Measurements were performed in a laboratory open-channel flume. Excellent agreement was found between the new method and the standard PIV measurement in terms of the extracted vertical profiles of mean velocity, RMS fluctuation, Reynolds stress and dissipation rate of turbulent kinetic energy. (orig.)

  10. The dynamic flexibility method in structural dynamics: Application to nonuniform beams and plates and to cavity-backed plates

    Science.gov (United States)

    Lee, Jinkyo

    1993-01-01

    Efficient and accurate analytical or semi-analytical solutions have been developed for the dynamics of one and two dimensional linear structures employing elemental dynamic flexibility formulation. This dissertation is divided into three parts. In the first, the elemental flexibility formulation is developed for Euler-Bernoulli beams having discontinuous section properties, which can be viewed as the synthesis of uniform beams, and the exactness of the solution is established. In the second, the elemental flexibility formulation is extended to thin rectangular plates having Levy boundary conditions, and conditions under which the exact solution can be achieved are presented. In the third, the structural-acoustic problem of Helmholtz fluid enclosed by a partially flexible cavity is posed and solved. Here, a concise analytical representation of the structural dynamics is used in conjunction with a boundary element approach for the fluid medium to give an efficient and accurate semi-analytical solution. All three sections are organized along similar lines. Following an introduction and review of the pertinent literature, the governing equations are derived and solved, a series of example problems is presented, the results from the examples are compared with similar results from the literature, and efficacy of the method when compared with other methods is discussed. This is followed by a general conclusions section and a series of appendices.

  11. The $1^{+}\\to n^{+}$ charge breeding method for the production of radioactive and stable continuous /pulsed multi-chargedion beams

    CERN Document Server

    Chauvin, N; Bouly, J L; Curdy, Jean Claude; Geller, R; Lamy, T; Solé, P; Sortais, P

    1999-01-01

    The principle of the 1+ -> n+ charge breeding method by injecting a mono-charged ion beam in an Electron Cyclotron Resonance Ion Source is recalled. Some 1+ ->n+ breeding efficiencies in continuous mode are given, like 9% for Ar1+ ->Ar8+ and 5% for Rb1+->Rb15+. The global capture efficiency is deduced from the whole charge state distribution spectrum. The ECRIT (ECR Ion Trap) mode that allows to produce a pulsed multi-charged beam is explained. The n+ ions are extracted in a 20 ms pulse. The breeding-bunching efficiencies are measured for Rb1+->Rb15+ (2.2%) and Pb1+->Pb22+ (1.3 %). Ion trapping time in the ECRIT plasma is evaluated to some hundreds of ms. A new application of the 1+->n+ method is developed: the production of multi-charged natural metallic ions. First experiments have been done on uranium: a 500 nA continuous current of U26+ has been measured. Finally, the future developments on the 1+->n+ experiment are discussed. A description of a 1+ ->n+ dedicated high performance ECRIS named PHOENIX (Prod...

  12. A proposed method for accurate 3D analysis of cochlear implant migration using fusion of cone beam CT

    Directory of Open Access Journals (Sweden)

    Guido eDees

    2016-01-01

    Full Text Available IntroductionThe goal of this investigation was to compare fusion of sequential cone beam CT volumes to the gold standard (fiducial registration in order to be able to analyze clinical CI migration with high accuracy in three dimensions. Materials and MethodsPaired time-lapsed cone beam CT volumes were performed on five human cadaver temporal bones and one human subject. These volumes were fused using 3D Slicer 4 and BRAINSFit software. Using a gold standard fiducial technique, the accuracy, robustness and performance time of the fusion process were assessed.Results This proposed fusion protocol achieves a sub voxel mean Euclidean distance of 0.05 millimeter in human cadaver temporal bones and 0.16 millimeter when applied to the described in vivo human synthetic data set in over 95% of all fusions. Performance times are less than two minutes.ConclusionHere a new and validated method based on existing techniques is described which could be used to accurately quantify migration of cochlear implant electrodes.

  13. Effect of accelerated electron beam on mechanical properties of human cortical bone: influence of different processing methods.

    Science.gov (United States)

    Kaminski, Artur; Grazka, Ewelina; Jastrzebska, Anna; Marowska, Joanna; Gut, Grzegorz; Wojciechowski, Artur; Uhrynowska-Tyszkiewicz, Izabela

    2012-08-01

    Accelerated electron beam (EB) irradiation has been a sufficient method used for sterilisation of human tissue grafts for many years in a number of tissue banks. Accelerated EB, in contrast to more often used gamma photons, is a form of ionizing radiation that is characterized by lower penetration, however it is more effective in producing ionisation and to reach the same level of sterility, the exposition time of irradiated product is shorter. There are several factors, including dose and temperature of irradiation, processing conditions, as well as source of irradiation that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect e-beam irradiation with doses of 25 or 35 kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors, aged from 46 to 54 years, were transversely cut into slices of 10 mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as e-beam irradiation dose (25 or 35 kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress-strain curves examined by univariate analysis are described. Based on multivariate analysis, including all groups, it was found that temperature of e-beam irradiation and defatting had no consistent significant effect on evaluated mechanical parameters of compact bone rings. In contrast, irradiation with both doses significantly decreased the ultimate strain and its derivative toughness, while not affecting the ultimate stress (bone strength). As no deterioration of mechanical properties was observed in the elastic region, the reduction of the energy

  14. Method to measure composition modifications in polyethylene terephthalate during ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, M. [Faculte de Physique, Universite des Sciences et de la Technologie d' Alger, BP 32, El Alia, 16111 Bab Ezzouar (Algeria); Stoquert, J.P. [Institut d' Electronique du Solide et des Systemes, UMR 7163, 23 rue du Loess - BP20, F-67037 Strasbourg Cedex 02 (France)], E-mail: stoquert@iness.c-strasbourg.fr; Chami, S.; Djebara, M.; Chami, A.C. [Faculte de Physique, Universite des Sciences et de la Technologie d' Alger, BP 32, El Alia, 16111 Bab Ezzouar (Algeria); Siad, M. [Centre de Recherche Nucleaires d' Alger - COMENA, 02 Blvd Frantz Fanon, BP Alger-gare (Algeria)

    2009-01-15

    Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 x 10{sup 14} to 9 x 10{sup 16} cm{sup -2}. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. {sup 16}O(d,p{sub 0}){sup 17}O, {sup 16}O(d,p{sub 1}){sup 17}O and {sup 12}C(d,p{sub 0}){sup 13}C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occurred below a fluence of 3 x 10{sup 16} cm{sup -2}. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.

  15. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs.

  16. Free vibration analysis of straight-line beam regarded as distributed system by combining Wittrick-Williams algorithm and transfer dynamic stiffness coefficient method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Soo; Yang, Kyong Uk [Chonnam National University, Yeosu (Korea, Republic of); Kondou, Takahiro [Kyushu University, Fukuoka (Japan); Bonkobara, Yasuhiro [University of Miyazaki, Miyazaki (Japan)

    2016-03-15

    We developed a method for analyzing the free vibration of a structure regarded as a distributed system, by combining the Wittrick-Williams algorithm and the transfer dynamic stiffness coefficient method. A computational algorithm was formulated for analyzing the free vibration of a straight-line beam regarded as a distributed system, to explain the concept of the developed method. To verify the effectiveness of the developed method, the natural frequencies of straight-line beams were computed using the finite element method, transfer matrix method, transfer dynamic stiffness coefficient method, the exact solution, and the developed method. By comparing the computational results of the developed method with those of the other methods, we confirmed that the developed method exhibited superior performance over the other methods in terms of computational accuracy, cost and user convenience.

  17. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  18. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  19. Experimental determination of field factors ([Formula: see text]) for small radiotherapy beams using the daisy chain correction method.

    Science.gov (United States)

    Lárraga-Gutiérrez, José Manuel

    2015-08-07

    Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm × 1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%-with the exception of the IBA-PFD-for field sizes between 1.5 cm × 1.5 cm and 5 cm × 5 cm. For the 1 cm × 1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated [Formula: see text] is encouraged for field sizes less than or equal to 1 cm × 1 cm for the dosimeters used in this work.

  20. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  1. Product energy distributions from the 193 nm photodissociation of NH 3

    Science.gov (United States)

    Koplitz, B.; Xu, Z.; Wittig, C.

    1987-07-01

    Product energy distributions are reported for 193 nm NH 3 photodissociation. Velocity-aligned Doppler spectroscopy on the H-atom fragment reveals a "cold" kinetic energy distribution, indicating a high degree of NH 2 internal excitation. Data are compared with the trajectory calculations of Rice, Raff and Thompson for NH 3(X˜ 1A 1) dissociation, and the reaction mechanism of Ashfold, Bennett and Dixon is discussed.

  2. Ultraviolet Photodissociation Induced by Light-Emitting Diodes in a Planar Ion Trap.

    Science.gov (United States)

    Holden, Dustin D; Makarov, Alexander; Schwartz, Jae C; Sanders, James D; Zhuk, Eugene; Brodbelt, Jennifer S

    2016-09-26

    The first application of light-emitting diodes (LEDs) for ultraviolet photodissociation (UVPD) mass spectrometry is reported. LEDs provide a compact, low cost light source and have been incorporated directly into the trapping cell of an Orbitrap mass spectrometer. MS/MS efficiencies of over 50 % were obtained using an extended irradiation period, and UVPD was optimized by modulating the ion trapping parameters to maximize the overlap between the ion cloud and the irradiation volume.

  3. A Comparison of Zero Mean Strain Rotating Beam Fatigue Test Methods for Nitinol Wire

    Science.gov (United States)

    Norwich, Dennis W.

    2014-07-01

    Zero mean strain rotating beam fatigue testing has become the standard for comparing the fatigue properties of Nitinol wire. Most commercially available equipment consists of either a two-chuck or a chuck and bushing system, where the wire length and center-to-center axis distance determine the maximum strain on the wire. For the two-chuck system, the samples are constrained at either end of the wire, and both chucks are driven at the same speed. For the chuck and bushing system, the sample is constrained at one end in a chuck and rides freely in a bushing at the other end. These equivalent systems will both be herein referred to as Chuck-to-Chuck systems. An alternate system uses a machined test block with a specific radius to guide the wire at a known strain during testing. In either system, the test parts can be immersed in a temperature-controlled fluid bath to eliminate any heating effect created in the specimen due to dissipative processes during cyclic loading (cyclic stress induced the formation of martensite) Wagner et al. ( Mater. Sci. Eng. A, 378, p 105-109, 1). This study will compare the results of the same starting material tested with each system to determine if the test system differences affect the final results. The advantages and disadvantages of each system will be highlighted and compared. The factors compared will include ease of setup, operator skill level required, consistency of strain measurement, equipment test limits, and data recovery and analysis. Also, the effect of test speed on the test results for each system will be investigated.

  4. Velocity distributions of hydrogen atoms and hydroxyl radicals produced through solar photodissociation of water

    Science.gov (United States)

    Wu, C. Y. R.; Chen, F. Z.

    1993-01-01

    The velocity distributions of H and OH fragments produced through solar photodissociation of gaseous H2O molecules under collisionless conditions are presented. The calculations are carried out using: the most recently available absolute partial cross sections for the production of H and OH through photodissociation of H2O from its absorption onset at 1860 A down to 500 A; the newly available vibrational and rotational energy distributions of both the excited and ground state OH photofragments; the calculated cross sections for the total dissociation processes; and the integrated solar flux in 10 A increments from 500 to 1860 A in the continuum regions and the specific wavelength and flux at the bright solar lines. The calculated results show that the H atoms and the OH radicals produced exhibit multiple velocity groups. Since most current cometary modeling uses a single velocity of 20 km/sec associated with the photodissociation of H2O, the present results may be useful in interpreting the many peaks observed in the velocity distributions of the H Lyman alpha and H alpha of comets.

  5. Ultracold photodissociation and progress towards a molecular lattice clock with 88 Sr

    Science.gov (United States)

    Lee, Chih-Hsi; McGuyer, Bart; McDonald, Mickey; Apfelback, Florian; Grier, Andrew; Zelevinsky, Tanya

    2016-05-01

    Techniques originally developed for the construction of atomic clocks can be adapted to the study of ultracold molecules, with applications ranging from studies of ultracold chemistry to searches for new physics. We present recent experimental results involving studies of fully quantum state-resolved photodissociation of 88 Sr2 molecules, as well as progress toward building a molecular clock. First, our system has allowed for precise, quantum state-resolved photodissociation studies, revealing not only excellent control over quantum states but also a more accurate way to describe the photodissociation of diatomic molecules and access ultracold chemistry. Second, the molecular clock will allow us to search for a possible time variation of the proton-electron mass ratio. The ``oscillator'' of such a molecular clock would consist of the frequency difference between two lasers driving a two-photon Raman transition between deeply and intermediately-bound rovibrational levels in the electronic ground state. Accomplishing this task requires exploring several research directions, including the precision spectroscopy of bound states and developing tools for the control and minimization of differential lattice light shifts.

  6. TORUS-3DPDR: A self-consistent code treating three-dimensional photoionization and photodissociation regions

    CERN Document Server

    Bisbas, T G; Barlow, M J; Viti, S; Harries, T J; Bell, T; Yates, J A

    2015-01-01

    The interaction of ionizing and far-ultraviolet radiation with the interstellar medium is of great importance. It results in the formation of regions in which the gas is ionized, beyond which are photodissociation regions (PDRs) in which the gas transitions to its atomic and molecular form. Several numerical codes have been implemented to study these two main phases of the interstellar medium either dynamically or chemically. In this paper we present TORUS-3DPDR, a new self-consistent code for treating the chemistry of three-dimensional photoionization and photodissociation regions. It is an integrated code coupling the two codes TORUS, a hydrodynamics and Monte Carlo radiation transport code, and 3D-PDR, a photodissociation regions code. The new code uses a Monte Carlo radiative transfer scheme to account for the propagation of the ionizing radiation including the diffusive component as well as a ray-tracing scheme based on the HEALPix package in order to account for the escape probability and column density...

  7. Surface abundance change in vacuum ultraviolet photodissociation of CO2 and H2O mixture ices.

    Science.gov (United States)

    Kinugawa, Takashi; Yabushita, Akihiro; Kawasaki, Masahiro; Hama, Tetsuya; Watanabe, Naoki

    2011-09-21

    Photodissociation of amorphous ice films of carbon dioxide and water co-adsorbed at 90 K was carried out at 157 nm using oxygen-16 and -18 isotopomers with a time-of-flight photofragment mass spectrometer. O((3)P(J)) atoms, OH (v = 0) radicals, and CO (v = 0,1) molecules were detected as photofragments. CO is produced directly from the photodissociation of CO(2). Two different adsorption states of CO(2), i.e., physisorbed CO(2) on the surface of amorphous solid water and trapped CO(2) in the pores of the film, are clearly distinguished by the translational and internal energy distributions of the CO molecules. The O atom and OH radical are produced from the photodissociation of H(2)O. Since the absorption cross section of CO(2) is smaller than that of H(2)O at 157 nm, the CO(2) surface abundance is relatively increased after prolonged photoirradiation of the mixed ice film, resulting in the formation of a heterogeneously layered structure in the mixed ice at low temperatures. Astrophysical implications are discussed.

  8. Resonance Raman and theoretical investigation of the photodissociation dynamics of benzamide in S3 state.

    Science.gov (United States)

    Pei, Ke-Mei; Ma, Yufang; Zheng, Xuming

    2008-06-14

    Resonance Raman spectra were obtained for benzamide in methanol and acetonitrile solutions with excitation wavelengths in resonance with the S(3) state. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with the motions mainly along the benzene ring C[Double Bond]C stretch nu(9), the Ph-CO-NH(2) and ring benzene stretch nu(14), the CCH in plane bend nu(17), the Ph-CO-NH(2) stretch and NH(2) rock nu(19), the ring trigonal bend nu(23), and the ring deformation and Ph-CO-NH(2) stretch nu(29). A preliminary resonance Raman intensity analysis was done, and the results were compared to those previously reported for acetophenone to examine the substituent effect. Solvent effect on the short-time photodissociation dynamics of benzamide was also examined. A conical intersection point S(2)S(3) between S(3) and S(2) potential energy surfaces of benzamide was determined by using a complete active space self-consistent field theory computations. The structural differences and similarities between S(3)S(2) point and S(0) were examined, and the results were used to correlate to the Franck-Condon photodissociation dynamics of benzamide in S(3) state.

  9. Novel information theory based method for superimposition of lateral head radiographs and cone beam computed tomography images

    Science.gov (United States)

    Jacquet, W; Nyssen, E; Bottenberg, P; de Groen, P; Vande Vannet, B

    2010-01-01

    Objectives The aim was to introduce a novel alignment criterion, focus mutual information (FMI), for the superimposition of lateral cephalometric radiographs and three dimensional (3D) cone beam computed images as well as the assessment of the alignment characteristics of the new method and comparison of the novel methodology with the region of interest (ROI) approach. Methods Implementation of a FMI criterion-based methodology that only requires the approximate indication of stable structures in one single image. The robustness of the method was first addressed in a phantom experiment comparing the new technique with a ROI approach. Two consecutive cephalometric radiographs were then obtained, one before and one after functional twin block application. These images were then superimposed using alignment by FMI where the following were focused on, in several ways: (1) cranial base and acoustic meatus, (2) palatal plane and (3) mandibular symphysis. The superimposed images were subtracted and coloured. The applicability to cone beam CT (CBCT) is illustrated by the alignment of CBCT images acquired before and after craniofacial surgery. Results The phantom experiment clearly shows superior alignment when compared to the ROI approach (Wilcoxon n = 17, Z = −3.290, and P = 0.001), and robustness with respect to the choice of parameters (one-sample t-test n = 50, t = −12.355, and P = 0.000). The treatment effects are revealed clearly in the subtraction image of well-aligned cephalometric radiographs. The colouring scheme of the subtraction image emphasises the areas of change and visualizes the remodelling of the soft tissue. Conclusions FMI allows for cephalometry without tracing, it avoids the error inherent to the use of landmarks and the interaction of the practitioner is kept to a minimum. The robustness to focal distribution variations limits the influence of possible examiner inaccuracy. PMID:20395459

  10. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  11. Detection of a coherent population trapping resonance in a beam of {sup 87}Rb atoms by the Ramsey method

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, I M [Peter the Great St.Petersburg Polytechnic University, St.Petersburg (Russian Federation)

    2015-10-31

    Formation of a coherent population trapping (CPT) resonance is studied in the interaction of a beam of {sup 87}Rb atoms with two spatially separated domains of the dichromatic field. Various resonance excitation schemes are compared depending on the choice of operation transitions and type of the polarisation scheme. In the case of a single-velocity atomic beam, the dependence of the CPT resonance profile is studied as a function of principal parameters of the system: beam velocity, distance between optical fields, laser beam dimensions and intensities, and applied permanent magnetic field. Influence of the atomic beam angular divergence and residual beam velocity spread on the resonance quality parameter is estimated. (atomic beams)

  12. Discussion of the Improved Methods for Analyzing a Cantilever Beam Carrying a Tip-Mass under Base Excitation

    Directory of Open Access Journals (Sweden)

    Wang Hongjin

    2014-01-01

    Full Text Available Two improved analytical methods of calculations for natural frequencies and mode shapes of a uniform cantilever beam carrying a tip-mass under base excitation are presented based on forced vibration theory and the method of separation of variables, respectively. The cantilever model is simplified in detail by replacing the tip-mass with an equivalent inertial force and inertial moment acting at the free end of the cantilever based on D’Alembert’s principle. The concentrated equivalent inertial force and inertial moment are further represented as distributed loads using Dirac Delta Function. In this case, some typical natural frequencies and mode shapes of the cantilever model are calculated by the improved and unimproved analytical methods. The comparing results show that, after improvement, these two methods are in extremely good agreement with each other even the offset distance between the gravity center of the tip-mass and the attachment point is large. As further verification, the transient and steady displacement responses of the cantilever system under a sine base excitation are presented in which two improved methods are separately utilized. Finally, an experimental cantilever system is fabricated and the theoretical displacement responses are validated by the experimental measurements successfully.

  13. Combined electron-beam and coagulation purification of molasses distillery slops. Features of the method, technical and economic evaluation of large-scale facility

    Energy Technology Data Exchange (ETDEWEB)

    Pikaev, A.K. E-mail: pikaev@ipc.rssi.ru; Ponomarev, A.V.; Bludenko, A.V.; Minin, V.N.; Elizar' eva, L.M

    2001-04-01

    The paper summarizes the results obtained from the study on combined electron-beam and coagulation method for purification of molasses distillery slops from distillery produced ethyl alcohol by fermentation of grain, potato, beet and some other plant materials. The method consists in preliminary mixing of industrial wastewater with municipal wastewater, electron-beam treatment of the mixture and subsequent coagulation. Technical and economic evaluation of large-scale facility (output of 7000 m{sup 3} day{sup -1}) with two powerful cascade electron accelerators (total maximum beam power of 400 kW) for treatment of the wastewater by the above method was carried out. It was calculated that the cost of purification of the wastes is equal to 0.25 US$ m{sup -3} that is noticeably less than in the case of the existing method.

  14. Combined electron-beam and coagulation purification of molasses distillery slops. Features of the method, technical and economic evaluation of large-scale facility

    Science.gov (United States)

    Pikaev, A. K.; Ponomarev, A. V.; Bludenko, A. V.; Minin, V. N.; Elizar'eva, L. M.

    2001-04-01

    The paper summarizes the results obtained from the study on combined electron-beam and coagulation method for purification of molasses distillery slops from distillery produced ethyl alcohol by fermentation of grain, potato, beet and some other plant materials. The method consists in preliminary mixing of industrial wastewater with municipal wastewater, electron-beam treatment of the mixture and subsequent coagulation. Technical and economic evaluation of large-scale facility (output of 7000 m 3 day -1) with two powerful cascade electron accelerators (total maximum beam power of 400 kW) for treatment of the wastewater by the above method was carried out. It was calculated that the cost of purification of the wastes is equal to 0.25 US$ m -3 that is noticeably less than in the case of the existing method.

  15. A Fully Sinc-Galerkin Method for Euler-Bernoulli Beam Models

    Science.gov (United States)

    1990-10-01

    solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions. (KR)

  16. Synthesis of carbon-supported PtRh random alloy nanoparticles using electron beam irradiation reduction method

    Science.gov (United States)

    Matsuura, Yoshiyuki; Seino, Satoshi; Okazaki, Tomohisa; Akita, Tomoki; Nakagawa, Takashi; Yamamoto, Takao A.

    2016-05-01

    Bimetallic nanoparticle catalysts of PtRh supported on carbon were synthesized using an electron beam irradiation reduction method. The PtRh nanoparticle catalysts were composed of particles 2-3 nm in size, which were well dispersed on the surface of the carbon support nanoparticles. Analyses of X-ray diffraction and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy revealed that the PtRh nanoparticles have a randomly alloyed structure. The lattice constant of the PtRh nanoparticles showed good correlation with Vegard's law. These results are explained by the radiochemical formation process of the PtRh nanoparticles. Catalytic activities of PtRh/C nanoparticles for ethanol oxidation reaction were found to be higher than those obtained with Pt/C.

  17. New method for oblique impact dynamics research of a flexible beam with large overall motion considering impact friction force

    Institute of Scientific and Technical Information of China (English)

    W Yuan; L Li; D G Zhang; J Z Hong

    2016-01-01

    A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid mod-eling method, dynamic equations of the system, which include all states (before, during, and after the collision) are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.

  18. Improved methods for the generation of 24.5 keV neutron beams with possible application to boron neutron capture therapy

    Science.gov (United States)

    Constantine, G.; Baker, L. J.; Taylor, N. P.

    1986-09-01

    The production of epithermal neutron beams, filtered to provide a spectrum in which a small energy range predominates, is of importance for radiobiological research and in the development and calibration of instruments for monitoring intermediate energy neutrons. The penetration characteristics of intermediate energy neutrons in tissue lead to the possibility of application in the field of neutron capture therapy if beams of sufficient intensity and adequate spectral properties can be generated. In this paper methods of utilising the 24.5 keV antiresonance in the iron neutron cross section are described, and the DENIS (depth enhanced neutron intense source) principle by which beam intensities may be optimised is explained. Calculations and experimental measurements in an in-core facility in the DIDO reactor at Harwell have indicated that a DENIS scatterer can achieve a 6-fold improvement in 24.5 keV beam intensity compared with a conventional titanium disc scatterer.

  19. Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method

    Science.gov (United States)

    Wu, Shun-Der; Glytsis, Elias N.

    2002-10-01

    The effects of finite number of periods (FNP) and finite incident beams on the diffraction efficiencies of holographic gratings are investigated by the finite-difference frequency-domain (FDFD) method. Gratings comprising 20, 15, 10, 5, and 3 periods illuminated by TE and TM incident light with various beam sizes are analyzed with the FDFD method and compared with the rigorous coupled-wave analysis (RCWA). Both unslanted and slanted gratings are treated in transmission as well as in reflection configurations. In general, the effect of the FNP is a decrease in the diffraction efficiency with a decrease in the number of periods of the grating. Similarly, a decrease in incident-beam width causes a decrease in the diffraction efficiency. Exceptions appear in off-Bragg incidence in which a smaller beam width could result in higher diffraction efficiency. For beam widths greater than 10 grating periods and for gratings with more than 20 periods in width, the diffraction efficiencies slowly converge to the values predicted by the RCWA (infinite incident beam and infinite-number-of-periods grating) for both TE and TM polarizations. Furthermore, the effects of FNP holographic gratings on their diffraction performance are found to be comparable to their counterparts of FNP surface-relief gratings. 2002 Optical Society of America

  20. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    Directory of Open Access Journals (Sweden)

    Youngchul Bae

    2016-05-01

    Full Text Available An optical sensor such as a laser range finder (LRF or laser displacement meter (LDM uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  1. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    Science.gov (United States)

    Bae, Youngchul

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291

  2. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.

    Science.gov (United States)

    Bae, Youngchul

    2016-05-23

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  3. A Semi-Discrete Landweber-Kaczmarz Method for Cone Beam Tomography and Laminography Exploiting Geometric Prior Information

    Science.gov (United States)

    Vogelgesang, Jonas; Schorr, Christian

    2016-12-01

    We present a semi-discrete Landweber-Kaczmarz method for solving linear ill-posed problems and its application to Cone Beam tomography and laminography. Using a basis function-type discretization in the image domain, we derive a semi-discrete model of the underlying scanning system. Based on this model, the proposed method provides an approximate solution of the reconstruction problem, i.e. reconstructing the density function of a given object from its projections, in suitable subspaces equipped with basis function-dependent weights. This approach intuitively allows the incorporation of additional information about the inspected object leading to a more accurate model of the X-rays through the object. Also, physical conditions of the scanning geometry, like flat detectors in computerized tomography as used in non-destructive testing applications as well as non-regular scanning curves e.g. appearing in computed laminography (CL) applications, are directly taken into account during the modeling process. Finally, numerical experiments of a typical CL application in three dimensions are provided to verify the proposed method. The introduction of geometric prior information leads to a significantly increased image quality and superior reconstructions compared to standard iterative methods.

  4. Assessment of Two Analytical Methods in Solving the Linear and Nonlinear Elastic Beam Deformation Problems

    DEFF Research Database (Denmark)

    Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari

    2010-01-01

    Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...... and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However...

  5. Ultrasonic lateral modulation imaging, speckle reduction, and displacement vector measurements using simple single-beam scanning or plural crossed-beam scanning with new spectra frequency division processing methods

    Directory of Open Access Journals (Sweden)

    Sumi C

    2012-10-01

    Full Text Available Chikayoshi Sumi, Yousuke IshiiDepartment of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, JapanAbstract: The development of effective ultrasonic tissue displacement measurement methods increases the number of possible applications for various tissue displacement and strain measurements. These applications include measurements of spontaneous motions/deformations generated by heart motion; pulsations from phenomena such as blood flow (intracardiac, intravascular, and carotid; heart, blood vessel, and liver motion; and motion from artificial sources such as motions/deformations generated by applying static compression/stretching forces, vibration or acoustic radiation forces (breast and liver. For arbitrary orthogonal coordinate systems obtained using arbitrary transducer types (eg, linear, convex, sector, arc, or radial array types, or single aperture types with a mechanical scan, several lateral modulation (LM methods (eg, scanning with plural crossed or steered beams over a region of interest have been developed that can be used with new echo imaging methods for tissue displacement/deformation measurements. Specifically, by using such beamforming methods, in addition to highly accurate displacement vector and lateral displacement measurements, LM echo imaging with a high lateral carrier frequency and a high lateral resolution has been developed. Another new beamforming method, referred to as “a steering angle (ASTA method,” ie, scanning with a defined steering angle, is also described. In addition to conventional non-steered-beam scanning (ie, a version of ASTA and conventional steered-beam scanning with a variable steering angle (eg, sector, arc, radial scan, a simple, single-beam scanning method also permits the use of LM, which yields an accurate displacement vector measurement with fewer calculations than the original LM methods. This is accomplished by using a previously developed

  6. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    Science.gov (United States)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  7. Special diagnostic methods and beam loss control on high intensity proton synchrotrons and storage rings Circular proton accelerator

    CERN Document Server

    Warsop, C M

    2002-01-01

    Two topics concerning high intensity, medium energy, circular proton accelerators have been studied: specialist diagnostics and beam loss control. The use of specially configured, low intensity diagnostic beams to help measure, understand and control high intensity beams is described. The ideas are developed and demonstrated on the ISIS 800 MeV, high intensity proton synchrotron at the Rutherford Appleton Laboratory in the UK. It is shown that these techniques make much new and valuable information available, which is particularly useful in achieving the precise beam optimisation required for low and controlled losses. Beam loss control in the proposed European Spallation Source (ESS) accumulator rings is studied. The expected losses are summarised, and a design for the beam collimation system presented. A new code for the simulation of loss control is outlined, and then used to test the collimation system under most foreseeable conditions. It is expected that the required loss control levels will be achievab...

  8. An omni-directional optical antenna and its beam control method based on the EC-KPA algorithm for mobile FSO.

    Science.gov (United States)

    Shang, Tao; Yang, Yintang; Li, Weixu; Wang, Xin; Jia, Jijun

    2013-01-28

    In order to ensure the communication link stability in mobile FSO system, a new omni-directional optical antenna is designed. Being aimed at discontinuous tracking, a novel beam control method based on the error correction Kalman prediction algorithm (EC-KPA) is proposed. The comparison of EC-KPA and the conventional Kalman prediction algorithm (KPA) is given. Numerical simulations about beam control method are carried out. The results show that the prediction accuracy of EC-KPA is improved about 77% than that of KPA in Gaussian noise situation, and that the increase is up to 12.92 times in strong noise situation. Therefore, the beam control method is feasible, and this optical antenna can meet the demands of fast mobile FSO.

  9. Comparison of the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Vaishnavi C

    2010-01-01

    Full Text Available Aim : To compare the fracture toughness and wear resistance of indirect composites cured by conventional post curing methods and electron beam irradiation. Materials and Methods : Forty specimens were randomly assigned into four groups of ten each and were subjected to various post curing methods. Fracture toughness and wear resistance tests were performed and the results were tabulated and analyzed statistically using Kruskal Wallis and Mann-Whitney U test. Results : It was found that Inlay system showed higher values followed by electron beam irradiation. Conclusion : Electron beam irradiation of dental composites gives comparable mechanical properties to other post curing systems. It can be concluded that further studies with increased radiation dose should be performed to improve the mechanical properties of indirect composites.

  10. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    Science.gov (United States)

    2015-01-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) December 2014 2. REPORT TYPE...Briefing Charts 3. DATES COVERED (From - To) December 2014- January 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER N/A A Method for Eliminating...Jan 2015. PA#14562. 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of

  11. Method of targeted delivery of laser beam to isolated retinal rods by fiber optics.

    Science.gov (United States)

    Sim, Nigel; Bessarab, Dmitri; Jones, C Michael; Krivitsky, Leonid

    2011-11-01

    A method of controllable light delivery to retinal rod cells using an optical fiber is described. Photo-induced current of the living rod cells was measured with the suction electrode technique. The approach was tested with measurements relating the spatial distribution of the light intensity to photo-induced current. In addition, the ion current responses of rod cells to polarized light at two different orientation geometries of the cells were studied.

  12. Method of targeted delivery of laser beam to isolated retinal rods by fiber optics

    CERN Document Server

    Sim, Nigel; Jones, C Michael; Krivitsky, Leonid

    2013-01-01

    A method of controllable light delivery to retinal rod cells using an optical fiber is described. Photo-induced current of the living rod cells was measured with the suction electrode technique. The approach was tested with measurements relating the spatial distribution of the light intensity to photo-induced current. In addition, the ion current responses of rod cells to polarized light at two different orientation geometries of the cells were studied.

  13. Quantification of hydrogen in solids by two methods of ion beam analysis

    Science.gov (United States)

    Madiba, C. C. P.; Sellschop, J. P. F.; Annegarn, H. J.; Appleton, B. R.

    1983-12-01

    In any analytical problem, the question of rendering the measured data quantitative is demanding, and frequently sets the limit to the accuracy attainable. Quite typically dead-reckoning methods are not feasible, and one has to resort to the use of standards or reference materials. Two established methods of hydrogen analysis in solids are the nuclear resonance reaction techniques (traditionally fluorine-19 or nitrogen -15) and (heavy) ion elastic recoil scattering. The quantitative integrity of these two methods is tested as well as the limit of detection by using carefully prepared silicon samples which have been hydrogen-implanted to two different depths at different concentrations. The two techniques are shown to give linear calibration curves when referenced to the ion implantation data. However elastic recoil scattering is more rapid and sensitive than the resonance technique. Furthermore the substantially higher integrated doses associated with the resonance technique result in the production of mesa growths on diamond surfaces, which effect is not observed with the lower doses characteristic of elastic recoil scattering.

  14. A novel raster-scanning method to fabricate ultra-fine cross-gratings for the generation of electron beam moiré fringe patterns

    Science.gov (United States)

    Lang, F. C.; Zhao, Y. R.; Xing, Y. M.; Liu, F.; Hou, X. H.; Zhu, J.; Li, J. J.; Yang, S. T.

    2016-11-01

    The resolution of the electron beam moiré method depends on the line frequency of the grating. Recently, more and more effort has been devoted to increase the frequency, and a novel method for producing high-resolution electron beam gratings is presented in this work. Cross-gratings with a frequency up to 14,832 lines/mm (67 nm pitch) were successfully fabricated using a common scanning electron microscope without a dedicated pattern generation system. The quality of the grating was high enough to produce high-quality moiré fringe patterns. In this method, the ultra-fine cross-grating can be fabricated only through one-directional scanning on the resist, which can improve the grating quality and significantly reduces the fabrication time. The number of control parameters for grating fabrication could be reduced to two compared to the six parameters required by conventional methods, which facilitates the use of the electron beam moiré method. The frequency of the fabricated grating is linearly proportional to the exposure magnification. Thus, the frequency of the grating can be accurately predetermined, and the null field can be easily obtained in the electron beam moiré method. The quality of the fabricated gratings was illustrated by the obtained micrographs and moiré fringe patterns. The full-field local strain near an induced crack was studied to verify the application potential of this method.

  15. Probabilistic buckling analysis of the beam steel structures subjected to fire by the stochastic finite element method

    Directory of Open Access Journals (Sweden)

    Świta P.

    2016-05-01

    Full Text Available The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.

  16. Stochastic growth theory of molecular beam epitaxy with atom correlation effects: A Monte-Carlo master equation method

    Science.gov (United States)

    Nakayama, Hiroshi; Furuichi, Akihisa; Kita, Takashi; Nishino, Taneo

    1997-04-01

    Structural phase transition of epitaxial growing layer is quite important to understand the atomic scale mechanism of molecular beam epitaxy (MBE). GaAs and related alloy semiconductors are typical systems which show variety of such structural transitions during MBE. Structural evolution of surface reconstruction phases and an order-disorder transition in III-V alloy semiconductors are typical cases where such phase transitions appear during epitaxial processes. In this work, a stochastic theory and the Monte-Carlo simulation have been presented to describe the structural evolution of epitaxial growth in binary system. This method, known here as the 'Monte-Carlo master equation (MCME) method', couples a master equation for epitaxial growth kinetics with an Ising Hamiltonian of growing surface. The Monte-Carlo (MC) simulation of binary growing surface with atom-correlation effects has successfully revealed the evolution of atomic structure and the formation of short-range ordering (SRO) during epitaxy. This demonstrates the usefulness of the MCME method in describing the atomic-structural dynamics as compared with a conventional theory of epitaxy based on a diffusion equation and standard nucleation theory.

  17. Probabilistic buckling analysis of the beam steel structures subjected to fire by the stochastic finite element method

    Science.gov (United States)

    Świta, P.; Kamiński, M.

    2016-05-01

    The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the stability in the issues related to the influence of high temperature resulting from a fire directly connected with the reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra system to get the analytical polynomial functions relating the critical pressure (or force) and several random design parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming that the input random parameters have all Gaussian probability functions truncated to the positive values only. Finally, the reliability index is calculated according to the First Order Reliability Method (FORM) by an application of the limit function as a difference in-between critical pressure and maximum compression stress determined in the given structures to verify their durability according to the demands of EU engineering designing codes related to the fire situation.

  18. Simple methods to reduce patient dose in a Varian cone beam CT system for delivery verification in pelvic radiotherapy.

    Science.gov (United States)

    Roxby, P; Kron, T; Foroudi, F; Haworth, A; Fox, C; Mullen, A; Cramb, J

    2009-10-01

    Cone-beam computed tomography (CBCT) is a three-dimensional imaging modality that has recently become available on linear accelerators for radiotherapy patient position verification. It was the aim of the present study to implement simple strategies for reduction of the dose delivered in a commercial CBCT system. The dose delivered in a CBCT procedure (Varian, half-fan acquisition, 650 projections, 125 kVp) was assessed using a cylindrical Perspex phantom (diameter, 32 cm) with a calibrated Farmer type ionisation chamber. A copper filter (thickness, 0.15 mm) was introduced increasing the half value layer of the beam from 5.5 mm Al to 8 mm Al. Image quality and noise were assessed using an image quality phantom (CatPhan) while the exposure settings per projection were varied from 25 ms/80 mA to 2 ms/2 mA per projection. Using the copper filter reduced the dose to the phantom from approximately 45 mGy to 30 mGy at standard settings (centre/periphery weighting 1/3 to 2/3). Multiple CBCT images were acquired for six patients with pelvic malignancies to compare CBCTs with and without a copper filter. Although the reconstructed image is somewhat noisier with the filter, it features similar contrast in the centre of the patient and was often preferred by the radiation oncologist because of greater image uniformity. The X-ray shutters were adjusted to the minimum size required to obtain the desired image volume for a given patient diameter. The simple methods described here reduce the effective dose to patients undergoing daily CBCT and are easy to implement, and initial evidence suggests that they do not affect the ability to identify soft tissue for the purpose of treatment verification.

  19. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results.

    Science.gov (United States)

    Magrini, K A; Evans, R J; Hoover, C M; Elam, C C; Davis, M F

    2002-01-01

    The components of soil organic matter (SOM) and their degradation dynamics in forest soils are difficult to study and thus poorly understood, due to time-consuming sample collection, preparation, and difficulty of analyzing and identifying major components. As a result, changes in soil organic matter chemical composition as a function of age, forest type, or disturbance have not been examined. We applied pyrolysis molecular beam mass spectrometry (py-MBMS), which provides rapid characterization of SOM of whole soil samples. to the Tionesta soil samples described by Hoover, C.M., Magrini, K.A., Evans, R.J., 2002. Soil carbon content and character in an old growth forest in northwestern Pennsylvania: a case study introducing molecular beam mass spectrometry (PY-MBMS). Environmental Pollution 116 (Supp. 1), S269-S278. Our goals in this work were to: (1) develop and demonstrate an advanced, rapid analytical method for characterizing SOM components in whole soils, and (2) provide data-based models to predict soil carbon content and residence time from py-MBMS analysis. Using py-MBMS and pattern recognition techniques we were able to statistically distinguish among four Tionesta sites and show an increase in pyrolysis products of more highly decomposed plant materials at increasing sample depth. For example, all four sites showed increasing amounts of older carbon (phenolic and aromatic species) at deeper depths and higher amounts of more recent carbon (carbohydrates and lignin products) at shallower depths. These results indicate that this type of analysis could be used to rapidly characterize SOM for the purpose of developing a model, which could be used in monitoring the effect of forest management practices on carbon uptake and storage.

  20. Enantiomeric Excess Determination for Monosaccharides Using Chiral Transmission to Cold Gas-Phase Tryptophan in Ultraviolet Photodissociation

    Science.gov (United States)

    Fujihara, Akimasa; Maeda, Naoto; Doan, Thuc N.; Hayakawa, Shigeo

    2017-02-01

    Chiral transmission between monosaccharides and amino acids via photodissociation in the gas phase was examined using a tandem mass spectrometer fitted with an electrospray ionization source and a cold ion trap in order to investigate the origin of the homochirality of biomolecules in molecular clouds. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of the monosaccharide enantiomers glucose (Glc) and galactose (Gal) with protonated l-tryptophan H+( l-Trp) were obtained by photoexcitation of the indole ring of l-Trp. l-Trp dissociated via Cα-Cβ bond cleavage when noncovalently complexed with d-Glc; however, no dissociation of l-Trp occurred in the homochiral H+( l-Trp)( l-Glc) noncovalent complex, where the energy absorbed by l-Trp was released through the evaporation of l-Glc. This enantioselective photodissociation of Trp was due to the transmission of chirality from Glc to Trp via photodissociation in the gas-phase noncovalent complexes, and was applied to the quantitative chiral analysis of monosaccharides. The enantiomeric excess of monosaccharides in solution could be determined by measuring the relative abundance of the two product ions in a single photodissociation mass spectrum of the cold gas-phase noncovalent complex with H+( l-Trp), and by referring to the linear relationships derived in this work.

  1. Mechanisms for the Near-UV Photodissociation of CH$_3$I on D$_2$O/Cu(110)

    CERN Document Server

    Miller, E R; Jensen, E T

    2011-01-01

    The system of CH$_3$I adsorbed on submonolayer, monolayer and multilayer thin films of D$_2$O on Cu(110) has been studied by measuring the time-of-flight (TOF) distributions of the desorbing CH$_3$ fragments after photodissociation using linearly polarized $\\lambda$=248nm light. For multilayer D$_2$O films (1--120ML), the photodissociation is dominated by neutral photodissociation via the "A-band" absorption of CH$_3$I. The polarization and angle dependent variation in the observed TOF spectra of the CH$_3$ photofragments find that dissociation is largely via the $^3Q_0$ excited state, but that also a contribution via the $^1Q_1$ excitation can be identified. The photodissociation results also indicate that the CH$_3$I adsorbed on D$_2$O forms close-packed islands at submonolayer coverages, with a mixture of C--I bond axis orientations. For submonolayer quantities of D$_2$O we have observed a contribution to CH$_3$I photodissociation via dissociative electron attachment (DEA) by photoelectrons. The observed D...

  2. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    Science.gov (United States)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  3. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    Energy Technology Data Exchange (ETDEWEB)

    Brice, S. J. [Fermilab; Cooper, R. L. [Indiana U.; DeJongh, F. [Fermilab; Empl, A. [Houston U.; Garrison, L. M. [Indiana U.; Hime, A. [Los Alamos; Hungerford, E. [Houston U.; Kobilarcik, T. [Fermilab; Loer, B. [Fermilab; Mariani, C. [Virginia Tech.; Mocko, M. [Los Alamos; Muhrer, G. [Los Alamos; Pattie, R. [North Carolina State U.; Pavlovic, Z. [Los Alamos; Ramberg, E. [Fermilab; Scholberg, K. [Duke U.; Tayloe, R. [Indiana U.; Thornton, R. T. [Indiana U.; Yoo, J. [Fermilab; Young, A. [North Carolina State U.

    2014-04-03

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  4. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Guo, X [University of Texas at Dallas, Richardson, TX (United States)

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  5. Photodissociation dynamics of CH{sub 3}C(O)SH in argon matrix: A QM/MM nonadiabatic dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shu-Hua; Liu, Xiang-Yang; Fang, Qiu; Cui, Ganglong, E-mail: ganglong.cui@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2015-11-21

    In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH{sub 3}C(O)SH in the S{sub 1}, T{sub 1}, and S{sub 0} states in argon matrix. CH{sub 3}C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S{sub 1} and T{sub 1} states. It completely suppresses the nearby C—C bond fission. After the bond fission, the S{sub 1} radical pair of CH{sub 3}CO and SH can decay to the S{sub 0} and T{sub 1} states via internal conversion and intersystem crossing, respectively. In the S{sub 0} state, the radical pair can either recombine to form CH{sub 3}C(O)SH or proceed to form molecular products of CH{sub 2}CO and H{sub 2}S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH{sub 3}C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S{sub 1} C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S{sub 1} → S{sub 0} internal conversion is major (55%) but the S{sub 1} → T{sub 1} intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH{sub 2}CO and H{sub 2}S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix.

  6. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy.

    Science.gov (United States)

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B; Jia, Xun

    2015-05-07

    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the

  7. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. [Dept. of Physics, Univ. of Maryland, College Park Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J.; Gluckstern, R.L.

    1993-06-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: Charged Particle Beam Transport and the Computation of Electromagnetic Fields and Beam-Cavity Interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates.

  8. The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method

    Science.gov (United States)

    Taherniya, Atefeh; Raoufi, Davood

    2016-12-01

    In this paper, we report on titanium dioxide (TiO2) thin films deposited by an electron beam evaporation method on quartz glass substrates (15 × 15 × 2 mm3 in size), followed by post-annealing at 300 °C to 600 °C for an annealing time of up to 2 h. The substrate temperature during the film deposition was kept at 150 °C. The effect of post-growth thermal annealing on the structural and optical properties of TiO2 thin films were systematically studied as a function of annealing temperature. We found that the as-deposited TiO2 films are amorphous in structure, while the films started to crystallize into the anatase phase when annealed at temperatures ≥450 °C. An increase in annealing temperature results in a decrease of transmittance percentage and also in optical band gap energy. The refractive indices of the films were evaluated from the measured transmittance spectra using the envelope method. An increase in the refractive index with an increase of annealing temperature was observed.

  9. Manifestation of external field effect in time-resolved photo-dissociation dynamics of LiF

    Institute of Scientific and Technical Information of China (English)

    Meng Qing-Tian; A.J.C.Varandas

    2013-01-01

    The photo-dissociation dynamics of LiF is investigated with newly constructed accurate ab initio potential energy curves (PECs) using the time-dependent quantum wave packet method.The oscillations and decay of the wave packet on the adiabats as a function of time are given,which can be compared with the femtosecond transition-state (FTS) spectroscopy.The photo-absorption spectra and the kinetic-energy distribution of the dissociation fragments,which can exhibit the vibration-level structure and the dispersion of the wave packet,respectively,are also obtained.The investigation shows a blue shift of the band center for the photo-absorption spectrum and multiple peaks in the kinetic-energy spectrum with increasing laser intensity,which can be attributed to external field effects.By analyzing the oscillations of the wave packet evolving on the upper adiabat,an approximate inversion scheme is devised to roughly deduce its shape.

  10. Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer

    Directory of Open Access Journals (Sweden)

    Woong Kirl Choi

    2015-09-01

    Full Text Available In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA and electric discharge machining (EDM. However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond’s extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer—platinum (Pt coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond

  11. Statistical Method for Nonequilibrium Systems with Application to Accelerator Beam Dynamics

    Science.gov (United States)

    Meller, Robert Edwin

    In this thesis, a method is developed for calculating the limit cycle distribution of a many-particle system in weak contact with a heat bath. Both externally driven systems and unstable systems with mean-field collective interaction are considered. The system is described by a Fokker-Planck equation, and then the single particle motion is transformed to action -angle coordinates to separate the thermal and mechanical time dependencies. The equation is then averaged over angle variables to remove the mechanical motion and produce an equation with only thermal motion in action space. The limit cycle is the time-independent solution of the averaged equation. As an example of a driven system, the distribution of driven oscillators is calculated in the region of action space near a nonlinear resonance, and the perpetual currents known as resonance streaming are shown. As an example of collective instability, the thermodynamic stability of a system of oscillators with a long range cosine potential is considered. For the case of an attractive potential, time dependent limit cycles are found with lower free energy than equilibrium. Hence, this is a conservative many-body system which oscillates spontaneously when placed in contact with a heat bath. This prediction is verified with numerical simulations. The phenomenon of accelerator bunch lengthening is then explained as an example of thermal instability which has been enhanced by the nonconservative nature of the wake field coupling force. The threshold of thermal instability is shown to be related to the total energy loss of the charge bunch, rather than to the collective frequency shift as predicted for the threshold of mechanical instability by the linearized Vlasov equation. Numerical calculations of bunch lengthening in the electron storage ring SPEAR are presented, and compared with simulations.

  12. Ion detection device and method with compressing ion-beam shutter

    Science.gov (United States)

    Sperline, Roger P [Tucson, AZ

    2009-05-26

    An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.

  13. Propensities toward C{sub 2}H({ital {tilde A}} {sup 2}{Pi}) in acetylene photodissociation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Riehn, C.W.; Dulligan, M.; Wittig, C. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    1995-10-15

    When expansion-cooled acetylene is excited to the {nu}{sup {double_prime}}{sub 1}+3{nu}{sup {double_prime}}{sub 3} vibrational level (4 quanta of CH-stretch) and then photodissociated at 248.3 nm, the dominant product channel is C{sub 2}H({ital {tilde A}} {sup 2}{Pi}). This differs markedly from one-photon 193.3 nm photodissociation, which provides 1200 cm{sup {minus}1} less energy and yields C{sub 2}H({ital {tilde X}} {sup 2}{Sigma}{sup +}) as the primary product. Photodissociation at 121.6 nm yields C{sub 2}H({ital {tilde A}} {sup 2}{Pi}) exclusively. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  15. 540--900 nm photodissociation of 300 K NCNO: One- and two-photon processes

    Energy Technology Data Exchange (ETDEWEB)

    Nadler, I.; Pfab, J.; Reisler, H.; Wittig, C.

    1984-07-15

    The laser photodissociation of 300 K NCNO throughout the region 540--900 nm is reported, and both 1- and 2-photon processes are discussed. By monitoring CN fragments produced via the 1-photon process, we show that with photolysis wavelengths >592 nm, dissociation occurs predominantly by exciting NCNO ''hot bands.'' At shorter photolysis wavelengths, dissociation from the ground vibrational state of NCNO is observed as well, but the contributions from hot bands are still manifest in high CN rotational levels which are energetically inaccessible from the ground state (D/sub 0/ = 48.8 kcal mol/sup -1/). Energy distributions in the CN fragments were determined for excess energies up to 1800 cm/sup -1/, and are in agreement with phase space theory calculations and a vibrational predissociation mechanism. In addition, throughout the region 620--900 nm, stepwise two-photon photodissociation proceeds using the A /sup 1/A'' state as a gateway, and results in rotationally and vibrationally ''hot'' CN fragments. The hot CN fragment yield vs photolysis wavelength shows peaks which correspond exactly to peaks in the NCNO absorption spectrum, allowing us to obtain high resolution spectra of the A /sup 1/A''reverse arrow X /sup 1/A' absorption system. The one- and two-photon processes are in competition, and the latter disappears at wavelengths where one-photon photodissociation of NCNO via its ground vibrational level sets in. The nature of the electronic states involved in the one- and two-photon processes is also discussed.

  16. Photodissociation of HCl at 193.3 nm: Spin-orbit branching ratio

    Science.gov (United States)

    Zhang, J.; Dulligan, M.; Wittig, C.

    1997-08-01

    HCl was photodissociated by ultraviolet (uv) radiation at 193.3 nm. Time-of-flight spectra of the hydrogen atom fragment provided the spin-orbit state distribution of the chlorine fragment, [Cl(2P1/2)]/[Cl(2P3/2)]=0.69±0.02, in excellent agreement with recent theoretical studies. The H atom angular distribution studied by changing the uv photolysis laser polarization confirmed a dominant A 1Π←X 1Σ+ electronic transition in the photoexcitation process (β=-1.01±0.04 and β*=-0.94±0.07).

  17. Tracking the photodissociation probability of D$_2^+$ induced by linearly chirped laser pulses

    CERN Document Server

    Csehi, András; Cederbaum, Lorenz S; Vibók, Ágnes

    2016-01-01

    In the presence of linearly varying frequency chirped laser pulses the photodissociation dynamics of D$_2^+$ is studied theoretically after ionization of D$_{2}$ . As a completion of our recent work (J. Chem. Phys. 143, 014305 (2015)) a comprehensive dependence on the pulse duration and delay time is presented in terms of total dissociation probabilities. Our numerical analysis carried out in the recently introduced light-induced conical intersection (LICI) framework clearly shows the effects of the changing position of the LICI which is induced by the frequency modulation of the chirped laser pulses. This impact is presented for positively, negatively and zero chirped short pulses.

  18. Experimental Observation of Laser Control: Electronic Branching in the Photodissociation of Na2

    Science.gov (United States)

    Shnitman, A.; Sofer, I.; Golub, I.; Yogev, A.; Shapiro, M.; Chen, Z.; Brumer, P.

    1996-04-01

    Control over the product branching ratio in the photodissociation of Na2 into Na\\(3s\\)+Na\\(3p\\) and Na\\(3s\\)+Na\\(3d\\) is demonstrated using a two-photon incoherent interference control scenario. Ordinary pulsed nanosecond lasers are used and Na2 is at thermal equilibrium in a heat pipe. Results show a depletion in the Na\\(3d\\) product of at least 25% and a concomitant increase in the Na\\(3p\\) yield as the relative frequency of the two lasers is scanned.

  19. "Centrifugal fragmentation" in the photodissociation of H2+ in intense laser fields

    CERN Document Server

    Fischer, Michael; Schmidt, Burkhard; Schmidt, Rüdiger

    2011-01-01

    By means of quantum-dynamical and classical trajectory calculations of H2+ photodissociation in strong laser fields, it is shown that for certain combinations of pulse durations and intensities the rotational dynamics can lead to centrifugal fragmentation. In that case, the photofragments exhibit characteristic angular distributions. The classical calculations provide a transparent physical picture of this mechanism which is also very well established in collisions between atomic nuclei or liquid droplets: non-rotating systems are stable, whereas rotating systems fragment due to the decrease of the fragmentation barrier with increasing angular momentum.

  20. Photodissociation Efficiency Spectroscopy Study of the Rydberg Excited Ion-Pair States of Carbon Dioxide

    Science.gov (United States)

    Feng, Qiang; Xu, Yun-Feng; Sun, Jin-Da; Tian, Shan-Xi; Shan, Xiao-Bin; Liu, Fu-Yi; Sheng, Liu-Si

    2009-10-01

    Photodissociation efficiency spectrum of anionic oxygen atom produced via ion-pair dissociations of carbon dioxide is recorded by means of the synchrotron radiation excitation (XUV photon energy 17.40-20.00 eV). The present spectrum is assigned as the Rydberg-like excited ion-pair states, i.e., Tanaka-Ogawa and Henning series, tilde C2Σg+ (CO+2) vibrational ground-state and excitation series. Three Rydberg series, npσu, npπu, and nfu, converging to tilde C2Σg+ (0, 0, 0), show the higher cross sections.

  1. Photodissociation of Isoxazole and Pyridine Studied Using Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Ariyasingha, Nuwandi M.; Joalland, Baptiste; Mebel, Alexander M.; Suits, Arthur

    2016-06-01

    Chirped - Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (Chirped- Pulse/Uniform Flow: CPUF) has been applied to study the photodissociation of two atmospherically relevant N containing heterocyclic compounds; pyridine and isoxazole. Products were detected using rotational spectroscopy. HC3N, HCN were observed for pyridine and CH3CN, HCO and HCN were observed for isoxazole and we report the first detection of HNC for both of the systems. Key points in potential energy surface were explored and compared with the experimental observations. Branching ratios were calculated for all the possible channels and will be presented.

  2. Ion imaging studies of the photodissociation dynamics of CH2I2 at 248 nm

    Science.gov (United States)

    Lehman, Julia H.; Li, Hongwei; Lester, Marsha I.

    2013-12-01

    The photodissociation of CH2I2 at 248 nm is investigated using velocity map ion imaging with photoionization detection of the I∗ (2P1/2) products. The velocity distribution of the I∗ products reveals that only a small fraction of the available energy is released as translational energy, consistent with a simple impulsive model. Most of the excess energy is channeled into internal excitation with = 36.3 kcal mol-1 for CH2I radical fragments produced with I∗ atoms. The anisotropy angular distribution of the I∗ fragments and corresponding positive anisotropy parameter are indicative of prompt dissociation and electronic state mixing.

  3. Technical Note : A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber

    NARCIS (Netherlands)

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-01-01

    Purpose: To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Methods: Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45x45 mm(2) field-of-view) of 9x9 spots capable

  4. A model-based method for reducing the sound speed induced errors in multi-beam echo-sounder bathymetric measurements

    NARCIS (Netherlands)

    Snellen, M.; Siemes, K.; Simons, D.G.

    2009-01-01

    We present a method for accurately estimating the bathymetry from multi-beam echo-sounder (MBES) travel-time measurements in environments with large variations in the water column sound speeds (both temporally and spatially). In this type of environments the water column sound speeds at the time of

  5. High-Order Stimulated Raman Emission and Two-Photon Stimulated Emission by Photodissociation of PbI2 Molecules

    Institute of Scientific and Technical Information of China (English)

    MAN Bao-Yuan; ZHANG Jie; NI Pei-Gen; ZHANG Dao-Zhong

    2000-01-01

    When focusing YAG laser pulses at 266nm into a heat-pipe oven containing PbI2 molecules vapor, four red line emissions at 626.0, 619.8, 613.7 and 621.8nm are observed. The photodissociation mechanism of PbI2 molecules and the possible generation channels of these four line emissions are given. Moreover, the dependence of the emission at 626.0nm on incident laser energy and heat-pipe temperature is measured. The experimental observation is well supported by the photodissociation mechanism proposed by us.

  6. An assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2009-03-01

    Full Text Available Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs, even for the same electron beam energy. The aims of this study were to simulate the NEPTUN 10PC linac electron beams and to calculate the photon contamination dose due to bremsstrahlung radiation in these beams using a Monte Carlo method. Materials and methods: A NEPTUN 10PC linac was simulated in its electron mode using the BEAMnrc code. This linac can provide three electron beam energies of 6, 8 and 10 MeV. Detailed information required for the simulation, including the geometry and materials of various components of the linac treatment head, was provided by the vender. For all simulations, the cut-off energies for electron and photon transport were set at ECUT=0.521 MeV and PCUT=0.010 MeV, respectively. The KS statistical test was used for validation of the simulated models. Then, relevant bremsstrahlung radiation doses for the three electron beam energies of the linac were calculated for the reference field using the Monte Carlo method.   Results: The KS test showed a good agreement between the calculated values (resulting from the simulations and the measured ones. The results showed that the amount of contaminated photon dose due to bremsstrahlung radiation from various components of the simulated linac at the surface of the phantom was between 0.2%-0.5% of the maximum dose for the three electron beam energies. Conclusion:  Considering the good agreement between the measured and simulated data, it can be concluded that the simulation method as well as the calculated bremsstrahlung doses have been made at a good level of accuracy and precision

  7. Structural, morphological, optical and electrical properties of Cu0.87Se thin films coated by electron beam evaporation method

    Science.gov (United States)

    Bhuvaneswari, P. V.; Ramamurthi, K.; Ramesh Babu, R.; Moorthy Babu, S.

    2015-09-01

    Copper selenide powder was synthesized adopting a two-step chemical route. X-ray diffraction analysis showed that the synthesized material consists of mixed phases of Cu3Se2, Cu7Se4 and Cu0.87Se. Synthesized material was used to deposit thin films at the substrate temperature of 200, 300, 400 and 500 °C by electron beam evaporation method. The substrate temperature of 200 °C yielded amorphous film, whereas the substrate temperature of 300, 400 and 500 °C produced Cu0.87Se single-phase thin film. Atomic force microscopic studies showed that the film coated at 400 °C possesses relatively lower average roughness. The direct band gap of Cu0.87Se varies from 1.67 to 1.81 eV. Thin film coated at 400 °C shows the minimum resistivity of 5.2 × 10-4 Ω cm, whereas the film coated at 300 °C possesses the maximum mobility of 8.2 cm2/Vs.

  8. Clinical implementation of a GPU-based simplified Monte Carlo method for a treatment planning system of proton beam therapy.

    Science.gov (United States)

    Kohno, R; Hotta, K; Nishioka, S; Matsubara, K; Tansho, R; Suzuki, T

    2011-11-21

    We implemented the simplified Monte Carlo (SMC) method on graphics processing unit (GPU) architecture under the computer-unified device architecture platform developed by NVIDIA. The GPU-based SMC was clinically applied for four patients with head and neck, lung, or prostate cancer. The results were compared to those obtained by a traditional CPU-based SMC with respect to the computation time and discrepancy. In the CPU- and GPU-based SMC calculations, the estimated mean statistical errors of the calculated doses in the planning target volume region were within 0.5% rms. The dose distributions calculated by the GPU- and CPU-based SMCs were similar, within statistical errors. The GPU-based SMC showed 12.30-16.00 times faster performance than the CPU-based SMC. The computation time per beam arrangement using the GPU-based SMC for the clinical cases ranged 9-67 s. The results demonstrate the successful application of the GPU-based SMC to a clinical proton treatment planning.

  9. Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    CERN Document Server

    Jia, Xun; Lou, Yifei; Sonke, Jan-Jakob; Jiang, Steve B

    2012-01-01

    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A...

  10. Measurement Error Effects of Beam Parameters Determined by Beam Profiles

    CERN Document Server

    Jang, Ji-Ho; Jeon, Dong-O

    2015-01-01

    A conventional method to determine beam parameters is using the profile measurements and converting them into the values of twiss parameters and beam emittance at a specified position. The beam information can be used to improve transverse beam matching between two different beam lines or accelerating structures. This work is related with the measurement error effects of the beam parameters and the optimal number of profile monitors in a section between MEBT (medium energy beam transport) and QWR (quarter wave resonator) of RAON linear accelerator.

  11. Application of filter method for detection of secondary electron emission in the auto-oscillating mode of beam plasma discharge

    Science.gov (United States)

    Balovnev, A. V.; Vizgalov, I. V.; Salahutdinov, G. H.

    2016-01-01

    In this paper we studied the non-self mode of the auto-oscillation secondary- emission discharge (ASED) in a longitudinal magnetic field with autonomous electron gun to ignite the primary beam-plasma discharge (PPD).

  12. Laser beam shaping optical system design methods and their application in edge-emitting semiconductor laser-based LIDAR systems

    Science.gov (United States)

    Serkan, Mert

    LIDAR (Light Detection And Ranging) systems are employed for numerous applications such as remote sensing, military applications, optical data storage, display technology, and material processing. Furthermore, they are superior to other active remote sensing tools such as RADAR systems, considering their higher accuracy and more precise resolution due to their much shorter wavelengths and narrower beamwidth. Several types of lasers can be utilized as the radiation source of several LIDAR systems. Semiconductor laser-based LIDAR systems have several advantages such as low cost, compactness, broad range of wavelengths, and high PRFs (Pulse Repetition Frequency). However, semiconductor lasers have different origins and angles of divergence in the two transverse directions, resulting in the inherent astigmatism and elliptical beam shape. Specifically, elliptical beam shape is not desirable for several laser-based applications including LIDAR systems specifically designed to operate in the far-field region. In this dissertation, two mirror-based and two lens-based beam shapers are designed to circularize, collimate, and expand an edge-emitting semiconductor laser beam to a desired beam diameter for possible application in LIDAR systems. Additionally, most laser beams including semiconductor laser beams have Gaussian irradiance distribution. For applications that require uniform illumination of an extended target area, Gaussian irradiance distribution is undesirable. Therefore, a specific beam shaper is designed to transform the irradiance distribution from Gaussian to uniform in addition to circularizing, collimating, and expanding the semiconductor laser beam. For the design of beam shapers, aperture sizes of the surfaces are preset for desired power transmission and allowed diffraction level, surface parameters of the optical components and the distances between these surfaces are determined. Design equations specific to these beam shaping optical systems are

  13. Investigations of high power laser beam interaction with material by means of hybrid FVM-FEM and digital image correlation methods

    Science.gov (United States)

    Kujawińska, M.; Łapka, P.; Malesa, M.; Malowany, K.; Prasek, M.; Marczak, J.

    2016-12-01

    The paper presents the new approach to the analysis of interaction between a high power laser beam and matter. The method relies on the combined experimental-numerical spatio-temporal analysis of temperature, displacement and strain maps which are generated at a surface of an object illuminated by a high power laser beam. Transient heat transfer numerical simulations were carried out applying the FVM, while the quasi-transient structural analyses were performed with the aid of the FEM. The displacement maps were captured by means of 3D Digital Image Correlation method, and temperature maps were provided by a high speed IR camera. The experimental data are compared to the initial model of laser induced heat transfer in an object and resulting displacements/strains. The first approach to hybrid experimental-numerical method which aims in indirect determination of laser beam profile is described. The monitoring of displacement/strain maps directly at an illuminated object may be also used for a structural integrity analysis of a target. In the paper at first the numerical simulations applied to model laser beam thermal interaction with solid bodies are presented. Next the laboratory experimental stand is described and the results of the initial tests performed at aluminum and bronze samples are shown and compared with numerical simulations. The advantages and disadvantages of the proposed methodology are discussed in relation to the two applications mentioned above.

  14. Production of O/1S/ from photodissociation of carbon dioxide.

    Science.gov (United States)

    Lawrence, G. M.

    1972-01-01

    The production efficiency was measured with the aid of a method based on the detection of the OI (5577 A) 'green' line. A sodium salicylate screen was used to monitor the intensity of the photons. Measurements at each of several individual wavelengths are conducted. The relative production efficiencies are shown in a graph. The absolute scale for the efficiency was determined in essentially the same way as in the Cameron band work reported by Lawrence (1972).

  15. An improvement of a beam search method for warehouse storage allocation planning problems minimizing the number of operations and the aggregated number of products for each customer

    Science.gov (United States)

    Nishi, Tatsushi; Yamamoto, Shinichiro; Konishi, Masami

    The storage allocation planning problem in warehouse management is to determine the allocation of products to the storage space and intermediate operations for retrieving products so as to minimize the number of operations, and maximize the collected number of products for each customer when the sequence of requests for inlet and retrieval operations are given. In this paper, we propose an efficient beam search method for generating a near optimal solution with a reasonable computation time. A heuristic procedure is also proposed in order to reduce a search space in the beam search method by using the information of subsequent inlet and retrieving requests. The validity of the proposed method is confirmed by comparing the results with the optimal solution derived by solving an MILP problem. The effectiveness of the proposed method is demonstrated by solving an actual large-sized problem consisting of more than 3000 operations.

  16. Intense-Field Multiple-Detachment of F2¯: Competition with Photodissociation.

    Science.gov (United States)

    Shahi, Abhishek; Albeck, Yishai; Strasser, Daniel

    2017-04-07

    The competition of intense-field multiple-detachment with efficient photodissociation of F2¯ is studied as a function of laser peak intensity. The main product channels are disentangled and characterized by 3D coincidence fragment imaging. The presented kinetic energy release spectra, angular distributions as well as two color pump-probe measurements allow identification of competing sequential and non-sequential mechanisms. Dissociative detachment, producing two neutral atoms (F + F) is found to be dominated by a sequential mechanism of photodissociation (F¯ + F) followed by detachment of the atomic anion fragment. In contrast, dissociative ionization (F + F(+)) shows competing contributions of both a sequential two-step mechanism as well as a non-sequential double-detachment of the molecular anion, which are distinguished by the kinetic energy released in the dissociation. Triple-detachment is found to be non-sequential in nature and results in Coulomb explosion (F(+)+F(+)). Furthermore, the measured kinetic energy release for dissociation on the (2)Σg(+) state provides a direct measurement of the F2¯ dissociation energy, D0 = 1.26±0.03 eV.

  17. A new look at the photodissociation of methyl iodide at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hong; Pratt, S. T. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2013-12-07

    A new measurement of the photodissociation of CH{sub 3}I at 193 nm is reported in which we use a combination of vacuum ultraviolet photoionization and velocity map ion imaging. The iodine photofragments are probed by single-photon ionization at photon energies above and below the photoionization threshold of I({sup 2}P{sub 3/2}). The relative I({sup 2}P{sub 3/2}) and I{sup *}({sup 2}P{sub 1/2}) photoionization cross sections are determined at these wavelengths by using the known branching fractions for the photodissociation at 266 nm. Velocity map ion images indicate that the branching fraction for I({sup 2}P{sub 3/2}) atoms is non-zero, and yield a value of 0.07 ± 0.01. Interestingly, the translational energy distribution extracted from the image shows that the translational energy of the I({sup 2}P{sub 3/2}) fragments is significantly smaller than that of the I{sup *}({sup 2}P{sub 1/2}) atoms. This observation indicates the internal rotational/vibrational energy of the CH{sub 3} co-fragment is very high in the I({sup 2}P{sub 3/2}) channel. The results can be interpreted in a manner consistent with the previous measurements, and provide a more complete picture of the dissociation dynamics of this prototypical molecule.

  18. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    Science.gov (United States)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  19. Photodissociation Exploration for Near-Visible UV Absorption of Molecular Bromine

    Institute of Scientific and Technical Information of China (English)

    Dong-fang Zhang; Bing Zhang

    2008-01-01

    The photodissociation of Br2 was investigated within the near-visible UV absorption band.Based on the potential curves for the ground and low-lying excited states,the optical cross-sections for the discrete transitions of C1∏u,B3+∏+0u,A3∏1u←X1∑+g and their total energy absorption spectrum are derived,and the quantum yield of(Br+Br*) channel are determined correspondingly.The one-dimensional Landau-Zener model is used to evaluate the behavior of curve crossing during photodissociation.The results indicate that the influence of nonadiabatic mechanism,which may be caused by the electronic-vibrational interplay between the B and C states,is negligibly small for the(Br+Br*) channel.From the Landau-Zener modeling of the observed product recoil parameter β(Br+Br),the best-fit value of the coupling matrix element or coupling strength between the diabatic B and C state potentials is obtained.

  20. DFT/TDDFT study on the photodissociation mechanism of the original monascus red and orange pigments

    Science.gov (United States)

    Liu, Yi; Wu, Li; Lv, Qingzhang

    2015-06-01

    The weak photostability has to some extent restricted the wide utilization of monascus pigments in food industries, and their photobleaching mechanism is unclear yet. Density functional theory and time-dependent density functional theory at B3LYP/6-311+G(d,p) level have been performed to optimize the geometries of ground states, single and triplet excited-states of the original monascus red and orange pigments, the possible photodissociation mechanism of which is analyzed according to the calculated data. It is the break of the chromophores, conjugated π bonds which has induced their decoloration. The photodissociation of these pigments involves three steps, excitation of the large conjugated π system, water addition to the singlet or triplet excited-state, and Norrish type I photochemical cleavage reactions of the side chains. The former two steps are much more important steps which have led to the destruction of the chromophores and the fading of the four original monascus red and orange pigments. According to the photobleaching mechanism obtained, one could find some solutions to enhance the photostability of these monascus colorants during the food processing process and extend the shelf life of the foods added with monascus pigments.